当前位置: 仪器信息网 > 行业主题 > >

扩散系数测定仪

仪器信息网扩散系数测定仪专题为您提供2024年最新扩散系数测定仪价格报价、厂家品牌的相关信息, 包括扩散系数测定仪参数、型号等,不管是国产,还是进口品牌的扩散系数测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合扩散系数测定仪相关的耗材配件、试剂标物,还有扩散系数测定仪相关的最新资讯、资料,以及扩散系数测定仪相关的解决方案。

扩散系数测定仪相关的资讯

  • 北京市理化分析测试中心关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知
    p  strong仪器信息网讯/strong 北京市理化分析测试中心将于2019年10月中旬组织开展“闪光法测定高温合金热扩散系数”实验室间比对。本次实验室间比对秉持自愿申报的原则,暂不收取任何费用,欢迎各相关单位踊跃参加。报名截止日期:2019年9月20日。/pp  实验室间比对是判断和监控实验室能力的有效手段之一。目前,国内外还未开展闪光法测定材料热扩散系数的能力验证活动。2018年,北京市理化分析测试中心在小范围内成功组织了闪光法测定合金样品的热扩散系数实验室间比对。/pp  此次实验室间比对由北京市理化分析测试中心联合热分析专业委员会组织开展。详情见文末附件。/ppbr//pp style="text-align: left "  联系人: 邹涛/pp style="text-align: left "  电话: 010-68723180/pp style="text-align: left "  E-mail: a7670@126.com/pp style="text-align: left "  地址: 北京市海淀区西三环北路27号理化实验楼410房间/pp style="text-align: left "br//pp style="line-height: 16px text-align: left "附件: /pp style="line-height: 16px "a style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href="https://img1.17img.cn/17img/files/201907/attachment/e9027b5d-9940-46a4-9027-a49cd69eb871.pdf" title="关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知.pdf"span style="font-size: 16px "关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知.pdf/span/a/pp style="line-height: 16px "a style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href="https://img1.17img.cn/17img/files/201907/attachment/0b965b1b-912b-4926-95c2-b16348fbc9b1.doc" title="闪光法测定高温合金热扩散系数实验室间比对报名表.doc"span style="font-size: 16px "闪光法测定高温合金热扩散系数实验室间比对报名表.doc/span/a/pp   br//ppbr//p
  • 水分活度扩散法名正言顺成测定方法
    由杭州市质量技术监督检测院起草制定的《食品水分活度的测定》国家标准,五月份正式发布实施。其中引人注意的是,此次颁布的条例将水分活度仪扩散法也作为测定食品中的水分活度的有效方法。在此之前,国家标准中只承认康卫氏皿扩散法为标准的测量方法,水份活度分散法虽被广泛应用却&ldquo 无名无份&rdquo 。此次&ldquo 正名&rdquo 对食品质量控制具有重要意义。 水分活度(aw值)是影响食品保质期,及色香味等物理特性的重要因素,是判断食物是否存在变质风险的重要参考,也是控制食品内微生物生产最直观的依据。因此,极小的测量误差也可能严重缩短食品的保存期限,还会引起食品色香味等感官体验的显著变化。在食品领域里,水分活度是食品质量控制的一个重要指标,也是食品安全的重要控制参数。此次颁布实施的《食品水分活度的测定》国家标准中,规定了康卫氏皿扩散法和水分活度仪扩散法测定食品中的水分活度,其中康卫氏皿扩散法为仲裁法。 康卫氏皿扩散法属于实验室测定法,虽然测定的结果非常准确,但是步骤繁多,耗时长,且需专业人员操作,并不适合于企业实际生产中运用推广。水分活度仪扩散法虽然快捷简便,但在此之前,国家标准中只认准康卫氏皿扩散法,水份活度分散法没有国家标准的&ldquo 名分&rdquo ,使得制造商对市面上的水分活度仪犹疑不决。此次新标准正式为水分活度仪正名,让厂商通过检测食品水分活度、提高食品质量的目标成为可能。据悉,该标准广泛适用于预包装谷物制品类、肉制品类、水产制品类、蜂产品类、薯类制品类、水果制品类、蔬菜制品类、乳粉、固体饮料的食品水分活度的测定。 作为一款高精度水分活度测量系统,德图testo 650水分活度测定仪得到众多国际实验室的认证,可提供全球认可的精密仪器DKD标定证书。高稳定性的测量传感器无需经常校准。该仪器同时还可测量其他多种参数,如温湿度、压力、CO、CO2及转速等。testo 650水分活度测定仪能够为食品生产和销售企业、食品质量和安全检测机构、食品出入境检验检疫机构等相关机构的食品水分活度提供准确的检测方案,为监测食品质量和安全提供重要的技术支撑。
  • 岛津纳米颗粒测定仪器IG-1000喜获Pictton 2009大奖
    作为粒度仪的专业生产厂商,岛津公司新推出了划时代的纳米颗粒测定仪器IG-1000,并在美国伊利诺斯州芝加哥市的迈考密展览中心召开的Pictton 2009(3月8日至3月13日)展会众多产品中脱颖而出,获得&ldquo 撰稿人奖&rdquo 铜奖。   与以往粒度测定仪器原理不同,IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术。IG-1000采用介电电泳原理,由介电电泳力使粒子构成衍射光栅,扩散后的浓度降低导致衍射光强度降低,从衍射光强度的时间变化可以得到粒子的扩散系数,进而得到粒子的粒径。   与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。原始数据(衍射光强度对时间的变化)可以用来进行测定结果的可靠性验证。   与岛津多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。 (C60(OH)n的测定结果 大阪大学小久保先生提供)
  • 新品推出|液体密度测定仪-适用于各种液体的密度测量
    液体密度测定仪是一种实验仪器,用于测量液体的密度。它对于许多行业,如石油、化工、制药、食品和饮料等,都有重要的作用。 产品链接https://www.instrument.com.cn/netshow/SH104275/C549000.htm 首先,液体密度测定仪可以用于生产过程中的质量控制。在生产过程中,液体的密度可能会影响产品的质量和性能。通过使用液体密度测定仪,可以快速、准确地检测液体的密度,帮助企业进行质量控制,确保产品的稳定性和一致性。 其次,液体密度测定仪也可以用于科学研究。在科学研究中,液体密度测定仪可用于研究液体的物理性质和化学性质,如液体的分子结构、溶解度、扩散系数等。这些研究结果可以帮助人们更好地了解液体的性质和行为,为开发新的材料和产品提供重要的科学依据。 此外,液体密度测定仪还可以用于教学实验中。在化学、物理和材料科学等学科中,学生需要了解液体的性质和行为,而液体密度测定仪可以提供一种有效的教学手段,帮助学生更好地理解和掌握相关知识。 总之,液体密度测定仪在许多方面都有着广泛的应用。它可以用于生产过程中的质量控制、科学研究以及教学实验中,为人们提供了重要的实验工具和数据支持。
  • 中科院新疆理化所在非对称扩散增强的比色传感器件研究中获进展
    超灵敏传感器的构建在危险化学品分析、生物标志物检测和体内成像中发挥重要作用,对环境监测和安全监控具有重要意义。基于探针的传感器是最常用的痕量分析方法之一,具有高灵敏度、高特异性和快速响应等优势。作为常用的加载探针的介质,液相有利于探针分子与目标分析物进行有效碰撞,从而提高反应速度和效率。然而,液体介质中的自由体积扩散特性会导致反应信号的分散,引起来自痕量分析物的信号进一步减弱,影响痕量检测的灵敏度。水凝胶作为含有聚合物网络和液相分散介质的材料,可通过聚合物链的非共价作用以及聚合物网络的筛分效应限制溶质扩散。然而,对于各向同性的水凝胶体系,扩散性质的受限或降低反应的有效碰撞,使得检测反应灵敏度下降。多相界面处产生的化学反应受体系化学势影响,可在不影响溶液自身扩散性质的同时限制反应物迁移方向。因此,在水凝胶体系构建存在非对称扩散性质的反应界面,在保持快速反应的同时有效地限制信号扩散,具有重要意义。中国科学院新疆理化技术研究所爆炸物传感检测团队基于非对称扩散行为对信号分子的限制作用,设计了双层水凝胶体系以增强传感信号,实现了纳克级别亚硝酸盐的比色识别。研究设计了一种双层水凝胶体系,其中聚丙烯酰胺(PAM)进行采样和重氮化亚硝酸盐的瞬时两步反应,而聚乙烯醇(PVA)用于耦合显色反应实现对亚硝酸盐的识别。为了破坏两种紧密接触的水凝胶的扩散对称性,研究通过调控合成方法将PAM和PVA水凝胶之间的孔径比控制为10,扩散系数比控制为1.7。结果表明,显色产物在水凝胶中的扩散具有明显的有界性,且其面内扩散由于PAM和PVA水凝胶的非对称扩散性质得到有效的限制。由此设计的传感器对亚硝酸盐的裸眼检测限为2.898纳克,呈现出优异的灵敏度和抗干扰性。检测图像对目标物残留信息的良好保护性进一步证明了扩散控制对于增强传感信号以及构建适用于实际场景的高性能便携式检测器的重要性,为针对痕量固体样品识别的传感器设计奠定了理论基础。相关研究成果发表在Sensors and Actuators B: Chemical上。研究工作得到中科院“西部之光”人才培养计划、国家自然科学基金、中科院青年创新促进会、中科院基础前沿科学研究计划“从0到1”原始创新项目及国家高层次人才等的支持。a、具有非对称扩散的水凝胶体系示意图;b、用于亚硝酸盐检测的双层水凝胶器件
  • 西安交大科研人员在调控高熵合金的点缺陷扩散方面取得重要进展
    空位和间隙是晶体材料中的两种本征点缺陷。然而,这两种缺陷的动力学行为却有极大差异。在常规的纯金属中(如铜,镍),间隙的扩散速率往往比空位高出若干个数量级。这样巨大的动力学行为的差异对材料的宏观性能带来显著影响,例如材料的耐辐照损伤性能。在辐照环境下,金属内部同时产生大量间隙和空位,而间隙与空位的巨大的扩散速率差异往往导致点缺陷湮灭效率不高,大量的缓慢扩散的空位存留下来从而产生如层错四面体、位错环以至空洞等结构缺陷。因而,降低间隙与空位的扩散速率差异能够帮助改善材料的耐辐照性能,但是目前还缺少大幅度缩减这两者扩散率差的有效调控方法与手段。针对以上问题,西安交大材料学院的丁俊教授与马恩教授团队,利用第一性原理分子动力学模拟对等原子比NiCoCrFe(Pd)合金中点缺陷扩散行为进行研究,提出了一种可以大幅缩减两种点缺陷之间扩散速率差异的合金设计策略。研究表明,将更大的Pd原子加入到NiCoCrFe合金中,形成等原子比的NiCoCrFePd合金,两种点缺陷(空隙和空位)的扩散运动的数值上变得非常相似(图1)。统计NiCoCrFe和NiCoCrFePd合金在不同温度下的扩散速率,并且得到相应的扩散激活能(图2a中拟合直线的斜率),发现Pd的加入使间隙与空位扩散的激活能变得非常接近,这是在单相合金中第一次实现相似的间隙与空位扩散速率(如图2b, c所示)。对合金中空位迁移过程中的局部晶格畸变和键长变化进行分析表明,点缺陷迁移率(特别是它们的差异)变化的起源是大原子Pd阻塞了间隙扩散通道,而同时又通过减少初态和鞍态之间的键长变化降低了空位扩散的能量成本。图1. 1500K下NiCoCrFe合金与NiCoCrFePd合金的间隙和空位的扩散位移及轨迹图2. 不同温度下NiCoCrFe合金与NiCoCrFePd合金的间隙和空位的扩散系数及激活能的对比通过调控高熵合金中组成元素的尺寸差异,本工作首次在单相金属结构材料中实现了近乎相等的空位和间隙两种点缺陷扩散速率。这一长期以来难题的解决,是合金设计调控点缺陷扩散研究方面的重要突破。此结果为抑制空洞生成、材料肿胀提供了新的策略,为设计先进核用的耐辐照合金提供了新的思路。此外,本研究工作关注的合金组成元素的设计,未来可以与高熵合金中局域化学有序结构的调控相结合,来进一步提升材料的抗辐照性能(研究团队的近期论文Z. Zhang et al.,PNAS, 120 (2023) e2218673120详细地阐述了局域化学有序对高熵合金的辐照损伤和缺陷演化行为的影响及其机理)。这一系列工作对设计高性能核用结构合金材料具有重要的指导意义。日前,上述研究成果以“缩小多主元合金中空位和间隙之间的扩散速率差(Minimizing the diffusivity difference between vacancies and interstitials in multi-principal element alloys)”为题发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)。西安交大金属材料强度国家重点实验室为论文通讯单位。西安交大材料学院博士研究生张博召与助理教授张真为论文共同第一作者,材料学院丁俊教授和马恩教授为论文共同通讯作者。该工作得到了科技部重点研发计划、国家自然科学基金和国家级青年人才项目支持计划的共同资助,以及西安交大高算平台计算资源的支持。论文链接地址:https://www.pnas.org/do i /10.1073/pnas.2314248121
  • 加拿大专利型快速导热系数测定仪投入运行
    中科院上海硅酸盐所购买的我公司独家代理的加拿大MATHIS公司生产的专利型快速导热系数测定仪已于2006年12月安装完毕投入实验使用。该仪器可进行实验室及现场应用,可快速方便地测定固体、液体、粉沫、薄膜及粘稠物等多种不同材料的导热系数,热传导率及比热(需其它参数配合)精度为世界上最高,准确度优于5%,测试一个样品时间约为10-15分钟(包括冷却时间8-10分钟)。已有感兴趣的其它用户去参观了解该仪器。
  • 喀什大学加大科研投入:引进南京大展DZDR-S导热系数测定仪
    喀什大学是新疆地区一所具有较高声誉和影响力的高等学府,致力于推动科学研究和教育发展。为了满足科研需求和提升实验室设备水平,喀什大学决定采购多台南京大展DZDR-S导热系数测定仪,以提供更准确和可靠的导热系数测试数据。这批导热系数测定仪于近期完成安装调试工作,正式开始投入科研教学。   客户需求:  喀什大学一直注重科研项目和学术研究的质量,而准确测定材料的导热系数是评估材料性能和进行相关研究的关键。因此,喀什大学需要一种高精度、可靠性强且适用于多种材料的导热系数测定仪。   经过前期的调研和对比,喀什大学选择了南京大展DZDR-S导热系数测定仪。喀什大学的采购决策不仅仅关注仪器的功能和性能,更注重其完善的服务体系,能够充分保障客户仪器的正常使用,如遇到仪器使用方面的问题,能够得到及时的解决。   仪器的性能优势:  1、测量方法。DZDR-S导热系数测定仪采用非稳态法中的瞬态热源法,与其他测试方法相比,测量速度更快,准确性高。  2、测量速度快。DZDR-S导热系数测定仪能够在5~160s内测量出导热系数,提升实验的效率。  3、多功能性。DZDR-S导热系数测定仪适用于不同类型材料的导热系数测试,其中包括:液体、固体、金属、膏体、胶体、薄膜、粉末和复合材料等等,适用性广泛。  4、易用性。DZDR-S导热系数测定仪采用双向操作控制系统,仪器和计算机同时操作,彩色触摸屏操作,使得使用和操作设备变得简单和便捷。  5、数据准确性。DZDR-S导热系数测定仪拥有配套的分析软件,能够提供准确可靠的导热系数测试数据,可直接提供数据报告。  6、重复性。DZDR-S导热系数测定仪对样品实行无损检测,样品可以重复使用。   售后服务:  在仪器的安装调试现场,我司的技术工程师对仪器的操作、软件的分析等方面进行了详细的培训,整个的培训过程,也让操作人员对于仪器更加的熟悉。我司不仅是为各个行业提高高品质的检测仪器产品,同时我们更注重客户的服务体验,从售前、售中到售后,一站式的服务体系,让客户真正感受到采购南京大展仪器安心、放心。   通过采购多台南京大展DZDR-S导热系数测定仪,喀什大学成功解决了导热系数测试的需求,并提升了实验室设备水平。这个案例不仅展示了喀什大学对科研发展和教育质量的重视,也体现了南京大展DZDR-S导热系数测定仪作为高精度、可靠性和用户友好性的选择。
  • 现代水质分析三大处理方法的探索——溶解氧测定方法应用下篇
    随着水质分析技术的不断发展与更新,电化学溶氧测量技术已成为目前应用最为广泛的溶氧测量技术,此项技术是由Dr. Leland Clark于1956年最先发明。电化学分为原电池法和极谱法。其中,极谱法应用最广。电化学(极谱法)溶氧分析仪基于传感器的结构又可以分为扩散型和平衡型两种,相对而言,扩散型的电化学溶氧传感器应用更为普及。 电化学(极谱法)溶氧传感器结构如下图所示。 图1:极谱法测定原理图该传感器由阴极、阳极、电解液以及半透膜等主要部件构成,在直流极化电压作用下,溶解在水中的氧气穿过半透膜到达阴极发生还原反应:O2 + 2H2O + 4e- = 4OH- 同时阳极发生氧化反应: 4Ag + 4Cl- = 4AgCl + 4e- 原电池法溶解氧测定原理同样是电化学方法,但是它少了极化电压,而是自发进行的反应。传感器由阴阳极、电解液以及半透膜构成。当溶解在水中的氧分子穿过氧半透膜达到阴极发生还原反应:O2 + 2H2O + 4e- = 4OH- 而阳极发生氧化反应:2Zn = 2Zn2+ + 42e- 图2:原电池法测定原理图 当反应达到平衡稳定的条件下,该电化学反应形成的电流和氧气的分压(浓度)呈一定关系:I=n ? F ? A ? D ? S ? pO2 / d I: 传感器电流 [nA] n: 电子迁移的数量 (n = 4) F: 法拉第常数 (F = 96485 C/mol) A: 阴极表面积大小 [cm2] D: 氧分子在膜上的扩散系数 [cm2/s] S: 膜的氧溶解度 [mol/(cm3*bar)] pO2: 氧气分压 [bar] d: 膜厚度 [cm]因此,根据上述电化学过程产生的电流强度就可以计算出水中的溶解氧分压,然后再根据亨利定律就可得出水中的溶解氧浓度。和其他溶解氧测量技术相比较,极谱法溶氧测量技术具备应用量程广,精度高(特别在ppb痕量级溶氧测量应用场合),技术成熟等特点,目前在水处理工业各种溶氧测量场合应用最为普及和广泛。而原电池法少了极化预热的过程,使用则要方便些。 光学法测量溶解氧基于荧光淬灭的原理:传感器中的蓝色LED光源发出一束蓝色光,照射在荧光物质上,该涂层的荧光物质随即被这束蓝光激发,此激发态并不稳定,遇到氧以后会迅速释放出红色的光线并回复至原始状态。此红光和先前LED发射的蓝光存在一个时间滞后,光电检测器可以监测到蓝光和红光之间的这个相位滞后,即测量荧光物质从被蓝光激发到发射红光后恢复原态的时间,根据这个来计算水中溶解氧的含量。该相位滞后与发光体附近的溶解氧浓度成反比。当氧气与荧光物质接触后,则其产生的红色光的强度会降低,同时其产生红光的时间也会缩短,水样中溶解的氧气的浓度越高,则传感器产生的红光的强度就会越低。 图3:荧光法测定原理图*荧光淬灭法测量溶氧技术具有测量便捷、稳定性高、维护量低等优点。除较高浓度的二氧化氯外,光学法测溶解氧不易受到其它干扰物质的影响。 奥豪斯作为一家百年的天平和衡器研发制造公司,仪器产品具有悠久的历史,我们同样以高质量的水质分析实验设备服务于客户。目前,奥豪斯的溶解氧测定仪涵盖光学、极谱和原电池法三种原理,产品线能够满足不同应用领域和客户群的需求。其中,ST20D是基于极谱法的溶解氧测定仪,ST300D是原电池法的溶解氧测定仪,而ST400D是基于光学法的溶解氧测定仪。未来我们公司将对更高精度、测量要求更高的领域开发仪表。
  • 锐拓透皮扩散系统应用案例——乳膏的体外释放测试
    扩散池法是执行半固体剂型制剂的体外释放测试(IVRT)可靠且有重复性的方法。美国药典 (USP) 1724 半固体药品性能测试 (SEMISOLID DRUG PRODUCTS—PERFORMANCE TESTS) 收载有扩散池法的具体测定方法和要求。乳膏是用乳剂型基质制成的软膏剂,具有药物释放和穿透性能好、提高局部药物浓度、不妨碍皮肤正常功能等特点,是临床常用剂型。本文将分享使用扩散池法执行某乳膏制剂的体外释放测试案例,希望能给您带来帮助和启发。测试方法实验仪器:锐拓 RT800 自动取样透皮扩散系统装置:锐拓改良式Franz垂直扩散池温度:32±0.5℃介质:技术保密转速:600 RPM人工膜:技术保密上样量:~0.3g介质体积:30mL取样量/补液量:1mL扩散池孔口直径:15mm扩散池孔口面积:1.77cm 测试过程介质体积称量加入扩散池中的介质重量,并根据测试得到的介质密度,计算各个扩散池中加入的介质体积:根据USP 1724 的要求,测试过程中的所有扩散池应具有相同的体积标称值,并且应测量每个扩散池的真实体积。虽然USP 1724 并没有明确要求介质体积的误差范围,但我们建议介质体积误差应不超过1%。 上样量称重并记录样品装载环中乳膏上样量,并确定上样量均在正常范围之内。=根据USP 1724 ,扩散池法测试的样品量一般不小于0.2g。虽然样品的上样量并不参与累积释药量的计算,但超出正常范围的称量数据可以揭示可能发生的样品装载异常,例如有气泡残留在乳膏和滤膜之间。膜的种类半固体制剂体外释放应当选用合适的惰性和商业化的人工膜,常用的有:聚醚砜,醋酸纤维素,尼龙混合酯和聚四氟乙烯膜。其中醋酸纤维素是亲水膜,对有机溶剂不耐受。因此,当释放介质中含有有机溶剂时,另外三种膜是更好的选择。 自动取样根据USP 1724的要求,应在方法规定的取样时间±2 min范围内完成取样。RT800 自动取样透皮扩散系统,能够自动同时完成6个扩散池的取样,并不存在取样时间差的问题。 测试结果根据 USP 1724,计算在各个取样时间点每 1平方厘米孔口面积下的累积释药量(Cumulative Amount Released): 6个测试样品在24小时的累积释药量的相对标准偏差(RSD)为1.53%,本测试的重复性良好。乳膏中药物的释放一般遵循 Higuch 公式,即药物的累积释药量与时间的平方根成正比。将 6 个测试样品在各个取样时间点的累积释药量与取样时间的平方根进行线性回归,得到回归方程和相关系数,并取其斜率值为释药速率常数。 结果讨论结果表明,扩散池法的精密度高,重现性好。可以适用于区分不同乳膏配方的差异,并为乳膏产品的配方开发提供有价值的体外释放度测定数据。得益于锐拓 RT800 自动取样透皮扩散系统的高精度自动化设计,有效地减少实验系统或手动操作引入的误差,让测试结果的重复性更加理想。
  • 《橡胶压缩耐寒系数测定仪》团体标准公开征求意见
    根据《关于印发2022年第二批中国石油和化学工业联合会团体标准项目计划的通知》(中石化联质发2023(07)号)要求,由中国石油和化学工业联合会提出,北京橡胶工业研究设计院有限公司等单位组织制定的《橡胶压缩耐寒系数测定仪》团体标准,现已完成征求意见稿编制工作(附件1-2)。为使标准具有科学性、先进性和适用性,现面向社会公开征求意见,欢迎社会各界对标准内容提出意见和建议。标准公示时间为一个月,截至时间为2023年2月23日。橡胶压缩耐寒系数测定仪是用来测试硫化橡胶或热塑性橡胶在常温下压缩,在低温下冷冻保持一定时间去除压缩后,测试橡胶材料在低温下性能恢复的一种测试仪器。目前国内生产压缩耐寒系数测定仪的单位也有很多,但是都没有生产该仪器的技术参数要求的标准,仪器的生产都是满足测试方法或使用需求,这样不利于仪器生产的标准化和市场的规范化,试验结果也存在一定的差异;而在一些橡胶材料规范中,压缩耐寒系数试验是其中的必检项,而这些橡胶材料也一直用在不同的领域,随着国产化的研究,这些材料的应用也会越来越广,所以规范压缩耐寒系数测定仪的技术参数尤为必要。该标准的制定可以为压缩耐寒系数测定仪生产时提供技术规范标准,同时为使用单位采购提供参考文件。本标准规定了橡胶压缩耐寒系数测定仪的术语和定义、原理、结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件,适用于测定硫化橡胶或热塑性橡胶压缩耐寒系数的测试仪器。本仪器是将一定高度的试样在常温下压缩至要求高度,再通过升降装置放置到低温环境中保持压缩一定时间,然后去除压缩力并恢复一定的时间,用测量装置测量试样高度变化值,通过计算可得出试样的压缩耐寒系数的仪器。附件1:征求意见稿.pdf附件2:编制说明.pdf
  • 我司中标武汉理工大学“热导系数测定仪”项目
    我司在与法国赛特拉姆公司的竞争中,以真诚的销售服务成功中标武汉理工大学“热导系数测定仪”项目。欢迎广大客户咨询本公司产品。
  • 短讯:五洲东方EKO导热系数测定仪HC-110中标
    7月14日,五洲东方公司代理的美国EKO公司HC-110型导热系数测定仪成功中标2005年北京化工大学导热系数测定仪招标。
  • 锐拓RT8透皮扩散系统应用案例——凝胶贴膏的体外释放测试
    ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍凝胶贴膏是指原料药物与亲水性适宜的基质混合后铺设在背衬材料上制成的贴膏剂。凝胶贴膏具有含水量较高、透气性较好、载药量大、吸收效率高、无异味、皮肤刺激性小等优点,更易被患者和临床医生所接受,已成为经皮给药系统发展的热门方向之一。凝胶膏剂通常采用高分子材料为骨架材料,再加入交联剂、保湿剂、填充剂以及透皮促渗剂等形成具有一定粘度的假塑性流体。在使用时,药物成分会从骨架材料中释放出来并到达皮肤表面,进而经过表皮进入血液循环发挥作用。所以,凝胶膏剂的药物成分的释放速率和透皮吸收速率将直接影响其临床疗效,是评价凝胶膏剂的重要质量指标。凝胶膏剂的体外释放测试(IVRT)和体外透皮测试(IVPT)一般会使用Franz垂直扩散池法。本文将分享某凝胶膏剂的体外释放测试案例,希望能给您带来帮助和启发。‍‍实验方法‍实验仪器:锐拓RT800自动取样透皮扩散系统‍‍装置:锐拓改良式Franz垂直扩散池温度:32 ± 0.5℃介质:技术保密转速:300 RPM介质体积:40 mL取样量/补液量:1 mL凝胶膏剂直径:16 mm筛选滤膜‍‍凝胶膏剂的体外释放测试一般会选择合适的惰性和商业化的人工膜。待测样品在不同滤膜的透过速率可能不同。在进行方法开发时,应充分考察滤膜对样品的释放速率的影响。‍下图展示了在滤膜筛选过程中,凝胶膏剂样品在其中三款滤膜下的体外释放测试结果。综合考量方法开发过程中的其他因素后,决定使用滤膜A作为测试滤膜。‍实验结果通过前期的方法开发,上样量、滤膜、介质、介质体积、转速等关键参数已经确定。并在后续阶段,对测试方法的准确度、重复性和区分力等关键指标进行了验证。按照已经制定的方法,对凝胶膏剂样品进行体外释放测试。然后,根据 USP测试结果如下图所示,累积释药量曲线的横坐标为时间的平方根。凝胶膏剂样品的释放一般遵循 Higuch 公式,即药物的累积释药量与时间的平方根成正比。将 6 个测试样品在各个取样时间点的累积释药量与取样时间的平方根进行线性回归,得到回归方程和相关系数,并取其斜率值为释药速率常数。结果讨论结果表明,Franz垂直扩散池法的精密度高,重现性好。可适用于凝胶膏剂的体外释放测试,为乳膏产品的配方开发提供有价值的体外释放度测定数据。得益于锐拓 RT800 自动取样透皮扩散系统的高精度自动化设计,有效地减少实验系统或手动操作引入的误差,让测试结果的重复性更加理想。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
  • 福建省计量院新建成一项福建最高计量标准
    日前,由福建省计量院建立的“氯离子电通量和扩散系数测定仪”福建省最高计量标准通过了专家组考核。  氯离子电通量和扩散系数测定仪是测定混凝土抗氯离子渗透性能的试验仪器,混凝土抗氯离子渗透性能是衡量混凝土耐久性的一个重要指标。该类仪器已在厦深铁路、向莆高速铁路、厦漳跨海大桥、翔安海底隧道、平潭海峡大桥等以钢筋混凝土为主体的基础设施建设中得到了广泛应用。省计量院建成氯离子电通量和扩散系数测定仪校准装置,将为我省相关仪器使用单位提供校准技术服务,为保障我省重大基本建设工程质量提供技术支撑,社会效益和经济效益显著。文章转载自:国家质量监督检验检疫总局
  • 中国半导体十大研究进展候选推荐(2022-015)——超高热导率半导体-砷化硼的载流子扩散动力学研究
    以下文章来源于国家纳米科学中心 ,作者刘新风课题组1 工作简介——超高热导率半导体-砷化硼的载流子扩散动力学研究国家纳米科学中心刘新风研究员团队联合休斯顿大学包吉明团队和任志锋团队在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得重要进展,为其在集成电路领域的应用提供重要基础数据指导和帮助。相关研究成果发表在Science杂志上。随着芯片集成规模的进一步增大,热量管理成为制约芯片性能越来越重要的因素。受散热问题的困扰,人们不得不牺牲处理器的运算速度。从2004年后,CPU的主频便止步在了4 GHz,只能通过增加核数来进一步提高整体的运算速度,然而这一策略对于单线程的算法却是无效的。2018年,具有超高热导率的半导体c-BAs的成功制备引起了人们极大兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs不仅具有高的热导率,由于其超弱的电声耦合系数和带间散射,理论预测c-BAs还同时具有非常高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中是非常罕见的,有望将其应用在集成电路领域来缓解散热的困难并且能够实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有非常重要的意义。虽然c-BAs被制备出来,但样品中广泛分布着不均匀的杂质与缺陷,为其迁移率的测量带来极大的困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,然而电极的大小制约着其空间分辨能力,并直接影响到测试的结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。通过大量的样品反复比较,研究团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出了具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数),接近0的拉曼本底,极微弱带边发光的高纯样品。进一步,研究团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到了10-5量级, 空间分辨能力达23 nm。利用该测量系统,详细比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约 1550 cm2V-1s-1, 这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究团队还发现了长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。立方砷化硼高的载流子和热载流子迁移速率,以及其超高的热导率,表明其可以广泛应用在光电器件、电子元件中。该研究工作厘清了理论和实验之间存在的巨大差异的具体原因,为该材料的应用指明了方向。图1. 瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm (B)不同时刻的瞬态反射显微成像(标尺1微米) (C)典型的载流子动力学 (D)0.5 ps的二维高斯拟合 (E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。国家纳米科学中心副研究员岳帅为文章第一作者,刘新风研究员为通讯作者。文章的共同第一作者为休斯顿大学田非博士(现中山大学教授),共同通讯作者为休斯顿大学包吉明教授和任志锋教授。该研究工作得到了中国科学院战略性先导科技专项(B类)、国家自然科学基金委项目、万人计划青年拔尖人才计划、科技部重点研发计划、科学院仪器研制项目等项目的大力支持。2作者简介通讯作者刘新风,国家纳米科学中心研究员,博士生导师。2004年获东北师范大学学士学位。2007年获东北师范大学硕士学位。2011年获中科院大学博士学位。2015年中科院海外人才计划加入国家纳米科学中心。2021年获中组部人才计划支持。目前担任中国科学院纳米标准与检测重点实验室副主任。研究方向为半导体材料微纳尺度光与物质相互作用光谱和物性研究。近年来在Science, Nat. Mater., Adv. Mater., Nano Lett.等期刊上发表论文210余篇,总引用15000余次,H因子61。担任Nat. Nanotech., Sci. Adv., Nano Lett., Adv. Mater. 等国际学术期刊审稿人。任Journal of Physics: Photonics, Nano Materials编委会委员,InfoMat, Materials Today Physics, Materials Today Sustainability, Frontiers of Physics青年编委。通讯作者包吉明,美国休斯顿大学电子与计算机工程系教授,博士生导师。美国物理学会会士,美国光学学会会士。2003年于密歇根大学获得博士学位,导师Roberto Merlin,2003年-2008年在哈佛大学做博士后研究,合作导师为Federico Capasso。2008年加入美国休斯顿大学电子与计算机工程系。主要研究方向为新型纳米材料的制备与纳米光电子学研究。发表文章250余篇,引用量19000,H因子62。通讯作者任志锋,教授,博士生导师。现为美国休斯顿大学物理系M.D. Anderson讲席教授,德克萨斯州超导研究中心主任。1984年在西华大学获得本科学位,1987年在华中科技大学获得硕士学位,1990年在中科院物理所获得博士学位。他的研究集中在具有高ZT值和高功率系数的热电材料、极高热导及载流子迁移率的砷化硼单晶、用于提高石油采收率的纳米材料、电解水产制氢催化剂、用于捕获和消灭SARS-CoV-2冠状病毒的加热过滤器、碳纳米管、太阳能转换材料、柔性透明电子器件和超导材料及其应用等。第一作者岳帅,国家纳米科学中心副研究员。2016年于中科院物理所获理学博士学位,导师翁羽翔研究员。2017年-2020年在电子科技大学-美国休斯顿大学从事博士后研究,合作导师王志明教授和包吉明教授。2020年加入国家纳米科学中心。长期从事超快光谱研究。在Science, PNAS, Nature Materials 等期刊上发表论文20余篇,申请专利5项。第一作者田非,中山大学材料科学与工程学院教授,博士生导师。2012年本科毕业于南开大学物理科学学院,2013年进入美国休斯顿大学物理系攻读博士学位,导师是任志锋教授。2018年获得博士学位后,继续在任志锋教授课题组从事博士后研究。2020年起加入中山大学材料科学与工程学院。长期从事新型散热材料的合成和制备,基本性质的表征和分析,以及相关应用的设计和开发。目前已在国际主流学术期刊发表论文三十余篇。
  • 隆重上市 | 合邦科仪VDC12 Plus透皮扩散仪性能验证表现
    体外释放实验(IVRT)是目前评价半固体制剂(如乳膏剂、软膏剂、凝胶剂等)处方工艺的重要手段,主要用于外用制剂的药学质量控制,是药物关键质量属性之一,可用于表征某些工艺、配方和/或生产的变更对药品的影响,也可用于药品开发过程中处方工艺的筛选研究。扩散池法是进行半固体制剂体外释放实验(IVRT)的可靠方法,该方法在美国药典 (USP) 1724 半固体药品性能测试中有详细记载。合邦科仪现重磅推出新产品——VDC12 Plus透皮扩散仪,用于软膏、硬膏、涂抹剂、洗剂、薄膜、气雾剂等的体外释放测试,其设计满足USP<1724>,FDA、EMA、PMDA等法规和指导原则的标准。VDC12 Plus透皮扩散仪搭载先进的自动取样技术,可完成自动排出气泡、自动取样、自动采集样品、自动补液、自动清洗,使药物透皮释放实验更加准确高效。VDC12 Plus 透皮扩散仪VDC12 Plus 透皮扩散仪产品特点:一体化设计一体化设计使得仪器整体尺寸更小,占用空间更少;同时优化管路设计,减少了管路死体积,让实验数据可靠性获得有效提升;7×2 设计可以两侧设计不同的实验参数,如温度、转速、取样时间。同时每组6+1的设计满足法规要求;一台仪器相当于两台,可以同时完成两组不同实验;空白位满足法规要求的空白位设计,在进行IVPT实验时,更方便设计非给药对照组,可排除皮肤基质及其他潜在杂质的干扰。为了验证VDC12 Plus透皮扩散仪的性能,我们对利多卡因乳膏样品的体外释放速率进行了测试,实验详情如下:01实验目的通过测试样品,对透皮扩散仪在体外释放实验过程中的性能进行验证。02样品信息样品剂型:利多卡因乳膏03主要分析仪器1)VDC12 Plus 透皮扩散仪(HB合邦科仪)2)分析天平3)液相色谱-紫外检测器(HPLC-UV)04体外释放实验参数溶出装置:透皮扩散装置温度:32℃ ± 1℃标准池:12 ml取样量:10ml取样时间:分别在第0.5h、1h、2h、3h、4h、5h、6h时进行取样05液相色谱方法参数流动相:甲醇:0.3%磷酸氢二铵 67:33色谱柱:C18-150×4.6mm流速:1.5 ml/min进样量:20 μl检测波长:210 nm06测试结果6.1 累计释放曲线6.2 拟合曲线在0.5h、1h、2h、3h、4h、5h、6h时间点,以单位面积累计释放量(ug/cm2)(y轴)对时间(h)(x轴)做图,拟合线性回归方程(部分取样模式)如下:6.3 释放速率07结论在0.5h、1h、2h、3h、4h、5h、6h时间点对样品(同时7个扩散池)平行进行实验。0h时,扩散池中未检出目标物;在0.5h-6h的7个取样点分别对7个扩散池的累计释放量做线性考察,释放速率的平均值为430.9;释放速率RSD为3.42%。FDA IVRT测试工业指南中提到,根据每个扩散池的释放速率(斜率)计算的批内精密度,其变异系数(%CV)应不大于15%。在上述实验中,采用合邦科仪VDC12 Plus 透皮扩散仪对利多卡因乳膏进行的体外释放实验(IVRT),7个扩散池的释放速率(斜率)RSD为3.42%,远远小于FDA IVRT测试工业指南中提到的15%,这表明合邦科仪VDC12 Plus 透皮扩散仪的性能完全符合FDA IVRT测试工业指南的法规要求。
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 界面张力测定仪的行业应用
    首先,在石油化工行业中,界面张力测定仪发挥着至关重要的作用。石油化工企业需要了解油水界面的张力,以此来判断油藏的开采难度和原油的采收率。界面张力测定仪能够快速准确地测量油水界面的张力,为石油化工企业提供重要的数据支持。其次,在医药行业中,界面张力测定仪也有着广泛的应用。医药企业需要研究药物对生物体的作用机制,其中药物的溶解性和渗透性是关键因素。界面张力测定仪可以用来研究药物溶液的表面张力,从而帮助医药企业了解药物的渗透性和生物利用度,为新药的研发提供重要的技术支持。此外,在环保行业中,界面张力测定仪也扮演着重要的角色。环保企业需要监测水体的污染情况,包括油污和有机污水的处理。界面张力测定仪可以用来监测水体的表面张力,帮助环保企业了解水体的污染程度和扩散趋势,为污染治理提供重要的参考依据。最后,在食品行业中,界面张力测定仪也有着不可忽视的作用。食品企业需要了解食品的表面张力和润湿性等性质,以此来判断食品的质量和口感。界面张力测定仪可以用来快速准确地测量食品的表面张力,为食品企业提供重要的质量检测手段。综上所述,界面张力测定仪在各个行业中都有着广泛的应用价值。通过了解界面张力测定仪的应用,我们可以更好地认识到其在各个行业中的重要作用,并为未来的科技创新和发展提供重要的参考依据。
  • 福岛核电站放射性物质乘北风向日本各地扩散
    环球网记者张哲报道 韩联社3月15日援引日本媒体的报道称,因福岛核电站爆炸而泄露的放射性物质正在乘北风向日本各地扩散开。  报道称,包括东京在内的日本关东地区,已检测到比通常更高的放射性物质。在茨城县检测到的放射性物质比平常高出100倍,神奈县的放射性物质含量比平时高出近10倍。此外,在千叶县及市原县也检测到了较高的放射性物质。  日本文部科学省表示,现在检测到的数值虽然对人体健康没有太大影响,但已要求各地的有关部门提高测定频率。  另据日本共同社3月15日消息,福岛核电站3号机组附近测量结果显示,核辐射水平比法定标准高出400倍。
  • 加拿大:三文鱼测到放射元素 福岛核污染扩散至北美
    加拿大维多利亚大学的海洋学专家近日表示,他们在加拿大西海岸的三文鱼身上,首次检测到铯-134放射性元素,证明日本福岛核污染已经扩散到北美地区。这是在欧美媒体近期陆续报道北美太平洋沿岸地区出现遭到核污染鱼类后,加拿大专家首次证实这一消息。央视驻多伦多记者前往维多利亚大学采访了这位专家——杰伊卡伦教授。  杰伊卡伦是维多利亚大学地球和海洋科学院的教授,从2014年开始,他和他的研究团队以及600名志愿者,开始对福岛核污染的扩散进行跟踪研究,他们收集了400多种鱼类和海水样本用来检测。  维多利亚大学地球和海洋科学院教授 杰伊卡伦:为了检测鱼体内的人工放射性元素,2015年我们捕获了一些鱼,这些鱼和我们在过去3年里捕获过的400多条鱼不同。其他鱼我们没有检测出来人工放射性元素,在这些鱼身上我们检测到了另一种人工放射性元素铯-137,于是我们就决定来测定其含量以及与福岛核事故的关系。我们的方法就是找到铯 -134,因为这种同位素有2年的半衰期。我们发现了铯-134,说明鱼已经受到福岛核事故影响。  环境中存在着微量的铯-137与铯-134,它们都是人类核活动的产物。铯-137的半衰期为30年,因此在三文鱼中如果检测到铯-137,也有可能来自其他核活动,如核试验等。铯-134的半衰期约为2年,而福岛核事故发生在2011年,因此如果从太平洋中检测到铯-134,就能确定是来自福岛核泄漏,它也因此被称作是“福岛核污染的指纹”。
  • 外用制剂质量控制仪器——透皮扩散仪
    p style="text-indent: 2em text-align: justify "药物的透皮吸收主要包括三个步骤:strongspan style="color: rgb(255, 0, 0) "释放/span/strongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "、/span/spanstrongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "/span渗透/span/strongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "和/span/spanstrongspan style="color: rgb(255, 0, 0) "span style="color: rgb(0, 0, 0) "/span吸收进入血液循环/span/strong。为了评价外用制剂透皮吸收的效果,可以使用体内和体外模拟的方法来检测。/pp style="text-align: justify "  体内检测透皮吸收的效果可以使用同位素示踪法。待检测药物在动物皮肤表面贴用一定时间后,相关物质会在动物体内到达稳态时。检测血药浓度即可评价。/pp style="text-align: justify margin-bottom: 20px "  体外检测可以选用透皮吸收仪。主要应用的有水夹层透皮扩散仪以及干热透皮吸收仪。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong1.a href="https://www.instrument.com.cn/netshow/SH104382/" target="_self" 美国禄亘LOGAN/a/strong/span/pp style="text-align: justify margin-bottom: 10px "  a href="https://www.instrument.com.cn/netshow/C323148.htm" target="_self" textvalue="LOGAN 913 水夹层全自动透皮扩散取样系统"span style="color: rgb(0, 112, 192) "strongLOGAN 913 水夹层全自动透皮扩散取样系统/strong/span/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C323148.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 393px height: 206px " src="https://img1.17img.cn/17img/images/202006/uepic/2c5f94ee-0ac5-4203-8302-c45e5ae480dd.jpg" title="1.1-LOGAN 913 水夹层.png" alt="1.1-LOGAN 913 水夹层.png" width="393" height="206"//a/pp style="text-align: justify margin-top: 10px "  LOGAN 913系统采用模块化设计。全自动透皮取样的系统,将经皮吸收的样品精准的传输到HPLC小瓶或者样品试管中,节省时间。系统包括FDC-6T透皮扩散池控制台、SYP系列注射泵、DSC-800系统控制器和SCR-DL样品收集器。913系统可以配置6个扩散池或12个扩散池。可同时从6、12或24(可选择)个扩散池取样,设20个取样点。配备机械式自动倾斜除气装置。/pp style="text-align: justify margin-bottom: 10px "  a href="https://www.instrument.com.cn/netshow/C323119.htm" target="_self" textvalue="LOGAN SYSTEM 918-12干热透皮扩散仪"span style="color: rgb(0, 112, 192) "strongLOGAN SYSTEM 918-12干热透皮扩散仪/strong/span/a/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 429px height: 251px " src="https://img1.17img.cn/17img/images/202006/uepic/59e68541-2348-4e52-8835-fb737596b4c5.jpg" title="1.2-LOGAN 918 干热.png" alt="1.2-LOGAN 918 干热.png" width="429" vspace="0" height="251" border="0"//pp style="margin-bottom: 15px "  LOGAN SYSTEM 918-12是一款采用新技术、模块化设计的全自动12位透皮扩散系统。主机由2个DHC-6TD干加热透皮扩散仪、SCR-DL样品收集器、SYP-12L-10 mL注射泵和DSC-800系统控制器等多个模块组成。可用于半固体制剂、局部制剂等药物的渗透率和释放率的测试,也可用于日化产品的渗透率测试。如膏剂、凝胶剂、涂剂、透皮贴剂、洗剂、面膜、乳液和防晒霜等。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong2. 日本柯是美span style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C316787.htm" target="_self"span style="color: rgb(0, 112, 192) "CosMed TransView C12药物透皮扩散试验仪/span/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C316787.htm" target="_self"img style="max-width: 100% max-height: 100% width: 295px height: 234px " src="https://img1.17img.cn/17img/images/202006/uepic/2e6bca95-acdc-4d23-9c01-1a8134506d2f.jpg" title="2. 日本柯是美.png" alt="2. 日本柯是美.png" width="295" height="234"//a/pp style="text-align: justify margin-bottom: 10px margin-top: 10px "  TransView C12药物透皮扩散试验仪配有精确的恒温控制系统和结构设计,并且安装扩散池简单方便。适用于外用膏剂,水剂等各种外用剂型。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C316787.htm" target="_self"img style="max-width: 100% max-height: 100% width: 470px height: 329px " src="https://img1.17img.cn/17img/images/202006/uepic/9a2e5015-cc20-466f-91da-a3228c8c3b5f.jpg" title="2.2-日本柯是美.png" alt="2.2-日本柯是美.png" width="470" height="329"//a/pp style="text-align: justify margin-bottom: 15px margin-top: 10px "  铝制恒温槽控制在32℃和37℃恒温。内置速度可调磁力搅拌装置。接收液通过活塞泵分别向12个扩散池供应。根据设置会显示下次取样时间,以及最终取样时间等状态。扩散池种的样品可以被自动收集到HPLC样品瓶中,最多20次采样。扩散池为塑料材质,在实验皮肤表面发生的气泡可以自动排出 接收池适用于纯净水,缓冲液,酒精等接收液。此外,有Franz改良垂直式扩散池。机器既可以全自动操作,也可以手动操作。浓度校正软件TransSoft适配。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong3. Hanson Research/strong/spanspan style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C306167.htm" target="_self"Phoenix™ 干加热式透皮测试系统/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C306167.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 462px height: 253px " src="https://img1.17img.cn/17img/images/202006/uepic/e416feef-f339-46fc-9f2c-d19b111e5a93.jpg" title="3.1-Hanson Research.png" alt="3.1-Hanson Research.png" width="462" height="253"//a/pp style="text-align: justify margin-top: 10px "  Hanson Phoenix™ 干热透皮池系统可用于透皮扩散试验。DB-6样品池6个一组,是RDS扩散工作站的核心系统。相较传统水浴加热套效果显著增强。透皮池内置加热搅拌控制温度和速度(200–900转,温度25–40° C)。可以选择不同的硼硅玻璃透皮池以及各种混合器。接收池10–30 mL,透皮池组的盖子可容纳25 mm膜,孔径9–20 mm,剂量0.25–6.2 mL。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C306167.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 358px height: 312px " src="https://img1.17img.cn/17img/images/202006/uepic/19b961a2-2126-4644-96ad-3825dd8ece5d.jpg" title="3.2-Hanson Research.png" alt="3.2-Hanson Research.png" width="358" vspace="0" height="312" border="0"//a/pp style="text-align: justify margin-bottom: 15px margin-top: 10px "  通过“XYZ平台”探针自动采样,也可以手动使用标准移液枪采样。六个模块允许手/自动取样平滑转换。最多运行两个系统(24个透皮池)。内置监测、诊断、和报告功能,可存储100个协议和50个用户。显示参数包括速度、温度、时间、距下取样点的时间等信息。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong4. 精拓仪器span style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C223341.htm" target="_self"span style="color: rgb(0, 112, 192) "TP-6 透皮扩散仪/span/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C223341.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 252px height: 233px " src="https://img1.17img.cn/17img/images/202006/uepic/3fe38a3d-feb0-495c-a545-ca2de31360ba.jpg" title="4-精拓仪器.jpg" alt="4-精拓仪器.jpg" width="252" height="233"//a/pp style="text-align: justify margin-bottom: 15px margin-top: 10px "  TP-6智能透皮扩散仪是一款借鉴国外透皮扩散实验装置推出的产品。该仪器能客观的将药物制剂通过动物活体皮肤在规定的溶剂中渗透的速度和程度反应出来。TP-6智能透皮扩散仪采用微电脑测控,全数字化电路,高精度温度传感器及独特的水浴恒温系统。操作简便,性能可靠,数据精确。技术指标完全符合国家医药行业相关标准,是药厂、学校、科研单位及化妆品行业检验透皮释放度的仪器。/pp style="text-align: justify margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong5. 天美达/strong/spanspan style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 0, 0) "——/spana href="https://www.instrument.com.cn/netshow/C262802.htm" target="_self"TP-01药物透皮扩散仪/a/strong/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C262802.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 416px height: 283px " src="https://img1.17img.cn/17img/images/202006/uepic/068c7762-ef4f-47b4-8dfc-8e08a27b14d0.jpg" title="5. 天美达.png" alt="5. 天美达.png" width="416" height="283"//a/pp style="text-align: justify margin-top: 10px text-indent: 2em margin-bottom: 20px "  天美达TP-01药物透皮扩散仪配备两用搭载台。搭载台的上面、下面可以分别用于立式透皮扩散池或卧式透皮扩散池的实验。扩散池带水夹套,采用外循环超级恒温水浴加热系统。卧式扩散池体积4 mL/12 mL 立式扩散池体积7 mL(可定制)。磁力电机转数为300–1,100 r/min。正倒计时电子式计时器:附记忆、时钟(1 s–24 h)、磁铁,超大声、可随身携带、可定时提醒。可选择用于眼角膜、舌及口腔黏膜等的小面积夹片附件(Φ3/Φ5/Φ8 mm 聚四氟乙烯)。span style="background-color: rgb(255, 192, 0) "br//span/pp style="text-align: left margin-top: 10px text-indent: 2em margin-bottom: 20px "span style="background-color: rgb(255, 192, 0) "欲了解更多信息,/span/pp style="text-align: left margin-top: 10px text-indent: 2em margin-bottom: 20px "span style="background-color: rgb(255, 192, 0) "请点击链接进入a href="https://www.instrument.com.cn/zc/1131.html" target="_blank" style="color: rgb(255, 0, 0) background-color: rgb(255, 255, 255) text-decoration: underline "span style="color: rgb(255, 0, 0) background-color: rgb(255, 255, 255) "strong【药物透皮扩散试验仪】/strong/span/a专场。/spanbr//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c4ddd4ec-7712-4479-9761-ff4d6bd40d82.jpg" title="分割线.png" alt="分割线.png"//pp style="margin-bottom: 15px text-align: left "span style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px color: rgb(227, 108, 9) "strong友情链接:药物相关检测仪器/strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px background-color: rgb(255, 255, 255) color: rgb(63, 49, 81) "strong【点击图片】/strong/spanstrong进入相关文章/strong/spanbr//pp style="text-align: right "a href="https://www.instrument.com.cn/news/20200511/538172.shtml" target="_blank"img style="max-width: 100% max-height: 100% width: 432px height: 150px " src="https://img1.17img.cn/17img/images/202006/uepic/f5a7c5db-6334-41e6-9ad7-0203e20d0055.jpg" title="4.jpg" alt="4.jpg" width="432" vspace="0" height="150" border="5"//a/pp style="text-align: right "a href="https://www.instrument.com.cn/news/20200428/537308.shtml" target="_blank"img style="max-width: 100% max-height: 100% width: 432px height: 157px " src="https://img1.17img.cn/17img/images/202006/uepic/1170d98e-ff8b-40cf-afde-91667adefaa4.jpg" title="3.jpg" alt="3.jpg" width="432" vspace="0" height="157" border="5"//a/pp style="text-align: justify margin-top: 10px "span style="color: rgb(0, 112, 192) "strong【药典——药物检测】系列文章,持续更新中… … /strong/spanbr//p
  • 涡动相关法测量农田污泥施肥后氨气挥发扩散动态变化
    Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north ItalyRossana Monica Ferraraa, Marco Carozzib,*, Paul Di Tommasic, David D. Nelsond, Gerardo Fratinie, Teresa Bertolinif, Vincenzo Magliuloc, Marco Acutisg, Gianfranco Ranaaa Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani 5, 70125 Bari, Italy b INRA, INRA-AgroParisTech, UMR 1402 ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, 78850 Thiverval-Grignon, Francec National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems (CNR-ISAFoM), 80056 Ercolano, Italy d Aerodyne Research Inc., Billerica, MA 01821, United States e LI-COR Biosciences GmbH, Siemens Str. 25a, 61352 Bad Homburg, Germany f Euro-Mediterranean Center on Climate Change (CMCC), Via Augusto Imperatore 16, 73100 Lecce, Italy g University of Milan, Department of Agricultural and Environmental Sciences, via G. Celoria 2, 20133 Milan, Italy摘要2009和2011年春在意大利北部农田两次测量污泥施肥后氨气排放扩散试验,从施肥、耕地作业至排放现象结束用窝动相关法EC测量氨气通量变化。涡动相关法系统配备Aerodyne氨气快速测量仪能持续监测施肥后氨气挥发情况,分别在24h和30h后耕地作业监测到氨气挥发量突然降低。其中两次试验最大氨气排放为138.3和243.5ugm-2s-1,施肥7天后NH4-N总损失为19.4%和28.5%。试验发现涡动相关法和反向拉格朗日随机模型在动态排放量化结果一致,同时由于排放扩散和气象条件关系因素造成两次试验氨损失不同。结果表明为了提高施肥后氮效率耕地作业最好接近24h内进行,气候条件限制氨气排放(如多云、低温)。概述氨气在气候化学和许多与之相关排放和沉降环境问题扮演重要角色。在欧盟27个成员国中90%氨气来源农业肥料的储存和扩散,畜牧业和合成肥料使用。评估施肥作业中氨气损失与田野和农场氮平衡关系提高农业氮效率合适技术。试验地点试验地点时间为2009(SI-09)3.9ha和2011(SI-11)4.3位于意大利北部Po Valley,两块试验田相邻且农业管理相近。SI-09试验时间为2009.3.26-4.3污泥施肥为87m3/ha,8:00am开始,24h后耕地作业深25cm,持续时间分别为7和1.5h,氨态氮总量为95kg/ha NH4-N。SI-11试验时间为2011.4.6-4.13污泥施肥为75m3/ha,8:30am开始,30h后耕地作业深25cm,持续时间分别为5和2h,氨态氮总量为109kg/ha NH4-N。测量方法01两种氨气浓度测量方法ALPHA被动式扩散采样器位于逆风向距离试验田2.3km测量氨气环境背景值,柠檬酸滤纸捕获氨气比色法测量,。Aerodyne QC-TILDAS氨气快速分析仪监测分子在967cm-1处对辐射的吸收测量每摩尔湿空气摩尔氨气,为了保证数据可靠性每6h用标准化氨气罐进行自动校正。02涡动相关法(EC)测量氨气通量把垂直方向的瞬时风速和氨气浓度的协方差定义为氨气垂直方向通量,采样间隔为30分钟,并考虑到空气密度改变WPL对其结果的影响,WPL作用通常取决于气体背景浓度和通量的等级。EC系统放置在试验田中间,离边界SI-09为78m和SI-11为93m,配备Gill-R2 Sonic Anemometer三维声波风速仪和Aerodyne QC-TILDAS氨气浓度测量仪, 模拟信号从QC-TILDAS传导至Sonic Anemometer,通过EddySoft 软件同时将模拟信号和风速数据进行整合,使用EddyPro软件线下计算每半小时氨气通量。在湍流通量计算失效后系统对试验数据自动进行筛选,同时由于EC系统光谱衰减不可避免性使用频率响应修正系数法对通量损失进行校准。03分散模型反向拉格朗日随机模型(bLS)推测氨气的扩散,使用三维声波风速仪的湍流参数u*,L和Aerodyne QC-TILDAS测量的氨气浓度,ALPHA背景浓度值结合GPS记录排放源区进行建模。数据分析01气象数据对SI-09和SI-11气象数据和微气候数据进行整理(雨量、温度、湿度、风速、太阳辐射、摩擦速度u*和稳定参数z/L)对比,总体SI-09比SI-11气候条件更稳定不利于氨气扩散。02通量源区SI-09试验中白天和晚上89和87%通量来源于试验田中,在SI-11试验中白天和晚上96和94%通量来源于试验田中。SI-09白天(40m比61m)和晚上(76m比164m)的通量源区最大峰值都小于SI-11,主要归结于SI-11更高的大气稳定性。03氨气浓度和氨气通量氨气浓度分析:如图Fig.6由ALPHA被动式采样器和Aerodyne QC-TILDAS测量氨气浓度对比结果看出两种测量结果趋势相似,证实了采集数据的有效性,SI-09和SI-11的RMSE为114.3和102.5ugNH3m-3,R2为0.89和0.9,斜率为1.21和0.95,CRM为-0.04和-0.06。在SI-09中ALPHA和QC-TILDAS浓度有明显差别,周围环境条件是实质因素如高湿度97.7%、低温11.7℃和低风速0.88m/s。氨气通量分析:如图Fig7a-d显示两次试验氨气浓度值和通量表以及空气土表温度湿度总辐射和降雨量。两次试验氨气通量巨大差异主要由于天气条件,特别是SI-11空气温度比SI-09高有利于挥发,同时SI-09降雨和空气温度降低减少了氨气挥发;虽然两次试验耕地作业时间不同,但从标准化氨气累计损失看时间动态非常相似,天气条件是影响氨气浓度和通量主要因素。下图Fig.9显示EC系统和bLS对两次试验通量对比,bLS对于SI-09通量数值稍有高估,对于SI-11有些低估。但显出两种试验方法在两次试验的一致性。结论Aerodyne QC-TILDAS气体监测仪在测量粘性气体NH3优势原理:Aerodyne痕量温室气体&同位素气体监测仪使用可调谐红外激光直接吸收光谱(TILDAS),在中红红外波长段,来探测分子最显著的指纹跃迁频率。直接吸收光谱法,可以实现痕量气体浓度的快速测量(1s);采用像散型多光程吸收池技术实现激光可控通道数大于200个,有效测量光程可达76m甚至更长,有效的提高氨气分子的测量精度。NH3、HONO等粘性分子测量优势:粘性气体NH3化学性质活跃,粘性非常大,易于附着在器壁或固体颗粒上,且其易于在气相和颗粒相之间相互转化,这些特性造成了其测量的困难性。★测量精度为ppt级 1S 100SNH3 50ppt 10pptHONO 210 ppt 75 ppt★活性钝化系统(Aerodyne Active Passivation system),提高粘性分子的响应时间,且对高频10HZ测量有着很小的损失量(如图)采用活性钝化系统后,NH3测量的时间常数和高频通量变化(时间常数更快,高频通量损失修正更少)★惰性颗粒分离装置(Aerodyne Inertial Inlet),有效减小颗粒对粘性分子的影响,保证进样口及内部镜片的整洁★特殊渗透管路(permeation tube),减小管路壁的黏着,并有效减小管路中的水凝结及压力★针对全自动动态箱测量,采用特殊telflon材料,具备critical orifice装置,多通路同时进气,并采取气压式控制方式,降低能耗。★采用全新中红外光谱范围,可以测量更多分子,并保证精度,如NH3、O3和CO2;HONO、N2O可在一个激光下测得,如果采用双激光,可测量更多的气体分子。★与普通气体分子具备一致的快速响应时间(10HZ)★适配于涡度协方差测量和全自动箱自动测量,并可通过独特采样系统实现自由切换。活性钝化系统 Aerodyne 双激光直接吸收法分析仪在N2O、NH3、HONO、COS等痕量温室气体及含N同位素气体δ15Nα /δ15Nβ /δ18O;含C同位素气体δ13C/δ18O、H16OH/H18OH/H16O;12C17O16O/13C18O16O 及δ13C/δD/CH4 的应用文献和观测方案,请来电垂询。
  • 【技术指导】泡沫特性测定仪的操作步骤和注意事项
    泡沫特性测定仪操作步骤、注意事项A1080技术指导产品介绍产品名称:泡沫特性测定仪产品型号:A1080概 述: 泡沫特性测定仪适用标准:GB/T12579《润滑油泡沫性能测定法》,测定发动机润滑油、齿轮油、液压油等油品的泡沫特性,用以评定润滑油的泡沫倾向性及泡沫稳定性程度,本仪器采用高精度数字显示控温模式,具有控温精度高,显示直观,操作简便等特点,科技含量高,并配有数字电子计时功能。仪器采用分体、集成组合,移动方便,造型美观。仪器可按GB/T12579《润滑油泡沫性能测定法》试验方法进行操作。适用于化工、电力、石油等行业。 操作步骤1、按装箱单清点零配件及检查仪器外观是否完好。2、使用仪器前,仔细阅读说明书及实试验方法汇编。3、将仪器平稳的放在工作台上,按仪器连接图连接好仪器,插上电源线,24℃浴缸在左侧,93.5C在右侧,将两浴缸加入纯净水,高度具缸上沿60mm为宜,插上电源线,检查无误后,打开电源:电源指示灯亮,左右控温表应显示浴内温度。按控温表说明书设置所需要的温度(详见第六项控温表的使用),打开加热开关、搅拌开关仪器自动进入控温状态,做24℃低温时将投入式制冷器制冷头插入浴内相应孔内,打开制冷开关,制冷器工作。4、将清洁的量筒放入试样(详见GB/T12579《润滑油泡沫性能测定法》试验方法),置于24℃加热浴内,连接好气源,将气体扩散头经胶塞放入试样内,当达到24℃恒温时,在进行吹气操作。93.5℃样品测试与24℃测试方法类同。注意事项 1、试验中要注意控制气体流量,调整好流量计数值。 2、试验结束后应将量筒、气体扩散头清洗,清洗方法见标准中清洗部分,烘干以备下次再用。 3、气体扩散头要保持清洁,以免试样残留物堵塞气体渗透孔,以保证测量精度;清洁时应用丙酮及石油醚反复清洗,在低温下烘干。 4、该仪器为精密仪器,玻璃器皿较多,使用时要轻拿轻放,以免人为损坏。 5、仪器应在无腐蚀干燥的环境下使用,加热器防止在空气中使用,应在浴内加满介质,距浴缸顶部向下60mm为宜。 6、试验结束后,应及时关闭电源
  • 诚招德国Linseis热分析产品区域代理
    我司为了扩大业务与市场,在互惠互利的基础下,我们诚招全国各省区专业分销合作伙伴。 德国Linseis总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。 热膨胀仪(DIL)赛贝克系数测定仪(SEEBECK)激光热扩散系数/导热系数分析系统(LFA/XFA) 热重分析系统 ( TGA) 差示扫描量热系统(DSC) 同步热分析仪系统(STA) 高温差示扫描量热仪(HDSC/DTA) 热机械分析仪(TMA) 近年来我公司代理的德国Linseis热分析产品得到市场的普遍认同。在全国各大院校、企业单位及研究中心都有我公司的产品。 我们热忱地欢迎您的来电来函!我们将根据您的需要,为您提供最为满意的专业售前、售后服务,以及技术支持和产品培训。 真诚期待与您携手共赢! 欢迎随时登陆我司主页网站www.linseis.com.cn 招商热线:021-50550642,50550643 联 系 人: 李小姐 邮  编: 201315 电子信箱: info@chanceint.com 公司地址: 上海市沪南路2653号2幢一层
  • 让您的真空设备健康快乐的工作——扩散泵篇
    扩散泵的一个主要特点是皮实耐用,如果使用保养得当,可以正常工作很多年。在安捷伦举办的“寻找最长寿安捷伦扩散泵”活动中,我们发现了好多装机20年以上还在正常工作的的安捷伦(原Varian)扩散泵。结合安捷伦技术支持团队众多工程师的多年经验, 本文总结了安捷伦扩散泵使用时的一些比较容易忽略的注意事项,使用其它品牌扩散泵的用户也可以参考。一定要使用原厂泵油安捷伦扩散泵的喷塔、加热功率等是针对特种油品设计的,其抽速、极限真空等性能参数也都是在使用安捷伦官方油品时测试的,使用非安捷伦官方油品会影响我们对扩散泵的质量保证,也不利于安捷伦工程师进行故障排查,因为不同品牌或批次的第三方泵油组分可能会有较大的差异,可能会带来抽速/极限真空不够、结晶、焦化、返油等问题,严重时甚至会在不当操作时引发爆炸等危险。注意观察油位和油的颜色冷态/热态的时候分别应该接近但不要超过Cold Full/Hot Full的标线;油的颜色应该是无色或透明度很高的红棕色,当油的颜色变深、发黑时,要及时更换。如果工艺中会产生大量的粉尘,特别是放出的泵油中能观察到大量颗粒物时,扩散泵的油池内很可能会有大量的沉积物,这些沉积物将会对泵的正常工作产生严重影响,请在每次换油时清除这些沉积物并对扩散泵进行彻底的清洗。温度保护开关一定要接入控制系统安捷伦大部分型号的扩散泵都在泵体上设置了温度保护开关,当由于冷却不足、油位不够等原因造成扩散泵温度异常时,可以及时的给出信号。在设计控制系统时,一定要把温度保护开关(常闭的干接点)接入系统,并与扩散泵加热器的供电进行互锁,以保护扩散泵。加热器不要频繁通断电扩散泵是靠泵油持续大量的汽化所产生的油蒸气来工作的,泵油的汽化量和喷射动能,跟加热器功率成正比。扩散泵正常工作时的油温是油自身的物理特性(沸点)决定的, 泵应该持续工作在沸点温度下,若停止泵油的加热意味着扩散泵将很快失去气载能力,造成抽速下降和返油量增大;因此,切勿通过加热器频繁通断电来控制油温。另外,频繁通断电将使加热器忽冷忽热,会严重影响其寿命。注意监控加热器的状态当有某根加热器烧坏时,可能会出现抽速、真空度下降,返油等问题,需要注意监控扩散泵加热器的工作状态(电流/功率),以便及时发现异常。更换加热器时,务必使用安捷伦原厂相同功率和额定电压的加热器。安装加热器时,加热器与泵底板必须紧密贴合,如果两者之间产生间隙,会造成加热器导热不良,局部温度过高,严重影响加热器的寿命。有些型号的扩散泵加热器设计了一次性的弹性压板(Crush plate),它在压紧时会产生永久变形并与加热器紧密贴合,使加热器的温度更均匀寿命更久,这些型号的扩散泵在更换加热器时,压板也要同时更换。冷却水,流量比压力更重要大型扩散泵的泵壁一般采用冷却水来进行冷却,许多客户会监控冷却水的进水压力,然而,当冷却盘管发生堵塞或部分堵塞时,即使进水压力不发生变化,冷却效果也会受到影响,而只要保证冷却水的流量,冷却水压力的变化对冷却效果的影响不大;因此,监测冷却水的流量比监测其压力更重要。另外,冷却水的连接方式,与某些设备的下进上出不同,扩散泵的冷却水是进气口处进,排气口处出,一定要按照说明书上的图示来接。减少返油,以下几点也很关键使用安捷伦扩散泵 扩散泵工作的压力越高,返油越严重。安捷伦扩散泵在刚刚开启高阀时(几帕到零点零几帕)的抽速较大,会大幅减少该压力段的抽气时间,从而减少总返油量。(请参考文章:90%的订单来自用户指定,安捷伦扩散泵口碑为什么这么好)切勿让扩散泵处理超过其最大排气量的气载 每个扩散泵都有一个最大气载的参数,扩散泵工作时处理的总气载不可以超过该数值,否则将出现严重的返油。高阀开启压力有讲究 在高阀开启的瞬间,原来由粗抽泵处理的气载将会切换至扩散泵处理,假设高阀在系统气载等于扩散泵最大气载时开启,通过公式Q=P*S就可以计算出开启压力;可以看出,使用的粗抽泵抽速越大,越需要在更低的压力开启扩散泵。排气阀门间歇关闭要不得 当前级泵切换至腔体粗抽,或者系统处于待机状态时,不要直接关闭扩散泵排气口的阀门,最好使用维持泵持续对扩散泵排气口进行抽气,保持其压力低于扩散泵可承受的最大排气压力(一般为几十帕)。增配加强型的冷帽 当需要更低的返油率时,可以增配加强型的冷帽。安捷伦提供可内置于扩散泵的加强型冷帽,可以使返油率减少90%以上,并且不增加泵的高度。原厂上门保养服务安捷伦真空提供各型号安捷伦扩散泵的上门保养服务,可以在客户现场进行扩散泵的故障排查、拆解、清洗、重新安装、换油等操作,并可以根据不同客户的具体要求订制年度保养协议,最大化的减少客户因为扩散泵故障造成的停机损失。想要了解更多,欢迎关注”安捷伦真空“公众号在线留言或者拨打下面电话联系我们。安捷伦科技中国 真空产品热线:800 820 6778 (固定电话拨打)/ 400 820 6778 (手机拨打)
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 美国怀雅特技术公司参展2010 Pittcon并发布新产品
    (SANTA BARBARA, CALIFORNIA-March 1, 2010)美国怀雅特技术公司,世界领先的绝对大分子表征仪及其软件制造商,于2010年2月28日~3月1日在美国Orlando举办的Pittcon展会上推出两款新产品:MÖ BIUζ™ 大分子迁移率测定仪;Optilab T-rEX示差折射率测定仪。 关于MÖ BIUζ™ 大分子迁移率测定仪 MÖ BIUζ™ 大分子迁移率测定仪主要用于如脂质体、病毒粒子(VLPs)、抗体、蛋白质等生物大分子迁移率的测定。该仪器融入Wyatt多项创新专利技术,使得样品测定结果的精度、重复性得到极大保障。与传统的迁移率测定仪或zeta电位仪宽范围的样品测定不同,MÖ BIUζ™ 基于以激光为光源而专门针对于生物大分子迁移率表征。因其能快速、准确、可靠的测定大分子物质迁移率而在Pittcon展会上备受关注。 带电性是所有大分子物质非常重要的基本性质。在胶体悬浮液中,大分子所带电荷的多少以及粒子与界面间的相互作用是关系溶液稳定性的极为重要因素。对于众多生物大分子如蛋白质而言,分子静电间的相互作用直接影响分子构象和性能。由于直接测定界面间电位的方法几乎不可行。因此,利用电泳迁移率表征大分子带电荷性质的测定方法已被越来越多的人们接受。 此外,作为非破坏性检测方法,光散射法还因其全部采用物理学第一原则测定大分子迁移率而备受赞赏。然而,对蛋白质类生物大分子而言,由于其分子尺寸小(5nm),且分子在溶液中的布朗运动非常明显,若要得到满意的测试结果相当困难。因此,延长测量时间法可以利用大分子迁移效应屏蔽扩散效应,从而揭示大分子物质电泳性质。在实际过程中,分子链易于受到电流驱动力的剪切,致使大分子物质受到破坏或降解,从而无法得到可靠数据。但随着溶液粒子强度的增加,驱动大分子物质电流必须增加,这种情况将极大的破坏或降解大分子。目前市场中已有的迁移率测定仪或zeta电位仪全部采用 “蒸煮”蛋白样品方式测定,且在正常试验浓度下,对于分子尺寸~5nm,仅能勉强测定其迁移率或zeta电位。 若要成功的精确测定蛋白类物质的迁移率,就必须缩短测定时间以及利用足够的测量数据来消除分子扩散效应的影响。美国怀雅特技术公司的MÖ BIUζ™ 完全突破了传统测量技术。测定时间极大缩短(绝大多数情况下60秒),不仅如此,可检测的分子尺寸下限低至2nm。该技术的使用极大降低对样品的破坏。 这点,我们可以将经过MÖ BIUζ™ 测定的样品再采用体积排阻色谱法测定得以印证。且样品的回收率98%。此外,使用MÖ BIUζ™ 另一优势,如将2mg/mL溶菌酶或0.5 mg/mL牛血清蛋白测试,其灵敏度较市场上同类产品至少高出2倍。 不仅如此,您还可以选择WyattQELS动态光散射配件同步测定大分子平移扩散系数、流体力学半径以及迁移率。而进样方式您可以任意选择,如手动进样、自动进样、注射泵进样,甚至自动滴定方式。MÖ BIUζ™ 独有的先进智能化温控系统,为试验研究、产品监控提供极大便利性和可操作性。 关于Optilab T-rEX示差折射率测定仪 Optilab T-rEX示差折射率测定仪是美国怀雅特技术公司开发的新一代示差折射率型检测仪。与Optilab rEX相比,其内嵌2GHz处理器(提高~7倍);新一代激光光源,其能量高出近50倍;其独特的双温控制系统,使得温度系统控温能力大幅提高。毫不夸张的说,Optilab T-rEX是目前世界上灵敏度最高的示差折射率型检测仪。此外,其最高检测浓度高达:蛋白质180mg/mL,右旋糖酐220 mg/mL。 详情请登陆网站:www.wyatt.com;www.wyatt.com.cn 电话:010-82292806, 传真:010-82290337 E-Mail:info@wyatt.com.cn
  • 天津爆炸烟团朝渤海方向扩散
    据人民日报天津8月13日电(记者卫庶、靳博)有微博称,在风力影响下,爆炸后可能会有有害气体向北京方向扩散。对此,天津市气象台表示,13日9时,滨海新区爆炸事件现场附近风向为西南风,风速2级(3米/秒)。根据数值模拟结果,未来24小时主导风向南至西南风,污染物扩散方向主要为东至东北方向,利于污染物向海上扩散。美国上午过境卫星terra和下午过境卫星aqua的真彩图。可以清楚看到,爆炸后产生的烟团在向渤海传输,同时不断扩散——这种扩散可以理解为“稀释”,大家不必恐慌。
  • 北京合邦兴业透皮扩散仪进入中国食品药品检验院
    中国食品药品检验院采购北京合邦兴业公司透皮扩散仪!透皮扩散系统产品特点: 自动采样透皮扩散系统符合USP@1724@ 的要求,用于软膏,硬膏,涂层,洗剂,膜,与营剂等的透皮释放测试,透皮吸收模型用于研究药物通过皮肤的渗透效率。 自动取样透皮扩散系统具有先进的自动取样技术,可完成气泡排出、样品取样、样品采集、培养基补充、取样针自动采样透皮扩散系统符合USP1724》的要求,用于软膏,硬膏,涂料,乳液,薄膜,气雾剂等的透皮释放测试。透皮吸收模型用于研究药物通过皮肤渗透的效率。自动取样透皮扩散系统具有先进的自动取样技术,可完成气泡排出、样品取样、样品采集、培养基补充、取样针清洗,使药物透皮释放试验更加准确高效透皮扩散系统人机界面 8.4英寸触摸屏,预装操作系统,满足数据完整性要求。 采样误差《土 0.1毫升。采样前自动润湿和采样后自动清洗的功能,可以保证采样精度,避免污染残留。T热恒温搅挫装置 高精度恒温加热和搅拌功能。可以同时进行每侧7个扩散池(共14个)的自动采样实验抽样针 采样针可以自动定位并倾斜到扩散池中进行自动采样,然后可以自动收集样品溶液并自动补充介质。样品采集架 适用于10毫升试管架和液相小瓶架。系统自动将样品溶液收集到试管或液相小瓶中补液和清洗罐 采样针自动将新鲜介质提取到扩散池。完成采样过程后,将自动清洁采样针。 改进的Franz垂直扩散池 改进的Franz垂直扩散池更加便携耐用,独特的采样警设计使采样过程更加方便流畅。此外,可以通过使用不同高度的搅拌器来调节扩散罐中介质的体积。灵活抽样方法 您可以设置自动采样的方法。或者用移液管手动取样。自动采集样本 采样针完成采样后,它将自动移动到样品收集架的指定位置,并将样品溶液收集到10毫升的试管或液相小瓶中。它可以同时支持每侧7个扩散池的样品收集。自动清洗采样针 采集样品后,采样针会自动移动到清洗槽,用新鲜的流动介质清洗,等待下一次采样。 完全符合数据完整性的操作系统1)软件系统:软件系统操作简单,使用方便。至少可以存储500溶解实验方法,系统的存储容量可以满足记录存储至少10年的要求。(2)用户权限管理:可以预设至少100个登录账号并保护用户登录密码。至少可以分配三种用户权限(系统管理员、实验室主管和实验分析师),用户可以根据自己的风险评估,灵活定制各种权限级别的权限规则。 (3)审计跟踪:各级个人账户的审计跟踪功能,包括登录记录、实验记录、操作记录、清理记录4)电子数据完整性:可以在实验过程中同时生成准确的电子数据。每个实验都会自动生成相应的实验记录,并支持PDF格式导出。实验记录和所有系统记录都可似检索、导年溶馨等和打印。保护所有电子数据免受随机篡改和删除。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制