当前位置: 仪器信息网 > 行业主题 > >

光学晶体

仪器信息网光学晶体专题为您提供2024年最新光学晶体价格报价、厂家品牌的相关信息, 包括光学晶体参数、型号等,不管是国产,还是进口品牌的光学晶体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学晶体相关的耗材配件、试剂标物,还有光学晶体相关的最新资讯、资料,以及光学晶体相关的解决方案。

光学晶体相关的论坛

  • 【资料】"眼科晶体及其种类

    什么是"眼科晶体及其种类?(一)PMMA人工晶体 人们眼球内有一个能把平行光线曲折的组织结构叫晶体(前述),而且它能随人们意志随时变动屈光能力,使你看远看近都清楚。这种能力叫调节。当白内障手术时,要把病变混浊不透明的晶体摘除,术后要补足这种屈光的损失,以前用眼镜代替,后来科学家们制造了一种按病人所需类型不同的人造晶体,英文称Intraocular Lens(缩写为IOL),意思是眼球内的一个透镜,我国早期翻译为人工晶体。人工晶体的材料主要是PMMA(聚丙基丙烯酸甲酯),是通称的有机玻璃。 50年来的使用,仍然被认为是最理想的,相容性好,几乎不降解。数十年于眼内仍然保持完好的形态、光洁度、透明性、分辨率。由于PMMA质地偏硬, 80年代制造IOL时袢的材料用聚丙烯制做,后来发现仍然不如PMMA稳定,同时人们想出办法对PMMA进行处理,改变了分子排列序列,也能变软而富有弹性,所以近来的人工晶体光学部和袢是不同处理的PMMA,光学部直径一般为5.0;5.5;6.0;6.5;7.0mm,祥长12一13.5mm。  (二)折叠式人工晶体 随着超声乳化手术的开展与普及,为了把人工晶体自很小切口植入,于1984年人们设计制造了可以折叠或卷曲的晶体,近十年来才得以应用并不断改进。现用可折叠式晶体的材料主要有:硅酮(Silicone)、水凝胶(Hydrogel)、丙烯酸(Acrylate)三种。这三种材料生物相容性都很好,光学部直径6.0mm,但可由3.2一4.0mm切口植入眼内。所以,植入折叠晶体者术后效果好。缺点是价格比普通晶体贵。  (三)多焦人工晶体 人工晶体植入后,由于无调节力,看远清楚看近不清楚(老花现象),反之看近清楚看远需要近视镜补足,这是美中不足。为了克服此缺陷,30年来,人们研制应用过多焦人工晶体,其中主要分为二种类型:1、多区多焦型,有二区、三区、四区等,即把人工晶体分为中心区,周围环状区,各部位屈光度不同,一般差2.5D,形成二个焦点,一个看近,一个看远。此类晶体的缺点是远近视力受瞳孔大小、环境光线强弱的影响;2、衍射多焦型,此种晶体是根据Huygens光的波性理论为基础,在人工晶体后表面上刻了30条深2um的小槽,克服了分区多焦晶体受瞳孔大小变动的影响。但是上述二种晶体的共同缺点是必需将进入眼内光线的能量分为二部分,用一半看近,一半看远,远近都不十分清楚,可使视敏度受一定影响。所以,在临床上只有少数医师和患者应用,未成为主流。  关于人工晶体植入的位置, Ride1y1949年的设计是后房型,因当时屈光力计算和预测所限及手术后巨大散光而陷入低谷。后来,人们试制并应用了前房型,虹膜面型及虹膜夹型,由于并发症多,效果差,80年代回到了当年的设想一一后房型。又经近几年改进,现在的人工晶体是囊袋内植入的后房型,即完全回到了“上帝”造人时给予的位置。 2。 隐形眼镜材料晶体类型 切口大小 特点 合资晶体 5.5mm PMMA材料,硬性不可折叠进口单片晶体 5.5mm PMMA材料,硬性不可折叠折叠晶体 2.8mm 灭烯酸酯,软性,可折叠,手术切口小,眼内固定良好.蓝光滤过晶体 2.8mm 可减少有害光线进入眼内,保护视网膜,可预防老年性黄斑变性 多焦点晶体 2.8mm 可提供远,中,近全程视力.减少验光,减少患者术后对眼镜的依赖 可调节晶体. 2.8mm 术后具有一定的调节预定力,达到调节看远看近的效果 有晶体眼屈光性晶体 保持了晶体的调节力预定, 对中高度近视预测性高.

  • 【分享】晶体结构

    一、研究晶体结构的重要意义  自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。二、晶体的通性和分类  在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位──晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。  与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。  晶体的分类在几何晶体学上和在结晶化学上是不同的。在几何晶体学上,按照晶体的对称性将晶体分为七个晶系、32种宏观对称类型、230种微观对称类型(可参看大学《结构化学》教材有关部分)。在晶体化学中,如高中化学课本所说,是根据组成晶体的微粒的种类及微粒之间相互作用力的性质,将晶体首先分为金属晶体、离子晶体、原子晶体和分子晶体四大类。关于离子晶体和金属晶体结构研究的历史过程,以及与另两类晶体有关的共价键理论的历史发展,分别在本章其它几节中介绍。下面主要介绍几何晶体学(其主要内容是空间点阵理论)和X射线晶体学建立和发展的史实。

  • 【分享】F我国晶体缺陷研究的先驱者之一——冯端 物理学家

    我国晶体缺陷研究的先驱者之一——冯端 物理学家1923年6月11日生于江苏苏州,原籍浙江绍兴。1946年中央大学物理系毕业后留校任物理系助教。1949年起历任南京大学物理系助教、讲师、副教授,1978年任教授。1984-1988年任南京大学研究生院院长,1986-1995年任固体微结构物理国家重点实验室主任,兼学术委员会主任迄今。1991-1995年任中国物理学会理事长,1992-1996年任国家科委攀登计划项目“纳米材料科学”首席科学家,1980年当选为中国科学院院士(学部委员)1993年当选为第三世界科学院院士。冯端在凝聚态物理领域特别是晶体缺陷研究方面做了大量开拓性的工作,澄清了金属和氧化物晶体中缺陷的组态和起源,开辟了非线性光学晶体微结构化新领域,首次观测到铁电相变中的微畴结构和铌酸锂晶体非公度相变中公席错的结构及其演变。他为推动中国凝聚态物理 的研究和发展起到了重要作用。冯端为国家培养了一批德才兼备的当术带头人,在创建并领导南京大不固体微结构物理国家 重点实验室方面取得了令人称道的成绩。冯端60年代初即选择体心立方结构的难熔金属为突破口,采用浮区区熔法显示位错的技术,澄清了体心立方金属中位错的类型及其组态等问题。1978年后,又以在激光技术中获得重要应用的复杂氧化物单晶体为对象,采用多种实验手段,如浸蚀法、应力双折射貌相术、X射线貌相术、电子显微镜衍衬像及高分辨率像等观测技术,对这些晶体中的位错、畴界、生长条纹、生长区界面、包裹体等缺陷的类型、分布进行研究,并追溯其生长和相变中的起源和 探索其可能的物理效应。基于对铌酸锂等晶体铁电畴深入研究,掌握了制备具有周期性畴结构的晶体生长技术,于1980年与合作才一起制备了周期为微米量级的聚片多畴铌酸锂晶体,在实验上首次全面验证了诺贝尔奖得主布鲁姆伯根(N.Bloembergen)关于非线性光学的准位相匹配理论,实现了铌酸锂晶体的倍频增强效应,从而在国际上领先开拓了非线性光学晶体微结构化这一新领域。随后,又在不能位相匹配的钽酸锂晶体中实现了准位相匹配,并研究了周期畴结构的形成机制。1996年4月中美“用于非线性光学及相关领域的微结构晶体”学术会议在南京召开,表明国际上已承认他的领先工作。冯端还研究了晶体缺陷在结构相变中的作用,首次观测到铁电相变中的微畴结构和铌酸锂晶体非公度相变中公度错的结构及其演变;并用X射线貌相术及同步辐射貌相术阐明畴界的成像规律及追踪其在铁电和铁弹相变中的行为。他倡导了金属超晶格的研究,特别是在周期金属超格中取得了具有独创性的成果。近年来,他领导了有关纳米材料科学的研究工作,在金 属的磁性和半导体的光学性质方面,取得不少具有独创性的成果。这些科研成果使冯端获得多次国家奖励,其中包括1982年国家自然科学奖二等奖(排名第一),1995年国家自然科学奖三等奖(排名第五)及1996年何梁何利科技进步奖(物理)。

  • 【每日分享一篇解决方案】如何用生物显微镜观察药物晶体

    【每日分享一篇解决方案】如何用生物显微镜观察药物晶体

    [align=center][size=18px][/size][/align][align=center][b][font='Arial',sans-serif][color=#548DD4]#[/color][/font][font=等线][color=#548DD4]每日一篇分享一篇解决方案:[/color][/font][/b][/align][align=center][b][font=等线][color=#548DD4]今日行业领域:石油[/color][/font][font='Arial',sans-serif][color=#548DD4]/[/color][/font][font=等线][color=#548DD4]化工[/color][/font][/b][/align][b][color=#9999ff]如何用生物显微镜观察药物晶体[/color][/b]一、生物显微镜应用在药物领域能观察什么物质药物晶体:生物显微镜可以观察和研究药物中的晶体结构。这对于药物的物理性质、稳定性和溶解性等方面的研究非常重要。细胞结构:生物显微镜可以观察和研究药物中的细胞结构,包括细胞核、细胞质、细胞器等。这对于了解药物的组成和作用机制非常重要。细菌和真菌:生物显微镜可以观察和鉴定药物中的细菌和真菌。这对于评估药物的微生物污染情况以及对药物的杀菌效果进行研究和监测非常关键。病原体:生物显微镜可以观察和鉴定药物中的病原体,如病毒、寄生虫等。这对于药物的疾病治疗效果评估和病原体的研究具有重要意义。药物颗粒:生物显微镜可以观察和分析药物中的颗粒,如微粒、纳米颗粒等。这对于药物的制备工艺、释放特性和药效等方面的研究具有重要意义。药物载体:生物显微镜可以观察和研究药物中的载体材料,如纳米粒子、聚合物等。这对于药物的控释特性、靶向性和药物传递等方面的研究非常关键。通过生物显微镜的应用,可以对药物的微观结构和性质进行观察和分析,为药物研发、质量控制和治疗效果评估提供重要的信息。二、如何运用生物显微镜观察药物晶体要观察药物晶体,可以按照以下步骤使用生物显微镜:准备样品:将药物晶体制备成适当的样品。可以将药物晶体直接放置在载玻片上,或者将其溶解在适当的溶剂中后滴在载玻片上。调整显微镜参数:将载玻片放置在生物显微镜的样品台上,调整显微镜的参数,如聚焦、光源亮度、放大倍数等,以获得清晰的图像。选择合适的放大倍数:根据药物晶体的大小和细节,选择合适的放大倍数。开始时可以选择较低的放大倍数,然后逐渐增加放大倍数以观察更详细的细节。观察和记录:通过显微镜观察药物晶体的形状、大小和结构。可以使用相机或者计数器来辅助记录。同时,可以通过调整焦距和光源角度来改善图像的清晰度和对比度。分析和测量:根据观察到的药物晶体图像,可以进行进一步的分析和测量。例如,可以测量晶体的尺寸、形状参数,或者使用显微镜图像分析软件进行晶体图像处理和测量。需要注意的是,药物晶体可能具有不同的形态和晶体结构,因此在观察时应注意选择典型的晶体区域进行观察。此外,一些药物晶体可能在常温下易溶解,因此在观察前可能需要采取适当的保护措施,如使用显微镜温台或封闭载玻片等。[align=center][img]https://img0.baidu.com/it/u=3594765546,1888245350&fm=253&fmt=auto&app=138&f=JPEG?w=500&h=516[/img][/align][font='宋体']三、药物晶体的分析执行标准包括以下几个方面:[/font][font='宋体']纯度分析:对药物晶体的纯度进行检验,包括有机杂质、无机杂质、水分等的含量分析。[/font][font='宋体']结晶性质分析:对药物晶体的结晶性质进行评估,包括晶体形态、晶体尺寸、晶体形貌等的表征。[/font][font='宋体']结晶度分析:对药物晶体的结晶度进行检验,包括晶体的结晶度、结晶速度等的测定。[/font][font='宋体']热性质分析:对药物晶体的热性质进行评估,包括熔点、热分解温度、热容等的测定。[/font][font='宋体']光学性质分析:对药物晶体的光学性质进行检验,包括吸收光谱、荧光光谱等的测定。[/font][font='宋体']结构分析:对药物晶体的晶体结构进行解析,包括X射线衍射、核磁共振等的测定。[/font][font='宋体']总之,通过生物显微镜的应用,可以观察和分析药物晶体的形态、结构和特征,为药物的物理性质、稳定性和溶解性等方面的研究提供重要的信息。[/font][font='宋体']在国货崛起的今天,[/font][font='宋体']徕[/font][font='宋体']科光学研发的各种型号的生物显微镜已经被越来越多的高校、研究所、科研单位、企业所运用,并且已成为各客户在研究工作中的主流设备产品,这些设备所呈现出的效果与进口设备的毫无差别,但其价格仅为进口设备的三分之一左右,依靠着科技感和[/font][font='宋体']创新感双强[/font][font='宋体']的研发力量,可以根据不同客户的需求定制出高性价比的产品方案、内核稳定的售后方案,更加直接且高效地为客户做好售前、售中、售后服务保障。[/font][font='宋体']徕[/font][font='宋体']科光学研发的各种型号的生物显微镜已不仅仅是已经是当下最流行且性能稳定的国际大品牌“平替”产品,其已经成为了行业最受欢迎的TOP明星产品。[/font][font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310161108245283_6991_5996718_3.png[/img][/align][align=center][url=https://www.instrument.com.cn/show/C532699.html][font='宋体']生物显微镜LK-83[/font][/url]([url=https://www.instrument.com.cn/netshow/SH101998/][size=14px]天津[/size][size=14px]徕[/size][size=14px]科光学仪器有限公司[/size][/url])[/align][align=left][url=https://www.instrument.com.cn/application/Solution-947254.html][font='宋体'][size=16px]点击这[/size][/font] [font='宋体'][size=16px]里[/size][/font][/url][font='宋体'][size=16px][color=#000000]浏览[/color][/size][/font][font='宋体'][size=16px][color=#000000]或[/color][/size][/font][font='宋体'][size=16px][color=#000000]下载原[/color][/size][/font][font='宋体'][size=16px][color=#000000]文档,更多解决方案内容请浏览[/color][/size][/font][url=http://www.instrument.com.cn/application/][font='宋体'][size=16px][color=#0081d7]行业应用[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]栏目:[/color][/size][/font][/align][align=left][url=http://www.instrument.com.cn/application/][font='宋体'][color=#0081d7][back=#ffffff]http://www.instrument.com.cn/application/[/back][/color][/font][/url][font='宋体'][color=#000000]行业应用栏目简介:[/color][/font][font='宋体'][color=#000000] [/color][/font][font='宋体'][color=#000000] 【行业应用】[/color][/font][color=#333333]是仪器信息网[/color]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/align]

  • 晶体、非晶体等概念的分别

    首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。 斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 【分享】德科学家提出全光晶体管设计方案

    新设计在开发实用光学晶体管方面迈出了重要一步2011年05月07日 来源: 科技日报 作者: 常丽君  本报讯 据物理学家组织网5月5日报道,德国维尔斯特拉斯应用分析和随机研究所和马克思·波恩研究所的科学家携手,提出了一种新型全光晶体管的设计方案,即使用一束光脉冲控制另一束,形成完全由光控制的“光路”。最新设计解决了该领域目前面临的多道难题,相关论文发表在最近出版的《物理评论快报》上。   用光子取代电子来传导光,使传统电缆或线路“变身”为“光路”,最终用光子计算机替代电子计算机,是物理学家一直孜孜追求的目标。因为,与电子晶体管相比,光晶体管在转换速度、散热等诸多性能上拥有无可匹敌的优势。  此类研究的关键是找到一个“开关”,将一束光的能量转移到另一束光上。要实现这一点,常规方法是改变光纤属性。而更好的方式是使用另一束脉冲——“控制脉冲”来实现“全光转换”,以此形成某种完全由光操控的“光路”。  在最新研究中,科学家使用一束较弱的分散脉冲来控制另一束较强的信号脉冲,分散控制脉冲比信号脉冲弱7倍。这两束脉冲能在一个非线性介质中以不同频率、相同方向和几乎相同的速度传播。如果后发脉冲能赶上另一束脉冲,两束脉冲就会相互作用。  从控制脉冲的角度而言,信号脉冲好比是宇宙白洞的边界,以它为边线,外面任何物质都无法进入,因此,科学家们设想,将信号脉冲和控制脉冲锁在这片“势力范围”内足够长的时间,直到控制脉冲改变信号脉冲的强度、频率、速度或形状等属性,控制脉冲就能像开关一样调控信号脉冲,实现其在晶体管中的功能。  研究人员在论文中指出,如果后发脉冲被前面脉冲所产生的“边界线”所影响,信号脉冲就会和控制脉冲发生能量交换。无论“边界线”的拥有者是谁,只要两束脉冲的速度非常接近,都会发生能量转移。而且,信号脉冲还能被重复调控,设计出实际可行的路线。而实现该“全光电路”的关键,就是通过调节控制激光来多次调整信号脉冲的衰减或增益。  研究人员还指出,全光晶体管还克服了光的级联能力和扇出的难题。因为强脉冲不会分散传播或破裂成多重脉冲,可输出强脉冲作为下一次转换的输入,由此实现转换路线的光级联。虽然目前全光晶体管还未得到演示,新设计在开发实用光学晶体管方面迈出了重要一步。(常丽君)

  • 【求助】再求晶体硅片的相关分析标准!!!

    再次苦求以下硅的测量方法,拜托了!多谢!!!  GB/T 1557-1989 硅晶体中间隙氧含量的红外吸收测量方法  GB/T 1558-1997 硅中代位碳原子含量红外吸收测量方法  GB/T 4058-1995 硅抛光片氧化诱生缺陷的检验方法  GB/T 4059-1983 硅多晶气氛区熔磷检验方法  GB/T 4060-1983 硅多晶真空区熔基硼检验方法  GB/T 4061-1983 硅多晶断面夹层化学腐蚀检验方法  GB/T 4298-1984 半导体硅材料中杂质元素的活化分析方法  GB/T 4326-1984 非本征半导体单晶霍尔迁移率和霍尔系数测量方法  GB/T 6616-1995 半导体硅片电阻率及硅薄膜薄层电阻测定非接触涡流法  GB/T 6617-1995 硅片电阻率测定扩展电阻探针法  GB/T 6618-1995 硅片厚度和总厚度变化测试方法  GB/T 6619-1995 硅片弯曲度测试方法  GB/T 6620-1995 硅片翘曲度非接触式测试方法  GB/T 6621-1995 硅抛光片表面平整度测试方法  GB/T 6624-1995 硅抛光片表面质量目测检验方法  GB/T 11073-1989 硅片径向电阻率变化的测量方法  GB/T 13388-1992 硅片参考面结晶学取向x射线测量方法  GB/T 14140.1-1993 硅片直径测量方法 光学投影法  GB/T 14140.2-1993 硅片直径测量方法 千分尺法  GB/T 1414l-1993 硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法  GB/T 14142-1993 硅外延层晶体完整性检验方法腐蚀法  GB/T 14143-1993 300~900μm硅片间隙氧含量红外吸收测量方法  GB/T 14144-1993 硅晶体中间隙氧含量径向变化测量方法  GB/T 14145-1993 硅外延层堆垛层错密度测定干涉相衬显微镜法  GB/T 14146-1993 硅外延层载流子浓度测定汞探针电容一电压法  GB/T 14847-1993 重掺杂衬底上轻掺杂硅外延层厚度的红外反射测量方法  GB/T 14849.1-1993 工业硅化学分析方法 1,10-二氮杂菲分光光度法测定铁量  GB/T 14849.2-1993 工业硅化学分析方法 铬天青-S分光光度法测定铝量  GB/T 14849.3-1993 工业硅化学分析方法 钙量的测定  GB/T 15615-1995 硅片抗弯强度测试方法

  • 【分享】为什么晶体有熔点,而非晶体没有?

    构成物体的大量分子(含原子、离子和分子,下同)永不停息地运动着,分子运动越剧烈,分子的能量就越大,物体的内能就越大,宏观上就表现为温度越高。物体的内能除了包括分子运动的动能外,还包括分子间因存在的相互作用力而具有的势能。分子的运动和势能的总和就是物体的内能。 构成固体的分子,都有固定的平衡位置,但由于这些分子的排列方式不同,固体又可以分为晶体和非晶体两大类。如果组成固体的分子杂乱堆积,没有一定规则,这样的物质叫做非晶体,非晶体内部的分子是无规则的均匀排列。如果分子的排列有一定的规则,在三维空间里作周期性的排列,这样的物质叫晶体。 一般来说,当晶体从外界吸收热量时,其内部分子的平均动能增大,温度也开始升高,但仍保持有规则排列。继续吸热达到一定的温度(熔点)时,其分子运动的剧烈程度可以破坏其有规则的排列,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来破坏晶体分子的有规则的排列。晶体熔化的过程就是破坏分子间的规则排列,增大分子间距离的过程,这个过程需要克服分子间的吸引力而做功,这就是晶体熔化之所以会吸收热量的原因。晶体熔化时吸收的热量是用来克服分子引力做功,晶体熔化时吸收的热量全部转化为分子的势能,分子的动能并没有改变,所以温度不变。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。 非晶体由于分子的排列不规则,吸收热量后不需要破坏分子的有规则排列,只用来提高平均动能,所以当从外界吸收热量时,非晶体的温度不断升高,并由硬变软,最后变成液体。 特殊情况:冰熔化的过程是破坏分子间的规则排列,减小分子间距离的过程,这个过程需要克服分子间的斥力而做功,熔化时吸收的热量全部转化为分子的势能,使分子间的势能增大,分子的动能并没有改变,所以温度也保持不变。除冰外,还有灰铸铁等也属于这种情况。

  • 【资料】晶体的类型与性质

    一、一周知识概述(一)、所讲内容及目的  1、晶体的类型  2、离子晶体、分子晶体、原子晶体的性质及模型  3、氢键  4、金属晶体的结构和性质(二)、与前后周的衔接关系  本单元内容是在原子结构和元素周期律以及化学键知识的基础上介绍的,理论性较强,比较抽象,所以配了很多插图,便于理解,并能提高兴趣。重点要掌握四类晶体的概念,晶体类型与性质的关系。二、重点知识归纳及理解(一)、晶体的类型1、晶体:具有一定的几何形状,其构成粒子按某种规律排列,占有一定空间的纯净物。 (二)、离子晶体、分子晶体、原子晶体、金属晶体1、概念(1)离子晶体:阴阳离子间通过离子键结合而成的晶体。(2)分子晶体:分子间以分子间作用力相结合的晶体。(3)原子晶体:相邻原子间以共价键相结合而形成空间网状结构的晶体。(4)金属晶体:通过金属阴离子与自由电子之间的较强作用形成的单质晶体。2、四种类型晶体的比较(三)、四种晶体结构模型1、离子晶体NaCl和CsCl晶体结构特征(1)在NaCl晶体中,每个Na+同时吸引着6个Cl-,每个Cl-也同时吸引着6个Na+。故Na+、Cl-个数比为1:1,在整个晶体中不存在单个的NaCl分子。NaCl不是表示分子组成的分子式,只是表示晶体内离子个数比的化学式。(2)CsCl晶体中,每个Cs+同时吸引着8个Cl-。每个Cl-也同时吸引着8个Cs+。故而CsCl是只表示离子个数比的化学式。2、CO2分子晶体结构模型  在CO2晶体结构中,每个质点都是一个小分子,该晶体为立方体结构。每个立方体顶点上都有一个CO2分子。在立方体的六个面心也有一个CO2分子存在。每个CO2分子与12个CO2分子相邻。 3、金刚石晶体结构模型  在金刚石晶体中,每个碳原子都以共价键与相邻的4个碳原子结合四面体结构。六个碳原子形成一个六元环,每个碳原子又被12个环共用。这些正四面体(或六元环),向三维空间延伸得到立体网状晶体。4、金属共同物理性质的解释(1)金属晶体具有金属光泽和颜色:这是由于自由电子能对可见光进行选择性吸收和反射从而使金属晶体具有不同的颜色和光泽。(2)金属的导电性、导热性  导电性:由于自由电子在外加电场的作用下产生定向移动形成电流。故金属容易导电。  导热性:自由电子在运动时与金属离子相互碰撞,在碰撞过程中发生能量交换,使整块金属达到同样的温度。(3)金属的延展性:当金属受到外力时,晶体中的各原子层就会发生相对滑动,由于金属离子与自由电子之间的相互作用没有方向性,受到外力后相互作用没有被破坏,故金属只发生形变而不断裂。使金属具有良好的延展性。三、难点知识剖析(一)、晶体溶沸点高低比较(1)异类晶体分子晶体。  一般情况下:原子晶体(熔沸点)>离子晶体>分子晶体。  例如:SiO2>NaCl>CO2(2)同类晶体  原子晶体共价键键能→键长→原子半径(3)组成和结构相似的分子,分子间作用力随相对分子质量增大而增大。晶体的熔沸点升高。例如:F2<Cl2<Br2<I2,CO2<CS2。(4)分子间形成氢键时,分子间作用力增大熔沸点反常偏高。例如:H2O>H2Te>H2Se>H2S。(5)一般情况下(同类型的金属晶体),金属晶体的熔点由金属阳离子半径、所带的电荷数、自由电子的多少而定。阳离子半径越小,所带的电荷越多,自由电子越多,相互作用就越大,熔点就会相应升高。例如:熔点K<Na<Mg<Al,Li>Na>K>Rb>Cs。(二)、氢键(1)形成条件:原子半径较小,非金属性很强的原子x(N、O、F)与H原子形成极强性共价键,与另一个分子中的原子半径较小,非金属很强的原子y(N、O、F),在分子间H与y产生较强的静电吸引,形成氢键。(2)表示方法:x-H…y-H(x,y可相同或不同,一般为N、O、F)。(3)氢键能级:比化学键弱很多,但比分子间作用力稍强。(4)氢键作用:使物质有较高的熔沸点(例:HF、H2O、NH3等);使物质易溶于水(例:NH3、C2H5OH、CH3COOH等);解释一些反常现象(例:水结冰体积膨胀、水和乙醇的恒沸混合物等)。 [img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102390_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102392_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102394_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102396_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102397_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102398_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102399_1605343_3.gif[/img]

  • 晶体学的进化—纪念Bragg公式发现100周年

    可能更需要我们纪念2012年11月11日的, 不是光棍节, 而是Bragg公式发现第100周年. 在人类历史中100年实在太短, 读完下面这篇回顾可能只需要10分钟. 但在这100年中, 晶体学发生了翻天覆地的变化. 希望这篇随笔能够带领版友沿着大师们的脚步, 探寻晶体学发展的历史, 激励我们研究的道路. 向Bragg父子和所有晶体学研究者们致敬!一、文艺复兴时期的晶体学代表早期的晶体学研究使用的方法主要是光学显微,角度测量,以及晶体生长. 在文艺复兴时期人们便开始讨论晶体到底是从惰性物质中生长的还是被外力雕刻而成的. 那时候人们只能从晶体形状与解理开始, 通过观察晶体的外形来解释晶体本质.http://ng1.17img.cn/bbsfiles/images/2012/12/201212061531_410012_1986542_3.bmp Christiaan Huygens (1629-1695)http://ng1.17img.cn/bbsfiles/images/2012/12/201212061534_410016_1986542_3.bmpChristiaan Huygens (1690) Tractatus de Lumine 的著作中将晶体想象成基本单位的堆叠来解释其中光路.http://ng1.17img.cn/bbsfiles/images/2012/12/201212061535_410018_1986542_3.bmp Sténon于17世纪通过对石英形状的观察得出结论晶体是生长而成.二、十八世纪的晶体学家在18世纪虽然还不能观察到晶体内部信息,但科学家们通过对晶体外形的观察想象晶体内部的结构. Haüy通过对碳酸钙晶体断面的观察, 建立了一个由无数微小”不可再分分子”堆叠而成的晶体模型.http://ng1.17img.cn/bbsfiles/images/2012/12/201212061537_410020_1986542_3.bmpRené Just Haüy (1743-1822)http://ng1.17img.cn/bbsfiles/images/2012/12/201212061557_410036_1986542_3.bmp (这张图片广泛出现于各种"固态物理"的教材中...)René Just Haüy Traite de cristallographie (1822) “不可分割的分子被认为是矿物中的最小结构”—René Just Haüyhttp://ng1.17img.cn/bbsfiles/images/2012/12/201212061600_410038_1986542_3.bmpRomé de l’Isle (1736-1790)Romé de l’Isle发现同种晶体某些表面的夹角是恒定的. 这个证据表明晶体很可能是由微小的基本立方体堆叠而成. Romé de l’Isle, Haüy和Sténon的工作被认为是晶体学的开始.三、十九世纪的晶体学家周期性与原子有序排列在19世纪得以建立. 德国和法国科学家使用数学理论公式和对称轴,对称中心,对称面,晶格系统作为晶体的分类标准. Weiss否定了Haüy的”最小分子”理论,对称理论得以普遍推广. Hessel, Frankenheim和Bravais分别证明了所有晶体只会有14种晶格系统和32种晶体对称. Delafosse 认为Haüy的最小分子实际上是晶胞[s

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

  • 非晶体物象分析

    X射线衍射仪能检测出非晶体的物象吗,和检测晶体物象的流程有什么区别,如果能测试出图谱分析检测后的图谱与晶体检测后的图谱分析有何区别?三轴欧拉样品台360°旋转能任意旋转角度吗?

  • 【求助】晶体生长的取向

    请教研究陶瓷的老师,陶瓷观察陶瓷晶体(SiC)结构,高温烧结得到的SiC晶体没有明显取向,而化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积得到的同一结构的SiC晶体呈明显的针状或棒状,从机理上怎么理解类似现象?谢谢指教

  • 理学的RX25晶体和TAP晶体哪个好?

    最近在重新做玻璃的标准曲线,在做Mg(含量3~4%)时,用的RX25晶体,总是感觉强度不特别高,才30~40kcps,条件是50kV-60mA,PHA是100~300,谱峰40s,两个背景分别10s,查资料说用tap晶体的话强度会高些。请高人指点一二,不胜感谢!!!

  • 【求助】分光晶体问题请教

    请问各位高手,波长色散型仪器的分光晶体2d值是否都不一样?比如LiF(220)晶体 有的是0.285nm,有的甚至是5.0nm,这是为什么?还有(220)又有什么特殊的意义?我现在需要测试Na—Fe,选用哪些晶体好?

  • 石英晶体微天平的特征及应用

    石英晶体微天平最基本的原理是利用了石英晶体的压电效应,主要构造由石英晶体传感器、信号检测和数据处理等部分组成。石英晶体为天平在探头电极上修饰具有生物活性的特异选择功能膜,即作了压电晶体生物传感器。石英晶体为天平因其对质量变化的高敏感性,传感器具有特异性好、灵敏度高、成本低廉和操作简便等优点。 石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。石英晶体微天平是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍。 石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用,一般附属结构还包括振荡线路、频率计数器、计算机系统等。石英晶体微天平广泛应用于分子生物学、病理学、医学诊断学、细菌学等研究领域,在研究和检测蛋白质、微生物、核酸、酶、细胞等方面都发挥了重要的作用。

  • 关于分子筛晶体的问题

    微孔分子筛是一种晶体,这已经可以通过HRTEM,XRD等手段验证,但是中孔分子筛的完整结构,大颗粒也有晶面的棱角,但孔壁是无定形的,能算是晶体吗?

  • 【求助】何处有NaI晶体购

    本单位的X射线衍射仪上的SC检测器中碘化钠(NaI)晶体湿解了,请问那位同行知道那里有碘化钠(NaI)晶体卖,单价多少元人民币。谢谢!我的邮箱:zhulf518@163.com

  • 【求助】选择哪家的光学显微镜?谢谢

    大家好,由于工作需要,要购买一台光学显微镜,用来检测玻璃、晶体、和金属镀膜后的表面情况,向各位熟悉此仪器的同行寻求帮助,推荐一下国外和国内的光学显微镜厂商。在此先谢过了。

  • 【讨论】垂直ATR各种晶体区别

    有个问题想问下大家,我用的是Thermo的红外,常见的ATR晶体有Ge,金刚石,ZnSe,KRS-5(溴碘化铊),我看参数因为折射率不一样,适用的波数范围也不一样,好像KRS-5性能最好,最近买了一块锗晶体,银白色的,主要是因为锗晶体硬度高,不容易划伤,但是为什么同样的样品量测试,KRS-5和ZnSe晶体出来的峰差不多,但锗晶体都不出峰,要样品量增加很多才会出峰,应该是检测限也有区别阿.有人知道是为什么吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制