当前位置: 仪器信息网 > 行业主题 > >

土壤剪切定仪

仪器信息网土壤剪切定仪专题为您提供2024年最新土壤剪切定仪价格报价、厂家品牌的相关信息, 包括土壤剪切定仪参数、型号等,不管是国产,还是进口品牌的土壤剪切定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤剪切定仪相关的耗材配件、试剂标物,还有土壤剪切定仪相关的最新资讯、资料,以及土壤剪切定仪相关的解决方案。

土壤剪切定仪相关的资讯

  • 全自动核酸剪切仪新品Megaruptor
    Diagenode公司推出全自动核酸剪切仪新品Megaruptor Diagenode公司推出全自动核酸剪切仪新品Megaruptor 比利时 Diagenode公司自成立以来,一如既往地服务表观遗传学研究领域,为表观遗传学科学工作者们提供卓越的自动化设备和优质的抗体等试剂,完善了该领域的实验流程同时提高了实验效率,研发的Bioruptor系列非接触式超声破碎设备,卓有成效地高重复性地解决了染色质片段化和核酸片段化,为chip(染色质免疫共沉淀)和二代测序等下游实验完美对接。在第三代测序仪器出现后,核酸大片段测序得以实现,全自动核酸剪切仪Megaruptor就是用于核酸大片段化的三代测序。Diagenode 全自动核酸剪切仪 MegaruptorMegaruptor的完美设计,使其具有简单化、自动化、高重复性,可以获得2 kb-75 kb长度的DNA片段。剪切性能卓越,不受DNA样品来源、集中度、温度、盐浓度的限制,完全符合了科研人员的实验要求。同时,在无人员值守的情况下,友好的软件系统可以允许两个样品相继被片段化处理,不存在交叉污染。科研人员只需要简洁有效地设定好参数,仪器便可以自动化地进行处理获得目的片段。仪器特点:设定目的片段长度(2kb-75kb),快捷方便地获得集中于目的长度的片段分布获得高质量文库,用于Illumina?, Ion Torrent?, 和 PacBio? 平台自动多端口阀,配置五通道的洗涤平台全程有软件控制,洗涤、剪切自动一体化,彻底解决管路堵塞问题一次可剪切两个样本,剪切参数可完全独立全程电脑程序自动操控,操作界面友善不须定期校正,仪器维护容易绝佳的结果重复性与精准的剪切范围技术参数1. 自动多端口阀,配置了5信道的洗涤平台用于洗涤DNA2. 全程由软件控制:洗涤、切割自动一体化。绝无有卡管问题3. 可产生完全随机、均匀、完整具有代表性的目标大小DNA片段4. 切割DNA片段大小:2-10kb 组件;13Kb-75kb组件, 剪切范围最宽广5. 样品DNA浓度:1-50ng/ul, 最适浓度为20ng/ul6. 样品DNA原始长度:对切割片段大小无影响7. 样品体积:50-400ul8. 一次可上两个样本, 剪切参数可完全独立9. 处理时间:每个样品10-20分钟, 包含样本处理与自动管线清洗时间10.计算机(笔记本)为标准配备及操控软件11.试剂:优化好, 客户可自行配置上海博谊生物科技有限公司是比利时Diagenode公司全自动核酸剪切仪 Megaruptor的代理商,欲知更多产品详情,请联系我们。 发布者:上海博谊生物科技有限公司联系电话:021-51691651E-mail:18616023651@163.com
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • 施一公组首次报道人源剪切体原子分辨率结构
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title="微信图片_20170512000929_副本.jpg"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp  5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。/pp  剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title="微信图片_20170512001013_副本.jpg"//pp  这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。/pp  人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title="微信图片_20170512001027_副本.jpg"//pp  此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title="微信图片_20170512001044_副本.jpg"//pp style="text-align: center "图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”)/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星”/span。/ppbr//p
  • 胶黏剂拉伸剪切试验方法电子拉力拉伸试验机
    胶黏剂拉伸剪切试验方法电子拉力拉伸试验机:原理试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为 MPa。试样1)试验机:使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1%。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。试验机应保证试样夹持器的移动速度在 (5±1) mm/min 内保持稳定。2)量具:测量试样搭接面长度和宽度的量具精度不低于 0.05 mm。3)夹具:胶接试样的夹具应能保证胶接的试样符合要求,在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法,但不能用于仲裁试验。4)标准试样的搭接长度是(12.5±0.5)mm,金属片的厚度是 (2.0± 0.1 ) mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。5)试样数量不应少于 5 个,仲裁试验试样数量不应少于 10 个;对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度,两者中选择前者较好。测试时金属片所受的应力不要超过其屈服强度 σS ,金属片的厚度 δ可按式( 11-12)计算:δ=( Lτ) /σ S (11-12)式中:δ——金属片厚度;L——试样搭接长度;τ——胶粘剂拉伸剪切强度;σS ——金属材料屈服强度(MPa)。试样制备1)试样可用不带槽或带槽的平板制备,也可单片制备。2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。试验条件试样的停放时间和试验环境应符合下列要求:1)试样制备后到试验的最短时间为 16 h,最长时间为 30 d。2)试验应在温度为( 23±2)℃ 、相对湿度为( 45~55)%的环境中进行。3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于 0.5 h;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于 16 h。实验步骤1)用量具测量试样搭接面的长度和宽度,精确到 0.05 mm。2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为( 50± 1)mm3)开动试验机,在 (5±1) mm/min 内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 力学所戴兰宏团队揭示非晶合金剪切带涌现的时空序列与临界行为
    非晶合金(又称金属玻璃)因具有一系列优异性能,在空天、国防、能源等领域显示出广阔应用前景。然而,非晶合金极易形成纳米尺度变形局部化剪切带,而剪切带快速扩展诱致的宏观脆性严重地限制了其走向广泛的工程应用。因此,非晶合金剪切带问题成为力学、物理与材料等相关领域共同关注的重要课题。本征上,非晶合金剪切带涌现是一类远离热力学平衡下时空多尺度耦合的非线性过程。空间上,固有的结构不均匀性会引起强烈的变形及动力学行为的梯度效应。时间上,涵盖原子振动、原子团簇协同重排、塑性流动等多个速率过程。这些事件均具有各自的特征时间和空间尺度,他们的关联耦合控制剪切带涌现,使变形高度集中在宽度或厚度为数十纳米的带状区域,并以近声速的模式快速扩展。与原子周期有序排列的晶态合金不同,原子长程拓扑无序堆垛的非晶合金变形内蕴三种高度耦合纠缠的原子尺度运动:剪切、体胀和旋转。这三种局域原子运动的强纠缠是非晶合金剪切带涌现精细物理图像尚未探明的关键瓶颈。近期,中科院力学所戴兰宏研究团队在该问题研究上取得新进展。基于连续介质力学理论框架,研究人员首先提出了一个同时考虑仿射和非仿射变形信息的两项梯度模型(Two-term gradient model, TTG模型),可以完整地描述无序固体介质的局部变形场,突破了目前广泛使用的单纯仿射或非仿射模型的局限。研究人员进一步完成了对剪切、体胀、旋转这三个高度纠缠的局域运动的解耦,并在原子尺度上定义了全新的局部剪切、体胀、旋转运动事件的定量描述符。为了表征这三类原子团簇运动,提出了剪切主导区(shear dominated zone, SDZ)、体胀主导区(dilatation dominated zone, DDZ)及旋转主导区(rotation dominated zone,RDZ)的概念和定量表征方法,克服了目前流行的剪切转变区(shear transformation zone, STZ)不能表征原子团簇旋转运动和定量描述体胀运动的不足。在此基础上,研究人员利用大规模分子动力学模拟,对非晶合金从均匀变形到局部化剪切带涌现全过程进行精细表征。通过追踪SDZ、DDZ及RDZ原子团簇运动演化时空序列,发现初始宏观均匀变形阶段剪切、体胀及旋转团簇运动事件呈现出类似“军队行动”式的步调协同一致行为,具体表现为SDZ、DDZ及RDZ在空间离散的“类液”软区随机同步激活。基于统计学的极值理论分析,研究人员发现在这个阶段,体胀局域运动事件较剪切和旋转事件的空间分布展现出更明显的非高斯长拖尾特征,表明体胀局域化流动(DDZ)起先导的主控作用。原子团簇通过体胀运动(DDZ)完成局部软化过程,随着变形加剧,这种体胀局域软化进一步激活其邻近硬区的旋转运动,进而逐渐打破了SDZ、DDZ和RDZ三者间同步激活,转变为SDZ、DDZ及RDZ的非均匀间隔分布。增强的RDZ运动又进一步加剧了SDZ和DDZ局域运动,进而诱发硬区团簇的软化。当软化程度达到临界时,硬区壁垒被打破,激活的SDZ、DDZ及RDZ相互贯穿形成剪切带。研究人员进一步基于逾渗理论,对SDZ、DDZ及RDZ原子团簇运动事件从初期均匀变形阶段的随机离散激活到变形局部化剪切带涌现时的群体贯穿演变全过程进行定量分析,发现剪切带涌现属于定向逾渗(directed percolation),并且呈现出临界幂律标度行为。本项工作提出的两项梯度(TTG)模型及三种原子团簇运动单元(SDZ、DDZ及RDZ)新概念为无序固体介质变形定量描述提供了基本工具,所揭示的剪切带涌现过程原子尺度精细图像及临界行为为深入认知非晶合金剪切带提供了新的线索。该研究成果近期以“Hidden spatiotemporal sequence in transition to shear band in amorphous solids”为题发表在Physical Review Research 4, 23220 (2022),第一作者为博士生杨增宇。该项研究工作得到了国家自然科学基金重大项目“无序合金的塑性流动与强韧化机理” 、基础科学中心项目“非线性力学的多尺度问题”、中科院B类战略性先导科技专项项目“复杂介质系统前沿与交叉力学”等资助。论文链接:doi:10.1103/PhysRevResearch.4.023220图1 非晶合金剪切带中的旋转(涡旋)、剪切和体胀运动事件图2 剪切-体胀事件与旋转事件的关联“破缺”,空间分布从同步激活转变为交替间隔分布图3 剪切带涌现前出现原子旋转团簇运动(RDZ)显著增强(图中白色气泡代表RDZ,也即原子运动的涡旋结构)图4 非晶合金剪切带涌现原子尺度演变过程示意图
  • 中国第一台界面剪切流变仪ISR400在中石油落户
    2008年3月24日,中国第一台界面剪切流变仪ISR400在中国石油天然气股份有限公司&中国科学院 廊坊分院渗流流体力学研究所正式落户。制造商芬兰KSV公司专门派遣工程师来华进行培训。
  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。2.简单明了的数据解释和物理原理。3.使用波动量来量化粉体的粘结力。4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。6.理想的设计保证了稳定性和长使用寿命。7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。粉体剪切性能分析仪 Granudrum
  • 自然资源部发布 《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等多项行业标准报批稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等10项行业标准,并于2024年1月18日予以公示。其中4项标准涉及在线监测设备、便携设备等。一、《海洋饱和软黏土强度的测定 微型十字板剪切仪法》(报批稿)规定了微型十字板剪切仪测定饱和软黏土不排水抗剪强度的仪器及组件要求、仪器标定方法、试验步骤与要求和试验数据采集与处理方法等,适用于海洋原状或重塑饱和软黏土的不排水抗剪强度和灵敏度的室内或野外现场测定。二、《海上油气生产设施水文气象观测系统建设规范规范》(报批稿)规定了海上油气生产设施水文气象观测系统的选址、观测要素、系统组成、仪器安装、试运行管理、接收岸站的要求,适用于在海上油气生产设施上新建或升级改造的水文气象观测系统。海上油气生产设施水文气象观测系统的观测要素主要包括以下内容:a)水文要素应包括但不限于:流向、流速、水位、水温、波向、波高、波周期、潮高等;b)气象要素应包括但不限于:风向、风速、气温、气压、相对湿度、能见度等。海上油气生产设施水文气象观测系统主要包括:数据采集器、定位装置、方位传感器、风速风向传感器、气温和湿度传感器、气压传感器、波潮仪、能见度传感器、流速流向传感器、水温和盐度传感器、卫星通信系统、供电系统、防雷系统等。三、《海洋岸(岛)基水质自动监测站在线运行维护技术要求》(报批稿)规定了海洋岸(岛)基水质自动监测站在线运行维护管理基本要求、检查维护、质量保证与质量控制及运行维护记录等内容,适用于海洋岸(岛)基水质自动监测站在线运行维护管理工作。海洋岸(岛)基水质自动监测站用于海岸(岛)边海洋水质监测,通过系统集成技术、数据采集与传输技术及通讯网络集成的综合性监测系统。主要由站房、分析单元、采配水单元、控制单元、通讯单元和辅助设备等组成,其核心设备为在线分析仪器,可以定期或长期、在线、自动、连续地进行采集、处理、存储和传输监测数据。四、《走航式温盐深剖面测量仪》(报批稿)本文件规定了走航式温盐深剖面测量仪的要求、检验方法、检验规则以及标注、包装、运输和贮存。本文件适用于走航式温盐深剖面测量仪的设计、生产、试验和检验。走航式温盐深剖面测量仪以海上移动载体为使用平台,在规定航速范围内,利用可回收的测量探头进行海水温度、电导率和压力剖面测量的仪器。
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双1,2,曹晓1,2,张嘉琪1,2,韩迎春1,2,赵欣悦1,2,陈全1,21.中国科学院机构长春应用化学研究所高分子物理与化学国家重点实验室 长春1300222.中国科学技术大学应用化学与工程学院 合肥230026作者简介:陈全,男,1981年生.中国科学院长春应用化学研究所研究员.本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造.于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的DistinguishedYoungRheologistAward(2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《NihonReorojiGakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者:陈全,E-mail:qchen@ciac.ac.cn摘要:流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工.本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词:流变学/剪切流场/剪切流变测试目录1.流场分类2.剪切旋转流变仪概述2.1测试原理2.2测试模式3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述3.1.1输入(输出)应变为施加在样品上的应变3.1.2流场为简单的剪切流场3.1.3输入(输出)应力为样品的黏弹响应3.2测试中常见问题I:仪器和夹具柔量3.3测试中常见问题II:仪器和夹具惯量的影响3.4测试中常见问题III:样品自身惯量的影响3.5测试中常见问题IV:二次流的影响3.5.1同轴圆筒夹具二次流边界条件3.5.2锥板和平板夹具二次流边界条件3.6测试中常见问题V:样品表面张力3.6.1样品的各向对称性3.6.2样品本身表面张力大小3.6.3大分子聚集3.7测试中常见问题VI:测试习惯3.7.1样品的制备:干燥和挥发问题3.7.2确定样品的热稳定性3.7.3样品体系是否达到平衡态3.7.4夹具热膨胀对测试的影响3.7.5夹具不平行和不同轴对测试的影响4.结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可.流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况.最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯.笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1.流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场.更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”).流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应.虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如SentmanatExtensionalRheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因.图1中分别展示了剪切和拉伸2种形变[14].施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动.剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直.而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变.同样,连续的拉伸形变称为拉伸流动.拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行.施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离.在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场.然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度.在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场.假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图1Figure1.Illustrationoftworepresentativemodesofdeformation:thesimpleshearforwhichthedirectionofvelocitygradientisperpendiculartothatofvelocity,andtheuniaxialelongationforwhichthedirectionofvelocitygradientisparalleltothatofvelocity.(ReprintedwithpermissionfromRef.[14] Copyright(2012)Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数.为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的.即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17].该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18].然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2.剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧).目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪.本小节主要围绕旋转流变仪展开介绍.旋转流变仪主要分为应力控制型和应变控制型2种.应力控制型旋转流变仪一般使用组合式马达传感器(combinedmotortransducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separatemotortransducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用.之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别.对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T(T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数.因此,可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图2Figure2.GeometryandparametersKγandKσofparallel-plate,cone-and-plateandCouettefixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试.但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性.例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20].(2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择.此外,需要注意的是,为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度.(3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应.在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应.根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图3Figure3.ThedifferentresponsesofNewtonianfluid,Hookeansolid,andviscoelasticmaterialstotheimposedsteadyflow(stressgrowth,transientorsteadymodethatdependsonthefocus),stepstrain(stressrelaxation,transientmode),stepstress(creepandrecovery,transientmode)andsmallamplitudeoscillatoryshear(SAOS,dynamicmode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应.通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式.通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力.剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动.(2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等.其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stressrelaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creepandrecovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stressgrowth).这些测试的共性是关注样品在一个特定刺激下的转变过程.以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间.(3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应.以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间.通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(smallamplitudeoscillatoryshear,简称SAOS).对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间.当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(largeamplitudeoscillatoryshear,简称LAOS).需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心.因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力.然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题.需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1)应变作用在样品上;(2)应力为样品自身的响应;(3)流场为简单剪切流场.这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠.接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.3.1.1输入(输出)应变为施加在样品上的应变该假设的关键在于没有考虑仪器和夹具柔量的影响,即假设样品的应变可以直接从角位移得到.然而,在力的作用下,仪器和夹具自身也会旋转一定的角度.只有当该角位移远小于作用在样品上角位移时,上述假设才能成立.由于夹具通常由不锈钢或者其他金属材料制造,其模量通常在~1011Pa或者更高的范围,而测试样品,特别是高分子材料即使是在玻璃态,模量通常小于1010Pa,因此,似乎夹具的形变可以忽略.但是,需要指出的是,平板和锥板的夹具通常被设计成细长空心的圆柱形,而夹具中间的样品通常为扁平的圆片状,这种形状上的差异会显著增加夹具柔量的影响.除此之外,夹具与样品之间的滑移也可造成施加应变和样品实际应变的区别[21~23].这种滑移会消耗一部分施加的角位移,假设被消耗的角位移为θslip,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff).对于平行板样品,由于应变参数Kγ=R/H,这使得在相同的实际应变Kγθeff下,旋转的角位移θeff随着板间距H的增加而增加,而θslip则改变较少,因此,滑移的效应会随着板间距的增加而弱化,该结果也可以用做滑移是否存在的间接判据:即如果存在滑移,则其造成的误差会随着板间距的增加而减少.对于滑移效应更为直接的判据就是通过微小的示踪粒子直接观测板附近的粒子的运动是否和板的运动一致.3.1.2流场为简单的剪切流场上文中提到,剪切流变仪设计的一个基本原则就是生成纯粹的剪切流场并记录样品在该流场下的响应.然而,由于受到界面和样品自身的影响,样品中实际的流场未必为纯粹的剪切流场,该效应通常在大剪切速率下出现.例如,对于同轴圆筒夹具测试低黏度样品,当泰勒数大于一个定值时,或者对于平行板和锥板测试低黏度样品,当雷诺数大于一个定值时,流场会偏离简单的剪切流场.以平行板为例(如图4所示),在高雷诺数下,由于离心作用,旋转的上板附近的流体沿着板的径向向外运动,为了填补这些流体流出的空隙,静止下板附近的流体会沿着径向向内运动,这2种流体的运动就会造成一次流基础上出现叠加的二次流,从而导致测试扭矩的增加和相应的剪切增稠假象[24].图4Figure4.Thesecondaryflowoccurswhensampleunderrotarygeometrymovesradiallyoutwardandsampleonthestaticgeometrymovesradiallyinward.对于具有一定弹性的样品,假设其自身的松弛时间为τ,当韦森堡数Wi=τγ˙大于1时,也可能会在低泰勒数(同轴圆筒)或者低雷诺数(平行板或者锥板)的条件下出现弹性非稳定二次流,这种二次流的出现也会造成剪切增稠的假象.下文中,我们会对同轴圆筒和锥板以及平板出现二次流的边界条件进行更详细的讨论.此外,在高度缠结的高分子溶液或者高分子熔体等黏度较高的体系中,剪切速率过高的时候可能会出现剪切带或者较强的壁面滑移,这种剪切速率的非均一分布往往有利于体系自由能的降低.对于高分子熔体,在高剪切速率时,自由表面附近可能出现熔体破裂的现象.这些现象的出现也都会导致测量体系的流场严重偏离简单剪切流场.通常,剪切带、壁面滑移和熔体破裂等现象都会导致体系的应力减少及随之增强的剪切变稀效应(应力或者黏度随时间急剧下降).对于一些极端的情况,甚至会出现剪切应力σ不随剪切速率γ˙γ˙的增加而增加的特殊现象(此时黏度η=σ/γ˙γ˙~γ˙β且β≤−1).为了减弱熔体破裂的现象带来的实验误差,通常可以采用锥板加组合板的特殊夹具(cone-partitionedplate,简称CPP夹具)(如图5所示).CPP夹具中,锥板(绿色)与马达相连,组合板分为2个部分,中心平板(尺寸小于锥板,灰色)和环绕中心平板的环状板(蓝色),两者同轴且分离,共同组合成类似于与锥板同等大小的平板.其中,中心板与传感器相连并记录扭矩,环状板与仪器相连且被固定.测试过程中,一般熔体破裂发生在样品边缘.因此,只要当破裂的边缘没有深入到中心板,所记录的扭矩受到边界熔体破裂的影响就可以忽略[25].图5Figure5.SchematicviewoftheCPPfixture.Green:cone red:sample blue:outerpartition(section) yellow:translationstages(section) orange:bridge(section) grey:innertool(Drawingnotinscale).Thesamplediskshouldhavesizesufficientlylargerthantheinnerplate.(ReprintedwithpermissionfromRef.[25] Copyright(2016)AmericanChemicalSociety)3.1.3输入(输出)应力为样品的黏弹响应其实,上述二次流出现是由样品内部流场的不稳定性带来的效应,会导致额外的应力.在流变测试中,另一个无法忽略的就是测试扭矩的贡献中包含仪器和夹具自身的惯量的贡献.对于真实样品的测试扭矩应该等于测试总扭矩减去仪器和夹具自身的惯量造成的额外扭矩.上面文中提到,对于纯弹性的流体,流变测试中其自身的弹性产生的扭矩T与旋转角度θ具有正比的关系,即T~θ,此时T相对于θ的相位角δ为0°;对于纯黏性的样品,流变测试中其自身的黏性所产生的扭矩与旋转角度相对于时间的导数具有正比的关系,即T~θ˙,此时T相对于θ的相位角δ为90°;对于惯性导致的扭矩,其大小与加速度成正比,即T~θ¨,此时T相对于θ的相位角δ为180°,这种区别可以作为出现惯量效应的判据.例如,在动态测试中,样品黏弹性引起的相位角在0°和90°之间,一旦测试时出现了90°和180°之间的相位角,则必然出现了仪器惯量效应.特别是在高频动态测试中,由于θ=θ0sin(ωt),则惯量I贡献的扭矩高达T0=Iω2θ0,因此,商业的旋转流变仪通常频率ω的测试上限在102rad/s.虽然有些仪器支持测试更高的频率,如103rad/s或者更高,但是测试高于102rad/s的数据时,需要时刻注意分析惯量对于扭矩的贡献.此外,由于自由表面的存在,表面张力对于扭矩的贡献有时也是难以忽略的,该贡献在低黏度的样品中表现得尤为突出.由于表面张力的存在,样品具有收缩表面积的趋势,这会造成剪切作用下界面形状或面积变化时额外的法向力或者剪切力.例如,在平板和锥板夹具中,样品过度充满或者未充满的时候,样品的自由表面会产生突出或者凹陷的曲面结构,这种曲面结构的产生会引起额外的法向力.当样品在剪切流场中,自由表面的面积也会随之出现波动性的变化,这种变化通常会产生弹性应力响应,从而导致额外的应力贡献.通常可以通过填充合适量的样品、增加样品的各方向对称性和引入表面活性剂降低表面张力等方法来抑制表面张力的影响.下文中,我们会结合一些实验实例进一步阐释上述旋转流变仪测试的假设条件失效的情况.此外,我们总结了流变测试中一些不良测试习惯导致无法正确获取实验数据的情况.最后,我们会针对上述内容,给出一些避免类似错误结果的建议.3.2测试中常见问题I:仪器和夹具柔量流变仪能够准确测量样品模量的一个前提是传感器和夹具的柔量远小于样品的柔量,或者换言之,传感器和夹具的刚度远大于样品的刚度(刚度等于柔量的倒数).其中,夹具的刚度不仅与夹具的模量相关,也与夹具的尺寸和形状相关.如果将夹具设计成圆柱形,则其刚度κ与夹具横截面半径R的4次方成正比,与圆柱体的高h成反比:一方面,为了抑制样品的温度对传感器和马达的影响,并减少夹具的惯量,平行板和锥板夹具常被设计成细长的形状(较小的R和较大的h),这种结构会减少夹具的刚度;另一方面,为了增加样品的测试扭矩,常将样品制成扁平的形状,这种形状的差别使得夹具与样品刚度的区别远低于制造夹具的材料和样品模量上的区别,而导致实际施加在样品上的真实应变低于设定应变,这种应变的误差会导致样品流变测试结果的显著误差.例如,刘琛阳等分析了双头应变控制型流变仪ARESG2(TA)的仪器柔量对线性黏弹性的影响[26].如图6(a)所示,在样品模量大于105Pa时,用25mm平行板的测量结果明显偏离8mm平行板的测量结果.虽然样品的模量不发生变化,样品的刚度随着尺寸R的增加而增加,造成了测量时夹具产生了更多的形变,这导致了实际施加在样品上的应变的减少和相应的测试模量的降低;为了说明这个问题,图6(b)展示了相对于指令应变(黑色方块),经过传感器校正后的实测应变(红色圆点)较小,而经过夹具校正后的应变则更小(绿色三角),该应变可反映施加在样品的实际应变.图6Figure6.(a)Theeffectofgeometrycomplianceonlinearviscoelasticity (b)Comparisonofcommandedstrain(as100%),measuredstrain(withforcerebalancetorquetransducers(FRT)compliancecorrection),andcorrectedstrain(withtoolcorrection)obtainedforapolyisobutylenesampleat−20°Cusing25mmparallelplates(ReprintedwithpermissionfromRef.[26] Copyright(2011)SocietyofRheology)为了准确地测量样品的模量,通常建议选取合适尺寸的夹具来直接测量.由于夹具的形变通常正比于扭矩,因此在测量较高模量范围的样品时,为避免柔量的影响,需减少样品和夹具尺寸来降低扭矩.而对于测量较低黏度的样品,需要增加样品和夹具的尺寸来增加扭矩,使得扭矩大于仪器传感器的测试下限.笔者的经验是,25mm板使用的上限通常为~105Pa,8mm板的使用上限为~107Pa,而如果需要准确地测量高分子玻璃态模量(~109Pa),需要使用3mm左右的夹具.对于黏度极低的样品,除了选择更大的板(如50或60mm的夹具)以外,还可以使用过采样技术(oversampling)[27],拓宽动态测试的扭矩测试下限,提高相位角的准确程度.但是考虑到小夹具上样的困难,可利用柔量校正来拓展夹具的使用上限.很多流变学者具体研究了柔量的校正方法,例如1982年,Gottlieb和Macosko[28]讨论了仪器柔量对动态流变测量的影响以及力传感器的校正方法.在2008年,Hutcheson和McKenna[29]详细地研究了夹具尺寸对玻璃化转变区附近的流体的动态振荡测试和应力松弛测试结果的影响,并提出相应的校正方法.本文以Hutcheson和McKenna的校正方法为例[29],简单介绍一下动态剪切数据的校正方法.为了准确测定特定夹具下整个仪器系统的柔量系数,作者设计加工了上下板“连体”的参比夹具(如图7所示),并直接测量了参比夹具的柔量.根据柔量相加原则,流变仪器实测复合扭转刚度κ0∗的倒数等于仪器夹具刚度κt和样品刚度κs∗的倒数之和:由于仪器和夹具的柔量均来源于其固体弹性,可以将两者简化为一个与黏弹样品串联的弹簧,其刚度可简化为实数κt.在已知κt的基础上,可利用公式(6)校正测试的实验数据κmes∗,得到样品的实际复数刚度κs∗.图7Figure7.Asimpleschematicshowingthegeometryofthesolidrodandthedisposableplatens(ReprintedwithpermissionfromRef.[29] Copyright(2008)AmericanInstituteofPhysics).3.3测试中常见问题II:仪器和夹具惯量的影响对于仪器和夹具惯量的校正是准确进行瞬态和动态流变测试的基础.旋转流变仪测得的扭矩不仅来源于样品自身的应力响应,也来源于马达和夹具在加速过程中的惯量贡献.早在1991年,Krieger等讨论了单头的应力控制型流变仪仪器和夹具惯量对测试的影响[30],他们发现,当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.最近,Lauger等研究了流体在振荡剪切模式下的仪器和夹具惯量的影响[31],并给出了通过流变仪测量的实测扭矩、样品产生的扭矩以及仪器和夹具自身惯量产生的扭矩的三者之间的矢量关系(图8).图8Figure8.Vectordiagramoftorques,includingaccelerationtorqueTa,totalorelectricaltorqueT0,andsampletorqueTs,whereδδandααarephaseangleofT0andTs,respectively.ThesampletorquecanbedecomposedintoviscouspartTvandelasticpartTe(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology).其中,仪器测试的实测扭矩T0等于样品扭矩Ts和仪器加速惯量产生的扭矩Ta之和.换言之,样品产生的扭矩应该等于总扭矩减去仪器加速时惯量产生的扭矩,该扭矩可利用相位角分解成弹性贡献部分Te和黏性贡献部分Tv.此外,Lauger等研究表明[31].:对于牛顿流体,惯量产生的扭矩与样品扭矩的比率可表达为其中I为测量设备的转动惯量,|G∗|为样品的复数模量的绝对值,ω为测试的角频率.然而,需要指出的是公式(8)仅适用于牛顿流体,对于黏弹性体系并不准确.据此,可以通过计算仪器和夹具惯量产生的扭矩与样品扭矩之比来判断仪器和夹具惯量的影响.例如:图9展示了Lauger等利用单头的MCR系列流变仪(AntonPaar)测试黏度为4mPas的S4oil频率扫描测试.在测试的频率范围内,该流体应为牛顿流体.其中蓝色正三角表示实测的扭矩T0,绿色倒三角表示校正了仪器和夹具惯量贡献后的样品贡献的扭矩Ts.在最低频区域,实测扭矩与样品贡献扭矩近似相等,说明样品的贡献占主导,此时测得的复数黏度(红色圆)接近样品稳态黏度4mPas.但是随着频率的增加,实测扭矩大于样品贡献的扭矩且两者差距逐渐增加,在频率小于25rads−1(竖箭头所示)的区域,虽然实测扭矩已经远大于样品的扭矩贡献,即实测的T0/Ts已接近2个数量级(横箭头所示,这与通过公式(8)计算的结果Ta/Ts=Iω2Kσ/(Kγ|G∗|)=IωKσ/(Kγ|η∗|)=95近似相等),经过校正得到的样品扭矩计算的黏度仍然接近4mPas,说明测试结果仍然有效.该例子展示了当前流变仪的技术水平已经臻于成熟:即使在惯量贡献的扭矩占主导的情况下,仍然可以通过仪器校正得到准确的样品扭矩.但是在频率高于25rads−1区域惯量校正开始失效,造成了稳态黏度激增的假象.图9Figure9.FrequencysweepmeasurementontheS4oilsamplewithviscosityof4mPas(CP60-0.5geometry).Inadditiontothecomplexviscosity,themeasuredtotaltorqueT0andthesampletorqueTsobtainedaftertheinertiacorrectionareplottedagainstangularfrequencyωω.Arrowspointtodatapointsat25rads−1(seetext),abovewhichtheinertiacorrectionfails.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)在动态振荡测试中,样品黏弹性引起的相位角应当在0°和90°之间(图8所示),因为90°和0°相位角分别对应纯黏性和纯弹性的扭矩贡献Tv和Te,而惯量产生的相位角为180°.图8中,高频处仪器测试的实测扭矩T0远大于样品测试扭矩Ts,表明仪器加速扭矩Ta在测试T0中占据主导,此时的相位角应接近180°.因此,一旦测试时出现了90°和180°之间的相位角,或者动态测试出现G' ~G"~ω2的结果,即可判定出现了仪器惯量效应[32].为了避免实验测试中的不良数据,仪器惯量造成的扭矩Ta与材料自身产生的扭矩Ts之比Ta/Ts应小于一个极限值(该值与仪器的状态和校正的准确性相关).减少惯量影响的一个行之有效的方法是选择合适的夹具.公式(8)中,与夹具几何尺寸相关的参数为Kσ/KγKσ/Kγ.对于锥板,Kσ/Kγ=3β/(2πR3),因此,减少锥角ββ和增加板半径R均有利于减少惯量影响,而对于平板,Kσ/Kγ=2h/(πR4),因此,减少板间距h和增加板半径R均有利于减少惯量影响,或者选择更轻质的夹具来减少I亦可减少惯量影响.总之,无论锥板或平板,增加R或者选择轻质夹具都是减少惯量影响的有效手段.为了降低仪器和夹具惯量影响,对于单头的应力控制型流变仪,需要定期进行惯量的校正,并在更换夹具时做相应的校正.对于双头的应变控制型的流变仪,使用具有力反向平衡功能的传感器可以极大地抑制惯量带来的误差,其表现虽远超单头的流变仪,但也无法完全消除惯量的影响.因此,需要对具体的实验测试结果进行综合的分析和甄别.3.4测试中常见问题III:样品自身惯量的影响剪切流变仪测试中一个基本假设是流场的单一性,即流场是纯粹的剪切流场,这一假设在高速振荡测试过程中失效[33].即在振荡测试中,流变仪通过夹具迫使样品产生往复运动,使得样品内部产生剪切波,当板(夹具)间距与剪切波波长相当或大于剪切波波长时,样品的自身惯量的影响会使得施加样品的剪切流场偏离纯粹的剪切流场.Schrag给出了在剪切流变测试不受该剪切波干扰的临界条件[34],即板间距需远小于其波长λs,其表达式为:式中ρ是流体的密度,|η∗|=|G∗|/ω是复数黏度的绝对值,其中|G∗|是复数模量的绝对值,δ是相位角.研究表明,在给定的频率范围内选取合理的板间距h是减少样品惯量影响数据误差的关键.以水为例,密度为ρ≈1gcm−3,黏度为η≈10−3Pas,相位角δ≈90°,当频率ω=102rads−1时,可估算出λs≈0.9mm.用平板测试一般要求间距在0.5~1mm,因此无法满足hλs.当使用锥板测试时,板间距最宽的部分可以估算为h=βR,因此,半径为25mm、锥角为1°的锥板,h=0.44mm,同样也无法满足hλs.由公式(9)可知剪切波长λs随着样品黏度的增加而增加,因此,上述问题一般不会在黏度较高的高分子溶液或高分子熔体中出现.图10展示了Lauger等利用双头的MCR系列流变仪(AntonPaar)对牛顿流体S4oil在半径相同(R=30mm),锥角分别为0.5°(红色)、1°(绿色)、2°(蓝色)不同的夹具下的振荡剪切测试,研究了样品惯量对流体相位角的影响[31].该流体在测试范围内为牛顿流体.我们发现样品在低频区域表现牛顿流体性质,相位角均为90°,随着频率的增加,相位角逐渐降低,流体出现了一定的弹性响应,且锥角越大,相位角降低越多(箭头指向).相位角的减少导致了储能模量G' ~ω2的标度区域的出现,该结果非常类似于黏弹流体的松弛末端行为,但其实为样品惯量造成的实验假象.显然,此相位角减少的不同来源于测试夹具的区别而非样品的区别.究其原因,是锥板最外侧的板间距βR(0.5°,1°,2°板分别为0.26,0.52和1.05mm)逐渐逼近于通过公式(9)计算出来的λs≈2.0mm,使得样品惯量造成的实验误差逐渐显现.图10Figure10.Phaseangle(circles)andstorageG' (triangles)andlossmodulusG"(squares)fortheS4oilmeasuredinSMTmodewiththreeconeangles,0.5°(red),1°(green),2°(blue).Thearrowindicatesthedirectionofincreasingtheconeangle.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)3.5测试中常见问题IV:二次流的影响在稳态或瞬态测试中,高剪切速率时,由于流动不稳定性的影响可能导致剪切流场出现失稳,造成二次流的出现[24,35~37],使得剪切流变仪测试中剪切流场单一性的基本假设失效.二次流叠加在剪切流场上,会增加仪器测量的扭矩,导致测试样品的表观黏度突然增加.研究表明,对于不同夹具,均可出现二次流.下面我们将对同轴圆筒、锥板和平板3种夹具的几何流场出现二次流的边界条件进行阐述,并通过实例展示二次流对实验数据的影响.3.5.1同轴圆筒夹具二次流边界条件泰勒给出了牛顿流体在同轴圆筒夹具的测量过程中失稳的临界条件[38~40]:可避免Taylor-Couette涡流出现的稳定区间的泰勒数Ta满足:其中R1和R2分别为同轴圆筒夹具中流体的内径和外径(如图2所示),而同轴圆筒夹具的剪切速率为:γ=ΩKγ≈ΩR1/(R2−R1),由此可以得到避免Taylor流的条件:3.5.2锥板和平板夹具二次流边界条件锥板和平板具有不同于同轴圆筒的边界条件,其产生二次流的一个主要原因是离心作用:即高速转动的板附近的流体产生沿着半径方向向外的速度分量,同时诱发静止板附近的流体向内流动(如图4所示).对于锥板和平板夹具,雷诺数Re可定义为[41]:其中h为特征的板间距(平行板h等于间距,锥板h=βR).Turian等研究表明[41],对于利用锥板和平板测试的牛顿流体,实际扭矩T和理想稳定流场下的扭矩T0之比与雷诺数相关:给定T/T0误差1%,即T/T0=1.01,可以得到一个特征的临界雷诺数Recrit=4,该情况下尚未发生持续的湍流.利用Recrit和剪切速率γ˙=ΩR/h,可以估算锥板和平板稳态剪切的临界条件:据此我们可以根据实验条件和夹具参数计算出不稳定流场的临界条件.从公式(14)可以看出,选择较小h的平行板可以抑制二次流,但h过小的时候,两板间微小的不同轴或不平行都会被放大,影响测试的准确性[42].因此,需要选择合适的板间距.为了更直观地展示牛顿流体的二次流不稳定流场对实验数据的影响,图11是我们利用单头应力控制型流变仪MCR-302(AntonPaar)实测的水在剪切速率扫描实验中的黏度相对剪切速率的图,可以看出,在低剪切速率出现的类似于剪切变稀的现象(蓝色区域)可能由于传感器扭矩低于仪器测试下限(Tmin=0.11~0.25μNm)或者表面张力的影响,而在高剪切速率下(红色区域),剪切增稠的异常现象是由于板的高速转动引发了二次流.图11Figure11.SteadyshearflowmeasurementsofH2Ousingcone-and-platewithdiameterof50mm,thescatteredplotsintheblueregimeareobtainedfromtorquebelowthelow-torquelimit,thethickeningbehaviorintheredregimeisduetosecondaryfloweffect.3.6测试中常见问题V:样品表面张力在使用旋转流变仪测试低黏度的牛顿流体时,表面张力往往会影响到测试结果.很多低黏度流体异常的实验数据都和其表面张力有关[42,43].而表面张力的产生与样品的各向对称程度、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系[32,44~47].为了使读者更加清楚地了解表面张力对流变实验数据的影响,下面我们将分别从样品的各向对称性、样品自身表面张力的大小以及样品自身存在吸附和聚集3种情况阐述表面张力对实验结果的影响.3.6.1样品的各向对称性保证样品的各向对称是流变测试中获得准确实验数据的基础,样品的各向非对称性可能在填充上样时即存在,如过度填充或者填充不足均可造成样品的各向非对称性,各向非对称性也可能在测试过程中产生,如样品的边界在流场下存在一定的形状的波动,或样品不对称的挥发引起样品边缘与板的接触线和接触角的不对称性.Ewoldt等[32,44]研究低黏度样品的剪切流变测试时,发现测试扭矩会受到这些边缘形状变化的影响(如图12所示).对比完全对称的理想条件,非理想情况下接触线、接触角Ψ(s)和半径都发生了明显的变化.将接触线看作闭合曲线,可沿闭合曲线积分得到由表面张力引起的扭矩变化.例如,沿z轴的扭矩Tz可表示为:图12Figure12.(a)Contactlineandinterfaceangle:idealversusnon-idealcases.Inthenon-idealcase,asymmetriesareexaggeratedcomparedtotypicalloadingandcanalsooccurasaresultofoverfilling (b)Contactlineinz=0planerepresentedbyanarbitraryparametriccurve,r–r_(s).(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).公式中,r(s)是半径,Γ(s)是表面张力,t^l,r是闭合曲线的切线矢量.从公式(15)中可知表面张力产生的扭矩与接触线的几何形状、样品的表面张力和界面角均相关.样品填充不足或过量填充都会导致表面张力引起扭矩增加.此外,样品挥发也可导致样品填充不足,是高分子溶液或水凝胶体系流变测试过程中最容易忽略的问题.图13显示了Johnston等[44]研究了随着水分蒸发,样品从填充过度到填充不足过程中扭矩的变化.他们发现,刚开始填充过度会随着水蒸发而缓解,扭矩先减小并保持了一定时间,之后的样品量继续减小导致样品填充不足,接触线断开,此时产生更大的扭矩,然后扭矩会继续保持,直到在更长的时间再次提高.出现此现象的原因是水蒸发会同时导致接触线和接触角的改变,从而增加了样品的各向非对称性.因此,对于溶液体系的测试,需要考虑溶剂挥发、样品填充不足导致表面张力引起的扭矩增加,这些因素会影响测试结果.图13Figure13.Evaporation-inducedcontactlinemigration,whichcausessurfacetensiontorque.Thegeometryisparallelplate(diameter40mm)withconstantvelocityΩΩ=0.01rads−1.Insetimages(viewsfrombelow)illustratethecontactlinesoftheoverfilledandunderfilledcases(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).3.6.2样品本身表面张力大小样品自身的表面张力的不同也可造成测试结果的显著不同.Johnston等[44]讨论了水和正癸烷在稳态剪切测试过程中测试扭矩与剪切速率的依赖关系,虽然两者室温下的黏度近似,分别为1.17和1.57mPas,利用同轴圆筒测量的低剪切速率下的扭矩却大相径庭,这主要源于水和正癸烷表面张力的不同(75和25.3mNm−1),从图14可以看到,相对于正癸烷溶液,具有更高表面张力的水在低剪切速率下显示出由表面张力导致的扭矩平台1μNm,值得注意的是,其中4组水的测试结果表现出该扭矩平台,但仍有2组水的测试结果没有表现出扭矩平台,Johnston等认为这可能与前面3.6.1节讨论的接触线的不确定性有关.图14Figure14.Steadyshearflowwithdifferentsurfacetension(waterandn-Decane)usingtheconcentricdoublegap(DG)geometry(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology)3.6.3大分子聚集对于一些低黏度的蛋白溶液体系,在低剪切速率下的流变测试时,通常需要考虑空气与水界面处形成的蛋白表面膜产生的界面张力和蛋白溶液中蛋白聚集的影响[46,47],表面膜形成和蛋白聚集可导致包括黏度增加、剪切变稀增强和表观屈服应力的出现,这些表面的因素有时会误导研究人员对溶液的整体流动特性的判断.例如,Castellanos和Colby等研究了牛血清蛋白和抗体溶液黏度对剪切速率的依赖性[47].他们发现:不含表面活性剂成分的牛血清蛋白在液-气界面处形成聚集膜,在低剪切速率下出现明显的表观屈服应力和相应的η∼γ˙−1η∼γ˙−1的屈服区域(图15(a)).添加表面活性剂能抑制和延缓蛋白表面膜的产生,从而弱化了屈服区域,但经过较长的等待时间(41天),蛋白聚集导致屈服区域逐渐重新形成(图15(b)).图15Figure15.(a)Increaseofapparentviscosityofsurfactant-freeBSAsolutionsduringtheproteinaggregation.(b)Increaseofviscositywithtime,owingtotheproteinaggregationinthemAbsolutionsevenafterintroductionofthesurfactant.(ReprintedwithpermissionfromRef.[47] Copyright(2014)TheRoyalSocietyofChemistry)3.7测试中常见问题VI:测试习惯如上面所述,3个基本假设都是在比较极端的情况下会失效,如样品刚度足够高,需要考虑仪器和夹具柔量的影响;黏度足够低或者剪切强度足够大,需要考虑仪器夹具惯量和样品惯量的影响以及施加流场是否为纯粹的剪切流场.而在实际流变测试中,也有一些情况满足上述3个基本假设,却得不到准确的测量数据.下面总结了流变测试过程中一些容易忽略的问题.为了避免这些问题,提高流变测试的正确性和准确性,需要建立良好的测试习惯.3.7.1样品的制备:干燥和挥发问题对于聚合物熔体,如果样品干燥不充分时,或者测试过程中暴露在湿度较大的环境中,样品中的微气泡和水分会对测试结果产生显著影响,尤其含有氢键和离子极性组分的聚合物(如离聚物),溶剂(如水)对其流变行为的影响明显.此外,对于水凝胶和溶液体系,测试前和测试过程中需要考虑样品自身溶剂挥发对测试结果的影响,对于溶剂高挥发性的溶液体系这是常见的问题,通常可以使用液封(如用石蜡油密封水溶液)的方法避免溶剂的挥发.图16展示的是Wolff等[48]对聚二甲基硅氧烷树脂(PDMS)在具有气泡(圆)和无气泡(三角)条件下的频率扫描测试,发现损耗模量几乎不受气泡的影响,松弛末端满足G' ' ∼ω1∼ω1标度关系,而储能模量受气泡影响较大,逐渐偏离G' ∼ω2标度关系,这是气泡/样品界面的慢松弛过程导致的.图16Figure16.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforaPDMSsiliconeoilwithandwithoutbubbles(ReprintedwithpermissionfromRef.[48] Copyright(2013)Spring)图17展示了Shabbir等[49]对聚四氢呋喃磺酸锂离聚物(PTMO-Li)在干燥和一定湿度条件下的频率扫描测试,他们发现湿度对离聚物的流变性能有很大影响,储能模量和损耗模量相较干燥条件下下降一个数量级左右,由此可见干燥样品对于流变测试的重要性.图17Figure17.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforPTMO-Liindriedandundriedstates.(ReprintedwithpermissionfromRef.[49] Copyright(2017)SocietyofRheology)3.7.2确定样品的热稳定性在进行流变测试之前,对于不熟悉的聚合物样品,需要进行TGA和DSC测试,了解样品的热稳定性和玻璃化转变温度,以便于测试条件的选择,比如:低温测试时样品接近玻璃态,模量接近109Pa左右,样品较高的模量下突然变化夹具间隙会导致仪器法向力的激增,损坏空气轴承和力传感器;高温测试时,不了解样品热稳定性,测试温度过高会导致样品发生化学交联和降解行为,影响测试结果.通常,对于容易交联的样品,可以采取添加少量稳定剂的办法抑制化学交联,获取准确的实验数据.图18展示了Stadler等[50]对低分子量低密度聚乙烯分别在加入少量稳定剂和不加稳定剂条件下,复数黏度随时间扫描变化,可以看出当时间经过4300s之后,样品黏度突然增加,这主要由于体系中含少量双键的组分发生化学交联导致,而加入少量稳定剂的样品持续到8.24×105s(~9.5天)后,样品才开始降解,说明加少量稳定剂的办法可以有效抑制样品的化学交联.此外,为排除样品在测试过程中发生变化,对测试产生的影响,建议完成所有测试后,再次重复第一步测试,通过数据重复性来考察样品是否在测试过程中发生变化,以保证样品数据的可靠性.图18Figure18.ThermalinstabilityofsamplemLLDPEF18F.Thesamplewithoutstabilizerexceedsthe±5%criterionafter4300sowingtothecrosslinking,whilethesamplewithstabilizerstayswithinthiscriterionfor8.24×105s(≈9.5days).(ReprintedwithpermissionfromRef.[50] Copyright(2014)Springer).3.7.3样品体系是否达到平衡态在测试过程中确保样品体系在测试前是否达到平衡稳态是获取准确数据的前提.例如超高分子量聚乙烯样品,从结晶状态加热到熔体状态后,往往需要较长时间才能达到链充分缠结的平衡态.例如,图19展示了超高分子量聚乙烯样品在加热到160°C熔融后,体系从低缠结状态达到缠结平衡态的过程中储能模量G' 的变化,作者发现,热平衡时间随着合成分子的时间(图中标示),也即分子量增加而增加,对于合成30min的样品,热平衡时间长达约一天之久[51].这种缠结程度低于平衡缠结程度的样品也可以通过在稀溶液中沉降高玻璃化温度的长链高分子(如高于缠结分子量的聚苯乙烯)来制备[52,53].图19Figure19.Buildupofmodulusindisentangledpolymermeltswithtimeofultra-high-molecular-weightpolyethylene.ThetopschemeshowsthemechanismandthebottomfigureshowsthemeasuredstoragemodulusG' (t)againsttime(symbols),whereG' (t)hasbeennormalizedbytheequilibriumplateaumodulusGN0.Curvesarethepredictionsbasedontubetheory.(ReprintedwithpermissionfromRef.[51] Copyright(2019)AmericanChemicalSociety)此外,对于高填充体系、不相容聚合物共混物等极难达到平衡态的体系,常需高速施加预剪切,使体系保持初始态的一致性.需要注意的是,该初始态往往处于非平衡态.3.7.4夹具热膨胀对测试的影响除了前面3.1和3.2节提到夹具柔量和惯量对测试结果的影响,在测试过程中还需要考虑夹具的热膨胀对测试结果的影响,不同材质的夹具具有不同的热膨胀系数.现在很多仪器在输入夹具类型时已经考虑到热膨胀系数.但是很多自制的夹具和可抛弃的夹具在使用之前需要人为地测量热膨胀系数并输入.此外,样品也具有一定的热膨胀系数,因此在测试温度范围很宽时,需要在加热过程中适当增大板间距,在降温过程中适当减少板间距,从而保持样品的填充程度一致.此外,还需考虑控温组件的结构也会对夹具的传热温度梯度造成影响[54],即使是同一个夹具在不同控温组件下的膨胀系数也是不同的,夹具膨胀系数的差异直接会影响设置夹具间距的大小,尤其在设置夹具间距很小的情况下(如锥板),板受热膨胀可能会使两板直接接触,造成法向应力的激增从而损坏空气轴承和力传感器.3.7.5夹具不平行和不同轴对测试的影响保证夹具的平行与同轴也是获取实验数据的关键.随着测试夹具频繁使用,以及不小心跌落,非常容易造成夹具不平行和不同轴,这样会导致仪器校零出现误差以及仪器法向力影响测试结果.因此,在测试中需要注意夹具的正确使用,特别是不要将不使用的夹具立在桌面上或者高处,以防止跌落造成夹具的变形.4.结论与展望本文结合作者多年的流变测试经验,从流场类型和仪器的特征出发,对流变仪进行了简单的分类.重点阐述了旋转流变仪的工作原理,剪切流变测试的假设条件及其失效的情况,和实际测试中一些不良的测试习惯及其导致的结果.简言之,流变仪器测试时,只有当输入或输出的应变或应力为施加在样品上的应变或应力,且流场为纯粹的剪切流场时,测试的结果才是可靠的结果.这些基本前提都是会在一定的测试条件下失效.我们结合一些实验实例,具体解释了这些假设条件失效的情况,以及在实际流变测试中仪器完全满足基本假设的情况下,一些不良测试习惯对测试的影响,具体总结如下:(1)当样品的刚度接近仪器夹具和传感器的刚度时,在样品形变的同时,仪器夹具和传感器也会发生一定的形变,造成样品的真实应变低于仪器设定的应变.此时,准确校正夹具和传感器的扭转柔量对于样品的测试是非常重要的.一般的校正过程中考虑夹具和传感器的柔量(或者刚度)为常数.然而,真实测试中,该柔量也会随着测试条件(如温度)和仪器状态的变化而变化.因此,从实验操作上来讲,更可行的方法就是选择合适的夹具来增加施加在样品上的应变和因仪器柔量消耗的应变之比.(2)当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.因此,在瞬态和动态等具有加速过程的测试中,当样品反馈的实际扭矩较小时,源于仪器和夹具加速度过程中的惯量贡献会影响到测试结果.对于单头的旋转流变仪来说,马达和传感器集成在一边,仪器惯量的影响更大.虽然双头的旋转流变仪具有力反向平衡功能的传感器,可以很大程度上抑制仪器惯量的影响,但是也无法完全消除该影响.由于仪器的惯量影响与夹具和仪器的状态相关,需要对仪器进行定期的惯量校正.(3)在高速振荡测试过程中,样品在往复运动过程中会产生剪切波,当(夹具)板间距与该剪切波波长相当时,样品自身的惯量影响会使得施加样品内部的流场偏离纯粹的剪切流场,造成相位角的变化和相应的测试模量的变化;在高剪切速率时(如稳态或瞬态测试时),流动的不稳定性使剪切流场产生失稳,造成二次流的出现,二次流叠加在剪切流场上会增加仪器测量的扭矩,导致测试中出现“剪切增稠”的假象.因此,给定的频率范围内选取合理的板间距h是减少样品惯量影响和抑制二次流的关键.(4)对于低黏度的牛顿流体,表面张力对实验结果的影响往往会被忽略.表面张力产生的扭矩大小与样品的各项对称性、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系.因此,在低黏度样品测试过程中,建议结合显微工具在线地观测测试过程中样品形状的变化.(5)上述四个方面是在样品模量足够高、黏度足够低或者剪切强度足够大的极端情况下,测试中3个基本假设失效的情形.其实,在实际流变测试中即使仪器完全满足测试需求和基本假设的情况下,流变测试者如果没有养成良好的测试习惯,也会得不到准确的数据.因此,我们总结了一些常见容易忽略的问题,例如样品干燥和挥发、样品自身热稳定性,样品是否达到平衡态,夹具和样品热膨胀、夹具的不平行不同轴等问题.我们针对上述容易忽略的问题进行了阐述,希望有助于流变测试的初学者养成良好的测试习惯,了解这些知识对于维护仪器、保护样品以及获取准确的测试数据都是十分重要的.虽然流变仪器测试过程中会存在上述因素的干扰,但是读者在熟悉流变仪的原理和养成良好的测试习惯的前提下,是很容易判断出实验数据出现问题的“症结”所在,使得流变仪不再成为科研工作中的“黑箱”.最后需要指出,本文关注的测试手段仅限于剪切流场.由于拉伸流场较剪切流场难实现,高分子流变学的实验研究多数在剪切流场下进行.对于加工过程中同等重要的拉伸流场下测试的仪器和研究还在快速的发展之中[15,55~57].笔者计划在后续的综述中探讨拉伸测试的仪器原理和测试技巧.参考文献[1]TadmorZ,GogosCG.PrinciplesofPolymerProcessing.2nded.Hoboken,NewJersey:JohnWiley&Sons,2013[2]PtaszekP.LargeAmplitudeOscillatoryShear(LAOS)measurementandfourier-transformrheology:applicationtofood.In:AhmedJ,PtaszekP,BasuS,eds.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2017.87−123[3]KanedaI.RheologyControlAgentsforCosmetics.RheologyofBiologicalSoftMatter.Tokyo:Springer,2017,295−321[4]EleyRR.JCoatTechnolRes,2019,16(2):263−305doi:10.1007/s11998-019-00187-5[5]AhmedJ,PtaszekP,BasuS.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2016[6]ZhangZ,LiuC,CaoX,GaoL,ChenQ.Macromolecules,2016,49(23):9192−9202doi:10.1021/acs.macromol.6b02017[7]ChenQ,TudrynGJ,ColbyRH.JRheol,2013,57(5):1441−1462doi:10.1122/1.4818868[8]LiuS,WuS,ChenQ.ACSMacroLett,2020,9:917−923doi:10.1021/acsmacrolett.0c00256[9]LarsonRG.TheStructureandRheologyofComplexFluids.NewYork:OxfordUniversityPress,1999[10]MihaiM,HuneaultMA,FavisBD.PolymEngSci,2010,50(3):629−642doi:10.1002/pen.21561[11]AriawanAB,HatzikiriakosSG,GoyalSK,HayH.AdvPolymTechnol:JPolymProcessInst,2001,20(1):1−13[12]LundahlMJ,BertaM,AgoM,StadingM,RojasOJ.EurPolymJ,2018,109:367−378doi:10.1016/j.eurpolymj.2018.10.006[13]LiB,YuW,CaoX,ChenQ.JRheol,2020,64(1):177−190doi:10.1122/1.5134532[14]WatanabeH,MatsumiyaY,ChenQ,YuW.Rheologicalcharacterizationofpolymericliquids.In:MatyjaszewskiK,MöllerM,eds.PolymerScience:AComprehensiveReference.Amsterdam:Elsevier,2012.683−722[15]MarínJMR,HuusomJK,AlvarezNJ,HuangQ,RasmussenHK,BachA,SkovAL,HassagerO.JNon-NewtonFluid,2013,194:14−22doi:10.1016/j.jnnfm.2012.10.007[16]WatanabeH,MatsumiyaY,InoueT.Macromolecules,2002,35(6):2339−2357doi:10.1021/ma011782z[17]YoshidaH,AdachiK,WatanabeH,KotakaT.PolymJ,1989,21(11):863−872doi:10.1295/polymj.21.863[18]TroutonFT.ProcRSocLondon,SerA,1906,77(519):426−440doi:10.1098/rspa.1906.0038[19]LiuC,ZhangJ,ZhangZ,HuangS,ChenQ,ColbyRH.Macromolecules,2020,53(8):3071−3081doi:10.1021/acs.macromol.9b02431[20]ZhangJ,LiuC,ZhaoX,ZhangZ,ChenQ.SoftMatter,2020,16(21):4955−4960doi:10.1039/D0SM00572J[21]BuscallR,McGowanJI,Morton-JonesAJ.JRheol,1993,37(4):621−641doi:10.1122/1.550387[22]BuscallR.JRheol,2010,54(6):1177−1183doi:10.1122/1.3495981[23]BallestaP,PetekidisG,IsaL,PoonW,BesselingR.JRheol,2012,56(5):1005−1037doi:10.1122/1.4719775[24]MagdaJ,LarsonR.JNon-NewtonFluid,1988,30(1):1−19doi:10.1016/0377-0257(88)80014-4[25]CostanzoS,HuangQ,IannirubertoG,MarrucciG,HassagerO,VlassopoulosD.Macromolecules,2016,49(10):3925−3935doi:10.1021/acs.macromol.6b00409[26]LiuCY,YaoM,GarritanoRG,FranckAJ,BaillyC.RheolActa,2011,50(5−6):537doi:10.1007/s00397-011-0560-3[27]PogodinaN,NowakM,LäugerJ,KleinC,WilhelmM,FriedrichC.JRheol,2011,55(2):241−256doi:10.1122/1.3528651[28]GottliebM,MacoskoC.RheolActa,1982,21(1):90−94doi:10.1007/BF01520709[29]HutchesonS,McKennaG.JChemPhys,2008,129(7):074502doi:10.1063/1.2965528[30]KriegerIM.JRheol,1990,34(4):471−483doi:10.1122/1.550138[31]LäugerJ,StettinH.JRheol,2016,60(3):393−406doi:10.1122/1.4944512[32]EwoldtRH,JohnstonMT,CarettaLM.Experimentalchallengesofshearrheology:howtoavoidbaddata.ComplexFluidsInBiologicalSystems.In:SpagnolieSE,ed.ComplexFluidsinBiologicalSystems.NewYork:Springer,2015.207−241[33]YosickJA,GiacominJA,StewartWE,DingF.RheolActa,1998,37(4):365−373doi:10.1007/s003970050123[34]SchragJL.TransactionsoftheSocietyofRheology,1977,21(3):399−413doi:10.1122/1.549445[35]ShaqfehES.AnnuRevFluidMech,1996,28(1):129−185doi:10.1146/annurev.fl.28.010196.001021[36]McKinleyGH,PakdelP,ÖztekinA.JNon-NewtonFluid,1996,67:19−47doi:10.1016/S0377-0257(96)01453-X[37]PakdelP,McKinleyGH.PhysRevLett,1996,77(12):2459doi:10.1103/PhysRevLett.77.2459[38]ChandrasekharS.HydromagnetsandHydrodynamicsStability.NewYork:DoverPublishing,1981[39]LarsonRG.RheolActa,1992,31(3):213−263doi:10.1007/BF00366504[40]TaylorGI.PhilosTransRSocLondon,SerA,1923,223(605-615):289−343doi:10.1098/rsta.1923.0008[41]TurianRM.IndEngChemFundam,1972,11(3):361−368doi:10.1021/i160043a014[42]Andablo-ReyesE,VicenteJd,Hidalgo-AlvarezR.JRheol,2011,55(5):981−986doi:10.1122/1.3606633[43]GriffithsD,WaltersK.JFluidMech,1970,42(2):379−399doi:10.1017/S0022112070001337[44]JohnstonMT,EwoldtRH.JRheol,2013,57(6):1515−1532doi:10.1122/1.4819914[45]ShipmanRW,DennMM,KeuningsR.IndEngChemRes,1991,30(5):918−922doi:10.1021/ie00053a014[46]SharmaV,JaishankarA,WangYC,McKinleyGH.SoftMatter,2011,7(11):5150−5160doi:10.1039/c0sm01312a[47]CastellanosMM,PathakJA,ColbyRH.SoftMatter,2014,10(1):122−131doi:10.1039/C3SM51994E[48]WolffF,MünstedtH.RheolActa,2013,52(4):287−289doi:10.1007/s00397-013-0687-5[49]ShabbirA,HuangQ,BaezaGP,VlassopoulosD,ChenQ,ColbyRH,AlvarezNJ,HassagerO.JRheol,2017,61(6):1279−1289doi:10.1122/1.4998158[50]StadlerFJ.Korea-AustRheolJ,2014,26(3):277−291doi:10.1007/s13367-014-0032-2[51]HawkeLGD,RomanoD,RastogiS.Macromolecules,2019,52(22):8849−8866doi:10.1021/acs.macromol.9b01152[52]WangX,TaoF,SunP,ZhouD,WangZ,GuQ,HuJ,XueG.Macromolecules,2007,40(14):4736−4739doi:10.1021/ma0700025[53]TengC,GaoY,WangX,JiangW,ZhangC,WangR,ZhouD,XueG.Macromolecules,2012,45(16):6648−6651doi:10.1021/ma300885w[54]LippitsDR,RastogiS,TalebiS,BaillyC.Macromolecules,2006,39(26):8882−8885doi:10.1021/ma062284z[55]StadlerFJ,StillT,FytasG,BaillyC.Macromolecules,2010,43(18):7771−7778doi:10.1021/ma101028b[56]LingGH,WangY,WeissR.Macromolecules,2012,45(1):481−490doi:10.1021/ma201854w[57]ScherzLF,CostanzoS,HuangQ,SchlüterAD,VlassopoulosD.Macromolecules,2017,50(13):5176−5187doi:10.1021/acs.macromol.7b00747
  • “一个顶十个”!合肥造出土壤检测机器人
    在合肥智慧农业谷的实验室内,土壤检测机器人研发团队负责人刘宜正在分析数据。土壤检测一般包括检测土壤的酸碱性、大量元素含量、中微量元素含量、有机质含量等多项指标。往常,这些检测工作需要多名实验员协作完成。3月4日,在合肥智慧农业谷的实验室内,记者见到一台给土壤做全面“体检”的机器人正在分析土壤的多项数值。这就是全国首台高通量土壤成分智能检测机器人,由合肥科研团队研发,工作效率“一个顶十个”,目前正助力第三次全国土壤普查工作。一台土壤检测机器人 顶12个实验员外表方方正正、通体半透明——走进合肥智慧农业谷的实验室,眼前的白色“大集装箱”正在作业。经仔细观察,记者才发现“集装箱”内大有玄机,一台橘黄色的机械臂正在里面往一座座实验台上运送检测样品。而在每个实验台上,还有小型机械臂和智能“眼睛”各司其职。“传统土壤检测以人工为主,周期长、成本高,且对实验人员技术要求高,人为因素容易导致检测结果误差大,这台机器人就解决了这些问题。”合肥智慧农业谷土壤检测机器人研发团队负责人刘宜介绍,土壤检测对掌握耕地情况、提高耕地肥力具有重要作用。而借助这台全国首台高通量土壤成分智能检测机器人,每天能够完成1500个指标的检测通量,相当于12个实验员的工作量。此外,这台机器人通过机器视觉、多臂协同、优化调度算法等多项技术加持,能够精准识别检测过程中的颜色等反应状态信息并自动准确判读,还可以处理摇匀、开关瓶盖、倾倒、移液、定容等各种复杂动作。实验员只需将待检测样品摆放整齐,剩下的检测工作就可以交给机器人了。通过土壤检测指标的并行操作,这台机器人能够同时处理大量土壤样品,24小时不间断,从而实现单日检测的高通量和短周期。“它还具备自我学习的功能,对几十项指标调度流程进行自动优化,对称量以及pH值、速效钾等不同指标的前处理及检测流程步骤进行统筹调度,建立AI智能决策模型。”刘宜告诉记者,这台“合肥造”的机器人诞生后,我国土壤检测形成了机器人代人稳定、准确、高效的土壤检测新模式,实现土壤检测主要流程自动化连续运行。目前,这台机器人已经通过了多次的测试与应用,累计处理了上万个土壤样品指标,陆续参与了全国测土配方施肥、农业面源污染大面积监测等项目,现在正助力第三次全国土壤普查。12年研发 历经7次技术迭代功能如此强大的机器人,它的诞生并非一朝一夕。合肥智慧农业谷研究团队投入了12年的研发时间,先后完成了7代样机的研发迭代与更新,才让它在土壤检测中一次比一次更加出色。刘宜表示,在研发迭代的过程中,研究团队针对土壤养分检测的13项指标,先后历经了4代样机的更新迭代,完成了功能化模块研制与验证、基本功能原理样机研制与验证、关键算法开发与验证、指标流程优化设计,以及单平台样机研制与测试。在完善这些功能后,这台机器人又历经了3代样机的更新迭代,陆续新增了20多项检测指标功能化的研制与验证,以及整个土壤检测机器人的智能化、信息化改进。现在已经通过专家鉴定,进入投产阶段。虽然耗时长,但在机器人研发过程中,涌现出了一批原创性、创新性的技术成果,授权国家发明专利等知识产权50项。刘宜告诉记者,土壤样品精确定量自动取样及称量技术、基于多传感融合的精准浸提技术是其中极具原创性的两个成果。土壤样品精确定量自动取样及称量技术通过研发的高频振动发生器,可以实现土壤样品的高精度、可控自动进样。基于多传感融合的精准浸提技术是融合高精度传感器、机器视觉和智能控制等技术手段对土样前处理过程进行精确操作及判读,实现土样的多指标精准浸提前处理作业。未来将面向农产品重金属、有机污染物检测与大气、水环境污染检测的需求,研发与设计新产品,实现对农产品与农业生产环境的一站式自动化检测,为农业高质量发展提供有力的技术支撑。
  • 精准· 稳定· 高效——日立原子吸收助力土壤检测
    引言距上一次土壤普查已经过去40多年,为了摸清现在的土壤质量家底,国务院于2022年初印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。普查内容包括:土壤性状、类型、立地条件、利用情况、数据库和样品库构建、质量状况分析、成果汇交汇总等。其中土壤理化性状检测是非常重要的一环,包括金属元素、(半)挥发性有机物、有机农药等的检测。日立作为一家历史悠久的分析检测仪器设计和生产制造商,包括:原子吸收分光光度计、X射线荧光光谱仪、高效液相色谱仪、紫外分光光度计。此次介绍的是针对元素分析之日立原子吸收分光光度计ZA3000系列的优势及应用案例。土壤检测【解决方案:元素分析】原子吸收分光光度计用于定量分析样品中的金属元素,ZA3000 系列采用了偏振塞曼背景校正, 以其整体的可靠性和其他原子吸收分光光度计所无法实现的独有技术,获得更好的准确性和更高的灵敏度。 原子吸收分光光度计ZA3000系列ZA3000系列用于土壤检测的特点l火焰石墨炉双塞曼背景校正:即使对类似土壤分解液一样的含大量盐分的样品,也可以扣除由共存物质产生的背景干扰,测定数据的精度高,稳定性好,结果准确可靠。l双光束双检测器,全波长(190-900nm)校正,每种目标元素均可获取准确的测量结果。l仅使用PC即可实现火焰和石墨炉原子化方式切换,不需要手动调整光轴。l轻松实现降本增效:开机即测,不需要预热等待,提升测试效率,空心阴极灯使用寿命更长。l操作方便:实时语音导航和实时质量控制,全信息操作界面,火焰法快速测试按钮。【对应的土壤检测标准】【应用示例】参照标准:HJ 491-2019. 《土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法》测定方法:火焰原子吸收分光光度法型号:ZA3000实验数据除空白外, 每种元素都选择5个点做标准曲线, 另外对三种标准物质分别进行5次重复测试。标准物质处理方法: JSAC 0402、JSAC 0403溶解0.95g样品, 定容至50mL, 得到待测样品 NIES No.2溶解0.90g样品, 定容至50mL, 得到待测样品。* JSAC0402、JSAC0403是日本分析化学会认证的标准物质* NIES No.2是日本国立环境研究所认证的标准物质标准曲线铅、镍、铬的R2都在0.9995以上,其中铅的R2为0.9999,线性良好。实验结果将JSAC0402、JSAC0403和NIES No.2三种标准物质的测试结果与认证结果进行比较,结果可见铅、镍、铬的测试结果均在认证结果范围以内,并且测试结果波动范围更小,因此测试结果准确可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 836.6万元!三峡大学获批重大仪器项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”
    据三峡大学网站信息,三峡大学于近日接到国家自然科学基金委通知,获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”。该项目由李建林教授主持申报,直接经费836.6万元,执行期限五年。该类型项目是三峡大学自建校以来首次获批,也是三峡大学受国家自然科学基金项目单项资助额最高的项目。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题,为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。
  • 新款SmartPave 92动态剪切流变仪——安东帕为您沥青检测铺平道路
    安东帕为沥青、柏油行业及应用量身定制高质量的解决方案。安东帕提供多种产品线的综合解决方案,ProveTec系列产品在石油石化分析领域有多年经验,拥有软化点测试仪、弗拉斯脆点测试仪、数字延度仪等产品,结合密度计、旋转流变仪等多达9种仪器,为您提供测量21种参数的可能并符合36项标准,测量柏油组成和成分的粘度、形变和流动特性、后续跟踪分析的消解柏油样品、软化点、渗透力、延展性、拉伸性能、脆点等。 2017年,安东帕隆重推出全新的SmartPave 92动态剪切流变仪。SmartPave 92可以满足实验室对于沥青结合料以及混合料的检测和质控的需要。如同SmartPave 102,这一新产品基于安东帕成功的模块化智能流变仪技术,确保您获得最精确和最稳定的测量结果。 SmartPave 92采用帕尔贴温控系统对沥青样品进行精确的温度控制,从而可以按照各种行业标准进行结合料和混合料的测试,符合的标准包括AASHTO T315, AASHTO T350, AASHTO TP101, ASTM D7175, ASTM D7405, DIN EN16659,和DIN EN14770。 同时,SmartPave92流变仪可以使用同心圆筒帕尔帖温控测量系统,替代旋转粘度计,进行符合AASHTO T316, ASTM D4402 和 DIN EN13302标准的黏度测试。 SmartPave 92 的优势1.RheoCompass软件提供功能强大,又易于上手的测试模板,手把手协助您展开对于沥青的测试2. 独特的环形TruRay光源让您更清楚的观测样品和测量区域,确保正确的样品填充量3. 使用快速连接器,单手即可方便快捷地安装或更换测试夹具,无需使用额外的工具4. ToolmasterTM自动识别功能,快速自动识别测量夹具和温控系统的型号并设置参数
  • 实现精准的基因剪切 中国科研人员开发出新型“基因剪刀”载体
    p  新华社华盛顿4月6日电(记者 周舟)来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。/pp  被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。/pp  论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。/pp  据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于strong这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切/strong。研究显示,strong这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。/strong/pp  宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。/p
  • 赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!
    个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!Original Lily 珀金埃尔默 2022-04-21 18:15收录于合集#土壤三普3个#环境31个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!
  • 新《土壤环境质量标准》修订历程和思路
    一、修订历程我国现行《土壤环境质量标准》(GB 15618-1995)为1995 年7月13 日发布,1996 年3 月1 日实施。面对我国土壤环境形势的新变化、新问题和新要求,环境保护部2006 年立项修订该标准,由原标准编制单位环境保护部南京环境科学研究所牵头承担。2007年9月原国家环保总局科技标准司在江苏溧阳召开土壤环境标准制修订工作会议,包括本标准修订项目组在内的各项土壤环保标准制修订项目承担单位参加,研讨土壤环保标准制修订思路。2008年起,按照该会议精神,编制组广泛调研了美国、加拿大、英国等土壤环境标准体系及制定方法,并陆续提出多版修订草稿。2009年&mdash 2013年,环境保护部科技标准司多次组织召开土壤环保标准制修订工作会议,并印发《关于修订国家环境保护标准土壤环境质量标准公开征求意见的通知》(环办函[2009]918 号),就标准修订工作的几个关键问题广泛征集了国务院相关部委、各地方、相关科研机构的意见。同期,按照全国土壤污染状况调查工作要求,本标准编制单位结合修订思路编制了《全国土壤污染状况评价技术规定》,并承担了中荷土壤环境保护国际合作项目。《场地环境调查技术导则》(HJ 25.1-2014)、《场地环境监测技术导则》(HJ25.2-2014)、《污染场地风险评估技术导则》(HJ 25.3-2014)、《污染场地土壤修复技术导则》(HJ 25.4-2014)和《污染场地术语》(HJ682-2014)等污染场地系列标准于2014年2月19日正式发布。其中,HJ 25.3-2014 是与现行《土壤环境质量标准》并列的建设用地土壤环境质量评价标准,但考虑到土壤环境问题复杂性,该标准仅规定了风险评估技术原则、方法,未规定启动风险评估的筛选值。2014年4月24日新修订的《环境保护法》第15条、28条和第32条分别规定了国家和地方环境质量标准的制定、实施制度,以及大气、水、土壤环境调查、监测、评估和修复制度,制定实施HJ25系列标准得到上位法的有力支持。2014年6月26日,环境保护部科技标准司在北京召开相关科研专家和管理部门代表参加的《土壤环境质量标准》修订专题研讨会,明确建议修订后的《土壤环境质量标准》继续以农用地土壤环境质量为评价对象,建设用地土壤环境评价适用HJ 25 系列标准并补充制订筛选值。2014年10月31日,环境保护部部长专题会议研究了《土壤环境质量标准》修订工作思路,同意修订后的《土壤环境质量标准》继续以农用地土壤环境质量评价为主,与建设用地土壤环境风险评估标准共同构成土壤环境质量评价标准体系;不再规定全国统一的土壤环境自然背景值。按照上述会议精神,编制组完成了《农用地土壤环境质量标准(征求意见稿)》(修订GB 15618-1995)和《建设用地土壤污染风险筛选指导值(征求意见稿)》(补充HJ 25.3-2014),即本次公开征求意见的两项标准。二、修订依据和思路1.主要依据(1)《中华人民共和国环境保护法》(2014年修订);(2)《国务院办公厅关于印发近期土壤环境保护和综合治理工作安排的通知》(国办发[2013]7 号);(3)《关于加强工业企业关停、搬迁及原址场地再开发利用过程中污染防治工作的通知》(环发[2014]66 号);(4)《环境保护部、工业和信息化部、国土资源部、住房和城乡建设部关于保障工业企业场地再开发利用环境安全的通知》(环发[2012]140 号)。2. 修订思路2.1 土壤污染物项目原标准中土壤污染物项目10个,其中:8个为无机污染物(镉、汞、砷、铜、铅、铬、锌、镍);2 个为有机污染物(六六六、滴滴涕)。根据&ldquo 十一五&rdquo 全国土壤污染状况调查结果,原标准规定的重金属污染物在全国范围检出率、超标率较高,继续保留为必测项目;土壤中六六六和滴滴涕含量虽然有所下降,但在全国范围内仍有一定检出率,部分监测点出现超标,也继续保留为必测项目。与此同时,&ldquo 十一五&rdquo 土壤污染调查发现,土壤污染物种类和数量有所增加,综合考虑污染物检出的区域特征、基层环境监测能力和土壤污染物作用机理研究进展,同时借鉴国外相关标准和《全国土壤污染状况评价技术规定》,增加了总锰、总钴、总硒、总钒、总锑、总铊、氟化物(水溶性氟)、苯并[a]芘、石油烃总量、邻苯二甲酸酯类总量等10 种土壤污染物选测项目,适用于特定地区土壤污染调查与评价。2.2细化土壤污染物限值土壤pH 条件是影响土壤中重金属活性的首要因子,土壤pH 值越低,重金属活性越强、越容易被农作物吸收,尤其是在pH 值5.5 以下的土壤中活性强,而在pH 值5.5 以上的土壤中活性明显下降。为此,将原标准pH 值小于6.5 的情况进一步细分为pH&le 5.5 和5.5<pH&le 6.5 两档,分别规定限值,将原标准中的3档(pH&le 6.5,6.57.5)增加为4 档(pH&le 5.5,5.5<pH&le 6.5,6.5 pH&le 7.5,pH7.5)。标准修订过程中,相关各方普遍反映原标准中镉限值偏严。原标准中的镉限值是按照最保守取值原则确定的,即以最敏感粮食作物水稻籽粒中镉的食品安全标准0.2mg/kg 为依据,推算出各类土壤中镉临界浓度(含量),取其最小值。对全国不同土壤类型、不同作物种类、不同pH 条件下的试验显示,水稻在酸性土壤(pH&le 4)中的土壤镉临界含量为0.3mg/kg 左右;随着pH 值升高,土壤中镉活性降低,包括水稻在内的农作物对土壤中镉的吸收性能降低。与水稻相比,小麦、玉米、大豆等作物对土壤镉的吸收性能低,这些作物产区的土壤镉控制要求可以相应放宽。因此,不宜将0.3mg/kg 作为pH7.5 的所有土壤镉含量限值。考虑到以上情况,针对原标准按pH 值7.5 划分的镉含量两档限值、规定过粗的问题,本次修订将其细化为四档,按照pH 值从小到大,将原标准的0.3mg/kg 和0.6mg/kg 细化为0.3mg/kg、0.4mg/kg、0.5mg/kg 和0.6mg/kg。鉴于原标准中总汞、总砷、总铬、总铜、总镍、总锌按pH 值和用地类型分别规定的限值比较详细,且在实际应用中未出现普遍反映的不合理问题,本次修订暂未调整。对于土壤中的铅和六六六、滴滴涕,本次修订收严了限值。2.3收严土壤中铅含量限值原标准以铅对农作物生长影响为依据,按pH 条件规定了三档限值,分别为250mg/kg(pH6.5)、300mg/kg(pH6.5-7.5)、350mg/kg(pH7.5)。原标准发布于1995年,此后国内外农产品中铅含量限值标准均有所收严。例如,当时的淀粉制品食品卫生标准(GB 2713-81)规定的铅含量限值为1.0 mg/kg,而现行的《食品安全国家标准食品中污染物限量》(GB 2762-2012)规定谷物及其制品中铅含量限值为0.2mg/kg。此外,我国铅土壤环境背景水平偏低,95%范围值为10.0-56.1mg/kg,中位值为23.5 mg/kg,算术平均值为26.0 mg/kg,几何平均值为23.6 mg/kg。近年来,我国多次发生铅污染事件,宽松的土壤铅含量限值不利于及时发现、应对铅污染问题。适度收严土壤中的铅含量限值,有利于及时反映土壤铅含量上升、累积的趋势,也有利于分析周边污染源排放的大气、水中铅含量过高问题。考虑到以上情况,2006年环境保护部发布的《食用农产品产地环境质量评价标准》(HJ 332-2006)规定食用农产品产地土壤中的铅含量限值为80 mg/kg,《全国土壤污染状况评估技术规定》也采用80mg/kg 作为评价依据。因此,本次修订将农用地土壤铅含量限值收严为80 mg/kg。2.4收严土壤中六六六和滴滴涕含量限值原标准中六六六和滴滴涕限值为0.5mg/kg,主要根据上世纪八十年代我国土壤六六六和滴滴涕污染状况和残留水平确定。我国从1983年起禁止使用六六六和滴滴涕,经过20 多年自然消解,土壤中六六六和滴滴涕含量水平已显著降低。&ldquo 十一五&rdquo 全国土壤污染状况调查显示,部分地区土壤六六六和滴滴涕仍有检出。六六六和滴滴涕属于《持久性有机污染物公约》首批重点控制的物质,且当前仍然是食品安全和国际贸易关注的重点污染物,现行食品安全国家标准也规定了这两项污染物限值。因此,本次修订保留这两项污染物为必测项目,限值收严为0.1 mg/kg,与2006 年环境保护部发布的《食用农产品产地环境质量评价标准》(HJ 332-2006)和《全国土壤污染状况评价技术规定》一致。2.5选测项目含量限值本次修订新增10 种土壤污染物选测项目。鉴于目前国内对这些污染物项目的研究成果较少,其限值的确定主要参考了加拿大、德国、荷兰等国家的农用地土壤标准资料,以及&ldquo 七五&rdquo 土壤环境背景值研究数据和&ldquo 十一五&rdquo 全国土壤污染状况调查数据,未按pH 值分档细化定值。2.6更新监测要求本标准更新了土壤环境监测技术规范和土壤污染物分析测试方法。目前,农用地土壤环境质量监测点位布设和样品采集等要求应执行《土壤环境监测技术规范》(HJ/T 166-2004)相关规定,土壤污染物分析测试方法应执行相应的国家环境保护标准。以上监测标准更新时,农用地土壤环境质量标准的监测要求随之更新。2.7补充实施与监督要求本次修订依据新《环境保护法》明确了标准实施和监督的三方面要求:一是各级环保行政主管部门依法履行环保统一监督管理职能,负责监督本标准的实施;二是按照新《环境保护法》第26 条规定的环境保护目标责任制和考核评价制度,以及第28 条规定的环境质量达标管理制度,本标准作为国家环境质量标准应强制实施,实施标准的责任主体是地方各级人民政府;三是考虑到土壤环境问题的特殊性,尤其是大面积农用地土壤污染的治理修复成本过于高昂、不可承受,本标准的实施强调两点原则:首先,农用地土壤环境管理要坚持土壤环境质量反退化原则,土壤中污染物含量低于本标准的,应以控制污染物含量上升为目标,不应局限于&ldquo 达标&rdquo ;其次,农用地土壤环境管理要坚持因地制宜、在保障食品安全前提下治理修复成本最小原则,土壤污染物含量超过本标准的,对相应区域环境质量负责的地方政府应依据新《环境保护法》第32条启动土壤污染详细调查,具体结合超标地区土壤性质、农作物种类等因素进一步开展评估,准确判断可能影响食品安全的关键环节和因素,采取针对性风险管控或土壤修复等措施。
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH6.0的样品检测4水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量1.0g/kg时不检测八大离子5碳酸钙(无机碳)√除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH6.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • 土壤是酸是碱,一测便知
    一、应用背景土壤的酸碱度(pH值)是土壤重要的理化参数,对土壤微量元素的有效性及肥力有重要影响。在土壤pH值在6.5左右时各种营养元素的吸收利用率最|高。过酸或过碱都会影响养分吸收,降低土壤养分的有效性,难以形成良好的土壤结构,严重抑制土壤微生物的活动,影响各种作物生长发育,使土壤失去耕种价值。 《HJ 962-2018 土壤 pH值的测定 电位法》规定了测定土壤pH值的电位法,以水为浸提剂,用pH复合电极(或指示电极配套参比电极)浸入土壤悬浊液测定即可得到土壤的pH值。根据测定的pH值,判读土壤的酸碱性,从而采取相应的改良措施来调节土壤的酸碱度,使得改良后的土壤适于作物的生长。 二、PHSJ-4F型实验室pH计与6121低电导pH复合电极测定土壤pH含量PHSJ-4F型实验室 pH 计是全新设计的新一代实验室分析仪器。仪器支持电极标定功能,具有标液组管理功能, 自动识别 GB、DIN、NIST 等多种 pH 缓冲溶液,配套pH标准缓冲溶液,使用简便快捷。6121低电导pH复合电极适用于电导率100μS/cm以上的低电导率样品。采用多孔PTFE新型液络部结构,不易被污染物堵塞,在复杂样品中有更好的稳定性和可靠性;采用进口环氧树脂材质,耐高温耐酸碱,适用范围广。 ● 测量前准备超纯水处理:煮沸、冷却、密封放置。配套试剂:pH标准缓冲溶液。 ● 土壤pH测试1. 仪器标定 使用pH 4.01(25℃)标准缓冲溶液、pH 6.86(25℃)标准缓冲溶液、pH 9.18(25℃)标准缓冲溶液标定电极。2. 生态环境部标准土壤样品测定结果称取样品各10.00g置于烧杯内,分别用移液管准确移取纯水25mL放于烧杯内,立即用封口膜进行密封。搅拌2分钟后静置30分钟,将电极插入样品溶液中,电极探头浸入液面下悬浊液垂直深度的1/3-2/3处,轻轻摇动样品溶液,待读数稳定后,记录pH值。测试完成后用水清洗电极,并用滤纸吸干电极外部的水,然后进行下次测定。土壤水溶液的电导率一般在几百μS/cm,6121低电导pH复合电极测试结果很好,且稳定的很快。 ● 测量过程中需要注意什么?1. 测量前将超纯水煮沸后冷却至室温,密封放置,避免超纯水中溶解CO2对pH值的影响。2. 测试过程中注意去除电极表面的气泡。 三、雷磁PHSJ-4F型实验室pH计及6121低电导pH复合电极● 大屏幕点阵式液晶显示,直观清晰、内容全面● 3种读数模式:Smart-Read功能,智能判别终点 Timed-Read功能,自动定时存贮读数 Cont- Read功能,连续测量(支持间隔连续测量)● 支持电极性能提醒功能和电极标定提醒功能● 符合GLP规范,支持数据的查阅、删除和打印● 适用范围:电导率100μS/cm以上的低电导率样品● 测量范围:(0-11)pH● 温度范围:(0-80)℃● 材质:进口环氧树脂● 参比结构:Ag/AgCl
  • 精准· 稳定· 高效——日立高效液相色谱仪助力土壤检测
    引言距上一次土壤普查已经过去40多年,为了摸清现在的土壤质量家底,国务院于2022年初印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。普查内容包括:土壤性状、类型、立地条件、利用情况、数据库和样品库构建、质量状况分析、成果汇交汇总等。其中土壤理化性状检测是非常重要的一环,包括金属元素、(半)挥发性有机物、有机农药等的检测。日立作为一家历史悠久的分析检测仪器设计和生产制造商,针对土壤普查可提供多种仪器设备和专业的解决方案,包括:原子吸收分光光度计、X射线荧光光谱仪、高效液相色谱仪、紫外分光光度计。此次介绍的是针对多环芳烃分析之日立高效液相色谱仪Primaide Chromaster的优势及应用案例。土壤检测【解决方案:多环芳烃】液相色谱仪用于检测土壤中的多环芳烃。不断改善,积极响应客户的每一个要求,只为打造液相色谱的新标准:性能卓越,操作简单,结实耐用。 高效液相色谱仪Primaide Chromaster【Primaide Chromaster高效液相色谱仪用于土壤分析的特点】 泵性能优异:即使对16种多环芳烃同时测定,采用梯度洗脱,也可得到优异的分离度和重现性自动进样器残留低:避免上一针样品的残留,影响下一针的结果,让检测更真实可靠柱温箱预热功能:减小色谱柱进出口的温差,峰形更对称,重现性更优异检测器灵敏度高:即使待测物质含量极低,也能“火眼金睛”检测到丰富的配件,灵活的配置,满足不同检测需求【可对应检测标准】【方案示例】参照标准:HJ784 《土壤和沉积物 多环芳烃的测定 高效液相色谱法》测定方法:高效液相色谱法型号:Primaide Chromaster 16种多环芳烃标准品的色谱图(上)和等高线图(下)【联系方式】日立科学仪器(北京)有限公司电话:400 898 1021邮件:contact@hitachi-hightech.com查看相关产品介绍:高效液相色谱仪・氨基酸分析仪 (HPLC/AAA) : 日立高新技术在中国 (hitachi-hightech.com)END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 土壤养分检测仪厂家-土壤养分检测仪厂家
    土壤养分检测仪厂家-土壤养分检测仪厂家 Manufacturer of soil nutrient detector - manufacturer of soil nutrient detector土壤养分检测仪 施肥是根据土壤中的养分状况来决定的,土壤中的养分包含很多种,既有人们熟悉的氮磷钾元素,又存在着钙、镁、硫、铁、锰、硼、锌、铜、氯等微量元素,这些元素为我们的作物生长提供了足够的需要,但是随着土壤一系列问题的出现,比如酸化、盐渍化等,这些因素导致我们的土壤养分供给不足,无法满足农业生产的要求,这就要求我们及时改变现状。土壤养分速测仪检测项目:1、土壤养分:●全氮、全磷、全钾、铵态氮、硝态氮、碱解氮、速效磷、速效钾、有机质、pH值、水份、盐分等; ●中微量元素:钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等。2、肥料养分:●单质化肥中的氮素、磷素、钾素、尿素氮素、缩二脲测定;●复(混)合肥及尿素中的全氮、全磷、全钾; ●有机肥中全氮、全磷、全钾、硝态氮、速效磷、速效钾、有机质,●肥料中水溶性腐植酸、游离腐殖酸、总腐殖酸测定;●有机肥及微肥中微量元素(钙、镁、硫、铁、锰、硼、锌、铜、氯、硅)测定等。3、植株养分:●植株中的氮素、磷素、钾素;钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等项。4、植物养分:●硝态氮、速效磷、速效钾以及作物中的微量元素等。5、土壤、肥料重金属:●铅、铬、镉、砷、汞等重金属。土壤养分速测仪特点:★全国《机箱/药剂一体式铝合金机箱》专利设计,便于携带、坚固耐用,配套成品药剂。★微电脑控制,数字化线路、程序化设计,液晶显示,交直流两用,可野外流动测试,程度降低操作者的失误和劳动强度。★分辨率:0.001,触摸式按键,内置热敏打印机,可打印测试结果。★全项目土壤肥料养分检测仪可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。★采用高亮LED灯光源、双拨轮滤光式处理技术,保证光源波长稳定, 硅半导体作为信号接收系统, 寿命长达10万小时级别。光源稳定,重现性好,准确度高。★比色槽部分采用单通道设计,无机械位移及磨损,光路测试定位精确,保证测定结果精度。★配套专家施肥系统数据,可对百余种全国农业、果树、 经济作物的目标产量科学计算推荐施肥量。★采用自主发明专利分析方法,保证检测结果达到国标要求。
  • 土壤养分检测仪检测结果准确
    随着工业化和农业现代化的快速发展,土壤污染和退化问题日益严重,对土壤成分进行准确、快速的检测变得至关重要。土壤养分检测仪器作为一种高效、便捷的检测工具,正广泛应用。 土壤养分检测仪报价参考→https://www.instrument.com.cn/show/C456787.html  一、土壤养分检测仪的工作原理:  土壤养分快速检测仪通常采用电化学法、光谱法或色度法等原理进行工作。这些方法通过测量土壤样品中与养分含量相关的物理或化学性质,如电导率、吸光度等,从而间接推算出土壤中各类养分的含量。例如,电化学法通过测量土壤中的离子浓度来推算氮、磷、钾等元素的含量;光谱法则是利用不同元素对光的吸收特性,通过测量特定波长的光线在土壤中的吸收程度来推算养分含量。  二、土壤养分检测仪器的优势:  操作简便:该仪器通常配备用户友好的操作界面和智能化的操作系统,使得操作人员无需复杂培训即可轻松上手。  多元素检测:土壤养分快速检测仪能够同时检测多种元素,如氮、磷、钾、有机质等,全面揭示土壤养分状况。  快速准确:土壤养分快速检测仪能够在短时间内完成大量土壤样品的检测,且结果准确度高,为农业生产提供了及时可靠的数据支持。  环保节能:与传统的化学分析方法相比,土壤养分快速检测仪具有更低的能耗和环境污染,符合现代农业生产对环保的要求。  三、土壤养分检测仪在农业生产中的作用:  指导施肥:通过快速检测土壤养分含量,农民可以了解土壤的肥力状况,从而科学合理地制定施肥方案,提高肥料利用率,减少浪费和环境污染。  调整种植结构:根据不同地块土壤养分的差异,农民可以调整种植结构,选择适合当地土壤条件的作物品种,提高农业生产效益。  监测土壤质量:长期监测土壤养分含量,可以及时发现土壤退化、污染等问题,为土壤修复和改良提供科学依据。  四、土壤养分检测仪器的应用领域:  1、农业领域  在农业领域,土壤养分检测仪器发挥着至关重要的作用。通过对土壤中的养分、pH值、有机质等关键成分进行分析,农民可以了解土壤的肥力状况和适宜种植的作物类型,从而制定科学的施肥计划和种植策略。这不仅能够提高农作物的产量和品质,还能减少化肥和农药的过量使用,保护生态环境。  2、环境保护领域  环境保护领域是土壤养分快速检测仪器的另一个重要应用领域。通过检测土壤中的重金属、有机物等污染物含量,可以评估土壤污染程度和风险等级,为制定环境保护措施提供科学依据。此外,土壤成分检测仪器还可以用于监测土壤修复工程的效果,确保修复后的土壤符合环境保护标准。  3、地质勘探领域  在地质勘探领域,土壤养分检测仪器同样具有广泛的应用。通过对不同地区的土壤成分进行分析,可以了解地质构造、矿产资源分布和地下水资源状况等信息。这些信息对于地质研究和资源开发具有重要意义,有助于推动地质科学和经济的发展。  4、城市规划与建设领域  在城市规划与建设领域,土壤养分快速检测仪器也发挥着不可或缺的作用。在城市规划和建设中,需要对土壤进行详细的调查和分析,以确保建筑基础的安全和稳定性。土壤检测仪器可以快速、准确地提供土壤的物理和化学性质数据,为城市规划和建设提供有力支持。  五、土壤养分检测仪配置清单:仪器箱药品箱序号名称数量序号名称数量1主仪器(内置打印机)1台1土壤养分试剂 (氮、磷、钾、有机质)1套2PH笔1支2三角瓶100ml2个3盐分笔1支3容量瓶100ml1个4刻度移液管1ml1支4洗瓶1个5刻度移液管2ml1支5角勺(大中小)1套6刻度移液管5ml1支6定性滤纸2盒7刻度移液管10ml1支7吸球1个8电子天平(0.01g)1台8铝盒1个9电源线1根9塑料量筒50ml1个10说明书、合格证1套1010cm试管(1.5)30个11离心管架1个12比色皿(10个/套)1套   土壤养分检测仪作为现代农业生产中的重要工具,其快速准确、操作简便、多元素检测等优势为农业生产提供了有力的支持。随着科技的不断进步和应用领域的拓展,土壤养分快速检测仪将在未来发挥更加重要的作用,助力农业生产实现绿色、高效、可持续发展。
  • 检测土壤质量,土壤养分检测仪引导合理施肥
    土壤养分检测仪在农业领域中发挥着关键的作用,通过检测土壤的养分含量,为合理施肥提供科学依据。以下是土壤养分检测仪在检测土壤质量和引导合理施肥方面的应用和优势:了解土壤养分检测仪产品详情→https://www.instrument.com.cn/netshow/SH116147/C541962.htm应用领域农田管理:用于农田土壤的养分测定,帮助农民了解土壤中各种养分的含量,以实现科学合理的施肥。农业科研:用于农业科研机构对土壤质量的研究,为制定合理的土壤管理策略提供数据支持。农业咨询:农业专业人员可以利用土壤养分检测仪为农民提供合理的施肥建议,以提高农作物产量和质量。优势和特点移动实验室:土壤养分检测仪具备携带方便的特点,可以在农田、实验室以及野外环境中进行即时测试,提供移动的土壤实验室。实时鉴别:通过实时检测,能够准确鉴别土壤中的各种养分含量,包括氮、磷、钾等,实现对土壤养分的实时监测。精准施肥:通过检测结果,为农民和农业从业者提供有针对性的施肥建议,确保农田中各类作物得到合理的养分供应。数据上传和分析:土壤养分检测仪通常具有数据上传功能,可将检测结果上传至云端或专业软件进行分析,实现对土壤质量的长短期动态监测。节省成本:相较于传统的土壤检测方法,土壤养分检测仪具有更高的效率,可避免繁琐的实验室操作,从而降低检测成本。通过引导合理施肥,土壤养分检测仪有助于提高土地的可持续利用率,增强农业生产的效益,同时促进环境友好的农业实践。
  • 高精度土壤养分快速检测仪
    高精度土壤养分快速检测仪(高精度土壤養分快速檢測儀)是由山东云唐生产研发的用于测定土壤中养分含量的仪器,目前采购模式均为单一来源采购 。咨询客服均有优惠!山东云唐智能科技有限公司旗下另有山东云泽精密仪器有限公司、山东蓝虹光电科技有限公司,一共只此三家,其余皆不属于云唐公司体系,请知晓!高精度土壤养分快速检测仪如何指导土壤修复要想进行土壤的污染修复工作,就要了解土壤,对土壤进行全方位的检测,土壤团粒结构特别不稳定,容易受到外界环境比如施肥的影响,我们现在使用的化肥大部分都是酸性的,这样的土地上作物是无法健康成长的,土壤养分检测仪可以检测土壤中的各种成分,了解土壤的养分状况,从而依据作物的种植种类数据进行对比分析,找出合理的施肥用料配方,依据配方对土壤进行改良,从而提升作物产量。在农业生产中,肥料不是用的越多越好,过量施肥容易造成土壤污染,土壤酸碱化及板结化严重,所以在了解了土壤情况以后,应该减少化肥使用,增施有机肥,尤其是肥料中的各种元素搭配,避免单一肥料造成的土壤养分不均衡现象,实现作物平衡施肥、减少了肥料的浪费,真正实现农业的可持续发展。高精度土壤养分快速检测仪使用必要性测土施肥对农业发展的帮助作用很大,能实现科学种田的良性发展模式,是山东云唐智能科技新推出的高智能测土施肥仪器,使用安卓智能操作系统,四核处理器,配有7寸液晶屏幕,操作简单,大大减少了操作失误的问题,内置各种作物测土配方施肥功能,可对百余种全国农业、果树、 经济作物的目标产量科学计算推荐施肥量,指导农业生产。农民是测土配方施肥技术的执行者和落实者,也是受益者。检验测土配方施肥的实际效果,及时获得农民的反馈信息,不断完善管理体系、技术体系和服务体系。同时,为科学地评价测土配方施肥的实际效果,必须对一定的区域进行动态调查。测土配方施肥技术宣传培训是提高农民科学施肥意识,普及技术的重要手段。农民是测土配方施肥技术的使用者,迫切需要向农民传授科学施肥方法和模式 同时还要加强对各级技术人员、肥料生产企业、肥料经销商的系统培训,逐步建立技术人员和肥料商持证上岗制度。测土配方施肥是以养分归还(补偿)学说、同等重要律、不可代替律、肥料效应报酬递减律和因子综合作用律等为理论依据,以确定没养分的施肥总量和配比为主要内容。为了补充发挥肥料的大增产效益,施肥必须怀选用良种、肥水管理、种植密度、耕作制度和气候变化等影响肥效的诸因素结合,形成一套完整的施肥技术体系。作物生长发育需要吸收各种养分,但严重影响作物生长,限制作物产量的是土壤中那种相对含量最小的养分因素,也就是最缺的那种养分(最小养分)。如果忽视这个最小养分,即使继续增加其他养分,作物产量也难以再提高。只有增加最小养分的量,产量才能相应提高。经济合理的施肥方案,是将作物所缺的各种养分同时按作物所需比例相应提高,作物才会高产。高精度土壤养分快速检测仪特点 1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。2、内置传感器接口,配备FDR传感器,可测土壤水分含量、土壤环境温度、土壤电导率。3、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。4、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。7、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。8、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。9、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。10、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。11、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。12、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。
  • 【干货】土壤监测技术—土壤采样如何减少误差?
    随着《土壤污染防治行动计划》(以下简称“土十条”)的发布,很多业内人士分析认为,未来5年我国的土壤检测市场潜力巨大,可高达520亿元。  土壤污染实际状况的把握和风险管控的前提是采样的代表性和检测的准确性。但是笔者在考察中发现,实际操作时,土壤采样的代表性、采样密度以及检测准确性等有时却成为土壤检测的技术瓶颈。  事实上,土壤本身是个高度不均匀的介质,采样误差远远大于分析误差。  有研究对1亩地这样一个土体性质变化不大的地块随机选取9 个样点,分别采集9 个土样,分析土壤有效磷含量。结果发现样品间的方差是平行样的6倍,是仪器读数重复的73倍,足见采样误差比起仪器分析误差大得多。  同样,另一个案例对一个长40米宽32米的田块进行8米×8米的网格采样,对所采的20个样品分析全氮发现,采样误差远远大于分析误差。  因此土壤污染研究中的采样问题可能成为时下土壤检测行业的瓶颈。为此我们有必要说说土壤采样如何减少误差这一问题。  土壤是个开放体系。在生态系统中,土壤位于水圈、大气圈、岩石圈和生物圈的核心圈。土壤圈本身是个开放体系,和4个圈层存在着物质和能量的交换。大气圈和水圈的污染物质一部分会进入土壤,造成土壤污染。  根据进入途径的不同,重金属等污染物在空间分布上有着很大的差别。对于通过点源如冶炼厂的污染排放进入土壤的污染物,其以污染点为中心分布,同时,污染物的空间分布还受常年主导风向的影响显著,点源的影响范围和程度受到点源的排放量、烟囱高度、地形、气象条件的影响。  对于水源污染,一般呈现沿着河流两岸污染的线型分布特征,且受地形影响很大。由于土壤具有较大的吸附性能,进入稻田后,重金属在田块中非常不均匀。据日本科学家研究,一个54米长的田块中,镉、锌、铅等元素的浓度可以相差一倍,镉分别是2.02毫克/千克和1.04毫克/千克,铜分别是348毫克/千克~168毫克/千克,锌分别是101毫克/千克~53.1毫克/千克 且田块左右两侧数值也不尽相同。  而在我国台湾地区的研究中,一个50米的田块进水口的镉浓度可以高达7.0毫克/千克,而出水口可以低到0.2毫克/千克,相差高达35倍。如果没有多点采样,容易对田块的污染状况造成误判。  在大气、水、土壤等环境要素中,唯有土壤是最不均匀的介质。土壤是一个多相的疏松多孔体系,同时也是一个胶体体系、化学体系、生物体系,还是一个氧化还原体系。  所以污染物进入土壤后会发生各种各样的物理、化学和生物学过程而重新分布。固然到达土壤表面的污染物主要分布于土壤的表面,但重金属主要是被黏土矿物部分吸附,因此其之后的分布则受到黏土矿物分布的影响。  有研究测定土壤表层0~15厘米的土壤镉含量为5.0毫克/千克,但如果分离出其黏土部分,测定到的镉含量则高达18毫克/千克。由于土壤中镉主要吸附在其中的黏粒上,所以采集土样时主要土壤质地的差异将带来显著的影响。  因此,在耕作过程中,土壤颗粒的再分布容易造成土壤重金属的分异。有日本科学家研究表明,在进行犁耙田后,由于土壤黏粒的上浮以及随后其沉淀于土壤表层,水田表层3厘米土层的重金属含量可以比其下的土层高出一倍以上。所以采样时务必上下均匀取样,否则容易带来误差。  在进行重金属分析的采样过程中,除了避免采样工具和器具带入的污染外,必须确定采样方式(蛇形、对角线、梅花点等),进行多点采样(通常5点或以上)、采集混合样 单点采样则必须是上下均匀采样。  而对其他有机污染物的采样,考虑到污染物的性质(挥发性、光分解等),更应该采取各种相对应的采样对策,以确保采样带来的误差降到最小。
  • 土壤指标检测方法全公布!第三次全国土壤普查技术规程规范(修订版)发布
    日前,国务院第三次全国土壤普查领导小组办公室发布了《第三次全国土壤普查技术规程(修订版)》。此规程规定了第三次全国土壤普查(以下简称“土壤三普”)的总体组织与任务要求包括资料收集整理与前期准备、外业调查采样与内业测试化验等具体工作流程、质量控制体系、成果汇总与验收等技术规范。本规程适用于土壤三普,也可作为全国或地方性大面积土壤调查或监测工作的参考。部分样品检测方法如下:7 样品检测7 1 基本要求省级土壤普查办负责组织样品检测工作,承担检测任务的实验室应在省级质量控制实验室的指导下按照检测任务要求和本技术规范有关规定开展土壤样品检测工,作按时报送检测结果。7 2 检测计划省级土壤普查办负责对本区域内检测工作进行统筹,制定样品检测计划,样品检测计划应明确承担单位、样品细磨、检测指标及方法、结果上报等内容,原则上,土壤容重指标由县级土壤普查办负责,其他指标由承担检测实验室负责,开展盐碱土普查省份的省级质量控制实验室,负责参照本文件及相关标准做好剖面样点地下水与灌溉水样品相关指标检测及结果上报等。7 3 样品细磨将通过2mm 孔径筛的土样用多点取样法分取约25g (根据检测指标确定), 磨细,使之全部通过0.25 mm 孔径筛,供有机质、碳酸钙、全氮、游离铁等指标检测,将通过2mm 孔径筛的土样用多点取样法分取约25g (根据检测指标确定),用玛瑙研钵或玛瑙球磨机磨细,使之全部通过0.149mm孔径筛,供全磷等全量养分、重金属等指标检测,细磨过程中样品编码必须始终保持一致,制样所用工具每处理完1个样品后需清洁干净,避免交叉污染,不同粒径的样品必须自通过2mm孔径筛的土样重新取样制备并全部过筛,严禁套筛,样品制备时, 应现场填写土壤样品制备记录。7 4 检测指标及方法7 4 1 检测指标耕地园地、林地草地的表层样品和剖面样品检测指标见附录F。7 4 2 检测方法各项指标检测方法见附录G。7 4 3 烘干基换算烘干基结果换算需测定风干土样水分的含量,每次检测称样量5.00g,做平行双样检测。7 5 结果上报完成样品检测后,检测员需及时填写原始记录,原始记录以烘干基计,并上报风干土样水分含量,原始记录经三级审核无误后,及时填写检测结果电子数据填报记录表(参见附录H),并上报至土壤普查工作平台。全部内容详见附件:《第三次全国土壤普查技术规程(修订版)》.pdf
  • 5.2万亿!土壤监测仪器新“蓝海”值得期待
    和空气、水一样,土壤是我们人类赖以生存的物质基础。然而,近年来频繁发生的土壤污染事件,着实令人担忧。土壤,作为人类赖以生存的物质基础,随着工业化和城镇化进程的加快,如今已经成为大部分污染物的主要消纳地。从污染企业倾倒废液到汞大米、铅小麦......土壤污染事件已屡见不鲜。土壤污染不仅威胁生态环境安全,还危及人类健康安全。因此,在土壤重金属超标、土地健康指数下降等条件下,土壤修复就成为了一件刻不容缓的大事。土壤修复知多少?土壤修复是指利用物理、化学和生物的方法转移、吸收、降解和转化土壤中的污染物,使其浓度降低到可接受水平,或将有毒有害的污染物转化为无害的物质。由于目前我国土壤环境总体状况堪忧,部分地区污染较为严重。土壤污染问题关系人民群众身体健康,关系美丽中国建设,保护好土壤环境是推进生态文明建设和维护国家生态安全的重要内容。因此,政府部门高度重视土壤的保护和修复工作,并采取了一系列保护和综合治理措施,持续加大土壤保护和修复力度。详细来讲,随着“土十条”的发布,以及《土壤污染防治法》、《污染地块土壤环境管理办法》、《2017年国家网土壤环境监测技术要求》等法律、管理办法及实施细则等的起草和制定,我国有望在未来几年内陆续出台土壤修复相关法规政策,完善土壤修复法律体系,为我国土壤修复行业提供更加详细的指导意见,助力土壤修复行业的有序发展。土壤修复万亿市场蓝海已现据悉,我国土壤污染修复治理起步较晚,意味着未来市场空间较大,那么,我国土壤修复市场有多大呢?数据显示,2016年我国土壤修复行业订单总额接近60亿元,2017年我国土壤修复产业订单总额激增至250亿元左右,2020年的我国土壤修复总规模400亿左右,业内专家分析认为,我国的土壤修复产业仍在起步阶段,市场规模逐年增长。此外,随着华东、西南等地详查和治理方案制定的完成,修复需求逐步明确,有望支撑2020年以后的市场增长。业内人士指出:其主要“包括场地修复、耕地修复、矿山修复等在内,土壤修复潜在总市场空间合计将超过5.2万亿。作为政策导向型产业,不断落地的政策是土壤修复万亿市场“蓝海”实现的坚强后盾。从土壤污染防治行动计划到土壤污染防治法,再到土壤环境监测技术要求等,足见国家对土壤污染防治的重视。土壤修复万亿市场“蓝海”的实现,不仅需要政策的支持,更需要相关环保企业不断修炼“内功”,挖掘市场潜力。土壤监测仪器将迎巨大需求上述,小编提到过,土壤修复是使遭受污染的土壤恢复正常功能的技术措施,由于土壤污染的严重性及其修复难度,以及对污染土壤的修复技术的迫切性和需要,污染土壤修复已成为当今环境科学研究的热点与极具挑战性的领域。土壤修复,监测先行,土壤修复监测的项目主要是检测土壤中的污染物及有毒有害成分,包含农药残留、重金属含量、固体废弃物含量、放射性物质检测、无机非金属含量等。土壤修复监测方法根据要检测项目的不同而采用不同方法,主要有气相色谱法、紫外分光光度法、离子色谱法、频域反射法、原子吸收光谱法、原子荧光法、火焰原子吸收分光光度法等。为了监测污染土地的修复改善过程,相关土壤监测仪器仪表就变得尤其重要。对土壤中的沉积物,如汞、砷、硒、铋、锑等重金属测定,有双道原子荧光光谱、液相色谱-原子荧光联用仪、X荧光光谱仪、电感耦合等离子体光谱仪等。此外,通过监测仪器的使用有利于构建土壤环境监测工作体系、开展土壤环境例行监测,及时对土壤环境监测成果总结,掌握全国范围及重点区域农产品产地土壤环境总体状况、潜在风险及变化趋势。同时随着技术的不断发展,土壤监测也会变得更加系统化和智能化。不难看出,土壤修复产业近年来迅速兴起,成为继污水处理、大气治理、固废处理之后环保市场上又一重要细分板块,在业内人士分析土壤修复潜在总市场空间合计将超过5.2万亿下,土壤监测仪器将迎巨大需求,“新蓝海”值得期待。
  • 土壤监测有“谱” | 谱育科技亮相“宁夏环境土壤监测技术大会”
    21年7月9日,宁夏化学分析测试协会主办的宁夏环境土壤监测技术大会在宁夏银川隆重召开,来自土壤监测研究领域、各地环境监测机构、高等院校等200余名专家代表前往赴会。谱育科技受邀参会,跟与会代表一起探讨我国土壤环境监测的技术要点,帮助提升土壤环境监测领域技术能力和水平,助力早日打赢“净土保卫战”。EXPEC在本次大会上,谱育科技向现场嘉宾为展示了全方位、专业化的土壤污染防治整体解决方案及产品应用,可有效解决我国土壤治理所面临的实际问题,推进我国区域和城市土壤污染科学防控进程。在展会现场,专家代表等前来交流洽谈。 谱育科技 土壤污染防治整体解决方案 自“土十条”实施以来,国家对土壤保护和土壤修复的工作日益重视,确定了2050年实现土壤环境全面改善、生态系统良性循环的宏伟目标。谱育科技基于全面的质谱、色谱、光谱等核心分析检测技术,提供配置了无机元素检测、有机污染物检测、前处理设备等土壤监测设备的全套土壤检测解决方案,结合国内实战经验丰富的移动实验室,满足土壤样品的现场快速筛查与检测需求。SUPEC 7000 ICP-MS谱育科技SUPEC 7000 ICP-MS,各性能指标已达到国际主流ICP-MS水平,具有优异的基质耐受性、成熟与稳定的配置,可有效开展土壤中重金属元素的分析。EXPEC 5210 LC-MS/MS谱育科技EXPEC 5210 LC-MS/MS可用于分析土壤中POPs等有机化合物,设备搭配ULC 510型超高压液相色谱系统,采用E-Spray双正交电喷雾离子源技术,对土壤样品具有更佳的离子产率和抗基体能力;全中文的操作界面,分析人员可快速上手。EXPEC 5230 GC-MS/MSGC-MS/MS用于分析土壤中VOC、SVOC、除草剂等有机化合物。谱育科技EXPEC 5230 GC-MS/MS 具有独特的90°偏转EI离子源,具有更出色的灵敏度和优异的稳定性,有效应对土壤的复杂基质,抗污染效果好。EXPEC 790S超级微波消解仪谱育科技EXPEC 790S 超级微波化学工作站(单腔体)采用全新一代超级微波技术,增加了全自动密闭、高温高压、急速水冷等技术,提升微波消解效率及操作便捷性,相比于传统的土壤消解法,具有更高的准确性,且省时省力。土壤有机前处理设备土壤中有机氯农药、多氯联苯、酚类化合物等有机物的检测,常常需提取、净化、浓缩等前处理。谱育科技可提供EXPEC 510、EXPEC 520、EXPEC 550和EXPEC 570组成的整套有机前处理设备。该系列的产品具有操作简单,仪器性能稳定,自动化程度高等特点,满足土壤检测要求的同时,也给广大用户带来了更好的使用体验。在土壤污染防治方面,谱育科技承担了多项国家科技计划项目成果转化,未来也将继续聚焦土壤监测领域的创新产品研发和应用,以实现高精度、快响应、多元素的土壤检测,为生态环境保护事业提供专业技术创新的力量。
  • 土壤也要“体检” 土壤监测仪器仪表迎机遇
    土壤污染形势严峻 土壤是人类赖以生存,不可或缺的重要自然资源,事关家家户户的米袋子、菜篮子、水缸子,事关国家生态安全,事关美丽中国建设。然而,相比大气污染和水污染,土壤污染以其隐蔽性、潜伏性、长期性、不均匀性和不可逆转性,成为了污染防治攻坚战中最难缠的“看不见的敌人”。近些年,无论是农用耕地还是建设用地,人们对“脚下的环境”越发关注。 另外,小编了解到,土壤污染的特点主要有四个,首先是具有隐蔽性和滞后性。土壤污染往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤污染从产生污染到出现问题,通常会滞后很长时间。 其次,具有累积性和地域性。污染物质在大气和水体中,一般都比在土壤中更容易迁移。这使得污染物质在土壤中并不像在大气和水体中那样容易扩散和稀释,因此容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。 再者,具有不可逆性。如被某些重金属污染的土壤需要200~1000年才能够恢复。最后,土壤污染治理的艰难性。如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用也有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。 因此,土壤污染一旦发生,则很难恢复,治理成本较高、治理周期较长。文章开头,小编提到,对于土壤污染防治处于“后知后觉”的状态,很大程度上是因为我国缺乏对土壤环境质量评估的重视,没有及时对土壤环境质量现状展开调查评估。而在两会上,全国人大代表、致公党江苏省委副主委沈仁芳表示,实施第三次全国土壤普查,对我国土壤质量进行“全面体检”已成为当务之急和农业现代化发展的重大战略需求。土壤质量亟待“体检” 土壤环境质量是土壤质量的一部分,是土壤容纳、吸收、净化污染物的状况。土壤环境质量评估是按一定的标准和方法,通过对土壤中污染物浓度进行监测,判定土壤环境是否受到污染,是单要素环境质量评估的一种。 据数据显示,将全国20.23亿亩耕地质量等级由高到低依次划分为一至十等,评价为一至三等的耕地面积为6.32亿亩,占耕地总面积的31.24%;评价为四至六等的耕地面积为9.47亿亩,占耕地总面积的46.81%;评价为七至十等的耕地面积为4.44亿亩,占耕地总面积的21.95%。(数据为2019年全国耕地质量公告)。 此外,耕地土壤质量的监测,主要是了解土壤质量变化情况。其重点监测pH、铅、镉、汞、砷、铬、镍、铜、锌等内容,根据国家土壤环境质量对农田土壤进行质量分等定级,并提出农业生产合理布局、环境质量与土壤修复的意见。 对土壤环境质量评估是加强土壤污染防治工作的前提,对耕地土壤进行一次全面“体检”,帮助农民因土、因作物施肥,提高肥效利用率,保护土壤和环境,在此发展背景下,其监测仪器仪表设备发展强劲。“体检”土壤 相关仪器仪表设备发展强劲 土壤环境监测网络由各类监测仪器仪表组成,通过对各项指标的监测分析,探讨各参数间的相互关系,为土壤质量的监测和科研或决策部门提供了科学的土壤参数。根据全国土壤详查实验室要求,承担土壤详查的实验室要具备一定数量仪器设备,如分光光度计、电感耦合等离子体发射光谱仪、原子荧光光谱仪、微波消解仪、索氏提取器、气相色谱-质谱联用仪等。 此外,土壤中除了矿物质、有机质、土壤微生物,杂质,剩下的就只有土了。但其实土壤空隙中还存在着部分液体、固体。土壤分析是对土壤的组成分和物理、化学性质进行的定性、定量测定。作为农业发展的基础,土壤分析对农业也有具有举足轻重的作用,如不同的土壤适合种何种作物、作物生长过程中缺少哪种元素等都可以通过土壤分析检测而得出结果。 作为做好土壤污染防治、质量评估的基础,土壤监测必然提速。可以说,土壤监测是贯穿至土壤污染防治始终的。在初期基础性工作中,土壤污染状况以及污染地块分布调查需要监测先行,从而摸清“家底”;因此,耕地土壤质量亟待全面“体检”,给土壤监测仪器仪表带来的机遇不可小觑。最后,我们要知道,土壤是人类赖以生存,不可或缺的重要自然资源,土壤相关监测仪器仪表等将成为推动土壤污染监测的关键,其设备发展强劲。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制