当前位置: 仪器信息网 > 行业主题 > >

双向激光测径仪

仪器信息网双向激光测径仪专题为您提供2024年最新双向激光测径仪价格报价、厂家品牌的相关信息, 包括双向激光测径仪参数、型号等,不管是国产,还是进口品牌的双向激光测径仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向激光测径仪相关的耗材配件、试剂标物,还有双向激光测径仪相关的最新资讯、资料,以及双向激光测径仪相关的解决方案。

双向激光测径仪相关的资讯

  • 激光共聚焦荧光显微镜 活体荧光物质检查
    激光共聚焦荧光显微镜 活体荧光物质检查激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:&bull 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)&bull 控制景深的能力。&bull 能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾”,非共焦荧光显微镜下无法检测到。(最重要的特点)&bull 从厚试样收集连续光学切片的能力。&bull 通过三维物体收集一系列图像,用于二维或三维重建。&bull 收集双重和三重标签,精确的共定位。&bull 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。&bull 有能力补偿自发荧光。耐可视共聚焦成像效果图 尼康共聚焦成成像效果图NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;2、生物化学:酶、核酸、FISH、受体分析3、药理学:药物对细胞的作用及其动力学;4、生理学:膜受体、离子通道、离子含量、分布、动态;5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;7、微生物学和寄生虫学:细菌、寄生虫形态结构;8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;9、生物学、免疫学、环境医学和营养学。NCF950激光共聚焦显微镜配置NCF950激光共聚焦配置表激光器激光405 nm、488 nm、561 nm、640 nm探测器波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道扫描头最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°扫描模式X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T针孔无级变速六边形电动针孔;调节范围:0-1.5毫米共焦视场φ18mm内接正方形图像位深12bits配套显微镜NIB950全电动倒置显微镜光学系统NIS60无限远光学系统(F200)目镜(视野)10×(25),EP17.5mm,视度可调-5~+5,接口Φ30观察镜筒铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜NIS60物镜10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.1720×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.1760×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜物镜转换器电动六孔转换器(扩展插槽),M25×0.75聚光镜6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)DIC(10X,20X/40X)选配.空孔照明系统透射柯拉照明,10W LED照明;落射照明:宽场光纤照明6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换手动1X,1.5X、共焦切换机身端口分光比:左侧:目视=100:0;右侧:目视=100:0;平台电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板调焦系统同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;DIC插板10X,20X,40X插板;可放置于转换器插槽;选配控制摇杆,控制盒,USB连接线软件软件:NOMIS Advanced C图像显示/图像处理/分析2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 瑞沃德发布RFLSIⅢ激光散斑血流成像系统 激光多普勒 血流仪新品
    瑞沃德新一代激光散斑血流成像系统采用全新的LSCI (Laser Speckle Contrast Imaging)技术,集成照明光源和血流成像激光光源的一体化设计,无需任何调节,开机即可成像使用,极大的提高了用户的使用便利性性能特色RFLSI Ⅲ 激光散斑以非接触、高时间和空间分辨率、全场快速成像的技术优势,为广大科研工作者提供了一种实时动态血流监测和视频成像记录手段,是了解组织、器官病理或生理指标至关重要的依据。激光散斑成像仪器无需任何造影剂,时间分辨率可达毫秒量级,空间分辨率可达微米量级,实现了科研人员及医疗实时观察微血管的血流分布状态及血流数值相对变化的功能需求。散斑倒置支架:主要用于MCAO造模过程中从底部观察动物颅脑血流变化。动物固定器:特制简易动物固定器,在散斑观察过程中,可以简易将小鼠头颅固定。技术参数应用领域生命科学基础研究与药物开发脑血流 、MCAO模型 肠胃血流 、下肢缺血/血管生成烧伤评估 、 皮肤斑贴实验 脑皮层扩散抑制 、其它应用案例分享关键搜索查找:激光多普勒, 激光散斑, 血流仪创新点:(1)全场成像,非显微镜局部成像,可应用于大面积大视野观测需求的应用。(2)采用高分辨率工业级CMOS相机,分辨率上升至4K水平,拍摄速率大幅提升,同时降低功耗更为环保。(3)激光二极管电流及功率更稳定,数据波动小。(4)采用明场和激光双相机,可记录不同类型是实验数据,明场图像和激光图像位置通过软件校正,无位移。RFLSIⅢ激光散斑血流成像系统 激光多普勒 血流仪
  • 马尔文帕纳科“双响炮”! 激光粒度仪招中标周盘点
    p style="text-align: left text-indent: 2em "span style="text-indent: 2em font-family: 宋体 "看过冬雪春花,激光粒度仪的招中标天地进入了/spanspan style="text-indent: 2em "2018/spanspan style="text-indent: 2em font-family: 宋体 "下半年的人来人往。在下半年的第一周(/spanspan style="text-indent: 2em "7/spanspan style="text-indent: 2em font-family: 宋体 "月/spanspan style="text-indent: 2em "2/spanspan style="text-indent: 2em font-family: 宋体 "日/spanspan style="text-indent: 2em "-7/spanspan style="text-indent: 2em font-family: 宋体 "月/spanspan style="text-indent: 2em "6/spanspan style="text-indent: 2em font-family: 宋体 "日),激光粒度仪的招投标市场呈现怎样的态势呢?仪器信息网特从网络搜集汇总了相关信息,以飨读者。/span/pp style="text-indent: 2em "span style="font-family: 宋体"据不完全统计,上周的激光粒度仪招投标市场,有/span5span style="font-family:宋体"条中标信息公布。在已公布的数据中,上海思百吉的马尔文帕纳科激光粒度仪和丹东百特的激光粒度仪分别成为了上周采购市场国外和国内厂商的大赢家,其中马尔文帕纳科摘得两个标的,势头强劲!/span/pp style="text-indent: 2em "span style="font-family: 宋体"而在招标方面,一共爆出两条招标需求,采购方分别为/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"江西省水文基础设施/spanspan style=" color:#333333 background:#FBFDFE" (2015-2017)/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"建设抚州项目部/span(预算span style=" color:#333333 background:#FBFDFE"53.5/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"万)和郑州大学。/span/pp style="text-indent: 2em "span style=" font-family:宋体 color:#333333 background:#FBFDFE"详情汇总如下:/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"招标:/span/strong/pp style="text-indent: 2em "strong1./strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"抚州市阳光招标咨询有限公司关于江西省水文基础设施/spanspan style=" color:#333333 background:#FBFDFE" (2015-2017)/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"建设抚州项目部进口激光粒度分析仪项目/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目编号:/span/strongspan style=" color:#333333 background:#FBFDFE"FZYG-18-042/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"预算金额:/span/strongspan style=" color:#333333 background:#FBFDFE"53.5/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"万元/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"采购人信息:/span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"采购人:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"江西省水文基础设施/spanspan style=" color:#333333 background:#FBFDFE" (2015-2017)/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"建设抚州项目部/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"联系方式:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"李先生/spanspan style=" color:#333333 background:#FBFDFE" 13755916997/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"地址:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"抚州市临川区汝水大道/spanspan style=" color:#333333 background:#FBFDFE"7199/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"号/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"代理人信息:/span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"代理人:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"抚州市阳光招标咨询有限公司/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"联系方式:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"卢女士/spanspan style=" color:#333333 background:#FBFDFE" 13970486066 0794-8271568/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"地址:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"抚州市玉茗大道延伸段东侧/span/pp style="text-indent: 2em "strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"详情:/span/strong/pp style="text-indent: 2em "strongspan style=" color:#333333 background:#FBFDFE"img src="http://img1.17img.cn/17img/images/201807/insimg/55d69e53-aff2-4346-94e6-7887dce29f57.jpg" title="1.png"//span/strong/pp style="text-indent: 2em "strong /strong/pp style="text-indent: 2em "strong2./strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:郑州大学政府进口产品采购/span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"采购人信息:/span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"采购人:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"郑州大学/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"联系方式:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"王文华,联系电话:/spanspan style=" color:#333333 background:#FBFDFE"0371-67781167/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"地址:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"郑州市高新技术开发区科学大道/spanspan style=" color:#333333 background:#FBFDFE"100/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"号/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"详情:/span/strong/pp style="text-indent: 2em "strongimg src="http://img1.17img.cn/17img/images/201807/insimg/24f5bfbf-937b-43b3-b54a-a8676d4e337d.jpg" title="4.png"/ /strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/ec677a72-8983-4dc6-830c-bb594d7deafa.jpg" style="float:none " title="2.png"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1c184457-7de7-42f9-804c-93b7fd054610.jpg" style="float:none " title="3.png"//ppbr//pp style="text-indent: 2em "strongspan style="font-family:宋体"中标:/span/strong/pp style="text-indent: 2em "strong1/strongstrongspan style="font-family:宋体"./span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"激光粒度仪/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标金额:/span/strongspan style=" color:#333333 background:#FBFDFE"63150/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"美元/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标方:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"上海思百吉仪器系统有限公司/span/pp style="text-indent: 2em "br//pp style="text-indent: 2em "strong2/strongstrongspan style="font-family:宋体"./span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"菏泽学院/spanspan style=" color:#333333 background:#FBFDFE"2018/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"年实验仪器设备采购项目/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目编号:/span/strongspan style=" color:#333333 background:#FBFDFE"SDSM2018-2207/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标金额:/span/strongspan style=" color:#333333 background:#FBFDFE"220.39/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"万/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标详情:/span/strong/pp style="text-indent: 2em "strongimg src="http://img1.17img.cn/17img/images/201807/insimg/2a7797b6-da18-4670-9560-b19185d088cc.jpg" title="5.png"//strong/pp style="text-indent: 2em "strong3/strongstrongspan style="font-family:宋体"./span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:/span/strongspan style=" font-family:宋体 color:#333333 background:#FBFDFE"科技创新服务能力建设—躲不开的食品添加剂/spanspan style=" color:#333333 background:#FBFDFE"--/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"院士、教授告诉你食品添加剂背后的那些事(国家奖)(市级)(科研类)/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目编号:/span/strongspan style=" color:#333333 background:#FBFDFE"XM-0000014213180307331/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标金额:/span/strongspan style=" color:#333333 background:#FBFDFE"99.9/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"万元/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标详情:/span/strong/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201807/insimg/dbe10071-3a6e-45dd-8793-a81016e8881a.jpg" title="6.png"//pp style="text-indent: 2em "strong /strong/pp style="text-indent: 2em "strong4/strongstrongspan style="font-family:宋体"./span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:/span/strongspan style="font-family:宋体"北京科技大学面向新工科的冶金工程特色专业本科生创新实验教学平台建设采购项目/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目编号:/span/strongspan style=" color:#333333 background:#FBFDFE"OITC-G180220302-2/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标金额:/span/strongspan style=" color:#333333 background:#FBFDFE"56.0 /spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"万元/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标详情:/span/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/a5bd59ab-9b7a-403d-bdcf-a965fa9d86bd.jpg" style="float:none " title="7.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/ee5a2669-6285-41e4-92fe-33dd94f47749.jpg" style="float:none " title="8.jpg"//pp style="text-indent: 2em "strong style="text-indent: 2em "5/strongstrong style="text-indent: 2em "span style="font-family:宋体"./span/strong/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目名称:/span/strongspan style=" color:#333333 background:#FBFDFE"2018/spanspan style=" font-family:宋体 color:#333333 background:#FBFDFE"年河南油田激光粒度仪招标/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"项目编号:/span/strongspan style=" color:#333333 background:#FBFDFE"WZ20180612-3835-7181-B1/span/pp style="text-indent: 2em "strongspan style="font-family:宋体"中标详情:/span/strong/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201807/insimg/c9ca9fba-2e6a-40c0-a11c-618225c2f7ba.jpg" title="9.png"//p
  • 安捷伦科技隆重推出新一代双向观测原子发射光谱仪
    安捷伦科技隆重推出新一代双向观测原子发射光谱仪以其前所未有的性能应对复杂应用的挑战创新的ICP-OES系统,分析样品更快速、使用气体更节省 2014年7月1日,北京——安捷伦科技公司(纽约证交所:A)于今日隆重推出Agilent 5100电感耦合等离子体发射光谱仪(ICP-OES),借此巩固其作为原子光谱仪领域创新者的地位。即使面对最复杂的样品,全新的系统都能更快速地分析样品,使用气体更节省,且不会影响其分析性能。这款全新的仪器是实验室进行食品、环境、药物检测以及采矿和工业应用的理想选择。 安捷伦光谱产品副总裁 Philip Binns表示:“新系统避免了与传统的双向观测分析相关的速度和稳定性方面常见的影响。作为ICP-OES领域性能领导企业,安捷伦此次又为行业标准树立了新的标杆。” 传统的双向观测系统需要对每个样品进行多达四次的连续测量,而Agilent 5100仅需一次,这得益于它创新的智能光谱组合技术和垂直火炬同步双向观测技术。这些创新可让客户以更快的速度、更高的准确度和易用性进行分析,大大节省了时间和运行成本。 Philip Binns继续表示:“安捷伦的目标始终都是提供最快速、最高效的原子光谱系统,以应对最复杂的样品。今年,随着4200 MP-AES、7900 ICP-MS,以及如今5100 ICP-OES 的陆续面世,我们继续在元素分析的创新方面引领着行业发展,这也印证了我们致力于根据客户的应用需求提供最佳工具的一贯承诺。” Philip Binns强调,Agilent 5100 ICP-OES分析每个样品的分析速度比市场上与之竞争的ICP-OES系统快55%,所需气体仅有其50%。他补充道:“市场上暂时还没有其它系统可以超越5100 ICP-OES的性能、抑或是其低运行成本的优势。” 借助Agilent 5100 ICP-OES,客户可使用直观的ICP Expert软件和智能光谱组合技术来实现方法开发。客户一次即可测量所有波长,具有极高的精密度,且无任何延迟。Agilent 5100 ICP-OES系统的垂直炬管可以应对最具挑战性的样品(从高基质样品到挥发性有机溶剂),并且分析结果具有高度可靠性。 Agilent 5100有三种配置,均配备耐用的垂直炬管,由此可以帮助客户实现: 同步垂直双向观测(SVDV)能够以最少的气体用量提供最快的分析速度;垂直双向观测(VDV)可提供高通量,如需更高通量,可现场升级至SVDV配置;径向观测(RV)是需要快速、高性能径向 ICP-OES 的实验室的理想选择。关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有20,600名员工,遍及全球100多个国家,为客户提供卓越服务。在2013财年,安捷伦的净收入达到68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • 【探秘】华南展激光创新技术及智能检测展示区有哪些亮点?
    激光是光、机、电、材料及检测等多学科的综合技术,激光制造系统与智能技术相结合可构成高效自动化加工设备。激光和增材制造产业是“20+8”产业集群之一。深圳作为激光和增材制造产业的集聚区,已初步形成覆盖材料、器件、软件、设备和应用服务全链条的产业生态体系,在多模块连续光纤激光器、高功率激光切割头、电池焊接装备等产品类别处于国内一流行列。丰富的制造业应用场景,为激光与增材制造产业提供了广阔的市场空间和发展机遇。国家鼓励和支持激光技术在制造业中为主,行业应用深度融合。到2025年,围绕3C电子、新能源、新型显示等优势领域,将打造一批“激光+”和“3D打印+”智能制造应用示范项目。建成若干检验检测、试验验证、应用研发等产业基础设施和公共服务平台,形成覆盖源头创新、智能制造、创新应用的产业发展生态。华南先进激光及加工应用技术展览会将致力于强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能。主办方精心打造“激光创新技术及智能检测展示区”,携手通快、MKS、普雷茨特、TOPTICA、滨松光子、奥创、光惠、蓝菲、德擎,集中展示激光创新技术、工业智能检测技术及核心部件,内容包括光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等,应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等。现场通过各类演示模式及配合专人讲解,帮助终端客户方便快捷地寻找激光深度应用和智能检测技术方案。2022华南国际智能制造、先进电子及激光技术博览会(LEAP Expo)旗下成员展:2022华南先进激光及加工应用技术展览会(Laser South China)将于11月15-17日在深圳国际会展中心(宝安新馆6号馆)举行。应高交会宝安会场组委会邀请,并经政府批准,LEAP Expo成为第二十四届高交会的成员展,充分共享高交会的影响力和资源,共同推进产业跨界协同及合作。为深圳发展“20+8”产业集群献力。立即点击下方链接或扫描二维码注册参观华南先进激光及加工应用技术展览会,更有超多参观福利等你来拿走!https://ezt.exporegist.com/LEAP22?invitecode=yqxx激光创新技术及智能检测展示区展品抢先看1. 通快(中国)有限公司通快集团(TRUMPF)成立于1923年,作为德国政府顾问单位参与发起了德国工业4.0 战略,是德国工业 4.0 首批创立成员。作为一家拥有百年历史的德国高科技企业,为全球提供高性能工业级激光发生器,产品适用于多个行业。当前,通快在华的核心业务是机床与激光技术,为包括汽车、电池、消费电子、医疗器械、航空航天等高端智能制造业提供金属加工整体解决方案,同时通快还是全球唯一一家能够供应极紫外(EUV)光刻机光源的厂商。【应用领域展品剖析】-应用解决方案主题超短脉冲激光器TruMicro 6000 系列-展品亮点得益于板条放大技术,TruMicro 6000 系列超短脉冲激光器能够将激光脉冲线性增强到很高的脉冲能量。-展品类别光源及先进激光器件-应用领域微电子/半导体、消费电子-应用解决方案详情OLED 切割、切孔:针对 OLED 的超短脉冲激光切割、切孔工艺,绿光与紫外版本通快激光产品凭借其多年积累的稳定性,良好的光束质量,在各行业的巨大装机量中经验丰富的售后团队,已成为面板工厂对于此工艺的不二之选。Micro LED 剥离、巨量转移:随着 5G、VR/AR 技术不断发展,以及市场对于大尺寸显示的更高需求,Micro LED 凭借其高亮、低功耗、快反应时间、潜在高分辨率激发了越来越多工业开发量产投资。动力电池极片切割:在极片切割的应用中,激光这种“无接触”加工方式相比五金刀具有着低成本、少维护、节约材料的优势。同时,随着制造工艺的升级,极片切割的速度要求越来越快、质量要求越来越高。2. MKS/Newport 理波公司Newport 是 MKS Instruments光电解决方案事业部的一个品牌。Newport产品组合由全方位的解决方案组成,包括精密运动控制、光学平台和隔振系统、光电仪器、光学和光机组件。如需更多信息,请访问 www.newport.com.cn【应用领域展品剖析】-应用解决方案主题晶圆检测 & MicroLED 加工与修复-展品亮点高性能空气轴承平台-展品类别激光加工控制及配套系统,激光智造设备,工业智能检测与质量控制技术,3D打印/增材制造,激光加工服务。-应用领域微电子/半导体,消费电子,加工站-应用解决方案详情多样化的超精密运动控制解决方案,专注于半导体行业紧凑型多轴精密控制系统设计。3. 普雷茨特激光技术(上海)有限公司普雷茨特于1971年在德国巴登巴登成立,在全球22个国家和地区设有子公司和代表处,是一家高度创新的传感器和光学探头的德国制造商。光学传感器深入消费电子、半导体、玻璃、汽车、医疗等行业,时刻挖掘高精度在线测量的精度极限,拓宽离线检测的多种可能性。Precitec监控系统可为在24/7全天候运行的许多工业生产领域提供帮助。焊接过程中记录的测量数据用于100%质量控制。立即发现生产错误,可以及时纠正。数据存储与组件ID相结合可实现一致的可追溯性。【应用领域展品剖析】-应用解决方案主题LWM激光焊接监控器-展品亮点LWM激光焊接监控器在量产过程中实时监控质量波动-展品类别激光加工控制及配套系统,激光智造设备,工业智能检测与质量控制技术-应用领域微电子/半导体,消费电子,集成电路,新能源/电池,医疗/生物技术,汽车工程,模具/工具制造,航空航天/交通运输-应用解决方案详情激光焊接实时监控系统LWM是-种应用在连续生产中的实时监控系统。它能够实时在线反馈焊接质量和生产相关的信息。激光功率、焦点位置、焊缝深.度以及保护气体供应和流量大小都能被检测到。除了局部焊接缺陷,比如熔合不充分外,LWM还可探测诸如焊接接口毛刺等组件缺陷和加紧装置上的缺陷。LWM通过对等离子体、热辐射和激光光束背反射基于时间的变化来实时监控焊接的质量。在焊接过程中,LWM会比较收到的信号和参考值,然后将偏差实时报告给焊接设备。4. 杭州奥创光子技术有限公司奥创光子技术有限公司是一家专业从事工业级超快激光器及其核心器件研发、生产与应用的国家高新技术企业。总部坐落于浙江省杭州市,目前拥有约一万平方光学洁净室和办公区。【应用领域展品剖析】-应用解决方案主题30W紫外飞秒激光器-展品亮点最大单脉冲能量200µJ;最大平均功率30W;500fs-10ps连续可调;343nm紫外波长输出-展品类别先进激光材料,光源及先进激光器件,激光智造设备,激光加工服务,创新技术展示-应用领域微电子/半导体,消费电子,集成电路,新能源/电池,医疗/生物技术,汽车工程,玻璃/塑料/陶瓷,航空航天/交通运输,光学,高等院校/科研机构-应用解决方案详情Orientation-30-UV系列紫外飞秒激光器采用奥创自主研发的固体放大方案,强化版本的激光器可提供30W的平均功率,脉冲宽度500fs-10ps,最大可输出200μJ的单脉冲能量,可实现50KHz~1MHz重复频率连续可调,24小时功率波动小于等于1%,采用高效的三次谐波产生技术输出343nm紫外波长光,全系标配burst功能,支持1-10个burst输出。5.TOPTICA PhotonicsTOPTICA成立于1998年,位于慕尼黑(德国)附近,目前已经成为了世界领先的激光光电子公司之一。20年来 TOPTICA一直致力于为科学和工业应用开发和制造高端激光系统。我们的产品包括半导体激光器,超快光纤激光器,太赫兹系统,光学频率梳和高精度波长计等。TOPTICA的系统主要用于生物光子学,工业计量学和量子技术等高端应用。TOPTICA以提供市场上波长范围覆盖最广的单频半导体激光器而闻名,即使在特殊波长也能提供大功率激光器件。TOPTICA的半导体激光器具有出色的相干性,宽调谐范围和理想的光束质量。目前,OEM客户,科学家和十几位诺奖获得者都认可TOPTICA激光器的世界级规格,以及它们的高可靠性和长使用寿命。TOPTICA的300名员工以开发定制系统为荣。通过与几所大学和研究所的密切合作,最新的科学发现经常被纳入商业产品中。凭借全球分销网络,TOPTICA在全球范围内提供卓越的服务。【应用领域展品剖析】产品1-应用解决方案主题PICOFYB-展品亮点节约成本的工业级光纤种子源激光器-展品类别激光智造设备-应用领域微电子/半导体,光学,高等院校/科研机构-应用解决方案详情PicoFYb 1030/1064经济高效的工业级光纤种子激光器较长的使用寿命:TOPTICA 专有的 SESAM 锁模技术产品2-应用解决方案主题TopWave 266-展品亮点工业级连续波 UV 激光器-展品类别激光智造设备-应用领域微电子/半导体,光学,高等院校/科研机构-应用解决方案详情工业连续波紫外线激光器基于超过15年提供高性能变频系统的经验,TOPTICA开发了新型TopWave 266。该工业级连续波深紫外激光系统在266 nm处提供300 mW输出功率,具有出色的功率稳定性和最高的可靠性。6.上海蓝菲光学仪器有限公司美国Labsphere Inc. Inc.(蓝菲光学)于 1979 年成立, 美国总部位于美国 N ew Hampshire 州的 N orth Sutton 市, 隶属于英国豪迈集团, 是世界上最早也是目前规模最大的生产积分球及以积分球为核心的光电 检测 仪器 和解决方案提供 商,在 30 余年的发展历程中 Labsphere 始终保持在全球光源计量、照明 测量 、 辐射 定标 、反射率透射率测试及光学漫反射涂料领域内的领先地位, Labsphere 已为众多光学领域客户专业设计并提供多种用途的 光电测量 系统,此外Labsphere 还具备极其丰富的定制经验,可满足不同用户的特殊需求 。为了更好服务亚洲市场,Labsphere 已于 2009 在上海设立了全资子公司 上海蓝菲光学仪器有限公司。上海蓝菲 为亚洲客户提供销售,售后服务并拥有自己的漫反射材料喷涂中心;公司还拥有自己的研发设计团队 根据国内客户的需求推出有针对性的方案。【应用领域展品剖析】-应用解决方案主题激光功率测量系统-展品亮点‍激光功率测量系统以精确和可重现的方法测定被校准或发散的激光-展品类别激光智造设备,工业智能检测与质量控制技术,创新技术展示-应用领域微电子/半导体,消费电子,汽车工程,照明,航空航天/交通运输,照明工程,光学,高等院校/科研机构-应用解决方案详情激光功率测量系统以精确和可重现的方法测定被校准或发散的激光或激光二极管。激光积分球专门设计用于激光,是测量光辐射束总功率的理想选择。该系统可为350到1700nm波长区域内的激光提供光功率从几nW到几百W的激光功率测量。7.滨松光子学商贸(中国)有限公司日本滨松光子学株式会社(简称滨松集团)是全球光子技术、光产业的领导者。自1953年成立以来,滨松集团将超过15000种光电产品销往全球100多个国家和地区,这些产品被广泛应用在生物医疗、高能物理、宇宙探测、精密分析、工业计测、民用消费等领域。多种产品以其优异质量著称并享有高市场占有率,如光电倍增管系列产品的市场占有率高达90%。【应用领域展品剖析】-应用解决方案主题T- smils LD 加热系统-展品亮点带温度实时监控的平顶光输出的激光二极管(LD)加热系统-展品类别先进激光材料,激光加工控制及配套系统,激光智造设备,工业智能检测与质量控制技术,激光加工服务-应用领域微电子/半导体,医疗/生物技术-应用解决方案详情T-smils是一个带温度实时监控的平顶光输出的激光二极管(LD)加热系统。由“ SPOLD”激光器(即滨松的LD照射光源系列),控制单元和测温单元组成。T-smils适用于非金属焊接,纳米银浆烧结、锡焊、芯片封装、玻璃封接等。特点:模块化设计;内置温度监控模块:对加工点精确地温度监控;内置通信模块:实现整机与电脑、机械臂之间的通信;激光器:光纤输出,30W、75W、200W、360W可选。8.光惠(上海)激光科技有限公司光惠(上海)激光科技有限公司成立于2015年11月,是全球高亮度光纤激光器及应用工具集成方案领先者,脱胎于美国康涅狄格州的GW LaserTech LLC,公司创始团队为专注光纤激光器研发近20年的海外博士,拥有深厚的技术积淀,是上海市技术千人专家。目前公司拥有员工近300人,其中硕博学历研发人员比例在同行业中处于较高水平,引领了基于双向976nm泵浦技术的高效、高亮度激光技术在中国的产业化。【应用领域展品剖析】-应用解决方案主题YLPS- Weld- 1500- A-展品亮点可以在-10-50℃正常满功率运行,搭配自主研发枪头,操作简易,体积更小。-展品类别激光加工控制及配套系统,激光智造设备,激光加工服务,创新技术展示-应用领域新能源/电池,医疗/生物技术,汽车工程,金属/钣金,模具/工具制造,航空航天/交通运输,光学-应用解决方案详情光惠激光新一代智能风冷激光手持焊机搭配光惠自主研发“不怕热”的焊接头,独特的球面光学技术,重量减轻35%,一体化设计,焊缝完美无变形,可以在-10-50℃范围正常使用,操作简便,内置55组应用工艺数据包,根据应用场景智能化选用彻底解决工艺摸索问题,全铝合金机身,重量≤45kg,较第一代减轻30%提升了征集移动的可靠性,多重安全保障,除急停按钮外,单独安全电路设计彻底解决漏电的可能性。9. 广州德擎光学科技有限公司广州德擎光学科技有限公司是一家致力于研发和生产激光加工自动化配套设备的高新技术企业,专注于最前沿的激光制造检测及控制技术的研发和生产。针对激光焊接质量监控等相关应用,先后开发了激光焊接缺陷检测系统,激光焊接熔深测量系统,激光焊接表面重构等激光焊接质量检测系统。德擎光学秉持“德勤至上,光控未来”的企业理念,以科技创新为自我追求,以诚实守信为原则为客户提供服务、创造价值。【应用领域展品剖析】-应用解决方案主题激光过程诊断系统-焊接缺陷检测(ALPAS-WDD)-展品亮点能在线检测产品焊接质量变化,实时监控产线制程状态的稳定性-展品类别激光加工控制及配套系统,激光智造设备,工业智能检测与质量控制技术,创新技术展示-应用领域消费电子,新能源/电池,汽车工程,家电/电器-应用解决方案详情激光焊接过程中产生金属蒸汽、激光反射以及熔池热辐射等信号。这些辐射的光信号能反映焊接的状态以及过程有无缺陷的产生;缺陷检测系统(WDD)利用光电传感器将焊接过程中产生光辐射转成电信号,通过检测系统对该辐射光信号的分析,可以获得焊缝缺陷信息,从而达到缺陷检测与质量控制的目的。组团观展,好礼相送看完以上这些展品,你是不是蠢蠢欲动了呢?如果你是来自消费电子、微电子、半导体、新能源、PCB、5G、医疗、锂电等激光加工应用领域的管理人员、技术人员、研发人员、采购人员,赶快注册来华南先进激光及加工应用技术展览会现场身临其境,更多业内知名企业等你来会,还有更多精彩活动等你参与,五人及以上组团报名可享更多优惠礼包。2022知名参展品牌欲知更多展会详情及实时动态,敬请关注官方微信号:慕尼黑上海光博会。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 460万!南京理工大学激光测振系统采购项目
    项目编号:ZZ0245-G22HZ0534(YC2022-GK49460)项目名称:激光测振系统预算金额:460.0000000 万元(人民币)最高限价(如有):460.0000000 万元(人民币)采购需求:激光测振系统。包括激光测振系统主要包括带干涉仪的激光扫描头(三个)、控制器(三个)、连接箱、数据管理系统等几个主要模块构成等。详见招标文件“第四章 项目需求”;本项目属性:货物;本项目接受进口产品投标;合同履行期限:详见招标文件“第四章 项目需求”;本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年02月09日 至 2023年02月16日,每天上午9:00至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:线上报名。请各投标单位根据以下步骤进行线上报名、缴费、采购文件下载 (1)请具备以上资格条件的潜在供应商先在南京理工大学校园网(http://zbpt.njust.edu.cn/)上找到该项目采购公告并点击“我要报名”按钮进行线上报名。 (2)购买采购文件方式:线上缴费。 采购文件售价300元,请潜在供应商在该项目采购公告页面底部点击“缴纳标书费”,并按要求操作缴纳费用(请务必准确填写各项内容)。标书费售后不退。请于报名截止日期前缴纳,否无法成功报名。交费后系统开具电子版发票至缴费人手机,请注意查收。 (3)获取采购文件方式:线上下载。 请潜在供应商在该项目采购公告页面底部点击“下载标书”,按要求操作,填写验证码等,即可成功在线上下载采购文件电子稿。(无须再现场购买纸质文件)报名截止后采购文件、答疑澄清及相关图纸(如有)电子文档将再次以邮件形式统一发送至成功报名潜在供应商单位邮箱。请投标单位务必在报名截止日前完成缴费并下载招标文件。售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年03月02日 14点30分(北京时间)开标时间:2023年03月02日 14点30分(北京时间)地点:南京市鼓楼区中山北路28号江苏商厦11楼四、公告期限自本公告发布之日起5个工作日。五、其他补充事宜本公告在中国政府采购网、中国招标投标网、南京理工大学校园网发布。六、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南京理工大学地址:江苏省南京市孝陵卫街200号联系方式:王老师 025-843038702.采购代理机构信息名 称:江苏易采招标代理有限公司地 址:南京市鼓楼区中山北路28号江苏商厦11楼联系方式:鲍慧 025-836060703.项目联系方式项目联系人:鲍慧电话:025-83606070
  • 北京采用激光遥感检测机动车排放
    6月26日,北京市东四环辅路一个检测点实时显示经过车辆的尾气排放检测结果(上图) 检测点的工作人员在监控实时检测数据(下图,拼版照片)。新华社记者公磊摄  6月26日,工作人员在北京市东四环辅路一个检测点架设遥感检测设备。新华社记者公磊摄  当日,为进一步控制机动车污染排放、改善空气质量,北京启动全市范围内的机动车排放激光遥感检测专项执法活动。激光遥感检测是利用遥感设备对机动车尾气中不同物质的吸收光谱进行分析,从而检测出尾气中各种污染物的浓度值。它能够在不影响机动车正常行驶的情况下,对机动车的动态排放进行实时检测。  据统计,北京市目前机动车保有量已超过530万辆,机动车排放污染已经成为影响北京空气质量的主要污染源。特别是机动车排放产生的PM2.5约占北京市全部PM2.5来源的22.2%。
  • 北京2016年激光共焦超高分辨显微学学术研讨会召开
    p style="line-height: 1.75em "  strong仪器/strongstrong信息网讯 /strong2016年3月22日下午,由北京理化分析测试技术学会和北京市电镜学会主办的“北京市2016年度激光共焦超高分辨显微学学术研讨会”在北科大厦举行。会议旨在推动北京市及周边省市激光共焦及超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。本次会议吸引了来自高校、科研院所、仪器厂商等150余人参加,会议现场坐无虚席,甚至有不少听众由于座位不够只能站着听报告。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 333px float: none " title="会议现场.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/77f5aa67-764f-4f63-8c4a-6be8e16f0c50.jpg" width="500" height="333"//pp style="text-align: center line-height: 1.75em "strong会议现场/strong/pp style="line-height: 1.75em "  自17世纪“诞生”以来,显微镜一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。2008年“出世”的超高分辨率显微技术,打破了常规光学显微镜的分辨极限(约200nm),实现科学家们对细胞内部结构的观察,使超高分辨率显微镜和激光共聚焦显微镜一起成为生命科学领域最重要的研究手段。2014年诺贝尔化学奖获奖者们利用荧光分子“标记”细胞内的精细结构,使其在显微镜下变得五彩缤纷、清晰可辨,真正帮助科学家们从纳米尺度上来认识细胞内的分子结构、定位以及相互作用。自此,生命科学的研究从微米尺度跨入了纳米尺度。/pp style="line-height: 1.75em "  据悉,超分辨显微产品目前在市场上非常受欢迎,伴随着技术的进步,其性价比也在不断提升,预计此类产品未来的应用前景将不断拓宽。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 355px " title="陈建国.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/79aa39e8-c8e1-4453-ad35-42dfd4780ad5.jpg" width="500" height="355"//pp style="text-align: center line-height: 1.75em "strong报告人:北京大学 陈建国/strong/pp style="line-height: 1.75em " 北京大学的陈建国利用超高分辨显微技术对中心体蛋白Cep57及其在细胞分裂中的调控功能进行了研究。Cep57,原名translokin,最早被报道参与FGF-2胞质内转运过程细胞膜细胞核的双向运输,而2007年在瓜蟾提取物中的实验表明Cep57有稳定微管与动粒结合的作用。span style="line-height: 1.75em "陈建国通过结合免疫电镜和免疫荧光显微成像的结果说明Cep57是中心粒周围物质常驻蛋白,其中心体定位由N端卷曲螺旋结构域决定。同时,显微成像观察结果还显示,中心体蛋白Cep57作为纺锤体和中间体微管网络结构中的稳定因子在细胞有丝分裂过程中发挥了重要的作用。/span/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 357px " title="王文娟.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/845ef3a3-b325-47e9-8583-9af1de4bfbdc.jpg" width="500" height="357"//pp style="text-align: center line-height: 1.75em "strong报告人:清华大学 王文娟/strong/pp style="line-height: 1.75em "  来自清华大学的王文娟首先对清华大学细胞影像平台及其包含的仪器设备进行了介绍,并分别从空间分辨率、时间分辨率、成像深度和光毒性这几个方面对现有的共聚焦扫描、转盘共聚焦、宽场、结构光照明以及随机光学重构(STORM)等荧光成像技术进行了比较,以作为做生物荧光成像研究时选择相符合仪器设备的参考。另外,王文娟还介绍了激光共聚焦显微镜在生命科学中的几种高级应用,如FRAP(荧光漂白恢复)、FRET(荧光共振能量转移)、FLIM(荧光寿命显微成像)技术等的特点及其在实际应用过程中需要注意的情况。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 382px " title="王晋辉.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/7d198b78-3cf5-416d-9536-cfa75417a935.jpg" width="500" height="382"//pp style="text-align: center line-height: 1.75em "strong报告人:中科院生物物理所 王晋辉/strong/pp style="line-height: 1.75em "  中科院生物物理所的王晋辉则以小鼠为动物模型,通过建立小鼠胡须触觉和嗅觉联合刺激训练的条件反射模型以及采用双光子激光共聚焦在活体上记录分析Barrel cortex(体觉皮层)区神经网络中神经元及星形胶质细胞的活动的方法对记忆细胞细胞基础的结构功能进行了研究。实验结果表明,在小鼠条件反射建立的过程中有对侧皮层的参与,非训练侧胡须对于条件刺激也有比较弱的非条件反应的现象。而共聚焦成像的结果也显示,小鼠在受到条件刺激时,Barrel cortex区神经网络中出现对条件刺激有反应的神经元和星形胶质细胞,而且条件反射建立之后,Barrel cortex和Piriform Cortex(梨状皮层)之间确实存在着某种联系。/pp style="text-align: center line-height: 1.75em "  img style="width: 500px height: 368px " title="陈良怡.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/671fcafd-e777-400a-b386-6553abf72aba.jpg" width="500" height="368"//pp style="text-align: center line-height: 1.75em "strong报告人:北京大学 陈良怡/strong/pp style="line-height: 1.75em " 随着显微技术在生命科学领域应用的不断深入,对仪器分辨率和采集速度的要求也越来越高,传统的显微技术已经满足不了对于活体生物深层组织的观察,对活体生物成像研究的深入迫切需要更多的技术进步。/pp style="line-height: 1.75em " 北京大学的陈良怡介绍了由北大牵头研制的大视场、高时空分辨新型双光子光片显微镜——2P3A-DSLM。新研制的光片显微镜具有采样速度快(1毫秒帧频)、光损伤小以及深层组织成像等优点。特别是与国际同类光片显微镜相比,2P3A-DSLM在保持超大视场的同时,具有最薄的光片(亚微米级),使得在活体模式动物组织深处观察亚细胞精细结构和动态过程成为可能。目前该系统已经成功应用于活体胰岛span style="color: rgb(51, 51, 51) line-height: 1.54 font-family: arial font-size: medium background-color: rgb(255, 255, 255) "β /spanspan style="line-height: 1.75em "细胞的结构功能研究,通过可视化胰岛素分泌过程,在不同的时间和空间尺度上监测β细胞功能和胰岛素分泌来研究糖尿病的形成机制。/span/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 379px " title="李栋.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/d170e613-d5b5-43ca-a1a0-0683a5bea245.jpg" width="500" height="379"//pp style="text-align: center line-height: 1.75em "span style="line-height: 1.75em "报告人:中科院生物物理所 李栋  /span/pp style="line-height: 1.75em "  中科院生物物理所的李栋也在报告中介绍了新的两种生物光学超分辨成像技术之high NA TIRF-SIM(高数值孔径物镜的全内反射结构光成像)和PANL-SIM(非线性激活结构光照明成像),是李栋和他的合作者基于原有的SIM(结构光照明成像)显微镜原理上发展的新的超高分辨率成像技术。/pp style="line-height: 1.75em "  科学家团队们利用了已经商业化的高数值孔径物镜将传统SIM的空间分辨率提高到84nm。高数值孔径限制了被光照明的样品范围,从而降低了光对细胞以及荧光蛋白分子的损伤。通过这一方法还可以同时对多个颜色通道进行成像,使得科学家们能够同时跟踪几种不同蛋白质的活动。 而结构光激活非线性SIM不仅分辨率更精细(〈80nm)而且图像采集速度也非常快,可在1/3秒内采集25幅原始图像,并从中重建出一幅高分辨率图像。它的图像采集很高效,只需用较低的照明光强,收集每一个亮态荧光蛋白分子所携带的信息,从而有效地保护了荧光分子,使得显微镜能够进行更长时间的成像,让科学家们可以观测到更多的动态活动,如细胞内蛋白质的运动和相互作用。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 370px " title="徕卡.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/ef2ca0eb-c9e5-41d6-be96-d135527dd11d.jpg" width="500" height="370"//pp style="text-align: center line-height: 1.75em "报告人:徕卡 王怡净/pp style="line-height: 1.75em "  显微成像技术的不断发展也促使着各大仪器厂商们不断地提升相应产品的质量和性能。徕卡的王怡净给参会嘉宾们带来了题为《激光共聚焦及超高分辨技术应用新进展》的报告。她在报告中指出,当前激光共聚焦及超高分辨技术面临的挑战依然是更高的分辨率、更深的穿透深度以及超高分辨率下的多色成像和更快速度。基于此,徕卡推出了新的激光共聚焦平台——Hyvolution,可以帮助研究人员在140nm的分辨率下研究活细胞的快速动态过程,并同时采集多荧光标记的图像,或捕捉细胞内的细节信息。而全新的Leica TCS SP8 STED 3X则分别在三维超高分辨、多色成像和活细胞成像这三个关键领域实现突破性创新。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 357px " title="蔡司.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/a8a82aac-9b26-4341-a31b-bec28e190acc.jpg" width="500" height="357"//pp style="text-align: center line-height: 1.75em "报告人:蔡司 位鹏/pp style="line-height: 1.75em "  来自蔡司的位鹏介绍了蔡司Airyscan技术在生命科学领域的一些新进展。据他介绍,今年在Airyscan技术中新增加了更灵敏的成像模式,通过平衡速度和分辨率来达到想要的实验结果,同时保证更好的分辨率和信噪比,并且通过双光子激发增强了深度性能的提升。他还透露,Airyscan技术的两款产品LSM800和LSM880自去年推出以来市场反响非常好,至今年2月份全国销量已达80台。另外,位鹏透露,今年下半年蔡司还将会推出新的技术。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 362px " title="尼康.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/f4b1026c-463c-495e-96a8-768378c28c09.jpg" width="500" height="362"//pp style="text-align: center line-height: 1.75em "报告人:尼康 李勋 /pp style="line-height: 1.75em "  尼康公司的李勋介绍了尼康的超分辨共聚焦显微(ER)、简易版的SIM(SIM-E)和升级版的STORM(STORM4.0)。他特别指出,SIM-E是尼康公司结合中国市场推出的简易版的SIM,机器小巧,1帧/秒的时间分辨率、空间分辨率为传统光学显微镜的2倍,同时可进行多色超分辨率成像,非常适合个人实验室。而STORM4.0的图像采集速度则比前一代STORM提高了近10倍,成像区域是后STORM的4倍,实现了活细胞动态过程的超分辨成像。这款产品目前刚上市,市场表现值得期待。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 370px " title="奥林巴斯.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/80f5497c-7dc2-466f-91ca-f60338ad63a3.jpg" width="500" height="370"//pp style="text-align: center line-height: 1.75em "报告人:奥林巴斯 戚少玲/pp style="line-height: 1.75em "  奥林巴斯20年来专注于双光子成像,国内用户超过100家。来自奥林巴斯的戚少玲介绍了奥林巴斯新型双光子系统在生命科学领域的应用,如在体小鼠肺部的研究、在体小鼠神经记忆功能追踪的研究和免疫细胞的迁移以及斑马鱼血管再生研究等。奥林巴斯高速、深层活体成像的最佳方案——FVMPE-RS实现了1300μspan style="color: rgb(51, 51, 51) line-height: 1.54 font-family: arial font-size: medium background-color: rgb(255, 255, 255) "/spanspan style="line-height: 1.75em "m的深层小鼠活体成像,能够有效收集动态影像,如被标记的细胞在血液中“缓缓”流动,斑马鱼的心脏“慢慢”起伏等。另外,基于近几年发展非常快的透明化技术,奥林巴斯还推出了一些特制的非商业化的专用物镜帮助生物学家们在活体成像研究达到“更深”的层次。/span/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 391px " title="Andor.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/6e64a67a-0c49-467e-84b6-98400155e2f1.jpg" width="500" height="391"//pp style="text-align: center line-height: 1.75em "报告人:Andor 王刚/pp style="line-height: 1.75em "  英国安道尔(Andor)科技有限公司位于英国北爱尔兰贝尔法斯特,现隶属于牛津仪器有限公司,专注于低光照快速成像。来自安道尔公司的王刚介绍了安道尔转盘共聚焦产品的关键技术点,包括安道尔专利的borealis激光照明技术、细胞环境控制、自动光照明定点漂白、损伤和激活技术等,使听众对转盘共聚焦有了一个大致的了解。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 379px " title="TIMWINTER.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/89dcb9c2-b1d1-40ac-9c92-8ea6322c43d6.jpg" width="500" height="379"//pp style="text-align: center line-height: 1.75em "报告人:蒂姆温特 齐东/pp style="line-height: 1.75em "  最后是蒂姆温特公司的齐冬带来的题为《Femoto-3D/2D双光子从结构到功能》的报告。齐冬介绍道,成像应用的新趋势是结合新的成像技术超高速地定量测量清醒状态下在体系统内多体系协同作用现象。而全球唯一的声光(AO)驱动双光子扫描能够实现超高速的3D功能成像和超强信噪比对于观察单细胞形态和多细胞同步测量都有很好的效果,真正实现从结构成像到功能成像的跨步。/pp style="text-align: center line-height: 1.75em "img style="width: 500px height: 333px " title="IMG_5333.JPG" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201603/insimg/2a18e928-09c7-4bc0-b757-415c9dcbc865.jpg" width="500" height="333"//pp style="text-align: center line-height: 1.75em "strong北京市电镜学会秘书长张德添教授/strong/pp style="line-height: 1.75em " 本次研讨会由北京市电镜学会理事长郑维能、秘书长张德添教授、北大医学部何其华、北大医学部第一医院王素霞等多位业内专家主持。专家们的报告精彩纷呈,会议现场气氛十分热烈,与会嘉宾们纷纷在报告间隙提出了自己感兴趣的问题。/pp style="line-height: 1.75em "br//pp style="line-height: 1.75em text-align: right "撰稿人:陈星羽/p
  • 大气探测激光雷达、宽幅成像光谱仪成功升空
    作者:张双虎 黄辛 来源:中国科学报北京时间4月16日2点16分,大气环境监测卫星在我国山西太原卫星发射中心成功发射。中国科学院上海光机所研制的大气探测激光雷达、中国科学院上海技物所研制的宽幅成像光谱仪随大气环境监测卫星成功升空。大气环境监测卫星由中国航天科技集团八院抓总研制,是国际首颗具备二氧化碳激光探测能力的卫星,将进一步提升我国大气环境综合监测、全球气候变化和农作物估产及农业灾害等应用能力,推进卫星遥感数据在生态环境、气象、农业农村等方面应用,有效解决各行业部门对外国遥感数据的依赖。上海光机所研制的大气探测激光雷达在国际上首次采用激光路径差分吸收方法,可全天时、高精度测量全球范围的二氧化碳浓度分布;首次采用碘分子吸收池激光高光谱分辨探测技术实现全球气溶胶垂直剖面分布的精确测量。激光雷达载荷在轨后获取的全球数据,将服务于国家“碳达峰”和“碳中和”双碳国家战略的温室气体二氧化碳浓度高精度监测,同时为全球气候气象研究提供高精度的二氧化碳浓度以及气溶胶、云垂直廓线分布数据。上海技物所研制的宽幅成像光谱仪具备2300公里宽幅可见至热红外波段21通道成像能力,可获取全球、全时段多光谱遥感数据,将有效提升大气气溶胶、细颗粒物、雾霾分布、近海岸带等大气环境的连续检测、预警与评估能力。面对新冠疫情带来的重重困难,中科院上海团队全力以赴、顽强拼搏、协同攻关,充分体现新时代国家战略科技力量的使命担当。
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。  激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。  2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。  半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?  半导体市场:黯然神伤  虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。  “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。  “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”  ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”  相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。  作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。  Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。  “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”  随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:  1 激光技术在晶片/芯片加工领域的应用  1.1在划片方面的应用  划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。  目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。  1.2在晶片割圆方面的应用  割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。  传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。  2 激光打标技术  激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。  激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:  (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。  在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。  3 激光测试技术  3.1激光三角测量术  微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。  在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。  3.2颗粒测试  颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。  对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。  4 激光脉冲退火(LSA)技术  该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。  该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
  • 新型激光直写无掩模光刻机在孚光精仪发布问世
    孚光精仪在上海,天津同时发布一款新型激光直写式雾无掩模光刻系统。这款无掩模光刻机是一款高精度的激光直写光刻机。这套无掩模光刻机具有无掩模技术的便利,大大提高影印和新产品研发的效率,节省时间,是全球领先的无掩模光刻系统。这款激光直写无掩模光刻机直接用375nm或405nm紫外激光把图形写到光胶衬底上。 激光直写无掩模光刻系统特色尺寸:925x925x1600mm内置计算机控制接口激光光源:375nm或405nm视频辅助定位系统自动聚焦设置 详情浏览:http://www.f-opt.cn/guangkeji.html 激光直写无掩模光刻机参数线性写取速度:500mm/s位移台分辨率:100nm重复精度: 100nm晶圆写取面积:1—6英寸衬底厚度:250微米-10毫米激光点大小:1-100微米准直精度:500nm Email: info@felles.cn 或 felleschina@outlook.com Web: www.felles.cn (激光光学精密仪器官网) www.felles.cc (综合性尖端测试仪器官网) www.f-lab.cn (综合性实验室仪器官网) Tel: 021-51300728, 4006-118-227
  • 在线热像仪应用 — 材料 激光加热的温度检测
    激光加热的温度检测使用激光方式对金属材料进行加热是近年来发展比较快速的新技术,激光加热 具有加热温度高、加热速度快、加热目标灵活等优点,但也正是这些优点,使 得在加热过程中的温度检测存在难点,本文介绍使用RSE60H高温型在线热像仪 对激光加热的现场检测案例,特别是快速、高温的温度趋势分析功能,为此类 温度检测提供有效方案。检测案例: 某高校和某激光设备制造商合作项目,使用激光加热设备对金属材料进行加热,需要看到金属表面的温度变化情况,这对 材料加工工艺非常重要,如果温度控制不当,会造成材料报废或质量不合格。 该现场存在两个检测难点: 1、激光加热的时间非常短:通常激光加热以零点几秒或几秒为周期,且在这么短暂的加热周期中,需要看到温度瞬间的 升高和散热冷却的过程变化,所以对于热像仪的帧频有较高的要求,目前市面上普通的帧频为9Hz的红外热像仪无法追踪 这么快速的变化,而RSE60H的帧频达到25Hz,也就是说,每40毫秒采样一次,可以满足对于快速变化的温度检测需求。 2、温度高:激光加热后的金属温度会瞬间上升到1000℃-1500℃以上,普通的红外热像仪的高温量程上限为1000℃或 1200℃,这就需要特别涉及的测温至2000℃的高温型红外热像仪进行温度检测。在激光移动的过程中,在铁板某一位置处有停留(红框处),导致热量积累使铁板的温度上升到1500℃,同样,右侧 是部分温度数据的导出,红色字体为最高温度值和对应的时刻。 另外,时间轴也可以用计算机时间来标识,案例中的时间轴用开始时间标识。
  • 1150万!全光谱激光扫描共聚焦显微镜、全光谱激光扫描共聚焦显微镜和激光共聚焦显微镜采购项目
    一、项目基本情况项目编号:GXZC2023-J1-001494-JDZB项目名称:超高分辨场发射扫描电子显微镜采购采购方式:竞争性谈判预算金额:275.0000000 万元(人民币)最高限价(如有):275.0000000 万元(人民币)采购需求:超高分辨场发射扫描电子显微镜1台。如需进一步了解详细内容,详见谈判文件。合同履行期限:自签订合同之日起120个工作日内完成产品安装、调试,通过验收并交付使用。本项目( 不接受 )联合体投标。1.采购人信息名 称:广西师范大学     地址:广西桂林市雁山区雁中路1号        联系方式:辛老师、0773-3696563      2.采购代理机构信息名 称:广西机电设备招标有限公司            地 址:广西桂林市七星区骖鸾路31号湘商大厦603            联系方式:郑雯峪、蒋仕波,0773-3696789转1            3.项目联系方式项目联系人:郑雯峪、蒋仕波电 话:  0773-3696789转1二、项目基本情况项目编号:ZBUSTC-GJ-06项目名称:中国科学技术大学苏州高等研究院全光谱激光扫描共聚焦显微镜采购项目预算金额:365.0000000 万元(人民币)最高限价(如有):365.0000000 万元(人民币)采购需求:包号货物名称数量主要功能是否允许采购进口产品采购预算1全光谱激光扫描共聚焦显微镜1套主要用来进行组织和细胞中荧光标记的分子和结构检测、荧光强度信号的定量分析、深层组织和细胞成像、亚细胞结构高分辨检测、荧光漂白及恢复实验以及其他生物学应用。是365万元合同履行期限:合同签订后 150 天(国内供货)或者L/C后 150 天(进口免税)本项目( 不接受 )联合体投标。1.采购人信息名 称:中国科学技术大学苏州高等研究院     地址:苏州市独墅湖高教区仁爱路188号        联系方式:秦老师;wangpeng1107@ustc.edu.cn      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯;王军;郭宇涵;010-68290530;010-68290508            3.项目联系方式项目联系人:李雯;王军;郭宇涵电 话:  010-68290530;010-68290508三、项目基本情况 项目编号:CBNB-20236027G 项目名称:宁波市中医院激光共聚焦显微镜采购项目 预算金额(元):5100000 最高限价(元):5100000 采购需求: 标项名称: 激光共聚焦显微镜 数量: 1 预算金额(元): 5100000 简要规格描述或项目基本概况介绍、用途:包含扫描检测系统、万能分光系统、荧光寿命传感成像分析系统等。详见招标文件。 备注:组成联合体的成员数量不超过2个。 合同履约期限:详见招标文件。 本项目(是)接受联合体投标。1.采购人信息 名 称:宁波市中医院 地 址:宁波市海曙区丽园北路819号(广安路268号) 传 真:/ 项目联系人(询问):郑老师 项目联系方式(询问):0574-87089099 质疑联系人:李老师 质疑联系方式:0574-87089098 2.采购代理机构信息 名 称:宁波中基国际招标有限公司 地 址:宁波市鄞州区天童南路666号中基大厦19楼 传 真:0574-87425373 项目联系人(询问):周旭坤 项目联系方式(询问):0574-87425380 质疑联系人:王莹巧 质疑联系方式:0574-87425583        3.同级政府采购监督管理部门 名 称:宁波市政府采购管理办公室 地 址:宁波市海曙区中山西路19号 传 真:/ 联系人 :李老师 监督投诉电话:0574-89388042
  • 250万!华南理工大学高性能样本处理、生物分子分析及红外激光成像系统采购项目
    项目编号:GZZJ-ZFG-2023078项目名称:华南理工大学高性能样本处理、生物分子分析及红外激光成像系统采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)(一)1高性能样本处理系统1台组织破碎及均化、代谢物提取及蛋白质组学分析、RNA提取、纳米粒子微粉的制备、细胞/孢子或细胞器的裂解、复合物分离、ADME/Tox等。人民币250万元2生物大分子分析仪1台2.1用于二代测序或三代测序过程中基因组DNA和文库的质控(定性定量);2.2用于用于高通量片段分析如SSR/CAPS/RAPD/AFLP分析;2.3用于常规DNA/RNA或扩增产物片段大小定性定量分析;2.4质粒DNA分析;2.5RNA定性定量分析,含体外合成的RNA完整性分析、smal RNA分析;3全自动氨基酸分析仪1台一次进样可分析18种以上氨基酸。4双色红外激光成像系统1台Western blots分析、多色荧光Western blots分析、多色EMSA(电泳迁移率变化分析)、微孔板In-Cell Western分析、凝胶In-Gel Western分析、考马司亮蓝凝胶扫描、蛋白双向电泳扫描、蛋白芯片扫描、Northern/Southern blots、Membrane arrays、核酸与蛋白相互作用研究、组织切片扫描、器官扫描成像等。经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 激光粒度仪在粒度检测中的应用浅谈
    p style="text-indent: 2em "编者按:谈到粒度,激光粒度仪怎能缺席?目前,在各行各业的粒度检测领域,激光粒度仪应用广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。/pp style="text-indent: 2em "那么激光粒度仪在粒度检测中到底是怎样应用的呢?我国颗粒学泰斗专家周素红研究员的论述,无疑将给我们带来启示……/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "激光粒度分析方法是近年来发展较快的一种测试方法,其主要特点是:/pp style="text-indent: 2em "1)测量的粒径范围广, 可进行从纳米到微米量级如此宽范围的粒度分布。约为 :20nm ~ 2000μm , 某些情况下上限可达 3500μm /pp style="text-indent: 2em "2)适用范围广泛 , 不仅能测量固体颗粒 , 还能测量液体中的粒子 /pp style="text-indent: 2em "3)重现性好 ,与传统方法相比 ,激光粒度分析仪能给出准确可靠的测量结果 /pp style="text-indent: 2em "4)测量时间快,整个测量过程1-2分钟即可, 某些仪器已实现了实时检测和实时显示 ,可以让用户在整个测量过程中观察并监视样品。/pp style="text-indent: 2em "激光粒度分析不仅在先进的材料工程 、国防工业、军事科学、而且在众多传统产业中都有广泛的应用前景。特别是高新材料科学的研究与开发 ,产品的质量控制等 , 如 :陶瓷、粉末冶金、稀土 、电池、制药 、食品、饮料 、水泥 、涂料 、粘合剂 、颜料、塑料、保健及化妆品 。由于颗粒粒子的特异性能在于它的粒径十分细小,粒径大小是表征颗粒性能的一个重要参数, 因此 ,对颗粒粒径进行测量是开展材料检测、评价颗粒材料的重要指标。/pp style="text-indent: 2em "当光线照射到颗粒上时会发生散射 、衍射 。其衍射、散射光强度均与粒子的大小有关 。观测其光强度, 可应用夫琅和费衍射理论和 Mie 散射理论求得粒子径分布(激光衍射/散射法)。/pp style="text-indent: 2em "光入射到球形粒子时可产生三类光:1)在粒子表面 、通过粒子内部、经粒子内表面的反射光 2)通过粒子内部而折射出的光 3)在表面的衍射光 。这些现象与粒子的大小无关 。全都可以作为光散射处理 。一般地 , 光散射现象可以用经Maxwell 电磁方程式严密解出的 Mie 散射理论说明。但是, 实际使用起来过于复杂, 为了求得实际的光强度, 可根据入射波长 λ和粒子半径r 的关系 ,即 :r λ时,Rayleigh 散射理论r λ时,Fraunhofer 衍射理论在使用上述理论时 ,应考虑到光的波长和粒子径的关系, 在不同的领域使用不同的理论 。/pp style="text-indent: 2em "粒子径大于波长的时候, 由 Fraunhofer 衍射理论求得的衍射光强度和 Mie 散射理论求得的散射光强度大体是一致的。因此 ,可以把 Fraunhofer 衍射理论作为 Mie 散射理论的近似处理。这时 ,光散射(衍射)的方向几乎都集中在前方, 其强度与粒子径的大小有关 ,有很大的变化。即, 表示粒子径固有的光强度谱 。解出粒子的光强度分布(散射谱)就可以定出粒子径。当波长和粒子径很接近的时候 ,不能用 Fraunhofer 的近似式来表示散射强度 。这时有必要根据 Mie 散射理论作进一步讨论。在Mie 散射中的散射光强度由入射光波长(λ)、粒子径(a)、粒子和介质的相对折射率(m)来确定 。、/pp style="text-indent: 2em "激光粒度分析的应用领域极为广泛, 如 :1)医药中的粒度控制着药物的溶解速度和药效 2)催化剂的粒度影响着生成反应效率 3)制陶原料的粒度影响着烧结后的物理特性 4)矿物的粒度影响着长途海运的安全 5)食品的保质期受粒度影响 6)橡胶原料粒度影响着其寿命 7)电池原料的粒度影响着电池的充放电效率和寿命 8)涂料 、染料中的粒度影响着产品染色时的发色、光泽 、退色 9)塑料原料的粒度影响着塑料的透明度和加工以及使用性能。/p
  • 激光差动共焦成像与检测仪器重大专项启动
    3月28日上午,国家重大科学仪器设备开发专项&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 项目2013年度工作会在北京理工大学召开。  科技部条财司孙增奇处长、工信部科技司王锐副调研员,杨柯巍主管、金国藩院士、李天初院士、周立伟院士、项目监理组和&ldquo 两组一委&rdquo (项目总体组、项目技术组和项目用户委员会)22位专家以及项目牵头承担单位北京理工大学机关及学院领导等共计40余人参加了会议。  项目总体组成员代表北京理工大学科研院高新部张瑜部长代表学校致欢迎辞,工业与信息化部王锐副调研员、科技部条财司孙增奇处长、项目技术专家组组长金国藩院士、项目用户委员会组长北京交通大学理学院院长冯其波教授、监理组组长北京工业大学科技处处长石照耀教授分别作了讲话。  项目技术专家组组长金国藩院士主持了进展汇报会议,项目负责人赵维谦教授向与会领导专家汇报了项目的总体工作情况及我校承担的研制任务的年度进展情况,清华大学张书练教授、中国科学院物理研究所刘玉龙研究员分别汇报了其承担的研制任务的进展情况。  汇报结束后,与会专家现场考察了我校光电学院赵维谦教授项目组的实验室。现场询问了项目组研发的激光差动共焦干涉元件参数测量仪器、激光差动共焦曲率半径及焦距测量仪器、激光径向偏振光差动共焦显微仪器和激光差动共焦拉曼光谱成像仪器的研究状况,观看了项目组研发的关键部件&mdash &mdash 回馈激光干涉仪、余气回收式高精度气体润滑直线运动系统、高精度气体润滑回转运动系统、高精度气体润滑调倾/调心工作台和高分辨力大承载气体润滑四维调整工作台等,与会专家对研究成果的创新性及研究进展给予了高度评价。  现场考察结束后,专家组对项目组进行了质询。会专家一致认为:国家重大科学仪器设备开发项目&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 2013年度工作进展良好、实施效果显著,按计划全面完成了项目任务书所提出的研究工作,并希望项目组在后续的研究工作中,继续加强推进仪器的可靠性、产品化、软件、外观设计和知识产权保护等工作,提升仪器产品的竞争力。  最后,项目负责人赵维谦教授代表项目组对与会领导、专家的莅临指导表示感谢,并表示会高度重视专家的建议,在今后项目的研发过程中进一步增强仪器产品化设计意识。
  • 用法如激光扫描仪再现北京猿人之家
    2009年5月,北京周口店遗址第一地点(猿人洞)开始进行保护性的考古发掘前期工作。自上世纪70年代以来,猿人洞就再未进行过考古发掘,长时间的风化侵蚀使猿人洞的剖面出现险情,为排除险情,稳定剖面,经国家文物局批准,中国科学院古脊椎动物与古人类研究所与周口店北京人遗址管理处联合对猿人洞西剖面进行保护性的清理发掘。在发掘之前,为翔实记录猿人洞的历史原貌,文物保护专家利用现代先进的法如3D激光扫描仪,获取到详尽的、高精度的猿人洞三维立体影像图数据&mdash &mdash 数十万年前古人类生活过的洞穴实景得以再现,科技的发展可以让人类审视现在的文明和进步! 关于北京猿人遗址: 北京猿人遗址是世界著名的古人类遗址,它位于周口店龙骨山上,于1 9 2 1年开始发掘,是目前世界上同时期人类遗址中材料最丰富的一个,又是华北中更新世(即第四纪冰川更新世中间的一个时期 )洞穴堆积的标准剖面,在古人类学和第四纪地质学上均占有很重要的地位。这个遗址1 9 6 1年被国务院定为全国第一批重点文物保护单位,1 9 8 7年被联合国教科文组织列入世界文化遗产名录。 解决方案: 文物保护专家使用了法如激光扫描仪,在猿人洞现场简单架设和移站扫描仪,通过测量扫描即可获得洞穴的真实三维场景再现。三维测量的原理是激光测距。第一步是发射激光束,旋转的镜面将激光束直接反射到测量区域:通过反射回镜面的激光束,可以精确和唯一地确定镜面到物体之间的距离。在编码器测量镜头旋转角度与激光扫描仪的水平旋转角度后,计算机可以精确计算出每个测量点的空间坐标,并把这些三维空间点的坐标存贮起来。这一步骤每秒最快重复近百万次,通过重复这一步骤,并最终形成被测环境的三维空间图像。其分辨率比传统的数码相机高上千倍,大空间激光三维扫描仪的场景数字化记录优势已得到充分验证。被测对象通过无缝拼接形成完整空间,克服了视角局限外挂数码照相机,实现彩色扫描,还原彩色现实。欲知本产品信息:点击进入法如科技 FARO Technologies,Inc.地址:上海市桂林路396号3号楼1楼 邮编:200233Tel: 86-21-61917600 Fax:86-21-64948670网址: www.faroasia.com/chinae-mail: chinainfo@faro.com
  • 山东大学独辟蹊径:用水替代激光扫描仪
    p  一般而言,3D物体形状重建,需要借助先进的激光扫描仪。最近,计算机图形领域的顶级会议SIGGRAPH 2017对外发表的一项研究却另辟蹊径:用水这一介质来获取物体表面,将3D物体表面建模的任务转化为体积问题。br//pp  “这种新的方法可以准确重建物体中的隐藏部分,克服常见的3D激光扫描方法的局限。”山东大学计算机学院院长陈宝权教授告诉科技日报记者,传统3D扫描和形状建模常使用激光扫描仪和摄像头对物体表面进行扫描。其局限性在于光线照不到的地方无法取样,缝隙、微小凸起等结构取样不完整,还有透明等特殊的材料难以处理。/pp  为此,科学家们将物体浸入水中,测量物体的排水量,然后利用这种体积上的变化信息重建物体的表面形状,优势就体现了出来。“水能很好地贴合复杂的表面,还能渗透到空腔里,计算排水量也不需要考虑光线的折射率和偏振等问题,轻松绕过了光学设备面临的种种限制。”陈宝权说。/pp  实验中,研究人员制作了一套简便的“3D浸入装置”,通过多次将物体以不同角度浸入水中,研究人员就能得出物体多个横截面的信息,进而精确地计算出物体的几何形状,包括平时激光扫描仪很难捕捉到的部分。科研人员表示,CT设备体积庞大,且只能在特定的环境中使用,成本也高。相比之下,浸入转换法以较低的计算成本生成更精确的形状,性价比高,应用范围更广。/pp  这项名为“基于浸入转换3D形状重建”的高科技成果由陈宝权教授率领北京电影学院未来影像高精尖创新中心,联合以色列特拉维夫大学、本· 古里安大学,加拿大英属哥伦比亚大学的研究人员合作完成。/ppbr//p
  • 岛津推出激光粒度分析仪应用数据集册
    颗粒的粒度粒形是决定物料性能的重要参数之一,食品、医药、化工和电池等众多行业对颗粒的粒度粒形都有严格要求。有效地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今最流行的粒度测量仪器之一。 近年来,各种原辅料颗粒的粒度粒形也逐渐成为生产工艺过程中关注的重要参数之一,颗粒的粒径会直接或间接影响成品的质量和性能。有效准确地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。目前国内外的使用激光粒度仪测试粒径分布的方法标准相对较少,当前的主要方法标准有: 岛津公司针对近年来激光粒度仪需求量日益增加的市场趋势,使用岛津不同型号激光粒度仪分别开展了粉体材料,医药研发和食品安全等相关领域的应用方法开发,并精心汇编了《岛津激光粒度分析仪应用数据集册》,应用报告题目如下: 1.岛津激光粒度仪系列产品介绍2.激光粒度仪在粉体材料中的应用 激光粒度测试中折射率的选择技巧SALD测定金属硅粉的粒径分布SALD测定磷酸铁锂的粒径分布SALD-2300测定二氧化钛粉末样品的粒径分布SALD-2300测定聚苯乙烯粉末树脂的粒径分布SALD-2300测定氧化铝浆料样品的粒径分布SALD-2300测定氧化锌固废粉末的粒径分布SALD-2300测定环氧树脂粉末的粒径分布激光粒度仪在涂料行业中的应用激光粒度仪在卫生陶瓷洁具行业的应用3.激光粒度仪在医药研发中的应用 干法激光粒度在制药行业的应用干法激光粒度仪在注射剂一致性评价中的应用SALD-2300测定原料药盐酸万古霉素样品的粒径分布SALD-2300测定药用辅料药吡哌酸样品的粒径分布Aggregates Sizer在疫苗聚集体评价系统中的应用4.激光粒度仪在食品安全中的应用 干法激光粒度在乳制品行业中的应用SALD-2300测定牛乳样品的粒径分布
  • 7千米级深海探测紫外激光拉曼光谱仪海试成功
    p style="text-align: center "img width="400" height="280" title="2017451677514.jpg" style="width: 400px height: 280px " src="http://img1.17img.cn/17img/images/201704/noimg/c4d597a3-d490-43d8-bed3-a6cf5ae64ce4.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "7000米级深海紫外拉曼光谱仪/pp  近日,中科院大连化物所李灿院士、范峰滔研究员、黄保坤高工等参与研发的7千米级深海原位探测紫外激光拉曼光谱仪在马里亚纳海沟成功通过7000米海试验证。该光谱仪是国际上首次进行深海探测的紫外激光拉曼光谱仪,也创造了拉曼光谱仪最高深海探测记录(7449米)。该仪器的成功研发将提升我国在深海矿藏、能源资源(天然气水合物)、碳循环与气候变化以及深海生物信息方面的探测能力。/pp  中国科学院深渊科考队赴马里亚纳海沟海域执行中科院战略性B类先导专项“海斗深渊前沿科技问题研究与攻关”和国家重点研发计划“深海关键技术与装备”重点专项等科技任务,使用原位实验号、万泉号、天涯号深渊着陆器对我国自主研发的一系列深海装备进行了成功的试验和实际应用,其中包括该光谱仪的成功应用。/pp  此次进行深海探测的紫外激光拉曼光谱仪,是国内外工作水深最大的拉曼光谱装置,同时也是国内外首次采用紫外激光作为激发光谱的深海原位拉曼光谱仪。仪器的研发基于李灿团队在紫外拉曼光谱仪多年的研发经验和学术积累(国家自然科学二等奖,2011,国家技术发明二等奖,1997),进一步提高了探测的灵敏度,特别是解决了常规拉曼光谱易受海洋微生物以及有机质荧光干扰的缺点。另外,在深海条件下,光谱仪面临高压(约700个大气压)和着陆冲击等极端条件,这对光谱仪的性能提出了苛刻的要求。该研究团队通过科学设计,反复验证,采用折叠反射镜、光纤软连接以及同轴反射镜等一系列技术,成功研发满足深海极端条件应用的紫外拉曼光谱仪器。/pp  该项目是中科院战略性B类先导专项“海斗深渊前沿科技问题研究与攻关”的课题项目,由我所牵头并与三亚深海所合作承担,我所主要负责光谱仪器研发,深海所主要负责仪器的深海应用研究。两所通力合作,取得了技术突破,为今后的科技合作探索了一条新路,充分体现出我院在深海科技领域中独特的集团优势。/pp /pp /p
  • 北京是卓科技发布激光雷达监测无人机新品
    无人机自动分析识别检测系统方案一、方案背景低空无人机(Unmanned Aerial Vehicle缩写 UAV )也称为无人航空器或遥控驾驶航空器,是一种由无线电遥控设备控制,或由预编程序操纵的非载人飞行器。无人机具有机动灵活的特点,它体积小,重量轻,可随时运输和携带。它对起降的要求低,随时飞降。无人机一般在云下低空平稳飞行,弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。除了具有广阔的军事应用前景外,用无人机替代有人飞机执行高风险任务,也是当今国际航天领域一个重要发展方向。特别是在近几年国际局部战争中无人机被大量地使用。对无人机的监管存在盲区,无人机的大量使用更是给公共安全带来隐患。本来是为合法用途使用的无人机越来越多的被用于犯罪目的。公众已经日渐强烈的意识到了无人机可能造成的危害。无人机能窥探隐私/技术;无人机能影响民航 – 接近撞机;无人机可能会出现在敏感地区、关键位置和政府设施区域;无人机甚至能自动射击… … 最近两年,全国已发生多起无人机空中逼停飞机事件,成为民航飞行的“隐形杀shou”。2013年底,北京一家公司在没航拍资质、未申请空域的情况下航空测绘,造成多架次民航飞机避让延误。2017年浙江萧山机场、绵阳机场,此次成都机场都是由于不明无人机,导致了数百架飞机延误,数万人滞留,给国家和人民带来的损失是数以亿计的。二、无人机监测与反制现状2.1无人机控制链路介绍无人机如何控制呢?无人机使用无线链路进行远程控制和视频数据回传,超过90% 的无人机使用ISM频段 (2.4GHz) 操作,包括跳频, Wi-Fi等, 其中控制链路采用:常用的频率为 ISM 频段: 2.4 GHz, 5.8 GHz很少使用: 433 MHz, 比2.4GHz传播距离更远少量使用过时的遥控频段: 27 MHz, 35 MHz, 72 MHz (使用 PCM 或模拟编码),这类无人机逐步消失了。无人机根据价格水平有不同的控制方式,比如一些低成本的无人机采用蓝牙技术(ISM2.4GHz);大部分无人机采用Wi-Fi或跳频(ISM2.4GHz);也有部分高端无人机采用基于预设路径的卫星导航。 2.2无人机主要监控方式各国对无人机的监控主要的手段分为两种方式:行政监管、技术防范。2.2.1行政监管:日本为了加强无人机管理,实施了新的《航空法》,规定人口集中的地区一律禁止飞无人机,防止无人机引发事故或被用于犯罪,违者将处以50万日元的罚款;英国对无人机使用也作出规定,航空法第166条第三款规定,小型无人机操作员必须保持时时刻刻能看见无人机,对无人机能够完全掌控,在飞行时应与其它飞行器、人群、车辆以及建筑保持一定的距离,以免发生碰撞事故。2.2.2技术防范从技术角度来说。目前,国外无人机反制技术大致有信号干扰、雷达探测、激光炮击落、综合型技术等几大类。(1)信号干扰:无人机工作时需要知道自己的精确位置,但无人机自身无法获得足够精确坐标数据,因此,无人机上通过安装GPS信号接收机,采用GPS卫星导航系统与惯性导航系统相结合的方式进行飞行控制。信号干扰技术是通过影响无人机的GPS信号接收机,使其只能依靠基于陀螺仪的惯性导航系统,而无法获得足够精确的自身坐标数据。美国DroneDefender电波枪打击技术美国俄亥俄州非盈利开发机构“巴特尔”(Batfeoe)最近推出了一种DroneDefender反无人机设备。DroneDefender设备前端上部安装了一根白色的杆状天线。这种设备采用非破坏性技术,是首款能移动、精准、快速阻止可疑无人机靠近的专用设备。用户只需将其指向空中的无人机,扣下扳机,就可以将目标“击落”。该设备只对实时遥控型无人机或依靠GPS导航的无人机有效(如常见的四轴飞行器和六轴飞行器),打击范围约400米;欧洲空客集团反无人机系统,空中客车防务及航天公司研发了一种反无人机系统,采用干扰技术对目标信号的频率进行干扰,而不会影响到周围其他频率的信号。该系统可远距离侦察在争议地区飞行的非法无人机并实施打击,同时又能尽可能地减少对其他物体的影响。该系统具备信号分析技术和干扰功能,并配有雷达、红外相机和定向仪,可以侦察到5至10公里范围内的无人机,还可对无人机的威胁性做出判断。基于庞大的信息库信息,该系统还可以对无人机的信号进行分析,一旦发现问题,系统就会通过干扰台切断无人机与其操作人员之间的联系,然后定向仪会追踪到无人机操作人员的具体位置,便于实施抓捕行动。(2)雷达探测:瑞典“长颈鹿”雷达系统,据美国H JS Jane’s国防、安全情报网站2015年9月1 6日报道,瑞典萨博公司在苏格兰的西弗瑞格(WestFreuqh)靶场演示验证了其“长颈鹿”捷变多波束(AMB)雷达系统对低空、低速小型目标的探测能力。此次试验名为“布里斯托15”,显示了该雷达对低空、低速小型目标强大的探测能力(ELSS),该雷达在执行全部空中监视任务的同时,能够执行反无人飞机系统(UAS)作战任务。在“布里斯托15”试验中,雷达散射截面精确到0.001平方米,增强了对低空、低速小型目标的探测能力,可自动识别低空、低速小型目标并对其进行跟踪,业余爱好者操作低速、小型四轴无人飞机系统。“长颈鹿”捷变多波束雷达系统属于地面和海洋的二维或三维G/H波段被动电子扫描阵列雷达家族系列,可在提供海岸监视能力的同时,对固定翼飞机、直升机、地面目标、干扰机和弹道目标进行分类与跟踪;意大利“猎鹰盾”系统2015年9月15日,在英国伦敦举办的英国军警装备展DSEI上,意大利芬梅卡尼卡集团SeIex ES公司展示了其研发的“猎鹰盾”无人机系统。该系统能够定位、辨识和控制对公共安全或是私人构成威胁的远程微型或者小型无人机,即所谓的“流氓无人机”。该公司称,这种设备的市场价值可能达数亿英镑;“猎鹰盾”系统利用摄像机、雷达和先进的电子设备监控无人机接收和传输的信号,从而对其进行追踪并确定其类型。一旦锁定目标,“猎鹰盾”就会利用其专有技术控制无人机,甚至将其坠毁。与其他企业利用电子战击毁无人机的系统相比,“猎鹰盾”优势在于,在精准击落“流氓”无人机的同时,可以有效避免对周边建筑物等环境造成伤害。此外,发送无线电信号控制无人机时,还不会妨碍紧急救援服务甚至移动通讯等其他重要信号的传输;墨西哥JAMMER公司防卫系统墨西哥JAMMER公司开发了Tamce Bloqueador Direccional Anti-Drone防卫系统,用于家庭防空。系统的干扰功率为20瓦,可压制几百毫瓦的无人机。启动开关后,干扰器可以干扰2.4G和5.8G信号,这对于大部分消费级无人机来说,遥控信号和图传信号都会丢失,丢失了信号后无人机只能返航或者原地降落;美国Drone Shield公司监测系统美国无人机探测系统制造商Drone Shield研发出了利用雷达或麦克风来监测无人机的技术。它内置了Raspberry Pi、信号处理器、麦克风、分析软件、无人机声音特性的数据库,通过监听周围环境的声音,通过声音对比确定是否有无人机。当有无人机在附近时,通过邮件或者短信发出警报。从原理上来看,预警技术并不难,因此监控的准确性和低误报率就非常关键,在这方面,Drone Shield拥有自己的专利技术。据悉,美国当局已经利用这种系统来为监狱、体育赛事和政府大楼提供安保。(3)综合型技术:英国反无人机防御系统AUDS,2015年10月,英国广播公司、美国国土安全新闻网、俄罗斯卫星网等网站分别对英国完全集成的“反无人机防御系统(AUDS)”进行报道。该系统俗称电磁干扰射线枪,由英国的三家防务技术公司(Blighter Surveillance Systems,Chess Dynamics和Enterprise Control Systems公司)联合研发,可以探测、跟踪并摧毁小型和大型无人机。该系统可以全天24小时开机,全自动运行。首先使用雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪,随后定向射频干扰系统开始工作,发射定向的大功率干扰射频,干扰无人机自控系统,切断无人机与后方控制中心之间的数据联接或无线电通讯,致使无人机无法自主飞行,导致坠毁、迫降或者返航。AUDS系统的售价约为100万美元,可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。该系统由三个子系统和一套总控设备组成。三个子系统分别是雷达探测系统、动态定位和视频追踪系统、定向射频干扰装置。雷达探测系统由Blighter公司研制,据称可探测反射面积0.01平方米大小的目标,最远探测距离可达8公里,并通过选配不同的天线来实现俯仰角度和水平旋转角度的变化;动态定位和视频追踪系统由CHESS dynamic公司开发,由一个可以旋转的机械平台加上高分辨的摄像机和热成像相机组成,以实现视频追踪,可以选装光学干扰装置发出高密度光束;定向射频干扰装置由Enterprise Control Systems公司研发,它使用高增益四频段天线来对准目标发出电波,可以使在C2频道下工作的无线遥控装置失灵,无法接收到指令的无人机只能盘旋不动,直到电力耗尽坠毁。报道称,该系统于2015年5月首次公开亮相,并在欧洲(如英国、法国)和北美(如美国)野外与城市等不同地形环境中进行了测试;泰利斯公司组合装备泰利斯公司正在推出一种由雷达、声像探测器、定向仪、射频和视频定位器和激光扫描装置组成的组合设备。对非法无人机的压制任务由动能杀伤武器完成,也可以通过激光干扰、选择性干扰、GPS电子欺骗、电磁脉冲来完成,还可以用另外一架装备干扰设备的无人机进行拦截。泰利斯公司已经针对4旋翼无人机和其他小型无人机进行过反无人机的技术试验。(4)其他技术:无线电控制采用接收器追踪并确定无人机,使用足够强大的电子信号照射无人机,夺取其无线电控制权。操作过程中,一旦无人机不能接收信号,就会坠毁,通过借助阻截无人机使用的传输代码,进而控制无人机,令其返航。美国联邦航空管理局(FAA) 与信息技术公司CACI推出了SkyTracker系统,该系统可在敏感地带如机场周围构建电子边界线。CACI表示,该系统可利用无人机无线电线路来识别和定位在禁飞或受保护空域内飞行的无人机,还可定位无人机的操纵人员。CACI网站提到:“CACI系统可精确定位黑飞无人机,并可将同一空域内其它无人机与此区别出来。”CACI称,SkyTracker还可有效地阻止指定无人机;微波干扰,微波武器又叫射频武器,这种武器可利用高能量的电磁波辐射去攻击和毁伤目标。与激光武器相比,微波武器作用距离远,受气候影响小,火力控制方便。军事专家们预测,随着新技术、新材料的不断发展,微波武器将会发挥越来越多的作用。俄罗斯联合仪表制造集团已制成超高频率微波炮,可用于帮助地对空导弹“山毛榉”攻击无人机及高精度武器电子设备。微波炮射程超过10公里,将其安装在特殊平台上可实现360度全方位防御。该款武器除了可搭配“山毛榉”地对空导弹用于防空外,还可检测俄军电子系统抗微波辐射能力;声波干扰,声波干扰技术就是利用声波使陀螺仪发生共振,输出错误信息,从而导致无人机坠落。研究人员发现,如果声音足够强(例如达到140分贝),声波可以击落40米外的无人机。韩国2015年8月公开了一种利用声波干扰陀螺仪击落无人机的技术。研究人员给无人机接上非常小的商用扬声器,扬声器距离陀螺仪4英寸(约10厘米)左右,然后通过笔记本电脑无线控制扬声器发声。当发出与陀螺仪匹配的噪声时,一架本来正常飞行的无人机会忽然从空中坠落。当然,在真实的攻击场景中是不可能把扬声器接到无人机上的,这种方法还不是真正有效的反无人机措施。目前存在的难点在于瞄准和跟踪,未来可能与跟踪雷达配合使用。三、系统实现 目前国内低慢小目标探测需求突现,其中蕴藏的巨大市场需求。本系统依托激光雷达技术,多无人机进行实时在线监测。该系统可以全天24小时开机,全自动运行。首先使用激光雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪。 整套系统由三部分组成:激光雷达探测系统、旋转云台、动态定位和视频追踪系统、定向射频干扰系统。光电设备,先由激光雷达,最远探测距离可达20公里,最小分辨率可达0.01m2大小的目标,发现目标后,动态视频追踪系统根据目标距离自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,提高系统检测的准确性及无人机的移动趋势;定向射频干扰系统根据无人机运行轨迹及距离,定向发射射频干扰或捕捉网等手段,对无人机进行干扰及捕捉。系统可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。四、优势比较到目前为止,大多数雷达都是所谓的脉冲雷达。例如,这适用于几乎所有用于空中交通管制的雷达。脉冲雷达以固定的间隔发射短而强大的脉冲,并且该脉冲的一些被物体反射。通过测量发送和接收反射信号之间的时间,可以计算到物体的距离。脉冲雷达系统擅长检测大面积天空内的物体,并确定与物体的距离。另一方面,它们不太适合确定物体的速度和方向。多普勒雷达系统传输恒定信号。利用多普勒效应,当发射它的物体远离观察者时,信号的波长增加,而当物体向观察者移动时,信号的波长减小。正是这种效应导致救护车警报器在驶过后发出不同的声音。物体移动得越快,效果越强。因此,多普勒雷达可以基于从物体反弹回来的信号波长的变化以非常高的精度确定物体的速度。还可以以非常高的精度确定物体的运动方向。多普勒雷达系统提供了有关被检测物体的更多信息。另一方面,教科书会说多普勒雷达在覆盖大片天空和确定物体距离方面不如脉冲雷达。无人机的飞行速度非常慢。这使得它们难以使用脉冲雷达进行检测,也不适用于多普勒雷达系统。因为即使整个无人机移动缓慢,转子也会快速移动,并在多普勒雷达中产生独特的信号。“除了它们的小尺寸以及它们可以飞得极低的事实之外,无人机还带来了其他一些挑战。无人机尤其具有极强的机动性。熟练的操作员可以利用它来将无人机隐藏在不相关的物体之间,如树木,建筑物,鸟类等。这需要雷达集成的光学系统。通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时更加可行。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360°全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。五、系统结构图 创新点:通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时进行区分。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360° 全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。
  • 检科院快速检测三聚氰胺激光仪问世
    三聚氰胺事件引发了人们对牛奶及食品添加剂安全的关注。中国检验检疫科学研究院2月28日宣布,该院利用激光拉曼技术,自主研发了用于现场快速检测三聚氰胺的激光拉曼光谱仪以及配套试剂。使用该仪器和配套试剂,能定量检测出液态奶中高于0.5ppm(百万分之一)三聚氰胺,准确率达100%,每个样品检测仅需半分钟。  中国检科院首席专家、研究员邹明强说,牛奶不同于其他食品,原料奶的保质期为4小时,如果奶农把原料奶送到实验室来检测三聚氰胺等物质,时间长了牛奶很容易变坏,因此需要研发小型、低成本、准确的现场快速检测设备。中国检科院结合纳米和激光技术,利用激光拉曼仪,成功研制了现场快速检测液态奶中三聚氰胺含量的技术以及配套增敏试剂,可使传统的拉曼检测灵敏度大幅提高,克服了样品基质干扰,真正实现了快速、准确地分析实验样品中的三聚氰胺。  据悉,目前报道的国外同类技术对牛奶样品检测,加上样品处理,共需要50分钟,且不能达到对三聚氰胺的定量检测。  邹明强介绍说,该三聚氰胺现场速测仪为便携式,一批可处理24个样品 价格低廉,批量生产每个速测仪成本约5万元,检测试剂成本不超过10元/样品 操作简单、准确、可靠,经多家第三方实验室验证,与国家现行标准分析方法符合率达到100%%。目前该技术和设备已在国内几家大型乳品企业进行了应用示范。
  • 百特激光粒度仪通过CE认证
    2010年4月23日,丹东市百特仪器有限公司收到了总部设在瑞士日内瓦的世界最大的认证机构&mdash &mdash SGS(Societe Generale de Surveillance S.A.)签署的CE认证证书,宣告百特激光粒度仪通过了CE认证,百特由此成为中国首个通过CE认证的激光粒度仪品牌。 十五年来,丹东市百特仪器有限公司在产品的技术性能、质量控制、安全性能、售后服务等方面投入了大量的人力、物力、财力,使百特激光粒度仪的测试范围、重复性、准确性、自动化程度、安全性能等方面达到了同类产品的领先水平。在此基础上百特在产品质量控制上倾注了大量的心血,从元器件的采购与加工、装配工艺、检验程序、包装运输等方面制定了严格的质量规程,使百特激光粒度仪质量稳定可靠,无故障运行时间大幅度延长,受到用户的信赖。 在注重产品质量和性能的同时,百特在低压安全和电磁兼容性等方面一直坚持按国际标准进行改造和设计,全部采用通过认证的、符合安全和电磁兼容性的电子元器件,在系统布局和电路设计上采取了大量的符合安全标准、减少电磁辐射以及抗干扰设计,取得可喜成果。2010年年初,国际权威的SGS实验室对百特激光粒度仪进行了全面的测试,证明百特激光粒度仪完全符合EN61010-1:2001和EN61326-1:2006标准,一次性通过低电压安全(LVD)和电磁兼容(EMC)测试,据此测试结果,SGS向百特颁发CE认证证书。 获得CE认证证书,是百特打造精品战略所取得的又一个成果,标志着百特激光粒度仪的综合性能和质量达到了国际标准,标志着百特取得了进入国际市场特别是欧美发达国家市场的通行证。百特将以此为契机,在打造精品的道路上继续前行,为创国际知名的激光粒度仪品牌继续努力。
  • 激光变形镜将在莞量产 投产后年产值5亿
    东莞首个涉及高端光学元器件—变形镜制造的科技成果转化项目迈出重要一步。12月5日,中国工程院院士牛憨笨、清华大学深圳研究院院长嵇世山、清华大学精仪系副主任季林红教授等专家聚首东莞,对东莞市兰光光学科技有限公司(下称兰光光学)与清华大学共同承担的变形镜项目批量生产能力进行了论证和评估。评估组一致认为,兰光光学已经具备了该项目实现批量生产的基本条件。  东莞市科技局副调研员肖铮勇表示,该项目符合“科技东莞”的发展要求,对国家高科技产业、地方经济建设具有重大意义,企业要以本次评估为契机,尽快列入政府“一事一议”重大项目,争取更多的专项资金扶持,并不断完善项目,力争尽快产业化,并进一步将产学研合作做深做大。  据了解,变形镜批量生产中的关键技术能够直接运用于大量民用领域,对东莞产业发展具有较强的辐射能力,将带动东莞激光器产业整体发展水平迈上新的台阶。  变形镜是大型激光装置中的关键技术  昨日,评估组听取了清华大学关于《变形镜技术研制状态与对批量生产的要求》和兰光光学公司的《发展规划》及《为建设变形镜生产线所开展的工作》三项报告,并对变形镜生产车间进行了实地考察。  清华大学相关负责人介绍,变形镜制造技术是现代高精度大型激光装置中的关键技术,也是开发新型、洁净和可持续的民用清洁能源的关键技术。  项目从2002年开始研发,到2011年工程样机达到国际先进水平,目前已在设计、制造、集成调试、控制和检测等五大类技术中取得重要突破,全套制造工艺流程也已初步定型,下一步将面临批量生产。  事实上,兰光光学一直将该项目作为产业转型发展的突破口,在组织结构、厂房建设、设备购置、人才队伍等方面做了大量工作。前期已投入了大量资金,购置了¢600mm口径干涉仪等关键设备,初步形成了较为完善的产品质量控制体系。  同时,牛憨笨院士也指出,由于项目技术难度大、要求高,资金需求量大,兰光光学目前距离完整的生产线要求尚存差距,比如欠缺大口径镀膜机、磁流变抛光设备、多槽超声波清洗机等高精密大型设备,需要进一步投入。  评估组建议兰光光学公司应尽快建立健全、深化完善产学研结合的实践机制 清华大学应进一步加强技术指导、加快工艺转移、人才培养 校企双方应加强协同创新,以保证该项目批量化生产的顺利实施。  有望带动东莞整个激光器产业的升级  兰光光学成立于2011年,是一家专业从事光学器件及产品科研、生产、销售的高科技企业。其前身是一家生产天花板装饰材料的传统企业。在该公司董事长毛卫平看来,此次与清华大学合作,承接变形镜批量生产项目也是该公司从传统劳动密集型企业向高科技型企业转型的关键。  据了解,“变形镜”是集光机电为一体的高科技含量的产品。该项目是清华大学通过承担国家重大专项任务,形成了具有自主知识产权的科研成果,已具备进一步实现产业化的技术基础。兰光光学公司就该项目与清华大学进行产学研合作。  目前,兰光光学已投资2000多万元用于首条生产线的设备购置及体系建设,项目运行后年产值有望达到5亿元。  除此之外,该公司项目“工业用高功率固体紫外激光器”、紫外光学设备等也有巨大的市场潜力,而通过介入大型科研项目,也将加快企业向高端制造业转型的步伐。  据了解,变形镜每套价值高达100万美元以上,并且作为长期运行的易损耗产品,每年还需要10%的备件,市场潜力巨大。  此外,变形镜批量生产所需的关键技术,有望辐射和带动东莞整个激光器产业的升级。据介绍,变形镜批量生产中的关键技术能够直接用于大量民用领域,因此对当地产业发展具有较强的辐射能力。“目前华南地区的激光设备出厂台数占全国的70%以上。”专家指出,这一项目投产后也将带动东莞乃至华南地区工业激光器行业上一个台阶。
  • 研究生利用激光遥感制作实时监测雾霾探测仪
    历经连续多天的雾霾天气,北京终于拨霾见日,大快人心。然而,民众对空气质量的担忧恐慌情绪,却不会像雾霾一样散去。面对日益紧迫的雾霾问题,除了戴上防霾口罩,我们又能做些什么?......雾霾之下,没有看客,我们每个人都应该积极行动起来,你知道吗?西安的一群大学生为我们做了一个良好的表率。  前不久,西安理工大研究生代晨昱和同学们发明了一款便携式雾霾空间分布激光探测仪,可以实时监测大气污染物的仪器,打破了传统环保部门测量大气污染物的方法,将激光遥感技术应用到了雾霾监测领域。据悉,该仪器还荣获了陕西省大学生课外学术科技作品大赛一等奖。  打破陈规 用激光遥感监测领域  目前,相关部门监测大气污染物主要采用的是直接称重、多点监测、人工取样等方法,上述方法都仅是单点测量。例如直接称重法,是抽取等量空气将污染物停留在过滤膜上,直接称其重量,计算单位体积中的污染物浓度。而多点监测需要架设许多仪器,不仅耗时耗力,还不具有实时性。因为大气是流动的,往往当工作人员把仪器上的数据整理出来时,污染源的位置、雾霾污染的空间分布等已经发生了变化。  实际上,城市每个区域的PM2.5数值都不一样,而且数据也是不断变化的,这就让代晨昱萌生了用专业知识发明一种可以实时监测大气污染物的仪器的想法。经过近两年努力,他和同学们完成了设计发明工作。探测仪弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  探测仪整体系统主要由激光发射系统、光学接收系统、光电探测系统、数据采集处理系统及三维扫描控制系统五部分组成。代晨昱解释,这套系统主要运用了光散射和光测距两大原理。由激光发射系统发出脉冲激光进入大气,激光与大气中的雾霾颗粒发生散射后,由光学接收系统接收后向散射回波信号,再由光电探测系统将光信号转换为电信号,最后由数据采集处理系统利用模拟探测方式完成数据采集与处理。  实时监测,雾霾无处逃遁  这款便携式雾霾空间分布激光探测仪,相较于单点测量,扩大了探测范围,还可对污染源的位置、污染程度、污染物的扩散方式及传播途径进行实时监测,继而对雾霾污染的出现提前预警,使有关部门前移工作关口,采取应对措施缓解污染问题。弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  以城区面积约为860余平方公里的西安市为例,实验表明,4-6台探测仪就可以实现整个西安市区的覆盖探测,工作效率着实提升了不少。  代晨昱表示,这款仪器可以与现有的颗粒物监测仪器设备配合工作,不仅可以弥补现有仪器的缺陷,配合工作后测试出来的结果精度更高。他们也期待可以和有关单位部门、企业合作,为治污减霾贡献出自己的一份力量。  年轻的大学生也懂得要以己之力,为社会贡献一份力量。身为地理信息行业的从业者,手握各种地理空间技术,在这场休戚与共的雾霾反击战中,也应多思考,多行动,多出力,守护苍穹之下的那片蓝天。
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 上市3周年 | RWD激光散斑血流成像系统,服务全球100+用户,助力50+研究成果
    2019年,瑞沃德第一代激光散斑血流成像系统RFLSI上市。上市初,瑞沃德激光散斑血流成像系统采用业界最高的参数指标,同时依托光学成像、精密传动、精确控温和微弱信号检测方面的技术背景,让其在分辨率、灵敏度、稳定性等方面有着独特的优势。2020年,瑞沃德更新了第二代激光散斑血流成像系统RFLSI Ⅲ,不仅延续了上一代产品出色的分辨率及灵敏度,在成像面积、图像算法、分析功能上又做了进一步的优化。RWD激光散斑血流成像系统RFLSI Ⅲ截至2021年底,瑞沃德激光散斑血流成像系统,装机量已突破100+台,获得如首都医科大学附属北京天坛医院、北京脑重大疾病研究院、斯坦福大学医学院、杜克大学医学中心等众多一流科研单位的青睐;并与全球 200 多家客户进行了线上演示和线下试用;助力科研人员在Gut、Blood、Diabetes、Theranostics、Nature Communications等专业期刊发表学术成果50多篇,为科研产出全面提速。案例:1肠道微生物群是许多中风风险因素的重要因素。然而,中风和肠道菌群之间的双向相互作用在很大程度上仍然未知。2021年2月,南方医科大学珠江医院尹恝、周宏伟、何彦研究团队在知名期刊《Gut》(2021 IF=23.059)发表了《Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn》一文。团队成员发现脑缺血迅速引起肠道缺血,并通过自由基反应产生过量硝酸盐,导致肠道菌群扩张失调。肠杆菌科富集通过增强全身炎症而加重脑梗死,是卒中患者主要不良预后的独立危险因素。使用氨基胍或超氧化物歧化酶减少硝酸盐生成或使用钨酸钠抑制硝酸盐呼吸均可抑制肠杆菌过度生长,减少全身炎症并减轻脑梗死。这些影响是肠道菌群依赖的,表明脑肠轴在中风治疗中的转化价值。这项研究揭示了中风和肠道失调之间的相互关系。缺血性中风会迅速引发肠道菌群失调,肠杆菌过度生长,进而加重脑梗死。案例:2脑卒中后会出现远隔区继发性脑白质损伤,造成脑卒中患者远期预后不良。然而可能的机制尚不明确。国外学者在其他脑白质病变患者的研究中发现星形胶质细胞吞噬作用参与脱髓鞘损伤,吞噬髓鞘碎片后肿胀变形的星形胶质细胞能募集炎症细胞并参与脑白质病变。脂质运载蛋白2(Lipocalin-2,LCN2)作为反应性星形胶质细胞的重要标志物,其功能研究多集中于星形胶质细胞分泌后引发的炎性改变,而LCN2在继发性脑白质损伤及星形胶质细胞吞噬作用的相关研究仍不清楚。2022年3月,南京大学神经病学研究所(南京大学附属金陵医院神经内科)团队在国际著名综合性期刊《Nature Communications》(2021 IF=14.919)在线发表文章《Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice》,发现急性局灶性脑皮质梗死后星形胶质细胞内源性LCN2表达升高,能与介导吞噬作用的受体LRP1结合,导致LRP1磷酸化,激活下游吞噬信号通路,造成星形胶质细胞吞噬活化,引起胼胝体髓鞘丢失。案例:3血小板是哺乳动物血液中主要的细胞成分之一,在血栓形成和止血过程中发挥关键作用。αIIbβ3整合素(αIIbβ3integrin)是血小板中特有的、与血小板激活密切相关的膜蛋白。临床中常使用的抗血栓药物依替巴肽、阿昔单抗和替罗非班,均是通过竞争性结合于αIIbβ3胞外域的配体结合区,通过抑制其与配体(如纤维蛋白原、纤维蛋白等)的结合发挥抗血栓作用,但这些药物会增加患者的出血风险。2020年8月,中国科学院昆明动物研究所研究员赖仞团队在专业期刊《Blood》(2021 IF=22.113)发表了在抗血栓领域的突破性成果。该团队发现,由血小板β3整合素、14-3-3ζ蛋白以及c-Src激酶构成的复合体在血小板激活和血栓形成中发挥重要作用。14-3-3ζ蛋白通过同时结合于β3整合素胞内“TST”结构域和c-Src的SH2结构域,促进14-3-3ζ-c-Src-integrin-β3复合体的形成以及αIIbβ3整合素外向内的信号传导。针对此复合物形成的关键结合位点,该研究设计发掘了两个抑制剂KF7、THO。这些抑制剂可干扰14-3-3ζ-c-Src-integrin-β3复合体的形成并抑制血小板的聚集和延展,但不会显著改变αIIbβ3与其配体(纤维蛋白原)的结合以及血小板的黏附。小鼠模型实验发现,干扰该复合体能够显著抑制血栓发生,但不会增加出血风险。该研究为开发新型、低出血风险的抗血栓药物提供了新靶点和思路,同时也提供了一系列潜在的抗血小板/抗血栓先导分子。案例:4下肢外周动脉疾病(PAD)是导致动脉粥样硬化性心血管疾病的第三大原因,为了促进缺血后血管的恢复,识别关键的内源性调节因子并探索增强其体内功能的途径是十分重要的。以往的研究表明,配体依赖的过氧化物酶体增殖物激活受体δ亚型(PPARδ)激活促进了血管生成。然而,低氧如何触发PPARδ及其在缺血后血管修复过程中的下游影响尚不清楚。2022年3月,香港中文大学的研究者们在《Theranostics》(2021 IF=11.556)杂志上发表了“Endothelial PPARδ facilitates the post-ischemic vascular repair through interaction with HIF1α”的文章,该研究揭示了低氧诱导的内皮细胞PPARδ非依赖于配体的激活稳定了HIF1α,并且是HIF1α激活的关键调节因子,以促进缺血后血管内稳态的恢复。在本研究中,研究者首先发现了内皮PPARδ的缺失延迟了组织的灌注恢复和修复,伴随着缺血后血管生成的延迟,损害了血管完整性的恢复,更多的血管渗漏和炎症反应增强。在分子水平上,缺氧上调和激活内皮细胞中的PPARδ,而PPARδ相互稳定HIF1α蛋白,以防止其泛素介导的降解。PPARδ直接与缺氧诱导因子1α(HIF1 α)的氧依赖降解结构域结合在PPARδ的配体依赖结构域上。重要的是,这种HIFα-PPARδ相互作用不依赖于PPARδ配体。腺相关病毒介导的稳定的HIF1α在体内的内皮靶向性过表达改善了小鼠后肢缺血后的灌注恢复,抑制了血管炎症,并增强了血管修复,以抵消PPARδ基因敲除的影响。🔽使用者评价🔽看到这里是不是超级心动想把它带回实验室,小沃想你所想为助力更多科研工作者瑞沃德激光散斑血流成像系统免费试用识别上方二维码,即可申请免费试用
  • 成功案例:浙江某检测公司验收双向观测技术的Optima 7000 DV
    2020年12月28日,浙江某检测公司购买我司双向观测电感耦合等离子体发射光谱仪,品牌:美国 Perkin ElmerICP,型号:Optima 7000 DV,Optima 7000 DV采用双向观测技术,使用户可以在一次分析中同时获得两种观测方式的优点,无论是轴向观测还是侧向观测,其观测的位置全部由计算机自动优化,并有简洁实用的空气切割技术消除尾焰,此外,光路中加入了衰诚器,可自动进行轴向/侧向,全光/衰减等四种选择,不仅提高了灵敏度而且扩大了线性范围,大大增加了分析的灵活性,提高了分析性能。 ICP-OES可以分析元素周期表中所有金属元素,检出限在1ppb以下。同时可以分析绝大部分非金属元素,例如As、Se、 P、S、Si、 Te等,检出限低于10ppb,如果配合使用氢化物发生器,这些非金属的检出限可以改善10倍以上。 等离子体观测方式:双向观测,在一次进样中,既可完成垂直观测也可实现水平观测,无需重复进样。垂直观测时,观测位置测量过程中可调。可同时进行高低痕量元素分析。在等离子体点燃的情况下,操作者依然可以安全地调节炬管的相对位置。工程师调试培训完成,通过客户验收,感谢客户支持与认可!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制