当前位置: 仪器信息网 > 行业主题 > >

自动种子数粒仪

仪器信息网自动种子数粒仪专题为您提供2024年最新自动种子数粒仪价格报价、厂家品牌的相关信息, 包括自动种子数粒仪参数、型号等,不管是国产,还是进口品牌的自动种子数粒仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动种子数粒仪相关的耗材配件、试剂标物,还有自动种子数粒仪相关的最新资讯、资料,以及自动种子数粒仪相关的解决方案。

自动种子数粒仪相关的论坛

  • 电子数粒仪 自动数粒仪-郑州中谷机械设备有限公司

    电子数粒仪 自动数粒仪-郑州中谷机械设备有限公司

    http://ng1.17img.cn/bbsfiles/images/2016/06/201606280930_598417_1941670_3.jpg 产品简介:电子自动数粒仪(PME型适用于大小粒种子,PME-1型仅适用于小粒种子)详细说明: 一 用途PME型数粒仪可对各种主要粮食作物,如稻、麦、高粱玉米等颗粒进行自动计数,在农科院(所)农业大专院校、种子系统,粮食部门中、考察种子指标,测量千粒重有广泛应用。主要技术性能1、 计数品种:PME型:(1) 尺寸长×宽小于12×4毫米(小颗粒);(2) 尺寸长×宽小于12×10毫米(大颗粒)PME-1型1、 尺寸长×宽小于12×4毫米(小颗粒)2、 计数精度:±4/1000以速度而定。(标准偏差)3、 计数速度:小颗粒大于1000粒/3分钟;大颗粒500粒/3分钟4、 计数容量:1~9999由四位LED数码管直接读数。5、 自校频率:f=1~2HZ f=10~20HZ.6、 预置自停:1~9999当中任意数值,置0000不计数。7、 外接电源220~±20V~50HZ功率小于20瓦,接地良好。8、 仪器尺寸:304×234×180毫米。9、 工作环境:大气压力:750±30毫米汞柱。环境温度0℃~40℃相对湿度:20℃时小于80%连续使用时间:大于四小时。10、仪器功能:电路自校,任意计数,预置自停,抽门与送料自锁。二 仪器外形、结构1、送料旋钮 2、自校旋钮3、数码管 4、电源开关5、复零计数开关 6、预置拔盘7、卸料盘旋钮 8、料盘9、保险丝 10、盛料抽门11、大颗粒出粒口三 仪器工作原理 电磁振动盒使种子逐粒排队送料,落入光电转换槽后形成光电脉动,经放大整形倒相后送入计数电路,以LED数码管显示读数。预置用拔盘开关,当计数到预置数后,停止送料,停止记数。仪器设有自校频率,便于检查计数电路及预置的正确性(1) 电磁振动送料装置:种子放在料盘上,料槽成螺旋形。(2) 在螺旋槽上升的种子,到达落料口落下,通过光电转换区投影到硅光电池上产生电流变化,经脉动放大整形后得到光电计数脉动,送入计数电路计数显示。(3) 计数显示电路采用CC4518(菲利蒲公司HEF4518)双BCD加计数器,并以CC4511(“HEF4511)BCD-7段锁存/译码/驱动器,译码后驱动共负极LED发光数码管显示,四位数的LED输入端串入限流电阻,使笔划亮度均匀。CC4518计数输入端有时钟端(CL),时钟允许端(EN)和复位端“R”,个位数时EN=“1”(高压平)计数脉动由“CL”输入,正跳变触发,后面三位均是CL=“0”(低电平)由EN输入,负跳变触发。(4) 预置自停电路的控制信号由开关二极管,指轮拔盘开关与四输入端的与非门联接,当拔盘预置数与计数数字相符时,继电器吸合,从而切断计数输入,使计数输入端接地,停止送料,LED显示出预置数字自动数粒仪☆电子数粒仪☆自动数粒仪价格是多少自动数粒仪☆电子数粒仪☆自动数粒仪厂家哪个好电话:0371-55862289 传真:0371-61175791 网址:http://www.zzzhonggu.com手机:13513890822 18037122128信箱:zhonggu668@163.com详细资料,敬请登录中谷机械设备公司以下网站: http://www.zzzhonggu.com 郑州中谷机械设备有限公司更多推荐产品自动数粒仪http://www.zzzhonggu.com/1017-1.html谷物选筛http://www.zzzhonggu.com/1014-6.html害虫选筛http://www.zzzhonggu.com/1014-16.html容重器http://www.zzzhonggu.com/1014-2.html电子容重器http://www.zzzhonggu.com/1014-19.html钟鼎式分样器http://www.zzzhonggu.com/1014-11.html不锈钢分样器http://www.zzzhonggu.com/1014-14.html小麦硬度测定仪http://www.zzzhonggu.com/1014-18.html碎米分离器http://www.zzzhonggu.com/1014-20.html精米机http://www.zzzhonggu.com/1014-3.html检验砻谷机http://www.zzzhonggu.com/1014-8.html单管通风机http://www.zzzhonggu.com/1001-2.html多管通风机http://www.zzzhonggu.com/1001-3.html谷物水分测定仪http://www.zzzhonggu.com/1005-2.html快速水分测定仪http://www.zzzhonggu.com/1005-3.html电脑快速水分仪http://www.zzzhonggu.com/1005-6.html粮食水分测定仪http://www.zzzhonggu.com/1005-11.html不锈钢粮食取样器http://www.zzzhonggu.com/1010-1.html粮食扦样器http://www.zzzhonggu.com/1010-5.html散粮车取样器http://www.zzzhonggu.com/1010-7.html油脂酸价测定仪http://www.zzzhonggu.com/1019-16.html罗维朋比色计http://www.zzzhonggu.com/1019-14.html

  • 超声波处理水稻可使水稻增产近一成五

    梅州首次大田试验:亩产比常规技术增产62.2公斤用超声波调优技术对水稻种子进行处理,竟可使水稻增产近一成五。这是华南农业大学联合省市农业专家前日在梅州市蕉岭县对该技术的首次大田试验进行现场测产比对得出的结果。据了解,今年6月,该项目的实验团队分别在梅州、阳江和清远三地进行农田推广实验,在梅州的蕉岭县蕉城镇陂角村种植了50亩“处理”的种子和50亩未处理种子进行实验。“超声处理水稻每亩选用的种子数量、施用的化肥、灌溉的次数都与其常规水稻种植是一样的。”华南农业大学农学院作物科学技术系主任唐湘如教授告诉记者,该技术核心是在播种前采用超声波处理水稻种子,实质是利用其机械效应、热效应和空化效应,促进种子内部生化反应的进行。种子经超声波仪器处理后种出来的水稻,有效稻穗增加、每穗整粒数增加、稻穗结实率增加,每穗长25~26cm,有280~350粒稻谷,植株高1.25m左右;而未经处理的水稻每穗长21cm左右,有180~250粒稻谷,植株高1.1m左右。“超声处理水稻种子增产调优技术”比“常规栽培技术”增产62.2公斤/亩,增产率14.1%.

  • 【资料】种子发芽的条件

    影响种子发芽的因素很多,一般可以分为种子内部因素和种子外部因素。内部因素包括种子的大小,种子的质量,种子的品种等。而外部因素包括阳光,水分,温度,基质和空气。种子的内部因素根据种子的大小分为大粒、中大粒、小粒、微小粒型种子。每克种子在 100粒以下的为大粒型,如:向日葵、美人蕉、香碗豆、金莲花、天门冬属、银边翠等;每克种子在 100-600之间的为中大粒型,如:百日草、万寿菊、紫薇、天竺葵、串红、皇帝菊、翠菊、美女樱、康乃馨等;每克种子在600-2000粒之间的为小粒型,如:鸡冠花、非洲凤仙花、彩叶草、满天星、银叶菊、三色堇、报春花等;每克种子在2000粒以上的为微小粒种子,如:瓜叶菊、蒲包花、四季海棠、大岩桐、金鱼草、矮牵牛等。种子必需是完全成熟的种子,且具备发芽的条件。种子必需已经完成休眠期。当然排除没有休眠期的种子(例:小麦种子)。种子的外部因素种子有好光、闭光和中间性发芽之特性。好光性发芽的种子在介质表面发芽,不需要覆盖,如:四季海棠、蒲包花、大岩桐、报春花等;闭光性发芽的种子播种后跟据种子的大小适当覆盖介质,如:向日葵、鸡冠花、彩叶草、美女樱、三色堇等;中间性发芽的种子覆盖或不覆盖介质都可以发芽,如:非洲凤仙花、勿忘我等。  种子对水分的需求度:一般好光性发芽的种子因种子在介质的表面,如没有较高的湿润度,种子往往出现干化造成难以发芽或者不发芽,如:瓜叶菊、蒲包花、四季海棠、大岩桐等;在半湿润的环境发芽的种子一般为闭光性发芽,因种子在介质里,如果过度湿润或着连日阴雨,基质自然蒸散能力减弱,造成基质板结,水分过大基质间的孔隙减小,致使种子缺氧霉烂发芽不理想甚至不发芽。  根据种子和温度的特性分为种子在温暖、半温暖、凉爽的环境里发芽类型。温暖型一般在气温25-36°C之间的环境里最为理想。如:百日草、万寿菊、鸡冠花、千日红、大理花等;半温暖型一般在气温18-25°C之间最为理想,如:美女樱、三色堇、羽衣甘蓝、大岩桐、非洲凤仙花等;凉爽型一般在气温 15-18°C之间最为理想,如果气温超过18°C时就难以发芽或发芽不理想,如:花毛莨、福禄考、报春花等。  播种育苗与基质的关系:如果是基质未经消毒或者基质含有病毒菌,就会使种子受到侵害变质无法发芽,或者种子发芽后受病毒菌的影响变成黄褐色而死亡,有时发芽后小苗长势缓慢管理稍有不当致使幼苗黄化而死亡。尤其是好光发芽的种子,种子虽然发了芽,幼根不能及时顺利扎入基质里,造成的幼苗死亡,这和基质版结、机质含量少有直接的关系。种子的需氧性 种子开始活动就要进行呼吸作用,也就需要氧气。所以播种时浇水太多,种子反而会腐烂,就是因为缺氧的原故。只有少数水生植物的种子,能在缺氧状况下发芽。知道了种子发芽的条件,我们就可以对种子的播种以及生长条件进行一定的控制和调节,以达到种子的良好发芽率。下面我们就来分析下对影响种子发芽的各因素的控制。第一步:首先是选用播种育苗的理想基质进行消毒处理后根据种子的大小选用适当粗细的基质,大粒的种子选用较粗糙的基质,为了增大空隙度,微小的种子,底层选用较粗糙基质,上面再铺一层细小的基质;第二步,根据种子的大小和种子的好光、闭光发芽特性进行播种、施水、闭光性的种子要洒水后再播种,微小的种子覆盖基质不见种为度,大粒种子可稍微深一点。好光性的种子如果发芽快的同样是先洒水后播种,对于发芽慢的种子用浸水法来增大基质的含水量;第三步,播种的环境或者放置的场地。闭光性发芽的种子并不是把其放在黑暗的地方,而是播种后覆盖基质,根据种子的特性放置于直光和散光的环境里,好光性发芽的种子并不是把其放在强烈的直射光线下,而是播种后不覆盖基质,根据种子的特性放置于散光和遮光的环境里,对于好光性发芽的种子,因种子在介质的表面,必需要在湿润的环境里,否则难以发芽或者出现发芽后生长缓慢死掉等现象。

  • 种子的玻璃化相变温度

    种子的玻璃化相变温度

    看到外国文献上有好多关于种子玻璃化相变温度的实验,我的硕士选题就选做了测定种子的玻璃化相变温度。可是令我郁闷的是,我测的图上怎么就分辨不出哪是玻璃化相变温度呢?是不是有的东西就是没有玻璃化相变温度呢?测定结果附件中,请高手指教。谢谢了。[img]http://ng1.17img.cn/bbsfiles/images/2005/12/200512191650_11993_1634087_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2005/12/200512191651_11994_1634087_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2005/12/200512191651_11995_1634087_3.jpg[/img]

  • 【转帖】挪威:北极植物种子库开放 为未来地球冷藏种子

    挪威于2月26日正式开放了一个名为“末日穹顶”的植物种子库。这座修建在北极一座山中的冷库将用来存放数百万种植物种子,以防止战争或者自然灾害将地球上的所有粮食作物全部摧毁。  据美联社报道,种子库位于斯瓦尔巴特群岛。在其落成开幕典礼上,受邀而来的客人将第一批种子送进穹顶时无不将之与《圣经》中记载的“诺亚方舟”相提并论。  “这是一个冻结的伊甸园。”欧盟委员会主席若泽巴罗佐(Jose Manuel Barroso)说。  挪威首相延斯斯托尔滕贝格(Jens Stoltenberg)称修建该种子库是一个“保险策略”,是为子孙后代保存生物多样性的‘诺亚方舟’ 。  斯瓦尔巴特全球种子库距离北极只有620英里(合998公里)。根据设计,这里可以储存来自全世界的多达450万份种子样本,并能经受住全球变暖、地震甚至核战争的考验。  种子库由挪威政府投资910万美元修建,将采用类似于银行的方式运作,其所有权归挪威,但种子的主人是在这里存放种子的国家,他们可以在需要这些种子的时候免费取用。  种子库的日常运作由NorGen基因银行负责监督,这个基因银行属于北欧国家共有,位于斯瓦尔巴特群岛的一座旧煤矿中。  目前全世界另有1400个种子银行,万一这些种子银行存放的种子遗失,挪威种子库可作为它们的“后援”。伊拉克和阿富汗的种子银行都被战火摧毁,而菲律宾的种子银行则被2006年台风带来的洪水淹没。  “对于非洲国家来说,在这里存放种子非常重要,因为我们的国家种子银行可能发生任何事情。”2004年度诺贝尔和平奖获得者、肯尼亚的旺加里马塔伊(Wangari Maathai)说。她是全球作物多样性信托基金董事会成员,该基金由联合国粮农组织以及总部位于罗马的研究团体“国际生物多样性”创立,负责挪威种子库的种子搜集工作。  “很快就将证实,生物多样性是我们应对气候变化、水资源和能源供应紧缺以及满足人口膨胀后不断增长的食物需求的最有效、最不可或缺的资源。”信托基金负责人卡里福勒(Cary Fowler)说。  开幕典礼上,斯托尔滕贝格和马塔伊率先将来自104个国家的一盒稻米种子送进了储藏室。这些种子存放在箔材制作的银色盒子内,每盒装500粒种子,然后搁置在蓝橙色的金属架上。种子库有3个宽9.8)、长26.8米的储藏室,每个储藏室可以容纳150万份样本,包括从胡萝卜到小麦在内的所有的作物种子。  斯瓦尔巴特群岛气温很低,不过巨大的制冷设备更将种子库中的温度降至零下18摄氏度。专家表示,很多种子在这一温度下可以完好地保存1000年。

  • 【分享】“神七”搭载种子育出有益变异

    【分享】“神七”搭载种子育出有益变异

    如何看待航天育种? 给人类带来好处的同时,有没有不利?是否会影响到整个地球上的生态平衡呢6月4日,甘肃省航天育种工程中心技术员唐瑞永对比“神舟七号”搭载河北“墨茄”种子经太空诱变后结出的佛手状茄子(左)与变异前应有的长条状果实(右)。甘肃省航天育种工程中心目前正对搭乘“神舟七号”进入太空诱变的87个品系蔬菜种子进行第一代选育,其中出现的有益变异情况较为理想,经过两年4代的选育及杂交选育等过程后,其“后代”有望于2012年进入市场。甘肃省航天育种工程中心位于天水市麦积区境内,这批蔬菜种子经过育苗,被分别种在日光温室内,并已开花结果。[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906072140_154434_1607864_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906072140_154435_1607864_3.jpg[/img]6月4日,甘肃省航天育种工程中心一座日光温室内,工作人员在展示经过航天育种后结出的具备观赏性的番茄。

  • 【转帖】生态学家称转基因种子进入中国 数亿农民将失业

    粮食的极端重要性毋庸置疑。没有稳定的粮食来源,社会稳定是根本不可能的。我国农业如抛弃传统的精耕细作模式,放弃农民的互助合作精神,大规模引进转基因生物技术,搞所谓集约化大农场,将扩大这个不安定因素,不啻于接受威胁粮食安全的“特洛伊木马”。  我们吃的一切食物都来自植物的光合作用,而要将光合产物收获为人类的食物,必须感谢农民的辛勤劳作,这是亘古不变的真理。粮食生产的关键就是种子,种子意味着希望,意味着收获。即便在最困难的时期,农民也不会拿用来保命的种子下锅,除非他不想过了。农民留种子,是从当年收获的粮食中,挑选质量好的小心保存起来。因此,传统的农民,就是经验丰富的遗传育种“专家”。从收成中留种,是天经地义的,是很从容的,农民一点都不会为此感到恐慌。然而,转基因技术主导的农业正在改变这一格局,其巨大风险来自生物技术跨国公司,即转基因垄断巨头。 在中国,农民留种或买常规种子,是不知道什么知识产权的。今年的种子,如果收成好,他会留下一部分当来年的种子,省下种子钱。然而,转基因种子是有知识产权保护的,如果农民第一次买了转基因种子,获得了收成,尝到了甜头,想要继续留种的话,就会遇到很大的麻烦。转基因种子垄断企业,为了推广其产品,往往在最初几年免费或以优惠的价格向农民提供种子,似乎是农民捡到了便宜,殊不知,转基因垄断巨头凭借强大的资本实力,轻而易举地占领了他国的种子市场。  以后,农民再留种就困难了,也由不得你留种。受知识产权保护,就是受法律保护,任何农民如果自留转基因粮食种子,就属于违法。他们会将“违法”农民列入“黑名单”,那些农民将得不到贷款、农机具补贴,农产品也不能正常出售。更严重的是,他们会将农民直接告上法庭,最终制伏农民。原来种地无忧的农民,变成提心吊胆地种地,任转基因公司盘剥,屈辱地活着。种地看别人眼色,那滋味肯定是不好受的。  更令人触目惊心的是,转基因种子垄断企业为了防止农民留种,发明了 “自杀种子”,即通过转基因手段,对种子实行改造。第一年获得收成后,其种子不可能再发芽,或者即使发芽也长不出好庄稼。这样,一方面免去了监视农民“偷窃”的成本,另一方面避免了控告农民的麻烦和负面形象,还可保证农民必须每年购买种子。将种地留种的权利拱手交给别人,尤其是交给那些认钱不认人的生物技术企业,对粮食主权的损害是异常大的。  有人说,正是为了摆脱西方生物技术公司控制,中国才投入巨资搞转基因研究,用我们自己的转基因发明来解决粮食安全问题。果然如此吗?我国正在申请商业化种植及在研的8个转基因水稻品系中,没有任何一种拥有独立的自主知识产权;相反,上述转基因品系至少涉及了28项国外专利,专利分别属于美国孟山都、德国拜耳和美国杜邦三家跨国生物技术公司。这就是说,如果我们大规模推广转基因主粮,中国人并不拥有粮食生产主权。除专利外,转基因专用除草剂、化肥也几乎控制在人家手里。  退一步讲,即使中国科学家获得了有完全知识产权的转基因种子,也难以与美国等转基因大国抗衡。西方国家会以“自由经济、公平开放”为由,凭借强大的资本实力,鲸吞国内起步较晚、以跟风为主的转基因研究成果,在较短的时间里实现农业生物技术市场的垄断,更何况中国的转基因主流科学家与国外的生物技术垄断巨头有着千丝万缕的联系。堡垒最容易从内部突破。在这样复杂的环境下,利用转基因技术解决粮食安全问题就不能不令人担忧。转基因种子供应商的垄断性,足以威胁一个国家的粮食安全和粮食主权,乃至社会稳定。这个问题必须引起高度重视。  在美国,以及推广美国转基因种子的拉美国家,垄断企业通过种子和收购价格的控制,让农民的收入低到无法承受,最终不得不卖出土地,以其他方式谋生。小农经济被大型农场所取代,被人称赞为农业现代化的必然趋势。但是,如果这种状况在中国出现,数亿农民将失业,将会引发极为严重的社会动荡。  出于国家粮食安全和粮食主权考虑,必须在现阶段严格控制国外转基因种子进入中国市场,必须接受东北大豆几乎全军覆没的惨痛教训,必须警惕那些生物技术科学家,打着解决粮食安全旗号,牟取私利并出卖国家利益的做法。一旦水稻、玉米、马铃薯等主要粮食作物沦为大豆的处境,中国主粮生产将面临十分被动的局面。阿根廷的教训,我们不能不吸取。

  • 杂草种子活性测试 有机肥NY/T 525-2021标准检测

    杂草种子活性测试 有机肥NY/T 525-2021标准检测 附录H试验步骤写的比较简单: 称取有机肥料样品(鲜样)3 000g,记录样品总重m,均匀铺在托盘中,厚度约为20 mm,在30度的光照培养箱(光照强度和湿度适中)中培养21 d。在试验期间,每2d-3d补充水分一次,以保持样品潮湿。每次补水时,观察是否有种子发芽并做记录,21d后统计试验期间发芽种子总株数N。杂草种子活性=N*1000/m 单位: 株/kg想请教,[b]做试验时3000g的有机肥料样品里面加多少杂草种子来观察它的发芽数呢[/b]????谢谢!

  • 【原创】现代物理应用--种子磁化促生技术

    对种子进行磁化处理,可激发种子内部酶的活性,提高吸收水、肥的能力,提高种子的发芽率和作物的新陈代谢,增强抗病虫害能力,促进作物生长,提高产量,是一项很有价值的农业增产技术。 试验结果表明:粮食、蔬菜平均增产在10%左右。 该机无环境污染,用磁场直接处理作物种子,可提高种子的发芽率、发芽势和幼苗素质,使根系发达,提高吸水、肥能力,促进作物增产。适用于玉米、小麦、水稻、大豆和各种蔬菜及经济作物。 对玉米、小麦等作物可提高发芽率 8% ,增产幅度为 10% 左右,蔬菜增产20%以上。

  • 【求助】我研究试验急需一台镅-铍中子源中子湿度计

    [size=4]高手们: 我研究试验急需一台镅-铍中子源中子湿度计,我想具体了解它的一些性能,主要是能否在散粒物料中进行水分监测,其监测的范围是多大?精度又能达到多少?我需要测试的样品湿度监测要求为5%-10%,可有更好的测试仪器,还有就是如何对其进行防腐保护,那个探头要如何设计才会更具有适用性,最后我想知道其价格是多少,在哪能买到该产品? 测得的慢中子数具体与物料中总的含氢量又是一个什么关系,而对于复阻抗湿度测量法中的两复阻抗的差值与被测材料的未知含水量存在一种什么关系?有没有什么更好的方法可以进一步提高其精度?谢谢高手们了,急急急![/size]我的邮箱:zhangmegzu@126.com

  • 发酵生产中种子的制备过程

    在发酵生产过程中,种子制备的过程大致可分为两个阶段:(1)实验室种子制备阶段(2)生产车间种子制备阶段 一、实验室种子的制备实验室种子的制备一般采用两种方式:对于产孢子能力强的及孢子发芽、生长繁殖快的菌种可以采用固体培养基培养孢子,孢子可直接作为种子罐的种子,这样操作简便,不易污染杂菌。对于产孢子能力不强或孢子发芽慢的菌种,可以用液体培养法。(一)孢子的制备1,细菌孢子的制备细菌的斜面培养基多采用碳源限量而氮源丰富的配方。培养温度一般为37℃。细菌菌体培养时间一般为1~2天,产芽孢的细菌培养则需要5~10天。2,霉菌孢子的制备霉菌孢子的培养一般以大米、小米、玉米、麸皮、麦粒等天然农产品为培养基。培养的温度一般为25~28℃。培养时间一般为4~14天。3,放线菌孢子的制备放线菌的孢子培养一般采用琼脂斜面培养基,培养基中含有一些适合产孢子的营养成分,如麸皮、豌豆浸汁、蛋白胨和一些无机盐等。培养温度一般为28℃。培养时间为5~14天。(二)液体种子制备1,好氧培养对于产孢子能力不强或孢子发芽慢的菌种,如产链霉素的灰色链霉菌(S. griseus)、产卡那霉素的卡那链霉菌(S. Kanamuceticus)可以用摇瓶液体培养法。将孢子接入含液体培养基的摇瓶中,于摇瓶机上恒温振荡培养,获得菌丝体,作为种子。其过程如下: 试管→三角瓶→摇床→种子罐2,厌氧培养对于酵母菌(啤酒,葡萄酒,清酒等),其种子的制备过程如下:试管→三角瓶→卡式罐→种子罐例如生产啤酒的酵母菌一般保存在麦芽汁琼脂或MYPG培养基(培养基配制:3克麦芽浸出物,3克酵母浸出物,5克蛋白胨,10克葡萄糖和20克琼脂与升水中)的斜面上,于4℃冰箱内保藏。每年移种3-4次。将保存的酵母菌种接入含10ml麦芽汁的500-1000ml三角瓶中,再于25℃培养2-3天后,再扩大至含有250-500ml麦芽汁的500-1000ml三角瓶中,再于25℃培养2天后,移种至含有5-10L麦芽汁的卡氏培养罐中,于15-20℃培养3-5天即可作100L麦芽汁的发酵罐种子。从三角瓶到卡氏培养罐培养期间,均需定时摇动或通气,使酵母菌液与空气接触,以有利与酵母菌的增殖。二、生产车间种子制备实验室制备的孢子或液体种子移种至种子罐扩大培养,种子罐的培养基虽因不同菌种而异,但其原则为采用易被菌利用的成分如葡萄糖、玉米浆、磷酸盐等,如果是需氧菌,同时还需供给足够的无菌空气,并不断搅拌,使菌(丝)体在培养液中均匀分布,获得相同的培养条件。1,种子罐的作用:主要是使孢子发芽,生长繁殖成菌(丝)体,接入发酵罐能迅速生长,达到一定的菌体量,以利于产物的合成。2,种子罐级数的确定种子罐级数:是指制备种子需逐级扩大培养的次数,取决于:(1)菌种生长特性、孢子发芽及菌体繁殖速度;(2)所采用发酵罐的容积。 比如:细菌:生长快,种子用量比例少,级数也较少,二级发酵。 茄子瓶→种子罐→发酵罐霉菌:生长较慢,如青霉菌,三级发酵 孢子悬浮液→一级种子罐(27℃,40小时孢子发芽,产生菌丝 )→二级种子罐(27℃,10~24小时,菌体迅速繁殖,粗壮菌丝体)→发酵罐放线菌:生长更慢,采用四级发酵酵母:比细菌慢,比霉菌,放线菌快,通常用一级种子3,确定种子罐级数需注意的问题(1)种子级数越少越好,可简化工艺和控制,减少染菌机会(2)种子级数太少,接种量小,发酵时间延长,降低发酵罐的生产率,增加染菌机会(3)虽然种子罐级数随产物的品种及生产规模而定。但也与所选用工艺条件有关。如改变种子罐的培养条件,加速了孢子发芽及菌体的繁殖,也可相应地减少种子罐的级数。

  • 种子不完善粒的近红外光谱成像分析

    [font=宋体]以小麦种子不完善粒判别为例,本节重点介绍采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像技术定性判别种子不完善粒的分析流程和分析方法。[/font][b][font=宋体]一、[/font][font=宋体]样本制备[/font][/b][font=宋体]小麦不完善粒是指受到损伤但尚有使用价值的小麦籽粒,包括虫蚀粒、病斑粒、破损粒、生芽粒和霉变粒。目前,小麦不完善粒的检测完全由人工感官检验完成,存在主观性强、工作量大、费时费力且可重复性差等缺点。[/font][font=宋体]实验选取正常粒样本[/font][font='Times New Roman']486[/font][font=宋体]个、黑胚样本[/font][font='Times New Roman']127[/font][font=宋体]个、虫蚀粒样本[/font][font='Times New Roman']149[/font][font=宋体]个及破损粒样本[/font][font='Times New Roman']170[/font][font=宋体][font=宋体]个进行实验,如下图[/font][font=Times New Roman]7-2[/font][font=宋体]所示。[/font][/font][align=center][img=,109,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821164603_4499_4070220_3.png!w112x187.jpg[/img][font=宋体] [/font][img=,102,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821240873_8034_4070220_3.png!w116x188.jpg[/img][font=宋体] [/font][img=,108,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821294403_9648_4070220_3.png!w122x185.jpg[/img][font=宋体] [/font][img=,104,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821378114_6851_4070220_3.png!w121x186.jpg[/img][/align][font=宋体](a)正常粒 ([/font][font=宋体]b) [/font][font=宋体][font=宋体]黑斑粒[/font] [font=宋体]([/font][/font][font=宋体]c) [/font][font=宋体][font=宋体]虫蚀粒[/font] [font=宋体]([/font][/font][font=宋体]d) [/font][font=宋体]破损粒[/font][align=center][font=宋体][font=宋体]图[/font][font=宋体]7-2 小麦样本示意图[/font][/font][/align][b][img=,273,247,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821450586_8673_4070220_3.png!w273x247.jpg[/img][font=宋体]二、光谱图像采集[/font][/b][font=宋体][font=宋体]图[/font][font=Times New Roman]7-3[/font][font=宋体]所示为实验中采用的[/font][/font][font='Times New Roman']SOC710VP[/font][font=宋体]便携式高光谱成像光谱仪。采集前[/font][font='Times New Roman']30min[/font][font=宋体]开启预热系统,同时将样本从冰箱取出晾至室温备用。采集过程及仪器参数设定如下:每类小麦样本以[/font][font='Times New Roman']10*10[/font][font=宋体]网格状放置于样品台,光谱扫描范围[/font][font='Times New Roman']493[/font][font=宋体]~[/font][font='Times New Roman']1106 nm[/font][font=宋体],扫描速度[/font][font='Times New Roman']30 line/s[/font][font=宋体],波段间隔[/font][font='Times New Roman']5.1 nm[/font][font=宋体],波段数[/font][font='Times New Roman']116[/font][font=宋体]个,图像分辨率[/font][font='Times New Roman']696[/font][font=宋体]×[/font][font='Times New Roman']520 pixel[/font][font=宋体],最终得到一个[/font][font='Times New Roman']696[/font][font=宋体]×[/font][font='Times New Roman']520[/font][font=宋体]×[/font][font='Times New Roman']116[/font][font=宋体]的三维数据块。对采集的高光谱图像进行黑白板校正。[/font][b][font=宋体]三、光谱图像特征提取[/font][font='Times New Roman']1. [/font][font=宋体]图像分割[/font][/b][font=宋体]利用最大方差自动取阈法提取样本轮廓。在提取过程中发现,黑胚粒胚部灰度与背景极为相似,分割后易造成局部信息丢失,如图[/font][font='Times New Roman']7-4(a)[font=宋体]、[/font][font=Times New Roman](b)[/font][/font][font=宋体],因此需要对原始图像进行图像增强。图[/font][font='Times New Roman']7-4(c)[font=宋体]、[/font][font=Times New Roman](d)[/font][/font][font=宋体]分别为对黑胚粒图像进行增强及阈值分割后的结果。对比可知,图像增强结合最大方差自动取阈法可以较好地提取小麦种子的轮廓,为后续的特征提取提供保证。[/font][align=center][img=,127,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822165027_9582_4070220_3.png!w290x234.jpg[/img][font=宋体] [/font][img=,131,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822232463_4597_4070220_3.png!w299x234.jpg[/img][font=宋体] [/font][img=,129,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822286360_3512_4070220_3.png!w295x234.jpg[/img][font=宋体] [/font][img=,140,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822338961_1794_4070220_3.png!w549x389.jpg[/img][/align][table][tr][td][align=center][font='Times New Roman'](a)[/font][/align][/td][td][align=center][font='Times New Roman'](b)[/font][/align][/td][td][align=center][font='Times New Roman'](c)[/font][/align][/td][td][align=center][font='Times New Roman'](d)[/font][/align][/td][/tr][/table][align=center][font=宋体][font=宋体]图[/font][font=宋体]7-4 图像增强与分割示意图[/font][/font][/align][align=center][font=宋体](a)[/font][font=宋体]黑胚粒在[/font][font=宋体]886.7nm[/font][font=宋体]波长下的原始图像;[/font][font=宋体](b)[/font][font=宋体]最大方差自动取阈法分割后的图像;[/font][/align][align=center][font=宋体](c)[/font][font=宋体]对原始图像进行图像增强;[/font][font=宋体](d)[/font][font=宋体]图像增强后的阈值分割结果[/font][/align][b][font='Times New Roman']2. [/font][font=宋体]光谱特征提取[/font][/b][font=宋体][font=宋体]按照上述方法分割得到每粒小麦样本的轮廓信息,提取样本轮廓范围内每个像素点的光谱反射率并计算所有像素点的平均值作为该样本的代表光谱。图[/font][font=Times New Roman]7-5[/font][font=宋体]给出了四种类型小麦籽粒的平均光谱图。[/font][/font][b][font='Times New Roman']3. [/font][font=宋体]图像特征提取[/font][/b][img=,361,266,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822504003_9946_4070220_3.png!w361x266.jpg[/img][font=宋体]小麦各类型不完善粒在外观、颜色、光滑度等方面均存在明显差异,由于在小麦高光谱图像中很难体现颜色特征,因此从纹理、形态两方面提取特征。[/font][font=宋体]采用灰度共生矩阵法([/font][font=宋体][font=Times New Roman]G[/font][/font][font='Times New Roman']ray-level [/font][font=宋体][font=Times New Roman]c[/font][/font][font='Times New Roman']o-occurrence [/font][font=宋体][font=Times New Roman]m[/font][/font][font='Times New Roman']atrix, GLCM[/font][font=宋体])提取同质度、三阶矩、角二阶矩、熵和对比度共[/font][font='Times New Roman']5[/font][font=宋体]个特征量以及两个直方图参数(均值和方差)表征纹理特征。如表[/font][font='Times New Roman']7-1[/font][font=宋体]所示,可以看出,不同类型的小麦不完善粒纹理特征存在明显差异,如破损粒的标准差、三阶矩、对比度均明显高于其他类型籽粒,虫蚀粒、黑胚粒的角二阶矩明显低于破损粒和正常粒,而黑胚粒的熵值明显高于其他类型籽粒。综上所述,纹理特征可以作为识别小麦不完善粒的一个依据。形态[/font][align=center][font=宋体][font=宋体]表[/font][font=宋体]7-1各类型小麦粒纹理特征值[/font][/font][/align][table][tr][td][font='Times New Roman'][font=宋体]参数[/font][/font][/td][td][font='Times New Roman'][font=宋体]黑胚粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]虫蚀粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]破损粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]正常粒[/font][/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]均值[/font][/font][/td][td][font='Times New Roman']6.3731[/font][/td][td][font='Times New Roman']6.3296[/font][/td][td][font='Times New Roman']7.0502[/font][/td][td][font='Times New Roman']6.1564[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]标准差[/font][/font][/td][td][font='Times New Roman']15.2557[/font][/td][td][font='Times New Roman']15.2675[/font][/td][td][font='Times New Roman']17.2833[/font][/td][td][font='Times New Roman']14.8870[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]同质度[/font][/font][/td][td][font='Times New Roman']0.0037[/font][/td][td][font='Times New Roman']0.0037[/font][/td][td][font='Times New Roman']0.0049[/font][/td][td][font='Times New Roman']0.0035[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]三阶矩[/font][/font][/td][td][font='Times New Roman']0.1510[/font][/td][td][font='Times New Roman']0.1477[/font][/td][td][font='Times New Roman']0.2488[/font][/td][td][font='Times New Roman']0.1286[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]角二阶矩[/font][/font][/td][td][font='Times New Roman']0.6682[/font][/td][td][font='Times New Roman']0.6939[/font][/td][td][font='Times New Roman']0.7048[/font][/td][td][font='Times New Roman']0.7015[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]熵[/font][/font][/td][td][font='Times New Roman']1.7335[/font][/td][td][font='Times New Roman']1.5850[/font][/td][td][font='Times New Roman']1.5474[/font][/td][td][font='Times New Roman']1.5343[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]对比度[/font][/font][/td][td][font='Times New Roman']2.6011[/font][/td][td][font='Times New Roman']3.2007[/font][/td][td][font='Times New Roman']4.8858[/font][/td][td][font='Times New Roman']3.0597[/font][/td][/tr][/table][font=宋体]特征主要描述图像的区域特征和轮廓特征,结合籽粒二值图像提取包括籽粒周长、面积、圆形度、矩形度、伸长度[/font][font='Times New Roman']5[/font][font=宋体]个反映形态差异的基本物理量作为形态特征。各类型籽粒的形态特征值如表[/font][font='Times New Roman']7-2[/font][font=宋体]所示,可以看出,不同类型的小麦不完善粒[/font][align=center][font=宋体][font=宋体]表[/font][font=宋体]7-2各类型小麦粒不完善粒形态特征值[/font][/font][/align][table][tr][td][font='Times New Roman'][font=宋体]参数[/font][/font][/td][td][font='Times New Roman'][font=宋体]黑胚粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]虫蚀粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]破损粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]正常粒[/font][/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]周长[/font][/font][/td][td][font='Times New Roman']93.0867[/font][/td][td][font='Times New Roman']88.6827[/font][/td][td][font='Times New Roman']87.3279[/font][/td][td][font='Times New Roman']88.1579[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]面积[/font][/font][/td][td][font='Times New Roman']396.18607[/font][/td][td][font='Times New Roman']362.7408[/font][/td][td][font='Times New Roman']348.9007[/font][/td][td][font='Times New Roman']352.6744[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]圆形度[/font][/font][/td][td][font='Times New Roman']1.7516[/font][/td][td][font='Times New Roman']1.7402[/font][/td][td][font='Times New Roman']1.7584[/font][/td][td][font='Times New Roman']1.7658[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]矩形度[/font][/font][/td][td][font='Times New Roman']0.7707[/font][/td][td][font='Times New Roman']0.7851[/font][/td][td][font='Times New Roman']0.7747[/font][/td][td][font='Times New Roman']0.7784[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]伸长度[/font][/font][/td][td][font='Times New Roman']0.5123[/font][/td][td][font='Times New Roman']0.5079[/font][/td][td][font='Times New Roman']0.5536[/font][/td][td][font='Times New Roman']0.4587[/font][/td][/tr][/table][font='Times New Roman'] [/font][font=宋体]形态特征存在较明显差异,如黑胚粒的周长、面积均明显高于其他类型籽粒,虫蚀粒的矩形度高于其他类型籽粒,而正常粒的伸长度明显低于其他类型籽粒。因此,选取形态特征参数对不完善粒进行识别是可行的。[/font]

  • 【原创大赛】亚麻荠种子总多酚含量测定

    【原创大赛】亚麻荠种子总多酚含量测定

    [align=center][b]亚麻荠种子总多酚含量测定[/b][/align][b]摘要:[/b]亚麻荠是一种环保型油料作物,有很长时间的种植历史,富含人体必需脂肪酸和多种天然活性成分。总多酚不是一种单一的物质,它主要包括黄酮类、单宁类、酚酸类和花色苷等,具有抗氧化、抗衰老、预防癌症等多种生物活性,被誉为“第七类营养素”。经实验发现,亚麻荠种子中含有多酚,为了把其价值最大化,更好地运用到食品、医药、保健品、化妆品等行业当中去,本实验通过对亚麻荠种子总多酚提取条件的比较,筛选出料液比、丙酮体积分数、提取温度和提取时间的最适宜水平,在最适宜水平条件下测定出甘肃、青海、汤阴三个不同产地的亚麻荠种子中的总多酚含量。[b]关键词:[/b]亚麻荠种子;总多酚;含量测定;[b]Abstract: [/b]As an environmentally friendly oilseed crop, camelina has a long history of cultivation and is rich in essential fatty acids and many natural active ingredients. Total polyphenols are not a single substance, and they mainly include flavonoids, tannins, phenolic acids and anthocyanins, etc. They have many biological activities such as antioxidant, anti-aging and cancer prevention, and are praised as "the seventh nutrient". Experiments found that camelina seeds contain polyphenols, in order to maximize its value, to better applied to food, medicine, health products, cosmetics and other industries, the experiment of camelina seeds the comparison of total polyphenol extraction conditions, select material liquid ratio, acetone volume fraction, extraction temperature and extraction time, the most suitable level, under the condition of optimum levels determine the Gansu, Qinghai, Tangyin provinces’ camelina seeds from different regions of three total polyphenol content.[b]Keywords: [/b]Camelina seedsTotal polyphenols Content determination 亚麻荠(Camelina sativa(L.)Crantz)属于十字花科,亚麻荠属一年生草本植物,现在我国东北地区有分布。其种植历史悠久,在青铜器时代就有被种植的痕迹。但尽管气候条件很适宜种植亚麻荠,中世纪以后,也并未在欧洲发现亚麻荠的大面积种植,其原因一直不得而知。到了20世纪50年代,由于油菜的传入与推广,再加上亚麻荠油的氢化作用困难,加工成本较高,导致亚麻荠的种植规模又逐渐减小。近些年来,随着对亚麻荠产品利用的深入研究发现,亚麻荠具有其独特的栽培特性、食用价值和工业价值,人们开始逐渐重视对亚麻荠的开发利用。亚麻荠是一种高油料作物,能利用的部分主要是种子(果实),含油量38%~43%,主要用来榨油。亚麻荠油富含人体必需脂肪酸和多种天然活性成分,甾醇、多酚和生育酚等多种脂质活性成分,能增加油脂的稳定性和亚麻荠油的生物活性,还能帮助人们提高免疫力,预防老年痴呆和癌症等多种疾病的发生。 此外,亚麻荠种子还是油粮、饲料、食品、医药、保健品、化妆品等行业产品的原料。总多酚是一类化学物质的总称,它的主要活性成分是含有多个酚性羟基结构的次生代谢物,即多酚类化合物,主要包括黄酮类、单宁类、酚酸类以及花色苷类,广泛分布于植物根、枝、叶、果实,具有抑菌、抗癌、抗氧化等多种生物活性,被誉为“第七类营养素”。经实验发现,亚麻荠种子中含有多酚[sup][/sup],但目前关于亚麻荠的研究有很多,关于多分的研究也数不胜数,但关于亚麻荠种子中多酚含量测定及抗氧化方面尚且未见相关报道。除榨油外,亚麻荠的其他价值并未得到很好的开发利用。所以,本实验通过研究亚麻荠种子中总多酚含量及抗氧化活性,以便为将来更好地开发利用亚麻荠这一优良作物奠定基础。[b][b]1 材料与设备1.1材料[/b]亚麻荠种子:(青海、汤阴、甘肃);没食子酸、福林-酚;丙酮、无水乙醇、无水碳酸钠:均为国产分析纯;纯净水:娃哈哈纯净水。[b]1.2 仪器与设备[/b][/b]111型二两装高速中药粉碎机;ME204型电子天平;TU-1810型紫外分光光度计;N-1100S-W型旋转蒸发仪;SB-1100型水浴锅;KQ-250DB数控超声波清洗器;L420台式低速离心机DZKW-S-6型电热恒温水浴锅;[b][b]2试验方法2.1亚麻荠种子的预处理 [/b][/b] 将亚麻荠种子充分干燥,去除杂质,用粉碎机粉碎,装密封袋备用。[b][b]2.2标准品溶液的制备 [/b][/b] 精密称取没食子酸对照品适量,加蒸馏水制成57.66 μg/ml对照品溶液。[b][b]2.3亚麻荠种子样品溶液的制备[/b][/b] 精密称取亚麻荠种子样品2g,精密加入75%丙酮溶液30ml于具塞锥形瓶,密塞,称重,60℃超声提取3h,冷却,补重,摇匀,滤过,即得。[b][b]2.4确定检测波长的方法 [/b][/b] 分别精密吸取亚麻荠种子样品溶液1.5mL和对照品溶液1.5mL于25mL容量瓶中,加入1.0mL福林酚试剂,摇匀,加入10%碳酸钠溶液2mL,用蒸馏水定容至刻度,充分摇匀后置于25℃的恒温水浴锅中避光反应30min,冷却至室温,以相应的提取溶剂为空白,在400~850nm下扫描,记录紫外光普图,确定最佳吸收波长。[b][b]2.5单因素试验 [/b][/b] 本实验选取料液比,丙酮体积分数,提取温度,提取时间四个因素来研究对亚麻荠种子中总多酚含量的影响,并确定各个因素适宜的水平。在考虑各因素不同水平的变化时,都以料液比1:15,丙酮质量分数70%,提取温度60℃,提取时间1.5h为不变条件,作参照。单因素实验表如表1所示。[align=center][img=,639,277]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101736212274_7213_1858223_3.jpg!w639x277.jpg[/img][/align][b][b]3 结果与讨论3.1最佳检测波长的确定[/b][/b] 由2.4的设计,结果显示,亚麻荠种子多酚提取液和没食子酸标准品溶液均在760nm处有最大吸收,所以得出检测波长为760nm。[b][b]3.2单因素试验结果3.2.1不同料液比对总多酚提取得率的影响[/b][/b] 从亚麻荠种子中提取多酚时,料液比不同,所得到的总多酚含量也有差异。由图1可以看出,在料液比为1:15和1:20时得到最高的多酚含量,但考虑经济价值,选取1:15为最佳料液比。当料液比超过1:20后,多酚含量开始逐渐下降。在超声提取时,传质动力会随着溶剂量的增大而增大,在一定范围内,当丙酮体积分数增大时,传质动力也增大,多酚类化合物能够更好地溶解在丙酮溶剂中,得到的多酚含量不断增加;但到达一定程度后,随着溶剂量的增大,由于产生的热量相同,提取温度相对较低,固液两相存在吸附平衡,从而使得多酚提取得率变低。[align=center][img=,501,300]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101737144424_9357_1858223_3.jpg!w501x300.jpg[/img] [/align][align=center]图1 不同料液比对总多酚提取率的影响[/align][b][b]3.2.2 不同丙酮体积分数对总多酚提取得率的影响[/b][/b] 不同浓度的丙酮溶液对亚麻荠种子的多酚提取得率有不同的影响。在一定范围内,丙酮体积分数增大,得到的多酚含量也随之增大,在丙酮体积分数为75%时,多酚含量达到最大值;丙酮体积分数继续增大,多酚含量开始下降。[align=center][img=,494,299]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101737308326_4393_1858223_3.jpg!w494x299.jpg[/img] [/align][align=center]图2 不同丙酮体积分数对总多酚提取率的影响[/align][b][b]3.2.3不同提取温度对总多酚提取得率的影响[/b][/b] 不同的提取温度对亚麻荠种子的多酚提取得率有不同的影响。由图3可以得知,在一定范围内,多酚含量随着提取温度的增加而增加,当温度为60℃时多酚含量达到最高峰值;此后当温度继续增加,多酚含量开始逐渐下降,在70℃时达到最低值,此后又开始上升,但并未达到最高值。随着提取温度的升高,多酚能够很好地溶解在丙酮溶液中,但温度过高则会破坏多酚类物质的结构,造成总多酚含量的损失,因此60℃为最佳提取温度。[align=center][img=,514,312]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101738159551_4103_1858223_3.jpg!w514x312.jpg[/img] [/align][align=center]图3 不同提取温度对总多酚含量的影响[/align][b][b]3.2.4 不同提取时间对总多酚提取得率的影响 [/b][/b] 由图4可以得知,不同的提取时间,亚麻荠种子的总多酚提取得率不全相同。随着提取时间的增加,总多酚含量也在增加,从1.5h增加到2h,总多酚含量增长明显;从2h增加到3h时,总多酚含量也呈现增加趋势,在3h时达到最高峰值;但当提取时间延长至4h时,总多酚含量开始下降,与2h时含量相等,分析可能是由于随着提取时间的增长,提取出的多酚被氧化造成总含量下降。[align=center][img=,494,301]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101739317344_4177_1858223_3.jpg!w494x301.jpg[/img][/align][align=center]图4 不同提取时间对总多酚提取得率的影响[/align][b][b]3.3总多酚含量测定结果3.3.1 标准曲线的建立及样品的测定[/b][/b] 精密称取没食子酸对照品5.766mg ,加甲醇溶解并定容至100ml,得到质量浓度为57.66μg/ml的没食子酸标准液。分别吸取标准液0.3、0.5、1.0、1.5、2.0mL置于10mL棕色容量瓶中,定容至刻度。从上述各量瓶中分别吸取1.5mL不同浓度标准液于25ml容量瓶中,加入1.0ml福林-酚试剂,摇匀静置30s,加入10%碳酸钠溶液1.0ml,用水定容,25℃水浴30min(避光),于760nm下测定吸光度。以没食子酸标准液的浓度为横坐标,吸光度为纵坐标作图,结果如图5所示。线性关系为 y = 0.0663x + 0.0100,R2 = 0.9997,线性良好。其中,y为标准品的吸光度,x为没食子酸标准液浓度,单位为ug/ml。在测定样品中总多酚含量时,在相同的反应条件下测定样品的吸光度,通过公式算出样品溶液中多酚的浓度,再换算出样品的最终含量。公式为:[align=center][img=,201,56]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101745019767_2542_1858223_3.jpg!w201x56.jpg[/img][/align]其中M为总多酚含量,单位是mg/g;V为定容体积,单位是ml;N为稀释倍数;m为称取亚麻荠样品重量,单位为g,y为样品溶液的吸光度。[align=center][img=,485,297]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101740167674_8180_1858223_3.jpg!w485x297.jpg[/img][/align][align=center]图5 亚麻荠种子总多酚含量测定的标准曲线[/align][b][b]3.3.2含量测定结果[/b][/b]在单因素实验得出最佳提取工艺条件后,对不同产地的三组样品进行3次重复实验,总多酚提取得率如表3,青海产地的亚麻荠种子中总多酚含量为2.05mg/g,汤阴产地的亚麻荠种子中总多酚含量为1.86mg/g,甘肃产地的亚麻荠种子中总多酚含量为2.66mg/g。因此,通过单因素试实验得到的最佳提取工艺条件比较稳定,具有良好的可重复操作性。[align=center]表2 总多酚含量测定结果[/align][align=center][img=,589,155]https://ng1.17img.cn/bbsfiles/images/2019/09/201909101741237654_3695_1858223_3.jpg!w589x155.jpg[/img][/align][b]4. 结论[/b] 本实验研究结果表明,考察不同因素,最后选择75%丙酮,60℃超声3h为最佳条件,甘肃产地的亚麻荠种子的总多酚含量最高,达2.66mg/g;青海产地的亚麻荠种子的总多酚含量次之,为2.05mg/g;汤阴产地的亚麻荠种子的总多酚含量在三者之中最低,仅有1.86mg/g。但总体来说,这三个产地的亚麻荠多酚含量都比较高。[b]参考文献[/b]邓曙东,张青文. 亚麻荠种植和利用的研究现状. 植物学通报,2004,(03):376-382.邓乾春,黄凤洪,黄庆德,谢笔钧,钮琰星,万楚筠,刘昌盛.一种高利用价值油料作物-亚麻荠的研究进展.中国油料作物学报,2009,31(04):551-559.Abram oviH, Abram V. Phys ico-chem ical properties,composition and oxidative stab ility of Cam elina sa tivaoil. Food Technology and B iotechnology, 2005, 43:63- 70. Pietta PG. Flavonoids as antiox idants . Journal of Natural Products, 2000, 63: 1 035- 1 042. 宋立江, 狄莹, 石碧. 植物多酚研究与利用的意义及发展趋势. 化学进展, 2000, 12(2):161.尹志娜.植物多酚分离提取方法和生物功能研究进展.生命科学仪器,2010,8(6):43-49.裘爱泳, 刘军海, 张海晖. 植物多酚提取和应用. 粮食与油脂, 2003(6):10-11.Helena A, Bojan B, Vojko N. Changes occurring in phenolic content , tocopherol composition and oxidative stab ility of Cam elina sativa oil during storage . Food Chemistry, 2007, 104: 903- 909.李巨秀,李利霞,曾王旻,袁尚瑞.燕麦多酚化合物提取工艺及抗氧化活性的研究.中国食品学报,2010,10(05):14-21.黄雅,陈华国,周欣,巫兴东,胡恩明,蒋政萌,李洪德.黔产接骨草中总多酚的含量测定及抗氧化活性研究.天然产物研究与开发,2017,29(02):255-263.李焘,屈新运,王喆之.菘蓝种子总多酚提取工艺的优化及抗氧化活性研究.中成药,2011,33(11):1895-1900.汪洪涛,陈成,余芳,李小华,杨爱萍.紫叶李果实总多酚的提取工艺及其抗氧化活性研究.河南农业科学,2013,42(10):153-156.

  • 【原创大赛】测定大麦、小麦种子纯度

    测定大麦、小麦种子纯度 (参考) A1 原理 从种子中提取的醇溶蛋白在凝胶的分子筛效应和电泳分离的电荷效应组成作用下得到良好的分离,通过显色显示蛋白质谱带类型。不同品种由于遗传不同,种子内所含的蛋白质种类有差异,这种差异可利用电泳图谱加以鉴别,从而对品种真实性和纯度进行鉴定。 A2 仪器和试剂 A2.1 仪器 电泳仪(满足稳压500V),离心机,垂直板电泳槽,钳子,5mL、10mL移液管,微量进样器,聚丙烯离心管。 A2.2 试剂 尿素、乙醇、甘氨酸、甲基绿、三氯乙酸、冰乙酸、过氧化氢、硫酸亚铁、抗坏血酸、α-巯基乙醇、丙烯酰胺、考马斯亮蓝R-250,甲叉双丙烯酰胺、α-氯乙醇。 A3 程序 A3.1 药剂配制 A3.1.1 蛋白质提取液 小麦:0.05g甲基绿溶于25mLα-氯乙醇中,加蒸馏水至100mL。低温保存。 大麦:0.05g甲基绿溶于20mLα-氯乙醇中,加入18g尿素,再加入1mLα-巯基乙醇,加蒸馏水至100mL。低温保存。 A3.1.2 电极缓冲液 0.4g甘氨酸加蒸馏水溶解,加4mL冰乙酸,加蒸馏水至1000mL。低温保存。 A3.1.3 凝胶缓冲液 1.0g甘氨酸加蒸馏水溶解,加入20mL冰乙酸,定容至1000mL。低温保存。 A3.1.4 0.6%过氧化氢 30%过氧化氢2mL加蒸馏水定容至100mL。低温保存。 A3.1.5 染色液 0.25g考马斯亮蓝加25mL无水乙醇溶解,加入50g三氯乙酸,加水至500mL。 A3.1.6 凝胶液 丙烯酰胺20g,甲叉双丙烯酰胺0.8g,尿素12g,硫酸亚铁0.01g,抗坏血酸0.2g,用凝胶缓冲液溶解并定容至200mL。低温保存。 A3.2 样品提取 一般每个样品测定100粒种子,若更准确地估测品种纯度,则需更多的种子。如果分析结果要与某一纯度标准值比较,可采用顺次测定法(sequential testing)来确定,即50粒作为一组,必要时可连续测定数组,以减少工作量。如果只鉴定真实性,可用50粒。 取小麦或大麦种子,用钳子逐粒夹碎(夹种子时,最好垫上小片清洁的纸,以便于清理钳头和防止样品之间的污染),置1.5mL离心管中,加入蛋白质提取液(小麦0.2mL,大麦0.3mL),充分摇动混合,在室温下提取24h,然后在18000×g条件下离心15min。取其上清液用于电泳。 A3.3 凝胶制备 从冰箱中取出凝胶溶液和过氧化氢溶液,吸取10mL凝胶溶液,加1滴0.6%过氧化氢,摇匀后迅速倒入封口处,稍加晃动,使整条缝口充满胶液,让其在5-10min聚合封好。 吸取45mL凝胶溶液,加3滴0.6%过氧化氢,迅速摇匀,倒入凝胶板之间,马上插好样品梳,让其在5-10min内聚合。 A3.4 进样 小心抽出样品梳,将玻璃板夹在电泳槽上,用滤纸或注射器吸去样品槽中多余的水分,然后用微量进样器吸取10-20μL样品加入样品槽中。 A3.5 电泳 在前后槽注入电极液,前槽接正极,后槽接负极。然后打开电源,逐渐将电压增加到500V。电泳时,要求在15-20℃温度下进行。电泳时间一般为60-80min,具体时间可按甲基绿迁移时间来推算,电泳时间为甲基绿移至前沿所需时间的2-2.5倍。 A3.6 染色 将胶板小心地取下,在染色液中染色1-2

  • 酸枣仁是种子类的药

    酸枣仁是种子类的药,具有一定的甘润滋养作用,还带着一点酸味。中医讲酸味入肝,它可以养肝补肝血,让肝把魂给收摄住。同时,酸枣仁颜色红红的,红色入心,还能补心血,心血充足,心不慌乱有利于睡眠。另外,酸枣仁当中所含有的皂苷有镇静催眠的作用,心脏、肝脏都舒服,自然睡得香。

  • 几种林木浸提液对小麦籽粒发芽的影响

    40 g/L。关键词:植物源,抑制效应,小麦,穗发芽引言水稻、小麦、玉米、大麦、油菜等作物在收获季节如遇连阴雨,在田间植株穗上发芽,这种现象称为穗发芽。作物种子穗发芽是世界性灾害。在我国的长江中下游、西南、黄淮冬麦区和东北春麦区小麦穗发芽频繁发生,近年来,北部冬麦区也遭受了严重的危害。小麦穗发芽因α-淀粉酶活性上升,促使籽粒淀粉降解,造成籽粒品质劣化,同时蛋白酶的水解活动使蛋白酶降解为麦谷朊和小分子氨基酸,从而导致筋力下降。防治小麦种子穗发芽,最经济有效的途径就是选育和种植抗穗发芽品种。在目前白皮小麦品种抗穗发芽能力普遍较弱的情况下,化控成为防治小麦穗发芽的另一途径,具有简便、快速而有效的优点。我国防治小麦穗发芽已利用的一些生长延缓剂、激素类药剂,又成本过高,对人体健康危害严重。据研究,种子发芽抑制物质广泛存在于一些天然植物中,尤其在某些林木种子中含量丰富,其种类非常多,作用迅速,而且许多发芽抑制物质对抑制种子萌发无专一性,因此,可以从休眠期长,发芽抑制物质含量高的林木种子、果实或枝叶中提取抑制物质来防治小麦籽粒发芽。本研究在广泛筛选的基础上,以来源充足,含水杨酸(SA)等有效抑制成分且提取简便的几种林木枝叶为原料,分别研究其浸提液对小麦籽粒发芽的抑制效应,以期筛选出安全有效的小麦籽粒发芽抑制剂,为防治小麦穗发芽以及做到安全使用提供理论依据。1 材料和方法1.1 试验材料在广泛筛选的基础上,选择杨树、柳树等含水杨酸(SA)等抑制成分较为丰富的五种常见林木枝叶YS,LS,TS,DX和SL为提取植物源种子萌发抑制剂的天然材料。以当年收获,保存良好的小麦种子(偃师4110、矮抗58)为试验用种。1.2 试验方法1.2.1林木枝叶浸提液的提取 将采集的五种常见林木的新鲜枝叶用电子天平(JA5002)分别称取10 g,放入温度设定为75℃的电热恒温培养箱(DHP-420型),烘干3 h左右,待干物质重量不再随烘干时间而发生变化为止,再用电子天平称量各材料的干物质重,计算出各种材料的含水量。  根据各种材料的含水量,折算出配制200 mL浓度为280 g/L的母液所需要的各材料鲜重,用电子天平称取。  将称好的新鲜材料放入铝锅中,加入1 L自来水,置于电炉上进行煎煮浓缩(约4 h),直至浓缩到200 mL,彻底取出浸提液,以备用。1.2.2处理液浓度的配制 用各材料的浸提液母液稀释配制成280 g/L,200 g/L,120 g/L和40 g/L四个浓度梯度。1.2.3小麦籽粒发芽抑制效应鉴定 取保存良好的当年收获的小麦种子(偃师4110、矮抗58),精选籽粒饱满、大小均匀、无病虫害、胚部无损伤的小麦种子,先放入1%的NaCl O溶液中消毒30 min,然后用蒸馏水反复冲洗。将消过毒的小麦种子用蒸馏水浸泡12 h,然后将种子放入事先准备好的4个浓度梯度下的各处理液中浸泡12 h,CK则继续在蒸馏水中浸泡12 h。  将种子从各处理液中取出,将其腹沟向下置于垫有单层湿润滤纸的培养皿中,每个培养皿排放50粒种子,每个处理一个重复。培养皿放入设定为26℃的电热恒温培养箱中培养,每天定时补充水分,使培养皿中的滤纸保持湿润。每隔12 h观察一次并记录萌动和发芽种子数,3 d后每天观察记录一次,直到第7 d,以胚部破裂露白为萌动,以胚芽鞘达种子长度一半时为发芽。3d后根据发芽的籽粒数目计算发芽势,7 d后根据发芽的籽粒数目计算发芽率。1.2.4试验统计方法和计算公式 方差分析和相关分析采用SAS6.12统计软件和Excel2003数据处理软件。发芽抑制率(%)=(对照-处理)/对照×100 …………………………… (1)发芽势(%)=第3d发芽籽粒数/籽粒总数×100 ………………………… (2)发芽率(%)=第7d发芽籽粒数/籽粒总数×100 ………………………… (3)2 结果与分析2.1 各材料浸提母液不同时间段对小麦籽粒发芽的抑制效应表1 各材料浸提母液不同时间段对小麦籽粒发芽的影响 指  标 发芽观察时间(h)/(d) 12h 24h 36h 48h 60h 3d 4d 5d 6d 7d 萌动率(%)    处理 CK M3 M2 M5 M4 M184 97A 97aA 99A 99aA 100aA 100aA 100aA 100aA 100aA 5 40B 83bB 88B 92bA 92bA 93bA 93bA 93bA 93bA 0 9C 15cC 21C 24cB 28cB 30cB 38cB 57cB 69cB 0 5C 12cC 18C 22cdB 25cdB 28cdB 37cB 49dB 62dB 0 3C 6dD 16C 17dB 21dB 23dB 33cB 38eC 42eC 0 0D 0eD 0D 0eC 2eC 3eC 3dC 3fD 3fD 发芽率(%)    处理 CK M3 M2 M5 M4 M1 0 93 96 97A 99A 100aA 100A 100A 100aA 100A 0 0 2 20B 77B 88bB 91B 91B 91bB 91B 0 0 2 10C 17C 24cC 29C 37C 55cC 61C 0 0 1 10C 17C 19cdC 25C 32C 46dC 58C 0 0 0 9C 12C 17dC 22C 31C 33eD 36D 0 0 0 0D 0D 1eD 2D 3D 3fE 3E  注:1.小写字母表示0.05水平下的差异显著性,不同字母间表示差异显著;大写字母表示0.01水平下的差异显著性,不同字母间表示差异极显著。(下同) 2.表中各数值均为两个重复的平均值。(下同)从表1中可以看出,除了培养12 h时的发芽率各处理均为0外,其余观察时间各材料浸提液母液的萌动率和发芽率均低于CK,且随时间的延长而升高,特别是M3萌动率和发芽率随时间延长增长最为明显,其萌动率在24 ~36 h之间由40%迅速增加到83%,发芽率在48~60 h之间由20%迅速增加到77%。M2,M5和M4的萌动率和发芽率在6d前随时间的延长增加平稳,在6 d时M2和M5突增并与M4差异显著,M4则增加基本稳定。M1随时间延长其萌动率和发芽率变化不大。经方差分析可知,除培养12 h时的发芽率各处理均为0,其余观察时间各材料浸提液母液的萌动率和发芽率均与CK差异显著;M5和M4在5d前萌动率和发芽率差异不显著;从整个观察时间的结果来看,可以将各材料的萌动率和发芽率大致分为M1一个,M4、M5和M2一个,M3一个3个水平;48 h以后,M1的萌动率和发芽率均与CK和其它处理差异极显著,72 h时种子萌动率仅为2

  • 【分享】基础知识--中子

    中子(neutron)是组成原子核的核子之一。中子是1932年B.查德威克用a粒子轰击的实验中发现,并根据E. 卢瑟福的建议命名的。中子的质量与质子的质量大约相等,并且中子与γ射线一样也不带电. 因此,中子与原子核或电子之间没有静电作用. 当中子与物质相互作用时,主要是和原子核内的核力相互作用, 与外壳层的电子不会发生作用. 中子与物质相互作用的类型主要取决于中子的能量.在辐射防护中,根据中子能量的高低,可以把中子分为慢中子(能量小于5 kev,其中能量为0.025ev 的称为热中子), 中能中子(其能量范围为5-100 kev), 和快中子(0.1-500Mev)3种. 中子与物质的原子核相互作用过程基本上可以分为两类:散射和吸收.散射又可以分为弹性散射和非弹性散射.慢中子与原子核作用的主要形式是吸收.中能中子和快中子与物质作用的主要形式是弹性散射.对于能量大于10Mev的快中子.以非弹性散射为主.在上述的中子和物质的相互作用过程中,除了弹性散射之外,其余各种现象均会产生次级辐射.从辐射防护的观点来看,是相当重要的.在实际工作中,大多数情况遇到的是快中子,快中子与轻物质发生弹性散射时,损失的能量要比与重物质作用时多得多,例如,当快中子与氢核碰撞时,交给反冲质子的能量可以达到中子能量的一半.因此含氢多的物质,像水和石蜡等均是屏蔽中子的最好材料,同时水和石蜡,由于价格低廉,容易获得,效果又好,是最常用的中子屏蔽材料. 石蜡能隔阻中子[flash]http://ng1.17img.cn/bbsfiles/images/2017/10/2009814235022_01_0_3.swf[/flash]

  • 便携式中子剂量仪 中子剂量当量率仪

    便携式中子剂量仪 中子剂量当量率仪

    RAM-800 中子剂量当量率仪采用高灵敏的进口He3管作为探测器,反应速度快。该便携式中子剂量仪使用方便;灵敏度高、抗γ性能好、能量响应特性好,即可用作便携式仪器又可用作固定式中子剂量监测仪。此外便携式中子剂量仪通过配套的RenRiNeutron中子剂量率管理软件可将存储的数据读出后分析。该[url=http://www.zgfangfuyuan.com/product/szjcly/167.html]便携式中子剂量仪[/url]适用于环保、化工、石油、医疗、进出口商检、核电、加速器、中子源和其他安检、边境控制、海关检测等需进行中子辐射检测的场合。[img=中子剂量仪,660,550]http://ng1.17img.cn/bbsfiles/images/2016/07/201607061132_599440_3098478_3.jpg[/img]功能特点:1、中子剂量率,中子累积剂量均可测量。2、高灵敏度,宽测量范围,良好的能量响应特性。3、数字及标尺显示剂量率状态。4、中、英文双语菜单式操作界面。5、数字式LCD液晶显示,高亮背光功能。6、可存储800条剂量率,能随时查看,断电不丢失。7、USB数据接口,可将数据上传到计算机。8、剂量率超阈值后声、光报警功能。9、超阈值报警、阻塞报警、探测器故障报警功能。10、电池电量实时显示。11、标配:RenRiNeutron中子剂量率管理软件。技术规格: 1、测量类型:中子射线2、探测器: 进口3He正比计数管3、中子测量范围:剂量率:0.1μSv/h ~100mSv/h累积剂量:0.01μSv ~10Sv4、能量范围:中子0.025eV~16MeV5、慢化材料:聚乙烯球6、角响应:±20%7、测量时间:1~120秒可编程设置8、中子灵敏度:大约 1.4 CPS/μSv/h9、伽玛灵敏度:对伽玛射线不灵敏(相对Co-60 的100mSv/h的伽玛射线内)11、报 警 阈: 0.25、2.5、10、20(μSv/h)或自行设置12、显示单位: 剂 量 率:μSv/h、μGy/h、μR/h;累计剂量:nSv;计数率:CPS13、通讯:USB通讯接口,仪器可存储800条数据,并可导出到RenRiNeutron软件14、使用环境:温度-15℃~+50℃、相对湿度(在40℃温度下)≤95%15、电源和功耗:2节标准1号电池(或充电电池)整机耗电≤120mW 16、重量和尺寸:约 300×250×245 (mm)、约7.8Kg17、RenRiNeutron中子剂量率管理软件提供文字表格、曲线图形显示联系人:张经理 13720045883相关内容:http://www.zgfangfuyuan.com/product/szjcly/167.html相关内容:http://www.fsybyq.com/product/zzjcy/167.html

  • 哈尔滨截获115千克美国转基因玉米种子邮件。

    东北网5月18日讯日前,哈尔滨出入境检验检疫局在入境邮件中截获21箱来自美国的玉米种子,共计115千克,检测后发现其为转基因种子,这是黑龙江省检验检疫系统首次截获含有转基因成分的入境玉米种子。这些玉米种子将被销毁。由于美国是玉米细菌性枯萎病疫区,我国禁止美国玉米种子进口。上述玉米种子发自美国同一家公司,分别邮向省内两家种业公司。按照我国相关规定,从境外引进所有安全等级的农业转基因生物,引进单位或境外公司均应向相关部门提出申请。但本批玉米种子未获得相关安全证书和批准文件。据检验检疫相关负责人介绍,未经风险评估和审批引入含有转基因成分,有害生物随之传入的可能性极大,如果控制不严,将会对黑龙江省农业生产和人民群众身体健康构成重大威胁。不知道相关种子公司买美国的转基因玉米种子干什么,想在国内引种?国内难道培养不出好玉米种?还是外国的月亮就是圆?

  • 中子射线:稍微懂点“内功”

    福岛核事故以来,相信大家对电离辐射的概念不再陌生。大师兄α射线,是带有2个质子和2个中子的氦核,二师兄β射线,是高速运动的电子,三师兄γ射线,是一种高能光子,四师兄X射线,是一种比γ射线能量低一些的高能光子。除此之外,还有一个名气不大,本事不小的小师弟,他就是中子射线。中子射线之所以排在四位师兄的后面,因为出场的机会较少。α、β和γ常常产生于天然放射性衰变中,X射线也常常与医学检查联系在一起。除此之外,工业生产当中也时不时地会遇到这几位的身影。相比之下,中子射线就没那么常见了。只有极少数放射性元素衰变时会放出中子,个别原子序数较大的天然放射性元素也会自发裂变释放出中子。为了得到大量的中子射线,往往要用一种粒子去轰击原子核。例如,用α射线轰击铍-9,会生成碳-12和中子。因此,日常生活中接触到中子射线的机会要比其他射线小得多。由于宇宙射线的影响,在海平面附近,中子的通量密度约为60中子/平方厘米·小时,这代表平均1平方厘米的面积上一个小时之内会通过大约60个中子。而在3km的高空,这个数值就增加到了600中子/平方厘米·小时。相比之下,体重70公斤的成人体内每秒钟有约4300个钾-40原子发生衰变,释放β或γ射线,假设人体的横截面是500平方厘米,宇宙射线全部来自竖直方向的话,那么每秒钟穿过人体的中子数约为8.3~83个,还不及钾-40衰变的零头,完全不需担心。 微妙的平衡中子虽然是小师弟,但他还懂一点儿师兄们都不擅长的"内功",那就是把某些本来没有放射性的化学元素变成它的放射性同位素,叫做中子活化(neutron activation)。我们知道,化学元素的原子核由质子和中子组成。在强相互作用、弱相互作用和电磁相互作用的明争暗斗之下,原子核的“砖块”之间保持着一种微妙的平衡。此时,如果原子核俘获了一个外来的中子,三种相互作用的比例就会发生变化,微妙的平衡也许就不复存在,原子核的大厦变得摇摇欲坠,随时可能土崩瓦解——这就形成了该元素的放射性同位素。中子射线的师兄们也有类似的本领。不过要么是它们的穿透性比中子弱,不能深入物体内部;要么需要很高的能量,天然放射性元素释放的能量通常没这个高;要么与原子核发生反应的概率比中子的小几个数量级,所以放射剂量学的文献通常不考虑它们的“活化反应”。那么,中子射线相对擅长的本领要不要考虑呢?看一个真实的案例就知道了中子射线的真实案例由于天然的放射性元素衰变时极少释放中子,因此,一般人受到大剂量中子射线影响的唯一可能便是核武器和临界核事故了。在核爆炸的最初十几秒中,会释放出大量γ射线和中子射线。1999年,发生在日本JCO公司某燃料厂的临界事故,也释放出了大量γ射线和中子射线,造成2人死亡,留下了惨痛的教训。在日本JCO公司的这次事故中,共有三名操作员受到了致命剂量的辐射,其中A为16~20Gy,B为6~10Gy,C为1~4.5Gy,与之相对的是,人们平均一年所受到的所有辐射的剂量当量为1~10mSv。Gy(戈瑞)表示吸收剂量,1Gy等于1焦耳每千克。如果换算成衡量辐射的生物学效应的剂量当量,Sv(希沃特),还要乘以一个比例因子。对α粒子来说,这个因子是20,对中子来说,这个因子在5~20之间,对β和γ射线来说,这个因子是1。 JCO事故中,患者A的尿液所含的放射性元素的能谱,样品96ml,计数时间为20000秒由于中子射线活化了人体内的化学元素,它们还带上了一定程度的放射性。日本放射科学国家研究所的一篇论文写道,研究人员对受害者血液、尿液和呕吐物进行检测,得到三位受害者体内的钠-24的放射性衰变活度约为每秒1百万~9百万次衰变(8.7MBq,4.0MBq,1.2MBq)。自然界中钠-23的丰度为100%,因此受害者体内的钠-24一定是在核事故中产生的。我们根据文献中的“放射性药物单位给药量的有效剂量”做一个大概的估计,这些钠-24将给受害者造成额外的0.4~2.8mSv的照射,大约相当于做了一次CT检查。因此通常的放射性计量学文献也很少提到中子射线的活化反应。人体的化学元素组成按照重量排,依次是氧、碳、氢、氮、钙、磷、硫、钾、钠、氯、镁等等。除此之外,还有一些不超过人体重量0.4%的微量元素。这些化学元素中的大部分并没有天然放射性;即使其中一些元素俘获了一个中子,要么新产生原子核很稳定,没有天然放射性,要么它的半衰期非常长,对人体的影响可以忽略。要么衰变时不发出、或很少发出γ射线,不易探测。因此,JCO核事故中,从受害者样本中检测到的被中子活化的放射性元素主要有放出γ射线的钠-24、钾-42和溴-82。表一:人体的化学元素组成(按照重量排) 氧 碳 氢 氮 钙 磷 硫 钾 钠 氯 镁 61% 23% 10% 2.6% 1.4% 1.0% 0.20% 0.20% 0.14% 0.12% 0.027%中子射线与食品安全中子射线会不会对我们的食品安全造成影响呢?笔者查询了许多文献,搜索了各种关键词的组合,都没有找到相关话题的讨论。从理论上讲,食品当中的化学元素的确有可能被中子射线活化,从而带有额外的放射性。但讨论这个问题实在有点儿杞人忧天——自然界单位时间的中子通量密度约为60中子/平方厘米·小时,而JCO事故中,受害者遭受的中子通量密度约为5700亿中子/平方厘米,相当于自然情况下100万年的总和。因此,不需要估算吸收剂量,我们就能确定完全不需要考虑日常生活中中子射线的影响。况且,在核事故中,中子射线主要产生在堆芯附近;而食品安全主要讨论的是周围几十公里的区域。在这种时候(即使受到了核武器攻击),对食品安全影响最大的应该是放射性物质的沉降——如果随风飘散的放射性物质都没有影响到食品安全,那么直线运动的,经过防护罩重重阻隔所泄露出来的中子射线(造成的活化)就更加不需要考虑了。这是由于资料匮乏,笔者得出的个人想法。相比α、β、γ和X射线,中子射线的确是个不容小瞧的角色。不过在日常生活中,中子射线对人的负面影响微乎其微,完全不需要考虑。许多工业技术、科学研究和医疗手段都要依赖中子射线、或中子活化所产生的放射性同位素。它就像其它几位师兄一样,已经成为人类生活的重要组成部分。不知不觉之间,它就在改变你的生活。

  • 煤的中子瞬发伽玛能谱分析

    煤的中子瞬发伽玛能谱分析   20世纪90年代初,我国某大型钢铁公司为正在建设中的京九铁路生产的一批钢轨,由于硫含量超标而全部退货,损失很大。因为硫含量超标的钢发脆,用在铁路上可能会造成重大事故。  钢中硫含量为什么超标呢?问题出在进入炼焦炉的煤的质量上。煤中硫含量如果超过千分之一,所炼出的焦炭硫含量也就超标。用这样的焦炭炼出的钢也就不会合格了。  要保证钢轨质量,就必须对炼焦所用煤的质量严格把关。  煤中硫含量是可以用化学方法分析测定的。可惜,化学分析太慢,该钢铁公司每天炼焦所用煤要装500节火车厢运来。要对每节车厢的煤作化学分析,来不及。因此,大型钢铁企业很需要建立煤质快速分析方法。  20世纪末,煤质快速分析方法在更大范围内提上了日程。环保要求,大型热电厂所用燃料煤中的硫含量要小于千分之五,否则城市空气中的二氧化硫含量就要超标。  生活在北京市西南远郊区的人们不难发现,近几年来,每天晚上都有许多运煤大卡车在公路上迅跑。原来因为房山区磁家务煤矿产的煤含硫量极低,但发热量差些。将这样的煤与其他煤矿产的含硫量偏高的煤混合使用,就可达到含硫小于千分之五的环境保要求。  北京每天空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量报告表明,近来三级(轻微污染)或使空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量更坏的罪魁祸首大多是“可吸入颗粒物”。二氧化硫含量经常是优良的一、二级,只有极少数日子才是三级。这其中就有发电厂用低硫煤的贡献。  我国现有600多个市(包括县级市),其中大多数靠燃煤的热电厂供电。这些热电厂大多需要陆续安装煤质快速分析装置以达到环保要求。这是我国特有的国情,因为我国是燃煤大国。发达国家大多烧石油。  发达国家的大型铝厂、大型水泥厂、钢厂等近年来用中子瞬发伽玛能谱仪在生产流水线上对原料的元素成分作在线分析以保证产品的质量,同时也可用于煤质分析。  中子瞬发伽玛能谱仪由中子源、伽玛射线能谱仪、物料传送系统、射线屏蔽准直系统、控制与剂量安全系统等部分组成。其基本原理是,中子与物料中的各种元素的原子核作用,使原子核处于激发状态。这些激发态的寿命很短,即刻发射出特征伽玛射线。不同类的原子核发出来不同能量的伽玛射线。特征伽玛射线的强度与物料中该种原子核的含量成正比。这与光谱分析相仿,不同元素的原子发射出不同能量(波长)的光。两者差别只是发出光子的能量不同,光谱分析的可见光子能量只有几电了伏,而伽玛光子的能量是兆电子伏左右。再就是激发方式不同,光谱分析的激发源是加热燃烧,伽玛能谱分析的激发源是中子。  为什么用中子去轰击物质呢?因为物料是大块物质,用中子才能穿透到大块物质的深部。  瞬发伽玛能谱分析所用中子源有二类。一是锎-252自发裂变源。锎-252是人造的,原子序数高达98。它会自动分裂成两个较轻的原子核,同时放出3个中子。它的半衰期是2.64年,即10000个锎-252原子核经2.64年后就只剩5000个了。锎自发裂变中子的平均能量是2.4兆电子伏。另一类是中子管。中子管是小型的真空密封式加速器。由一个质子与一个中子组成的氘原子核加速到10万电子伏左右,打到由一个质子与二个中子组成的氚原子核上。氘氚核反应变成一个中子与一个氦核。中子的能量是14兆电子伏。  锎源发出的中子与煤中各种原子核碰撞后损失能量(这一过程叫做慢化),很快就成为能量只有0.0253电子伏左右的热中子。所谓“热” 中子,就是其速度与周围物质的气体分子运动速度平衡的中子。室温时,其速度是2200米/秒。热中子在物质中扩散,然后被某原子核俘获吸收。中子从产生到被吸收的时间一般是数百毫秒。热中子被原子核吸收后立刻又发射出特征伽玛射线。这种伽玛射线叫做俘获伽玛射线,打到伽玛谱仪的探测器上就被记录下来。从中子的产生到俘获伽玛射线的产生不到1秒的时间,所以叫做“瞬发伽玛”。  锎源的中子能量不高,较易屏蔽,而且运行维护简单。用锎源的瞬发伽玛分析装置可以测得煤中的硫含量与灰分含量。关于灰分,仪器直接测得的是钙、硅、镁、铁等元素的含量,再按其各自的氧化物计算,即得到灰分含量,因为灰分就是这些氧化物的总和。  由于氧和碳的热中子俘获概率极低,用此方法测不到煤中氧和碳的总量。氢的热中子俘获概率较高,容易测到其俘获伽玛(2.2兆电子伏),但由于通常用石蜡、聚乙烯或水作屏蔽物质,周围物质产生的氢俘获伽玛本底太强,很难测准煤中氢的贡献,因而得不到煤中的水含量。要测水含量还要加别的装置。  近年来开展起来用用中子管作源的瞬发伽玛谱仪系统,除了利用中子慢化后产生的俘获伽玛测定硫和灰分含量以外,还可以直接测得煤中碳与氧的总量,因为14兆电子伏的快中子可以与碳和氧核发生非弹性碰撞,使碳和氧核分别激发到4.43与6.13兆电子伏的激发态,并迅速退激发到基态而发射出4.43与6.13兆电子伏的特征伽玛射线。总碳量决定了煤的发热量,而总氧量减去灰分中的氧量就是煤中水的含氧量,由此可以得到煤中含水量。  用中子管比之用锎源的优点是可以得到煤质的更全面的数据。缺点是14兆电子伏的中子的屏蔽准直装置比较庞大,运行维护复杂,所用中子管必需是长寿命的优质品,所用探测器也需有较强的抗辐照损伤的能力。  我国南京某单位于20世纪90年代中期,与国外同期独立开发了用锎源的瞬发伽玛能谱分析系统,分析钢厂的煤,对硫含量与灰分含量的测定达到了使用要求,但未能完成煤中水分测定。  20世纪90年代后期至今,南京另一单位进行了电厂用煤的中子管瞬发伽玛分析系统开发研究,并在此基础上与法国某公司合作开发研究,并在此基础上与法国某公司合作开发实用装置。  21世纪初,长春某单位又用其自制中子管开发出电厂用煤的瞬发伽玛分析系统,正在电厂试用。  由当前市场需求推动的中子瞬发伽玛能谱分析装置必将在我国生根、开花,结出丰硕成果,为经济建设和环保作出应用的贡献。

  • 植物种子脂肪酸测定

    各位专家好!植物种子脂肪酸测定,硫酸甲醇法,请问测的是种子中游离脂肪酸吗?多谢多谢!!

  • 【资料】果蔬及种子中环酰菌胺de检测方法

    1.分析目标化合物 环酰菌胺 2.仪器[url=http://www.china12315.com.cn/product/]设备[/url] 带紫外分光光度[url=http://www.china12315.com.cn/ksjc/]检测[/url]器的高效液相色谱仪和液相色谱--质谱仪。 3.试剂 使用附录2所列试剂。 4.[url=http://www.china12315.com.cn/spbz/library/]标准[/url]品 环酰菌胺:含环酰菌胺98%以上,熔点为153℃。 5.试验溶液的制备 a 提取方法 ① 种子 将样品粉碎,过420μm标准网筛后,称取其10.0g,加入20mL 10%磷酸溶液,放置2小时。 加入100mL丙酮,搅拌3分钟后,用涂布1cm厚硅藻土滤纸抽滤到磨口减压浓缩器中。取出滤纸上的残留物,加入50mL丙酮,搅拌3分钟后,按上述同样操作,合并滤液于减压浓缩器中,40℃以下浓缩至约30mL。 将其转移到预先加有100mL 5%氯化钠溶液的300mL分液漏斗中。用100mL乙酸乙酯洗涤上述减压浓缩器的茄型瓶,合并洗液于上述分液漏斗中。用振荡器激烈振荡5分钟后,静置,乙酸乙酯层移入300mL三角瓶中。水层中加入50mL乙酸乙酯,按上述同样操作,合并乙酸乙酯层于上述三角瓶中。加入适量无水硫酸钠,不时振荡、混合,放置15分钟后,滤入磨口减压浓缩瓶中。再用20mL乙酸乙酯洗涤三角瓶,以此洗液洗涤滤纸上的残留物,重复操作两次。合并两洗液于减压浓缩瓶中。40℃以下除去乙酸乙酯。 残留物中加入30mL正己烷,转移到100mL分液漏斗中。加入30mL正己烷饱和乙腈,用振荡器激烈振荡5分钟后,静置,乙腈层移入磨口减压浓缩器中。正己烷层中再加入30mL正己烷饱和乙腈,按上述同样操作,重复操作2次,合并乙腈层于减压浓缩器中。40℃以下除去乙腈。残留物中加入乙酸乙酯:正己烷(3:17)混合溶液溶解,准确至1mL。 ② 水果和蔬菜 准确称取约1kg样品,必要时定量加入适量水,搅碎混合均匀后,称取相当于20.0g样品的量。 加入30mL10%磷酸溶液和100mL丙酮,搅拌3分钟后,用涂布1cm厚硅藻土滤纸抽滤到磨口减压浓缩器中。取出滤纸上的残留物,加入50mL丙酮,搅拌3分钟后,按上述同样操作,合并滤液于减压浓缩器中,40℃以下浓缩至约30mL。 将其转移到预先加有100mL10%氯化钠溶液的300mL分液漏斗中。用100mL乙酸乙酯洗涤上述减压浓缩器的茄型瓶,合并洗液于上述分液漏斗中。用振荡器激烈振荡5分钟后,静置,乙酸乙酯层移入300mL三角瓶中。水层中加入50mL乙酸乙酯,按上述同样操作,合并乙酸乙酯层与上述三角瓶中。加入适量无水硫酸钠,不时振荡、混合,放置15分钟后,滤于磨口减压浓缩瓶中。再用20mL乙酸乙酯洗涤三角瓶,以此洗液洗涤滤纸上的残留物,重复操作两次。合并两洗液于减压浓缩瓶中。40℃以下除去乙酸乙酯。残留物中加入乙酸乙酯:正己烷(3:17)混合溶液溶解,准确至2mL。 b 净化方法 [url=http://www.china12315.com.cn/zt/yyjk_bxxa.shtml]丙烯酰胺[/url]共聚物结合丙三基甲硅烷基化硅胶小柱(360mg)中注入10mL丙酮,弃去流出液。再注入10mL正己烷,弃去流出液。柱中注入0.5mL a 提取方法所得的溶液后,注入10mL乙酸乙酯:正己烷(3:17)混合溶液,弃去流出液。再注入10mL丙酮:正己烷(1:1)混合溶液,收集流出液于磨口减压浓缩器中,40℃以下除去丙酮与正己烷。残留物中加入乙腈溶解,准确至0.5mL,此为试验溶液。 6.测定方法 a 定性试验 按下列操作条件进行试验。试验结果应与标准品的一致。 操作条件 柱填充剂:十八烷基甲硅烷基化硅胶(粒径5μm)。 柱:内径4.6mm,长150~250mm的不锈钢管。 柱温:50℃。 检测器:波长289nm。 流动相:乙腈:0.4%磷酸二氢钠溶液(1:1)的混合溶液。调整流速使环酰菌胺约12分钟流出。 b 定量试验 根据与a 定性试验相同操作条件所得的试验结果,峰高法或峰面积法进行定量。 c 确证试验 按照a 定性试验相同的操作条件,用液相色谱--质谱仪测定。试验结果应与标准品的一致。另外,必要时用峰高法或峰面积法进行定量。 7.定量限 0.01mg/kg。 8.注意事项 必须在小于pH3 的条件下进行提取。另外,进行确证试验时,可以采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]--质谱法。

  • 【求助】请教水酶法提取种子油脂的细节问题

    最近本人在查阅关于水酶法提取种子中油脂的文献时,发现加酶的方法一种是按照酶的体积与物料质量的比加入,另一种是酶的质量与物料质量进行加入的。因为酶的价格不菲,所以本人为了谨慎,特来坛子里问问各位做油脂的坛友们应当如何加入,请不吝赐教。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制