当前位置: 仪器信息网 > 行业主题 > >

现场总线

仪器信息网现场总线专题为您提供2024年最新现场总线价格报价、厂家品牌的相关信息, 包括现场总线参数、型号等,不管是国产,还是进口品牌的现场总线您都可以在这里找到。 除此之外,仪器信息网还免费为您整合现场总线相关的耗材配件、试剂标物,还有现场总线相关的最新资讯、资料,以及现场总线相关的解决方案。

现场总线相关的论坛

  • 【求助】GB/T 16657-2008 工业通信网络 现场总线规范

    [size=3]GB/T 16657.1GB/T 16657.2-2008 工业通信网络 现场总线规范 第2部分:物理层规范和服务定义~~~~~~~不知道有没有第一部分GB/T 16657.1,我也没有查到,不可能直接从第二部分开始吧,还有其他的没有请各位达人帮忙,想了解一下GB 工业通信网络 现场总线规范?[/size]

  • 【原创】Ethernet(以太网络)与现场总线(PROFIBUS)的比较

    目前仪器上的网络通讯方式一般采用通用的为office(办公室)应用而设计的Ethernet、TCP/IP等协议。Ethernet(以太网络)用于工业生产现场有以下问题需要解决。1.实时性问题 实时性就是信号传输足够快加上确定性。Ethernet(以太网络)采用CSMA/CD碰撞检测方式。 CSMA/CD碰撞检测方式为以太网络上用来解决多台计算机同时传递数据的方法。由于两台计算机同时传递数据时会因电讯碰撞而发生数据的毁损,因此,CSMA/CD协议是当感应到碰撞时, 两台计算机都各自等待一随机的时间,然后再重新尝试传递数据。然而应用此项协议时有两项缺点,一为电缆的长度会受限制,否则感测不到碰撞;另一项则为当使用者增加时,数据碰撞的机率将大大的增加。当网络负荷较大时(40%),网络传输的不确定性不能满足交易现场的实时要求。2.Ethernet如何满足现场环境问题 Ethernet(以太网络)所用的接插件、集线器、交换机和电缆等是为办公室(office环境)应用而设计的,不符合工业现场恶劣环境的要求。在工业现场环境中,Ethernet抗干扰性能较差。 (近年来,虽然全球主要自动化厂商和组织加强了工业Ethernet实现,在上述两个问题上有所改善,但工业Ethernet在我国才刚刚起步,所以终端设备所使用的仍是为办公室应用而设计的却非为工业应用而设计的Ethernet。)3.连线方式问题 当工业场地宽广,占地面积以成百上千亩计时,采用通用的、为office(办公室)应用而设计的Ethernet(以太网络),不仅在技术上会受电缆的长度限制,而且一对一的I/O连线方式,对于大规模I/O系统来说,会形成由接线点造成的不可靠因素。对大范围、大规模I/O的分布式系统来说,需要用大量的电缆、I/O模块及电缆敷设工程费用,提高系统及工程成本。 如果在通讯上采用为工业应用而设计的现场总线(PROFIBUS)技术,带来的好处有:(1)增强了现场级信息集成能力现场总线可从现场设备获取大量丰富的信息,能够更好地满足工厂自动化及CIMS系统的信息集成要求。现场总线是数字化通信网络,它不单纯取代4-20mA信号,还可实现设备状态、故障、参数信息传送。系统除完成远程控制外,还可完成远程参数化工作。(2)开放式、互操作性、互换性、可集成性不同厂家产品只要使用同一总线标准,就具有互操作性、互换性,因此,设备具有很好的可集成性。系统为开放式,允许其它厂商将自己专长的控制技术,如控制算法、工艺流程等集成到通用系统中去。(3)系统可靠性高、可维护性好基于现场总线的自动化监控系统采用总线连接方式替代一对一的I/O连线,对于大规模I/O系统来说,减少了由接线点造成的不可靠因素。同时,系统具有现场级设备的在线故障诊断、报警、记录功能,可完成现场设备的远程参数设定、修改等参数化工作,也增强了系统的可维护性。(4)降低了系统及工程成本对大范围、大规模I/O的分布式系统来说,省去了大量的电缆、I/O模块及电缆敷设工程费用,降低了系统及工程成本。

  • 带现场总线功能的LED工业参数屏

    泉州捷辉科技带现场总线功能的LED工业参数屏一.概述在高度自动化的工厂里,有许多无需工人驻守的PLC设备,它们平时正常自动工作,只是在发生故障(异常)时,能够把故障信息发送到LED显示屏上显示,及时通知巡视人员处理。PLC设备以控制为主,通讯信息多以简单代码的形式表示及传送,PLC处理复杂的通讯信息和LED显示图片信息比较复杂,几乎无法实现这类的通讯过程,所以要求LED电子看板控制卡能够适应PLC的通讯特点作相应的调整。 二、实现方式因为PLC设备都支持Modbus协议和485通讯接口,所以我们的LED控制卡集成了Modbus协议,以便与PLC设备通过485接口进行简单通讯。事先把所有故障信息逐一编码,PLC发送简单故障信息编码给LED控制卡即可。事先把每一条编码的故障信息设计对应的显示图片,通过附带的显示编辑软件按照编码顺序保存在电子看板控制卡内。 三、系统组成及工作流程系统包括一个LED电子看板显示屏,若干个PLC设备和报障管理PLC设备,它们通过Modbus协议交换信息。工作时,报障管理PLC不断查询总线上的各个工作PLC设备是否有故障(异常),如果没有,设置对应的寄存器为0;如果有故障(异常),则设置对应的寄存器为1。[/col

  • CAN总线技术在疲劳试验机控制领域的应用!

    CAN总线技术在疲劳试验机控制领域的应用!

    CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。 在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线。 现场总线能同时满足过程控制和制造业自动化的需求,成为工业数据总线领域最为活跃的技术之一。CAN(Controller Area Network,即控制器局域网)现场总线以其多主方式,报文自动过滤重发、极低的误码率和高通讯速率等特点,在各种高抗干扰的多机远程控制系统中得到广泛应用。http://ng1.17img.cn/bbsfiles/images/2016/06/201606021644_595808_2070449_3.png远程控制 所谓远程控制,是指管理人员在异地通过计算机网络异地拨号或双方都接入Internet等手段,连通需被控制的计算机,将被控计算机的桌面环境显示到自己的计算机上,通过本地计算机对远方计算机进行配置、软件安装程序、修改等工作。 现在,该技术已经应用到控制器上面,通过CAN总线实现远距离的数据传送,由于CAN的可靠性和实时性,朗杰测控研发出的代龙700控制器完全可以实现工业远程控制。http://ng1.17img.cn/bbsfiles/images/2016/06/201606021720_595810_2070449_3.png多台互联 由于CAN总线的传输特性,可以轻松的实现多台控制器互联,并且无需担心数据错乱等问题。

  • RS485总线常见故障及排除方法

    在工业现场的数据传输中,常常使用简便易用的串行通讯方式作为数据交换的手段。但是,在工业控制等环境中,常会有电气噪声干扰传输线路,使用RS-232通讯时经常因外界的电气干扰而导致信号传输错误;另外,RS-232通讯的最大传输距离在不增加缓冲器的情况下只可以达到15  米。相比于RS-232,RS-485通讯具有相当高噪声抑制、相对高的传输速率、传输距离远、宽共模范围、多节点(256个)以及传输线成本低的优点,成为工业应用中数据传输的首选标准但在各种现场中,485总线可能会出现一些故障,现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下:1. 由于485信号使用的是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。2. 在工业现场当中,现场情况非常复杂,各个节点之间存在很高的共模电压,485接口使用的是差分传输方式,有抗共模干扰能力,但是当共模电压大于+12V或者小于-9V时,超过485接收器的极限接收电压。接收器就无法工作,甚至可能会烧毁芯片和一起设备。上海诺博环保科技有限公司生产的PH在线检测仪NP-1806可根据客户需求增加485光隔离输出,将仪表485通讯接口于现场485总线完全隔离,从而消除共模电压的影响,保证仪表的485通讯不受干扰。3. 485总线随着传输距离的延长,会产生回波反射信号,如果485总线的传输距离如果超过100米,建议施工时在485通讯的开始端和结束端并联120欧姆的终端电阻。4. 485总线中485节点要尽量减少与主干之间的距离,一般建议485总线采用手牵手的总线拓扑结构。星型结构会产生反射信号,影响485通信质量。5. 影响485总线的负载能力的因素:通讯距离,线材的品质,波特率,转换器供电能力,485设备的防雷保护,485芯片的选择。如果485总线上的485设备比较多的话,建议使用带有电源的485转换器,无源型的485转换器由于时从串口窃电,供电能力不是很足,负载能力不够。选用好的线材,如有可能使用尽可能低的波特率,选择高负载能力的485芯片,都可以提高485总线的负载能力。485设备的防雷保护中的防雷管会吸收电压,导致485总线负载能力降低,去掉防雷保护可以提高485总线负载能力。

  • Profibus-DP总线LED工业参数屏 LED电子工业看板

    Profibus-DP总线LED工业参数屏 LED电子工业看板

    file:///c:/users/administrator/appdata/roaming/360se6/User Data/temp/TB2_OgabXXXXXbWXpXXXXXXXXXX_!!770663697.jpgLED屏通讯协议采用SIEMENS/西门子Profibus-DP现场总线协议,随屏提供GSD通讯组态文件,接入SIEMENS/西门子Profibus-DP现场总线非常方便快捷;http://ng1.17img.cn/bbsfiles/images/2014/12/201412040957_525866_2968238_3.jpg

  • 【已应助】求助:总线相关的文章和标准

    [size=3]序号:1题目:一种多协议混合的嵌入式智能监控网络作者:[/size][url=http://search.cnki.com.cn/Search.aspx?q=author:%E5%BC%A0%E4%BA%91%E6%B4%B2][size=3]张云洲[/size][/url][size=3] [/size][url=http://search.cnki.com.cn/Search.aspx?q=author:%E5%90%B4%E6%88%90%E4%B8%9C][size=3]吴成东[/size][/url][size=3] [/size][url=http://search.cnki.com.cn/Search.aspx?q=author:%E8%96%9B%E5%AE%9A%E5%AE%87][size=3]薛定宇[/size][/url][size=3] [/size][url=http://search.cnki.com.cn/Search.aspx?q=author:%E5%88%98%E6%BF%9B][size=3]刘濛[/size][/url][size=3] 期刊:东北大学学报链接:[/size][url=http://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200708006.htm][size=3]http://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200708006.htm[/size][/url][size=3]序号:2题目:[b][size=2]基于多总线的总线型多微机系统在仿真测试系统中的应用[/size][/b]作者:顾浩期刊:[size=2]1990年火力与指挥控制学术交流会[/size]链接:[url]http://www.etiri.com.cn/data/dzkjwz_sj.php?id=121712[/url]序号:3题目:TP801单板机与多总线接口技术作者:谭学伟期刊:上海微型计算机链接:序号:4题目:[url=http://d.wanfangdata.com.cn/Thesis_Y1307901.aspx][color=red]多[/color]现场[color=red]总线[/color]技术在控制系统中的集成应用[/url] [url=http://www.tbtmap.cn/portal/common/viewbycategory.jsf?popCategoryID=21&popFatherID=31.080][/url] 作者:周坤, 期刊:学位论文 2008 - 济南大学:控制理论与控制工程 链接:http://s.wanfangdata.com.cn/Paper.aspx?q=%e5%a4%9a%e6%80%bb%e7%ba%bf+%e8%ae%ba%e6%96%87%e7%b1%bb%e5%9e%8b%3aWF_XW&f=paperType[/url][url=http://www.tbtmap.cn/portal/standard/detail.jsf?id=581313]序号:5题目:Multibus总线到ISA总线的接口设计作者: 姚吉文,期刊:2001年 第12期 链接:[url]http://scholar.ilib.cn/A-QCode~qbzhkzxtyfzjs200112004.html[/url][/size]

  • I2C 总线协议图解

    [table][tr][td][color=#6466b3][url=https://www.cnblogs.com/aaronLinux/p/6218660.html]I2C总线协议图解[/url][/color]1 I2C总线物理拓扑结构[img=1219450.png,600,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/005642ff76583ymmn4n17q.png[/img] [align=left][color=#393939]I2C 总线在物理连接上非常简单,分别由SDA(串行数据线)和SCL(串行时钟线)及上拉电阻组成。通信原理是通过对SCL和SDA线高低电平时序的控制,来产生I2C总线协议所需要的信号进行数据的传递。在总线空闲状态时,这两根线一般被上面所接的上拉电阻拉高,保持着高电平。[/color][/align][align=left][color=#393939]I2C通信方式为半双工,只有一根SDA线,同一时间只可以单向通信,485也为半双工,SPI和uart为双工。[/color][/align]2 I2C总线特征[align=left][color=#393939] I2C总线上的每一个设备都可以作为主设备或者从设备,而且每一个设备都会对应一个唯一的地址(地址通过物理接地或者拉高,可以从I2C器件的数据手册得知,如TVP5158芯片,7位地址依次bit6~bit0:x101 1xxx, 最低三位可配,如果全部物理接地,则该设备地址为0x58, 而之所以7bit因为1个bit要代表方向,主向从和从向主),主从设备之间就通过这个地址来确定与哪个器件进行通信,在通常的应用中,我们把CPU带I2C总线接口的模块作为主设备,把挂接在总线上的其他设备都作为从设备。 I2C总线上可挂接的设备数量受总线的最大电容400pF 限制,如果所挂接的是相同型号的器件,则还受器件地址位的限制。 I2C总线数据传输速率在标准模式下可达100kbit/s,快速模式下可达400kbit/s,高速模式下可达3.4Mbit/s。一般通过I2C总线接口可编程时钟来实现传输速率的调整,同时也跟所接的上拉电阻的阻值有关。 I2C总线上的主设备与从设备之间以字节(8位)为单位进行双向的数据传输。[/color][/align]3 I2C总线协议[align=left][color=#393939] I2C协议规定,总线上数据的传输必须以一个起始信号作为开始条件,以一个结束信号作为传输的停止条件。起始和结束信号总是由主设备产生(意味着从设备不可以主动通信?所有的通信都是主设备发起的,主可以发出询问的command,然后等待从设备的通信)。[/color][/align][align=left][color=#393939]起始和结束信号产生条件:总线在空闲状态时,SCL和SDA都保持着高电平,当SCL为高电平而SDA由高到低的跳变,表示产生一个起始条件;当SCL为高而SDA由低到高的跳变,表示产生一个停止条件。[/color][/align][align=left][color=#393939]在起始条件产生后,总线处于忙状态,由本次数据传输的主从设备独占,其他I2C器件无法访问总线;而在停止条件产生后,本次数据传输的主从设备将释放总线,总线再次处于空闲状态。起始和结束如图所示:[/color][/align][img=1219451.png,579,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/005652vxq1vasptkk0t4qt.png[/img] [color=#393939] 在了解起始条件和停止条件后,我们再来看看在这个过程中[/color][color=#0000ff]数据的传输是如何进行[/color][color=#393939]的。前面我们已经提到过,数据传输以字节为单位。主设备在SCL线上产生每个时钟脉冲的过程中将在SDA线上传输一个数据位,当一个字节按数据位从高位到低位的顺序传输完后,紧接着从设备将拉低SDA线,回传给主设备一个[/color][color=#00ff]应答位[/color][color=#393939], 此时才认为一个字节真正的被传输完成。当然,[/color][color=#0000ff]并不是[/color][color=#393939]所有的字节传输都[/color][color=#0000ff]必须[/color][color=#393939]有一个应答位,比如:当从设备不能再接收主设备发送的数据时,从设备将回传一个否 定应答位。[/color]数据传输的过程[color=#393939]如图所示:[/color][img=1219452.png,600,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/0056577ouzuoooaur6oror.png[/img] [color=#393939] 在前面我们还提到过,I2C总线上的每一个设备都对应一个唯一的地址,主从设备之间的数据传输是建立在地址的基础上,也就是说,主设备在传输有效数据之前[/color][color=#0000ff]要先指定从设备的地址[/color][color=#393939],地址指定的过程和上面数据传输的过程一样,只不过大多数从设备的地址是7位的,然后协议规定再给地址添加一个最低位用来表示接下来数据传输的方向,0表示主设备向从设备写数据,1表示主设备向从设备读数据。[/color]向指定设备发送数据的格式[color=#393939]如图所示:(每一最小包数据由9bit组成,8bit内容+1bit ACK, 如果是地址数据,则8bit包含1bit方向)[/color][img=1219453.png,600,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/0057150b5532tuppptfu2t.png[/img] 下图是完整的一帧I2C数据[color=#393939]:[/color][img=917884-20161225102125417-525309492.png,600,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/010047a4y89z23z26492cl.png[/img] 4 I2C总线操作[align=left][color=#393939] 对I2C总线的操作实际就是主从设备之间的读写操作。大致可分为以下三种操作情况:[/color][/align][list][*] 主设备往从设备中写数据。数据传输格式如下:[/list][img=1219454.png,502,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/0057211m0o12721a9s7pzw.png[/img] [list][*] 主设备从从设备中读数据。数据传输格式如下:[/list][img=1219455.png,497,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/005725vettahbvm9821jio.png[/img] [list][*] 主设备往从设备中写数据,然后重启起始条件,紧接着从从设备中读取数据;或者是主设备从从设备中读数据,然后重启起始条件,紧接着主设备往从设备中写数据。数据传输格式如下:[/list][img=1219456.png,600,]http://www.viewtool.com/bbs/data/attachment/forum/201812/21/005730156qz1e6p1mv6sgf.png[/img] [color=#393939] 第三种操作在单个主设备系统中,重复的开启起始条件机制要比用STOP终止传输后又再次开启总线更有效率。[/color][/td][/tr][/table]

  • 【已应助】求助:现场总线方面的文献

    序号:1题目:基于CAN协议智能仪表的研究作者:马超 河北工业大学期刊:硕士论文连接:http://epub.cnki.net/Grid2008/brief/result.aspx?&PageName=ASP.brief_index_aspx&DbPrefix=SCDB&DbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93&ConfigFile=SCDB.xml&db_value=CDFD%2CCMFD&NaviField=%E4%B8%93%E9%A2%98%E5%AD%90%E6%A0%8F%E7%9B%AE%E4%BB%A3%E7%A0%81&orderby=relevant&txt_extension=xls&txt_1_sel=%E5%85%A8%E6%96%87&txt_1_value1=%E5%B5%8C%E5%85%A5%E5%BC%8F%E7%8E%B0%E5%9C%BA%E6%80%BB%E7%BA%BF%E5%8D%8F%E8%AE%AE%E6%8E%A5%E5%8F%A3%E8%A3%85%E7%BD%AE%E5%92%8C%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95&txt_1_relation=%23CNKI_AND&txt_1_special1=%3D&sTab=normal&navicode=序号:2题目:基于PROFIBUS的网络控制系统智能从站接口的设计及分析 作者:送利杰 河北工业大学期刊:硕士论文连接:http://epub.cnki.net/Grid2008/brief/result.aspx?&PageName=ASP.brief_index_aspx&DbPrefix=SCDB&DbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93&ConfigFile=SCDB.xml&db_value=CDFD%2CCMFD&NaviField=%E4%B8%93%E9%A2%98%E5%AD%90%E6%A0%8F%E7%9B%AE%E4%BB%A3%E7%A0%81&orderby=relevant&txt_extension=xls&txt_1_sel=%E5%85%A8%E6%96%87&txt_1_value1=%E5%B5%8C%E5%85%A5%E5%BC%8F%E7%8E%B0%E5%9C%BA%E6%80%BB%E7%BA%BF%E5%8D%8F%E8%AE%AE%E6%8E%A5%E5%8F%A3%E8%A3%85%E7%BD%AE%E5%92%8C%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95&txt_1_relation=%23CNKI_AND&txt_1_special1=%3D&sTab=normal&navicode=序号:3题目:基于PC/104的嵌入式智能控制器的研究 作者:槐博超 河北工业大学期刊:硕士论文连接:http://epub.cnki.net/Grid2008/brief/result.aspx?&PageName=ASP.brief_index_aspx&DbPrefix=SCDB&DbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93&ConfigFile=SCDB.xml&db_value=CDFD%2CCMFD&NaviField=%E4%B8%93%E9%A2%98%E5%AD%90%E6%A0%8F%E7%9B%AE%E4%BB%A3%E7%A0%81&orderby=relevant&txt_extension=xls&txt_1_sel=%E5%85%A8%E6%96%87&txt_1_value1=%E5%B5%8C%E5%85%A5%E5%BC%8F%E7%8E%B0%E5%9C%BA%E6%80%BB%E7%BA%BF%E5%8D%8F%E8%AE%AE%E6%8E%A5%E5%8F%A3%E8%A3%85%E7%BD%AE%E5%92%8C%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95&txt_1_relation=%23CNKI_AND&txt_1_special1=%3D&sTab=normal&navicode=序号:4题目:智能测控仪表CAN总线通讯的研究 作者:饶鑫 河北工业大学期刊:硕士论文连接:http://epub.cnki.net/Grid2008/brief/result.aspx?&PageName=ASP.brief_index_aspx&DbPrefix=SCDB&DbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93&ConfigFile=SCDB.xml&db_value=CDFD%2CCMFD&NaviField=%E4%B8%93%E9%A2%98%E5%AD%90%E6%A0%8F%E7%9B%AE%E4%BB%A3%E7%A0%81&orderby=relevant&txt_extension=xls&txt_1_sel=%E5%85%A8%E6%96%87&txt_1_value1=%E5%B5%8C%E5%85%A5%E5%BC%8F%E7%8E%B0%E5%9C%BA%E6%80%BB%E7%BA%BF%E5%8D%8F%E8%AE%AE%E6%8E%A5%E5%8F%A3%E8%A3%85%E7%BD%AE%E5%92%8C%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95&txt_1_relation=%23CNKI_AND&txt_1_special1=%3D&sTab=normal&navicode=序号:5题目: 基于LonWorks现场总线的过程控制实验系统的研究 作者:季宏 河北工业大学期刊:硕士论文连接:http://epub.cnki.net/Grid2008/brief/result.aspx?&PageName=ASP.brief_index_aspx&DbPrefix=SCDB&DbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93&ConfigFile=SCDB.xml&db_value=CDFD%2CCMFD&NaviField=%E4%B8%93%E9%A2%98%E5%AD%90%E6%A0%8F%E7%9B%AE%E4%BB%A3%E7%A0%81&orderby=relevant&txt_extension=xls&txt_1_sel=%E5%85%A8%E6%96%87&txt_1_value1=%E5%B5%8C%E5%85%A5%E5%BC%8F%E7%8E%B0%E5%9C%BA%E6%80%BB%E7%BA%BF%E5%8D%8F%E8%AE%AE%E6%8E%A5%E5%8F%A3%E8%A3%85%E7%BD%AE%E5%92%8C%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95&txt_1_relation=%23CNKI_AND&txt_1_special1=%3D&sTab=normal&navicode=

  • 数据总线技术在智能电网调度控制系统中的应用

    看到篇不错的分享下智能电网调度控制系统存在大量数据传输的业务场景。随着电网的技术进步和业务发展,智能电网调度控制系统功能日益强大,各类应用在数据通信方面呈现出复杂性和多样化的特点,主要体现在传输数据量大、数据获取方式多样、数据交互实时性高等方面,对数据通信的安全性、可靠性等要求越来越高。为适应电网发展需求,研究智能电网调度控制系统的数据传输技术已经迫在眉睫。  根据中国电力二次系统安全防护设计思想,电力二次系统分为安全Ⅰ区、安全Ⅱ区、安全Ⅲ区和安全Ⅳ区。智能电网调度控制系统的四大类应用横跨3个安全区域,当前各类应用间的数据传输主要存在3个方面问题:首先,相同区域内数据传输效率低,缺少统一的、高效实时的数据传输手段;其次,横向跨区和纵向跨级需要安全可靠的数据传输和交互机制;再次,安全Ⅰ区、Ⅱ区与安全Ⅲ区间的隔离装置缺少统一的数据交互方式。  在智能电网调度控制系统中,现有的数据传输机制很难解决上述所有问题,因此本文提出了一种横向集成、纵向贯通的数据总线技术。该技术通过对总线技术、中间件技术、订阅/发布策略等进行融合、扩展,使智能电网调度控制系统中应用程序可以实现横向跨区传输,同时支持各级调度中心之间的数据交互,满足了智能电网调度控制系统在多级调控中心数据广域范围共享的要求。  1 系统总线架构  数据总线由消息总线、服务总线、消息邮件3个部分构成,其为智能电网调度控制系统应用程序提供横向集成、纵向贯通的数据交互服务。数据总线架构如图1所示,消息总线负责相同安全区域内不同应用间的实时数据传输,服务总线和消息邮件实现跨安全区和各级调度间的数据交互。【1】  消息总线用于系统中应用程序间的实时数据传输,按照实时监控的特殊要求,具备高效实时的特点,消息总线基于订阅/发布模型,为应用程序提供注册、撤销注册、订阅消息、撤销订阅、发布消息、接收消息等功能,为实现高效的数据通信提供可靠和通用的信息交互机制。消息总线主要用于对实时性要求高的数据通信场景,例如数据采集应用和数据处理应用之间的消息传递都采用消息总线实现。  服务总线用于系统中应用程序间的数据交互,按照系统对数据交互安全性、高效性、实时性和统一性要求,实现请求/响应模型和订阅/发布模型两种模型,为应用程序提供基于服务,屏蔽实现数据交换底层通信技术的具体方法,满足应用功能和数据在广域范围的交互和共享。服务总线主要用于实时数据交互的通信场景,例如历史库服务使用服务总线的请求/响应模型,实现了对历史库的请求和访问;画面刷新服务使用服务总线的订阅/发布模型,实现了对遥测和遥信数据的动态实时推送。  消息邮件用于应用程序间的非实时数据传送,可以跨越安全Ⅰ区、Ⅱ区、Ⅲ区和上下级调度。按照为整个电网调度提供跨区跨调度机构的要求设计,为跨区跨调度机构的特殊应用提供文件、消息、流程等通信支持。  2 消息总线  2.1 概述智能电网调度控制系统对电网事件的实时监控要求较高,需要快速传递遥测数据、开关变位、事故信号、控制指令等各类实时数据和事件。为满足系统实时监控的需求,消息总线为应用程序间数据通信提供高效、通用的信息交互机制。  为解决系统中实时消息在不同应用间的传输问题,消息总线屏蔽繁琐复杂的底层通信细节,通过提供简单、通用的消息原语,支持应用程序在节点内和节点间进行消息传递,并支持一对多、一对一的信息交换场合。  2.2 消息总线结构消息总线的基本结构包括消息原语、共享内存通信模块和网络传输模块。其中,消息原语用于完成应用程序和消息总线间的信息交换;共享内存通信模块用于节点内的消息传递,以实现实时数据的高效传输;网络通信模块用于节点间的消息传递,利用组播技术和点对点分别实现一对多、一对一的消息传输方式。消息总线结构示意图如图2所示。【2】  2.3 功能设计消息总线设计通用的消息报文作为实时消息的承载体,该报文由消息头和消息体两部分组成,其中消息头主要包含消息体长度、事件集和事件等信息,是每个消息报文在发送时必须携带的公共信息;消息体是消息报文的数据部分,由应用程序针对不同的消息功能来定义各自的消息体。  为实现消息分类功能,消息总线对消息报文按照事件集、事件两级进行划分,应用程序可根据实际业务需求定义相应的事件集,再定义事件集中的事件。  消息总线以消息原语的方式为应用程序提供注册、撤销注册、订阅消息、撤销订阅、发布消息、接收消息等功能,消息总线原语如表1所示。【3】    消息总线采用订阅/发布模式进行数据传输,消息接收者只有在订阅某个事件集的消息后,才能接收属于该事件集的消息。消息发送者在发送消息时指定事件集,由消息总线将该消息发送给已订阅此事件集的所有消息接收者。消息原语使用场景示意图如图3所示。【4】    各消息原语的功能说明如下。  1)注册:应用程序注册消息总线以获取相关资源,以便后续调用其他消息原语。  2)撤销注册:应用程序撤销自己对消息总线的注册,以释放相关资源。应用程序撤销注册后,将不能使用发布消息、接收消息、订阅消息和撤销订阅等功能。  3)订阅消息:已注册消息总线的应用程序向消息总线订阅所需消息的事件集,只有在订阅消息后,应用程序才能从消息总线接收消息。  4)撤销订阅:应用程序对已订阅事件集的撤销,应用程序撤销订阅某个事件集后,消息总线不再把属于该事件集的任何消息发送给该应用程序。  5)发布消息:应用程序调用该原语来发布消息。  发布消息时需要在消息中指定消息所属的事件集,消息总线将该消息发送给已订阅此事件集的所有应用程序。  6)接收消息:已订阅某个事件集的应用程序从消息总线上接收属于该事件集的消息。  3 服务总线  3.1 概述 智能电网调度控制系统内的应用模块在生产区间及上下级调度间存在频繁的实时数据交互,为了满足系统对安全性、高效性、实时性和统一性的要求,提出了服务总线。  服务总线构建面向服务架构(SOA)的系统结构,屏蔽实现数据交换所需的底层通信技术和应用处理的具体方法,基于调度证书和安全标签实现应用层端对端的数据安全,实现服务的分布部署,提供典型的服务请求模式,通过提供服务原语实现服务访问、服务响应和服务管理,满足系统对数据交互安全和统一性的要求。  3.2 服务总线结构 服务总线从逻辑上分为服务管理中心、客户端接口、服务端接口3部分,结构示意图如图4所示。【5】  服务管理中心根据策略完成服务的注册信息收集,提供对服务信息的定位、查询和监控。客户端接口用于完成服务的定位、服务请求和服务订阅等功能。服务端接口用于完成服务的注册、服务分发、服务发布等功能。  3.3 功能设计 为解决系统在数据交互方式统一性的要求,服务总线对服务的信息进行注册管理,将服务的访问和应答请求信息进行内部封装,实现数据交换所需的底层通信技术和应用处理的具体方法,对服务访问与服务应答方式进行抽象,提出两种服务模型框架:请求/响应模型和订阅/发布模型。请求/响应模型提供“拉数据”(data pull)的服务方式。服务请求者访问服务需发送服务请求,从服务发布者获取服务结果。订阅/发布模型提供“推数据”(data push)的服务方式。服务请求者访问服务时发送请求,由服务发布者根据需求向服务请求者主动推送服务结果。  服务原语用于完成服务总线和应用程序的信息交换,包括服务管理原语和服务功能原语。服务管理原语完成服务的注册和定位。服务功能原语包括服务请求、服务应答、服务订阅、服务订阅响应、服务发布等。服务原语一览表如表2所示。【6】    应用程序通过服务原语使用服务总线,根据不同的业务需要,采用请求/响应模型或者订阅/发布模型。请求/响应模式的交互流程如图5所示。首先服务发布者注册服务信息;然后服务请求者定位服务信息,根据服务信息服务请求者向服务发布者发送服务请求;再次服务发布者收到服务请求后立刻进行服务分发;最后服务请求者接收服务请求。【7】    订阅/发布模式的交互流程如图6所示。首先服务发布者注册服务信息,进行服务订阅发布注册;然后服务请求者定位服务信息,根据服务信息服务请求者向服务发布者进行服务订阅;再次服务发布者在有结果需发布时进行订阅结果发布;最后服务请求者接收订阅结果。【8】    4 消息邮件  4.1 概述    消息邮件主要服务于横向(生产大区和管理大区之间)、纵向(上下级调度之间)的消息、文件、流程等内容的传输和交互,为智能电网调度控制系统建立规范、统一、安全、可靠的传输模式和传输通道。  为保证传输内容的安全可靠,在纵向传输过程中利用通信网关的加密、解密功能实现数据的加密传输。消息邮件在生产大区、管理大区和上下级调度间的传输示意图如图7所示。【9】    4.2 消息邮件结构    消息邮件以文件作为通信的载体,包含“头文件”和“附件文件”两种文件,一个头文件和多个附件文件组成一封邮件,通过邮件发送、接收的方式实现横向跨区和纵向跨级的信息交互。  头文件是邮件传输的基本信息载体,是传输的唯一标识,主要包含发送地址、接收地址、传输类型等内容,文件格式符合E语言规范。头文件的内容如下。其中的附件文件是邮件传输的数据内容,主要包含应用根据业务需求定义的数据。  〈E VERSION=1.0CODE=GB2312〉  〈消息邮件∷传输说明data='yyyy-mm-dd hh:mm:ss'  @ #顺序 属性名 属性值  #1标识   #2发送地址 单位.分区.部门  #3

  • 【转帖】关于1553B总线控制器芯片

    现代航空航天系统内电子设备越来越多、越来越复杂,武器系统的数字化、信息化程度也在迅速提高,系统内各种设备之间非常需要获得具有高传输速率,高管理效率和高可靠性的数据互联方式。MIL-STD-1553B总线作为一种具有较高数据传输性能和管理效率、传输可靠的数据总线,已经发展为十分成熟并被广泛应用的通用化数据传输技术,在航空航天、武器装备等系统中广泛应用。  航天测控公司已掌握了1553B总线控制器数据链路层芯片内核技术,研制出了具有自主知识产权的1553B总线控制器芯片。该芯片能够工作在BC、RT、BM三种模式下,主要功能与DDC公司的BU-61580芯片兼容,但其数据传输速率比国外芯片大幅度提高,大大提高了数据传输性能和系统实时性,应用范围更加广阔。该芯片的研制成功将彻底改变1553B芯片及控制器产品依赖进口的局面,为建立新型武器装备机内高效率、高可靠总线信息传输与控制提供了技术支撑和保障。

  • 航天测控PCI总线同步RS-485通讯接口卡

    AMC7201是一种基于PCI总线的同步通讯接口卡,它提供两个隔离通道,1通道可以按照设置自动完成定时进行的发送命令帧并接收应答帧的功能,2通道可以实现连续的数据接收功能,用于总线监听。AMC7201上使用的DSP和大容量先进先出存储器保证了该通讯接口卡可以进行连续长时间的数据收/发操作。

  • SMBus系统管理总线规范电子书下载

    [table][tr][td]详细介绍了SMbus总线规范了协议,推荐下载。[img]http://www.viewtool.com/bbs/static/image/filetype/pdf.gif[/img] [url=http://www.viewtool.com/bbs/forum.php?mod=attachment&aid=MjMwMXw3ZTFmNjMwOXwxNTU4NDI1MjU3fDB8NDUyOQ%3D%3D]SMBus系统管理总线规范.pdf[/url][/td][/tr][/table]

  • 【转帖】智能化现场仪表的软件结构

    阐述智能化现场仪表的软件结构虽然Smart仪表与模拟信号兼容,在过程控制中将模拟信号作为主要信号;但是我们在设计和使用时必须注意到,在数字控制系统中Smart仪表是系统的一部分。因此我们可方便地用仪表的键或手持通信器对仪表做组态,但所有组态变化都须及时地让系统主机知道。由于HART协议采用主从式访问方式,因此主机不发出访问,从机是无法主动将组态变化情况上传的,这在应用时必须注意。现场仪表要做的是,发生非主机的组态后,在所有返回的应答中做出标记,直到主机了解组态变化为止。  现场智能仪表的软件就功能而言至少分为3个状态:工作状态、设置状态和标定状态。可将3个状态理解为3台CPU。工作状态CPU和设置状态CPU同时工作,工作状态CPU连续工作,处理“测量或执行”任务;设置状态CPU由设置事件触发工作,处理组态任务;两台CPU间通过仪表内存交换信息。标定状态CPU单独工作,处理与仪表的生产调试或定期标定有关的事务。  工作状态的程序仍可用图2表示,但通信有专门定时要求,因此交由设置状态程序处理;显示部分也要做处理,避免与设置态的显示冲突,满足特殊低功耗要求。  标定状态的程序在不同仪表间有较大差异,即使是同类仪表,各企业间也有不同标定方法,因为方法是由模型和算法决定的。  设置状态程序框图见图5。可调用Smart仪表智能功能的途径有两条:数据通信和键盘。由于数据通信是智能仪表的必备功能,而就地显示和键盘往往是选用件,因此软件结构要安排使数字通信部分最简洁有效。对于既有就地显示和键盘又有通信功能的仪表,妥善设计键盘、通信主机和手持通信器同时对仪表实施组态时的仲裁机制和时序关系十分关键。  框图中通信分支从接收命令层到发送命令层的部分对大部分国内技术人员来说较熟悉,但部分技术人员对数据链路层重视不够,以为只要通信接上就行了。通信设计基本前提是:信道是有干扰的,原始通信是会出错的,因此必须有查错和纠错措施。错误分为两类:收发差错和内容差错。收发差错主要指信息与干扰的混淆和时序错误,内容差错指各种对信息的歪曲。Smart仪表纠错措施主要是重发。  数据链路层与物理层一起承担了限制和查找收发差错的任务,也担负部分内容差错的查错任务(用纵横奇偶校验查错)。因此数据链路层是保证现场通信成功的基础。说数据链路层复杂是因为对它不熟悉,其实只要严格按照通信协议中规定的状态图去做),认真实现图上的每条线就能达到协议规定的水平。  命令层对通信差错用核对数据格式、检查状态字与校验和来检查。此外还有内容差错。内容差错也分为两类:一类是通信造成的,另一类是内容本身的差错(如参数超出许可范围)。第一类差错由命令层程序完成查错和自动请求重发任务。第二类差错,由于在键操作也会发生,因此需在处理每条命令时查错并返回出错信息。  智能化现场仪表功能强带来的问题是操作复杂,现场人员做出错误操作的可能性极大,因此我们又有一条设计前提,就是:错误操作是不可避免的。一般而言,现场仪表要能抵御除严重物理损害(包括机械、热和电损害,以及水浸、改变内部电气连接等)外的一切错误操作。由此可料到,仪表软件中诊断和处理出错的程序量是很大的,许多智能化程度较高的仪表,出错处理程序的量远大于仪表基本功能程序。3.标定  Smart仪表模拟、数字兼容的信号方式也决定了它的校验标定模式与传统仪表不同。有些概念常常被混淆。  以温度变送器为例。对K型热电偶,IEC 60854.1给出的分度表范围是-270℃~+1372℃,所以变送器的变量下限(Variable Lower Limit, VLL)是-270℃,变量上限(Variable Upper Limit, VUL)是1372℃。但是实际上不可能有一个热电偶传感器用在这么宽的范围,如果这个变送器安装在一支0℃~800℃的热电偶上,那么传感器下限(Lower Sensor Limit, LSL)就是0℃,传感器上限(Upper Sensor Limit, USL)就是800℃。如果打算让200~500℃对应指示4~20mA,那么量程下限(Lower Range Value, LRV)是200℃,量程上限(Upper Range Value, URV)是500℃。  为了便于理解,我们可以把Smart仪表的逻辑结构分成两台仪表,一台是全数字化的仪表,另一台是模拟仪表。数字仪表由两部分组成,模拟信号调理部分和数字信号处理部分。  根据仪表类型不同,数字仪表的标定有两种模式:一种是直接标定数字信号处理部分,将每台传感器和模拟信号调理器的不一致连同非线性等一起全部修正掉,典型例子如压力变送器。另一种是不同的传感器采用统一的数字信号处理,标定时仅仅将不同传感器的信号归一化,典型例子是温度变送器。  在数字信号处理部分,它的变量范围是从VLL到VUL,这个范围在变送器设计完成以后就不可变了。变送器与传感器组装时要在仪表内设定LSL和USL。当信号超出LSL、USL或VLL、VUL时,仪表会按约定的方式报警。LSL、USL、VLL和VUL的设定是由制造厂完成的,用户不需要做。  模拟仪表是数字仪表的模拟形式表现。数字仪表传给模拟一串数字,模拟仪表将数字转换成电流。但是电流转换的是否准,这是需要在4mA和20mA标定的,标定模拟电流输出是Smart仪表特有的。仪表出厂时一般取LRV=LSL和URV=USL,使用时可以根据需要设定LRV使之对应4mA输出,设定URV使之对应20mA输出。  Smart仪表必须分别进行数字仪表的标定和模拟仪表的标定,才能保证数字输出和模拟输出都是精确的。  一些用户不理解数字仪表与模拟仪表的区别,将Smart仪表像模拟仪表一样进行零点和量程的标定,这样标定会失去智能化仪表应有的高精确度。只有在数字仪表的标定已经完成的情况下,这种简单的标定才会有好的结果。  还有一点概念上的问题,就是许多技术人员总是像考虑传统仪表一样,以为设定LRV和URV时在对仪表的前级信号调理部分进行调整,其实Smart仪表中通常只有模拟输出是可以调整的。三新型智能化现场仪表  新型智能化现场仪表指全数字化现场总线智能仪表,它们同时具有信息的采集、储存、处理和传输功能。它们加工的信息包括:过程对象、自身状态、与其他仪表的关系和系统管理等信息。由于单台仪表处理信息的能力有限,因此经常需几台仪表联合,甚至需系统主机参与处理某些信息,因此通信功能强弱对仪表的智能程度非常重要。  虽然现场总线种类很多,智能化现场仪表的制造商也很多,采用技术不完全相同,但是在仪表结构上的发展趋势是共同的。1.硬件结构  硬件结构见图6,与前面两种结构最大不同是分为了两部分:智能传感器部分与数据处理和通信部分。对执行器类仪表智能传感器部分的结构框图有些不同。  智能传感器部分包括信号调理器、A/D转换器和EEPROM(电可擦除只读存储器)或其他非易失存储器,EEPROM用于存放与传感器有关的线性化、温度补偿等标定数据和一些管理信息。虽然与这块EEPROM有关的运算是在数据处理和通信部分进行的,但把它放在智能传感器部分带来了很大好处。主要是:(1)传感器完全可互换;(2)针对不同现场总线,传感器部分可以统一。  数据处理和通信部分包括不直接涉及传感器的各部分,这部分也有一块EEPROM或其他非易失存储器,主要用于存放与仪表的组态及现场总线有关的信息。与传感器分离后,在硬件上与传感器完全脱钩,因此只需为不同现场仪表准备不同软件,原则上用一种卡件就可满足各种现场仪表的需要。  这种分体结构使企业只需针对每种现场总线设计一种数据处理和通信卡,针对每种传感器设计一种传感器卡,两类卡组合可产生多种现场总线智能仪表。分体结构对加快新产品开发,降低开发和生产成本产生了很好效果。[color=

  • 业界首个适用于车载网络多总线(Multibus)技术的通用测试平台

    业界首个适用于车载网络多总线(Multibus)技术的通用测试平台

    ——思博伦首推业界首个车载网络一致性和性能通用测试平台[img=,900,507]https://ng1.17img.cn/bbsfiles/images/2019/03/201903191148512483_9082_3859729_3.jpg!w900x507.jpg[/img]领先的联网车辆和汽车以太网测试解决方案供应商思博伦通信宣布正式发布思博伦Automotive ComTT——业界首个适用于车载网络多总线(Multibus)技术的通用测试平台。目前,全世界的汽车OEM厂商都在竞相采用汽车以太网联网技术,但传统的技术如控制器区域网络(CAN)、具备灵活数据速率的CAN(CANFD)和局域互联网络(LIN)仍将会继续使用多年,这些不同技术的组合会以多种方式带给设计工程师诸多挑战。思博伦的全新通用测试平台完全可以助您应对挑战,实现针对汽车以太网和传统车载网络的严格地一致性和性能测试。汽车以太网需要全新的验证方法,包括应用层功能和一致性,以及与网络层相关的多种测试标准,例如OPEN TC8/11、Avnu AVB和RFC2544/2889。此外,汽车以太网和传统网络之间的“网关测试”问题也需要得到解决。目前,工程师们会使用两种不同的测试平台,一种适用于传统总线技术,另一种适用于以太网测试,对ECU和网关执行完整的验证。思博伦的Automotive ComTT是业界首个将两类测试方法集合到一台独立设备中的测试平台,能够为多种测试系统提供完备支持。思博伦通信汽车业务部市场和业务拓展总监Thomas Schulze指出:思博伦Automotive ComTT可以为交换机/网络测试、数据日志记录与分析、ECU仿真和网络安全性提供统一的测试方法 ,可以有效地缩短测试周期,加快入市速度并大幅降低成本。通过与汽车厂商和客户的密切通力合作,借助Automotive ComTT平台帮助他们简化设计和验证过程中不同阶段的设备测试进程,使通向认证的道路变得更加顺畅。更多内容请关注嘉兆科技(思博伦授权中国代理)嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等。并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。——文章摘自思博伦

  • 【原创】适用于农贸批发市场的专用POS机

    由上海某公司自主开发的“EX2智能型交易计价器”是一种为农贸批发市场量身定做的专用POS机。作为一种嵌入式交易计价终端设备,它特别适用于蔬菜、肉类、粮油、果品、禽蛋、水产等农副产品的批发交易。当然也可应用于其他相关行业(如食品超市、物流市场及码头货运交易等等)的交易。从设计理念与设计流程来看,它特别适宜于农批市场交易的实际。与现有市场上其他采用PC技术的终端设备(如“一体机”)不同,这款农贸批发专用POS机(EX2智能型交易计价器)所采用的是工业标准的单片机技术,两相比较,其环境适应性更强、管理成本更低、操作及维护更容易,同时也更切合我国农批市场批发交易的现实状况。农贸批发专用POS机首创了目前国内一种新颖的分布式实时现场交易体系,实现了交易结算的电子化和IC卡化(非现金交易),而且更为重要的是,它还将结算功能直接推向前端交易现场,实现了交易现场的电子化;同时,它还能将批发市场中所有的交易过程全部纳入实时监控范围,凡交易过程中发生的事件均能被跟踪,能为批发交易市场的有效管理带来切实便利及可控效益。故此,就其功能特点及技术特性而言,“EX2智能型交易计价器”可称得上是目前国内比较先进同时也是绝无仅有的嵌入式交易计价终端设备,能够为农批市场提供全面而便捷的服务。首先,它在批发交易中实现了实时结算、实时传输、实时采集(数据)。实时结算加快了商品批发交割和商品交易流转的速度;实时传输和实时采集(数据)保证了交易数据回收的及时性,是农批市场实施信息化的基础。其次,它还采用了非接触式IC卡技术,一卡一密的加密方法保证了商品交易的安全性和可靠性。再次,在通讯网络上,它采用了工业控制系统中常用的标准现场总线。现场总线是应用在生产最低层的一种总线型拓扑网络,由于现场控制系统的受控(设备)节点和网络所处环境的特殊性,决定了现场总线必须具有很强的抗干扰特点。因此,采用现场总线技术,能有效保证交易计价设备的通讯更趋可靠与稳定。最后,它还具有操作简单、维护方便及环境适用性强的特点。操作人员只需简单培训即可进行操作,而容易操作的特点又可降低企业的培训及管理成本;便捷地维护维修能为批发市场的连续交易和整体管理提供及时的技术保障;较强的环境适用性更能体现其对交易现场异常因素的抗干扰特性。

  • 分享两本不错的电子书,关于仪器仪表的

    提供两本不错的书大家参考学习,但要注意,由于书籍出版年份不是很新,所以内容涉及的知识和文件可能与现在的学习实用操作有出入,故仅供参考和自身延伸学习,还要及时上网查找更新的更为全面的资料来深入学习的。(有时候老资料老书籍可能比起现今鱼龙混杂的各色书籍有他的优势,望慎重拉)1)仪表工手册内容简介本书第一版出版后因其内容丰富,实用性、针对性强,深受广大读者的喜爱,并成为仪表工得心应手的工具。本次修订中,作者针对检测与过程控制仪表发展快的特点,力求将最新知识编入其中。本书主要增加了环境监测仪表和现场总线两大部分。这两部分均呈现在自动控制领域的热和重点,其他部分去旧增新。本书主要针对从事自动化工作的工程技术人员及技术工人,对他们有很高的参考价值。本书主要针对从事自动化工作的工程技术人员及技术工人,对他们有很高的参考价值。目录第1篇 基础知识第1章 仪表基础知识1 仪表分类2 仪表主要性能指标第2章 常用图例符号1 常用仪表、控制图形符号2 常用电工与电子学图例符号3 自控常用英文缩写第3章 计量知识1 法定计量单位2 量值传递3 常用计量器具第4章 电工与电子学知识1 电工知识2 常用测量电路3 模拟电路4 数字电路5 稳压电路6 集成电路7 电工电子学常用英文缩写第5章 工艺与安全知识1 工艺知识2 常用化工设备特性3 机械保护系统4 防腐5 安全6 环保知识7 环保监测仪表第2篇 仪表与控制系统第1章 检测仪表1 温度检测与仪表2 压力检测与变送器3 流量检测与变送4 物位检测仪表第2章 分析仪表1 概述2 工业色谱仪3 氧量分析仪4 热导式气体分析器5 红外线分析器6 工业pH计7 工业电导仪8 工业黏度计第3章 显示仪表1 模拟显示仪表2 数字式显示仪表3 无纸记录仪第4章 控制仪表1 概述2 数字单回路调节器第5章 执行器1 概述2 调节阀的选型3 气动调节阀的性能测试4 阀门定位器第6章 控制系统1 概述2 简单控制系统3 复杂控制系统4 新型控制系统5 先进控制技术第3篇 可编程控制器和集散控制系统第1章 可编程控制器1 概述2 MODICON984系列可编程控制器3 富士T40可编程控制器第2章 集散控制系统1 概述2 SUPCON WebField ECS-100控制系统3 CENTUM-XL系统4 Plantscape系统5 Delta V系统6 FB-2000NS分散型控制系统7 DCS系统的接地8 DCS系统的故障诊断第3章 现场总线1 概述2 开放系统互连参考模型3 基金会现场总线4 PROFIBUS现场总线5 WORLDFIP现场总线6 现场总线常用英文缩写第4篇 仪表检定与校准第1章 概述1 检定2 校准第2章 就地校准1 概述2 差压变送器就地校准3 压力变送器就地校准4 显示仪表现场交准5 调节阀(附阀门定位器)现场校准6 调节器现场校准第3章 在检定室检定[b

  • 萨姆森定位器可以进行智能组态设置

    萨姆森定位器按输入信号分为气动阀门定位器、电气阀门定位器和智能阀门定位器。气动阀门定位器的输入信号是标准气信号,智能电气阀门定位器它将控制室输出的电流信号转换成驱动调节阀的气信号,根据调节阀工作时阀杆摩擦力,抵消介质压力波动而产生的不平衡力,使阀门开度对应于控制室输出的电流信号。并且可以进行智能组态设置相应的参数,达到改善控制阀性能的目的。  萨姆森定位器按动作的方向可分为单向阀门定们器和双向阀门定位器。单向阀门定位器用于活塞式执行机构时,阀门定位器只有一个方向起作用,双向阀门定位器作用在活塞式执行机构气缸的两侧,在两个方向起作用。  按萨姆森定位器输出和输入信号的增益符号分为正作用阀门定位器和反作用阀门定位器。正作用阀门定位器的输入信号增加时,输出信号也增加,因此,增益为正。反作用阀门定位器的输入信号增加时,输出信号减小,因此,增益为负。  按萨姆森定位器输入信号是模拟信号或数字信号,可分为普通阀门定位器和现场总线电气阀门定位器。普通阀门定位器的输入信号是模拟气压或电流、电压信号,现场总线电气阀门定位器的输入信号是现场总线的数字信号。  按萨姆森定位器是否带CPU可分为普通电气阀门定位器和智能电气阀门定位器。普通电气阀门定位器没有CPU,因此,不具有智能,不能处理有关的智能运算。智能电气阀门定位器带CPU,可处理有关智能运算,例如,可进行前向通道的非线性补偿等,现场总线电气阀门定位器还可带PID等功能模块,实现相应的运算。  按反馈信号的检测方法也可进行分类。例如,用机械连杆方式检测阀位信号的阀门定位器:用霍乐效应检测位移的方法检测阀杆位移的阀门定位器:用电磁感应方法检测阀杆位移的萨姆森定位器等。

  • 国家标准PROFIBUS规范和PROFINET规范发布会在京召开

    “全国工业过程测量和控制标准化技术委员会”和“中国机电一体化技术应用协会” 于2006年11月20日下午,在北京钓鱼台国宾馆联合举行了“国家标准GB/T 20540-2006 PROFIBUS规范”和“国家标准化指导性技术文件GB/Z 20541-2006 PROFINET规范”的新闻发布。 会间,国家标准化管理委员会主任助理宿忠民先生到会阐述了我国制订国家标准的战略和采用国际标准的方针与原则,同时宣布了国家标准批准发布公告2006年第10号,其中PROFIBUS规范的标准号为:GB/T 20540-2006,PROFINET规范的标准号为:GB/Z 20541-2006;全国工业过程测量和控制标准化技术委员会主任委员冯晓升先生对这两个标准文件起草工作组的组成及标准化技术委员会的审查过程作了说明;李百煌先生代表标准起草工作组对标准起草过程及这两个标准在我国应用实施的现状作了说明;PROFIBUS国际组织主席Kuester先生到会祝贺,并介绍了“PROFIBUS和PROFINET技术的发展现状及其标准化体系” ;中国PROFIBUS用户组织主席唐济扬先生、西门子(中国)有限公司A&D首席代表何维克先生、西门子(中国)有限公司A&D自动化系统部总经理斐德思先生等到会祝贺。 随着计算机技术、信息技术和通信技术的迅速发展,现场总线技术在工业控制和工业自动化领域得到了广泛的应用,它解决了企业生产现场设备之间的数字通信问题,为实现企业生产过程的自动化、智能化提供了保障,并将企业生产现场的信息纵向集成到企业管理层,为实现企业信息化和管控一体化创造了必要条件。 在会上发布的标准之一是:国家标准GB/T 20540-2006 PROFIBUS规范 现场总线PROFIBUS技术于1996年12月首次向我国工业界技术人员介绍,此后,从宣传和推广应用PROFIBUS技术开始,到建立中国的PROFIBUS系统演示试验室和技术支持中心,到制订行业标准PROFIBUS规范和建立中国的PROFIBUS产品测试实验室,到现在制订为我国的国家标准,经过了十年历程。PROFIBUS是现场总线国际标准IEC 61158中的类型3,它既适用于断续生产过程,如机械装备制造过程,也适用于连续生产过程,如石油化工过程,等等。 目前,PROFIBUS技术已经在我国的机器制造业、流程工业、冶金、电力、交通、制药、水利、水处理、食品、楼宇等自动化领域得到广泛的应用,大大提升了我国企业生产过程的自动化水平,这也是我们引入国际标准的一个重要目的。举一个在水利建设方面的典型事例,即在三峡工程中的大坝控制系统和船闸控制系统都使用了PROFIBUS现场总线技术,通过了鉴定,运行正常稳定,用户满意;我们引入国际标准的另一个重要目的是,支持我国企业开发符合PROFIBUS规范的产品,推动我国的现场设备和仪器仪表的更新换代,参与国际市场竞争,甚至产生一个新的行业,形成新的经济增长点。目前,有几十家企业在从事PROFIBUS产品的开发,已经有近20个产品通过了产品认证,并投入现场应用。这些企业包括上海自动化仪表股份有限公司、重庆四联仪表集团公司、浙江正泰股份有限公司等,还有一批民营科技企业投入了开发PROFIBUS产品的行列,推动了我国企业的技术创新。 在会上发布的标准之二是:国家标准化指导性技术文件GB/Z 20541-2006 PROFINET规范 随着以太网技术在办公领域的普及使用,在工业环境中如何使用以太网技术成为近几年来自动化界讨论的热点话题,PROFINET就是一种以标准以太网为基础的适用于工业环境的工业以太网技术。它很好的解决了适用于工业环境的不同等级的实时性、网络安全以及与制造执行系统(MES)和企业管理系统(如ERP)透明集成等问题,还很好的解决了集成现有的现场总线系统保护原有投资的问题等,所有这些都是工业以太网技术发展的方向性趋势。PROFINET已经成为现场总线国际标准IEC 61158中的类型10,今天它也成为我国国家标准化指导性技术文件,它也必将与PROFIBUS技术一样,在不久的将来成为国家标准,为我国企业的技术创新增加新的内容。

  • 【资料】m-bus集中抄表系统 发展前景

    由于集中供热系统热表数量巨大,人工抄表这一看似经济的数据采集方式的弊端日益暴露。抄表工作量大,且不可避免的误抄时有发生,这无疑将给热力公司带来损失。采用现代通讯方式,进行集中抄表,让您足不出户就能够拿到及时准确的热表数据。在计费的同时,也能在一定程度上做到对整个系统的监测。目前最常用的采集数据方式为M-BUS网络采集。M-BUS是为了满足各种测量仪表联网和远程抄表的需要而开发的一种现场总线,可用于水表、电表、气表、热表等测量装置的自动抄表,目前在智能计量仪表领域已取得了广泛的应用,并已成为欧洲标准。在我国,随着楼宇自动化和家庭远程抄表技术的应用,M-BUS作为一种低成本、简单可靠、开放的通讯总线,也逐步得到了计量仪表生产厂家的广泛支持并逐步得到推广使用。 M-BUS是一种主从式、半双工的总线系统。M-BUS由主机(如PC机及电平转换器)、一些从机(如超声波热量表、电表、水表)和2线电缆组成,如图2所示。通信过程完全由主机控制,从机都以并联形式连接到电缆上。M-BUS总线是采用异步串行通信协议,采用主一从结构,波特率为300——9600B/s,而且从机之间是不能互相通信的。 M-Bus系统最大的优点在于通讯系统不用消耗热量表电池的电量,通讯耗电量由主机提供。这样就保证了热量表电池的使用寿命不受数据通讯的影响。此外,采用M-Bus总线系统能够节省线材,最大程度的降低布线成本。同时,M-Bus系统线路布线方法灵活多样,能够采用总线型、星形、环形等多种拓扑结构,从而适应现场复杂的安装环境。 M-BUS系统最大传输距离为1000米。可以将亿邦M-Bus采集器安装在小区内(如下图所示),在小区内组建以亿邦科技采集器为中心的M-Bus总线系统。如果小区较大,可采用每栋楼安装一个采集器,或者几栋楼共用一个采集器。采集器在与主站计算机进行通讯,其通讯方式采用中国移动的GPRS无线网络。采用这种通讯方式,主站电脑可以设在小区换热站或者热力公司内。亿邦科技M-Bus采集器安装在住宅楼内,可以选择每单元或每栋楼配备一台亿邦科技M-Bus采集器,采集器通过亿邦科技的GPRS DTU连接到供热公司的主站电脑上。每个楼层的热量表用M-BUS总线连接起来,M-BUS共有六路,每路可以传输60个热量表的数据,一个M-BUS理论上可以传输300个用户数据,经过亿邦实地测试一个M-BUS传输200以内的热量表数据可以达到最好的性能 。

  • 为什么设备在对地短路时也能正常通讯?

    为什么设备在对地短路时也能正常通讯?

    据我们所知,CAN一致性测试中,有一项测试叫“CANL对地短路测试”,但是我们测试的时候发现被测设备有时候在对地短路时也能正常通讯,究竟怎么回事呢? 我们都知道CAN总线采用差分传输,这样可以极大的避免信号的反射和干扰,从而抑制共模干扰,也是CAN容错性能好的原因之一,CAN的波特率最大可以到1Mbps。根据波特率的大小我们把CAN总线分为单线CAN、低速CAN、高速CAN。[align=center][img=,690,182]http://ng1.17img.cn/bbsfiles/images/2017/12/201712151411_5651_3345709_3.png!w690x182.jpg[/img][/align][align=center]表1 CAN 总线类型[/align] CAN 的通讯质量也跟其传输距离有关,如图1,做CAN的工程师都知道CAN总线上任意两个节点的最大传输距离与其波特率有关,CAN 的波特率越大,传输距离就越短,因为传输线缆本身可以看成一个阻容结构的器件,线缆越长,寄生电容跟电阻就越大。[align=center][img]https://www.yishangm.com/upload/image/20171215/20171215103805_79836.png[/img][/align][align=center]图1 CAN波特率跟传输距离的关系[/align] 既然线缆都会有寄生电容,那寄生电容对CAN总线的影响是怎么样的呢?我们用CANScope模拟给总线上加不同的电容,通过眼图来看看会发生什么,如图2,可以看到随着电容的增大,显性位跟隐性位的下降沿变得越来越缓。[align=center][img]https://www.yishangm.com/upload/image/20171215/20171215103818_75147.png[/img][/align][align=center]图2 线缆不同电容对波形的影响[/align] 当总线上CANL对地短路后,那么CAN传输就只有CANH这条线维持了,这种情况下CAN总线就类似于单线CAN,差分传输的优势就荡然无存,那么我们就看看在高速CAN下,CANL短路会出现什么情况。 我们选择波特率500kbps的通信速率,用ZLG的CANScope发送CAN报文,CAN卡接收报文。 先调整Stressz的设置,模拟总线长度为10m,终端电阻为120欧姆,Stressz的设置如图3所示。[align=center][img]https://www.yishangm.com/upload/image/20171215/20171215103829_41514.png[/img][/align][align=center]图3 模拟线缆长度为10m[/align] 打开CANScope报文接收,可以正常接收报文,将CANL线短接到GND后,从示波器上看CANL电压为0V,但是报文正常接收,如图4:从示波器上差分电压还能够进行清晰的辨识。[align=center][img=,690,286]http://ng1.17img.cn/bbsfiles/images/2017/12/201712151411_6894_3345709_3.png!w690x286.jpg[/img][/align][align=center]图4 CANL短路通讯正常[/align] 但是实际应用现场,CAN总线的传输距离比较长,当我们模拟总线长度为120m时,我们再看看通讯质量,先把Stressz设置为线缆长度为120m。如图5所示。[align=center][img]https://www.yishangm.com/upload/image/20171215/20171215103850_34620.png[/img][/align][align=center]图5 模拟120m线缆长度[/align] 打开CANScope报文接收,如图6所示,未短路时可以正常接收报文,将CANL线短接到GND后,从示波器上看CANL电压为0V,报文出现大量的错误。[align=center][img=,690,286]http://ng1.17img.cn/bbsfiles/images/2017/12/201712151412_5382_3345709_3.png!w690x286.jpg[/img][/align][align=center]图6 CANL短路出现错误[/align] 为什么在线缆长度变长后CANL对地短路后会出现错误呢? 问题就在于线缆长度变长后带来的寄生电容变大使总线电平的下降沿变得很缓,本来就脆弱的差分传输信号,在CANL挂掉后,CANH单线传输无法承担传输的重任,所以就出现了报文错误。如图7:我们对总线做边沿统计,可以看到下降沿最大达到638ns。根据GMW3122的标准,高速CAN 的边沿区间为30~350ns。 所以在高速CAN的CANL对地短路后,由于差分传输优势没有了,在大的下降沿影响下,导致接收节点无法正常接收报文。而CANL没有短路时,CAN总线依然可以利用差分传输的优势,让节点正常收到正确的报文。[align=center][img]https://www.yishangm.com/upload/image/20171215/20171215103913_90300.png[/img][/align][align=center]图7 边沿统计[/align]

  • 【分享】数字化在线分析仪器

    1. 引言  作为一国工业现代化发达程度标志之一的精密仪器仪表产业,目前正经历着第二次跳跃(跨越)发展。第一次是从模拟式测量到数字化智能型高精度、高稳定性的数字化测量、运算分析、诊断、以及控制等功能的跨越发展。早在几年前工业网络及数字化在线分析器在过程自动控制中的应用,就已经率先在以石油和煤炭为主的能源工业,以钢铁、化工为主的原材料及化肥工业的流程上开展起来,并取得了令人鼓舞的成果。最近全国化肥行业会议已经形成决议,推荐建立我国自己的行业现场总线和网络通讯标准。这标志着我国工业过程生产自动化已经开始第二次跳跃,向以通讯为基础的网络化、信息化方向发展:具有检测、监控、信息传输特征的数字化仪器已经成为集监、管、控综合功能为一体的监管控网络系统最前端的网络神经元。这种网络化分布式智能计算系统以其高效率、大信息量、高度实时性之优势发展十分迅速,通过网络利用数字在线监测设备所提供的信息,实时掌控现场实时情况(数据/信息),已成为ERP体系中的重要资源并因此而迈进信息化阶段。  2. 数字化在线分析器在现代工业过程自动控制领域的作用及国内外现状  2.1 作用  为了了解这个作用有必要简略介绍工业过程自动控制的思想及其体系结构。工业流程自动化这一过程经近半个世纪的发展使现代生产在降低生产成本、控制产品质量、提高生产效率、减少能源消耗、充分利用企业资源以满足产品品种变化,质量不断提高等方面取得很大成绩,而作为在线气体分析仪器被纳入这个系统,除了上述这些因素以外,还有生产过程的安全监测,生产过程所造成或产生的污染情况的监测,这些对现代工业生产来说都需要实时性的检查与控制。工业流程自动控制系统的发展到目前大体形成如下图所表示的企业一级的体系结构。   图1: 一个现代工业自动化过程控制体系结构   现代流程制造企业的监督、管理与控制从技术实现方面考察,从下往上有三个主要层次:  1)FCS/DCS层,即现场总线网络层  2)MES层,即制造执行管理系统或生产执行系统层  3)ERP层,即企业资源规划层即高层管控层  FCS层是自动化最底层的现场控制器、现场数字化智能仪器设备互连的实时监测控制通讯网络,是全数字式的连接,它遵循ISO的OSI开放系统的互连参考模型的全部或部分通讯(握手)协议。这一层所完成的主要工作是:将总线上传输的信号按照“信息公路交通规则”进行编码、解码,转换、甄别、纠错、分配等等;由于其历史的原因,DCS接纳的在线仪器可以是数字式的也可以是模拟量输出的。当前一个发展趋势是FCS被部分或大部分纳入到DCS中,替换其信号获取的方式,现场进行大量的底层运算从而对风险较低的分布式计算模式的发展有极大促进。  MES可以为用户提供一个快速反应、有弹性、精细化的制造业环境,帮助企业减低成本、按期交货、提高产品和服务质量。不仅适用于众多的基础产业,还有如家电、汽车、半导体、通讯、IT、医药等行业,能够对单一的大批量生产和既有多品种小批量生产又有大批量生产的混合型制造企业提供良好的企业信息管理。目前不论是国外还是国内,都在大力发展MES以提高企业竞争力。  ERP层在于对一个生产段内部,或由数个生产段构成的一个完整的生产流程段,乃至整个企业进行资源的最优化管理,使其得到更加高效率的合理的使用。  作为要连入FCS的在线分析器的主要工作是:将物理信号转变成数字信号并对其进行转换、处理、运算、分析、编码存储、编码传输等,并对这个分析计算设备本身进行自适应调节,自整定,自标定以及检查报警、识别故障,记录状态并报告等等,要满足这些,在线分析仪器必须是数字化的,因为信息量的增大以及FCS结构的要求就是信息的全数字化流通。  这种系统结构有效地解决了DCS的结构性问题:在很大程度湖广泛的范围内化解了分布式控制集中式运算对系统的所承受的集中性风险,使中枢神经尽可能地避开这种风险。  图2展示了一个具有现场总线接口能力的数字化在线气体分析器接入工业自动监控网络体系。 图2 具有现场总线接口能力的数字化在线气体分析器接入工业自动监控网络  2.2 目前国内外数字化在线分析器的现状  诸如流量、压力、位移等数字化在线智能测控仪表等目前国际上已进入比较成熟的阶段,国内发展则十分迅速,但是数字化气体在线分析仪器在这方面的发展在我国却相对滞后。  1、国外一般情况  上个世纪80年代末90年代初开始,几个主要的国外在线分析器生产厂家如SIEMENS、ABB、ROSEMOUNT、YOKOGAWA、SICK│MAIHAK等将数字化的在线分析仪器打入中国市场。这些产品都是数字化产品,大部分具有数据通讯和网络通讯能力。其一般特点如下:   A) 对采集信号进行数字运算和分析;  B) 测量信号的输出表达均呈线性特性;   C) 测量信号屏幕直读,均有传统的模拟信号输出;  D) 具有数字补偿功能,有些是自动的,有些需要人工进行;  E) 有较强的自诊断能力;  F) 功能很强的通讯能力,通常的RS232/485等,也有网络或总线输出;  2、国内情况  目前国内有不少生产在线气体分析器的厂家,投入市场的数字式的在线分析器也有不少品种。模拟量输出如20mA的电流环路输出是必备的,相当一部分产品具有RS232或485串行口输出能力,但掌握的资料而言,目前只有北分瑞利集团北分麦哈克公司一家的产品具有现场总线接口能力。  导致目前这种状况的主要原因据了解有这样几个:  1、国内许多过程工业现场的条件不具备,很多仪器都是模拟量的,同时工业网络的建立需要一定的投资,建立、完善,这需要时间和资金的持续支持,这对国内众多中小型企业来说,呈现出较大的困难。工厂的设备更新改造不但需要资金、技术等的支持,对它也有一个认识过程,为这种设备更新的未来预期收益所投入的成本与所能得到的收益对企业来讲总是比较模糊而且这种收益并非能100%保证,如果不是对生产或安全有重大影响的情况时企业下这个决心有很大难度;  2、仅有这种功能的仪器但没有其运行的平台即较为成熟的工业网络也发挥不了作用,从而延缓甚至在一定程度上阻滞了仪器设备生产厂商的开发动力。虽然随着国外先进的成套设备的引进,仪器与平台安装并运行而且显现出很好的运行效果,但由于其价格偏高,使得众多用户想装备但也望而却步;  3、另一方面,国内DCS近一二十年的发展已经相对成熟,能够较顺利地将模拟仪器的输出纳入到工业网络系统中去,一部分用户并不急于更新提高,这更使供货商在这方面的投入意念不强,动力不足。  但是,发展是持续的而且是快速的。工业现代化产生成果的同时所带来的负面效应日益明显,更大地降低能源和原材料消耗,更严格地控制污染(排放),更加安全地生产等,使得国际现场总线技术及流程现场装备的发展势头十分迅猛,国内一些基础产业如能源、材料等工业领域早几年也已经开始运用,并且产生了良好效果,越来越多的工业部门认识到这些是现代工业过程自动化生产的重要目标和要求之一,是一个必然的发展趋势,而作为体现并实现这一思想的现场总线及其满足这一要求的在线分析器设备是促进并推动过程工业自动化向更高程度发展的必须具备的物质条件,为适应这种发展北京北分瑞利集团北分麦哈克公司推出了具有这种功能的产品。其更进一步的内容稍后还有介绍。

  • 电力监控软件在智能配电系统中的应用

    0  引言  当前,国内很多建筑配电仍普遍采用干式变电器配以低压电缆分接箱实现分散供电,给整个系统的运行管理带来了很多的不便。计算机技术和网络通信技术的日趋成熟,配电系统测量、控制等功能智能化、网络化是发展的必然趋势,配电系统运行中的各种问题可以通过微机全面解决。  智能化配电系统由开关配以具有通信功能的智能化元件,经数字通信与计算机系统网络连接,实现对分散分布的低压电缆分接箱内开关设备运行进行自动化管理。系统可实现数据的实时采集、数字通信、远程操作与程序控制及设备维护信息管理等功能。1  项目概况  上海核工程研究设计院是隶属于中国核工业集团公司的重点研究设计单位,该院新建大楼系统分为配电室和楼层部分,配电室高压部分采用ACR330ELH采集谐波数据,WHD72采集温湿度数据;低压进线侧采用ACR320ELH采集谐波、功率因数等数据, ACR220EK网络电力仪表采集测量电流,开关状态由辅助触点接入ACR220EK仪表的DI(开关量输入)接口。楼层部分由ACR220E采集电能数据。所有电参量数据由仪表的通讯接口经RS-485总线传给上位机,实现遥测、遥控和遥信功能。 2  系统拓扑结构  上海核工院电力监控系统的拓扑结构如图1。系统多采用分布式结构,按功能或区域进行划分,模块化设计。整个系统一般分为三层,即现场层、中间层、主控层。  现场层主要任务是将现场的各种配电系统的运行参数进行采集和测量,并将采集和测量的各种数据传输给监控系统。其主要设备是:ACR330ELH、ACR320ELH谐波表,WHD72D温湿度仪表、 ACR220EK网络电力仪表,装设在现场的电缆分接箱内。上述设备均相互独立完成各自的功能,不依赖主控计算机运行,所有仪表都具备RS-485 通信接口,通过现场的RS-485总线将检测到的各项电参数和状态信号实时传输到中间层的数据处理单元。  中间层位于现场层与主控层之间,由光电隔离器、串口服务器构成,现场485总线通过光电隔离器串口服务器与交换机相连,完成现场层设备与主控计算机之间的网络通信联接、数据交换。  主控层位于中控室或值班室,配置高性能、高可靠性工业级计算机、UPS不间断电源、打印机、报警装置等。Acrel-3000电力监控软件安装在主控计算机上,通过软件的人机界面和各种管理功能实现对整个配电系统的实时监控。  上海核工院新建楼层监控中心位于1层消控室,配电室位于地下2层车库,距离不超过1200米,直接通过铺设RS-485总线进行通讯即可,考虑到现场地理位置及走线方便合理等问题,采用8路RS-485网络可将所有配电室监控点覆盖;楼层部分考虑到走线方便问题,采用3路RS-485网络,通过竖井、吊顶拉到消控室。3  Acrel-3000电力监控组态软件解决方案   Acrel-3000电力监控组态软件是对现场生产数据进行采集与过程控制的专用软件,最大的特点是能以灵活多样的“组态方式”而不是编程方式来进行系统集成,它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成监控层的各项功能,比如在分布式网络应用中,所有应用(例如趋势曲线、报警等)对远程数据的引用方法与引用本地数据完全相同,通过“组态”的方式可以缩短自动化工程师的系统集成的时间,提高集成效率。  该系统实施后,实现了各类用电设备的电能报表,各用电回路的实时电参量遥测,重要回路的电能质量(含谐波)分析,以及重要回路的负荷用电趋势等功能,图表分别见图2、图3、图4。4  结束语  在电力监控系统中配置网络电力仪表,具有实施简明,投资少等显著优点,可以方便和实时地监控配电系统的运行状态,对现场的用电设备进行统一管理,免去工作人员到现场记录的繁琐工作,系统对各种用电设备的历史运行数据和状态进行管理分析,便于维护人员明确设备状况,制定详细的设备维护计划,减少工作人员,提高效率。同时,根据建立的电能计量体系,可以了解、分析建筑总体能耗,提出降耗计划,采取节能降耗措施,逐步提高用电效率。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制