当前位置: 仪器信息网 > 行业主题 > >

反射光电传感器

仪器信息网反射光电传感器专题为您提供2024年最新反射光电传感器价格报价、厂家品牌的相关信息, 包括反射光电传感器参数、型号等,不管是国产,还是进口品牌的反射光电传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合反射光电传感器相关的耗材配件、试剂标物,还有反射光电传感器相关的最新资讯、资料,以及反射光电传感器相关的解决方案。

反射光电传感器相关的资讯

  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • 基于步进扫描的光调制反射光谱方法及装置获国家专利授权
    近日,一种“基于步进扫描的光调制反射光谱方法及装置”近日获得国家知识产权局专利授权。该专利由中科院上海技术物理研究所邵军、陆卫等科研人员发明。该装置包括傅立叶变换红外光谱测量系统、作为泵浦光源的激光器、以及联结傅立叶变换红外光谱仪中探测器与电路控制板的锁相放大器和低通滤波器,置于样品与激光器之间光路上的斩波器,从而使连续泵浦激光变为调制激光,并馈入锁相放大器的输入参考端来控制锁相。该方法使用上述装置进行光调制反射光谱测量,包括消除泵浦光的漫反射信号以及泵浦光产生的光致发光信号的干扰;消除傅立叶频率和增强中、远红外波段微弱光信号的探测能力三个功能。经过对分子束外延生长GaNxAs1-x/GaAs 单量子阱样品和Ga1-xInxP/AlGaInP多量子阱材料的光调制反射光谱实际测试。表明本发明显著提高探测灵敏度和光谱信噪比,并具有快速、便捷的优点,特别适用于中、远红外光电材料微弱光特性的检测。
  • 中国大鲵近红外反射光谱(NIRS)研究获得新进展
    近期,陕西省动物研究所大鲵科研团队与美国孟菲斯动物学会、密西西比州立大学联合攻关的&ldquo 利用近红外技术判定大鲵性别的研究&rdquo 项目取得了部分成果,在英国IM出版社的新闻通讯部分(2015年第26卷第2期)发表,并被选做杂志封面。  NIR 讯息是国际近红外光谱学协会的新闻通讯,提供最新的近红外界内新闻。它以全面,有趣的文章展示近红外光谱学的实际应用。  近红外反射光谱研究,是通过扫描样品的近红外光谱,可以得到样品的特征信息,收集数据建立模型,进而对未知样品进行准确预测。利用近红外光谱技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,广泛应用于动物生理、营养、健康,特别是动物行为、数量统计、繁殖和疾病等方面。此技术将为我国大鲵研究提供新的技术和手段。  Near infrared reflectance spectroscopy studies of Chinese giant salamanders in aquaculture production  Carrie K. Vance, Andrew J. Kouba, Hong-Xing Zhang, Hu Zhao, Qijun Wang and Scott T. Willard  http://www.impublications.com/content/nir-news-table-contents?issue=26_2  大鲵近红外扫描
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。  拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。  上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。  而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。  新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。  除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。  美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • 安东帕发布新一代L-Rix系列折光传感器 10万小时免维护
    p style="text-align: justify text-indent: 2em "近日,安东帕发布了新一代传感器——L-Rix 5x00系列。该系列传感器不仅对客户来说更便宜,而且还能提供其他重要优势。该传感器主要用于管道或反应容器,可在生产过程中使用在线折光法直接测量样品的百分比浓度。这些被测量的物质可以是饮料、蛋黄酱、果酱、或环保型柴油添加剂等。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201905/uepic/5b1193fa-0bc6-424d-a6e7-0341de91c639.jpg" title="csm_L-Rix_5X00_Pico_WEB_11d98a2858.jpg" alt="csm_L-Rix_5X00_Pico_WEB_11d98a2858.jpg" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp style="text-align: justify text-indent: 2em "据了解,从技术上讲,这款插入式传感器充分利用了光的折射,在装置中,有一束光束通过蓝宝石棱镜向被检测介质的方向发送,光穿透棱镜和液体样品之间的界面,有些光线是完全反射的,有些只是部分反射,有些则是不反射的,传感器通过检测反射光和反射角,从而测量样品的浓度。/pp style="text-align: justify text-indent: 2em "当然,听起来可能很简单,但实际测量过程中需要复杂的公式和计算步骤,最终给出由光信号、反射角和样品温度等得出的浓度值。在安东帕的新一代系列传感器中,L-Rix 5200由于集成了用于特定糖浓度的特殊公式,可以给出相对最全面的测量模型。据安东帕产品经理Zavrsnik介绍,L-Rix系列传感器相比于市面上的同类产品具有如下优势:支持10万小时以上或10年以上免维护,运行中无需调整或校准,生产过程中方便清洗。除本系列入门机型外,其他型号用户都可以自由配置,最高配置的传感器可提供高精度测量,所有传感器都配有免费的配置软件和智能配件,如蓝宝石水晶清洗系统或可选的导流装置等,后者可以安装在传感器的对面,防止粘稠样品附着在蓝宝石界面上。/pp style="text-align: justify text-indent: 2em "L-Rix传感器的出现,符合质量测试从实验室转移到工业过程控制的趋势。这系列传感器既可以使用折射率原理测量浓度,也可以作为密度测量补充分析选项。根据样品的不同,选择不同的测量方式。/p
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • 有机磷农残光电传感分析研究取得进展
    近日,中国热带农业科学院传感与光电检测技术研究团队在多孔框架的分析功能化调控及有机磷光电化学传感分析研究中取得重要突破,成功揭示了多中心金属有机框架对有机磷结构的亲和机制,为农产品和产地环境中有机磷残留的传感分析平台构建提供新的思路。该研究成果发表于Chemical Engineering Journal。基于双功能多中心亲和MOF/MXene异质结构建乐果光电传感器示意图 中国热带农业科学院供图有机磷农药(OPs)因其药效高、广谱抗虫活性被广泛用于控制水果和蔬菜害虫。但有机磷农药会对中枢神经系统造成不可逆损伤,长期使用有机磷化合物会通过污染环境介质(如水、食物和土壤等)严重影响人体健康。因此,研究有机磷农药的快速和可靠的检测方法具有重要意义。团队受天然有机磷水解酶的启发,以四羧基苯基卟啉锌作为有机配体制备了多金属中心的光活性金属有机框架(MOF)。通过量子化学证明了制备的光活性金属有机框架中锆及锌金属中心可以与有机磷形成桥连结构,从而实现对有机磷结构的特异性亲和,这种全新的多中心亲和机制为有机磷农药残留的传感识别提供了新途径。团队进一步通过耦合金属有机框架与Nb4C3形成肖特基结,协同分子印迹技术开发了一种新的多中心亲和光电传感策略。金属有机框架不仅作为光电信号发生中心,同时其金属中心位点(Zn(II)、Zr(IV))与分子印迹的空间匹配协同确保了有机磷结构的精准捕获。团队最后以多巴胺为电子供体和界面探针,构建了一个痕量有机磷光电化学传感器,用于检测农产品和环境水样中的乐果。这种策略也可推广于其他有机磷结构检测中,这为有机磷残留的传感分析平台构建提供新的思路。
  • 石墨烯传感器可让小分子“现形”
    科技日报北京7月12日电 尽管科学家因为石墨烯无与伦比的属性而对其青睐有加,但迄今为止,其实际应用仍然乏善可陈。不过,瑞士洛桑联邦理工学院(EPFL)生物纳米系统实验室和西班牙光子科学研究所的科学家们在最新一期的《科学》杂志上宣称,他们利用石墨烯独特的光学和电子学属性,研制出了一种具有超高灵敏度的分子传感器,可以探测蛋白质或药物小分子的详细信息。  在红外吸收光谱学这种标准的探测方法中,光被用来激活分子。不同分子的振动不同,借由这种振动,分子会显示其存在甚至表现自己的“性格”。这些“蛛丝马迹”可在反射光中“读出”。但在探测纳米大小的分子时,这一方法的表现差强人意。因为照射分子的红外光子的波长约为6微米,而目标分子仅几个纳米,很难在反射光中探测到如此微小分子的振动。  于是,石墨烯受命于危难之间。研究合作者丹尼尔罗德里戈解释道,如果让石墨烯拥有合适的几何形状,其就能将光聚焦在表面上的某个特定点上,并“倾听”附着其上的纳米分子的振动。他说:“通过使用电子束轰击并使用氧离子蚀刻,我们在石墨烯表面弄了一些纳米结构。当光到达时,纳米结构内的电子会振荡,产生的‘局域表面等离子体共振’可将光聚集在某个点上,其与目标分子的尺度相当,因此,能探测纳米大小的结构。”  除此之外,这一过程也能揭示组成分子的原子键的属性。研究人员称,当分子振动时,连接不同原子的原子键会产生多种振动,不同振动之间的细微差别可提供与每个键的属性以及整个分子的健康状况有关的信息。为了找出每个原子键发出的“声音”从而确定所有的频率,需要用到石墨烯。在实验中,研究人员对石墨烯施加不同的电压,让其“调谐”到不同的频率,从而能“阅读”其表面上的分子的所有振动情况,而使用目前的传感器无法做到这一点。研究人员海蒂斯奥特格说:“我们让蛋白质附着在石墨烯上,并用这一方法,得到了分子全方位的信息。”  研究人员表示,这种简单的方法表明,石墨烯在探测领域拥有不可思议的潜能,奥特格表示:“尽管我们研究的是生物分子,但这一方法或许也适用于聚合物和其他物质。”
  • 3D打印的基于环偶极子的高性能太赫兹传感器及其应用
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。 近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。 此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。 此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • 传感器行业未来关注的四大领域
    未来值得关注的四大领域  随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。  一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。  二是无人驾驶。美国IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。  三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。  四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。超声波气象站集合了7个传感器,为工业生产提供了一流的天气监测信息,为预防一些灾害事件提供可靠信息,从而提高效率,降低和总的成本。  此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 国际漫反射光谱会议(IDRC2024)已可注册,设有学生差旅奖和青年科学家奖申请
    自1982年起,国际漫反射光谱会议(International Diffuse Reflectance Conference,简称IDRC)在Gerry Birth的精心组织下首次召开。这一盛会致力于为来自工业界的参与者提供深度洞见,覆盖了一系列关键议题,包括行业当前面临的挑战、挑选适宜光谱仪的策略、采纳标准时需考量的要素,以及预见光谱学技术的未来发展趋势。在这个平台上,供应商们将展出他们最先进的仪器和技术设备,而海报展示环节则进一步激发了与会者间的交流与探讨,这些讨论往往热情持续,甚至延伸至正式会议日程之外。该会议在每隔一年的8月初举行。目前,国际漫反射光谱会议(IDRC2024)已可注册,设有学生差旅奖和青年科学家奖申请。时间:2024年7月27日-8月2日地点:美国田纳西大学联系人:CNIRS President (曹楠宁): nanningcao@gmail.comIDRC 2024 Chair: David W. McIntosh dmcintos@utk.edu注册链接如下:https://cnirs.clubexpress.com/content.aspx?page_id=22&club_id=409746&module_id=638562(如果打不开可能需要VPN,实在不行的话可以联系CNIRS President (曹楠宁) nanningcao@gmail.com,提供网站截图等各种信息)其他简介:田纳西大学邻近著名的大雾山(Great Smoky Mountains),到大雾山国家公园(The Great Smoky Mountains National Park)仅仅不到一小时的车程。夏天风景尤其优美,也有各种丰富的户外活动,非常适合家庭度假旅游。
  • 黄渤海新区数字智能(光电传感)产业园:建成中国北方最具竞争力的特色半导体及智能传感产业高地
    数字智能(光电传感)产业园,是黄渤海新区领建全市光电传感产业链而规划打造的特色园区,也是全省智能传感产业行动计划两大重点园区之一,规划面积4500亩,主要发展智能传感、微纳制造、光电半导体及集成电路关键材料等产业。现已落户项目25个,其中建成项目11个、在建项目14个,已完成投资82亿元,落成建筑面积70万平方米,达产后可形成产值150亿元、利税30亿元。园区按照“整体规划、分区建设、联动发展”思路,以链主骨干企业为引领,空间布局分为A、B、C三区:A区,主要依托睿创微纳公司,打造光电半导体产业集聚区,由睿创微纳厂区、光电传感孵化园两部分组成。其中,光电传感孵化园已完成15栋单体建设,建筑面积8.7万平方米,6月底全部投用,已入驻静电吸盘、硅基雷达、加密芯片等7个项目,还有汇芯半导体、异方性导电膜等一批项目确定入驻。B区,主要依托万华电子材料公司,打造集成电路关键材料产业集聚区,已落地大硅片、平坦化、光刻胶及芯片封测等6个项目,正在导入光敏聚酰亚胺、导电胶膜等一批新项目。C区,主要依托明石创新等企业,打造微纳制造及智能传感产业集聚区,正在实施压力、气体、流量传感器技术攻关及MEMS产业化系列项目,全力冲刺工信部国家制造业创新中心,填补烟台空白。未来3-5年,园区计划引进孵化转化项目100个以上,项目投资350亿元以上,产值达到500亿元左右,建成“中国北方最具竞争力的特色半导体及智能传感产业高地”。
  • 西安交通大学张留洋课题组《Optics Letters》:3D打印的基于环偶极子的高性能太赫兹传感器
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。相关成果以“Highly sensitive terahertz sensing with 3D-printed metasurfaces empowered by a toroidal dipole”为题发表在光学期刊《Optics Letters》上。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PµSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。 图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 分拆一年 四方光电传感器与四方仪器仪器仪表业务竞放光彩
    为适应公司飞速发展的需要,2016年1月1日,武汉四方光电科技有限公司召开股东大会,审议通过了关于武汉四方光电科技有限公司业务分拆的议案:将传感器业务划归为总公司武汉四方光电科技有限公司;将环境监测系统、工业过程分析系统以及仪器仪表业务及其相关的资产负债、人员、研发、生产和销售环节转入全资子公司四方仪器自控系统有限公司。四方仪器建立于四方光电高新技术业务平台之上,承继了四方光电一系列先进的技术和市场体系,尤其是在环境监测、工业过程气体分析等领域占据着全国重要的市场地位。四方仪器以自主知识产权的红外NDIR、热导TCD、化学发光CLD、氢火焰FID、超声波、激光拉曼等传感器核心技术为依托,成功研制的红外烟气、沼气、煤气、尾气等节能减排仪器仪表,国际领先的超声波气体流量计及物联网行业监测解决方案,已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。业务拆分后,公司四拥有了4条分析仪器生产线、1条成套分析系统生产线和1个大型分析仪器研发中心的现代化分析仪器产业基地,年产分析仪器和成套分析系统24000余套。截止目前,公司产品已辐射全国各地并出口到美国、德国、俄罗斯、印度、巴西、比利时、泰国、阿根廷、韩国等74个国家。高质量的产品和及时、高效、增值的售后服务赢得了用户的一致好评。展望未来,四方光电和四方仪器将继续以自主知识产权的传感器技术为依托,在气体分析仪器仪表的研发、生产、销售及行业监测解决方案等领域持续创新,助力行业的发展。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现  人工界面改写光的反射和折射定律  光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。  光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。  经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。  研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。  阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。  这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。  利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 便携式红外衰减全反射光谱仪用于食品分析测试
    合适的食品质量检测方法十分重要,科学家利用众多方法来测试不同的污染物。最近一种红外衰减全反射(IR-ATR)仪器在食品检测领域流行起来,它可以在几乎不需要样品制备的情况下获取倏逝场吸收,同时促进对任何聚集状态中的分析物的无损分析。食品安全控制概念 | 图片来源:© Alexander Raths - stock.adobe.com最近发表在《应用光谱学》杂志上的一项研究介绍了一种便携式的红外衰减全反射(IR-ATR)食品分析设备,可用于分析食品行业中有重要意义的物质。该系统的核心是了解脂质中脂肪酸(FAs)的组成;由于正常的脂质成分是表征鱼类等食品的质量的特征指标,但易受环境因素如水质、捕捞季节和温度的影响,因此跟踪脂肪酸是理解脂质的真实特征以及它们如何影响食物质量的关键。该系统还使用了霉菌毒素和有机溶剂作为代表进行了测试。霉菌毒素是与真菌污染相关的有害次生代谢物,它们的存在可能对人体和家畜的健康产生有害影响,因此检测它们对于食品安全至关重要。至于有机溶剂,食品行业主要将其用于从食品基质中提取成分,但由于传统方法性能优越,导致绿色提取方法不太受欢迎。这两种物质对于食品加工都是必不可少的,这也解释了为什么除了脂肪酸之外,IR-ATR 系统还主要针对它们进行测试。用傅立叶变换红外光谱仪(FT-IR)对便携式IR-ATR设备与传统实验室IR-ATR设备进行了对比测试,以展示前者系统的潜在优势。使用了三种类型的模型系统,每种系统内都含有不同的样品:溶解在水中的N,N-二甲基甲酰胺((CH3)2NCH)(DMF)、溶解于乙醇中的硬脂酸(C17H35CO2H)以及溶解于甲醇中的DON(C15H20O6)。这些分析物作为典型的化合物类别,在中红外(MIR)光谱图中具有特征波段。通过两种系统的比较证实了的两者的多个因素,包括霉菌毒素的检测、FAs的分析以及有机溶剂的定量。值得注意的是,便携型系统的分析性能与标准型系统分析能力一致。然而,在该系统投入大规模使用之前仍需要进一步的工作要做。科学家在研究中指出:“未来研究旨在分析更复杂的系统,包括真正的鱼类样品和各种含有真菌污染物/霉菌毒素的谷类作物提取物,并采用先进的数据分析方法来开发无需标记的快速筛查方法。”
  • 漫反射涂料/目标板蓝菲光学permaflect-标定无人驾驶激光雷达距离测试性能、无人机机载相机、基于激光扫描技术的食品分类处理设备
    漫反射涂料/目标板蓝菲光学permaflect-标定无人驾驶激光雷达距离测试性能、无人机机载相机、基于激光扫描技术的食品分类处理设备Labsphere(蓝菲光学) 发布的“漫反射涂层Permaflect”,进一步扩展了公司的漫反射材料和涂层产品线。这条产品线包含性能优异的Spectralon材料,Spectraflect涂料和Infragold镀金涂料。在此基础上,蓝菲光学为用户提供了涵盖多个领域的创新性应用解决方案,包括无人驾驶激光雷达校准、发光二极管(LED)、固态(SSL)照明,遥感,成像、消费相机、汽车、国防安全、健康和生物医学光学等。图1 蓝菲光学漫反射涂层Permaflect  蓝菲光学的Permaflect特有近朗伯特性的白色和灰色漫反射涂层,专门针对恶劣的环境、天气及其他可能影响典型漫反射涂层性能的场合而设计,其反射率范围在5%~94%。  蓝菲光学首席技术专家Greg McKee指出:“从医疗仪器使用的一次性基准物到成像传感器的基准目标板,蓝菲光学可定制漫反射涂层的应用是极其丰富的,且其性能也是无可比拟的。”  除了提供Permaflect涂层原材料,蓝菲光学也提供各种尺寸的Permaflect漫反射目标板。在野外各种苛刻的条件下,这些目标板无疑是比白纸或者白布更好的选择。 Permaflect提供了一种传统目标板无法比拟的替代方案,更轻、更均匀、更耐用。”Mckee评论说。漫反射涂层Permaflect推出后受到了客户的广泛赞誉。其被广泛应用于多个领域:(1)Permaflect目标板应用于校准激光雷达距离测量性能Matthew Weed, Luminar 技术研发总监曾讲到:“为部署安全的自动驾驶车辆,Luminar 的客户要求激光雷达系统能够在200多米的距离内对低至10%反射率的目标物实现精确测距。我们通常在200多米的距离上使用蓝非光学的permaflect目标板,来验证我们的产品是否满足客户严苛需求。针对顾客严苛的技术要求条件,蓝菲光学仪器有限公司产品总是不断优化创新,生产出的Permaflect 目标板满足激光雷达关键性能因素。图2 Permaflect目标板应用于校准激光雷达距离测量性能图3 无人驾驶激光雷达图4 典型8/H Permaflect漫反射板反射因子 (2)Permaflect产品用于标定其基于激光扫描技术的食品分类处理设备 由于其无可替代的优异性能,在食品加工和工业过程自动化行业的某国际知名企业已大批量订购了Permaflect产品,用于标定其基于激光扫描技术的食品分类处理设备。 图5 食物在线分检图6 基于激光扫描技术的食物分检设备 (3)Permaflect漫反射板应用于无人机机载相机的标定 漫反射涂层Permaflect进入中国市场后,其在恶劣环境下的高品质性能备受国内用户的瞩目。  相对于柯达灰卡,漫反射涂层Permaflect在更宽广的谱段上提供平坦的反射率特性,而且具有良好的刚性和平面度,防潮防水性能优异,面幅选择多(标准品最小0.5m x 0.5m,最大1.2m x 2.4m,其他面幅可定制),又相对较轻,因此适用于各种环境。目前,漫反射涂层Permaflect已经被中科院某研究所用于野外环境下对无人机机载相机的标定。图7 无人机图8 无人机机载相机图9 Permaflect和柯达灰卡的反射光谱对比
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • 三星开发CMOS超光谱图像传感器,有望成为光谱成像的新平台
    光谱仪在材料分析、天文学、食品化学以及医学诊断等许多领域都有应用。市场需求正在迅速增长,但光谱仪的尺寸阻碍了其在更广泛领域的普及。因此,市场急需高性能的紧凑型光谱仪,不断缩小光谱传感器尺寸已成为当前的研究热点。为了使光谱仪小型化,已经进行了各种尝试,例如传统的色散方法、傅里叶变换干涉技术(FTI),以及使用带有随机滤波器阵列和窄带通滤波器的探测器等。与色散和傅里叶变换干涉系统相比,滤波器阵列与探测器的集成,由于无需长光路和光学元件的精确对准来获得高分辨率而具有优势。此外,将滤波器阵列与电荷耦合器件(CCD)或CMOS图像传感器(CIS)等探测器集成,可以通过单次捕捉二维图像实现高光谱成像。特别是,与随机滤波器方案相比,窄带通滤波器阵列的集成无需进行后处理分析。然而,为了获得高分辨率需要大量的信道,意味着更复杂的制造工艺,例如蚀刻和沉积,因为每个信道都需要不同厚度的薄膜。为了解决这个问题,有研究使用组合蚀刻技术来制造多信道。业界对光谱仪中使用的窄带通滤波器的谐振结构进行了研究,但大多数研究仅限于改变电介质多层膜的厚度,以形成不同波长和品质因数的光学腔。这对于器件的大规模生产很麻烦,因为它需要过多的电介质沉积、蚀刻和光刻步骤,尤其是在像素尺寸级别的制造工艺。据麦姆斯咨询介绍,三星高级技术研究所光子器件实验室的Jaesoong Lee及其同事通过将被称为超表面的亚波长纳米结构集成到直接位于CMOS图像传感器顶部的带通滤波器阵列中,开发出了一种紧凑型超光谱(meta-spectral)图像传感器。由于窄带通滤波是通过亚波长光栅结构而不是通过改变层的厚度来调谐的,因此所有信道都可以通过一步光刻工艺制造。这种方案简化了制造,并且与CMOS工艺完全兼容。这种紧凑型超光谱图像传感器具有窄带高效率、与相邻信道的低串扰和高光谱分辨率。利用该器件,研究人员从波长混合图像中获得了高光谱图像。超光谱图像传感器示意图超光谱图像传感器制造研究人员在CMOS图像传感器晶圆(三星S5K4E8)上采用标准的洁净室工艺(包括PECVD和干法蚀刻)制作了超表面带通滤波器阵列。首先,研究人员为底部介质反射器沉积了多层硅和二氧化硅;然后利用电子束光刻定义纳米柱阵列;再使用电感耦合等离子体反应离子刻蚀(ICP-RIE)形成纳米柱阵列,并再次沉积二氧化硅以填充纳米柱之间的间隙;然后进行化学机械抛光(CMP)工艺,以平整二氧化硅顶面;最后,为顶部反射器沉积了一层由硅和二氧化硅制成的多层膜。超光谱图像传感器制造过程示意图高光谱成像为了验证演示其高光谱成像性能,研究人员拍摄了由3 x 5颗多波长LED组成的LED面板的光谱图像。每颗LED可以发射多个波长的组合,这些波长被选择以显示以下大写字母:770 nm显示“S”,810 nm显示“I”,850 nm显示“A”,950 nm显示“T”,如下图(a)底部所示。超光谱成像仪的高光谱成像演示作为概念证明,研究人员拍摄了一张所有LED都打开的面板照片,如上图(b)顶部所示。图像中的所有字母都无法区分,因为面板上的所有LED都已打开。通过将这个组合图像分成20个信道,如上图(b)底部所示,研究人员发现了隐藏的“SAIT”字母。在对应829.1 nm的信道11处,由于810 nm和850 nm LED的宽带发射,“I”和“A”被结合在一起。对于更长的波长(信道12和信道13),研究人员观察到字母“I”变得更模糊,而字母“A”变得更清晰。通过实验结果,研究人员证实了这款超光谱图像传感器具有良好的光谱成像性能。
  • 中科院合肥研究院在高灵敏度小型化吸收光谱传感研究中取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所大气物理化学二室的刘锟等研究人员在高灵敏度小型化吸收光谱传感技术研究中取得了新的进展。研究成果发表在Sensors & Actuators: B. Chemical(220, 1000-1005)上。  基于吸收光谱的光学传感技术,因其实时在线、高灵敏度、高选择性和非入侵式等优点,被广泛应用于大气、环境和工业等领域。为了提高吸收光谱传感的灵敏度,往往通过光学多通吸收池增加光和样品的相互作用程长。然而,受光斑重合等因素的限制,传统的光学吸收池(如Herriott池)很难实现上百次的光反射,长光程只能靠增加物理池长度的方式得到,这样大大增加了吸收池的体积,难于实现小型、便携的高灵敏度传感设备。  刘锟等研究人员通过精心的设计,在普通球面反射镜上实现反射光斑呈7个圆圈的分布,充分利用了反射镜的反射面,在光斑不重合的情况下实现了高达215次的光反射,从而用12cm物理基长实现了26米的有效光程。刘锟等研究人员利用所设计的新型光学吸收池,开展了大气甲烷(CH4)的测量研究,实现了100ppb(10-9)的探测灵敏度和优于80 ppb的测量精度。这一研究成果为发展小型化、便携式高灵敏度光学传感器提供了有效的手段,也将推动对体积、重量要求严格的无人机大气探测技术等应用的发展。  该研究工作受到国家自然科学基金、中国科学院青年促进会等经费资助。
  • 立仪科技获数千万A轮融资,专注研发光谱共焦传感器
    3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被基恩士等国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波表示:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制