当前位置: 仪器信息网 > 行业主题 > >

电容式接近开关

仪器信息网电容式接近开关专题为您提供2024年最新电容式接近开关价格报价、厂家品牌的相关信息, 包括电容式接近开关参数、型号等,不管是国产,还是进口品牌的电容式接近开关您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电容式接近开关相关的耗材配件、试剂标物,还有电容式接近开关相关的最新资讯、资料,以及电容式接近开关相关的解决方案。

电容式接近开关相关的资讯

  • 新材料领域:物联无线微功耗电容感应触摸开关
    研究人员利用新型印刷技术制备了平面型薄膜电容感应芯片,并基于迷你单片机及低功耗蓝牙无线通讯技术,开发了一种低成本的新型物联无线微功耗电容感应触摸开关技术,其可以实现远程无线触摸控制开关,无须与墙面接触,使用十分方便, 本产品应用广泛,除了常见的智能家居系统,还可以在智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用。主要技术指标(或参数):   1、功耗:50-100mW;   2、最大无线操作距离:100m;   3、无线通讯设备类型:蓝牙;   4、使用寿命:大于10万次;   5、工作温度:-10℃~60℃;   6、工作湿度: 10~95%RH;   7、符合人体工学设计;   8、外观精致时尚;   9、安装方便。   应用领域:   智能家居、智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用的远程无线触摸控制开关。   市场前景:   现代生活需要人性化的电工开关产品。电工开关是每个人每天都要亲密接触的,操控次数远超过其它电器。传统的机械式电工开关,从发明灯泡到现在一直都在使用,它满足了人们的基本控制需求。然而在各种智能电子设备早已实现了触摸操控功能的今天,传统机械式操控的墙壁电工开关已经远远落后时代的需求。   此外,电工开关企业竞争需要产品升级换代。当前,电工企业处在一个转型期,低端产品已经无利可图。据有关部门统计,目前国内生产传统开关(插座)的电工企业大约有2800余家,具备生产许可资格的约有1500余家。加上西蒙电气、罗格朗等一大批外资企业凭借资本、技术、品牌等优势纷纷抢滩中国,国内电工市场竞争空前激烈。目前主要集中在品牌、价格、外观、材质上恶性竞争,传统开关(插座)利润的赢利空间大幅度下滑。业内人士普遍认为,相对于几年前,现有各类开关(插座)产品利润下降了10%-18%,产品为微利经营状态。所以,整个电工行业需要提升产品档次,企业需要新的经济增长点。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。   相关图片:
  • 多方加速布局 传感器超2000亿市场空间待掘!
    p style="text-indent: 2em "目前,传感器产业已被国内外公认为具有发展前途的高技术产业,它以技术含量高、经济效益好、渗透力强、市场前景广等特点为世人所瞩目。我们国家工业现代化进程和电子信息产业20%以上速度高速增长,带动传感器市场快速上升。/pp style="text-indent: 2em "企查查数据显示,目前我国共有传感器相关企业4.9万家,广东省以超过9700家的企业数量排名首位,江苏、浙江分列二三名。2019年,相关企业新注册超过7600家,同比增长17.22%,今年上半年新增企业数量为2369家。此外,全行业68%的企业注册资本低于500万。/pp style="text-indent: 2em "接近传感器(也称为检测器)是电子设备,用于通过非接触方式检测附近物体的存在。因此,它们可以被用于多个行业,包括机器人技术,制造,半导体等。据工作原理,接近传感器可以分为:电感式接近传感器、电容式接近传感器、磁感应传感器等。/pp style="text-indent: 2em "br/ 其实在智能化场景中常用的两种接近传感器是电感式接近传感器和电容式接近传感器。电感式接近传感器只能检测金属目标。这是因为传感器利用电磁场,当金属靶进入电磁场时,金属的电感特性改变了场的特性,从而警告接近传感器存在金属靶,根据金属的感应方式,可以在更大或更短的距离处检测目标。br/ br/  电感式接近传感器也叫涡流式传感器,由三大部分组成:振荡器、开关电路及放大输出电路。电感式接近传感器是核心是振荡器和放大器,用于检测金属材质的物体。但是不同的金属的衰减,标准的检测物体是铁,但是不锈钢、铝合金、铝、铜等等都会有不同的衰减程度。由此可见,这种接近开关所能检测的物体必须是导电体。br/ br/  电容式传感器是以各种类型的电容器作为传感元件,将被测转物理量或机械量换成为电容量变化的一种转换装置,实际上就是一个具有可变参数的电容器。电容式传感器结构简单,易于制造和保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强辐射及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力,高冲击,过载等;能测量超高温和低压差,也能对带磁工作进行测量。br/ br/  由于电容式传感器带电极板间的静电引力很小,所需输入力和输入能量极小,因而可测极低的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力高,能感应0.01μm甚至更小的位移。br/ br/  据统计数据显示,2019年中国传感器市场规模达2188.8亿元,预计到2021年市场规模将达到2951.8亿元,行业将保持17.6%的快速增长速度。值得注意的是,随着物联网技术的发展,对传统传感技术又提出了新的要求,产品正逐渐向微机电系统(MEMS)技术、无线数据传输技术、红外技术、新材料技术、纳米技术、复合传感器技术、多学科交叉融合的方向发展。br/ br/  传感器作为智能制造的重要设备,电子产品的发展已经进入到数字化时代,传感器的需求越来越广泛。如何在传感器领域实现突破?业内人士纷纷表示,原材料、技术、工艺等方面均存在“突破口”。br/ br/  接下来,国内传感器企业需要从自身出发,加大科技创新投入力度,继续优化技术和工艺细节,实现这些领域与进口产品对比的突破。与此同时,发挥在国内市场应用、服务、渠道、价格、产业生态系统等领域的固有优势,实现整体实力提升,积极推进市场化应用。br/ br/  在政策鼓励、资金扶持、技术进步等多种利好因素的作用下,相信国内传感器产业发展将取得更多成果,并造福于产业升级和社会民生。br/br//p
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 智能生态负氧离子监测站-一款十分钟爱的天然氧吧监测站
    智能生态负氧离子监测站-一款十分钟爱的天然氧吧监测站#2022已更新【品牌型号:天合环境TH-FZ5】温度和湿度等环境因素对负氧离子的浓度有很大影响。负氧离子浓度在春、夏、秋、冬季具有明显的变化特征。夏季和秋季浓度较高,春季和冬季浓度较低,这与负氧离子含量与气温呈正相关。雷电日和降水日的负氧离子浓度明显较高,需要通过负氧离子监测站实时了解。一、产品简介高智能一体化负氧离子监测站可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素。传感器一体化设计,无机械位移,精度高、使用寿命长现场可通过全彩液晶屏读取数据,亦可远程云平台/WEB/微信公众号实时查看数据现场用户可自定义添加歌曲,亦可超标语音播报二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°)分辨率1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃)分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH)分辨率0.1%RH;5、大气压力:测量原理压阻式,300-1100hpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m37、PM10:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m38、噪声:测量原理电容式,30-120dB(±1.5dB)分辨率0.1db9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)分辨率1个/m310、氧含量:测量原理电化学,0~100%uol(±3%uol)分辨率0.1%11、屏幕:分辨率1920(RGB)×1080(FHD),工作频率120Hz,亮度1500-2500 cd/m212、立杆:碳钢双立柱,可耐受15级强台风13、工作环境:温度-20℃-55℃,湿度0%-100%14、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证15、生产企业具有知识产权管理体系认证证书、计算机软件注册证书17、数据存储:可存储一年的原始监测数据18、数据传输:4G/光纤19、供电方式:220V市电20、功耗:500w四、产品特点1、整机采用高集成模组化设计,标准化电器设计,工作状态一目了然,可实现快速维护2、防水:主体结构采用2-3mm碳钢,配合复合密封胶条,实现多角度防水3、防尘:设备底部配备过滤装置,可过滤5μm以上尘埃粒子,同时过滤棉可从外部快速更换,无需专业人员操作4、防雷、防漏电:内有防雷装置及漏电保护器,保护机器及周围人身安全5、采用高透、耐高温高强度钢化玻璃,防火、防划、防爆6、喇叭:户外大功率防水扬声器,双声道设计,声音清晰立体7、内置感光探头,可有效识别光照变化,自动调节屏幕亮度8、显示屏采用LED背光源,寿命达到50000小时,环保节能动态对比度高,显示画面更清晰9、散热系统采用工业级涡流离心风扇,风量大、转速高、噪声小,内置感温探头传感设备,有效识别内部温度变化,同时可根据现场环境调节响应温度及响应速度,实现低能耗精确控温10、内置时控开关,可设置预定开启和关闭时间11、全彩显示界面,设备开机自动进入气象监测平台(显示画面支持有限定制)12、可选配摄像头,显示界面可同步摄像头画面13、一体化传感器,传感器一体化集成,安装方便,维护简单
  • 【瑞士步琦】冻干工艺精准操控,Lyovapor™ L-300实现全自动终点判定
    冻干工艺精准操控Lyovapor&trade L-300实现全自动终点判定冻干应用”1简介冷冻干燥是一个独立的过程,在这个过程中实时分析样品是比较困难的,特别是检测其残余水分含量。工艺优化,特别是获得干燥和稳定产品所需的工艺时间,通常依赖于反复试验的方法。在本文中,使用了不同过程分析技术的组合来确定实验室冷冻干燥机(Lyovapor&trade L-300)中甘露醇溶液一次和二次干燥的终点。在加热隔板上使用西林瓶,通过对样品参数的原位测量间接跟踪干燥过程,可以在运行的冷冻干燥循环中即时调整过程时间。它有助于根据产品所需的残余水分含量更快地优化参数。此外,这些分析技术为监测过程的再现性提供了必要的工具。2实验设备Lyovapor&trade L-300 Pro, BÜ CHI Labortechnik AG电容和皮拉尼压力计,Pt 1000 热电偶冷冻干燥瓶,标称体积 10.0 mL, Schott AGLyo 三角橡胶塞,Wheaton陶瓷板磁力搅拌器硼硅玻璃烧杯和量筒分析天平(精度±0.1 mg)实验室 -50°C 冷冻柜3试剂和耗材甘露醇 97,0 - 102,0 Ph. Eur. , USP, VWR Chemicals (25311.366) 去离子水4实验流程4.1 实验部分制备 100mg /mL 甘露醇去离子水溶液。使用容量分配移液管将甘露醇溶液装入120个冷冻干燥瓶(每瓶 5.0 mL)。在每个小瓶上放置一个三脚橡胶塞,以便在冷冻干燥过程中去除水蒸气。一个 Pt 1000 热电偶被放置在两个制备的冷冻干燥小瓶的“中心底部”。在室温下,将这些小瓶放在两个铝制框架的冷冻干燥隔板上(每个架子 60 个小瓶)。在每个隔板上,一个装有热电偶的小瓶被直接放置在隔板的中心。热电偶连接到各自的隔板上。隔板插入到 Lyovapor&trade L-300 的金属支架上。一个空的冷冻干燥隔板被放置在上层,西林瓶包括隔板,以确保两个样品隔板接收到同样的热量。将包含隔板和样品瓶的支架转移到 -50°C 的冷冻室预冻 24 小时。4.2 方法编程冷冻干燥按照表1设定的隔板温度、真空度和时间运行。表1. 详细的 Lyovapor&trade L-300 冷冻干燥工艺用于 50 mg/mL 甘露醇溶液的西林瓶冷冻干燥步骤_1234阶段加载初级干燥次级干燥持续时间_4h12h1h20min6h隔板温度℃-4020204040加热梯度℃/min_0.2500.250压力 mbar_0.10.10.10.1初级干燥采用温差试验、压差试验(比较压力测量)和升压试验三种自动终点试验。表2.初级干燥阶段终点确定的设置温差试验压差试验升压试验极限:1.0℃极限:0.05mbar极限:0.06mbar试验时长:30min试验时长:30min试验时长:30s*开始时间:12h*开始时间:12h**开始时间:11h55min__重复时长:60min**是否继续:是**是否继续:是**是否继续:是是否通知:是是否通知:是是否通知:是* 开始时间的值表示在初级干燥的程序阶段结束之前的测试开始。** 如果所有测试都成功,将自动启动第二阶段,并继续进行干燥过程。其中,温度和压差测试直接从初级干燥阶段的第 2 步开始(见表2)。升压测试的压力极限设置为 0.060 mbar,测试时间为 30 秒。第一次升压试验在初级干燥第 2 步进行 5 分钟后进行,每 60 分钟重复一次。表3. 次级干燥阶段终点确定设置温差试验压差试验极限:1.5℃极限:0.05mbar试验时长:30min试验时长:30min*开始时间:6h*开始时间:6h**是否继续:是**是否继续:是是否通知:是是否通知:是*时间,从干燥阶段结束开始。**如果所有测试都成功,将自动启动下一阶段(封塞、保持),并进行干燥过程。其中,在温差和压差测试中,测试时间设置为 30 分钟,从步骤 4 开始直接开始测试。5实验结果5.1 温差试验图1 和 图2 为小瓶甘露醇样品冷冻干燥的温度和压力曲线。在图1中显示了两个隔板上样品温度。热电偶测得初级干燥主要部分的产物温度在 -7℃ 左右。随着水分含量和升华速率的降低,产品温度升高,在初级干燥结束时达到隔板温度。经过16.0小时的干燥时间,达到了温差试验的标准。▲ 图1. 隔板(红色),样品 Pt 1000(蓝色,蓝绿色)和 Lyovapor&trade L-300 冰冷凝器(粉红色)的温度测量。相应的,在设定冷凝器压力为 0.100 mbar 时,电容式压力计测得的干燥室内实际压力平均值为 0.150 mbar,如 图2 所示。在冰升华过程中,由依赖气体的皮拉尼压力计获得的压力值比电容压力计测量的压力值大约1.6倍。随着冰含量和升华速率的降低,皮拉尼压力计的压力值接近电容压力计的测量值。▲ 图2. 外部电容(绿色)压力计和皮拉尼(红色)压力表以及内部压力计(黄色)测量的压力。▲ 图3. 电容式(绿色)压力计与皮拉尼式(红色)压力计的计算压差如 图2 所示。图3 显示了从两个外部压力表(皮拉尼压力计减去电容压力计)的值计算得出的数值差异。在大约15.5小时的干燥时间后,达到了压差测试的标准。升压试验结果如图1和图2所示。在皮拉尼和电容式压力计的曲线(图2)中可以看出,尽管中间阀关闭,干燥室内的压力上升是由于水蒸气的持续升华造成的。在冰升华过程中,最初的高压上升值在初级干燥结束时大幅下降(棕色尖峰)。初级干燥 16.3 小时后达到升压试验标准。相应的,从设定的隔板温度曲线可以看出图1中升压试验的时间点。每次进行升压试验时,架子的加热在试验期间自动暂停。由于最后一次初级干燥终点测试在 16.3 小时后成功,因此与最初设定的初级干燥时间相比,样品干燥状态的自动检测将初级干燥阶段延长了 0.3 小时(见 表1)。随着升压试验的完成,所有设定终点试验均顺利完成,冻干循环自动进入次级干燥阶段。这种原位跟踪防止了在所有冰升华之前过早过渡到二次干燥阶段。所有三种测试对终点的估计时间大致相似,约为 15.5 至 16.3 小时。在次级干燥阶段,从产品中去除未冻水导致皮拉尼计记录的压力值在干燥时间约 18 小时(红色曲线)增加,如 图2 所示。除水后,总干燥时间 22.5 小时,压力曲线接近电容式压力计测量值,满足压差试验标准。23.1 小时后,隔板温度曲线与样品温度曲线符合,温差试验也成功完成(见 图1)。最后,在冷冻干燥过程结束时,干燥循环自动进入保持阶段。在应用西林瓶冷冻干燥工艺中获得了具有可接受视觉外观的干粉。▲ 图4. 装有甘露醇的最终冻干瓶6实验结论本申请说明探讨了过程分析技术(PAT)在冷冻干燥过程中的适用性,重点是监测干燥室压力和样品温度,以评估样品的干燥状态。研究表明,这些过程分析技术与压差、压升和温度测试的自动端点确定设置相结合,可以在不中断样品水分含量分析过程的情况下估计实际干燥时间。通过防止过早过渡到下一个干燥阶段,如次级干燥或保持,提出的方法提高了工艺效率。这些端点测试的集成有助于干燥过程的精确控制和可靠性,从而获得所需的产品属性,如最佳干燥度和视觉外观。研究结果确定了在Lyovapor&trade L-300冷冻干燥机中使用单独或联合终点测试来准确确定终点的有效性。7参考文献本文档是与 TH Kö ln 的 Heiko Schiffter 教授合作创建。
  • 微电子所在二硫化钼负电容场效应晶体管上取得进展
    近日,2020国际电子器件大会(IEDM)以视频会议的形式召开。会上,微电子所刘明院士科研团队展示了二硫化钼负电容场效应晶体管的最新研究成果。 功耗是制约未来集成电路发展的瓶颈问题。在栅极中引入铁电新材料的“负电容晶体管”(NCFET)可突破传统场效应晶体管的亚阈值摆幅开关极限,有望在极低电源电压下工作,从而降低功耗并保持高性能。同时,原子层厚度的二硫化钼(MoS2)免疫于短沟道效应,具有较高的迁移率、极低的关态电流和CMOS兼容的制造工艺等优势,是面向先进晶体管的可选沟道材料之一。近期的一些实验显示,MoS2 NCFET能实现低于60mV/dec的亚阈值摆幅。但这些研究仅实现了较长沟道(500 纳米)的器件,没有完全发掘和利用负电容效应在短沟道晶体管中的优势。 针对该问题,刘明院士团队通过对器件参数以及制造工艺的设计与优化,首次把MoS2 NCFET的沟道长度微缩至83 纳米,并实现了超低的亚阈值摆幅(SSmin=17.23 mV/dec 和 SSave=39 mV/dec)、较低回滞和较高的开态电流密度。相比基准器件,平均亚阈值摆幅从220 mV/dec提高至39 mV/dec,沟道电流在VGS=0 V和1.5 V下分别提高了346倍和26倍。这项工作推动了MoS2 NCFET尺寸持续微缩,对此类器件面向低功耗应用有一定意义。 基于上述研究成果的论文“Scaling MoS2 NCFET to 83 nm with Record-low Ratio of SSave/SSRef.=0.177 and Minimum 20 mV Hysteresis”入选2020 IEDM。微电子所杨冠华博士为第一作者。图(a) MoS2 NCFET转移曲线。(b)亚阈值摆幅~沟道电流关系。MoS2 NCFET与MoS2 FET对比数据:(c)转移曲线和(d)输出曲线
  • 复旦大学微电子学院朱颢研究团队实现低功耗负量子电容场效应晶体管器件
    当前MOSFET器件的持续微缩所带来的功耗问题已经成为制约集成电路发展的主要瓶颈。研发新原理器件以突破MOSFET亚阈值摆幅(SS)为60mV/dec的室温极限,是实现高速度、低功耗CMOS技术和集成电路的重要途径。近年来,包括隧穿晶体管(TFET)、负电容晶体管(NCFET)、冷源晶体管(CSFET)等在内的多种器件技术为实现陡峭亚阈值摆幅和低功耗器件性能提供了思路。复旦大学微电子学院朱颢研究团队针对上述晶体管器件技术的关键需求,与美国国家标准与技术研究院(NIST)及美国乔治梅森大学合作,提出了一种具有陡峭亚阈值摆幅的负量子电容晶体管器件。研究成果以《Steep-Slope Negative Quantum Capacitance Field-Effect Transistor》为题在近日召开的第68届国际电子器件大会(IEDM,International Electron Devices Meeting)上发表,微电子学院朱颢以及美国NIST的Qiliang Li为通讯作者,课题组杨雅芬博士为第一作者,复旦大学微电子学院为第一单位。该工作将单层石墨烯二维金属系统集成于MoS2晶体管的栅极结构中,构建负量子电容晶体管(NQCFET)器件,利用单层石墨烯在低态密度条件下产生的负电子压缩效应,通过栅极电压调控形成负量子电容。类似于传统基于铁电材料的负电容器件,NQCFET器件中利用石墨烯提供的负量子电容贡献,实现内部栅压放大和小于60mV/dec亚阈值摆幅的特性。该工作中,通过对器件栅极叠层结构以及制备工艺的优化,实现了最小31mV/dec的亚阈值摆幅和可忽略的滞回特性,以及超过106的开关比,有效降低器件静态与动态功耗。同时结合理论仿真揭示了器件陡峭亚阈值摆幅的形成机理,为未来高速低功耗晶体管器件技术的发展提供了新的路径。该项研究工作得到了国家自然科学基金等项目的资助。负量子电容晶体管器件结构与器件性能图
  • 三种方法让您轻松抓住冷冻干燥的结束时间
    抓住冷冻干燥的结束时间在冷冻干燥过程的三个步骤中,初级干燥的耗时一直是最长的,因此优化初级干燥过程对提高干燥效率非常有价值。最有利的情况是可以找到一种既能缩短初级干燥过程的处理时间,在此过程中,又可以确保该过程不会过早结束。当产品中所有的冰被去除之前开始二次干燥肯定会导致产品缺陷,例如发生产品塌陷或共晶熔化。同时,初级干燥所需的时间也受多个参数影响,例如样品浓度、样品大小和装样容器;干燥时间也因不同处理批次而有所不同。因此从经济角度来讲,自动测定初级干燥终点有利于控制成本。想要知道初级干燥和次级干燥何时完成,有几种可靠的方法用来测试主要干燥循环的终点。01温度差测试利用温度差判定冷冻干燥过程的终点是比较常用的方法,这里的温度差是指测量的产品温度与所在搁板的设定温度之间存在的温度差值,需要配置拥有加热功能的搁板和样品温度探头(热电偶)。在初级干燥期间当水分发生升华时,由于固体到气体的相变是一个吸热过程,需要将搁板的温度进行设置梯度升温以保证提供水分升华所需要的热量,该阶段样品温度低于搁板温度。在所有水分子升华结束后,产品温度会逐渐接近搁板温度。当样品温度与搁板温度一致时(通常两者温度差低于 1℃),初级干燥完成。02压力差测试压力差测试方法是使用两种不同类型的压力传感器进行压力比较,也是另一种可靠的终点判定方法。通常仪器需要配备电容式压力传感器和皮拉尼压力传感器:不管气体成分如何,电容式压力传感器测量的是绝对压力;皮拉尼压力传感器则需要针对特定气体(主要是 N2)进行校准。由于水蒸气的存在会影响皮拉尼压力传感器的信号,但不会影响电容式压力传感器的信号,因此当系统内只要有水蒸气发生流动,两个压力传感器的信号就会有所不同。当两个压力传感器的信号逐渐接近,即达到初级干燥的终点。03压力升高测试在冷冻干燥过程中,只要发生升华过程系统中就会产生水蒸气。此时可以通过关闭干燥室与冰冷凝器之间的通道,测试干燥室内压力的变化来判定是否达到过程终点。将干燥室和冰冷凝器之间的通道关闭,阻碍水蒸气迁移到冰冷凝器中。因此,若干燥室内的压力仍在持续上升,说明样品中的冰仍然在进行升华过程,过程未达到终点;反之,关闭水蒸气流动的通道后,干燥室内压力保持不变,则表示初级干燥完成,达到过程终点。瑞士步琦公司拥有 40 多年的干燥经验,其喷雾干燥仪和旋转蒸发仪、平行蒸发仪等均为干燥应用市场中的领先设备。2017 年步琦公司推出搭载全新概念 Infinite-ControlTM 的冷冻干燥系统 LyovaporTM L-200/L-300,将冷冻干燥仪器推进一个新的领域。 冷冻干燥机 LyovaporTM L-300 首款可连续升华的实验室冷冻干燥机双冷凝器交替工作,拒绝待机耗时自动进行清洁除冰,自动排水冷凝器 -105℃,水和有机溶剂升华不受限各类冻干配件自由搭配,满足不同应用需求
  • MEMS是怎样的技术,哪些已经民用了?
    虽然大部分人对于MEMS(Microelectromechanical systems, 微机电系统/微机械/微系统)还是感到很陌生,但是其实MEMS在我们生产,甚至生活中早已无处不在了,智能手机,健身手环、打印机、汽车、无人机以及VR/AR头戴式设备,部分早期和几乎所有近期电子产品都应用了MEMS器件。MEMS是一门综合学科,学科交叉现象及其明显,主要涉及微加工技术,机械学/固体声波理论,热流理论,电子学,生物学等等。MEMS器件的特征长度从1毫米到1微米,相比之下头发的直径大约是50微米。MEMS传感器主要优点是体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等,是微型传感器的主力军,正在逐渐取代传统机械传感器,在各个领域几乎都有研究,不论是消费电子产品、汽车工业、甚至航空航天、机械、化工及医药等各领域。常见产品有压力传感器,加速度计,陀螺,静电致动光投影显示器,DNA扩增微系统,催化传感器。MEMS的快速发展是基于MEMS之前已经相当成熟的微电子技术、集成电路技术及其加工工艺。 MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。然而,MEMS器件加工技术并非机械式。相反,它们采用类似于集成电路批处理式的微制造技术。批量制造能显著降低大规模生产的成本。若单个MEMS传感器芯片面积为5 mm x 5 mm,则一个8英寸(直径20厘米)硅片(wafer)可切割出约1000个MEMS传感器芯片(图1),分摊到每个芯片的成本则可大幅度降低。因此MEMS商业化的工程除了提高产品本身性能、可靠性外,还有很多工作集中于扩大加工硅片半径(切割出更多芯片),减少工艺步骤总数,以及尽可能地缩传感器大小。图1. 8英寸硅片上的MEMS芯片(5mm X 5mm)示意图图2. 从硅原料到硅片过程。硅片上的重复单元可称为芯片(chip 或die)。MEMS需要专门的电子电路IC进行采样或驱动,一般分别制造好MEMS和IC粘在同一个封装内可以简化工艺,如图3。不过具有集成可能性是MEMS技术的另一个优点。正如之前提到的,MEMS和ASIC (专用集成电路)采用相似的工艺,因此具有极大地潜力将二者集成,MEMS结构可以更容易地与微电子集成。然而,集成二者难度还是非常大,主要考虑因素是如何在制造MEMS保证IC部分的完整性。例如,部分MEMS器件需要高温工艺,而高温工艺将会破坏IC的电学特性,甚至熔化集成电路中低熔点材料。MEMS常用的压电材料氮化铝由于其低温沉积技术,因为成为一种广泛使用post-CMOS compatible(后CMOS兼容)材料。虽然难度很大,但正在逐步实现。与此同时,许多制造商已经采用了混合方法来创造成功商用并具备成本效益的MEMS 产品。一个成功的例子是ADXL203,图4。ADXL203是完整的高精度、低功耗、单轴/双轴加速度计,提供经过信号调理的电压输出,所有功能(MEMS & IC)均集成于一个单芯片中。这些器件的满量程加速度测量范围为±1.7 g,既可以测量动态加速度(例如振动),也可以测量静态加速度(例如重力)。图3. MEMS与IC在不同的硅片上制造好了再粘合在同一个封装内图4. ADXL203(单片集成了MEMS与IC)通信/移动设备图5. 智能手机简化示意图以智能手机为主的移动设备中,应用了大量传感器以增加其智能性,提高用户体验。这些传感器并非手机等移动/通信设备独有,在本文以及后续文章其他地方所介绍的加速度、化学元素、人体感官传感器等可以了解相关信息,在此不赘叙。此处主要介绍通信中较为特别的MEMS器件,主要为与射频相关MEMS器件。通信系统中,大量不同频率的频带(例如不同国家,不同公司间使用不同的频率,2G,3G,LTE,CDMD以及蓝牙,wifi等等不同技术使用不同的通信频率)被使用以完成通讯功能,而这些频带的使用离不开频率的产生。声表面波器件,作为一种片外(off-chip)器件,与IC集成难度较大。表面声波(SAW)滤波器曾是手机天线双工器的中流砥柱。2005年,安捷伦科技推出基于MEMS体声波(BAW)谐振器的频率器件(滤波器),该技术能够节省四分之三的空间。BAW器件不同于其他MEMS的地方在于BAW没有运动部件,主要通过体积膨胀与收缩实现其功能。(另外一个非位移式MEMS典型例子是依靠材料属性变化的MEMS器件,例如基于相变材料的开关,加入不同电压可以使材料发生相变,分别为低阻和高阻状态,详见后续开关专题)。得益于AlN氮化铝压电材料的沉积技术的巨大进步,AlN FBAR已经被运用在iphone上作为重要滤波器组件。下图为FBAR和为SMR (Solidly Mounted Resonator)。其原理主要通过固体声波在上下表面反射形成谐振腔。图6. FBAR示意图,压电薄膜悬空在腔体至上图7. SMR示意图(非悬空结构,采用Bragg reflector布拉格反射层) (SAW/FBAR设备的工作原理及使用范例)图8. 固体声波在垂直方向发生反射,从而将能量集中于中间橙色的压电层中如果所示,其中的红色线条表示震动幅度。固体声波在垂直方向发生反射,从而将能量集中于中间橙色的压电层中。顶部是与空气的交界面,接近于100%反射。底部是其与布拉格反射层的界面,无法达到完美反射,因此部分能量向下泄露。图9. 实物FBAR扫描电镜图实物FBAR扫描电镜图。故意将其设计成不平行多边形是为了避免水平方向水平方向反射导致的谐振,如果水平方向有谐振则会形成杂波。图10. 消除杂波前后等效导纳上图所示为消除杂波前后等效导纳(即阻抗倒数,或者简单理解为电阻值倒数)。消除杂波后其特性曲线更平滑,效率更高,损耗更小,所形成的滤波器在同频带内的纹波更小。图11. 若干FBAR连接起来形成滤波器图示为若干FBAR连接起来形成滤波器。右图为封装好后的FBAR滤波器芯片及米粒对比,该滤波器比米粒还要小上许多。可穿戴/植入式领域图12. 用户与物联网可穿戴/植入式MEMS属于物联网IoT重要一部分,主要功能是通过一种更便携、快速、友好的方式(目前大部分精度达不到大型外置仪器的水平)直接向用户提供信息。可穿戴/应该说是最受用户关注,最感兴趣的话题了。大部分用户对汽车、打印机内的MEMS无感,这些器件与用户中间经过了数层中介。但是可穿戴/直接与用户接触,提升消费者科技感,更受年轻用户喜爱。该领域最重要的主要有三大块:消费、健康及工业,我们在此主要讨论更受关注的前两者。消费领域的产品包含之前提到的健身手环,还有智能手表等。健康领域,即医疗领域,主要包括诊断,治疗,监测和护理。比如助听、指标检测(如血压、血糖水平),体态监测。MEMS几乎可以实现人体所有感官功能,包括视觉、听觉、味觉、嗅觉(如Honeywell电子鼻)、触觉等,各类健康指标可通过结合MEMS与生物化学进行监测。MEMS的采样精度,速度,适用性都可以达到较高水平,同时由于其体积优势可直接植入人体,是医疗辅助设备中关键的组成部分。传统大型医疗器械优势明显,精度高,但价格昂贵,普及难度较大,且一般一台设备只完成单一功能。相比之下,某些医疗目标可以通过MEMS技术,利用其体积小的优势,深入接触测量目标,在达到一定的精度下,降低成本,完成多重功能的整合。以一些MEMS项目为例,通过MEMS传感器对体内某些指标进行测量,同时MEMS执行器(actuator)可直接作用于器官或病变组织进行更直接的治疗,同时系统可以通过MEMS能量收集器进行无线供电,多组单元可以通过MEMS通信器进行信息传输。图13. MEMS实现人体感官功能其他领域投影仪投影仪所采用的MEMS微镜如图14、15所示(Designing MEMS-based DLP pico projectors),其中扫描电镜图则是来自于TI的Electrostatically-driven digital mirrors for projection systems。每个微镜都由若干锚anchor或铰链hinge支撑,通过改变外部激励从而控制同一个微镜的不同锚/铰链的尺寸从而微镜倾斜特定角度,将入射光线向特定角度反射。大量微镜可以形成一个阵列从而进行大面积的反射。锚/铰链的尺寸控制可以通过许多方式实现,一种简单的方式便是通过加热使其热膨胀,当不同想同一个微镜的不同锚/铰链通入不同电流时,可以使它们产生不同形变,从而向指定角度倾斜。TI采用的是静电驱动方式,即通入电来产生静电力来倾斜微镜。图14 微镜的SEM示意图图15 微镜结构示意图德州仪器的数字微镜器件(DMD),广泛应用于商用或教学用投影机单元以及数字影院中。每16平方微米微镜使用其与其下的CMOS存储单元之间的电势进行静电致动。灰度图像是由脉冲宽度调制的反射镜的开启和关闭状态之间产生的。颜色通过使用三芯片方案(每一基色对应一个芯片),或通过一个单芯片以及一个色环或RGB LED光源来加入。采用后者技术的设计通过色环的旋转与DLP芯片同步,以连续快速的方式显示每种颜色,让观众看到一个完整光谱的图像。图16 微镜反射光线示意图MEMS 加速度计加速度传感器是最早广泛应用的MEMS之一。MEMS,作为一个机械结构为主的技术,可以通过设计使一个部件(图15中橙色部件)相对底座substrate产生位移(这也是绝大部分MEMS的工作原理),这个部件称为质量块(proof mass)。质量块通过锚anchor,铰链hinge,或弹簧spring与底座连接。绿色部分固定在底座。当感应到加速度时,质量块相对底座产生位移。通过一些换能技术可以将位移转换为电能,如果采用电容式传感结构(电容的大小受到两极板重叠面积或间距影响),电容大小的变化可以产生电流信号供其信号处理单元采样。通过梳齿结构可以极大地扩大传感面积,提高测量精度,降低信号处理难度。加速度计还可以通过压阻式、力平衡式和谐振式等方式实现。图17 MEMS加速度计结构示意图图18 MEMS加速度计中位移与电容变化示意图打印喷嘴一种设计精巧的打印喷嘴如下图所示。两个不同大小的加热元件产生大小不一的气泡从而将墨水喷出。具体过程为:1,左侧加热元件小于右侧加热元件,通入相同电流时,左侧产生更多热量,形成更大气泡。左侧气泡首先扩大,从而隔绝左右侧液体,保持右侧液体高压力使其喷射。喷射后气泡破裂,液体重新填充该腔体。图19. 采用气泡膨胀的喷墨式MEMS开关/继电器MEMS继电器与开关。其优势是体积小(密度高,采用微工艺批量制造从而降低成本),速度快,有望取代带部分传统电磁式继电器,并且可以直接与集成电路IC集成,极大地提高产品可靠性。其尺寸微小,接近于固态开关,而电路通断采用与机械接触(也有部分产品采用其他通断方式),其优势劣势基本上介于固态开关与传统机械开关之间。MEMS继电器与开关一般含有一个可移动悬臂梁,主要采用静电致动原理,当提高触点两端电压时,吸引力增加,引起悬臂梁向另一个触电移动,当移动至总行程的1/3时,开关将自动吸合(称之为pull in现象)。生物试验类MEMS器件由于其尺寸接近生物细胞,因此可以直接对其进行操作。图20. MEMS操作细胞示意图NEMS(纳机电系统)NEMS(Nanoelectromechanical systems, 纳机电系统)与MEMS类似,主要区别在于NEMS尺度/重量更小,谐振频率高,可以达到极高测量精度(小尺寸效应),比MEMS更高的表面体积比可以提高表面传感器的敏感程度,(表面效应),且具有利用量子效应探索新型测量手段的潜力。首个NEMS器件由IBM在2000年展示, 如图5所示。器件为一个 32X32的二维悬臂梁(2D cantilever array)。该器件采用表面微加工技术加工而成(MEMS中采用应用较多的有体加工技术,当然MEMS也采用了不少表面微加工技术,关于微加工技术将会在之后的专题进行介绍)。该器件设计用来进行超高密度,快速数据存储,基于热机械读写技术(thermomechanical writing and readout),高聚物薄膜作为存储介质。该数据存储技术来源于AFM(原子力显微镜)技术,相比磁存储技术,基于AFM的存储技术具有更大潜力。快速热机械写入技术(Fast thermomechanical writing)基于以下概念(图6),‘写入’时通过加热的针尖局部软化/融化下方的聚合物polymer,同时施加微小压力,形成纳米级别的刻痕,用来代表一个bit。加热时通过一个位于针尖下方的阻性平台实现。对于‘读’,施加一个固定小电流,温度将会被加热平台和存储介质的距离调制,然后通过温度变化读取bit。 而温度变化可通过热阻效应(温度变化导致材料电阻变化)或者压阻效应(材料收到压力导致形变,从而导致导致材料电阻变化)读取。图21. IBM 二维悬臂梁NEMS扫描电镜图(SEM)其针尖小于20nm图22.快速热机械写入技术示意图其他参考文献:1. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger, VLSI-NEMS chip for parallel AFM data storage, Sensors and Actuators A: Physical, Volume 80, Issue 2, 10 March 2000, Pages 100-107, ISSN 0924-4247, VLSI-NEMS chip for parallel AFM data storage.2. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger, VLSI-NEMS chip for AFM data storage, Technical Digest 12th IEEE Int. Micro Electro Mechanical Systems Conf. MEMS ' 99, Orlando, FL, January 1999, IEEE, Piscataway, 1999, pp. 564–569.3. Fan-Gang Tseng, Chang-Jin Kim and Chih-Ming Ho, "A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops - part I: concept, design, and model," inJournal of Microelectromechanical Systems, vol. 11, no. 5, pp. 427-436, Oct 2002.4. Sensors for Wearable Electronics & Mobile Healthcare5. Martín, F. Bonache, J. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review. Sensors2014, 14, 22848-22863.(ADXL203 精密±1.7g 双轴iMEMS 加速度计数据手册及应用电路,http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL103_203.pdf)(Andreas C. Fischer Fredrik Forsberg Martin Lapisa Simon J. Bleiker Göran Stemme Niclas Roxhed Frank Niklaus,Integrating MEMS and ICs,Microsystems & Nanoengineering, 2015, Vol.1. Integrating MEMS and ICs : Microsystems & Nanoengineering)
  • 全彩屏负氧离子监测站-负氧离子在环境中有多少
    全彩屏负氧离子监测站-负氧离子在环境中有多少#2022已更新كمعددالأيوناتالسالبةفيالبيئةقدتمتحديثها【品牌型号:天合环境TH-FZ5】因为空气中绝大部分的有害物质都携带正离子,负离子与正离子中和后使空气中的正离子和氧气产生能量转移,导致有害物质无氧结合形成落尘效应,从而达到漂浮在空气中的都是负氧离子。因此,高浓度负离子具有消烟、除尘、杀菌、中和高压静电、预防辐射、净化空气的功能。要想知道环境中有多少负氧离子,全彩屏负氧离子监测站是不错的选择。一、产品简介高智能一体化负氧离子监测站可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素。传感器一体化设计,无机械位移,精度高、使用寿命长现场可通过全彩液晶屏读取数据,亦可远程云平台/WEB/微信公众号实时查看数据现场用户可自定义添加歌曲,亦可超标语音播报二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°)分辨率1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃)分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH)分辨率0.1%RH;5、大气压力:测量原理压阻式,300-1100hpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m37、PM10:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m38、噪声:测量原理电容式,30-120dB(±1.5dB)分辨率0.1db9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)分辨率1个/m310、氧含量:测量原理电化学,0~100%uol(±3%uol)分辨率0.1%11、屏幕:分辨率1920(RGB)×1080(FHD),工作频率120Hz,亮度1500-2500 cd/m212、立杆:碳钢双立柱,可耐受15级强台风13、工作环境:温度-20℃-55℃,湿度0%-100%14、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证15、生产企业具有知识产权管理体系认证证书、计算机软件注册证书17、数据存储:可存储一年的原始监测数据18、数据传输:4G/光纤19、供电方式:220V市电20、功耗:500w四、产品特点1、整机采用高集成模组化设计,标准化电器设计,工作状态一目了然,可实现快速维护2、防水:主体结构采用2-3mm碳钢,配合复合密封胶条,实现多角度防水3、防尘:设备底部配备过滤装置,可过滤5μm以上尘埃粒子,同时过滤棉可从外部快速更换,无需专业人员操作4、防雷、防漏电:内有防雷装置及漏电保护器,保护机器及周围人身安全5、采用高透、耐高温高强度钢化玻璃,防火、防划、防爆6、喇叭:户外大功率防水扬声器,双声道设计,声音清晰立体7、内置感光探头,可有效识别光照变化,自动调节屏幕亮度8、显示屏采用LED背光源,寿命达到50000小时,环保节能动态对比度高,显示画面更清晰9、散热系统采用工业级涡流离心风扇,风量大、转速高、噪声小,内置感温探头传感设备,有效识别内部温度变化,同时可根据现场环境调节响应温度及响应速度,实现低能耗精确控温10、内置时控开关,可设置预定开启和关闭时间11、全彩显示界面,设备开机自动进入气象监测平台(显示画面支持有限定制)12、可选配摄像头,显示界面可同步摄像头画面13、一体化传感器,传感器一体化集成,安装方便,维护简单五、云平台介绍1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本12、支持同步本地天气预报
  • 智能生态气象监测系统-适合在景区的负氧离子监测站#2022已更新
    智能生态气象监测系统-适合在景区的负氧离子监测站#2022已更新ذكينظامالرصدالبيئيللأرصادالجوية-مناسبةلأنّأيونالأكسجين【品牌型号:天合环境TH-FZ5】雨后的空气人们感觉格外清新,因为水与空气大气的撞击处很容易产生负氧离子,除了雨后的空气,还有喷泉附近,河流附近,瀑布附近,人会在那里感到神清气爽就是这个原因。当负氧离子浓度高的时候对人体有害,但是若是由水与空气大气的撞击处产生的负氧离子,浓度不会达到有害的。在很多景区的瀑布旁会建设许多大屏幕一样的东西,那就是负氧离子监测站。一、产品简介高智能一体化负氧离子监测站可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素。传感器一体化设计,无机械位移,精度高、使用寿命长现场可通过全彩液晶屏读取数据,亦可远程云平台/WEB/微信公众号实时查看数据现场用户可自定义添加歌曲,亦可超标语音播报二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°)分辨率1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃)分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH)分辨率0.1%RH;5、大气压力:测量原理压阻式,300-1100hpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m37、PM10:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m38、噪声:测量原理电容式,30-120dB(±1.5dB)分辨率0.1db9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)分辨率1个/m310、氧含量:测量原理电化学,0~100%uol(±3%uol)分辨率0.1%11、屏幕:分辨率1920(RGB)×1080(FHD),工作频率120Hz,亮度1500-2500 cd/m212、立杆:碳钢双立柱,可耐受15级强台风13、工作环境:温度-20℃-55℃,湿度0%-100%14、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证15、生产企业具有知识产权管理体系认证证书、计算机软件注册证书17、数据存储:可存储一年的原始监测数据18、数据传输:4G/光纤19、供电方式:220V市电20、功耗:500w四、产品特点1、整机采用高集成模组化设计,标准化电器设计,工作状态一目了然,可实现快速维护2、防水:主体结构采用2-3mm碳钢,配合复合密封胶条,实现多角度防水3、防尘:设备底部配备过滤装置,可过滤5μm以上尘埃粒子,同时过滤棉可从外部快速更换,无需专业人员操作4、防雷、防漏电:内有防雷装置及漏电保护器,保护机器及周围人身安全5、采用高透、耐高温高强度钢化玻璃,防火、防划、防爆6、喇叭:户外大功率防水扬声器,双声道设计,声音清晰立体7、内置感光探头,可有效识别光照变化,自动调节屏幕亮度8、显示屏采用LED背光源,寿命达到50000小时,环保节能动态对比度高,显示画面更清晰9、散热系统采用工业级涡流离心风扇,风量大、转速高、噪声小,内置感温探头传感设备,有效识别内部温度变化,同时可根据现场环境调节响应温度及响应速度,实现低能耗精确控温10、内置时控开关,可设置预定开启和关闭时间11、全彩显示界面,设备开机自动进入气象监测平台(显示画面支持有限定制)12、可选配摄像头,显示界面可同步摄像头画面13、一体化传感器,传感器一体化集成,安装方便,维护简单
  • 倍加福并购西门子接近传感器业务
    全世界领先的电气传感器和内安防爆元件制造商倍加福于2010年2月成功收购西门子接近传感器业务,以此添加了电感式传感器以及光电传感器产品线的产品组合,同时加强了倍加福在工厂自动化中超声波传感器技术的市场地位。  2010年2月27日,倍加福在曼海姆与地处纽伦堡的西门子工业自动化部签署了一项关于收购西门子工厂自动化接近开关业务的协议。首先,双方商定在整合期内,西门子将全面筹备业务的移交工作,在此期间,西门子将继续接受和执行接近传感器所有订单。整合期结束后,这一职责将转移到倍加福,以此保证交货不受影响。今年年中,这一交接将全面完成。  西门子接近开关业务的并购提升倍加福超声波传感器的市场地位  “我们希望能够受益于技术的多元交流,高素质人才的吸收,以及西门子强大的市场地位,使我们能在超声波传感器领域中具有更强的竞争力并获取更多利益。”Gunther Kegel博士,倍加福公司首席执行官说道。  “倍加福,作为在电气传感器和自动化行业元件的运作专家,为进一步发展我们目前的二元传感器业务提供了夯实根基。”Hans-Georg Kumpfmüller,西门子工业自动化分支传感器与通讯业务部总裁说道。
  • 新芝生物新品亮相--液体处理工作站
    产品说明 液体处理工作站基于模块化设计,可更换的台面布局、不断升级的软件系统为用户丰富多样的实验需求提供可靠的运行保障。 液体处理工作站可轻松精准地完成液体分配和混合等液体处理工作,结合温控、震荡、开关盖、条码扫描等多种功能模块,被广泛应用于全自动ngs文库构建、核酸提取与纯化、药物筛选、pcr/qpcr反应体系建立、临床检验样本处理等领域。其自动化的操作过程可大幅提高样本处理量,有效杜绝人为操作失误,提高实验结果的重复性和准确性,实现实验流程的全信息化追踪,满足广大用户日益增长的样本处理和智能操作的实验需求。工作模块 移液模块 移液范围:0.5μl-50ml移液准确度:1%-5%具备电容式和压力式二种液面探测模式具有抗悬滴功能位移:xyz轴,定位精度 ±0.1mm移液通道:1,2,4,6,8,12,16,96,384,支持移液通道定制通道间距可调适配耗材:采血管、ep管、试管、离心管、sbs标准96/384孔板等多种耗材 机械抓手模块 用于工作台内吸头、孔板、板盖、离心管等的转移 温控模块 温控范围:4℃—120℃升温速度:室温至75℃≤3min,室温至120℃≤10min降温速度:室温至4℃≤6min,120℃至室温≤10min可对不同规格的反应管和工作板进行冷却和升温 条码识别模块 同时识别一维和二维码能扫描样本管和pcr板侧面条码 开/关盖模块 内旋 / 外旋盖样本管进行自动化开关盖操作兼容市场现有所有品牌样品管自动识别不同容量的样品管 离心模块 对液体进行离心处理 震荡模块 有效混合样本振荡速度不低于3000rpm 图像采集模块 高分辨率工业级摄像头实现实验流程的信息化追踪 机械臂模块 用于将耗材转移至工作台外的第三方设备,如酶标仪、pcr仪等 耗材堆栈模块 配置各种模块载架,特别是吸头及微孔板叠放模块,进行台面扩展,实现高通量需求 灭菌模块 带紫外灯灭菌配双层hepa过滤的负压系统 核酸提取模块 可选择磁棒、磁力架或负压过柱模块进行核酸提取 配套软件模块 采用中文的图形化界面可与市售酶标仪、核酸提取设备等主流品牌兼容含有图像分析功能 应用领域
  • 牛津仪器携扫描电容显微镜(SCM)亮相SEMICON CHINA 2021
    仪器信息网讯 自1988年首次在上海举办以来,SEMICON CHINA 已成为中国首要的半导体行业盛事之一,它囊括当今世界上半导体制造领域主要的设备和材料厂商,也见证了中国半导体制造业的快速成长。 2021 年3月17日,SEMICON CHINA 2021在上海新国际博览中心隆重召开。牛津仪器也携其半导体解决方案亮相SEMICON CHINA 2021。牛津仪器展台牛津仪器1959年创建于英国牛津,是英国伦敦证交所的上市公司,生产分析仪器、半导体设备、超导磁体、超低温设备等高技术产品。在五十多年的发展过程中,牛津仪器公司凭借自身的科研优势,凭借出色的技术管理和产品服务为全球的科技发展做出了贡献。牛津仪器现已成为科学仪器领域的跨国集团公司,生产基地、销售和服务网络,客户遍及一百多个国家和地区。在此次牛津仪器参展的产品中,牛津仪器展示了全新推出的高频扫描电容显微镜(SCM)和大样品台原子力显微镜Jupiter XR,该款仪器是专门为半导体行业和分析测试平台设计的最新一代快速扫描原子力显微镜。对已知掺杂浓度阶梯状样品,全新一代高频扫描电容显微镜(SCM)分辨掺杂类型和提供线性的电容信号响应据了解,在扫描电容显微镜(SCM)诞生之前,研究人员、半导体芯片制造商和失效分析工程师对掺杂水平、掩模和注入物对齐以及由于这些误差导致的器件失效等细微变化和误差视而不见。SCM的发明让工程师能够在亚微米尺度上探测器件,相比于上一代设计,牛津仪器全新的高频SCM设计可以在器件制造和故障分析中发现问题所在。SCM的核心是一种纳米级的电学AFM成像技术。它利用微波射频信号探测样品的局部电学性能,测量自由载流子浓度和类型。SCM可以直接检测电容变化,分辨率可达1 aF。由于采用了测反射信号(S11)的振幅和相位变化的方法,其相比于传统的SCM只能测定相对值来说,牛津仪器全新推出的高频SCM可以直接测量电容真实值。其更高的灵敏度也允许探测金属和绝缘体,以及传统半导体器件以外的非线性材料——包括那些不形成自然氧化物层的材料。Jupiter XR原子力显微镜全新一代的高频SCM可以在牛津仪器的原子力显微镜Jupiter XR AFM 平台上实现自动化智能扫描,一键成像。Jupiter XR原子力显微镜与大多数原子力显微镜相比,同等成像质量下扫描速度快数十倍,同时其高度自动化的操作让检测效率大大提高,高精度分辨率可达分子级别,并且在粗糙度测量方面实现了皮米级的分辨率和超过1000次连续扫描粗糙度差别小于1%的高重复性,可以用于半导体工厂生产中的宽禁带半导体材料测试、外延生产、半导体失效分析、平台质检QC、QA、FA等领域。Ultim Extreme EDS此外,牛津仪器还展示了一款EDS能谱仪。Ultim Extreme 是Ultim Max系列中的一款无窗能谱,晶体面积100mm2,经优化设计来尽可能提高灵敏度和空间分辨率。它采用跑道型结构设计,优化高分辨率场发射扫描电镜在低加速电压和短工作距离下工作时的成像和EDS性能,使用Ultim Extreme,EDS的空间分辨率接近扫描电镜的分辨率。
  • 博科发布博科新型触摸屏生物安全柜BSC-3FA2新品
    生物安全柜主要技术参数型号:BSC-3FA21.风机键、2.UV键、3.照明键、4.界面设置、5.插座键、6.喇叭、7.锁屏键、8.玻璃门上移、下降按键、9.报警显示窗口、10.时钟显示、11.气流模式动态图、12.操作区湿度、13.操作区温度、14.排风过滤器压差显示、15.送风过滤器压差显示、16.流入风速显示、17.下降风速显示。 一、技术参数1、安全柜基本参数:(1)分类:A2型,30%外排,70%循环(2)外部尺寸≥(L×D×H)1100mm×750mm×2250mm;*(3)内部尺寸≥(L×D×H)940mm ×600mm×660mm。*(4)台面距离地面高度:750mm(尺寸可根据要求订制修改)(5)风速: 平均下降风速:0.33±0.025m/s; 平均吸入口风速0.53±0.025m/s(6)系统排风总量:360 m3/h(7)额定功率:1100W(包含操作区插座负载500W)(8)噪音等级:≤67dB(A)(9)照明:≥1000lx*(10)过滤效率: 送风和排风过滤器均采用世界知名品牌的硼硅酸盐玻璃纤维材质的HEPA(ULPA)高效过滤器,对0.3μm(0.12)颗粒过滤效率≥99.999%(99.9995%)(11)注册证号:国械注准20163540412(12)重量:毛重243KG 净重 227KG(13)使用人数:单人2、生物安全性:*(1) 人员安全性:用碘化钾(KI)法测试,前窗操作口的保护因子应不小于1×105 (2) 产品安全性:菌落数≤5CFU/次 (3) 交叉污染安全性:菌落数≤2CFU/次二、结构功能特点:* 1、柜体采用10°倾斜角设计,符合人体工程学原理,视角更大,操作方便且更加人性化; 2、安全柜裸露工作区三侧壁板采用优质304#不锈钢一体化结构,内部可清洗部位采用8mm大圆角处理,不留死角,易于清洁;3、工作区采用四面(左右二侧、后部、底部)负压环绕设计工作区内,保护性更好、更安全; 4、工作台面材质为优质304#不锈钢,采用盆状式设计,即使实验有废液溢出,也不会流入积液槽中,便于清理; * 5、福马脚轮设计:脚轮与支架一体化设计,安全柜即可通过脚轮安全移动,也可以通过调节脚轮支脚进行固定和调平; * 6、柜体和支架可分离,支架高度可根据实际情况订制修改; 7、合理的结构设计:安全柜过滤器和风机的维修、更换,都可在安全柜的前侧进行,更加方便、快捷。* 8、前窗玻璃采用双层夹胶防爆安全玻璃;即使玻璃破损,也不会伤人,并且生物安全柜还能正常工作,直到实验结束,更好的保护了人员及实验的安全。* 9、电容式触摸屏,显示气流流向动态,显示操作区的下降气流流速和流入气流流速,记录安全柜的整体运行时间,UV灯的运行时间,高效过滤器的运行时间,显示操作区的温度和湿度,显示送风和排风过滤器的阻力,时钟显示;运行状态全部显示,一目了然。* 10、电动控制前窗玻璃门,可同时采用脚踏控制、按键控制或遥控控制,玻璃门升降到安全操作高度时,自动停止升降,使操作更加方便;且玻璃门升降时不用直接接触玻璃,使实验人员更安全。* 11、断电恢复功能:按键记忆功能、风机、日光、照明带掉电记忆功能,如果掉电后再通电有相应功能键开启会自动跳过密码进入主界面,并且有断电报警提示。12、高效过滤器、紫外灯、系统工作时间查看,方便用户查询。*13、锁屏功能:轻触锁屏键,操作界面处于锁定状态,此时其他功能键处于锁定状态;防止误操作。 *14、具有风机、紫外、插座的定时开关功能以及定时关机功能;风机与紫外预约定时,风机停止转动后,前窗玻璃自动关闭,紫外灯自动打开,定时时间结束后,紫外灯关闭;节省了工作时间,提高了工作效率。15、用户密码修改,用户可以设置安全柜的开机密码。16、工作区和外排出风口处各配备一个高灵敏度、高精度的风速传感器,非压差传感器,真实、实时检测风速。17、严格的气密性检测:安全柜内加压500Pa,保持30min后气压不低于450Pa。18、前窗气流隔断设计:防止了气流通过前窗侧壁及上侧进行泄露,使试验更加安全。19、优良的风机选用:风机的电机当安全柜在正常运行而不调整电机的速度控制,经过滤器的风压下降50%时,风机的排气量下降不超过10%。20、完善的报警系统:(1)玻璃门不在安全高度报警:玻璃门安全高度为200mm,当安全柜前侧高于或低于安全高度时,安全柜会声光报警。(2)过滤器压力超高报警:当过滤器的阻力变大,安全柜会声光报警。(3)过滤器失效更换报警:当过滤器寿命使用到期后,会有过滤器更换声光报警。(4)气流波动报警:当安全柜的气流波动超过标称值的20%时,声光报警。21、安全的连锁保护设计:对误操作均设置连锁保护,即使误操作,也不会造成伤害(1)安全柜风机与玻璃门互锁:当安全柜玻璃门落到底部时,安全柜风机自动关闭,更改保护了安全柜的使用,增加了安全柜的使用寿命。(2)紫外灯与安全柜玻璃门、风机及照明灯互锁:当玻璃落到底部且照明灯不开启时,紫外灯才能开启,防止紫外灯误操作对人体造成危害,更加保护了人员的安全。 三、资格证明和技术文件*1 TUV机构 ISO9001质量管理认证*2 ISO13485及CE认证*3 国家食品药品监督管理局核发的生物安全柜产品注册证*4 具有国家食品药品监督管理总局认可的实验室出具的符合《GB/T 18268.1-2010 测量、控制和实验室用的电设备电磁兼容性要求 第1部分:通用要求》标准的检测报告四、设备配置清单主机1台、底座1套、内风机2台、送风过滤器1套、排风过滤器1套、国标插座2个、遥控器1件、脚踏开关1件、紫外灯1件、照明灯2件、风速传感器2件、水龙头1件(选配)、气龙头1件(选配)。创新点:此次生物安全柜型号由原来的背光按键屏更新成电容式触摸屏,显示气流流向动态,显示操作区的下降气流流速和流入气流流速,记录安全柜的整体运行时间,UV灯的运行时间,高效过滤器的运行时间,显示操作区的温度和湿度,显示送风和排风过滤器的阻力,时钟显示;运行状态全部显示,一目了然。博科新型触摸屏生物安全柜BSC-3FA2
  • 雷恩普创发布雷恩普创-MDA-24a-微波消解仪新品
    MDA-24a 微波消解仪应用领域:适用于食品、药品、质检、环保、工业、农业、疾控、化工、地质、冶金、高校等行业的样品处理,同时也是原子吸收、原子荧光、ICP等光谱设备的理想配套产品技术参数:1.微波频率:2450MHz, 非脉冲连续自动变频控制 2.微波炉腔:炉腔腔体采用316L工业级不锈钢一体成型,提高微波均匀,无任何焊接痕迹,炉腔喷涂多达6层PFA防腐涂层,炉腔质保终身;3.工业级双磁控管:微波输出功率:2600W,满足同批次24个消解罐消解\萃取工作。;4.温度、压力双重控制系统,并且同时控制 4.1温度控制系统:采用无线可穿透红外温度传感器,扫描并检测所有消解罐内温度4.2压力控制系统:采用安全高效的专用压力传感器,可实时监测所有消解罐内压力 5.消解转子独立转盘式结构,转盘同方向同步旋转,无需360度来回旋转,旋转过程中无停顿,保证微波加热均匀性 6.采用电容式液晶触摸显示屏,实时显示包括:压力、温度、升温时间、恒温时间微波功率以及工步、反应罐内温度和压力随时间上升爬坡曲线等7.内置仪器操作方法,样品处理方法,支持EPA、ASTM方法标准8.任意消解罐温度、压力异常仪器可自动报警并停止工作 9.采用声光报警系统,利用声光双重提示,通过灯光变换给出仪器运行状态,故障灯显示时仪器停止工作,提高安全防护等级 10.防爆安全炉门:六层钢结构防爆安全炉门配合机械锁、电子锁,仪器运行过程中炉门无法开启,炉腔开关异常时仪器强制停止,炉门报警指示灯常亮,向左侧开门方式 11.炉腔排风系统:消解完成后涡轮风冷介入,配合大功率防腐蚀离心风机,腔内形成强风对流,冷却速度快,15分钟降至65℃12.高强度耐腐蚀转盘架,可同时装配1-24支100ml消解罐13.消解外罐:采用高强度PEEK材料一次性铸成,耐压15Mpa14.消解内罐:采用进口TFM+PFA材料,设计温度310℃ 15.消解内罐具有弹性泄压功能,超压自动泄压,使用过程中无需任何耗材 16.配置清单:16.1微波消解仪主机1台16.2无线温度传感器1套16.3专用压力传感器1套 16.4消解内外罐24套16.5消解罐样品架1套16.6配套赶酸器1台16.7工具包1套16.8排风管1根 创新点:1.24位双圈模式,比较传统单圈模式更节省空间2.双红外控制,保证内外双圈温度,且采用无线测温操作更简单。3.24位消解仪常作为高通量消解罐退出,现改进位100ml消解罐,应对取样量大,复杂的样品更容易消解。4.程序软件全新升级,符合食品、环境、制药等多行业的GB标准以及行业标准。雷恩普创-MDA-24a-微波消解仪
  • 【新品主推】粮食水分测量仪的应用与发展趋势
    点击此处可了解更多产品详情:粮食水分测量仪  随着科技的不断发展,粮食水分测量仪在农业生产中得到了广泛的应用。该仪器利用物理和化学方法,快速准确地测量粮食的水分含量,为农业生产提供了重要的参考依据。    一、粮食水分测量仪的原理    粮食水分测量仪的原理主要基于电学和近红外原理。电学方法主要利用粮食的导电性与其含水量的关系,通过测量粮食的电导率或介电常数来推算其水分含量。近红外原理则是利用近红外光谱技术,通过分析粮食对特定波长光线的吸收和反射特性,来推断其水分含量。    二、电学方法原理    电学方法中,常用的有电阻式和电容式两种。电阻式水分测量仪利用粮食的导电性,通过测量电阻值与水分含量的关系来推算水分。电容式水分测量仪则是利用粮食的介电常数与其含水量的关系,通过测量电容值来推算水分。    三、近红外原理    近红外光谱技术是利用粮食中水分子对近红外光线的吸收特性来推断水分。该技术具有非破坏性、快速准确等优点,但也存在着对样品颜色、颗粒大小等因素敏感的问题。为提高测量的准确性和稳定性,常采用光谱预处理、多元回归等方法进行校正和优化。    四、粮食水分测量仪的应用与发展趋势    粮食水分测量仪在农业生产、粮食储存和加工等领域有着广泛的应用。通过准确测量粮食的水分含量,可以指导农业生产和储粮工作,避免因水分过高导致霉变或水分过低影响口感等问题。未来随着科技的不断进步和应用需求的提高,粮食水分测量仪将向着更加智能化、高精度、快速响应等方向发展。同时,随着物联网技术的普及,粮食水分测量仪将与智能农业系统相结合,实现远程监控和智能化管理,进一步提高农业生产效率和管理水平。    五、结论    粮食水分测量仪作为一种快速、准确的测量方法,对于农业生产具有重要意义。了解其工作原理和应用特点,有助于更好地选择和使用适合的水分测量仪,为农业生产提供科学依据。未来随着技术的不断创新和发展,相信粮食水分测量仪在农业生产和科研领域将发挥更大的作用,为实现农业现代化作出积极贡献。【新品主推】粮食水分测量仪的应用与发展趋势
  • 【热点应用】Empyrean锐影银靶硬射线PDF分析助力研发具有高质量电容的新型 MXene 材料
    具有高质量电容的新型Ti2V0.9Cr0.1C2Tx MXeneMXene是一类具有二维层状结构的金属碳/氮化物,于2011年由美国德雷塞尔大学Yury Gogotsi教授首次制得。MXene独特的理化性质使其近年来在能源存储与转换、传感器、催化等领域受到学界广泛关注。尽管目前已合成了超过100种的MXene材料,但这些材料大多只包含单金属或双金属。由于构型熵的增加将带来优异的性能,因此合成中熵或高熵(三过渡金属及以上)MXene对于提升其独特性能,扩展其应用领域具有重要意义。但制备中熵或高熵MXene是一项重要且具有挑战性的任务。鉴于此,来自重庆大学的党杰教授、吕学伟教授等人和马尔文帕纳科的黄德军工程师,设计并成功合成了三过渡金属中熵MXene(Ti2V0.9Cr0.1C2Tx),大大提升了MXene材料的性能(包括导电性、质量电容等),成果发表于国际知名期刊《Nano Energy》。在其研究中,利用了马尔文帕纳科Empyrean锐影XRD银靶硬射线光路,对材料进行对分布函数(PDF)分析,为设计和合成更高性能的MXene材料奠定了可靠的数据基础。原文链接A New Ti2V0.9Cr0.1C2Tx MXene with Ultrahigh Gravimetric Capacitancehttps://doi.org/10.1016/j.nanoen.2022.107129图1. MXene电极在KOH溶液中离子迁移示意图文章概述该文章通过增加MXene的M位点元素和调节原子比例,得到三过渡金属MXene,并将这种MXene应用到超级电容器中。通过静电自组装法,将带负电的MXene负载于CTAB溶液改性的泡沫镍表面,该电极在KOH碱性环境中具备高达260 F g-1的电容。研究成果为钒钛资源高值利用提供了新思路。要点一制备三过渡金属MXene将Ti、V、Cr、Al和C粉按一定摩尔比混合后,在氩气气氛中无压烧结合成得到Ti2V1-yCryAlC2MAX 材料(y = 0.1, 0.25, 0.5),随后采用氢氟酸刻蚀相应的 MAX 相得到不同原子比例的三过渡金属(Ti -V-Cr) MXene。XRD精修表明M位点元素的原子比例对材料纯度有一定的影响。此外,XRD表明M位点元素的增加会导致MXene的层间距增加,对应于(0 0 2)峰向低角度偏移。通过马尔文帕纳科锐影衍射仪上银靶光路进行的对分布函数(PDF)检测,我们进一步发现,原子对分布函数中峰强、峰位以及单双峰的差异表明不同的MXene结构有一定的差异,但局部结构相似。0.97 Å, 2.13 Å and 3.04 Å处的峰分别代表O-H, Ti-C/O/F 和 Ti-Ti/C-C键。图2. (a) 合成方法示意图。(b) 不同MAX相的XRD。(c) Ti2V0.9Cr0.1AlC2 MAX相的精修图谱。(d) 不同MXene的XRD。(e) 不同MXene的原子对分布函数图。要点二三过渡金属MXene形貌结构表征及PDF测试Ti2V0.9Cr0.1AlC2 MAX相粉末呈现典型的层状堆叠结构。MAX相与氢氟酸反应后,由于Al的溶解及干燥时水分子蒸发膨胀产生的应力,MAX相转换成具有手风琴状的MXene。在球差电镜下显示了 Ti/V/Cr 的三个原子层,证实了 Ti2V0.9Cr0.1AlC2到 Ti2V0.9Cr0.1C2Tx的转化已经实现,三个原子层的厚度为0.63nm。此外,我们使用 ED-XRF 确定了钛、钒和铬的原子比,测试结果接近用于合成 MAX 相粉末和多层 MXene 粉末的 Ti:V:Cr 比例。图3. (a) Ti2V0.9Cr0.1AlC2 MAX相粉末和 (b) Ti2V0.9Cr0.1C2Tx粉末的SEM图。(c) Ti2V0.9Cr0.1AlC2 MAX相的TEM与SAED图。(d) (e) (f) Ti2V0.9Cr0.1C2Tx粉末的球差电镜图。(g) (h) Ti2V0.9Cr0.1AlC2 MAX相粉末和Ti2V0.9Cr0.1C2Tx粉末的元素分布图。由于AC-STEM显示Ti2V0.9Cr0.1C2Tx在三个原子层中呈现Ti/V/Cr固溶体,基于此,我们构建了一系列模型进一步探究Ti2V0.9Cr0.1C2Tx的原子结构(包括有序排列与固溶体排列)。此外,为了探索 Ti2V0.9Cr0.1C2Tx 的结构,将对分布函数分析与 DFT 计算相结合。采用DFT计算优化构建的结构并计算其吉布斯自由能,将优化后的结构与PDF数据相拟合,以此进一步探究三过渡金属MXene的结构。如图所示,随着结构体积的减小,形成能减小,说明结构趋于稳定。此外,PDF的拟合表明形成能较低的结构具有更好的拟合结果,表明它更接近实际结构。加入铬后,Ti2V0.9Cr0.1C2Tx的形成能低于Ti2.5V0.5C2Tx,说明Ti2V0.9Cr0.1C2Tx更加稳定。这从理论上表明可以合成 Ti2V0.9Cr0.1C2Tx。拟合结果表明,Ti2V0.9Cr0.1C2Tx和Ti2.5V0.5C2Tx是具有空间群pseudo-P63/mmc的固溶体结构,Ti/V/Cr原子随机排列。此外,Ti2V0.9Cr0.1C2Tx和Ti2.5V0.5C2Tx的晶体体积分别为608.992Å3和618.899Å3。最后,计算了材料的态密度(DOS),发现Ti2V0.9Cr0.1C2Tx在费米能级附近拥有最大的DOS。这表明Ti2V0.9Cr0.1C2Tx具有更高的导电性和更快的电子传输,这与EIS测试的结果一致。图4. (a) Ti2V0.9Cr0.1C2Tx 结构优化图。 (b) Ti2V0.9Cr0.1C2Tx (Rw=0.34)的最佳PDF拟合图,对应的晶体结构如(a)的红星所示。(c) Ti2.5V0.5C2Tx(Rw=0.37)的最佳拟合模式和相应的晶体结构如图S7的红星所示。(d)Ti2V0.9Cr0.1C2Tx、Ti2.5V0.5C2Tx 和 Ti3C2Tx MXenes 的态密度 (DOS)。要点三不同组分MXene的超级电容器性能基于MXene 带负电的特点,本文采用静电自组装法制备了一系列MXene基电极。在KOH碱性环境中,Ti2V0.9Cr0.1C2Tx展现了260 F g-1的质量电容,优于双过渡金属MXene (Ti2.5V0.5C2Tx) 与单过渡金属MXene (Ti3C2Tx)。同时,EIS结果表明Ti2V0.9Cr0.1C2Tx的电荷转移电阻相较于文中合成的其他MXene最低,这也揭示了Ti2V0.9Cr0.1C2Tx高质量电容的原因。图5. (a)不同MXene在2 mV s-1的CV图。(b) Ti2V0.9Cr0.1C2Tx 在 2 到 200 mV s-1 范围内不同扫描速率下的 CV 曲线。(c) Ti2V0.9Cr0.1C2Tx 在电流密度为 1 到 10 A g-1 时的恒电流充放电曲线比较。(d) 不同扫描速率下的质量电容。(e) 不同MXene 在 η=10 mA-2、η=20 mA-2、η=50 mA-2 和 η=100 mA-2 时的 I-t 曲线,持续 24 小时。(f) Ti2V0.9Cr0.1C2Tx的性能对比。原文链接A New Ti2V0.9Cr0.1C2Tx MXene with Ultrahigh Gravimetric Capacitancehttps://doi.org/10.1016/j.nanoen.2022.107129什么是对分布函数分析(PDF)?原子对分布函数(PDF, Pair distribution function)描述了在材料中发现距离为r的一对原子的概率(参见图 1)。二维晶体的对分布函数示意图此方法以高能硬X射线测量样品广角全散射数据(因此也称为Total scattering全散射分析),同时对布拉格衍射峰和漫散射进行归一化和傅里叶变换等处理,不仅提供长程(10 nm)原子有序性信息,还提供材料中短程结构信息,如短程有序/无序排布、键长、局部缺陷等。通过对不同状态同类样品的PDF数据进行差异化分析,还可以进一步研究过程中材料精细结构的变化,获得材料物理性能或化学性能的变化与材料结构变化之间的关系,深入研究变化/反应过程机理。PDF极大拓展了X射线结构表征的分析范围,样品不再局限于晶态材料,非晶、液体等均可测量。PDF测试有两项核心要求:短波长(获得高Qmax和高实空间分辨率),高强度(漫散射信号极弱)。在实际工作中,同步辐射光源和加速器线站天然具有高强度多波长的射线源,因此经常在粉末衍射线站搭建PDF光路,使用单色器选取短波长高能射线进行PDF实验。PDF线站强度极高,波长短,PDF数据质量高,但机时申请难度较大,日常科研工作难以依赖光源线站及时获得数据。2015年,马尔文帕纳科公司发布了独有的GaliPIX3D重元素半导体矩阵探测器,在Empyrean锐影X射线衍射平台构建了基于银靶辐射的高能硬射线透射光路用于PDF分析,从此用户可以在实验室平台即可获得高质量的PDF数据。
  • 霍尔德首发!便携式智能露点仪应用领域有哪些
    【便携式智能露点仪←点击此处可直接转到产品界面,咨询更方便】露点,又称露点温度,是衡量气体绝对湿度的重要标尺。简单来说,它代表着在特定的大气压力下,空气中水蒸气含量达到饱和状态时,凝结成液态水的空气温度。在这个温度下,空气中凝结的水分子会漂浮在空中,形成我们所说的雾,而那些附着在固体表面的水分子,则形成了露。便携式智能露点仪应用领域:广泛用于空分、化工流程、磁性材料、电子行业、建材行业及各种混合气体及其它行业中的各种气体(如氮、氧,氩,氢气等)中露点的快速检测分析。便携式智能露点仪技术参数: 测量原理:进口薄膜电容式陶瓷湿度传感器; 测量范围:-100.0~+20℃\-80.0~+20℃\-60.0~+60℃(量程可选择); 精度:±1.0℃FS; 重复性:±1℃; 稳定性:±1%/7d; 样气流量:(2±0.5)L/min; 响应时间:τ90≤3分钟; 样气压力:0.05MPa≤入压口力≤0.25MPa; 工作电源:12VDC 外形尺寸:300mm(宽)×120mm(高)×270mm(深); 充电电源:(220±22)VAC,(50±5)Hz,充电器自带充电保护功能; 使用寿命:6年(规范操作正常使用条件下); 气路接口:Φ3不锈钢管(可根据客户订制)。仪器特点: 1、320*240真彩TFT屏,显示直观,中英文菜单界面,操作简单方便; 2、选用进口薄膜电容式陶瓷湿度传感器,具有寿命长、精度高、响应快等特点,可根据现场所测背景气选择不同的传感器; 3、定时自动存储功能,可随时查看存储数据; 4、同时显示露点(℃)、体积比(PPMV)、绝对湿度(mg/m3),读数直观,无需人工查表; 5、配有大功率电池,一次充电保证仪器连续工作25小时以上。
  • 雷恩普创发布雷恩普创-MDA-44b-微波消解仪新品
    MDA-44a 微波消解仪 应用范围:适用于实验室各类样品的消解和萃取前处理技术要求工作条件:电源:220VAC±10%,环境温度:10~40℃,工作湿度:15-80%仪器性能及参数1、仪器总体要求:能够快速地同批次处理40个复杂样品,确保挥发性元素回收率,用于土壤、食品、农产品等各类样品的酸消解、溶剂萃取等样品前处理,处理如环境类食用油等复杂样品的能力达到0.5克以上。同时非接触地控制40个样品罐的温度和压力安全,操作简单,无需连接传感器,采用自动泄压方式,是原子吸收、原子荧光、ICP等光谱设备的理想配套产品。2.主机设计:2.2微波频率:2450MHz, 非脉冲连续自动变频控制2.3微波源采用专业三维磁控管设计,输出功率大于3000W(符合IEC705方法),微波发射源三个输出口输出,腔内形成三维立体微波能量场,提高微波均匀性;满足同批次40个消解罐消解\萃取工作;2.4微波炉腔:炉腔腔体采用316L工业级不锈钢一体成型,提高微波均匀,无任何焊接痕迹,炉腔喷涂多达6层PFA防腐涂层,炉腔质保终身;2.5主机配备接口,采用至少2个USB接口,可升级为通过优盘等导入导出应用方法,升级系统软件,至少1个以太网网口,可实现在线维修,传导数据,视频教程等;2.6采用声光报警系统,利用声光双重提示,通过灯光变换给出仪器运行状态,故障灯显示时仪器停止工作,提高安全防护等级2.7防爆安全炉门:六层钢结构缓冲浮动防爆安全炉门配合机械锁、电子锁,仪器运行过程中炉门无法开启,炉腔开关异常时仪器强制停止,炉门报警指示灯常亮,向左侧开门方式,安全性符合国标《GBT 26814-2011》和国际CE标准。3.操作系统:3.1主机内置LED灯光识别系统,可通过灯光信号变化反馈反应状况和不同的消解阶段3.2可升级影音系统,腔内安装摄像系统,自由切换观察腔内反应情况3.3主机可以实时显示和控制整个消解过程的温度、压力、功率数据和曲线图,同时可以实时显示全罐温度压力曲线图3.4内置中文操作界面,培训及帮助文件。可储存200种消解方案。3.5全自动消解罐智能识别控制系统:高频闭环反馈控制技术,可自动检测消解罐的类型、所处位置及个数,自动匹配功率和手动输入定量功率两种模式,实时监测所有消解罐的工作状态,实现安全的自动消解。检测罐个数:0-40罐3.6内置仪器操作方法,样品处理方法,支持EPA、ASTM方法标准3.7采用7寸电容式彩色液晶触摸显示屏,实时显示包括:压力、温度、升温时间、恒温时间微波功率以及工步、反应罐内温度和压力随时间上升爬坡曲线等4.温度、压力双重控制系统4.1温度控制系统:腔体底部有两套非接触式红外温度传感器,实时监测40个所有反应罐的温度,传感器不得采用连线方式与主机相连4.2压力控制系统:采用安全高效的无线连续式测距测压专用压力传感器,可实时监测所有消解罐内压力,具有超压自泄压、超压报警功能,传感器不得采用连线方式与主机相连4.3任意消解罐温度、压力异常仪器可自动报警并停止工作5.消解罐5.1高强度耐腐蚀转盘架,可同时装配1-40支消解罐5.2消解外罐:采用高强度PEEK材料或宇航纤维复合材料,耐压15Mpa5.3消解内罐:采用进口TFM+PFA材料,设计温度310℃5.4消解内罐具有弹性泄压功能,超压自动泄压,使用过程中无需任何耗材5.5炉腔排风系统:消解完成后涡轮风冷介入,配合大功率防腐蚀离心风机,腔内形成强风对流,冷却速度快,15分钟降至65℃5.6消解转子独立转盘式结构,转盘同方向同步旋转,无需360度来回旋转,旋转过程中无停顿,保证微波加热均匀性 创新点:1.目前全球的40位微波消解仪均采用双磁控管,先创新位3个磁控管错位排列,保证40个样品的温度均匀,腔内形成三维微波能量场。2.具有声光报警功能,可通过声音和光源颜色变化反应仪器运行状态。雷恩普创-MDA-44b-微波消解仪
  • 一种光电容积脉搏波测量方式有望实现指夹式血压测量
    近年来,生物传感设备的深入研究和进步大大提升了人类监测各项生命体征的手段,可以帮助医生更快速、便利、准确地了解患者的健康状况,但是,因血压的准确性可能受到紧张情绪的影响(如“白大衣性高血压”等),所以快速、便捷、轻松的血压测量和持续的血压监测技术仍存在较大需求和开发空间。  近日,来自密苏里大学的研究团队通过光电容积脉搏波传感器测量脉搏波速度,实现了对血压的测量,有望为开发一种新型的指夹式血压测量工具提供了理论基础。相关研究成果发表在《IEEE Sensors Journal》上,题为“Toward Robust Blood Pressure Estimation from Pulse Wave Velocity Measured by Photoplethysmography Sensors”。  科学家们设计了一种基于两个光电容积脉搏波 (PPG) 传感器开发的血压测量单元,从中可以得出血流的脉搏波速度 (PWV),在两次心跳之间收集的后续的 PPG 波形稳定时间差用于计算PWV,一旦收集到PWV的数据,信息就会自动无线传输到计算机中,以通过机器学习算法进行信号处理和血压计算。  这项研究取得了较为理想的通过非侵入性血压测量设备测量血压的准确率,并同时可以测量心率、血氧饱和度、体温和呼吸频率等生命体征,该项研究仍需要更大样本量的数据验证最终的准确性,这为未来开发一种指夹式生命体征监测便携设备提供了一定的设计构想和理论基础。  论文链接:  https://ieeexplore.ieee.org/document/9646921/metrics#metrics  注:此研究成果摘自《Ieee Sensors Journa》,文章内容不代表本网站观点和立场,仅供参考。
  • 新品详解|FLIR C5/C3-X亮点多多,你最中意哪一个?
    大家还记得上市不久的FLIR Cx口袋热像仪吗?它们搭配FLIR Ignite云连接上可连接Wi-Fi传输存储备份下可节省团队传递沟通时间FLIR新品热像仪C5和C3-X在人机操作接口的智能化上显著提升使用界面更加友好便捷更加符合当下人们智能手机的操作习惯功能强悍,亮点多多今天小菲就给大家说说它们的优势吧~01首次开机解决所有设置首次开机,系统自动引导客户完成热像仪的基本设置,如语言、时间、温度单位等。在传统模式下,用户需要耗费时间查找设置菜单,并学习如何设置。FLIR C5和C3-X口袋热像仪引入了现代智能手机的开机设置模式,智能菜单可以帮助客户首次开机就解决所有设置。开机跟随步骤,完成所有设置02手动调整电平/跨度工程师要获取优质热图像,通常需要调整以下功能和设置:• 调整温标来选择合适的温度范围;• 选择适合的图像模式;• 更改调色板。 调整温标来选择合适的温度范围,则需要调整电平和跨度。在自动模式下,热像仪会连续地调整电平和温宽,以实现图像呈现效果。屏幕上的温标显示当前温宽的温度上限和温度下限。在手动模式下,您可以将温标调整至接近图像中特定对象的温度。手动模式可以检测到相关图像中的异常现象和较小的温度差异。现在,通过以下两张图片来解释调整电平和跨度。这是两张建筑物外围的红外图像。在左图中(自动调整),晴朗的天空和高温建筑物之间形成一个较大的温宽,这样很难对图片进行正确的分析。如果您手动将温标更改为接近建筑物温度的值,便可对建筑物进行更加详细的分析(如右图)。FLIR C5和C3-X 具有手动调整电平和温宽功能,当然大多数的FLIR红外热像仪都具有此功能,新品FLIR C5和C3-X的亮点是增加了齿轮功能。如下图所示,客户可上下滑动齿轮修改温度,还可以锁定测温范围。03一键式电平和跨度FLIR C5口袋热像仪还新增加了一键式电平/跨度区域调节功能,用户轻触屏幕,即可一键自动调节电平和跨度,节省手动调整热像仪所需时间,让您能够快速发现潜在故障,缩短诊断时间。04重新编辑图片用户可以修改已经拍摄并保存到热像仪图库的图片,达到拍摄效果。用户可以任意做如下修改:• 更改图像模式,多波段动态成像,红外图像,画中画,可见光图片; • 添加测量工具,查看更多点温度;• 更改电平和温宽;• 更改调色板。05小惊喜-下拉菜单FLIR C5口袋热像仪非常贴近用户的使用习惯,电容式触摸屏让它更像一台“智能手机”,指尖下就可完成操作!FLIR新品C5和C3-X袋热像仪触屏搭配,操作简单小巧便携,功能强悍菲粉们,你值得拥有!
  • 电容去离子技术让“硬水”快速“服软”
    p style="text-indent: 2em "记者从中科院合肥研究院获悉,该院固体所环境与能源纳米材料中心团队,基于电容去离子技术发展了铜基普鲁士蓝(CuHCF)选择性吸附电极,基于其独特的晶体通道及特有的赝电容效应,该电极展现出高效的选择性电吸附钙离子能力,该工作对于硬水软化技术具有重要意义。相关成果日前发表在《ACS应用材料与界面》上。?/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/616c07a5-64f1-4a55-b2ff-025308b70477.jpg" title="c6ef220360ec4e42a68b6c1ce16fb4c7.png" alt="c6ef220360ec4e42a68b6c1ce16fb4c7.png"//pp style="text-indent: 2em "水的硬度是世界各国普遍存在的水质问题。据统计,85%以上的可用淡水为硬水。自来水、地面水、河水等常见的硬水一般都是由钙、镁离子引起的,会导致洗涤剂作用减弱,锅炉、管道、热交换器结垢。长期饮用硬水还会增加人体泌尿系统结石的得病率,因此硬水的软化处理得到高度关注。然而,现有的硬水处理技术如化学沉淀法、离子交换、膜过滤等,需要过度使用化学物质、复杂的基础设施、昂贵的维护且能源消耗高。/pp style="text-indent: 2em "电容去离子技术(CDI)作为一种新型的水处理技术,由于其操作方便、环境友好、能耗低等优点,引起了人们的广泛关注。但由于该技术所用电极材料多为碳材料,缺乏目标离子的高效选择性,而具有高比电容的赝电容材料因其特有的离子选择性有望用于CDI硬水软化领域。?/pp style="text-indent: 2em "为此,科研人员基于Ca2+离子的插层作用,首次利用铜基普鲁士蓝CuHCF作为赝电容电极,在Na+、Ca2+、Mg2+等多种阳离子混合溶液中对Ca2+实现了高选择性电吸附。在非对称电容去离子装置中,1.4?V工作电压下获得了42.8?mg/g的钙离子最大吸附容量,尤其是在高钠/钙离子摩尔比(10:1)溶液中依然保有最高吸附选择性系数3.05,并且在循环过程中铜基普鲁士蓝CuHCF电极材料也能保持原有的形貌和稳定的吸附容量。科研人员结合电化学表征以及分子动力学模拟技术,阐明了铜基普鲁士蓝CuHCF电极材料选择性吸附钙离子的赝电容本征特性。/pp style="text-indent: 2em "该研究成果对于探索CDI赝电容电极材料高效选择性电吸附目标离子以及CDI硬水软化技术具有重要意义。?/ppbr//p
  • 河南省高压开关重点实验室落户平高电气
    我市省级重点实验室建设取得零的突破。1月31日,记者从市科技局获悉,我市《关于申报河南省高压开关重点实验室建设项目的请示》日前获得省科技厅批准,由平高电气公司组建的“河南省高压开关重点实验室”成为我市首家省级重点实验室。  据了解,“河南省高压开关重点实验室”将在现有实验条件的基础上,进一步加强和完善基础设施建设,整合科研方向,扩大对外合作研究,充分发挥学科优势和特点,以重点项目为突破,边建设、边研究、边开放,把实验室建成相对独立,能为我省高压开关研究提供服务,实行“开放、流动、联合、竞争”运行机制的科研实验基地、人才培养基地和学术活动中心。  该实验室的成立将有力地促进我市自主创新能力建设,保持技术的领先性,实现关键技术的突破,提高我国装备制造业技术和水平。
  • 上海微系统所新原理开关器件成果获2022年度中国科学十大进展
    3月17日,科技部高技术研究发展中心(基础研究管理中心)发布2022年度中国科学十大进展。中科院上海微系统所宋志棠、朱敏团队的“新原理开关器件为高性能海量存储提供新方案”脱颖而出,荣获2022年度中国科学十大进展(图1)。中国科学十大进展遴选活动由科技部高技术研究发展中心牵头举办,其遴选程序分为推荐、初选和终选3个环节。终选阶段,中国科学院院士、中国工程院院士、国家重点实验室主任等3500余位知名专家学者对30项候选科学进展进行网上投票,最终,得票数排名前10位的入选。图1 新原理开关器件成果荣获2022年度中国科学十大进展高密度与海量存储是大数据时代信息技术与数字经济发展的关键瓶颈。中国科学院上海微系统与信息技术研究所宋志棠、朱敏团队发明了一种新型基于单质碲和氮化钛电极界面效应的开关器件(图2),充分发挥纳米尺度二维限定性结构中碲熔融—结晶速度快、功耗低的独特优势,“开态”碲处于熔融状态是类金属、和氮化钛电极形成欧姆接触,提供强大的电流驱动能力,“关态”半导体单质碲和氮化钛电极形成肖特基势垒,彻底夹断电流。该晶-液态转变的新型开关器件,组分简单,可克服双向阈值开关(OTS)复杂组分导致成分偏析问题;工艺与CMOS兼容且可极度微缩,易实现海量三维集成;开关综合性能优异,驱动电流达到11 MA/cm2,疲劳108次以上,开关速度~15ns,尤其碲原子不丢失情况下开关寿命可大幅提升。该研究突破为我国发展海量存储和近存计算,在大数据时代参与国际竞争提供了新的技术方案。该成果发表在国际顶尖杂志Science (2021, 374, 1390-1394) 上。图2 新原理开关器件及其晶态-液态新型开关机理(Science, 2021, 374, 1390-1394)中国科学院上海微系统与信息技术研究所是我国著名的技术学科综合性研究所之一,前身是成立于1928年的国立中央研究院工程研究所。上海微系统所现有传感技术、集成电路材料、微系统技术三个国家级重点实验室,有无线传感网与通信、太赫兹固态技术、高端硅基材料三个中科院重点实验室。设有传感技术实验室、纳米材料与器件实验室,太赫兹固态技术实验室、微系统技术实验室、宽带无线通信实验室、硅基材料与集成器件实验室、超导电子学实验室、仿生视觉系统实验室、2020 X-Lab实验室等九个实验室。
  • 南京某实验室空气开关线路老化 引发大火
    4月11日下午2点,南京市察哈尔路上的察哈尔小学突然着火。据了解,着火点是学校里的一处自然实验室的空气开关线路老化所致,火苗又点燃了室内的酒精灯,才烧起大火。但由于发现及时,消防到达时火已经被扑灭。另外,学校老师率领全校学生紧急转移,没有人员伤亡。  “哎呀,实验室方向怎么冒黑烟啦!”11日下午2点,察哈尔小学的一处学生自然实验室内突然着火。记者在现场看见,自然实验室里的受损情况严重,桌椅已经被烧得不成样子。一位学校老师告诉记者,学校的自然实验室是给学生平时做生化试验用的,所以室内存放了一些可燃的材料。事发时,学生正在教室里上课,自然实验室里并没有学生。一位知情人士透露,起火原因可能是自然实验室里的空气开关设备老化,线路破损所致。“实验室里还存放着酒精灯。”这位知情人士称,可能火苗点燃了酒精灯才让火势进一步扩大。  由于发现及时,校方立即组织学生大转移,把全校学生转移至校外,等候通知。“因为平时也训练过。”这位工作人员介绍,所以转移时并没费太大功夫,学生情绪也没有波动。据学校老师介绍,去年学校就做过一次消防演习。火情发生后,在15分钟以内,学校1至4楼,1到6年级的所有学生全部转移到了校外。全校身强力壮的老师一齐上阵,锅碗瓢盆一起上,才把火扑灭。剩余的老师则是负责学生的转移工作。  据一位消防战士透露,虽然到达时火已经被扑灭,但该地区仍然存在安全隐患。这位消防战士称,消防车开到距学校不到300米的地方,由于道路狭窄就无法再往前开了,给救火工作带来一定困难,万一遇到火势比较大,后果不堪设想。目前,察哈尔小学校方已经给学生放假,让学生等候通知。
  • 高能镍碳超级电容器问世 解决电动车电源问题
    周国泰院士(左二)和科技人员一起检验汽车用高能镍碳超级电容器  你看满大街上跑的汽车,有几辆是电动车?  2008年北京奥运会,2010年上海世博会,人们看见电动汽车上路了,跑起来了。让人振奋!  可是,到了今天,电动汽车还是“雾里看花”。  怎么回事呢?  周国泰院士斩钉截铁地说,问题出在电动车的电源上。电动车的电池技术还没有“过关”。  这是在北京的总后军需物资油料部“周国泰院士工作室”,科技日报记者采访周国泰院士的一段对话。  紧接着,周国泰说:“如今,我们研发成功了高能镍碳超级电容器,这是电动车电源的一个新突破,将对电动车产业发展带来深刻影响。”  他随手拿给记者一份邀请函,是8月24日天津市政府印发的。上面写道:“天津市围绕推动新能源产业发展,与中国工程院院士周国泰合作,成功开发出高能镍碳超级电容器产品。经天津市科委组织成果鉴定,达到国际先进、国内领先水平,在电动汽车和储能电站中将具有竞争优势。天津市人民政府定于2011年9月1日上午10时在天津大礼堂召开高能镍碳超级电容器产品新闻发布会。”  眼前的周国泰院士,怎么搞起电动汽车研究了?  周国泰,我国军用、民用功能服装材料和士兵个体防护研究领域的知名专家。  从一名战士,到大学生,到走上总后军需装备研究所的科研之路,几十年来,周国泰在防弹装备、特种防护服装和防寒保暖材料研究等方面,取得多项成果。先后主持研制防弹背心、防弹头盔,解决了防弹材料及防弹结构体复合成型、树脂基体合成等一系列技术关键,研究成果居国际先进水平,他研制出的服装已装备军、警、法等部门,并出口美国等10余个国家。开展静电防护理论、特种防护服装研究与技术开发,研制的防静电、抗油拒水、阻燃等系列防护服装,装备到全国各大油田,并广泛用于石化、冶金、林业等部门。主持被服保暖材料、保暖机理和生产技术研究,合作研制成功热熔粘结絮片和PTFE防风防水透湿层压织物,广泛用于作训服、防寒服、南极考察服和运动服等。创建我国服装工效研究中心和单兵防弹装备V50弹击试验室,系统开展了服装工效学研究,实现了我国防弹装备测试评价与国际接轨。曾先后获得国家科技进步一等奖3项、二等奖3项,省部级科技进步奖多项成果奖励。1999年,当选为中国工程院院士,并晋升为少将。  今天的话题,还是谈谈你搞的超级电容器吧。  “你千万别说是我一个人搞成的。我有一个研发团队,有中央领导同志、有多个部委的关心支持,有天津市、张家港市、淄博市,有一大批多学科、多领域的专家协同合作创新,才开发出超级电容器,成为电动汽车的新电源。”院士、将军集于一身的周国泰,说话睿智果断,开门见山。  高能镍碳超级电容器,有哪些技术突破  高能镍碳超级电容器,成为一种用在电动车上的全新电源,周国泰说:“实现了几个突破。”  周国泰介绍,高能镍碳超级电容器,首先在加大材料的比表面积上实现突破。传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩大比表面积,使储电量大幅增加 第二,超级电容在正负极的材料结构上获突破。电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比功率比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。  锂离子电池,不是业界推崇的电源吗?周国泰说:“技术还不过关!”他将这种电池与超级电容器作了比较。  第一,锂离子电池存在安全隐患。锂离子、有机电解质,其本身有易燃、易爆性,杭州、上海曾发生的电动汽车自燃事件,今天谈起来还让人后怕。超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有 放火上烧,不锈钢外壳快烧红了,也没发生爆炸。锂离子电池,一旦发生短路,就会燃烧或者爆炸。  第二,锂离子电池,基本是300A电流充电,时间长,一次充电要6—8小时,使用不方便。超级电容器,可1500A,甚至3000A大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。  第三,锂离子电池寿命短。充放电的标准是2000次,目前很少有能达到的,即使达到了,性价比不实用。超级电容器,可大电流充电,瞬间大电流放电,效果理想,充放电可达5万—50万次,而充放电的国家标准是5万次。就说在淄博那次试验,公交车装上超级电容器充电后,乘坐满员,上了高速路,时速120公里,一次充电跑了210公里。使用超级电容器的小轿车,瞬间可大提速,时速可达130公里。  “你说超级电容器的优势怎么样?”说到此,周国泰问记者。大家都笑了。  回顾电动汽车发展历程,人们不难掂量出超级电容器的分量,也不难理解天津市政府为什么要召开新闻发布会的原因。  电动汽车诞生有100多年了,1839年,苏格兰人罗伯特安德森造出了世界上的第一台“电动车”。不过它不十分成功。主要原因是,电池寿命太短,电力太小,只能挪动一个非常轻的底盘。到了19世纪后期,长效电池诞生,促进了电动车的进一步发展,人们才在伦敦的大街上见到电力驱动的出租车,不过行驶距离非常短,还必须不停地在充电站里充电。  罗伯特不会预想到,历史进入到21世纪,随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车成为解决这两个技术难点的最佳途径。电动汽车也随之成为世界各国的选择和技术竞争的一个焦点。  一些专家曾经估计,全球能源矿产资源仅够支撑不到100年 而我国的石油只能支撑国内消耗30年,煤炭最多能支撑100年。目前,我国每年有85%的汽油和20%的柴油被汽车烧掉,汽车无疑成为了能源消耗大户,能源紧张与汽车行业发展的关系十分密切。如果中国的人均汽车拥有量追上美国,中国的道路上就会奔跑着6亿多辆小汽车,这一数字将超过世界其他国家小汽车数量的总和,对能源的需求将不言而喻,中国必将成为第一大油耗和石油进口国。  国人不会忘记,当年铁人王进喜在首都北京看到汽车背着的“大包袱”,缺石油,被人瞧不起啊!  到了今天,汽车背的“大包袱”没有了,可城市却背上了“大包袱”。从地上看天,见不到蓝天白云,从空中往下看,灰蒙蒙的,不见城市的倩影。说重了,是民族的耻辱!  从能源、环境的角度审视,发展新能源汽车,是我国的必然选择。而且从技术的角度看,我国有自身的优势。  据相关资料显示:我国虽然在传统汽车领域落后于发达国家近二三十年,但在电动汽车领域,我国与国外的技术水平和产业化程度差距相对较小,并有机会在该领域获得重要席位。这也为我国汽车工业技术实现跨越发展提供了一次历史性的机遇,更重要的是我国还有后发优势。目前,我国电动汽车的研发已具备一定的基础,一些企业在20世纪90年代中期就推出了电动汽车样车。  我国“八五”以来电动汽车被正式列入国家攻关项目,对电动汽车的投入显著增加。我国的汽车企业和高校、科研院所等200多家单位投入了大量的人力、财力和物力研发电动汽车,并取得了一系列科研成果。“九五”期间,电动汽车被列入863计划12个重大专项之一,全国汽车标准化技术委员会于1998年新组建了电动汽车车辆标准化分技术委员会。科技部又于2001年启动了电动汽车重大科技专项,使我国电动汽车技术水平和产业化程度与国外处在同一起跑线上。    现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种外接充电式(Plug-In)混合动力汽车,简称PHEV。目前在全世界,电动汽车一直是各大汽车集团花费巨资研发的新兴领域。  然而,制约电动汽车发展的瓶颈,还就是电池。世界电动车协会主席陈清泉在2011中国长春国际汽车论坛上表示,当前我国电动汽车电池技术存在两个明显缺点:第一个缺点就是缺乏深层次技术。比如电池的化学问题、物理问题、温度问题、结构问题等,在这些方面我们研发还不够,没有能够建立数学模型把这些问题搞清楚 另一个缺点是缺乏评价体系。比如电池的安全性怎么样,在高温、低温环境下能不能正常工作,这些都没有一个好的评价。  有资料介绍,电动汽车对电池的要求比较高,电池要具备高比能、高比功率、快速充电和具有深度放电功能,循环和使用寿命要长。铅酸电池,虽然其比能量、比功率和能量密度都比较低,但是高的性价比使其应用广泛,然而带来的是严重的环境问题。镍镉电池和镍氢电池虽然性能好于铅酸电池,但是其性价比不高,含重金属,用完后回收处理难,若遗弃会对环境造成严重污染。  目前,越来越多的研究人员选用锂离子电池作为电动汽车的动力电池,但这种电池的缺陷十分明显,前面已叙。  “针对目前各种电池的缺陷,我们开发了超级电容器。”周国泰顿了一下,说,这种电容器的技术优势前面说了。所以,很顺利地通过了天津市科委组织的成果鉴定。  高能镍碳超级电容器,老百姓也用得起  有专家说,目前,几乎所有的人都认为电动汽车是未来的发展趋势,但种种迹象表明,电动汽车离我们还是比较遥远。但电动自行车风靡全国,每天提几公斤的电池上下楼,在居民小区并不鲜见。电动汽车怎么办?  为此,有学者发表文章,对电动汽车提出种种担忧和质疑。有说电动汽车在电池上不成熟的,有说原子电池、聚合物电池、燃料电池、锂离子电池等任何电池都不环保的,各种议论不绝于耳。  有各种质疑和担心,也属正常。科技创新,正是在质疑中前行、在争论中创新的。说着,周国泰从沙发上站起来:“在发展电动汽车的过程中,有各种担心,是可以理解的。电池的问题卡住了电动汽车的脖子,这也是事实。”他扳着手指头,就说公交车吧,一辆公交车,走100公里,若用油30升,按8元1升算,要240元 而用电,走100公里。用电70度,每度电平均按6毛钱算,是42元钱。还是用电省吧。因此,发展电动车,不应动摇!  还以锂离子电池为例,与超级电容器比,锂离子电池成本7万元,充电2000次,每充电1次按行驶100公里算,20万公里就要更换电池 超级电容器,也按充电1次行驶100公里算,可充电5万次,甚至可达10万次、50万次,超级电容器的价格不高于锂离子电池。超级电容器回收后,对材料再激活处理后还可以使用。计算一下,综合成本有多低!这样,老百姓是不是就能用得起了?  超级电容器的生产是环保的,你可以到淄博年产100万只的生产基地去看,生产车间,只有一个地漏,那是用来打扫卫生冲水用的,整个生产过程,不产生废水、废气,没有污染排放。还用担心环保问题吗?  高能镍碳超级电容器,“协同会战”的结果  话题回到采访周国泰院士的开头。他还是坚持说那句话,超级电容器的研发,是多方支持,多领域、多学科专家协同攻关的成果。  “周院士说的是事实!”原海军后勤部技术装备研究所研究员陈同柱讲起了周国泰。  周院士是一位军人科学家。多年来,他创建了我们国家的军事科研的新模式和新路子。他作为领军专家,坚持军民融合发展,他把军内外有关专家,战略研究的,军事需求的,科研管理的专家都联合起来,充分集成地方的科研力量、技术成果,甚至地方的资金资源,高效组合起来,形成优势。这就是他的“小核心大联合”的科研创新模式。  陈同柱说,就说超级电容器这个新能源项目,看起来是解决电动汽车动力问题,最终是军民两用,可能在潜艇、航天,包括新型飞机、导弹都可应用,解决国防军事急需的新能源,花了最少的钱,取得了大成果。现在,导弹、飞机、航天火箭,液体燃料的推力远远不够用了,他的科研找到了路子,很可能要在这方面突破。这就是军民融合。  回顾周国泰的科研历程,他倡导“大科研”的思路清晰可见。  多年来,他打破研究所的“高大院墙”,广泛合作,先后有十几名院士和知名专家给他当顾问,直接参与课题研究。他把研究室主任带到训练场上去,带到船上去,干什么?上去找科研课题。他说,你研究的防寒服装,要自己穿上到寒区部队去和战士一块体验。比如,研究出舰船食品,就到船上去,风浪颠簸后看自己能不能吃。  他说:“好舵手会用八面风!科研,要兼容式、融合式,广泛联合、协作,充分发挥各方面的力量,发扬‘两弹一星’精神!”正是这样,在“九五”期间,周国泰创造了一个不足百人的研究所获得11项全军科研重大贡献奖,而有几千人的一个研究院才获9项。  关于获得多方面支持和合作,周国泰讲了一个故事。  一次,周国泰向一位中央领导同志汇报,说超级电容器用在电动汽车上,从起步,上坡,提速,包括充电速度如何快等等,讲得头头是道。这位领导同志说,我不听你讲,把车开来看看。  果然,周国泰把车开来了,领导坐了一圈,给予肯定:好!并详细过问还有什么困难。这件事发生在2010年。  超级电容器研发,像许多创新成果一样,最初从实验室做起,始于2008年。  怎么想到了研发超级电容器呢?  先看看这一年有关电动汽车的信息,各种电池技术及生产的消息,铺天盖地。人们的胃口吊起来了,期待着大街上有更多的电动汽车在跑。同时,业界在电动汽车电池技术上,也有不少争论。有人认为,电动汽车电池技术上解决了,只是成本高,国家出台补贴政策,就能推进电动汽车产业的发展。也有人提出,靠国家补贴,不是长久之计,有人在借机圈钱,电池技术还没有真正“过关”。  在这样的氛围下,周国泰组织创新团队攻关。他注意到,有人在传统电池上做文章,力求技术新突破。传统电池,是电能变成化学能,再转变成电能。而传统电容,是做大比表面积,通过研发各种物质材料,用增加比表面积的办法,来提高电容的性能。比表面积最大的材料,是活性碳。周国泰,在传统电池和传统电容之间,选择了一条科研的“中间路线”,集成电池和电容的优点于一身。  科技创新,往往是在不经意间,又往往以科研思路正确取胜。有成就的科学家,首先是在科研思路和方法上与众不同,从而获得科学突破。周国泰就是这样的科学家。在近4年的时间里,他领着科研团队,日夜苦干。他像当年研究石油工人防护服那样,从实验室到油田,身背大包服装搞试验,四处奔波 他像当年研究作战防护服、防弹头盔那样,上靶场,进深山,钻猫耳洞。研发超级电容器,还是那样“拼命三郎”。为此,4年间,周国泰病倒两次住院。  这里难以记述周国泰和研发团队更多的创新故事。不过,在近4年的时间里,他和研发团队终于获得了新成果:高能镍碳超级电容器。在天津市科委组织的成果鉴定会上,获得很高的评价。  采访周国泰院士,他不愿讲自己“过五关、斩六将”的故事,而是不间断地谈超级电容器研发获得的方方面面的大力支持和研发中的大团队协同。  他说,这是事实啊!从中央领导,到国家发改委、科技部等多个部委、天津市、天津市科委、张家港市、淄博市等,各级领导重视、关心、支持,涉及汽车等多领域、多学科专家密切合作,步调一致,协同攻关。不如此,这个超级电容器搞不出来,更不能成功用在汽车上。  举个例子吧。发改委的有关领导多忙啊!可是,领导多次表示:“周院士来谈项目,随时可见。”  做实验,急需一笔资金,张家港市委书记黄钦、市长徐美健得知后,当即拍板:“资金一周内到位。” 徐美健说:“这是国家的大事、民族的大事,即使失败了,我们张家港也愿意交这个学费!”  超级电容器中试,需要投入一笔资金,建中试生产线,淄博市委书记刘慧晏、市长周清利也还是当即决定:“中试生产线建在淄博,年产100万块,投资一周内到位。”周清利说:“实现零排放,还百姓一片蓝天是我们共产党人的责任,我豁出老命也要一干到底。”不仅如此,市科技局局长周元军就住在厂里,中试生产线高质量、高标准,以最快的速度建成。  周国泰还讲了几件他难忘的事。  超级电容器要在汽车上做试验。那是一个大冬天,北京那天出奇的冷。淄博市科技局局长周元军带着汽车,大汽车上驮着小汽车,一路从淄博赶到北京,下了车双手冰凉,身体发抖。再看几位穿工作服的随行,装车、卸车。旁人不知道,这几位是山东理工大学领军级的教授啊!  超级电容器做汽车发动机试验,涉及到天津军交实验室、天津无线电18所、汽研中心等多家单位、多位科研人员,大家一呼百应,一项试验要求5天完成,天津军交学院院长犹如战场下命令:“5天完成,只能提前。”  尤其是天津市,张高丽书记在不到一年的时间5次亲自召开会议协调和讨论此项目,并做多次批示。分管工业的副市长王治平召开20余次专门会议协调政府有关部门。天津市有关企业联合攻关,科委领导多次来试验室,具体指导项目的进程。他们心中装的是环境,装的是百姓,装的是那一片蔚蓝的天!  周国泰说:“我不是搞汽车的。超级电容要用在汽车上,如果没有这样的大力支持、协同攻关、良好的合作,是根本不可能的!协同,使每个人的创新潜能充分释放出来,整合起来。”  又说起为研发超级电容器项目,周国泰不到4年两次住院。院士也当了,将军的衔也授了,功成名就了,何必再“拼命”呢?!  周国泰说:“节能减排,哥本哈根会议上,温总理有承诺。还老百姓一片蓝天,作为科技工作者,我有一份责任!”  走出周国泰院士工作室,记者还回味着这句话。
  • 超级电容器多孔炭首个国际标准发布
    记者24日从中国科学院山西煤炭化学研究所获悉,日前由该所主持,宁波中车新能源科技有限公司、深圳市标准技术研究院及国家纳米科学中心共同参与制定的国际标准——电化学电容器多孔炭(简称电容炭)空白详细规范,经国际电工委员会纳米电工产品与系统技术委员会通过,正式对外发布。该标准由中国科学院山西煤炭化学研究所709组技术团队承担制定工作。  这一电容炭领域首个国际材料空白详细规范,全面梳理了材料对器件性能的影响因素,包括电容炭的化学、物理、结构及电化学关键控制特性23项,其中电化学关键控制特性除了比容量、倍率性能等一些短期性能指标,还包括了下游用户更加关心的长期稳定性、温度耐受性等指标。标准对这23项关键控制特性的测试方法进行了详细的阐述,并且通过查阅国际国内标准,对这些测试方法的标准化成熟度进行了归类。  技术团队通过主持该标准的制定,一方面能全方位梳理总结材料影响器件性能的潜在因素,从内部把技术做精做细,另一方面也能促进国内研发人员与技术水平先进的国际公司充分交流,帮助技术升级,从而助力国产电容炭走向国际市场。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛用于电力监测通信终端、电网调频和规模储能等领域,拥有广阔的市场前景。然而,我国电化学电容器的关键活性材料——电容炭,长期依赖日韩进口。  近年来,我国电容炭生产技术取得重要突破。中国科学院山西煤炭化学研究所打通电容炭料—材—器—用技术创新链,成功实现成果转移转化,启动500吨电容炭产业化项目建设,目前已进入量产阶段。在电容炭研究过程中,科研人员发现其制备工艺路线长、影响因素繁多、构效关系复杂,缺乏标准文件指导。  基于此,技术团队自2019年向IEC(国际电工委员会)提出制定电容炭空白详细规范国际标准和超级电容器电极片空白详细规范的标准提案,旨在通过一系列高质量的国际标准“组合拳”引导该行业健康快速发展。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 超级电容器用电极片首个国际标准发布
    近日,中科院山西煤炭化学研究所(以下简称山西煤化所)主持制定的国际标准IEC/TS 62565-5-2 (超级电容器电极片—空白详细规范)由国际电工委员会纳米电工产品与系统技术委员会(IEC/TC 113)对外正式发布。  该标准是超级电容器用电极片的首个国际空白详细规范,详细梳理了电极片影响器件性能的化学、物理、结构和电化学关键控制特性及其相应测试方法。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛应用于电动汽车、高速列车、飞机、光伏、风电和电子等领域。山西煤化所开展超级电容器研究以来,打通了“原料—材料—器件—应用”产业创新链,建立了超级电容器中试平台,用于评估电容炭的电化学性能,进一步反馈指导材料研发、生产和质量控制。该所科研人员发现,对超级电容器电极片的关键控制特性进行准确表征,并阐明“电容炭—电极片—电容器”之间的构效关系,对整个产业链的基础科学研究和技术开发十分重要。  2018年,山西煤化所提出制定电极片空白材料规范的设想。2020年,该标准项目正式立项。  该标准的发布,将为超级电容器电极片统一术语概念、规范生产流程、建立产品规范提供指导,为促进相关领域行业技术交流、技术合作及消除贸易壁垒提供支持。同时,该标准是超级电容器用电极片的首个国际标准,填补了国际标准化的空白,也为IEC/TC 113引入了超级电容器及其材料的概念,开启了IEC/TC 113在超级电容器用炭纳米结构材料领域的国际标准化制定工作,提升了我国在相关领域的国际影响力和话语权。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制