当前位置: 仪器信息网 > 行业主题 > >

光学比较测角仪

仪器信息网光学比较测角仪专题为您提供2024年最新光学比较测角仪价格报价、厂家品牌的相关信息, 包括光学比较测角仪参数、型号等,不管是国产,还是进口品牌的光学比较测角仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学比较测角仪相关的耗材配件、试剂标物,还有光学比较测角仪相关的最新资讯、资料,以及光学比较测角仪相关的解决方案。

光学比较测角仪相关的论坛

  • 【分享】共聚焦显微镜与普通光学显微镜的比较

    共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。  一、普通光学显微镜  普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。  显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:  R=0.61λ /N.A. N.A.=nsinα/2  式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。  制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。  普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。

  • 光学元件亚表面缺陷检测自动调平与对焦研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b]王悦[/b][/size][/b][font=&]【题名】:[b][b][b]光学元件亚表面缺陷检测自动调平与对焦研究[/b][/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1021001205.nh&uniplatform=NZKPT&v=xYGHSdLttNdKdrQ4eSEtVhLFx0cYpkq8yjYDo-JSapNdufFHtF5fAnmFys_fHVpk]光学元件亚表面缺陷检测自动调平与对焦研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 海洋光学光纤光谱仪应用

    海洋光学光纤光谱仪应用:颜色测量概要颜色测量包括测定样品的反射光谱并且用光谱跟标准参考对照。样品反射的光能量可以换算为三刺激值 X,Y 和Z。这些值描述了人眼对三原色的生理反应。X,Y和Z值可以被转换到统一的色彩空间,例如L*,a* 和 b*。光谱仪USB4000光谱仪,配置为25μm狭缝和#2 (350-1000 nm)光栅,可以用于颜色分析。对于采用积分球作为采样光学附件的场合,我们建议用L2探测器聚光透镜来提高灵敏度。 取样光学元件 当采用反射式颜色测量时,你的数据会受到采样的几何角度的影响。R400-7-VIS-NIR反射探头可以在单一方向同时进行照射和探测。如果你使用探头在45度角测量,它测量的是漫反射。如果你用探测在90度角测量,它测量的是镜面的反射。探头到表面的距离取决于样品的尺寸。折中的选择是ISP-REF积分球,它可以提供180度的照射和探测,用来测量平坦表面的镜面反射和漫反射。反射率是通过跟标准参考比对后得到的,如WS-1漫反射标准。Spectrasuite辐射和颜色测量软件可以由反射光谱图计算出各种色彩空间参数。 漂亮的角蝰!不,它不是角蝰,但我们还是很难抵抗它。Ted Rohr博士—一位野生生物学家,也是澳大利亚墨尔本RMIT大学的讲师—正握着一条澳大利亚铜斑蛇,这是世界上最毒的蛇之一。澳洲铜斑蛇是一种长有前部毒牙的蛇,仅在比较凉爽的澳洲东南部地区栖息。它捕食青蛙、蜥蜴、蛇以及小型动物。Rohr正在研究这些蛇的背部在褐色,绿色或者黑色的遮蔽处快速改变颜色的能力。采用USB4000光谱仪和一根末端带有定制护罩的光纤探头(护罩可以使探头和测量点保持固定的距离), Rohr 分别在野外和实验室中测量了各条蛇的反射率。依照Rohr的研究,蛇改变身体颜色的能力只有在较低温度的环境下才有意义,因为在季节中甚至一天的时间里,温度会改变很多次。改变颜色是适应温度变化的完美机制。然而,改变身体颜色对于伪装也很重要。变成黑色可能是为了尽可能多地吸收太阳光,,但是它显然会让蛇更容易被鸟类捕食——以及被机警的研究者发现! 配置 1. USB4000 即插即用光谱仪  #2光栅, 波长范围350-1000 nm  25 μm 狭缝作为入射孔径  L4 探测器聚光透镜  OFLV-350-1000 消除衍射滤光片 2. WS-1 漫反射标准参考 3. OOIIrrad-C 颜色测量软件 4. LS-1 卤钨灯 5. R400-7-VIS-NIR 反射探头 6. RPH-1反射探头支架 7. ASP 一年服务包

  • 【分享】比较仪的分类简介

    比较仪就是用机械的、电的、气动的或光学的方法,来检查被测工件尺寸相对于标准件尺寸偏差的仪器。比较仪主要由测微仪和比较仪座组成,主要分为光学比较仪、机械式比较仪、电学比较仪。比较仪在测量时,首先用量块研合组成与被测基本尺寸相等的量块组,再用此量块组使测微仪指针对零,然后换上被测工件,测微仪指针指示的即为被测尺寸的偏差值。 光学比较仪是利用光学测微仪作为放大指示部件。适用于在计量室测量较大的或在立式光学计上不易定位的工件,光学比较仪常用于检定量块和光滑量规以及测量工件的外径、厚度。机械式比较仪常和和百分表和千分表、杠杆齿轮式测微仪或扭簧测微仪等机械式指示表作为放大、指示部件,机械式比较仪常用在车间和计量室测量工件外径和厚度等。而电学比较仪常用电感式或电容式测微仪作为放大、指示部件。 比较仪可对各种弹头、弹壳、标记、铸币、钞票、指纹、印鉴、织物纤维和生物等痕迹进行形状、结构的比较观察。比较仪可用于公安司法机关的侦破鉴定,也可供有关科研、学校、银行等单位使用。

  • 防止光学仪器生雾的办法3采用非硫化硅橡胶密封腻子

    防止光学仪器生雾的办法3采用非硫化硅橡胶密封腻子:光学仪器密封性好,对于防霉防雾都有重要作用;非硫化硅橡胶密封腻,是一种非硫化醚硅橡胶,加入填充剂、着色剂、结构控制剂所组成其密封腻高、低温性能显著优于原来的密封蜡,其他指标均不低于密封蜡。

  • 海洋光学微型光纤光谱仪及其典型应用

    海洋光学微型光纤光谱仪及其典型应用

    光谱学是测量紫外、可见、近红外和红外波段光强度的技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域。在上世纪九十年代以来,微电子领域中的多象元光学探测器(例如CCD,光电二极管阵列)制造技术迅猛发展,使生产低成本扫描仪和CCD相机成为可能。美国海洋光学公司的微型光纤光谱仪使用了同样的CCD(CCD光谱仪)和光电二极管阵列探测器,可以对整个光谱进行快速扫描,不需要转动光栅。   海洋光学的微型光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分析。由于光纤的方便性,用户可以非常灵活的搭建光谱采集系统。其优势在于测量系统的模块化和灵活性,且测量速度非常快,可以用于在线分析。而且由于采用了低成本的通用探测器,降低了光谱仪的成本,从而也降低了整个测量系统的造价。   微型光纤光谱仪基本配置包括包括一个光栅,一个狭缝和一个探测器。这些部件的参数在选购光谱仪时必须详细说明。光谱仪的性能取决于这些部件的精确组合与校准,校准后光纤光谱仪,原则上这些配件都不能有任何的变动。海洋光学拥有广泛的光谱仪配置选择,使其性能最大化以满足客户要求。如果这些配置不符合您的要求,我们可以根据您的要求为您量身定做。  海洋光学微型光纤光谱仪选型① 光学分辨率光学分辨率是配置微型光纤光谱仪时经常被考虑的主要因素之一。当用户为了追求微型光纤光谱仪的高分辨率时,在选型时会选择具有尽可能多像元数探测器的微型光谱仪。而实际上光学分辨率不仅仅由探测器的像元数决定,还与狭缝宽度和光栅的刻线密度有关。所以当讨论分辨率时,通常用色散或用波长范围除以像元数。半高全宽值(FWHM),即最大峰值光强一半处所对应的谱线宽度是一种表述分辨率更好的方法(见上图)。用FWHM可以对不同光谱仪的实际光学性能进行直接对比。用这种表示方法可以避免一些缺陷,例如:有的光栅并没有用到全部像元;采用交叉式Czerny-Turner光路设计的光谱仪中,光学系统不能把狭缝清晰地成像在探测器上,这是由于光路中过大的反射角和固有的系统放大倍率造成的。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122045_360970_1855403_3.jpg② 灵敏度灵敏度是配置光谱仪时所需要考虑的另一个因素。现在的主流微型光纤光谱仪都采用线阵探测器,所以灵敏度跟像素数没有任何关系。但面阵探测器例外,因为面阵探测器在垂直方向的每个像素都会被累积,在某种意义上垂直方向上的所有像素的累积可以被看成一个更大的像素。因此,在考虑某种应用对灵敏度的要求时,更重要的是看探测器的响应曲线。下图中给出了海洋光学微型光纤光谱仪采用的两种典型探测器的灵敏度响应曲线。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122046_360971_1855403_3.jpg③ 信噪比信噪比也是选配微型光纤光谱仪的一个因素。对于CCD光谱仪,较高的灵敏度导致了较低的信噪比。在一定范围内,可以通过对光谱进行多次平均来提高信噪比。平均次数的平方根恰好是信噪比提高的倍数。例如,光谱平均100次,信噪比能提高10倍。有些应用需要较高的信噪比,此时用户应当比较在光谱仪中的光学平台和探测器的综合信噪比。需要强调的是,用户一定要搞清楚厂家给出的信噪比是不是整个光谱仪系统的信噪比,因为只有整个光谱仪系统的信噪比才是最重要的。一个信噪比高的探测器配一个性能不高的光路,那么它的高信噪比就没有实际意义。比较不同探测器和微型光纤光谱仪间的信噪比的比较好的方法是:测量100次,然后对每个像元计算平均值和标准偏差,信噪比等于平均值除以标准偏差。测量信噪比时,信号强度应当接近饱和,并设置正确的平滑值(如果需要的话)。④ 光栅选择光栅选择是最比较复杂的。通常有两个因素决定了光栅的选择:波长范围和光学分辨率。波长范围受限于所选择的探测器或光栅,或二者都有。光学分辨率不仅受限于光栅,还受限于狭缝宽度和探测器的像元数和像元尺寸。还要考虑第三个因素,即光栅还会影响系统的灵敏度,这是因为不同的光栅的闪耀波长(即最高效率)位置各不相同。当对系统进行最优化配置时,最好查看一下光栅的效率曲线。下图中是海洋光学微型光纤光谱仪采用的几种典型的600线/mm光栅的效率曲线,效率最高点从紫外区到近红外区。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122047_360972_1855403_3.jpg⑤ 狭缝狭缝了也是选配微型光纤光谱仪的一个因素。微型光纤光谱仪有多种狭缝尺寸供您选择,狭缝安装在光纤接头处(见图),并且被永久的固定在光谱仪上。有两点需要记住,狭缝越小,光学分辨率越高;狭缝越大,进入光学平台的光通量越多,即灵敏度越高。从本质上说,需要折中兼顾光谱仪的分辨率和灵敏度。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122047_360973_1855403_3.jpg⑥ 其他 选择微型光纤光谱仪的其他选项会相对容易一些。例如可以选择升级UV4探测器后,探测器上的标准BK7窗片将会被石英窗片替代,用来增强海洋光学微型光纤光谱仪在波长340nm以下紫外区的响应能力。而其它探测器,比如薄型背照式CCD或CMOS则不需要这个选项。而为了避免二、三级衍射效应的影响,可以通过在位于狭缝与消包层模式孔之间的SMA905连接器中安装长通滤光片或在探测器的窗口处安装OFLV消除高阶衍射滤光片。正如上面介绍的几个因素所表明的,通过一些简单的步骤就就可以配置好满足您应用的微型光纤光谱仪。除了光谱仪,我们可能还需要考虑种类纷杂的光源和采样附件。所以不必犹豫尽管向我们咨询有关仪器的一切问题,我们将会给您一套最适合您应用的微型光纤光谱仪配置。

  • 【分享】光学计的特征及应用

    光学计属于精密光学机械长度计量仪器。光学计是应用光学自准直原理测量微差尺寸的长度计量仪器,是一种用标准器以比较法测量工件的尺寸。光学计结构设计紧凑、外型尺寸小巧、便于运输,可对五等量块、量棒、钢球、线形及平行平面状精密量具和零件的外型尺寸作精密测量。 光学计是一种采用量块或标准零件与试件相比较的方式测量物体外形尺寸的仪器。光学计采用腊屏新技术,附加读数放大镜、视场亮度匀称、像质清晰;光学计具有测量精度高、数据稳定可靠,对于小尺寸精密零件的检测方便快捷;光学计能够一机两用,将投影光学计镜管取下装在机床上,可直接控制加工尺寸。 光学计主要用于五等精度量块,一级精度柱型规及各种圆柱形、球形、线形等物体的直径或板形物体的厚度的精密测量,对被测件作微小位移测量。光学计对工件的直径或样板工件的厚度以及外螺纹的中径均能作比较。光学计广泛应用于工厂计量室、车间检定站或制造量具、工具与精密零件车间。

  • 光学显微镜可以调节象散么?

    我们有一台光学显微镜,在测量线条时X方向线条分明。转到Y方向感觉线条之间比较模糊,调节焦距适中不如X方向好。请问这是什么原因引起的,是象散么?如果是象散,光学显微镜可以调节象散么?

  • 怎样清洁精密光学仪器

    对精密光学器件的清洁有可能降低器件的性能,不适当或不必要的清洁容易破坏器件的表面镀膜。正确取放器件并将器件保存在专用容器中,将最大限度地减少清洁次数和器件被损坏的可能。A、推荐清洁材料聚乙烯实验室用手套光学级的透镜清洁纸脱脂长绒棉根据环境按比例调配酒精、乙醚溶液进行光学零件表面清洁工作。推荐比例如下:a 室温:18 ℃-24℃时乙醇:35﹪乙醚:65﹪b 室温:12 ℃-18℃时乙醇:25﹪乙醚:75﹪B、推荐清洁步骤1、用清洁空气吹掉表面浮尘。如果不能吹干净,取两张镜头纸裹在棉签上或将镜头纸折叠使之比要清洁的面积稍大。2、擦拭光学零件表面时,首先应用石油醚将毛砂面和框擦干净。3、擦拭圆形零件时,棉花球应从中心向边缘作螺旋线移动,同时棉花球本身也应转动,并顺势将棉球从镜片表面移出,不要在镜片边缘停留,以免留下印迹,如果利用回转器擦拭,则擦拭时,棉球应由中心向边缘作直线移动,棉球本身同时转动(棉球的自转量应略小于一周为宜)。4、擦拭棱镜时,可将棉球横放于被擦拭的表面,以直线形式进行擦拭。5、应在相对清洁的房间内擦拭,并用脱脂长绒棉擦拭,棉球上所含的清洗液不宜过多,擦拭时应在分划板刻线的交叉方向移动擦拭,以免将刻线内的填料层擦掉。6、在擦拭胶合光学零件时,棉球蘸混合液不应过多,以免溶剂侵入胶合层引起脱胶。7、镀铝加保护膜的反射零件,如果保护膜比较牢,可用蘸少许混合液的棉球或仔细脱脂的砂布擦拭。8、棉球应卷好,卷棉球的竹棍头部不应外露,以免划伤零件。棉球的大小和形状应随零件的大小和种类不同,一般是圆形零件用圆柱形棉球,平面零件用扁平形棉球,除镀膜表面(特别是反射镁)用松软的棉球外,其余情况下应把棉球卷紧。9、蘸混合剂的棉球侵入溶剂内时请不要超过三分之一的棉球长度。注意:擦拭前,操作人员应用洗涤液仔细清洗双手,并用脱脂过的毛巾擦干。操作人员应将室内的一切用具擦拭清洁,有关与光学零件接触的工具、夹具,应进行脱脂。一个棉球只能用来擦拭一遍,用过的棉球,请不要蘸溶剂重复使用。清洁光学器件之前,请去掉手上的戒指及其他饰物,仔细清洗手部并戴上手套。工作中,如手出汗或接触油脂后,需按照要求重新清洗双手。擦拭光学零件,如必须用手拿光学零件的抛光面,请对戴着的手套进行脱脂处理。擦拭带框的光学零件时,应注意不使污垢附着在靠框的周围或框上挂有纤维,不带框的光学零件应不使污垢附着在毛砂面上。

  • 常用光学计量仪器分类

    [font=宋体]在实际应用中,尽管光学计量仪器多种多样,但它们的光学原理却[color=blue]都基于四种基本原[/color][/font][font=宋体][color=blue]理[/color][/font][font=宋体],它们是:[color=blue]望远光学原理、显微光学原理、投影光学原理、干涉光学原理。[/color][/font][font=宋体]基于应用不同的光学原理,光学计量仪器可分为[color=blue]:自准直类光学计量仪器、显微镜类光学计量仪器、投影类光学计量仪器、光干涉类光学计量仪器四大类。[/color][/font][font=宋体]望远系统主要性能是视角放大率,在观察时用来扩大眼睛对远处物体的视角,用以观察物体。在测量时常被用来产生平行光以进行各种用途的测量,应用此原理的光学计量仪器有:自准直光管、测角仪、立[/font]([font=宋体]卧[/font])[font=宋体]式光学计等。[/font][font=宋体]显微系统的主要性能是较高的放大率。它与放大镜相比,有较高的放大率和分辨本领。可清楚地观察和分辨微小物体和物体的细小部位。应用此原理的光学计量仪器有:工具显微镜、光学分度头、测长仪、测长机、双管显微镜等;[/font][font=宋体]投影系统的主要性能:是较高的、准确的横向放大率。[/font][font=宋体]被测量的形状复杂、细小的物体或物体表面缺陷等经强投射光或强反射光照射,再经投影物镜放大成像在影屏上后进行测量。应用此原理的光学计量仪器有:大、中、小型投影仪、专用的公差带投影仪等。[/font][font=宋体]光干涉系统主要性能是有很高的检测精度。它是以光波波长作:“尺子”,实现了对表面粗糙度、长度微小变化等几何量的高精度测量。应用此原理的光学计量仪器有平面平晶等厚干涉仪、接触式干涉仪、干涉显微镜等。[/font]

  • 【分享】三维光学测量仪的特征及功能简介

    三维光学测量仪又可称为三维影像测量仪或非接触式光学测量仪,是集光学、机械、电子、计算机图像处理技术于一体的高精度、高效率、高可靠性的测量仪器。三维光学测量仪采用非接触式三维测量方式,可进行快速精密的几何尺寸和形位公差的测量,具有了良好的刚性质量比,运动平稳、精确,确保了整机精度更高。 三维光学测量仪采用国际先进的有限元分析技术设计,具有高精度、高性能高速度和高稳定性的特点。使用冷光源系统,可以避免容易变形的工件在测量是因为热变形所产生的误差,并避免了由于碰触引起的变形。三维光学测量仪可高效地检测各种复杂精密零部件的轮廓和表面形状尺寸、角度及位置,全自动地进行微观检测与质量控制;还可自动抓边、自动聚焦的功能使得最大程度减少了人为误差。 三维光学测量仪适用于航空、航天、军工、汽车、模具、电子、机械、仪表、五金、塑胶等行业中的模具、螺丝、金属、配件、橡胶、PCB板、弹簧等以坐标测量为目的一切应用领域适用范围。

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 光学显微镜明细解释——之无限远光学系统

    光学显微镜明细解释——之无限远光学系统

    [color=#666666]在过去的10年里,基本上所有的主要的显微镜制造商迁移到研究级生物医学和工业显微镜无限远校正光学系统的利用率。在这些系统中,图像的距离被设置为无穷大,并策略性地放置在物镜和目镜(目镜),以产生中间图像之间的管体的管(或奥特兰克)透镜。[/color][color=#666666][img=,433,255]https://ng1.17img.cn/bbsfiles/images/2019/05/201905300932346812_4874_2206495_3.jpg!w433x255.jpg[/img][/color][color=#666666][color=#666666]无限远光学系统允许引入的辅助成分,如微分干涉相差(DIC)的棱镜,偏振器和落射荧光光源,成平行的焦点和像差校正效果,只需要很少的目标和管透镜之间的光路。较早的有限,或固定管长度,显微镜有一个指定距离鼻甲开幕,客观桶固定,眼座中的目镜管。这个距离被称为机械管长度的显微镜。该设计假定,当样品被放置在焦点,它是在几微米远于目标的前焦面。在19世纪时由皇家显微学会(RMS)有限管长度在160毫米标准化,并享有广泛的接受了100多年。用显微镜具有160毫米的管长度的设计是用于目标题使用该值在枪管上。[/color][color=#666666]添加到一个固定的管长度显微镜的光路中的光学配件增加了有效的管的长度更大的值超过160毫米。出于这个原因,一个垂直的另外的反射光照明器,偏振的中间阶段,或类似的附件可以引入到出一个理想的校正光学系统的球面像差。大多数显微镜管长度固定期内,制造商被迫将这些配件额外的光学元件,重新建立有效的160毫米管长度显微镜系统。这一行动的成本常常是一个增倍镜和光照强度降低由此产生的图像。[/color][color=#666666]一些反射光系统也阻碍了“鬼影”,出现的结果会聚光线通过分光镜。在试图规避所带来的另外的辅助光学组件的构件中,德国显微镜制造商赖克特原来先驱的无限远光学系统的概念。该公司开始无限远校正光学系统试验早在20世纪30年代由莱卡和蔡司紧随其后,但这些光学大多数厂家没有成为标准设备,直到20世纪80年代。[/color][color=#666666]管子的长度在无限远校正的显微镜被称为基准焦距和范围在160至200毫米之间,取决于制造商(见表1)。通过管镜头或目标(次),实现无穷大系统中的光学像差校正。残余的横向色差在无穷大目标可以很容易地补偿小心管镜头设计,但一些制造商,包括尼康,选择正确的球形和色差物镜本身。这可能是由于开发的专有新的玻璃配方,具有极低的分散体。还有一些制造商(尤其是蔡司ICS系统)利用组合更正管镜头和目标。[/color][color=#666666]无限远光学系统参数[/color][/color][table][tr][td]生产厂家[/td][td]管镜头焦距(毫米)[/td][td]齐焦距离(毫米)[/td][td]螺纹类型[/td][/tr][tr][td]徕卡[/td][td]200[/td][td]45[/td][td]M25[/td][/tr][tr][td]尼康[/td][td]200[/td][td]60[/td][td]M25[/td][/tr][tr][td]奥林巴斯[/td][td]180[/td][td]45[/td][td]RMS[/td][/tr][tr][td]蔡司[/td][td]165[/td][td]45[/td][td]RMS[/td][/tr][/table][color=#666666]表1[/color][color=#666666]表1给出的规格,包括管镜头焦段,齐焦距离,和客观螺纹型,各大厂商所提供的无限远校正显微镜。虽然徕卡和尼康都用一根管子长度为200毫米和25毫米螺纹尺寸的客观,客观齐焦距离是与尼康CFI 60系统明显更大。奥林巴斯,蔡司使用更短的管镜头焦距(分别为180和165毫米),但两家公司有标准化的客观螺纹尺寸和坚持的齐焦长45毫米。[/color][color=#666666]固定管长度在有限的光学系统,通过物镜的光通过朝向中间图像平面(位于目镜的前焦面)和在该点的收敛,发生和相消干涉,以产生图像(图图2(a))。这种情况很不同的无限远校正光学系统中产生的磁通的目标成像在无穷远(通常简称为无穷大的空间,如图2(b)),正被聚焦在中间像平面的平行光的波列管镜头。应该指出的是,为无限远校正的显微镜设计的目标通常是不可互换的与用于有限的(160或170毫米)光管长度显微镜,反之亦然。上使用时,由于缺乏管透镜的有限的显微镜系统,无限远透镜遭受增强的球面像差。然而,在某些情况下这是可能的,利用有限的目标在无限远校正的显微镜,但具有一些缺点。的数值孔径的有限目标受到损害,当它们被用来与无穷大系统,从而导致分辨率降低。此外,齐焦之间的有限和无限远的目标,在同一系统中使用时,丢失。有限目标的距离和放大倍率的工作也将下降,当它们被用来用显微镜具有管透镜。[/color][color=#666666]正如上面所提到的,基本是无穷大系统的光学元件的目的,管透镜和目镜。如在图2(b)所示,试样的目标的前焦面,收集从试样的中央部透过或者反射的光,并产生一个平行光束沿着光轴的投影位于向管透镜显微镜。的光的一部分到达目标源于试件的外周,并进入在斜角度,斜地前进的(但仍然在平行束)向管透镜的光学系统。管透镜收集的光,然后集中在中间像平面中,并随后由目镜放大。[/color][color=#666666][color=#666666][img=,349,331]https://ng1.17img.cn/bbsfiles/images/2019/05/201905300932406995_913_2206495_3.jpg!w349x331.jpg[/img][/color][/color][color=#666666][color=#666666][color=#666666]物镜与镜筒透镜一起形成的化合物的物镜系统,在一个有限的距离内的显微镜镜筒中生成的中间图像。管透镜的位置相对于目标的首要关心的问题是设计时无限远校正的显微镜。物镜与镜筒透镜(无穷大的空间)之间的区域中提供了一个路径到复杂的光学元件,可放置的引入的物镜焦距的球面像差或修改的情况下,平行光线。实际上,齐焦匹配的集合中的不同的目标之间可以保持与无限远校正的显微镜,即使当被添加到一个或两个辅助元件的光路。另一个主要的好处是配件的设计可以产生精确的倍值,而不改变物镜与镜筒镜头之间的对齐。此功能允许比较样品,使用的组合的几种光学技术,如荧光(单独或同时)相衬或DIC。这是可能的,因为成一组平行的光波下的光学配件的位置(横向或轴向),也没有图像的焦点不会移动。[/color][color=#666666]如果管透镜位于非常接近的目标,可用于辅助光学组件的空间量是有限的。然而,有一个上限,可以位于在现代显微镜设计的约束内管透镜和物镜之间的光学元件的数量。太多的目标配管透镜周收集的光波通过透镜的数量减少,从而导致中变黑或边缘模糊的图像,并减少显微镜的性能。应当强调的是,术语的无限远光学系统是指生产的磁通平行的右射线通过物镜后,没有一个是无限空间内的显微镜。为了最大限度地提高显微镜的配置的灵活性,同时保持高的性能,这是必需的优化的目标和管透镜之间的距离。[/color][color=#666666]放大倍率的计算方法是将基准焦距(管长)由物镜的焦距无限远校正目标。管透镜的焦距增加,到中间像平面的距离也增加,这将导致在一个延长了的管的长度。管长度200毫米和250毫米之间被认为是最优的,因为更长的焦段会产生较小的离轴角对角的光线,降低了系统的文物。管的长度越长,也增加了系统的灵活性方面设计配套部件。[/color][color=#666666]比较具有160毫米和200毫米的管透镜的焦距(图3)的系统时,一个较长的管透镜的焦距的优点变得明显。减少离轴对角线波磁通角接近长焦距光学系统的一个显着比例。减少的倾斜角的光线产生相对较小的附件组件(DIC棱镜,相位环,二向色镜等),从而提高了效率,在显微镜通过在这两个轴上和离轴光线的变化。戏剧性的提升归因于在无限远校正系统观察到与外延荧光照明的对比度水平光管较长的镜头焦段优势。的改善,与无限远光学显微镜观察到的图像的一个例子是在图4中示出了鼠小肠三个荧光染料标记的薄截面。显微照片记录尼康的Eclipse E600利用CFI 60石油20倍油浸物镜数值孔径0.75微分干涉对比和落射荧光模式同时运行。[/color][/color][/color][color=#666666][color=#666666][color=#666666][img=,308,283]https://ng1.17img.cn/bbsfiles/images/2019/05/201905300932401782_6880_2206495_3.jpg!w308x283.jpg[/img][/color][/color][/color][color=#666666][color=#666666][color=#666666]与无限远系统的物镜的焦距必须增加,以保持相同的放大倍数时,较旧的固定管长度系统。使用共焦距为45毫米,是多年的显微镜制造商所使用的所有与有限的管长度系统,但高性能无限远校正光学系统,这可能是不够的。例如,可以有计划复消色差的油浸物镜60X(表现最好的有限目标之一)超过10个单独的透镜元素和组,在一个非常紧张的适合目标约束的齐焦距离为45毫米。当管透镜的焦距变得无穷大系统所取代,它被细分成一个单独的目标(与一个更大的一些光学元件)和管透镜,相当于约150毫米。为了满足全光的潜力无穷大系统,客观的齐焦距离必须管镜头焦距相匹配。因此,对于一个200毫米的焦距,最佳的齐焦距离为60毫米,超过旧的标准化了15毫米的长度。[/color][color=#666666]无限远光学系统中使用的焦段更长的客观要求来匹配相应的更大的工作距离。增加物镜齐焦距离是最重要的工作距离实现了显着的增加,特别是对于较低倍物镜。比如,用1X的物镜中,所用的公式来计算倍率为无限远校正系统支配管透镜,物镜焦距应该是相同的。在一个系统中与管200毫米镜头焦距,这将需要一个较长的齐焦距离,才能使用这种低倍率的目标。计算表明,低至0.5倍的倍率,可以得到与200毫米的管透镜的焦距,但较短的焦距限制稍高于1倍的范围内的值的最小的物镜放大倍率。[/color][color=#666666]另一个要考虑的是,这也必须增加,为获得最佳性能,在具有长管透镜的焦距的光学系统的低倍率的目标的客观的瞳孔直径。RMS标准客观螺纹尺寸,20.32毫米,限制了有效的瞳孔直径可达到的最大数值孔径配备目标。为了产生更高的数值孔径长管镜头焦段正在利用时,客观上螺纹尺寸必须增加。要达到所需的数值孔径的实际出射光瞳直径(D)由下式表示:[/color][color=#666666]D = 2NA×F[/color][color=#666666]其中NA是数值孔径和 f 是物镜的焦距。因此,对于具有100毫米(利用一个200毫米焦距管透镜)的数值孔径为0.10的焦距的2倍复消色差物镜,必要的出射光瞳直径(D)为20毫米。显然,一个较小的目标的螺纹大小限制在低于10倍的无限远光学系统设计时的放大倍率物镜的数值孔径。高于200毫米的管长度增加,需要更大的目标,出射光瞳的大小,这样的无限远校正的显微镜的式样的一个限制因素。[/color][color=#666666] [/color][/color][/color]

  • 【分享】中国首台自动光学检测设备研制成功

    河北省廊坊市科技局26日称,中国电子科技集团第45所(燕郊)与加拿大共同合作的“自动光学检测(AOI)设备技术”研制成功,各项技术指标均达到国外同类设备水平。这标志着我国打破了国外在自动光学检测设备领域的垄断与技术封锁,使自动光学检测设备进口产品降价30%。  据廊坊市科技局工作人员介绍,全球电子装备在结构上强调实现小型化、微型化、模块化,以满足高性能、高可靠、大容量、小薄轻的要求。而我国传统的人工目测(MVI)和针床在线测试(ICT)检测因“接触受限”(电气接触受限和视觉接触受限)所制,已不能完全适应当今制造技术的发展。目前,我国自动光学检测系统(AOI)设备还主要依赖进口,一直被以色列、美国、日本等国家所垄断。因此,自动光学检测系统(AOI)已经成为IC制造业的必然需求。

  • 成都地区有使用激光共聚焦显微及三维光学轮廓仪的吗?

    成都地区有使用激光共聚焦显微及三维光学轮廓仪的吗?想测量一下激光烧蚀后的深度及形貌。感兴趣的可以用这两种仪器测量一下SPARK-OES烧蚀坑的深度及形貌,分析一下烧蚀形貌的特点。最好 估算一下烧蚀的样品量,与大家分享一下。

  • 理学、帕纳科、布鲁克三家XRD的测角仪使用15年以上之后,精度差别大吗?

    理学、帕纳科、布鲁克三家XRD的测角仪经过15年的使用时间后,测量精度差别大吗?请各位用过15年以上的专家和前辈们,分享分享你们宝贵的经验。以下内容是从某家销售那里听说的,在原理上来讲基本是这样的:[font=微软雅黑]帕纳科Empyrean: [font=微软雅黑][font=微软雅黑]直接光学定位系统([/font]DOPS)编码器,固定于测角仪轴上,直接测量实际角度(绝对角度),闭环反馈系统;不随时间磨损。无级直流马达驱动 [/font][/font][font=微软雅黑]理学SmartLab:直接光学定位系统、[font=微软雅黑]高精度三重光学编码测角仪系统,无闭环反馈系统,步进马达驱动。[/font][/font][font=微软雅黑][font=微软雅黑]布鲁克D8 Advance DAVINCI:[font=微软雅黑]步进马达驱动辅助以光学编码校准,无闭环反馈系统,容易受振动的影响[/font][font=微软雅黑]。[/font][font=微软雅黑] [/font][/font][/font][font=微软雅黑][/font][font=微软雅黑]在经过十几年的使用之后,步进马达会有齿轮磨损,齿轮间隙变大,就会造成误差,这样就会造成测角仪精度变差。[/font][font=微软雅黑]请问各位专家和前辈有这方面的体会吗?[/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑][/font][/font][font=微软雅黑][font=微软雅黑][/font][/font]

  • 光学玻璃、光学仪器防霉技术解答

    光学玻璃、光学仪器防霉技术解答

    光学玻璃、光学仪器生产厂家在每年的5月开始就遇到头疼的玻璃发霉问题,通常空气相对湿度大于65%,玻璃就会长霉,要始终保持干燥,是不现实的,霉雨季节,刚磨好的玻璃,发霉的速度是20分钟。客户也反映,在使用一些市场上现有除霉产品时会腐蚀原有膜层,时间上也不理想。现有的玻璃真空镀膜是利用氟化物疏水特性,只是减少霉菌的水分供应,但是不具有主动杀伤霉菌的作用,因此现有镀膜的防霉效果很不理想。http://ng1.17img.cn/bbsfiles/images/2014/05/201405231622_500287_2704993_3.gif汉雄科技新型防霉镀膜技术,是选用特定结构的分子,采用自组装单分子膜技术,在光学玻璃的表面利用特定的化学键,让特定结构的分子按照一定的头尾一致的排列规则,以化学键的方式连接到玻璃上去,形成一层防水,抗菌,防霉,耐溶剂,耐摩擦,耐腐蚀,耐洗涤的单分子防霉菌镀膜层。膜层的厚度可以控制在几个纳米之间,不影响光线的通过,它和玻璃表层分子发生化学键接,使光学玻璃表面具有永久性的防霉菌特性,同时还可以增加玻璃表面的机械强度。镀膜层外侧的分子团,对单细胞生物具有杀伤作用,霉菌、细菌、藻类等单细胞生物无法在这层镀膜层上顺利繁殖。光学仪器发霉问题是个头疼的事情,由于各类仪器难免要置于潮湿多尘的恶劣环境中使用,工作繁忙时也难免疏忽保养,长霉就难以避免了。用户还是希望,光学仪器本身的抗霉菌性能更强些,防霉时间更长,最好是长效的。现有的技术,多是采用释放防霉挥发性气体的药包法,但是这种毒性气体的实际使用效果有缺陷,并且对人体健康不利。http://ng1.17img.cn/bbsfiles/images/2015/11/201511261608_575169_2704993_3.jpg在光学玻璃上做上一层永久性的防霉单分子膜层,不仅完全不影响光线通透,而且也可以耐酒精溶剂擦拭,这是最理想的办法了。同时对仪器的其它材料部分也采用防霉液涂覆,同样可以极大提高长效防霉效果。防霉液实际用于最易于长霉的家用冰箱门密封胶条缝隙,结果原来极端顽固的黑色霉菌,已经彻底不再出现了,这是非常理想的效果。过去冰箱门的密封胶条缝隙处,无论使用什么样的消毒剂擦拭,经过3个月的使用后,黑色的霉菌总会顽固的再次生长出来,而这次的防霉液实验表面,长效的防霉效果已经持续一年以上,根据防霉液的原理,胶条可以获得永久性的防霉特性。对于光学仪器来说,这个防霉液的效果会出乎意料的好,仪器的使用环境不会比家用冰箱门缝隙更加糟糕了吧。以上内容供大家参考,有需要样品试用的朋友,请给我留言

  • 【原创】【第三届原创作品】光学显微镜在环境监测中的应用

    [align=left][size=5][font=宋体][size=3]维权声明:本文为54943110原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。[/size][b] 光学显微镜在环境监测中的应用[/b][/font][/size][size=5][font=Arial][/font][/size][/align][align=center][b][font=Arial][size=3][/size][/font][/b][/align][align=center][size=3][b][font=宋体]水源守护者[/font][font=Arial][/font][/b][/size][/align][size=4][font=宋体] 光学显微镜由一个透镜或几个透镜的组合构成,是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。在环境监测领域中,其应用可谓非常广泛。很多高环境监测的接触显微镜的做一辈子可能也只是窥见其一角,现将我实践过的或者了解的[/font][/size][size=4][font=宋体]光学显微镜在环境监测中的[/font][/size][size=4][font=宋体]应用情况做一个简单的介绍,让大家对这个应用分支有一个感性的认识。[/font][/size][size=4][/size]

  • 光学3D表面轮廓仪的测量原理

    光学3D表面轮廓仪的测量原理

    SuperView W11200[b][color=#3366ff]光学3D表面轮廓仪[/color][/b]是一款用于对各种精密器件表面进行亚纳米级测量的检测仪器。它是以白光干涉技术为原理、结合精密Z向扫描模块、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌的3D测量的光学检测仪器。[align=center][img=,690,604]http://ng1.17img.cn/bbsfiles/images/2017/07/201707201529_01_3712_3.jpg[/img][/align]  SuperView W11200光学3D表面轮廓仪只需操作者装好被测器件,在软件测量界面上设置好视场参数,调整镜头到接近器件表面,选择自动聚焦,仪器会对器件表面进行自动对焦并找到干涉条纹,调节好干涉条纹宽度后即可开始进行扫描测量;扫描结束后,软件分析界面自动生成器件3D图像,操作者可通过软件对生成的3D形貌进行数据处理与分析,获取表征器件表面线、面粗糙度和轮廓的2D、3D参数。  SuperViewW1 1200 光学3D表面轮廓仪采用光学非接触式测量方法,它具有测量精度高、使用方便、分析功能强大、测量参数齐全等优点,其独特的光源模式,保证了它能够适用于从光滑到粗糙等各种精密器件的表面质量检测。  系统软件为简体中文操作系统,操作方便。应用范例:[align=center][img=,690,352]http://ng1.17img.cn/bbsfiles/images/2017/07/201707201530_01_3712_3.jpg[/img][/align][align=center][img=,690,543]http://ng1.17img.cn/bbsfiles/images/2017/07/201707201530_02_3712_3.jpg[/img][/align] 性能特点:1、 高精度、高重复性、高稳定性1) 采用光学干涉技术、精密Z向扫描模块组成测量系统,保证测量精度高;2) 精密的Z向扫描模块和独特的测量模式,保证测量重复性高;3) 高性能的内部抗震设计,为测量高稳定性保驾护航。2、 自动化操作的测量分析软件1)测量初始的自动聚焦,帮助操作者省却繁琐的调节过程;2)独特测量模式,帮助操作者快速测量不同形貌的待检样品;3)可视化窗口,便于操作者实时观察扫描过程;4)直观的软件分析界面,便于操作者第一时间获悉样品参数信息;5)强大的数据处理与分析功能,帮助操作者深入了解被测样品情况;6)一键分析,便于操作者快速实现大批量测量;7)同步分析,实现对样品分析操作的所见即所得;8)可视化的报表导出(可选择导出的图像与数据结果到word、pdf等文档)。3、 测量参数齐全根据四大国内外标准(ISO/ASME/EUR/GBT)的多达300余种2D、3D参数,让操作者对被测样品的认识更加全面具体。4、 精密操纵手柄集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦、找条纹等测量前工作。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制