当前位置: 仪器信息网 > 行业主题 > >

宗秋刚成像谱仪

仪器信息网宗秋刚成像谱仪专题为您提供2024年最新宗秋刚成像谱仪价格报价、厂家品牌的相关信息, 包括宗秋刚成像谱仪参数、型号等,不管是国产,还是进口品牌的宗秋刚成像谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宗秋刚成像谱仪相关的耗材配件、试剂标物,还有宗秋刚成像谱仪相关的最新资讯、资料,以及宗秋刚成像谱仪相关的解决方案。

宗秋刚成像谱仪相关的资讯

  • 港城大成为全球首家自行设计及生产电子显微镜的大学
    4月20日,香港城市大学(以下简称“港城大”)“高时空分辨率电子显微镜”全球新闻发布会在港城大及港城大深圳福田研究院同步举行。港城大署理校长陈志豪教授、深圳市福田区委书记黄伟、福田区人民政府副区长欧阳绘宇及深圳市科技创新委员会等出席本次活动。  港城大深圳福田研究院高时空分辨电镜研究部所研发制造的高时空分辨率电子显微镜是我国首台自有知识产权的高时空分辨率电子显微镜,也是世界上第一台同时具备低电压、场发射、扫描透射一体化模式的紧凑型电子显微镜。港城大的研究团队率先研发先进技术,自主设计及生产电子显微镜,是全球首家拥有相关科研实力的大学。团队得到福田区政府支持,是唯一成功制造多个高端电子显微镜的大学研究团队。(左起)城大署理校长陈志豪教授、材料科学及工程学系讲座教授、高时空分辨电子显微中心(TRACE)主任及深圳福田研究院院长陈福荣教授、TRACE研究员薜又俊博士  在港城大材料科学及工程学系材料工程讲座教授、高时空分辨电子显微中心主任及深圳福田研究院院长陈福荣教授带领下,团队研发出的电子显微镜系统包括脉冲电子源、超快相机、分段抽气真空系统及像差校正器。团队的最终目标是研发出一款小型高时空分辨「量子」电子显微镜,用以研究光束灵敏材料的原子动态。  由于电子显微镜能以明显高于光学显微镜的分辨率成像,并提供微纳米甚至原子尺度的测量及分析,因此在多个研究行业中广受欢迎,尤其在医学、生命科学、化学、材料学、集成电路和其他研究领域。  不过,目前的电子显微镜未能解决长久以来有关幅射损害及静态图像样本的樽颈问题,窒碍研究微小原子及电子光束灵敏的材料。此外,现行电子显微镜的体积也难以应用于空间有限的环境,例如太空穿梭机、深海及深地研究船及器具。  为克服上述问题,港城大团队设计出可供高时空分辨率电子显微镜使用的脉冲电子源和快速相机。在快速相机上加装偏向器,令成像速度不再受制于成像输出时间,这一概念在高时空分辨率电子显微镜系统上首次得到证实。此外,团队设计的像差校正器更进一步提升成像的解像度。由于团队拥有相关的知识产权,并可自由设计系统,因此未来将可用较低成本生产特定的小型电子显微镜。例如,六硼化镧(LaB6)桌面电子显微镜将可以目前市场同类产品的六成价格出售。  陈教授说:“高端仪器微型化是工业发展无可避免的趋势。”团队现正研发高时空分辨率扫描/透射一体化桌面电子显微镜,将利用脉冲空心圆锥体,在室温及液态状况下观察及重构立体的蛋白质结构。目前要观察蛋白质的结构,只能在极低温度下以冷冻电子显微镜进行,团队的研究将突破这方面的局限。  团队下一步的计划是在大湾区建立一个世界领先的电子光学设计和制造中心,集中研究电子光学技术,并进行技术转移。  陈教授说:“该中心旨在将电子光学的相关技术转移至营运中及新成立的公司。”中心的目标是要在仪器及科学领域上,保持较全球其他电子显微镜设施领先15年的技术。  中心将以创新的电子光学技术,专注研发目前未能在不同外部环境(例如电场、激光、高温、低温)下进行的人工光合作用、量子材料及水科学等相关应用科技,提供一系列高时空分辨电子显微镜服务。  陈教授指出,该中心将在量子器件、未来能源、生命科学及医学等领域作出突破性的研究,并将团队的科研成果转化为应用,造福社会,并促进业界与学界的合作。  港城大深圳福田研究院副院长陈俊铎提到,港城大深圳福田研究院基于河套合作区的独特优势,采用“一院两区”的模式共享深港两地的科创资源,引进香港高层次人才前来福田进行科研工作。作为从高校科研团队产出的科研成果,高时空分辨率电子显微镜的成功研发充分体现了深港科技创新合作区“协同创新”的优良氛围与深港合作的高度融合。  陈俊铎说:“香港城市大学是第一个在河套合作区注册的香港高校,接下来我们将推出福田研究院的二期规划,利用深港两地优势共同推动科研发展,既有世界一流的成果,又能与当地的产业相结合,形成正向的科创生态。”  未来,港城大通过利用本校国际人才、知识与技术创新交汇的地缘优势,结合深圳的产业基础与应用创新优势,将大力推动高时空分辨率电子显微镜产业国产化,建设全球电子显微学创新高地和高端精密仪器装备制造产业基地,支撑电子信息、半导体、生物医药等相关产业高速发展。
  • 广东东莞:加快大湾区大学与香港城市大学(东莞)建设
    近日,东莞市人民政府印发《东莞市科技创新“十四五”规划》(下称“《规划》”)。在“建设高水平的大学与科研院所”部分提到两所正在筹建中的高校,一是加快大湾区大学筹建步伐,努力将大湾区大学建设成为以理工科为主的新型研究型大学。二是加快香港城市大学(东莞)建设进度,率先建设香港城市大学东莞研究院。此外还提到,支持东莞理工学院增列硕士学位授权点,扩大硕士培养规模,积极争取博士授权点突破。支持广东华中科技大学工业技术研究院参与粤港澳大湾区国家技术创新中心分中心建设。《规划》提出,加快大湾区大学筹建步伐。努力将大湾区大学建设成为以理工科为主的新型研究型大学。创新大湾区大学办学机制,实施“大学+大科学装置(科研机构)+龙头科技企业”的科教产合作以及校校合作的协同育人机制,推进与香港中文大学合作共建先进材料和绿色能源研究院。开展多学科交叉研究,聚焦物质科学、先进工程、新一代信息技术、生命科学等相关领域,推进多学科交叉融合的课程体系。加快香港城市大学(东莞)建设进度。设立理学院、工程学院、医学及生命科学院、管理学院,围绕智慧城市、新材料与新能源、生命科学与生物技术等领域优化课程设置。率先建设香港城市大学东莞研究院,围绕材料、物联网、信息技术、中子散射应用物理等领域,引进国内外科研专家,开展人才培养,加快高端科研成果转移转化。此前,两所高校的筹建进度一直备受关注。今年3月,大湾区大学首次全面公开松山湖校区的设计方案。按照规划,松山湖校区教学区将于2023年完成建设,并实现招生办学。大湾区大学拟按照“一校两区”的整体思路在东莞滨海湾新区和松山湖高新区规划建设,总占地约2356亩。其中,松山湖校区256亩,滨海湾校区2100亩。大湾区大学是由广东省人民政府管理、东莞市政府投入保障为主的公办普通高等学校。公开报道显示,大湾区大学定位为以理工科为主的高水平新型研究型大学,拟开展本科生、硕士及博士研究生全日制学历教育,重点聚焦物质科学、先进工程、生命科学、新一代信息技术、理学、金融等六个方向开展人才培养和科学研究。2020年12月,香港城市大学(东莞)设计方案发布会举行。会上明确了以“大学+大学”模式,由市委市政府支持,东莞理工学院和香港城市大学为办学主体,合作举办具有独立法人资格的办学机构“香港城市大学(东莞)”。按当时的规划,一期校园预计在2021年开始动工建设,力争2023年上半年建成。据中建四局第五建设有限公司网站2022年1月消息,该公司近日中标香港城市大学东莞校区项目一期工程,合同金额约为7.39亿元。项目位于东莞市大朗镇屏山村,莞深高速南侧,总建筑面积约129707.18平方米,包含教学办公楼、宿舍楼、行政楼、体育馆、食堂、活动中心等15栋单体建筑。
  • 国产非制冷红外成像和太赫兹成像仪器问世
    4年前,刚刚成立的烟台睿创公司决定研制一只&ldquo 火眼金睛&rdquo &mdash &mdash 无论雨雪交加,还是烟尘雾霾,完全不受光线影响的&ldquo 透视眼&rdquo ,看透暗夜中隐藏的秘密。  &ldquo &lsquo 非制冷红外成像&rsquo 及 &lsquo 太赫兹实时成像&rsquo 是一种比孙悟空的&lsquo 火眼金睛&rsquo 更神奇的技术&rdquo ,在研发者看来,它们的&ldquo 神奇&rdquo 之处在于:在战场上,可以探测夜幕掩盖下的目标、显示烟雾中隐藏的坦克 在日常生活中,可以打造车辆的夜视系统 在机场安检中&ldquo 1秒安检扫描全身&rdquo ,也可以&ldquo 验明&rdquo 建筑大楼的&ldquo 瑕疵&rdquo &hellip &hellip   这只&ldquo 眼睛&rdquo 的研制过程究竟有怎样的故事?  &ldquo 红外之眼&rdquo 能看到什么?  正在高速行驶的轿车前方突然窜出一只动物,在能见度只有两三米的情况下,车辆却提前十米刹了车。借助车上的远红外线摄像机,驾驶员能及时识别出人、动物和车辆等不同散热物体 一座建筑的质量&ldquo 瑕疵&rdquo 与节能水平难以用肉眼观察,但通过红外成像技术,检测易如反掌,因为裂缝处与其他地方的温度不同。  &ldquo 借助于目标自身发射的红外辐射来看透肉眼看不到的东西&rdquo ,就是红外成像技术。上述两个例子只是这项技术广泛用途的部分显示。  在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域 在民用方面,可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾&hellip &hellip   这是一个散发着巨大诱惑的市场,也是一个&ldquo 难以高攀&rdquo 的市场&mdash &mdash 核心成像芯片的研制太难了,难到只被西方少数国家掌握,却因其广泛的军事用途被列入技术封锁和产品禁运之列。而国内,围绕着这项&ldquo 高门槛、宽应用&rdquo 的技术,一批国字头科研院所和高新企业展开角逐,其中包括资金、实力并不占优的民营企业睿创公司。  这家公司创业者认为,&ldquo 实际上,红外行业特别是非制冷红外成像行业在中国是一个空白,没有谁真正突破了核心技术,这就给我们同等竞争的机会。&rdquo   企业的嗅觉是最灵敏的,这促使睿创公司招兵买马,试图在这个行业一展身手,&ldquo 成立公司之前,我们没有100%的把握,只有70%。&rdquo 在公司的创业者看来,睿创是民企,&ldquo 没有退路,只能拼命&rdquo :&ldquo 我们把身家性命都押上了,这就是我们的饭碗,做不成就没有饭吃。&rdquo   不过,破釜沉舟的创业者还是没想到,&ldquo 这个领域的&lsquo 水太深了&rsquo 。&rdquo   &ldquo 深不可测&rdquo 的研发大海淹没了谁?  黑夜是光的坟墓,也让人们产生了对光明的渴求,红外成像与红外探测器便应运而生。  在夜视领域,红外探测器是热成像系统的核心,主要分为制冷型和非制冷型。尽管前者被认为是高端应用中的最佳选择,但因为成本居高不下,所以尺寸较小、重量较轻且功耗较低的非制冷红外探测器更获大家青睐。  但制作非制冷红外探测器并不容易。  作为资金密集型和技术密集型产业的代表,睿创的&ldquo 非制冷红外探测器&rdquo 之路首先面临着钱的考验,&ldquo 研发包括几个步骤,从设计开始就要花钱,做芯片肯定要流片,半导体流片需要花钱 这里面的风险在于,如果设计细节稍有不慎,则前功尽弃,整个之前的投入全部废掉 然后,封装、测试,上马设备都需要花钱 在此之外,原材料的费用,人员费用等等都离不开资金的投入&rdquo 。  投钱多、见效慢考验着企业的定力,但找钱还不是最难的,探测器所需要的芯片攻关才是最大挑战,&ldquo 红外焦平面探测器芯片采用IC(集成电路)+MEMS(微机电系统),长期以来,我国电子信息产业一直饱受&ldquo 缺芯&rdquo 之痛,况且,红外成像芯片相对其它芯片来说,复杂程度和研发难度更高&rdquo 。  大浪淘沙,适者生存,&ldquo 深不可测&rdquo 的研发大海检验着研发阵营的成色:那些并未做好准备的投入者,一个接一个被淘汰 剩下的是善水的坚持者。千百次的&ldquo 实验&mdash 失败&mdash 再实验&mdash 再失败&mdash 直到成功&rdquo ,亲历者的刻骨记忆永远比文字记述来得真切,公司负责人一句&ldquo 太不容易了&rdquo ,概括了所有的研发故事。  尽管步履维艰,挑战重重,但&ldquo 非制冷红外探测器&rdquo 的研制还不是这家企业的终极野心。  如何掌握改变未来的技术?  如果问一下联合国维和部队最怕的是什么,路边炸弹是回答之一。防不胜防的路边炸弹,给爱好和平的人们造成的伤亡不绝于耳。在传统威胁面前,高技术也无能为力?比&ldquo 非制冷红外成像技术&rdquo 更为先进的&ldquo 太赫兹成像&rdquo 的穿墙透视能力给出了答案。  太赫兹技术被美国评为&ldquo 改变未来世界的十大技术&rdquo 之一,它可以穿透墙体对房屋内部进行扫描,是复杂战场环境下寻敌成像的理想技术。同时,与耗资较高、作用距离较短、无法识别具体爆炸物的X射线扫描仪相比,太赫兹成像具有独特优势,目前已经初步应用于检查邮件、识别炸药及无损探伤等安全领域。  2013年1月对中国红外行业来说有着标志性意义:这一天,烟台睿创研制的第一代&ldquo 非制冷红外焦平面探测器&rdquo 迎来&ldquo 鉴定大考&rdquo ,&ldquo 国际同类产品先进水平&rdquo 的结论证明了过去3年努力所达到的高度。2014年初,睿创又发布了第二代高性能红外成像探测器产品,关键指标已经优于国外的竞争产品。  公司负责人表示,&ldquo 以前,核心的芯片和器件主要依赖进口,它的价格从几万到十几万不等,我们产品开发成功可以使价格大幅度下降,当前我们看好安防监控和汽车辅助驾驶市场,这个量是非常大的。&rdquo   利用3年时间将非制冷红外探测器打造出来后,这个上进的民企并没有停下脚步,而是瞄准了下一代非制冷红外成像技术与更高难度的太赫兹探测器。  借助在前期非制冷技术的积淀,睿创又开发出了国内首款太赫兹焦平面探测器产品。值得一提的是:经过国外权威机构的测试,该设备的成像芯片指标达到了国际一流水准。  为什么是他们做出来了?  睿创成立短短四年,做出了西方需要十年时间才能做出的产品。公司负责人时常面临的疑问是:你们是如何做出来的?  &ldquo 之所以能取得成功,是因为我们站在巨人的肩上。在调研、分析与总结之前很多伟大科学家与工程技术人员的杰出成果的基础上最终形成了公司自己的核心技术,争取少犯前人犯过的错误&rdquo 。  在关键的环节找关键的人和灵活的用人机制也推动着项目的成功。&ldquo 我觉得成功的重要原因是股东和董事会充分放权,对总经理和研发团队信任。在公司,500万以下的研发资金支出可以不经过董事会 总经理全国各地搜罗产业链条上所需人才,薪金待遇随需而定&rdquo 。  公司近100名员工,研发人才占了50%多,这就是睿创作为研发初创企业的典型特征。记者了解到,这个包括8名博士、34名硕士的研发团队已经在短短4年间取得了26项专利,其中包括6项发明专利。当然,股权激励是必不可少的。公司一旦上市,拥有股权的研发人员也将获得相应的回报。  激励机制和充分放权给企业带来了活力。  眼下,&ldquo 非制冷红外成像&rdquo 和&ldquo 太赫兹成像&rdquo 的技术都已成熟,进入了产业化的&ldquo 前夜&rdquo ,这让睿创公司有了更大的信心:&ldquo 预计我们的一期芯片达产后,年产值可以达到10亿人民币,在二期完工之后,我们可以达到50亿的产值。&rdquo
  • 超灵敏多光谱光声显微镜,具有广泛的生物医学成像潜力
    “光学分辨率”光声显微镜是一种新兴的生物医学成像技术,可用于癌症、糖尿病和中风等多种疾病的研究工作。但是灵敏度不足,一直是其获得更广泛应用的长期障碍。据麦姆斯咨询报道,近期,香港城市大学(CityU)的一支研究团队开发出一种多光谱、超低剂量的光声显微镜(SLD-PAM)系统,该系统的灵敏度极限得到了显著提高,为未来新的生物医学应用和临床转化提供了可能,相关研究成果以“Super-Low-Dose Functional and Molecular Photoacoustic Microscopy”为题发表于Advanced Science期刊。多光谱光声显微镜系统及其灵敏度增强示意图光声显微镜结合了超声波检测和激光诱导光声信号,以创建生物组织的详细图像。当生物组织被脉冲激光照射时会产生超声波,然后超声波被检测并转换为电信号用于成像。与传统的光学显微镜方法相比,这种新颖的技术可以在更大的深度上实现毛细管水平或亚细胞级别的分辨率。然而,灵敏度不足阻碍了该技术的更广泛应用。“高灵敏度对于高质量成像很重要。它有助于检测不强烈吸收光的发色团(通过吸收特定波长的可见光赋予材料颜色的分子)。它还有助于减少光漂白和光毒性,减少对脆弱器官生物组织的干扰,并在宽光谱范围内提供更多可选的低成本、低功率激光器。”香港城市大学生物医学工程系Wang Lidai教授解释道。例如,在眼科检查中,为了更安全和舒适,优选低功率激光器。他补充称,对于药代动力学或血流的长期监测,需要低剂量成像以减轻对组织功能的干扰。为了克服灵敏度挑战,Wang Lidai教授及其研究团队最近开发了一种多光谱、超低剂量的光声显微镜系统,突破了传统光声显微镜的灵敏度极限,将灵敏度显著提高了约33倍。他们通过光声传感器设计的改进,结合用于计算的4D光谱空间滤波器算法,实现了这一突破。研究人员通过使用实验室定制的高数值孔径声透镜、优化光学和声学波束组合器,以及改进光学和声学对准来改进光声传感器的设计。该光声显微镜系统还利用低成本的多波长脉冲激光器,提供从绿光到红光的11种波长。其激光器以高达兆赫的重复频率工作,光谱切换时间为亚微秒级。超低剂量照明下的血管形态提取为了证明光声显微镜系统的重要性和新颖性,该研究团队通过绿光和红光光源的超低脉冲体内动物成像,对其进行了全面的系统测试,并得到了显著的成果。首先,该光声显微镜系统能够实现高质量的体内解剖和功能成像。超低的激光功率和高灵敏度,显著地减少了眼睛和大脑成像的干扰,为临床转化铺平了道路。其次,在不影响图像质量的情况下,该光声显微镜系统较低的激光功率,将光漂白减少了约85%,并能够使用范围更广的分子和纳米探针。此外,该系统成本显著降低,使研究实验室和诊所更能负担得起。Wang Lidai教授说道:“该光声显微镜系统能够在对受试者损伤最小的情况下,对生物组织进行非侵入性成像,为解剖、功能和分子成像提供了一种强大而有前景的工具。我们相信该光声显微镜系统有助于推进光声成像的应用,实现许多新的生物医学应用,并为临床转化铺平新的道路。”接下来,Wang Lidai教授及其研究团队将利用该系统在生物成像中测试更广泛的小分子和基因编码生物标志物。他们还计划在宽光谱中试验更多类型的低功率光源,以开发可穿戴或便携式光声成像显微镜。论文链接:https://doi.org/10.1002/advs.202302486
  • 迈向量子电子显微镜!香港城大研发小型“脉冲空心锥扫描与透射一体化电子显微镜”
    电子显微镜一直是尖端科学研究中不可或缺的重要工具,它提供了无与伦比的高解像度和放大能力,帮助人类探索无限的微观世界。然而,现有的电子显微镜科技面临著高成本、大体积,以及因为电子与研究样本会产生作用并导致辐照损伤而需要极度低温环境等不同限制。为突破上述技术樽颈,香港城市大学(香港城大)科研团队正在致力于研发电子束和样本产生“零作用”的未来“量子电子显微镜”。团队现阶段把量子电子显微镜的部分零组件设计成一款可以在室温下操作的紧凑型扫描与透射一体化电子显微镜,开创了电子显微镜的新纪元。他们计划在三年内把这革命性的高倍电子显微镜创新技术商品化,把它制造成产品推出市场及量产。这项目名为“脉冲空心锥扫描与透射一体化电子显微镜的商业化计划”,由香港城大材料科学及工程学系讲座教授陈福荣教授领导,最近获得香港特别行政区政府创新科技署的“产学研1+计划”(RAISe+计划)拨款资助。该计划旨在释放本地大学在研究成果转化和商品化方面的潜力。香港城大陈福荣教授(左二)与他的研究团队成员,包括薛又峻教授(左一)、陈岩博士(右二)和陈宇驰先生(右一),早前出席“产学研1+计划”签署仪式。(图片来源:香港城市大学)透射电子显微镜(transmission electron microscopes,TEM)和扫描电子显微镜(scanning electron microscopes,SEM)是许多现代科研工作中必不可少的工具。从生物样本到纳米结构,TEM及SEM电子显微镜都能提供超高放大率及解像度的图像,帮助科研人员研究各种材料既复杂又精密的细节。然而,无论是透射还是扫描电子显微镜使用的高能量电子束,均会对脆弱的生物样本造成严重的辐射损伤。故此,在结构生物学领域,科研人员便采用冷冻透射电子显微镜(cryo-TEM)技术,即是先把蛋白质置于玻璃态冰层中,然后才进行观测,以减少高能量电子束造成的辐射损伤。但缺点是冰层的引入,会对显微成像带来图像杂讯,导致解像度下降。为应对这些挑战,陈福荣教授及其香港城大科研团队基于他们在香港城大福田研究院(现更名为“香港城市大学物质科学研究院(福田)”)研发出的尖端技术,创制了“脉冲电子空心锥照明混合TEM/SEM电子显微镜”。这创新的显微镜系统在多方面克服及解决了现有电子显微镜的技术限制。首先,新系统的脉冲电子源减少了对软材料样本的辐射损伤,这对于保护生物样本尤其重要;其次,透过空心锥照明技术产生的样本放大图像,其“对比度”是传统透射电子显微镜模式所产生的明场图像的四倍,遂能够更详细及清晰地对样本进行成像。此外,香港城大团队亦将利用它之前已开发出的色差和球面像差校正器(CS/SS)技术,进一步提高显微影像的空间解像度。而这套混合TEM及SEM的电子显微镜系统是座台型,比传统的TEM/SEM电子显微镜体积细小得多,而且更具成本效益。它可以在15-30 keV的低电压范围内操作,亦能够在普通室温下进行3D蛋白分子重建和纳米材料研究,较冷冻电子显微镜更佳。团队亦展示了新的电子显微镜系统在多种不同的应用场景中,均能提供极高解像度的成像,包括可以优于10nm的超高表面解像度,对印刷电路板上的金属接触点、纳米颗粒和其他生物样本进行成像。团队相信,新设计的电子显微镜最终可以做到在透射模式下观测蛋白质和分子的3D立体结构,以及在扫描模式下观测纳米材料并应用于半导体和晶片检测。“与现有的桌上型扫描电子显微镜(SEM)系统相比,我们最新研发的脉冲电子空心锥系统提供了优异的SEM电子显微成像质数,能够与市场上最好的桌上型系统媲美。”陈福荣教授续说:“此外,现时市场上并没有电子显微镜产品的质量,达致我们新系统的同等高质量。我们的脉冲空心锥照明系统具有独一无二的卓越性能,能够使用透射电子显微境(TEM)模式进行3D立体蛋白质重建,这是现时桌上型SEM所无法做到的。”香港城大陈福荣教授(左)和薛又峻教授(右)于2023年4月分享了他们在“高时间分辨电子显微镜”研究的最新成果及突破,这崭新的电子显微镜系统结合了扫描和透射电子显微镜模式,体积小巧,又兼具高效能。(图片来源:香港城市大学)“在RAISe+计划提供资金以及我们业界伙伴的支持下,我们计划在三年内为这款创新、小巧而又功能强大的混合模式电子显微镜建成生产线,以便把高质电子显微镜商业化及量产。”陈教授补充说。陈教授长期从事材料科学和电子显微镜的尖端研究,是相关研究领域的翘楚。2023年4月,他和香港城大的科研团队率先创建了一款结合了扫描和透射电子显微镜模式的“高时间分辨率电子显微镜”,成为全球首个达成这一重大突破及成就的大学研究团队。
  • 宁波市海洋与渔业执法支队、安洲科技与成都纵横联合实验—— S185机载高光谱成像仪+CW10垂起固定翼无人机成功首飞
    图1、CW10固定翼无人机+S185飞行现场示意图 2018年10月10日,北京安洲科技有限公司携宁波市海洋与渔业执法支队S185机载画幅式高光谱成像系统与成都纵横大鹏无人机科技有限公司合作进行S185+CW10固定翼无人机的飞行试验,在四川北川县某飞行基地附近实地完成首飞,成功获取该地区的航空高光谱影像。 S185是一款高速画幅式成像高光谱仪,其Snapshot测量模式融合了高光谱数据的精确性和快照成像的高速性,能够瞬间获得在整个视场范围内精确的高光谱图像。此款机载光谱仪能以毫秒级的速度获得整个高光谱立方体数据,使用多旋翼无人机或固定翼无人机均可实现快速搭载航测;S185机载高光谱成像仪可随UAV按预设航线自动测量,快速获得大面积高光谱图像,可通过软件自动快速拼接。 此次飞行搭载S185的是成都纵横CW10固定翼无人机,该复合翼无人机兼顾了固定翼无人机的高作业效率和多旋翼无人机垂直起降的安全性,同时还具有载重能力强,操作简单,全自动智能飞行等特点。安洲科技还针对S185开发了高光谱专用云台,非常适合大面积飞行作业。图2、水体、植被、房屋光谱曲线图图3、植被、马路、不同颜色屋顶光谱曲线图图4、树冠、农田、裸土光谱曲线图图5、无人机航迹运行图及飞行参数图6、四川北川县某飞行基地附近实际拼接RGB大图图7、陕北地区黄土高原丘陵沟壑区实际拼接NDVI大图图8、基于SAM光谱角算法的高光谱影像分类大图图9、ENVI打开假彩色(9610×10531像素,约0.8平方公里,数据量约24Gb,图中每个像素点具有光谱和GPS坐标值)
  • 我国首台光谱成像日冕仪通过工艺测试
    近日,国家重大科技基础设施“空间环境地基综合监测网(子午工程二期)”新建设备光谱成像日冕仪顺利通过工艺测试,并成功获得首批日冕观测图像,标志着我国自主研制的首台常态化运行地基日冕仪正式建成。日冕是太阳最外层大气,利用日冕仪对低日冕开展观测,对日冕加热和太阳风起源等太阳物理/空间物理核心科学问题的研究具有重要价值。同时,低日冕作为日冕物质抛射这一空间环境主要扰动源的发生和加速区域,对其开展监测可为空间天气学应用领域提供关键数据。然而,由于日冕本身辐射极其微弱,可见光波段亮度仅为太阳光球层亮度的几十万至百万分之一,且受限于地球大气散射光的影响,使得在地面对日冕开展光学成像观测尤其是光谱学观测面临巨大挑战。新建的光谱成像日冕仪安装于海拔3200米的中国科学院云南天文台丽江天文观测站园区内,由山东大学与云南天文台、北京大学共建,山东大学与中国科学院长春光学精密机械与物理研究所、南京天文光学技术研究所、云南天文台共同研制。该日冕仪的主要工作波段聚焦日冕红线这一低温日冕辐射谱线,可对低日冕精细磁流体结构进行准同时成像和光谱观测,弥补了国际同类设备在该波段观测数据的欠缺。经专家评估,该日冕仪所获科学数据的质量达到了国际一流水平,成为当前国际上工作于该波段最优秀的地基日冕仪。该日冕仪的设计还容许其工作于日冕绿线这一波段,从而可通过两条谱线的准同时观测对日冕大气温度进行诊断。基于该设计,项目组顺利完成了数据定标和光谱反演算法的开发工作,有效减少了多普勒频移和谱线宽度的测量误差,为高质量科学数据的持续产出奠定了坚实基础。据悉,光谱成像日冕仪是国家重大科技基础设施“空间环境地基综合监测网(子午工程二期)”太阳-行星际监测链分系统的重要组成部分,也是日地空间全链条监测的重要一环。
  • 香港城市大学吕坚院士团队:顶刊综述《结构材料的增材制造》
    近日,香港城市大学吕坚院士团队在 Materials Science and Engineering: R: Reports 上发表综述论文“Additive manufacturing of structural materials”该论文分别从增材制造领域的发展历史,材料选择,4D 打印,应用前景,和趋势展望等方面做了较为系统的介绍。论文链接:第一章:简介增材制造(Additive manufacturing, AM),又称 3D 打印,其应用被认为是继蒸汽机,计算机,和互联网之后的又一项工业革命。AM 技术在过去的 30 年发展迅速,尤其是在近 5 年 AM 技术一直在加速其应用。与减材制造(如常规机加工,铸造,和锻造等工艺)不同,AM 通过在计算器辅助设计(CAD)模型的指导下连续逐层添加材料来构造三维结构。AM 是一种面向材料的制造技术,在各种材料(包括聚合物,金属,陶瓷,玻璃,和复合材料等)中,普通存在打印精度和打印尺度/速度不可兼得的矛盾。4D 打印技术通常指的是经 3D 打印成型的物体在外界刺激,例如热,磁,液,电,光,气压,预应力,或其组合的刺激下,实现构型和功能的变化。本文总结了各种刺激方法的常用材料和原理,对比了不同刺激方法的优缺点。4D 打印材料和技术,伴随着各种变形系统的开发,驱动着研究者在高维 AM 领域实现概念突破及实际应用。该综述对结构材料的增材制造提出了多元化展望,包括多材料(multi-material)AM,多模量(multi-modulus)AM,多尺度(multi-scale)AM,多系统(multi-system)AM,多维度(multi-dimensional)AM,和多功能(multi-function)AM。 AM 材料和方法的迅速发展为其在不同领域的结构应用提供了巨大潜力,包括航空航天领域,生物医疗领域,电子设备,核工业,柔性可穿戴设备,软质传感器/驱动器/机器人技术,珠宝和艺术装饰品,陆地运输,水下设备,和多孔结构。此项研究获广东省重点领域研发计划,深港科技创新合作区深圳园区项目,国家自然科学基金重大项目,国家重点研发计划,和大学教育资助委员会(香港)联合实验室资助计划的项目支持。△增材制造的技术路线图△各种增材制造材料和工艺普通存在打印精度和打印尺度/速度不可兼得的矛盾△各种 4D 打印驱动刺激的关系图△结构材料增材制造的多元化展望△多维度增材制造:更高的维度,更高的打印效率△3D 打印机有望借助自我打印能力而实现打印万物以下为该综述部分章节的简要介绍:第二章:不同材料的 AM2.1 聚合物材料的 AM该部分主要概述了聚合物 AM 的制造方法、材料种类以及 AM 聚合物的性能及使用领域,提出了聚合物 AM 的不足之处,并给出了解决方法。该部分同时展望了聚合物 AM 的良好发展前景。2.2 金属材料的 AM该部分介绍了金属 AM 利用多领域多学科融合的思路,在开发专用材料,新型工艺以及制造结构上的相关进展,同时高熵合金,金属玻璃(非晶合金),贵金属,金属结构材料的功能特性等方面前景广大,但仍需进一步发展。2.3 陶瓷材料的 AM该部分介绍了不同种类(粉基/浆基,镀膜基,聚合物前驱体基)的陶瓷打印材料的特点,重点概述了聚合物衍生陶瓷在陶瓷 AM 领域的优势和应用,总结了直写打印的特点和所需的墨水条件,并对陶瓷打印技术将会往打印构型更大和打印速度更快两个方向的发展做了展望。2.4 玻璃材料的 AM该部分对 3d 打印玻璃进行了系统的阐述,介绍了高温打印/低温打印/复合玻璃材料打印三种类型,对比了不同打印方式下产品的透光度和性能的差异,并对 3d 打印玻璃的应用和前景进行了展望。2.5 复合材料的 AM该部分第一小节总结了聚合物-金属复合打印的策略,介绍了多尺度的层级聚合物-金属复合材料能突破机械性能(例如强度-密度,强度-韧性)之间的耦合,特征尺寸可以跨越 7 个数量级,充分利用“越小越强”的尺寸效应。同时,机械超材料凭借特殊的架构设计可实现非凡的刚度,强度和韧性。该部分第二小节总结了聚合物-陶瓷复合打印的策略,生物陶瓷通常具有较高的强度和断裂韧性,这种良好的力学性能主要归因于其复杂而又巧妙结合的多级结构。3D 打印工艺是一种 “自下而上”制备工艺,能够很好的应用在仿生陶瓷的制备,例如常见的“Bouligand”结构,“砖-瓦”结构,“交叉叠片”结构等,为人们制备高性能仿生陶瓷提供了有效途径。该部分第三小节总结了金属-陶瓷-聚合物复合打印的策略,包括将金属-陶瓷-聚合物复合材料粉末混合打印,以及将金属-陶瓷-聚合物材料分层打印,并展望未来 3D 打印金属-陶瓷-聚合物复合材料的发展方向。第四章:AM 的结构材料在不同领域的应用4.1 航空航天领域在航天领域,尤其是航天器零部件和天线等结构方面的领域,得益于太空的零(微)重力环境,在轨增材制造可以打印很多传统加工方式难以实现的零部件。在航空领域,增材制造的应用逐渐成熟,从最初在非关键部件上的应用逐渐过渡到例如发动机核心部件的制造。例如使用增材制造燃油喷嘴,在减少部件的同时,提高燃油效率。在可以预见的将来,增材制造将在航空领域大放异彩,乃至于影响到飞机的整体设计。另外,3D 打印为新型可变机翼的研发提供了强大的加工能力,显著提高了新型结构的研发效率,并实现了应用于可变机翼的全新的结构体系,目前蓬勃发展中的 4D 打印技术将为可变机翼提供更多先进的技术路径。△增材制造在航天领域的应用△增材制造在航空领域的应用4.2 生物医疗领域增材制造在生物医疗领域已经获得了广泛的应用,包括骨科、牙科、软组织工程、组织修复再生和生物治疗等。该部分从打印材料,表面处理,结构设计等角度,总结了在硬组织工程应用中增材制造技术的研究现状。同时还对目前比较成熟的商业 3D 打印骨植入物,以及应用增材制造技术的典型病例,进行了介绍与总结。增材制造高精度,多材料的特点为复杂的生物支架制备提供了新的选择,在人造心脏,体内遥控机器人等高难度领域都有着不可替代的优势。△增材制造在生物医疗领域的应用4.3 电子设备该部分总结了 AM 在包括微波器件,PCB 板,MEMS,微电池,RFID 标签,以及陶瓷手机背板等电子设备上的应用。在现代微波通讯系统及电磁应用领域中,增材制造技术为器件的小型化、轻质化、高精度、低成本制造提供了新方法,可有效降低传统制造中存在的材料冗余、装配误差等缺点。在未来微波及太赫兹器件的增材制造技术发展方面,提升制造质量和速度,研发新材料以适应多功能需求以及实现更高频器件制造将具有广阔空间。随着 5G 时代的到来和无线充电技术的发展,陶瓷材料的 AM 有望在新型手机背板的开发上发挥重要作用。△增材制造在电子设备的应用4.4 核工业该部分主要概述了增材制造制备的高分子、金属及陶瓷材料在核工业中的应用。从复合材料及材料结构方面对中子屏蔽材料的性能及应用进行研究,并展望多功能复合材料在核工业中的潜在应用。△增材制造在核工业的应用4.5 柔性可穿戴设备3D 打印技术可应用于柔性、可穿戴电子设备的制造,例如应变传感器、纳米发电机、柔性电极等。△增材制造在柔性可穿戴设备的应用4.6 软质传感器/驱动器/机器人技术4D 打印湿度、温度响应水凝胶发展迅速,各种几何形状、复杂变形和定向运动都已经实现。3D/4D 打印在传感器、执行器和软体机器人等各个方面都显示出了巨大的应用潜能。△增材制造在软质传感器/驱动器/机器人技术的应用4.7 珠宝和艺术装饰品3D 打印技术由于制造周期短、可根据客户需求精确定制、制造过程具有零浪费等特点,成为了珠宝和装饰行业兴起的新型制造技术。3D 打印技术通过电脑建模可以设计结构复杂的珠宝和装饰,并且以高分子、金属、陶瓷等材质直接打印出来,也可以通过打印铸造珠宝所需的低熔点熔模来间接参与珠宝制作。△增材制造在珠宝和艺术装饰品的应用4.8 陆地运输增材制造技术在陆地交通领域有着巨大的应用前景。相较于传统的陆地交通工具(如汽车、自行车、高铁等)的制造技术,增材制造技术不仅可以有效地降低制造成本,缩短研发周期,提高生产效率,还能够推动交通工具定制化设计的普遍应用。4.9 水下设备3D打印在航海领域的价值不断在开发,从服务水面船舰维护到深海水下探测。受益于 3D 金属材料打印技术的成熟和海上环境 3D 打印技术的研发,未来远洋船舰中极可能标配 3D 打印设备,为远离陆地补给的船舰即时制备已磨损或需更换的配件或临时所需的结构。该领域的潜在可观的市场也将吸引和促进 3D 打印技术在动态环境下的发展。△增材制造在海陆空交通运输的潜在应用场景4.10 多孔结构随着各种 3D 打印技术的飞速发展,作为多孔结构的不同微观结构变得越来越重要。通过使用 AM 技术,多孔结构有广阔的应用前景,特别是在医疗领域,如骨支架。利用3D 打印技术,可以个性化地制造出不同的尺寸和形态的结构。吕坚院士简介吕坚院士现任香港城市大学机械工程系讲座教授,先进结构材料研究中心(CASM)主任,国家贵金属材料工程技术研究中心香港分中心 (NPMM)主任,香港工程科学院院士,法国国家技术科学院院士。2006 年及 2017 年曾两次获得由法国总统亲自任命的“法国政府颁授法国国家荣誉骑士勋章”及“法国国家荣誉军团骑士勋章”,2018 年获得“中国工程界最高奖”第十二届光华工程科技奖。吕坚教授的研究方向涉及先进纳米结构材料的制备和力学性能,实验力学,材料表面工程和仿真模拟,生物与仿生材料力学,航空航天材料与结构预应力工程,3D 打印先进材料与产品集成设计等。相关论文及链接[1] G. Liu*, X. Zhang*, X. Chen*, Y. He*, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen, P. Wang, S. Yi, L. Wan, Z. Mao, Z. Chen, X. Wang, Z. Cao, J. Lu†. Additive manufacturing of structural materials, Materials Science and Engineering: R: Reports. Online Apr 2021.论文链接[2] G. Liu, Y. Zhao, G. Wu, J. Lu†. Origami and 4D printing of elastomer-derived ceramicstructures, Science Advances. 4(8), eaat0641, Aug 2018.论文链接[3] G. Liu*, Y. He*, P. Liu*, Z. Chen, X. Chen, L. Wan, Y. Li, J. Lu†. Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials, Engineering. 6(11), 1232-1243, Nov 2020.论文链接[4] Z. Mao, K. Zhu, L. Pan, G. Liu, T. Tang, Y. He, J. Huang, J. Hu†, K. Chan†, J. Lu†. Direct‐ink written shape‐morphing film with rapid and programmable multimotion, Advanced Materials Technologies. 5(2), 1900974, Jan 2020.论文链接[5] Z. Li, P. Liu, X. Ji, J. Gong, Y. Hu, W. Wu, X. Wang, H. Peng, R. Kwok, J. Lam†, J. Lu, B.Tang†. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens, Advanced Materials. 32(11), 1906493, Feb 2020.论文链接[6] X. Yan, S. Yin†, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu†, M. Liu†. Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition, Materials Research Letters. 7(8), 327-333, Apr 2019.论文链接[7] L. Cheng, T. Tang, H. Yang, F. Hao, G. Wu, F. Lyu, Y. Bu, Y. Zhao, Y. Zhao, G. Liu, X.Cheng, J. Lu†. The twisting of dome-like metamaterial from brittle to ductile, Advanced Science. Accepted Jan 2021.
  • 水质游离氯和总氯的测定等环标征求意见
    各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《水质 游离氯和总氯的测定 N, N-二乙基1, 4-苯二胺分光光度法》等11项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2009年9月20日前反馈我部。  联系人:环境保护部科技标准司 谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传  真:(010)66556213  附件:  1.征求意见单位名单  2.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺分光光度法》(征求意见稿)   3.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺分光光度法》(征求意见稿)编制说明  4.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺滴定法》(征求意见稿)  5.《水质 游离氯和总氯的测定 N,N—二乙基 1,4—苯二胺滴定法》(征求意见稿)编制说明  6.《环境空气 苯系物的测定 固体吸附/热脱附—气相色谱法》(征求意见稿)  7.《环境空气 苯系物的测定 固体吸附/热脱附—气相色谱法》(征求意见稿)编制说明  8.《环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸—气相色谱法》(征求意见稿)  9.《环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸—气相色谱法》(征求意见稿)编制说明  10.《水质 总汞的测定 冷原子吸收分光光度法》(征求意见稿)  11.《水质 总汞的测定 冷原子吸收分光光度法》(征求意见稿)编制说明  12.《水质 词汇 第一部分和第二部分》(征求意见稿)  13.《水质 词汇 第一部分和第二部分》(征求意见稿)编制说明  14.《水质 阿特拉津的测定 高效液相色谱法》(征求意见稿)  15.《水质 阿特拉津的测定 高效液相色谱法》(征求意见稿)编制说明  16.《固定污染源排气 氮氧化物的测定 酸碱滴定法和酚二磺酸分光光度法》(征求意见稿)  17.《固定污染源排气氮氧化物的测定酸碱滴定法和酚二磺酸分光光度法》(征求意见稿)编制说明  18.《水质 钒的测定 石墨炉原子吸收分光光度法》(征求意见稿)  19.《水质 钒的测定 石墨炉原子吸收分光光度法》(征求意见稿)编制说明  20.《水质 肼、水合肼和一甲基肼的测定 对二甲氨基苯甲醛分光光度法》(征求意见稿)  21.《水质 肼、水合肼和一甲基肼的测定 对二甲氨基苯甲醛分光光度法》(征求意见稿)编制说明  22.《环境空气 可吸入颗粒物的测定 重量法》(征求意见稿)  23.《环境空气 可吸入颗粒物的测定 重量法》(征求意见稿)编制说明  附件1:征求意见单位名单  住房城乡建设部办公厅  水利部办公厅  卫生部办公厅  国家质量监督检验检疫总局办公厅  中国气象局办公室  各省、自治区、直辖市环境保护厅(局)  各省、自治区、直辖市环境监测站(中心)  各环境保护重点城市环境监测站(中心)  新疆生产建设兵团环境监测中心站  中国环境科学研究院  环境保护部南京环境科学研究所  环境保护部华南环境科学研究所  中国环境监测总站  中日友好环境保护中心  中国环境科学学会  中国环境保护产业协会  环境保护部对外合作中心  环境保护部环境工程评估中心  环境保护部环境规划院  环境保护部环境标准研究所  环境保护部标准样品研究所  中国疾病预防控制中心  农业部环境保护科研监测所  中国科学院生态环境研究中心  中国城市规划设计研究院  中国林业科学研究院林业研究所  国家城市给水排水工程技术中心  长江流域水资源保护局  同济大学(环境学院)  天津化工研究设计院  中国气象科学院农气所  北京中兵北方环境科技发展有限责任公司  中国船舶重工集团公司第七一八研究所  上海交通大学  中国兵器装备集团公司  中国化工防治污染技术协会  中国轻工业清洁生产中心  中国皮革和制鞋工业研究院  华东理工大学  泰州市环境监测中心站  上海市浦东新区环境监测站
  • 香港城市大学在液态金属力学超材料领域取得进展
    图1 液态金属基微点阵力学超材料( https://doi.org/10.1002/smll.202070252)1991年上映的科幻电影《终结者2》描绘了一个能够随意变形,可自我修复的液态金属机器人T-1000,展现了液态金属应用的无限可能。电影中液态金属机器人是邪恶的化身,在实际应用中,液态金属却大有裨益,特别是在小尺度一些精密的应用上,如神经纤维修复和微型机器人。然而直接暴露的液态金属不易操作,且容易腐蚀其他金属,应用不当会带来不良后果,有鉴于此,香港城市大学“纳米制造实验室”的科研团队正在尝试在微观尺度上“驾驭”液态金属,使得其为未来精密应用,特别是金属力学超材料带来更多新的可能。目前的金属微点阵力学超材料具有超轻、高比强度等特性,在无人机机翼、小微型电子器械等器件上具有很好的应用前景。但是,目前这类力学超材料的韧性较差,且在服役过程中容易脆断失效。为了提高韧性,香港城市大学机械工程学系陆洋教授领导的研究团队开发了液态金属-聚合物微点阵力学超材料。该材料不仅有良好的韧性,而且充分利用低温度范围下液态金属的特性,实现了类似科幻电影中复杂形态液态金属的自我修复功能。该项研究成果发表在国际知名期刊《Small》(https://doi.org/10.1002/smll.202004190)。该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S140打印出中空的聚合物外框,壁厚100-300 μm。采用真空液体填充技术在聚合物薄壳中注入液态金属镓(Ga),首次制备了液态金属-聚合物核壳结构的微点阵力学超材料。该材料具有以下特点:良好的断裂韧性图2 液态金属-高分子点阵力学超材料良好的断裂韧性良好的断裂韧性。相比于实心或空心高分子点阵结构,液态金属-高分子点阵力学超材料避免了受压过程中的脆断失效现象。这是由于Ga的存在,阻碍了裂纹在高分子外壳中的扩展,使得该结构在裂纹出现后依然可以承受载荷。形状记忆效应图3 液态金属-高分子点阵力学超材料良好的形状记忆效应 形状记忆效应。得益于Ga较低的固液转变温度(29.7℃),当Ga为固态时,能够完美的保持变形后形状;Ga融化后,该结构又能完美的恢复至原始形貌,表现出形状记忆效应。当采用合理的拓扑结构,该材料被大幅压缩20%后,依然能够完美的恢复。优异的断裂恢复性 图4 液态金属-高分子力学超材料优异的断裂恢复能力 优异的断裂恢复性。即使部分断裂后的液态金属基微点阵结构超材料依然能够基本恢复原始形状,并且能够保持一定的承载性能(≥50%初始强度)。部分断裂的高分子外壳在Ga融化后恢复至原始状态,驱动整体结构恢复至原始形状。综上所述,被3D打印包裹“驾驭”的液态金属核心表现出良好的韧性、形状记忆效应及优异的断裂恢复能力。这种新型的液态金属基微点阵力学超材料有望在生物医疗器械、微电子器件及微型机器人等应用获得巨大的潜力,甚至实现一些以往在《终结者》或者《变形金刚》等科幻电影里才能看到的前沿应用场景。
  • 香港城市大学在液态金属力学超材料领域取得进展
    图1 液态金属基微点阵力学超材料( https://doi.org/10.1002/smll.202070252)1991年上映的科幻电影《终结者2》描绘了一个能够随意变形,可自我修复的液态金属机器人T-1000,展现了液态金属应用的无限可能。电影中液态金属机器人是邪恶的化身,在实际应用中,液态金属却大有裨益,特别是在小尺度一些精密的应用上,如神经纤维修复和微型机器人。然而直接暴露的液态金属不易操作,且容易腐蚀其他金属,应用不当会带来不良后果,有鉴于此,香港城市大学“纳米制造实验室”的科研团队正在尝试在微观尺度上“驾驭”液态金属,使得其为未来精密应用,特别是金属力学超材料带来更多新的可能。目前的金属微点阵力学超材料具有超轻、高比强度等特性,在无人机机翼、小微型电子器械等器件上具有很好的应用前景。但是,目前这类力学超材料的韧性较差,且在服役过程中容易脆断失效。为了提高韧性,香港城市大学机械工程学系陆洋教授领导的研究团队开发了液态金属-聚合物微点阵力学超材料。该材料不仅有良好的韧性,而且充分利用低温度范围下液态金属的特性,实现了类似科幻电影中复杂形态液态金属的自我修复功能。该项研究成果发表在国际知名期刊《Small》(https://doi.org/10.1002/smll.202004190)。该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S140打印出中空的聚合物外框,壁厚100-300 μm。采用真空液体填充技术在聚合物薄壳中注入液态金属镓(Ga),首次制备了液态金属-聚合物核壳结构的微点阵力学超材料。该材料具有以下特点:良好的断裂韧性图2 液态金属-高分子点阵力学超材料良好的断裂韧性良好的断裂韧性。相比于实心或空心高分子点阵结构,液态金属-高分子点阵力学超材料避免了受压过程中的脆断失效现象。这是由于Ga的存在,阻碍了裂纹在高分子外壳中的扩展,使得该结构在裂纹出现后依然可以承受载荷。形状记忆效应图3 液态金属-高分子点阵力学超材料良好的形状记忆效应 形状记忆效应。得益于Ga较低的固液转变温度(29.7℃),当Ga为固态时,能够完美的保持变形后形状;Ga融化后,该结构又能完美的恢复至原始形貌,表现出形状记忆效应。当采用合理的拓扑结构,该材料被大幅压缩20%后,依然能够完美的恢复。优异的断裂恢复性 图4 液态金属-高分子力学超材料优异的断裂恢复能力优异的断裂恢复性。即使部分断裂后的液态金属基微点阵结构超材料依然能够基本恢复原始形状,并且能够保持一定的承载性能(≥50%初始强度)。部分断裂的高分子外壳在Ga融化后恢复至原始状态,驱动整体结构恢复至原始形状。综上所述,被3D打印包裹“驾驭”的液态金属核心表现出良好的韧性、形状记忆效应及优异的断裂恢复能力。这种新型的液态金属基微点阵力学超材料有望在生物医疗器械、微电子器件及微型机器人等应用获得巨大的潜力,甚至实现一些以往在《终结者》或者《变形金刚》等科幻电影里才能看到的前沿应用场景。
  • 港城大福田研究院院长陈福荣:深港科技管理规则将进一步衔接
    “同样是强光照,这边是不是感觉不到热?”在香港城市大学深圳福田研究院的展示厅里,院长陈福荣展示着智慧节能玻璃的效用,隔绝红外光达到隔热节省空调的同时又能让可光进入室内节省照明,节能效果不言而喻。这是他在15年前就开始的研究,如今适逢国家提出“双碳”目标,这款高科技产品在河套也迎来了全面的产业化落地。《“十四五”规划纲要》提出支持香港建设“国际创新科技中心”,“北部都会区发展策略”更是直指河套,要在港深创科园的基础上兴建“新田科技城”,连同深圳科创园区,形成约540公顷的深港科技创新合作区,以期解决创科发展面对的土地问题。在河套的两年时间里,陈福荣借助两地不同的优势实现了“卡脖子”电子光学技术的突破,产业化的落地,更见证了高端创新资源在短期内极速汇聚的过程。就支持资金而言深圳的力度比香港要大2018年,陈福荣来到香港城市大学任教。2020年,又因为港城大深圳福田研究院的建设,陈福荣携团队扎根河套。过去一年里,受疫情影响跨境没有从前便利,为了专攻科研,他花了10个月待在深圳。“我们不是把它当成一个项目一个计划来做,做完就走。而是要以永续发展为目标,Sustainable development,长期扎根在这里。”如何把高科技的产业发展起来?陈福荣一直强调人才、技术、资金和市场缺一不可。香港高校在人才、技术上的累积,让香港在基础科学方面实现了较深的沉淀。但他直言,如果没有资金和市场,科研技术是无法成长的。“就支持资金而言,深圳的力度比香港要大。同时,想要把实验室的理论转化成技术,如果没有市场是成长不起来的。”除了地理上的便利,陈福荣在河套的两年里,最大感触是深圳的融洽度。不仅得益于深圳完备的产业链更重要的是资金和市场的支持通过研究院展示厅里摆放的自我设计制造高时空分辨电子显微镜雏形机,可以看到蝴蝶翅膀上的光子晶体微观世界。这套国内首个拥有完全自主知识产权的显微设备,打破了国外垄断,可以达到纳米量级的空间分辨率和几万倍以上放大倍率。“卡脖子”技术的突破少不了市场和资金的支持,陈福荣表示,此前他和团队在台湾做了十几年电子显微镜的研究,去到香港也在继续往更高端的高时空分辨像差电子显微镜做,但最终能够在深圳落地,不仅得益于深圳完备的产业链,更重要的是资金和市场的支持。陈福荣来到河套的这一年多来,《深圳市人民政府关于支持深港科技创新合作区深圳园区建设国际开放创新中心的若干意见》出台,从财政支持、空间保障、协同发展等方面构建支持河套深圳园区的发展。港城大福田研究院成立以来,福田区政府投入1.5亿支持了高时空分辨电镜研究部、先进结构材料与增材制造研究部、精准诊疗技术研究部三个研究部的建设,期间研究开发了首台我国自有知识产权的高时间空间分辨率透射电子显微镜与扫描电子显微镜。年底升级研究院40个国际团队瞄准“卡脖子”技术扎根科研数十年的陈福荣直言,只有摸得着、看得到的研究成果,才是用心回馈深港两地政府支持的态度。穿梭在实验室,陈福荣向我们“剧透”了未来的发展方向——《钢铁侠》《阿凡达》等科幻大片中的,常常能够看到透明的显示屏,电影角色只需要通过滑动手指就能操控屏幕,画面充满了科幻感,而陈福荣所带领的团队正在攻克这项技术。“显示器会变成全透明,双面都可以操作,我们会让电影的特效变成现实。”陈福荣透露,研究院将于今年年底升级改名为“香港城市大学物质科学研究院”。该研究院将对标德国马普所,除了发表顶级文章,更会落实知识经济一体化。初期规划是建立六个研究部,引入40个国际团队聚焦在芯片、生物科技,能源科技、光伏产能、锂电池、能源汽车、节能科技,新型显示屏等领域,并且有三个公司将在两年内实现产业化。物质科学研究院的成立,将突破一批“卡脖子”技术,推动深圳战略新兴产业的发展。届时,由国际知名的材料科学家杜经宁教授将研究三维芯片封装,建立亚十纳米芯片技术及产业。通过三维封装实现多块芯片垂直堆叠,即使单个堆叠芯片采用28纳米制程工艺,也可以达到整体芯片性能优于14纳米,甚至7纳米制程芯片的目的,可有效帮助我国突破7纳米芯片制程工艺“卡脖子”的问题。深港两地政策可成立一个智库邀请大湾区的科学家广纳意见2022年出台的《河套深港科技创新合作区联合政策包》中,首推的深港叠加支持对于优质的科研项目而言如虎添翼。今年7月,《河套深港科技创新合作区深圳园区技术攻关及产业化创新若干支持措施》出台,该政策聚焦医疗科技等六大领域,通过给予科研资金支持等形式,为优质科创资源落户河套提供保障。“双重叠加之后资助力度也会变大,我们做研究的深度和高度都会有相应的提升。我相信这绝对会有正面效果,很多人都会受益。”政策包的落地也让陈福荣更放心未来的科研路,“我们很珍惜政府给的资源,所以我们会把一块钱当十块钱来用。”香港城市大学深圳福田研究院在河套落地,采用“一院(福田研究院)两区(香港和福田)”模式,共享深港两地创新资源。在陈福荣看来,“一院两区”最大的差异在于教学主要集中在香港,科研主要放在深圳。人才是科创发展的重要基石,香港的低税福利、国际化环境等优势,吸引着大量的外来科创人才前来。而随着河套深圳园区以更大力度促进创新要素跨境高效便捷流动,深港两地的科技管理规则也将进一步衔接。对此,陈福荣建议,深港两地政策可以成立一个智库,邀请来自大湾区的科学家广纳意见。“由智库来引导大湾区的发展,给政府提出发展建议,两地政府想要成功就要携手前行。”【面孔】看到内地发展变化这么快我也想要参与曾经在美国麻省理工学院、美国西北大学从教研究,后来陈福荣回到台湾发展,一待就是28年。2018年,他来到香港城市大学任教,两年后被派往河套深港科技创新合作区。“在香港,我们把这里叫做九龙塘北,因为从我香港城市大学的办公室走出来,到这里大概也就不到一小时。”河套被陈福荣称为“九龙塘北”,概括的不仅是跨境的便利性,更重要的是将香港的人才和技术优势与深圳的超强市场和充足资金相结合,也只需要一小时。从美国到台湾,再到香港,如今又来到了深圳,祖国离他越来越近。“情怀是没办法写下来、讲清楚的。”陈福荣表示,“不敢说来深圳是因为情怀,但长期以来的决定都是受到中华文化的影响,看到内地的发展变化这么快,我也想要参与。”
  • 实时监控 预警联动 | 福州江阴港城经济区有毒有害气体环境风险预警体系项目顺利验收
    2021年11月22日,在福州市江阴化工应急中心召开的评审会上,专家组一致同意福州江阴港城经济区有毒有害气体环境风险预警体系通过评审验收,标志着该项目进入正式运营阶段。政策+责任双驱动 风险预警刻不容缓为了加强化工园区环境风险管控,在生态环境部指导下,全国各省市加快推进化工园区有毒有害气体环境风险预警体系建设。2019年9月,经生态环境部批复,福建省将福州江阴港等4个化工园区有毒有害气体环境风险预警体系建设作为试点。2020年2月,谱育科技中标福州江阴港城经济区有毒有害气体环境风险预警体系建设项目。项目以谱育科技自主创新研制的质谱、色谱、光谱等先进分析仪器建设为核心,整合园区内“点、线、面、域”四级有毒有害气体监测防控网络,构建“一张图”的预警信息化管控平台,健全“平战结合”的精细化监测预警溯源管理体系。先进分析仪器 助力风险预警监测项目建设中,谱育科技基于成熟的质谱、色谱、光谱等先进分析检测技术,创新定制组合了气相色谱、色谱质谱联用、高精度传感器、傅里叶变换红外光谱、双通道走航质谱等多款在线/移动监测仪器,构筑覆盖风险单元、扩散途径、环境敏感点共128类有毒有害气体的立体监测防控网络,实现对福州江阴港城经济区环境安全的“全覆盖、全天候、全过程”立体化管控,全面提升园区环境风险预警应急能力。点监测:色谱在线监测技术,覆盖园区重点污染企业排口VOCs监控。线监测:傅里叶变换红外光谱监测技术,实时掌握园区重点企业厂界无组织排放在线监测。面监测:色谱在线监测技术,实现重点污染区域高精度网格化在线监测。域监测:色谱、质谱、光谱在线监测技术,开展全区域环境质量在线监测。移动走航监测:双通道走航质谱监测技术,提高环境综合执法与应急监管能力。四级防控网 构建信息化管控平台有毒有害气体环境风险预警管理平台充分整合了“点 线 面 域”四级监测防控和走航移动监测网络数据信息,融合了三维空间GIS 技术、物联网技术为代表的新一代信息化管控技术平台,将实时监控预警和应急响应处置全过程的各类数据和场景,通过“一张图”动态展示,实现有毒有害气体实时监测、平台数据科学预警、超标事件及时响应的目标。项目试运营后,园区精细化管控效果显著:常态监测到的有毒有害气体浓度逐步下降,环境质量不断提升,从2020年至2021年,年总VOCs平均浓度降低34%,以硫化氢为代表的有毒有害气体浓度减少32%,园区大气投诉案件数量同比下降44%,保障了安全生产,促进了化工园区绿色、安全及高质量发展。对同类化工园区的风险预警体系建设起了积极的引导示范作用。谱育科技 三大创新模式一、秉承了“自主研发、深度定制”的创新模式:谱育科技在项目中广泛应用了以质谱、色谱、光谱等先进分析检测技术为核心的有毒有害气体监测仪器,均由谱育科技自主研制、生产、集成,并统一运营管理。二、打造了“用数据说话”的精细化管理模式:提取园区风险背景值基线,设置不同阈值并建立不同等级的响应措施,全程采用数据二级质控,通过数据来绘制园区风险源产生、来源、迁徙的“一张图”信息化平台。三、打通了“最后一道门”的运营闭环管理模式:建立128类风险因子污染来源图谱,结合平台预警信息、走航巡查、溯源污染源、现场人员原位采样,完善了园区管委会、企业、运营单位三方联动管理机制。 谱育科技围绕该项目,深度定制并组合应用了高端科学分析仪器,为园区创新打造了三大管理模式,这不仅严格管控了化工园区的风险,而且提升了园区有毒有害气体突发环境事件应急处置能力,同时也获得了专家组和客户的一致肯定。下一步谱育科技会将该技术体系应用于其他化工园区预警风险建设,助力化工园区绿色、安全、可持续发展,从源头防范化解重大风险,推进治理体系和治理能力现代化。福州江阴港城经济区福州江阴港城经济区是福州南翼临港产业的重要基地,福州经济发展的重要增长极,福建省推动高质量发展落实赶超的重要引擎。园区规划面积168.95平方公里,是福建省石化发展规划“两基地一专区”的化工新材料专区,以发展化工原料多元化和新材料为主,以非炼化一体化的化工产业为特色,园区目前落地企业众多,其中企业代表有东南电化、中景石化等。
  • 2018重大仪器专项明确任务方向 高速激光共聚焦拉曼光谱成像仪名列其中
    p  2017年5月23日,科技部高新司发布“重大科学仪器设备开发专项”2018年度申报指南建议(征求意见),明确关键核心部件、高端通用科学仪器和专业重大科学仪器3个任务方向。/pp  在高端通用仪器工程化及应用开发方面,涵盖了16大类仪器设备,包括高精度光热电位分析仪、气相分子吸收光谱仪、高精度光声光谱检测仪、高灵敏紫外成像仪、高速激光共聚焦拉曼光谱成像仪、磁共振脑图谱测量仪、有机物主元素分析仪、高速网络协议与安全检测仪、材料高温高频力学性能原位测试仪、微纳结构动态特性测试仪、大型复杂结构件力学性能检测仪、太赫兹三维层析成像仪、差分高能电子衍射仪、固态量子材料自旋信息测量仪、低场量子电阻测量仪、高精度三维螺纹综合测量仪、/pp  其中,高速激光共聚焦拉曼光谱成像仪的研究目标:针对物理化学、生物医学、材料工程等领域微区物质化学结构空间分布探测与分析的需求,突破低波数、高分辨、高速光谱成像关键技术,开发具有自主知识产权、质量稳定可靠、关键部件国产化的高速激光共聚焦拉曼光谱成像仪,实现激光拉曼光谱远场扫描探测与光谱成像。开展工程化开发、应用示范和产业化推广。/pp  考核指标:探测光谱范围200nm~1000nm,激发波长覆盖紫外到近红外三个以上波段,拉曼光谱探测分辨率≤0.7cm-1,低波数≤50cm-1 图像横向分辨率≤200nm,轴向分辨率≤500nm,样品轴向定焦分辨率≤10nm,成像时间a href="mailto:≤10min@1024× 1024"≤10min@1024× 1024/a 平均故障间隔时间≥3000小时。/pp  更多详细内容请查看:/pp  a title="" href="http://www.instrument.com.cn/news/20170523/220292.shtml" target="_blank"strong“重大科学仪器设备开发专项”2018年度申报指南征求意见(全文)/strong/a/pp  /pp /p
  • 天津智易时代科技发展有限公司上榜“2022智慧钢城优秀技术供应商”!
    近日,中国冶金报社举办的“2022走进智慧钢城”活动评选结果正式发布!天津智易时代科技发展有限公司等25家企业上榜“2022智慧钢城优秀技术供应商”,中国宝武集团等20家企业上榜“2022智慧钢城建设优秀企业”,山西中阳钢铁有限公司等10家企业上榜“2022智慧钢城网络人气钢厂”,江苏金恒信息科技股份有限公司等10家企业荣获“2022智慧钢城供应商网络人气奖”。钢铁工业一直是国民经济的基础产业和现代化强国的重要支柱,同时也是实现绿色低碳发展的重要领域和环保工作的重要内容,智易时代致力于为钢铁企业制定更经济高效的实施方案,根据钢铁企业污染源排放产生的废气、工艺流程、地理环境等多种因素,为钢铁企业“量身打造”,选择合适的监测设备进行污染源排放监测。目前钢铁企业各个环节产生的污染物主要有:粉尘、SO2、NO2、CO、烟尘等,因此可选用超低排放管控治一体化平台、微型空气质量监测仪、颗粒物浓度可视化监测仪以及智能抑尘控制系统进行污染源监测。智易时代提供技术理念,助力行业“十四五”绿色高质量发展,为实现超低排放改造提供了坚实的支持。智易时代产品超低排放管控治一体化平台鹰眼智能降尘识别系统智能抑尘控制系统典型案例
  • 2023年我国成像技术研究成果实现“多面开花”
    2023年,成像技术研究成果丰硕,无论是关键器件,还是相关的新技术、新仪器研制都取得了许多令人振奋的研究成果。徐涛/纪伟团队在多色超分辨显微成像技术领域取得新突破 2023年1月,中国科学院生物物理研究所徐涛院士团队与纪伟研究员团队提出了一种基于激发谱拆分的多色超分辨成像技术(ExR-STORM)。该技术通过激发效率差异来识别不同的远红荧光探针,实现了四色单分子定位超分辨成像。ExR-STORM提供了一种单分子识别新方法,并进一步提高了单分子光谱拆分能力。成像结果表明该技术具有光谱拆分能力强、色差导致的定位误差小等优点,在细胞器互作、生物大分子共定位分析等生物研究领域具有广泛应用前景。程和平/王爱民团队开发深脑成像利器:微型化三光子显微镜2023年2月,北京大学程和平、王爱民研究团队在《自然-方法》杂志在线发表了一项最新研究成果:一款重量仅为2.17克的微型化三光子显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,一举突破了此前微型化多光子显微镜的成像深度极限。从2.2克微型双光子显微镜,到空间站双光子显微镜,再到2.17克微型化三光子显微镜,程和平院士带领团队不断刷新“世界首次”的纪录。我国高端磁兼容脑PET功能成像仪器实现零突破2023年2月,中国科学院深圳先进技术研究院成功研发国内首台高清晰磁共振兼容人脑PET功能成像仪器(命名为“SIAT bPET”),实现了我国在高端磁兼容脑PET成像仪器研发方面零的突破。与国外同类商业仪器相比,SIAT bPET的效率提高近2倍,平均体分辨率提高30倍以上。同时,仪器采用了创新的电子学和磁兼容设计,使得磁共振成像对PET成像的影响几乎可以忽略不计,PET成像对磁共振成像图像信噪比的影响小于5%,满足同时开展PET/MRI成像的尖端科研需求。香港城市大学成功研制高时空分辨率电子显微镜2023年4月20日,由香港城市大学深圳福田研究院院长陈福荣教授团队研制的“高时空分辨率电子显微镜”正式发布。该成果是我国首台自有知识产权的高时空分辨率电子显微镜,也是世界上第一台同时具备低电压、场发射、扫描透射一体化模式的紧凑型电子显微镜。系统包括脉冲电子源、超快相机、分段抽气真空系统及像差校正器,团队拥有相关的知识产权并可自由设计系统,特定电子显微镜的售价有望降到目前市场同类产品六成。戴琼海院士团队开发新型双光子合成孔径显微成像术2023年5月,清华大学戴琼海院士团队在Cell期刊发表最新研究论文,首次提出了基于空间约束的多角度衍射编码,实现非相干光孔径合成;建立了双光子合成孔径显微术(2pSAM),可以实现深层组织毫秒级的亚细胞三维成像,显著降低光毒性(相当于比TPM慢1000倍以上)。2pSAM能够在哺乳动物深层散射组织中非侵入式观测大范围亚细胞级动态变化,将毫秒级三维连续观测时长从数分钟提高到数十小时,为系统性地研究大规模细胞在不同生理与病理状态下的交互作用打开了大门。西安光机所太赫兹消色差超透镜研究取得进展2023年5月,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展。研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。该成果为设计多功能消色差超透镜提供了新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。生物物理所开发冷冻结构光照明与电镜关联成像新技术2023年5月,中国科学院生物物理研究所研究团队在前期研发的冷冻光电关联成像高真空光学冷台HOPE基础上,通过引入结构光照明成像技术,成功研制了冷冻结构光照明成像系统HOPE-SIM,实现了横向优于200纳米的光学分辨率,以及优于150纳米的光镜-聚焦离子束三维关联对齐精度。HOPE-SIM通过冷冻样品杆直接衔接三束共焦光电关联成像系统ELI-TriScope,在实现高分辨三维冷冻荧光成像的同时,可以完成后续原位荧光实时监控聚焦离子束减薄全技术流程,在原位结构生物学中有巨大应用潜力。7T超高场无液氦磁共振成像系统关键技术通过鉴定2023年8月,由中国科学院电工研究所、北京大学、北京斯派克科技发展有限公司联合完成的“7T超高场无液氦磁共振成像系统关键技术”通过成果鉴定,鉴定委员会一致认为,该技术成果整体处于国际领先水平。成果面向无液氦超高场磁共振成像重大需求,开展了超导磁体传导冷却、超导匀场线圈精准调控、梯度线圈工程优化和超高场射频线圈设计优化等一系列关键技术研究,成功研制出7T超高场无液氦磁共振成像系统,并在生物体成像检测中得到应用。新方法成功将超透镜成像分辨率提高一个量级2023年8月,来自香港大学、国家纳米科学中心和英国帝国理工学院等机构的研究人员展开合作,分别从微波频段和光频段进行实验设计合成复频波的超透镜,成功将超透镜成像分辨率提高约一个量级,有望对光学成像领域产生巨大影响。该方法还可以针对不同的系统和几何形状进行定制化应用,为提高多频段光学性能、设计高密度集成光子芯片等方向提供了一条潜在途径。相关研究成果已在线发表于国际著名期刊《自然》。新一代无液氦亚3K低温扫描探针显微镜研制获进展2023年9月,中国科学院物理研究所/北京凝聚态物理国家研究中心郇庆研究员团队与高鸿钧院士团队合作,研制了一套技术就绪度为TRL8级的无液氦亚3K低温SPM系统。该系统将低频大幅震动的制冷机安装在远端的独立制冷腔体,颠覆了现有无液氦SPM近端安装制冷机的方式。经过测试验证,该设备在非接触原子力显微镜原子级分辨成像、扫描隧道谱以及非弹性电子隧道谱的性能方面,达到了与传统液氦杜瓦的湿式SPM系统相媲美的水平。西工大研发平面超分辨多色立体显微成像新成果2023年9月,西北工业大学与香港城市大学合作在平面超分辨多色立体显微成像研究中取得重要进展,相关研究成果已发表在国际著名期刊Nature Communications上。该研究以平面超振荡透镜为研究对象,提出多焦点拼接延长焦深及多波长复消色差可控优化设计方法,首次展示了荧光标记神经元细胞的多色荧光三维成像,获得了高数值孔径透镜下的大视场、消色差、长焦深远场超分辨聚焦,有望为国产化高端显微成像系统提供底层硬件解决方案,推动我国高端显微成像系统自主研发进程。国防科技大学实现反射层析激光雷达三维超分辨成像2023年11月,国防科技大学胡以华教授团队创新性提出了反射层析激光雷达三维成像技术架构,建立了激光探测的多角度多视场交叠取样、窄脉冲激光回波的高速高保真采集及图像重构融合处理方法,研制出反射层析激光雷达三维成像实验系统。本成果取得了超过同口径光学成像衍射极限的远距离小目标超分辨成像能力,其成像分辨率居激光成像领域国内外最优水平,特别是通过独创的技术手段和处理算法首次得到立体目标结构的十千米距离厘米级超分辨三维成像结果。
  • 詹求强教授课题组《自然通讯》新成果:非线性荧光损耗机理及超分辨成像技术获进展
    作者:朱汉斌 来源:中国科学报华南师范大学华南先进光电子研究院教授詹求强课题组在非线性荧光损耗机理及超分辨荧光显微成像领域取得重要进展。相关研究5月23日在线发表于《自然通讯》(Nature Communications)。该研究在荧光损耗物理机理上,提出了受激辐射诱导激发损耗新机理,“拔本塞源”式对敏化能级进行损耗,从源头阻断荧光的激发能量,新机理带来的“荧光损耗放大效应”大幅降低了超分辨所需要的激光光强,在低光强条件下实现了9种不同光谱探针的荧光损耗。在超分辨成像技术上,由此发展了一种通用性强的基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,克服了传统多色STED超分辨系统所依赖的多对超快脉冲光束协同工作的复杂系统、高成本、低稳定性等问题。受激发射损耗(Stimulated emission depletion, STED)超分辨显微镜的概念由德国科学家Stefan W. Hell于1994年提出,该技术于2014年获得了诺贝尔奖。然而,传统STED显微镜存在原理性局限和问题:受激辐射作用如果要在与自发辐射(寿命有机染料通常为纳秒级)竞争中占主导,通常需要高功率的超短脉冲(飞秒/皮秒)激光作为损耗激光,这往往会导致严重的光漂白、光毒性和重激发背景等问题。此外,多色STED超分辨技术和系统复杂度高、成本高、维护难。詹求强自2017年起带领研究生探索新机理,最终以STED原理性缺陷为突破口,提出全新机理解决了关键问题。上转换荧光纳米颗粒是一种纳米荧光探针,具有近红外激发、反斯托克斯位移大、无背景荧光、发光极其稳定等独特优势。上转换纳米探针通常是一个敏化-发光二元系统,敏化离子负责吸收激发光能量,然后传递给发光离子辐射波长更短的荧光。为解决STED面临的上述难题,詹求强课题组基于上转换荧光技术提出了全新的思路:抑制敏化离子和发光离子间的能量传递过程就可以切断对发光离子的能量补给,使得发光离子被“釜底抽薪”,即受激辐射诱导激发损耗(Stimulated-emission induced excitation depletion, STExD)机理。结合上转换发光的多光子非线性泵浦依赖特性(非线性效应随泵浦的光子数增多而不断增强),实现了光子数越高的荧光能级电子损耗越强烈,STExD机理具有传统STED所不具有的对荧光损耗进行非线性放大的独特效应,与之伴随的技术意义就是可以逐级降低高能级荧光损耗所需要的饱和光强,这突破了传统STED中的饱和光强理论的限制(实验测得值显著低于传统理论值)。基于此,课题组使用740 nm的激发光和1064 nm的损耗光,在钕掺杂的上转换荧光探针中实现了高达99.3%的超高损耗效率,损耗饱和光强降低至23.8 kW/cm2,比传统STED探针降低了3个数量级。结合上转换发光一对多的敏化-发光特性,STExD可以实现一对激光实现对多种UCNPs探针的光开关控制。钕离子是上转换发光常用的敏化离子,可以单独或与镱离子联合敏化多种发光离子,课题组利用镱离子的能量传递桥梁作用,仅使用一组固定波长的激光器就成功实现了铒离子,钬离子的高效荧光损耗,损耗效率分别超过90%和80%。进一步地,也分别在镨、铕、铥、铽掺杂的体系中实现了高效的荧光损耗效应,总计实现9种不同光谱探针的同时荧光损耗。以此新机理STExD为基础,课题组发展了一种基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,分别对钕(黄色),铒(红色),钬(绿色)掺杂的上转换荧光探针实现了不同颜色的超分辨成像,原始图像分辨率达34 nm,并进一步实现了钕、钬掺杂的上转换荧光双色超分辨成像。通过荧光探针的表面改性和特异性修饰,课题组成功将上转换荧光探针免疫标记到HeLa癌细胞的肌动蛋白纤维,实现了亚细胞结构的超分辨生物成像。该工作提出的STExD通用发光损耗策略巧妙地利用了上转换荧光的传能发光特性,为解决传统STED技术的问题、开发新型探针提供了新的方案,为开发低光毒性、深层组织(近红外II区损耗激光)的多色超分辨成像技术奠定了基础,在突破衍射极限的光传感、光遗传学、光刻等前沿领域也具有广泛的应用前景。华南师范大学博士研究生郭鑫、蒲锐为该论文共同第一作者,来自瑞典皇家理工学院(KTH)的刘海春博士、Jerker Widengren教授等人以及詹求强课题组2016级黄冰如、2015级吴秋生等硕士生对该课题的完成做出了重要贡献,詹求强教授为论文通讯作者,华南师范大学为论文第一完成单位。该研究得到了国家自然科学基金、广东省自然科学基金等项目经费的支持。相关论文信息:https://www.nature.com/articles/s41467-022-30114-z
  • 让泄漏气体无处遁形 | 谱育科技 EXPEC 1880 红外热成像气体泄漏检测仪 新品上市
    谱育科技 EXPEC 1880红外热成像气体泄漏检测仪 EXPEC 1880 红外热成像气体泄漏检测仪(以下简称EXPEC 1880)是一款针对挥发性有机气体(VOCs)的非接触式泄漏检测仪,采用高端中波制冷型二类超晶格红外探测器。该产品通过Ex ic nc op is II c T4 Gc防爆认证,防护等级高(IP54)。照妖镜——化无形为有形肉眼即可见泄漏气体超能力——不可达点检测实现远距离检测泄漏黄金搭档——定性定量检测EXPEC 1880+EXPEC 3100组合1、定性定量分析 EXPEC 1880 红外热成像仪 与 EXPEC 3100 便携式VOCs分析仪通过工业级WIFI连接,实现了设备间的检测数据实时互通(氢火焰离子法FID+光离子法PID),在快速影像捕捉泄漏气体的同时,实时显示VOCs泄漏值。2、不可达点检测 EXPEC 1880 可针对不可达密封点进行红外热成像气体泄漏检测,即使不接近泄漏点,也可实现远距离泄漏检测,有效避免不必要危险和损失,保障操作人员安全。 ☆ 生态环境部2019年6月26日发布《重点行业挥发性有机物综合治理方案》(环大气〔2019〕53号)中指出:对不可达密封点采用红外法检测。 ☆ 生态环境部2020年6月19日发布《关于征求储油库大气污染物排放标准(征求意见稿)等三项标准意见的函》中的《加油站大气污染物排放标准(征求意见稿)》指出:采用红外摄像方式检测油气回收系统密闭连接点位,不应有可见油气泄漏。3、多模式选择 EXPEC 1880具有可见光、普通红外、高灵敏红外三种模式。在检测时可快捷切换不同模式,发现泄漏组件,精准定位泄漏源头,让微小气体也无处遁形。4、优越性能配置(1)4.3英寸可旋转触摸屏+800*600像素取景器(2)手柄符合人体工学,可180度旋转调节。(3)启动时间≤5分钟,做到分秒必争,提高现场检测工作效率。(4)连接防爆手操器,可实现与谱育LDAR管理平台数据互通;也可通过防爆手操器实现远程监控。(5)GPS定位、视音频录制功能,便于现场取证。5、多领域应用 石油化工厂、炼油厂、井场, 油气储集区、加油站、天然气管道、海上石油平台、泄漏检测与修复(LDAR)、环保监督执法部门等。
  • 光电所暗场显微增强介质微球超分辨成像质量研究取得进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。/pp  受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白光显微下即可达到50nm的分辨能力。介质微球超分辨显微方式以其简单灵活的特点,受到国内外广泛关注,但微球的成像对比度一直有待提高。/pp  近日,中国科学院光电技术研究所研究团队发展出一种利用暗场显微有效提高成像高频成分含量的方法,具有降低成像低频成分的特点,结合微球超分辨能力,可实现更高对比度的微结构超分辨显微。该方法通过时域有限差分法模拟分析微球在不同浸没方式、浸没深度情况下的半高宽及光强值等得到更优化的超分辨能力,模拟结果如图1所示。在此基础上,通过二氧化硅和钛酸钡微球在不同浸没情况下观察特征尺寸为139nm的硅光栅结构,实验结果如图2所示。可以看出,在暗场显微时成像对比度明显得到增强。/pp  研究工作得到国家自然科学基金和中科院科研装备研制项目的支持。/pp style="text-align:center "img alt="" oldsrc="W020171122565441349485.png" src="http://img1.17img.cn/17img/images/201711/uepic/73b00051-a008-40d3-94d5-c45458140124.jpg"//pp style="text-align:center "不同浸没深度的微球聚焦特性分析/pp style="text-align:center "img alt="" oldsrc="W020171122569039673281.png" src="http://img1.17img.cn/17img/images/201711/uepic/f335b35f-486d-4a12-91b4-35f95acbb34a.jpg" uploadpic="W020171122569039673281.png"//pp style="text-align: center "不同照明方式的微球成像质量对比/p
  • 鉴知解决方案:光谱仪多通道检测与实时3D成像
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。北京鉴知技术有限公司总经理 王红球本次会议中,北京鉴知技术有限公司王红球总经理分享了《基于大数据自动解析的在线光谱技术》(点击 回看 )引发行业关注。会后,我们邀请北京鉴知技术有限公司向大家简单介绍他们在光谱技术及仪器研发应用方面的系列成果。1、典型仪器新品产品1,透射光谱仪:鉴知ST50S/90S/100S系列透射成像光谱仪是专门针对微弱信号检测的极致高性能光谱仪。ST50S/90S/100S系列光谱仪采用VPH体全息相位光栅,光栅衍射效率高达80%~90%,有更高的衍射效率;光路采用高数值孔径、零光学像差设计,可实现最佳的收集效率和理论极限分辨率;同时可兼容PI、ANDOR等科研级深度制冷相机,保证极佳的量子效率和暗电流噪声。产品2,OCT光谱仪:鉴知ST830E/850E系列光谱仪是光谱域OCT(SD-OCT)系统中的重要器件,决定了OCT系统的成像速度和信噪比随深度衰减程度等重要性能指标。它通过特殊的光路设计实现了波数线性的空间色散以及波数的等间隔采样。采集到的干涉光谱可以直接进行FFT无需波数重采样算法,极大降低了数据处理的复杂度,提升了系统的信噪比。此外,本产品还采用了体相位光栅(VPH),在SD-OCT系统中信噪比可以达到110dB,获得了高质量的OCT/OCTA活体生物图像。2、解决方案(1)透射光谱仪支持多通道检测,体积紧凑便携,适合低浓度样品或微弱信号的工业检测,并可用于共聚焦拉曼分析,气体探测等。(2)OCT光谱仪可用于血管造影,激光振荡,实时3D成像,眼前房成像。3、合作需求对透射光谱仪和OCT感兴趣的老师,以及有相关典型应用的科研院所和老师可以与我们联系沟通,探索合作。附北京鉴知技术有限公司简介北京鉴知技术有限公司成立于2019年,源自同方威视技术股份有限公司与清华大学共建的安检技术研究院,是一家以光谱检测技术为核心的专业公司,产品广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,致力于为客户提供更先进的产品和更快捷的物质识别方案。公司专利累计申请数达200余件,所拥有的技术获得了国家科学技术委员会科技成果鉴定证书及中国专利优秀奖,相关产品获得了国际发明展览会金奖、北京市新技术新产品证书、中国科学仪器年度优秀新品奖、朱良漪分析仪器创新奖之“创新成果奖”等。公司拥有自主知识产权的五大系列十多个型号的拉曼光谱产品,产品类型包括手持拉曼、便携拉曼、台式显微拉曼,应用方向包括液体安检、毒品检测、食品安全检测、药品原辅料筛查、制药及化工在线检测等,覆盖海关、安检、轨道交通、食药检测、实验室应用等多个领域。
  • 大同市生态环境局灵丘分局115.00万元采购红外热成像仪,BOD测定仪
    详细信息 大同市生态环境局灵丘分局执法装备标准化建设项目的采购公告 山西省-大同市-灵丘县 状态:公告 更新时间: 2023-08-21 招标文件: 附件1 项目概况 大同市生态环境局灵丘分局执法装备标准化建设项目的潜在投标人应在山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)上获取招标文件,并于2023年9月11日14点30分(北京时间)前提交(上传)投标文件。 一、项目基本情况 1.项目编号:1402992023AGK00281(BHZB-2023-DTZC/018) 2.项目名称:大同市生态环境局灵丘分局执法装备标准化建设项目 3.预算金额:1150000元 4.采购需求: 序号 设备名称 数量 单位 1 热成像仪 1 台 2 粉尘快速测定仪 2 台 3 多参数气体检测仪 2 台 4 油气回收三项检测仪 2 台 5 微风风速仪 2 台 6 无人机 1 台 采购范围包括货物的供应、运输、安装、调试、培训和售后服务等。具体报价范围及所应达到的要求,以本招标文件中商务、技术和服务的相应规定为准。 注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。 5.交货地点:采购人指定地点 6.合同履行期限(交货期):签订合同后30个日历天 7.质保期:三年 8.本项目不接受联合体。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单; 2.落实政府采购政策需满足的资格要求:本项目专门面向中小企业采购; 3.本项目的特定资格要求:无。 三、获取招标文件 1.获取时间:2023年8月22日00时00分00秒至2023年8月29日00时00分00秒(北京时间) 2.获取地点 山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)线上获取。 3.获取方式:在线获取 凡有意参加投标的潜在投标人,请按照以下步骤免费获取招标文件: (1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤; (2)请于招标文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取招标文件。 四、提交投标文件截止时间、开标时间和地点 1.提交投标文件截止时间及开标时间:2023年9月11日14点30分(北京时间); 2.电子投标文件提交:投标文件需在提交截止时间前在山西政府采购平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)完成递交(上传),提交截止时间前未完成投标文件上传的,视为撤回投标文件,投标人自行承担责任。 3.方式:开标前登陆山西省政府采购网(http://www.ccgp-shanxi.gov.cn/),在规定时间内解密电子投标文件,解密设备及网络环境由投标人自行准备。 4.开标地点:线上开标 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜1.本次公告在《山西省政府采购网》发布。针对本项目的质疑需一次性提出,多次提出将不予受理。2.投标人可在山西省政府采购网(http://www.ccgp-shanxi.gov.cn/home.html)“办事指南”查看CA申领、相关操作手册及下载电子投标客户端。3.本次招标为全流程电子招投标。 七、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称:大同市生态环境局灵丘分局 地 址:大同市灵丘县 联系方式:卢兵13593023357 2.采购代理机构信息 名 称:并辉建设工程招标代理有限公司 地 址:大同市平城区前进街桐城金域15号写字楼华银大厦9层 联系方式:0352-5052368 3.项目联系方式 代理机构项目联系人:李冉冉 电 话:0352-5052368附件信息: 招标文件.pdf494.9K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:红外热成像仪,BOD测定仪 开标时间:2023-09-11 14:30 预算金额:115.00万元 采购单位:大同市生态环境局灵丘分局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:并辉建设工程招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大同市生态环境局灵丘分局执法装备标准化建设项目的采购公告 山西省-大同市-灵丘县 状态:公告 更新时间: 2023-08-21 招标文件: 附件1 项目概况 大同市生态环境局灵丘分局执法装备标准化建设项目的潜在投标人应在山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)上获取招标文件,并于2023年9月11日14点30分(北京时间)前提交(上传)投标文件。 一、项目基本情况 1.项目编号:1402992023AGK00281(BHZB-2023-DTZC/018) 2.项目名称:大同市生态环境局灵丘分局执法装备标准化建设项目 3.预算金额:1150000元 4.采购需求: 序号 设备名称 数量 单位 1 热成像仪 1 台 2 粉尘快速测定仪 2 台 3 多参数气体检测仪 2 台 4 油气回收三项检测仪 2 台 5 微风风速仪 2 台 6 无人机 1 台 采购范围包括货物的供应、运输、安装、调试、培训和售后服务等。具体报价范围及所应达到的要求,以本招标文件中商务、技术和服务的相应规定为准。 注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。 5.交货地点:采购人指定地点 6.合同履行期限(交货期):签订合同后30个日历天 7.质保期:三年 8.本项目不接受联合体。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单; 2.落实政府采购政策需满足的资格要求:本项目专门面向中小企业采购; 3.本项目的特定资格要求:无。 三、获取招标文件 1.获取时间:2023年8月22日00时00分00秒至2023年8月29日00时00分00秒(北京时间) 2.获取地点 山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)线上获取。 3.获取方式:在线获取 凡有意参加投标的潜在投标人,请按照以下步骤免费获取招标文件: (1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤; (2)请于招标文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取招标文件。 四、提交投标文件截止时间、开标时间和地点 1.提交投标文件截止时间及开标时间:2023年9月11日14点30分(北京时间); 2.电子投标文件提交:投标文件需在提交截止时间前在山西政府采购平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)完成递交(上传),提交截止时间前未完成投标文件上传的,视为撤回投标文件,投标人自行承担责任。 3.方式:开标前登陆山西省政府采购网(http://www.ccgp-shanxi.gov.cn/),在规定时间内解密电子投标文件,解密设备及网络环境由投标人自行准备。 4.开标地点:线上开标 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜1.本次公告在《山西省政府采购网》发布。针对本项目的质疑需一次性提出,多次提出将不予受理。2.投标人可在山西省政府采购网(http://www.ccgp-shanxi.gov.cn/home.html)“办事指南”查看CA申领、相关操作手册及下载电子投标客户端。3.本次招标为全流程电子招投标。 七、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称:大同市生态环境局灵丘分局 地 址:大同市灵丘县 联系方式:卢兵13593023357 2.采购代理机构信息 名 称:并辉建设工程招标代理有限公司 地 址:大同市平城区前进街桐城金域15号写字楼华银大厦9层 联系方式:0352-5052368 3.项目联系方式 代理机构项目联系人:李冉冉 电 话:0352-5052368附件信息: 招标文件.pdf494.9K
  • 港城大AEnM:钙钛矿太阳能电池效率和稳定性大幅提升?离不开超高分辨散射式近场光学显微镜的助力!
    在绿色能源的发展得到各国越来越多的重视与青睐的今天,光伏科技和太阳能电池的产业成长与技术研发成为了工业界和学术界共同的焦点。而这其中被广泛关注的当属使用具有钙钛矿结构的材料所合成的太阳能电池。钙钛矿结构是具有通式ABX3结构的一类化合物,除了CaTiO3外,还有BiFeO3、CsPbI3也具有这一结构。基于钙钛矿结构材料所合成的电池则一般被统称为有机-无机杂化钙钛矿太阳能电池(PVSCs)。在光伏领域的研究中,钙钛矿太阳能电池因其能量转化率在近几年的飞速提高而备受关注。其中的佼佼者更是可以达到25%的能量转化率。 然而,在我们期待上述的有机-无机杂化钙钛矿太阳能电池从实验室走向工业应用的时候,一个无法回避的问题出现在了研究者的面前:这种电池的环境敏感性非常之高。在电池的使用过程中,其性能稳定性和使用寿命很容易被环境湿度,环境热度,环境光照所影响,且这种影响多为负面影响。也就是说,要想让PVSCs能够被大规模应用,其环境耐性必须得到改进。 针对上述问题,香港城市大学Fengzhu Li于今年(2022年)4月在Advance Energy Materials中发表了等离激元局域光热现象调控钙钛矿太阳能电池应力以提升效率和稳定性的研究工作。该课题组发现二氧化硅包覆的金纳米管(GNR@SiO2)可有效提高钙钛矿太阳能电池的性能,尤其通过减小材料生成过程中所产生的残留应变,在维持电池高效转化率(23%)的前提下,大幅提高了电池的工作稳定性。这种GNR@SiO2有着8.2 nm的平均直径和40 nm的平均长度。其中的二氧化硅外壳结构的厚度在15 nm左右。图1. 作者所生成的GNR@SiO2的 (a) TEM与EDS扫描图样 (b)直径和长度的分布统计 在通过标准流程测得生成的太阳能电池的能量转化效率可以达到23%之后,接下来研究者的关注点则聚焦到了GNR@SiO2对电池稳定性——也就是钙钛矿材料层的稳定性的提高之上。在此研究中,Neaspec研发的近场光学显微镜起到了至关重要的作用。科研者利用此设备获取了相关材料基于中红外激光吸收的形貌图(光学成像)和与之对应的纳米傅里叶红外光谱结果。实验使用了一台相干宽波长中红外激光器,通过Neaspec近场光学显微镜将激光聚焦于镀铂金AFM针,从而表征了四组参照薄膜材料:(a)新生成的钙钛矿结构材料(PVK)(b)新生村的掺杂了GNR@SiO2的PVK(c)经过疲劳测试的PVK(d)经过疲劳测试的GNR@SiO2的PVK。图2 实验原理示意图和Neaspec近场光学显微镜AFM照摄像头在测试四组材料时的光学镜头成像。 在PVK所对应的中红外成像和纳米傅里叶红外光谱中,信号的产生主要源自材料里的脒结构中的非对称碳氮键的拉伸模式的变化。所有之后的分析都是基于上述四种材料所产生的这种信号(对应材料中脒的浓度也就是材料的降解程度)。下图a-d对应四种材料的1700 cm–1 中红外激光成像结果。而为了研究疲劳测试对材料稳定性的影响,研究者在每个结果中都选取了5个数据点,直接进行纳米傅里叶红外光谱的测试 (下图 e-h)。研究者通过对比发现,在没有掺杂GNR@SiO2的PVK中,疲劳测试使得材料的脒含量降到了原来的45%。而通过掺杂GNR@SiO2,PVK中的则能维持在原来的75%。可见,掺杂GNR@SiO2有效地减慢了PVK薄膜材料的降解和损耗速度。而使得这一结果得以获得的,正是Neaspec的近场光学显微镜可以同时对样品进行中红外成像和纳米傅里叶红外吸收谱分析的这一特性。图3 四组参照薄膜材料的中红外成像结果以及对应图上5个数据点的纳米傅里叶红外光谱结果参考文献:[1]. Fengzhu Li, Tsz Wing Lo, Xiang Deng, Siqi Li, Yulong Fan, Francis R. Lin, Yuanhang Cheng, Zonglong Zhu, Dangyuan Lei*, Alex K.-Y. Jen*, Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells, Advanced Energy Materials,DOI: 10.1002/aenm.202200186
  • 国产电镜|香港城市大学深圳研究院成功研发桌面型电镜 团队已超百人
    仪器信息网讯 近年来,国家在粤港澳三地进行了诸多重大战略布局,并悉数落地实施。“深港河套”的开发建设就是诸多国家战略布局之一。深港河套规划图(图自福田区委宣传部)深港河套区域从“各治”到“港深紧密互动圈”,布局了5年。其中 ,中央赋予深港河套两大功能:大湾区唯一的“科技创新”主题平台和“中国特色社会主义先行示范区”实践平台。据了解,深圳园区高端科创资源快速形成从“零的突破”到“集聚发展”的良好局面,截至目前实质推进和落地高端科研项目140余个,“量子谷”、“湾区芯谷”、能源科技、大数据及人工智能、生物医药、香港高校项目实现集群发展。构建“基础研究+技术攻关+成果产业化+科技金融+人才支撑”全过程创新生态链。其中,香港城市大学“高时空分辨率电子显微镜关键部件研究项目”就是其中一项。香港城市大学深圳福田研究院据报道,“香港城市大学经过实地考察,决定在深圳园区建立深圳福田研究院,专注电子显微镜领域的攻坚。从设立之初几个人的“小团队”,一年内迅速发展为现在超过100人的“大团队”,成功研发了拥有完全自主知识产权的桌面型电子显微镜,打破了国外技术壁垒。”2021年底第二十三届中国国际高新技术成果交易会上,香港城市大学展出的高时空分辨率电子显微镜关键部件研究项目。其核心技术应用于高端透射电子显微镜与扫描子显微镜,实现了桌上型电镜应用、液态扫描电镜应用等。高时空分辨率电子显微镜关键部件研究项目依托于香港城市大学的时间分辨像差校正电子显微镜中心,开展高时空分辨率电子显微镜关键技术及零部件攻关研究,在已有的低电压电子显微镜系统上,开展关键部件及其核心技术的研发。电子显微镜是应用于基础物理学、纳米材料、化学、生物、医学、半导体检测及纳米加工等领域的高端科学仪器。项目通过利用香港城市大学国际人才、知识与技术创新交汇的地缘优势,结合深圳的产业基础与应用创新优势,大力推动高时空分辨率电子显微镜产业国产化,建设全球电子显微学创新高地和高端精密仪器装备制造产业基地,支撑电子信息、半导体、生物医药等相关产业高速发展。该项目团队包括香港城市大学郭位院士、陈福荣教授(电镜中心主任),以及电镜、材料领域的6位院士和多位专家。资料显示,香港城市大学深圳福田研究院由香港城市大学与深圳市福田区人民政府合作共建,为在于2020年4月在深港科技创新合作区内注册举办的事业单位法人研究机构,科研团队及管理运营体系由香港城市大学负责,依托香港城市大学国际化人才团队及前沿基础研究优势,采用一院(福田研究院)两区(香港和福田)的模式,共享深港两地创新资源,对标材料科学世界前沿领域。
  • 高光谱成像仪在植被伪装目标识别中的应用
    图1 变色龙软体机器人变色实验图(来源:Nature Communications)近日,韩国首尔大学等团队公开了“仿生变色龙软体机器人”成果,有望在军事等领域应用,基于伪装技术的不断升级,伪装识别系统也同样备受关注!在过去的100年中,伪装在大多数国家和地区的军事行动中扮演了至关重要的角色。在军事中,伪装就是隐真与示假,隐真是通过主题对背景的仿真,从而使主体目标物隐藏在背景目标中,无法或者难以被发现。国防工程中,通过采用伪装网与复合材料等方法,进行仿形和仿颜色遮蔽来实现;例如,迷彩服,就是一种最传统的伪装方法。而示假是通过对真目标的仿真,用假目标迷惑观察者,比如,二战期间,苏联采用大量“木质坦克”来迷惑德军,使得德军不敢轻易急速进军。“仿”易于实现,一般只需外形相仿。“真”是要求性质上的相似。植被环境背景下的作战,是最常见的战场模式,特别是在山区、丘陵、草原等地区的作战;因此植被背景下的伪装,是必须解决的反伪装技术之一。需要用到的仪器图2 真实场景(A 为绿色的目标、B 为浅绿色塑料假草皮、C 为翠绿色塑料假草皮、D 为绿色雨衣、E 为老式伪装目标、F 为草地)图3 可见光波段和短波红外光谱曲线(可由ATP9110-25H测得)图4 左为真实场景下可见光565nm波段的灰度图像;右为真实场景下近红外1320波段的灰度图像(可由ATH9500-4-17测得)对比可见光与近红外高光谱波段伪装目标的伪装效果发现,可见光波段下,即使物体颜色相似,但是材料不同,光谱曲线变化率也会不一样;在近红外波段下,不同物体的光谱反射值存在较大差异,但是光谱曲线变化率相对较小。图5 左是真实树叶,右为高仿绿色伪装网我们采用全波段地物光谱仪(如奥谱天成的ATP9110-25H型全波段地物光谱仪),测得的高仿伪装网的光谱曲线在 400~1300 nm之间与灌木条叶面光谱曲线很相似,而且具有植被“红边”及可见光波段的绿色强反射峰等特征,在此波段区域不易于区分植被和伪装网光谱。这是一款非常优 秀的高仿绿色伪装网。图6 地物光谱仪(可用奥谱天成ATP9110-25测得)采集树叶和纯绿色伪装网光谱曲线图图7 地物光谱仪(可用奥谱天成ATP9110-25)测得树叶和伪装网光谱曲线图(叶绿素吸收、红边区域局部放大图)从图中可以看出,高仿伪装网一样有红边效应,但是与真实的绿叶还是有差别的。另外,树叶有明显的叶绿素反射峰,而高仿伪装网则没有。图8 基于探测与感知的伪装效果评估流程图(可用ATH9500、ATH9500-4-17型无人机高光谱成像仪测得)基于对目标的实时监控、搜索、侦察以提高战场情况的感知能力及提供打击效果评估的需要,美军希望利用高光谱成像具有较高空间分辨率及高光谱分辨率的特点,通过高光谱融合信息探测出可疑目标位置,引导高空间分辨率成像载荷对目标进行详细分类确认,开展了大量的高光谱军事应用研究项目HYMSMO。图9 机载侦查实验图像1994年10月~1995年10月美国先后进行了白沙导弹试验场沙漠辐射 Ⅰ 、 Ⅱ 试验,森林、城市辐射试验,岛屿辐射试验。以沙漠、森林、城市和岛屿等具有典型地貌的场景为背景环境,研究证实了高光谱成像对目标的可探测性。在进行真假目标、隐藏试验时,高光谱谱段数210个,波段范围0.42~5 μ m ,光谱分辨率10nm ,地面像元分辨率范围0. 75~3m 。图9为沙漠背景环境下,机载侦察试验对伪装的“飞毛腿”导弹发射车(图9 ( a )所示)拍摄的全色图(图9 ( b )所示)及高光谱图像(图9( c )所示),全色图像难以确定目标,但是高光谱图像特征明显。图10 奥谱天成ATH9010无人机载高光谱飞行演示随着科学技术的进步,遥感技术也得到了飞速发展,并日趋成熟。其所具有的全方位、多尺度、全天时、全天候及精细化成像等优点,使遥感侦察变得更加直接与准确,对发现疑似目标与揭露隐蔽目标也更为犀利。遥感技术使传统伪装技术方法与装备器材受到了很大制约,对伪装技术的发展提出了更加严峻的挑战,迫使伪装技术另辟蹊径,寻求更为有效的应对措施与技术方法。更多关于“高光谱”的应用,欢迎咨询!
  • FLIR光学气体成像热像仪,总有一款适合你~
    相信菲粉们都知道,FLIR光学气体成像热像仪(OGI)能够帮助您在无需关闭系统的情况下快速、准确、安全地检测出甲烷、六氟化硫等数百种工业气体。它是如何做到的呢?今天就来给大家详细述说下~可视化“隐藏”气体,避免千万损失大型装置拥有数以千计的接头和配件需要定期检查,但事实上只有很小一部分组件会发生泄漏。使用传统的“嗅探器”进行测试需耗费大量的时间和精力,并且可能将检测人员置于危险的环境中。光学气体成像热像仪给予您发现不可见气体逃逸问题的超凡能力,因此您能够比使用嗅探器更快速、更可靠地发现气体泄漏。借助GF系列热像仪,您能够发现并记录导致产量和收入损失、罚款和安全风险的气体泄漏。从天然气开采到石油化工作业和发电,各公司通过在其泄漏检测和维修(LDAR)计划中使用FLIR光学气体成像技术,每年节约价值超过1000万美元的产量损失。追本溯源,杜绝泄漏FLIR GF系列光学气体成像热像仪能够快速、精确、安全地检测天然气、VOCs、SF6 、制冷剂、氨气和CO2等泄漏,无需关闭系统或接触部件。肉眼不可见的气体泄漏在透过光学气体热像仪观察时呈烟雾状,可从较远距离发现,及时修补泄漏。借助FLIR GF系列光学气体成像热像仪,您可以从安全距离处快速扫描大片区域、检测难以接触的接头和组件、检查油罐的泄漏情况和液位、利用温度测量功能检查机电系统的故障、以及进行环境监察,督促企业遵守环境法规。OGI产品大全,pick你的爱FLIR光学气体热像仪包括FLIR GF77、G300a、GFx320、GF620、GF320、GF300、GF306、GF304、 GF343、 GF346等,不同型号侧重检测不同气体,今天小菲就带大家通过气体梳理一下FLIR GF系列光学气体成像热像仪吧~想要了解产品详细信息,请点击产品名称甲烷和碳氢化合物FLIR GF77:它是FLIR推出的非制冷型红外热像仪,可实时显示甲烷排放,实现更快、更高效的气体泄漏检测。GF77热像仪完美适用于:• 油气田、炼油厂、石化厂• 燃气公司• 天然气发电厂• 天然气供应链沿线的企业FLIR G300a :它是一款制冷型固定式热像仪,可检测对环境有害的甲烷和挥发性有机化合物(VOC)泄漏。它使用户能够连续监测难以进入的偏僻或危险区域中的装置,因此检测人员可以立即采取措施修复危险或代价高昂的泄漏问题。G300a热像仪完美适用于:• 炼油厂• 天然气处理厂• 海上平台• 化学/石油化工联合装置• 生物气发电厂• 石化厂FLIR GFx320、FLIR GF620、FLIR GF320、FLIR GF300:它们是制冷型OGI热像仪,经滤波后可检测石油和天然气石化炼油、化工生产、运输和处理设施中的甲烷和碳氢化合物泄漏。经验证,它们符合美国环保局的OOOOa甲烷法规中定义的灵敏度标准,并且因每幅记录的热图像都标注GPS数据而符合报告要求。GFx320和GF620完美适用于:• 海上平台• 液化天然气运输码头• 炼油厂• 天然气井口和天然气处理厂• 压缩机站• 生物气发电厂六氟化硫与氨FLIR GF306:它可用于检测高压断路器绝缘的六氟化硫(SF6)以及有毒气体和肥料的无水氨(NH3)。通过检测和维修SF6泄漏,能源生产商能够有效避免代价高昂的断路器损坏,同时还能保护环境。GF306热像仪完美适用于:• 公用事业• 氨厂• 工业制冷系统• 化工厂轻松发现SF6泄漏制冷剂FLIR GF304:它可在无需中断运营的情况下检测制冷剂气体泄漏。大部分现代制冷剂都是含氟有机化合物,虽然它们不会消耗臭氧层,但是一些混合物中含有挥发性有机化合物(VOC)。GF304热像仪完美适用于:• 食品生产、存储和零售行业• 汽车生产及维修行业• 空调系统• 医药生产、运输和存储行业二氧化碳FLIR GF343:它让您快速、准确地发现CO2泄漏,无论该气体是生产工艺的副产物,或者是提高石油采收率项目的一部分,还是用作氢气的示踪气体。可靠的非接触式CO2检测使工厂能够在设备仍联网正常运行的情况下对其进行检测,避免非计划停机。该方法既能确保安全运营,同时还可向碳中和捕捉以及存储方向发展。GF343热像仪完美适用于:• 提高石油采收率项目• 氢冷发电机• 碳捕集系统• 乙醇生产商• 工业气密性测试一氧化碳FLIR GF346:它可以从安全距离处可视化无色无味一氧化碳(CO)的泄漏。从排泄烟道和通风管道泄漏的一氧化碳有致命危险,特别是如果泄漏发生在密闭区域中。GF346能够快速扫描大片区域,从数米之外准确检测到极微小的泄漏,从而提升工作人员的安全性,保护环境。GF346热像仪完美适用于:• 钢铁工业• 大宗化学品制造• 包装系统• 石油化学工业FLIR Systems不仅设计了各种类型的产品,还提供了品类齐全的附件,用以定制适合各种成像和测量应用的热像仪。从一系列型号齐全的镜头、液晶显示屏到远程控制装置,皆可用于定制热像仪,以更好适合您的具体应用。FLIR光学气体成像热像仪(OGI)帮助您检测各种泄漏的气体FLIR还将不断设计新的产品和附件满足您更多的需求各位菲粉们可留言告知#你最想要的OGI产品#小菲没准帮你实现愿望哦~
  • 青岛胶东临空经济示范区设立 2025生态智慧型空港城形成
    日前,国家发展改革委、民航局联合印发《关于支持青岛胶东临空经济示范区建设的复函》(以下简称 《复函》),标志着青岛胶东临空经济示范区正式设立,我市又一重点功能区进入国家战略。昨日,记者从市政府新闻办召开的新闻发布会上获悉,按照《复函》要求,11月14日青岛市政府印发实施 《青岛胶东临空经济示范区总体方案》。根据方案的近期目标,到2020年,示范区框架初步构建 远期目标是到2025年,示范区功能基本完备,对区域发展有显著带动辐射作用的生态智慧型空港城初步形成。  规划  包括核心区和北区两部分  2015 年6月,国家发展改革委、民航局联合印发《关于临空经济示范区建设发展的指导意见》,意见指出:“临空经济示范区是依托航空枢纽和现代综合交通运输体系,提供高时效、高质量、高附加值产品和服务,集聚发展航空运输业、高端制造业和先进服务业而形成的特殊经济区域,是民航业与区域经济相互融合、相互促进、相互提升的重要载体。 ”  青岛胶东临空经济示范区位于胶州湾北岸,总规划面积149平方公里,包括核心区和北区两部分,其中核心区位于胶州市域,规划面积139平方公里,规划范围东至大沽河胶州段,西至沈海高速、胶平路,北至青银高速,南至胶济铁路、兰州东路,包括李哥庄镇部分区域。北区位于平度市南部,规划面积10平方公里,接受示范区产业功能辐射,拓展示范区发展空间。  优势  区位条件优越产业基础雄厚  市发改委相关负责人分析说,胶东临空经济示范区地处山东半岛交通枢纽地带,区位条件优越,机场、高铁、高速公路、港口等交通衔接便利,可有效衔接京津冀、长三角和沿黄流域等主要经济区,周边拥有青岛经济技术开发区、青岛高新技术开发区、胶州经济技术开发区、前湾保税港区、青岛出口加工区、中德生态园等国家级开放园区,高端制造、航空物流等产业基础雄厚,具备建设临空经济示范区的独特条件。  据了解,建设胶东临空经济示范区是青岛市委、市政府贯彻落实《国务院关于促进民航业发展的若干意见》和《国家发展改革委民航局关于临空经济示范区建设发展的指导意见》等文件精神,促进地区人口、产业、基础设施、生产要素合理集聚,提高区域经济综合实力,提升青岛对外开放形象,加快建设国家沿海重要中心城市所作出的重要战略部署,是促进青岛经济发展转方式、调结构的重要抓手,是青岛参与经济全球化,打造“一带一路”战略枢纽城市的重要平台,对于探索以临空经济促进发展方式转变新模式,努力建设全国临空经济发展先行区,为山东半岛乃至东部沿海地区开放发展提供强有力支撑具有重要意义。  发展目标  近期目标是到2020年,胶东国际机场转场运营,区域内外的主要通道基本建成,基础设施和公共服务体系初步完善,主要功能区开发全面展开,以航空物流、通用航空、航空制造与维修等重点的航空产业链加快发展,集聚一批具有国际竞争力的知名企业,人口规模达到20万,示范区框架初步构建   远期目标是到2025年,示范区功能基本完备,以航空核心产业、高科技制造业、高端服务业为支撑的产业体系基本完善,区域性国际航空枢纽建成,航空旅客吞吐量3500万人次,机场航空货邮吞吐量50万吨,人口规模达到30万,对区域发展有显著带动辐射作用的生态智慧型空港城初步形成。  战略定位  区域性航空枢纽、高端临空产业基地、对外开放引领区、现代化生态智慧空港城。  产业布局  按照整体规划、分步实施、集约开发、弹性发展的原则,临空经济示范区将加快构建“一核五区一带”空间发展格局,带动周边区域建设发展。  “一核” 是指空港发展核,范围包括胶东国际机场及其周边区域,总面积约35平方公里,重点发展航空客货运、航空保税物流、航空维修、航空培训等航空核心产业,建立航空公司营运总部和现代国际空港运营中枢。  “五区” 一是通航产业区,位于核心区西南部,规划面积30平方公里,重点发展公务机与通航运营、飞机整装交付、通航维修、通航培训等产业,打造在东北亚区域具有影响力的高端通航产业基地。  二是航空制造产业区,位于核心区西部,总面积约25平方公里,重点发展航空机电与零部件、飞机内饰件、航空电子仪器等航空关键制造业,配套发展机场专用设备、航空设备维修、航空特种装备、航空模具加工、航空食品精深加工等航空关联产业。发展卫星导航、智能装备、精密机械、3D打印等高端制造业。  三是临空现代服务区,位于核心区南部,总面积约25平方公里。主要发展金融租赁、离岸结算、航运保险、贸易融资等航空金融产业,以及会展、总部、创意、时尚等产业,打造现代空港商务区。  四是航空特色社区,位于核心区东部李哥庄镇,规划面积4平方公里,发展居住、综合商贸、特色餐饮、健康养生等产业。  五是示范区北区,位于青岛平度市南村镇,规划面积10平方公里,大力发展航空配套、临空制造等航空偏好型产业。  “一带”则是大沽河生态保护带。发展沿河生态旅游、航空主题文化、时尚运动等产业。
  • 新品发布|高德智感热成像重症检测(布控球)
    近日,高德智感发布新品——DS6015AT-P-W热成像重症检测(布控球),是一款携带方便、部署简单、功能全面的移动应急布控智能组合设备,是监测电力设备缺陷的“第三只眼“。产品采用一体化设计、集成度高,标准配置包括布控球、三防手持平板电脑、高防护防水一体化电源箱、三脚架、锂电池和座充等。产品特性640×512红外分辨率400万像素可见光相机TILT:-20°~+90°;PAN:360°旋转云台12寸触控屏,三防平板电脑防护等级IP6696h续航,移动电源箱5G/WIFI/RJ45多种连接方式应用场景具体使用步骤一、选择合适的监测点,放置好三脚架;二、固定磁吸托盘,将布控球安装在三脚架上,点击开机键;三、打开平板电脑,通过有线或无线网络连接布控球,登陆WEB端或移动端APP即可使用。
  • 香港浸会大学蔡宗苇教授团队在质谱成像数据计算和环境毒理应用研究取得进展
    质谱成像(Mass Spectrometry Imaging,MSI)是由质谱技术发展而来的一种新型分子成像技术。它通过直接扫描生物组织切片,同时获得生物分子的定性、定量和定位的信息,具有免标记、高通量和高分辨等优点,在药物分析、癌症研究和环境毒理等各种研究领域具有广泛的应用前景。  图像分割是MSI研究的一个重要步骤,常用算法对于一些具有相似分子组成模式的微区分割结果往往不太理想。例如,在孕期大气细颗粒物(PM2.5)暴露的小鼠胎儿研究中,常用分割算法无法区分脑部的细小结构微区(Science Bulletin, 2020. doi.org/ 10.1016/j.scib.2020.08.036)。近年来,有学者把数据滤波引入到MSI分割的流程中,以减少样品制备和仪器状态带来的噪声干扰,提高分割效果。然而,数据滤波与MSI分割的其它步骤互相影响,造成分割结果的不确定性。我们通过优化数据滤波在分割流程中的位置和算法,提出了一种改进的空间分割流程,有效地提高了分割结果的可靠性。该研究工作使用脂质体特征的小鼠胎儿质谱成像数据,比较新的分割流程与其他常用的三种流程的空间分割结果。结果说明,本文提出的新流程能够更好地区分图像中的亚组织/微区,在目视检测、空间均匀性、时间成本和鲁棒性等方面均优于其他传统方法。这项研究提高MSI的空间分割效果,为研究人员评估和筛选药物/化学诱导的靶向器官,探索疾病进展和分子机制提供了有力的工具。该工作由厦门大学博士研究生郭磊和硕士研究生胡振兴为论文共同一作(Analytical Chemistry, 2021, doi.org/10.1021/acs.analchem.0c05242)(图1)。  图1 滤波参与的新图像分割算法结果示意图  环境中典型内分泌干扰物双酚A(BPA)及其替代品双酚S(BPS)的暴露与乳腺癌发展密切相关,然而分子机制仍然是未知的。本研究以环境相关暴露剂量的BPS处理乳腺癌裸鼠移植动物模型,采用脂质和蛋白的质谱成像结合分子生物学的方法,对相关的分子机制进行初步探索。研究发现乳腺肿瘤体积随BPS暴露浓度升高呈减小趋势,并发现了肿瘤异质性驱动的增殖和恶性病变机制。其中,蛋白的质谱成像方法采用原位酶解法,并构建了人乳腺癌相关的数据集进行质谱成像蛋白图像的比对和搜索(Journal of Hazardous Materials, 2021, doi.org/10.1016/ j.jhazmat.2021.125391)(图2)。  图2 BPS诱导乳腺肿瘤增殖和恶变的分子机制
  • 拉曼光谱成像技术获突破 肝癌早期检测成可能
    据媒体报道,日前由中国科学技术大学侯建国院士领衔的单分子科学团队董振超研究小组,在高分辨率化学识别与成像领域取得重大突破。这项研究结果突破了光学成像手段中衍射极限的瓶颈,将具有化学识别能力的空间成像的分辨率提高到一个纳米以下,这对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造,以及包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。据悉,该研究工作是在科技部、科学院和国家自然科学基金委的资助下完成的,是该研究团队继2005年实现单分子磁性调控(文章发表在《科学》杂志上)后在单分子科学领域取得的又一项重大进展。  据文章通信作者之一董振超教授介绍,印度科学家拉曼于1928年发现了光子被物质分子散射后能量发生变化的光散射现象,并在两年后因此贡献获得了诺贝尔物理学奖,是亚洲第一位获此殊荣的科学家。拉曼散射中光子的能量变化通常起源于分子振动能量与入射光子能量的叠加,因此拉曼散射光中包含了丰富的分子振动结构的信息。而由于不同分子的拉曼光谱的谱形特征各不相同,因此可作为分子识别的&ldquo 指纹&rdquo 光谱,就像人的指纹可以用来识别人的身份一样。如今,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。  据介绍,激光光镊拉曼光谱技术是将激光光学囚禁技术和拉曼光谱技术相结合应用于悬浮细胞、生物大分子等进行研究的一种光子技术,更是一种无损、快速、灵敏的光谱学的检测方法。  专业人士表示,鉴于水的拉曼散射非常微弱,该技术适合于对水溶液中生物大分子、细胞等进行研究。该技术应用光镊把细胞俘获或囚禁在玻片上方10微米左右的位置,可以消除其他拉曼光谱技术将细胞囚禁在溶液中和玻片上所引起的不良影响。并且光镊将细胞长时间囚禁在激光的焦点附近,在优化了散射光的收集光路的同时,还可以得到更高信噪比的光谱。虽然激光光镊拉曼光谱技术已经具有如此多的优势,但这种技术只是对直径较小的细胞有很好的针对性,对像肝癌细胞这样直径较大的细胞并不能全部获取其中的光谱信息。  目前肝癌已经成为死亡率仅次于胃癌、食道癌的第三大常见恶性肿瘤,但初期症状并不明显。因此,对肝癌的检测就成为了目前医学研究的重要课题。而拉曼光谱成像可以在降低分子成像成本的同时,提供更高的图像敏感度、还有更强的空间分辨率以及更完善的浏览多重信号的能力。  分析人士指出,拉曼光谱成像已经成为当前所有成像技术中较为优越的一种技术。这种重构的激光拉曼光谱成像系统对肝癌细胞进行了成像研究,获得了单个肝癌细胞微区的拉曼光谱图谱,同时计算出786cm-1、1450cm-1和1658cm-1等特征峰的峰面积,这些特征峰分别归属于DNA、脂类和蛋白质,并根据归一化后的数值在相应的细胞扫描位置给出不同颜色值成像,进而重构出这些物质的拉曼特征峰在肝癌细胞中的分布图。结果表明,应用这种方法可以很明确的看到DNA、脂类及蛋白质特征峰在细胞中的分布情况,并且通过荧光染色验证了成像系统的可靠性。因此通过特征峰的成像图确定物质在细胞中的微区分布情况,为拉曼方法检测和诊断肝癌提供了可靠的依据和重要的参考价值。
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制