当前位置: 仪器信息网 > 行业主题 > >

覆盖层测厚仪

仪器信息网覆盖层测厚仪专题为您提供2024年最新覆盖层测厚仪价格报价、厂家品牌的相关信息, 包括覆盖层测厚仪参数、型号等,不管是国产,还是进口品牌的覆盖层测厚仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合覆盖层测厚仪相关的耗材配件、试剂标物,还有覆盖层测厚仪相关的最新资讯、资料,以及覆盖层测厚仪相关的解决方案。

覆盖层测厚仪相关的论坛

  • 【原创大赛】SGS材料说: 显微镜法测量金属和氧化物覆盖层厚度

    【原创大赛】SGS材料说: 显微镜法测量金属和氧化物覆盖层厚度

    [align=center][b]显微镜法测量金属和氧化物覆盖层厚度[/b][/align][b][/b][align=center]SGS 王晓卫[/align][align=left][b]1 前言:[/b][/align][align=left]在产品表面处理中,通过采用物理或者化学等方法(多数为化学方法),在金属或非金属材料的表面形成一层或多层具有一定厚度的金属和氧化物覆盖层,从而起到对产品外表美观、装饰,导电,防腐蚀等作用。[/align][align=left]覆盖层又分为金属覆盖层和氧化物覆盖层。金属覆盖层中常见的多为电镀层,如铜合金表面镀镍镀锡;氧化物覆盖层多为化学转化膜,如铝合金表面生成的氧化膜。[/align][align=left]覆盖层厚度和均匀性是表征覆盖层性能的重要参数,在科学研究、工艺控制、产品质量检测中常常对覆盖层厚度进行测量,测量方法主要有涡流法、磁性法、库仑法、显微镜法、扫描电子显微镜法、轮廓仪法,X射线法。显微镜法测量覆盖层厚度简单且直观,是较早使用的光学测量法。显微镜法测量厚度是一种破坏性测量方法,由于测量精确度高,也被作为厚度测量的仲裁方法。[/align][align=left][b]2 测量原理:[/b][/align][align=left]从待测件上切割一块试样,镶嵌后,采用适当的技术对横断面进行研磨、抛光和侵蚀。用校正过的标尺测量覆盖层横断面的厚度。[/align][align=left][b]3 测量流程:[/b][/align][align=left]取样→清洗→吹干→试样镶嵌→研磨→抛光→清洗→吹干→侵蚀→清洗→吹干→上校准过得金相显微镜观察拍照→使用测量软件,测量厚度。[/align][align=left][b]4 测试举例[/b][/align][align=left]4.1 铜合金表面电镀镍+电镀锡厚度测量[/align][align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271415160847_2204_2883703_3.jpg!w690x517.jpg[/img][/align][align=left]使用双氧水氨水水溶液腐蚀,各层显示出清晰的分界面。铜合金表面电镀镍层厚度在3.3-4.6um之间,平均值为3.9um;最外层相对疏松电镀锡,厚度相对不均匀,在3.8-7.5um之间,平均值为4.9um。[/align][align=left][b]4.2 铝合金表面氧化膜厚度测量[/b][/align][align=center][b][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271416246565_4483_2883703_3.jpg!w690x517.jpg[/img][/b][/align][align=left]使用keller试剂腐蚀,清晰显示处氧化层与基体分界线。铝合金表面生成氧化膜厚度在15.3-15.8um,平均值为15.6um。[/align][align=left][b]5 测量心得[/b][/align][align=left]1.显微镜法测厚度的关键是制备符合要求的横断面。如果制备的横断面不符合要求,无论多么精密的设备都不能测量出厚度的真实值。样品横断面制备过程需考虑横断面斜度,覆盖层变形,表面粗糙度等。[/align][align=left]2.选择合适的试剂进行适当的侵蚀,在两种物质的界面上产生细而清晰地黑线,准确测量覆盖层厚度,如果不侵蚀或者侵蚀过度,界面线会不清晰或者线条变宽,产生测量误差。[/align]

  • 【求助】城市固体废物(MSW)填埋场中单元覆盖层防渗研究进展

    1MSW填埋、存在问题及单元覆盖层的作用 填埋(landfill)作为城市固体废物(MSW)处置的一种主要方式,诞生于20世纪30年代,成型于60年代。经过70余年的发展,已经形成一套比较完整的填埋工艺,美国、英国及德国采用填埋技术处理的MSW总量已分别占到本国城市MSW总产量的95%、90%和75%。1997年,我国MSW累计堆存量为60×106t;2001年MSW的年产量达到1.3×108t,占世界总量的1/4以上,并以每年8%的速度增加;我国现行的MSW处理方式包括填埋、焚烧及回收利用等,但最主要的还是填埋。根据世界各国的MSW处理经验,特别是现阶段的科学技术发展水平,在未来相当长的时期内,MSW处理仍将以“填埋为主、资源化和焚烧为辅”。 尽管不同国家或国际组织制定的填埋规范有一定差异,但现代MSW填埋结构一般都具有以下4个基本部分:底部防渗材料系统(bottom liner)、底部渗滤液排导系统(leachate collection system)、MSW单元与单元覆盖层互层系统(cell and daily cover material)及最终覆盖系统(cover)。其中MSW与单元覆盖层互层系统为结构主体,一般由2.5~3.0m厚的MSW与20~30cm厚的填土交互堆积组成。应该说,在上述MSW填埋结构中,凝聚着不同学者的大量科研成果。Hollingshead(1988)、Peyton等(1990)、Schroeder(1990)、Oweis(1990)、陈岳(1993)、Akgün(199)、Bouazza等(1998)、张澄博、孔德坊(1998)、Dö rhö fer等(1998)及Dorn等(2001)曾经在场址选择、衬料与最终覆盖层设计、填埋结构水文地质学及单元覆盖层对MSW污染物的吸附、净化等领域进行过深入研究[1~4]。 现代MSW填埋场设计的终极目标是切断废物和周围环境,特别是地下水之间的水力联系,但是,许多研究成果及世界各国大量填埋场的运行情况表明,要完全实现这一目标是困难的。 1977年,美国环保局(EPA)委托某水文咨询公司对全美填埋场的安全状况进行了一次大规模调查。调查工作涉及15个州的122个场地,最后在11个州中选择50个具有广泛代表性的场地进行了详细评价。结果表明,50个填埋场中有43个(86%)已经污染边界以外的地下水。EPA资助1987年完成的某项研究揭示,用压缩粘土底衬料,渗滤液的渗漏量可达到3.4l/m2• d;假设底部衬料表面有7.62cm的水柱,穿过91.44cm厚的底部压实粘土衬料,需要15a的时间。但是,衬料一旦被穿透,3.4l/m2• d的渗漏将连续进行。目前,最容易得到的最好塑料衬料是高密度聚氯乙烯(HDPE)。研究表明,即使用最复杂、最昂贵的质量控制程序进行安装,它的渗漏率也将达到2001/hm2• a;渗漏通道包括制造时形成的针孔及安装接缝焊接时形成的缝隙等。1991年,来自University of Wisconsin的一份报告表明,某些常规易溶物质的稀溶液,如,二甲苯、甲苯、三氯乙烯及甲基氯化物等,在1~3d内就能穿透HDPE。即使最昂贵的填埋场使用的厚度最大的2.54mm的HDPE,这些物质穿过所用时间也不超过两周。经过长期研究后EPA得出了“即使采用最好的衬料,所有的填埋场也都会渗漏”的结论。 20世纪80年代后期,加拿大对全境1200个正在运行和已关闭的MSW填埋场的位置、规模、设计及地质环境进行了系统调查,同时对以安大略湖为引用水源的多伦多地区的污染源进行了重点研究。 多伦多地区700km2的范围内分布着82个填埋场,占地99hm2,存放着4.6×107tMSW,其中130多万t的化学物质(约占填埋MSW的2.9%)将最终进入渗滤液。由于有1/2的填埋场地下水运移到主要的城市河流及安大略湖的时间小于10a。这些填埋场释放的化学物质对地表水质及居民引用水安全构成了巨大的威胁[5]。 此外,澳大利亚、马来西亚、意大利及尼日利亚等许多国家也都出现了MSW渗滤液污染地下水或地表水的问题[6~8]。 20世纪70年代以前,我国的MSW大多数属于露天堆放或简易填埋(dump),不能做到及时覆盖;不具备完善的渗滤液收集、排导和处理设施;没有完善的填埋气体排导和处理设施,因而不是真正意义上的填埋。尽管我国尚未开展全国性的MSW填埋场安全性调查工作,但个别省市的调查结果足以说明问题的严重性。辽宁省曾发生过数次MSW渗滤液污染地下水的事故;对简易填埋3~35a的填埋场进行的调查研究表明,由于MSW渗滤液渗入地下水,使地下水中的硝酸盐、三氮、细菌总数、大肠菌值等项目均超标,个别项目超标数百倍(据王明杰,2001)。20世纪90年代以来,广州、杭州、鞍山、昆明、成都、宜昌、青岛及重庆等城市相继建成或正在建设标准化的大型MSW填埋场。由于我国MSW标准化填埋起步较晚,可以预见,在未来的相当长时期内,填埋场数量还会继续增加。

  • 涂层测厚仪如何选型?以及测量方法介绍

    涂层测厚仪具有测量误差小、可靠性高、稳定性好、操作简便等特点,是控制和保证产品质量必不可少的检测仪器,广泛地应用在制造业、金属加工业、化工业、商检等检测领域。下面小编为大家介绍涂层测厚仪测厚方法?涂层测厚仪如何选型?[url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]测厚方法?磁性测厚法适用导磁材料上的非导磁层厚度测量。导磁材料一般为:钢\铁\银\镍。此种方法测量精度高。涡流测厚法适用导电金属上的非导电层厚度测量,此种方法较磁性测厚法精度低。超声波测厚法目前国内还没有用此种方法测量涂镀层厚度的,国外个别厂家有这样的仪器,适用多层涂镀层厚度的测量或则是以上两种方法都无法测量的场合.但一般价格昂贵、测量精度也不高。电解测厚法此方法有别于以上三种,不属于无损检测,需要破坏涂镀层,一般精度也不高,测量起来较其他几种麻烦。放射测厚法此种仪器价格非常昂贵(一般在10万RMB以上),适用于一些特殊场合。涂层测厚仪如何选型?用户可以根据测量的需要选用不同的测厚仪,磁性测厚仪和涡流测厚仪一般测量的厚度适用0-5毫米,这类仪器又分探头与主机一体型,探头与主机分离型,前者操作便捷,后者适用于测非平面的外形。更厚的致密材质材料要用超声波测厚仪来测,测量的厚度可以达到0.7-250毫米。电解法测厚仪适合测量很细的线上面电镀的金,银等金属的厚度。迪斯凯瑞GT-100高精度涂层测厚仪可无损地直接测量磁性材料(如钢、铁、合金和硬磁性钢)等物体表面上的非磁性覆盖层厚度(如:油漆、塑料,陶瓷,橡胶,铜,锌、铝、铬、铜等)。非磁性金属基体上非导电覆盖层的厚度(如铜、铝、锌、锡等基底上的珐琅、橡胶、油漆镀层)。具有两种工作方式:直接方式(DIRECT)和成组方式(Appl)具有两种测量方式:连续测量方式(CONTINUE)和单次测量方式(SINGLE)

  • 涂层测厚仪的操作流程

    涂层测厚仪主要的作用是测量材料以及物体的厚度,有很多不同的种类,每个种类都利用的是不同原理,本文为大家介绍涂层测厚仪的操作规程  涂层测厚仪操作规程  一、技术参数  采用了磁性和涡流两种测厚方法。通过选择相应的测头,即可测量磁性金属基体上非磁性覆盖层的厚度,又可测量非阿磁性金属基体上非导电覆盖层的厚度   测量范围:(0~1250)μm(F1、N1测头),F10测头可达10mm 分辨率:0.1μm(F1、N1测头)。  示值精度:±(3%H+1)μm H为被测涂层厚度。  二、操作流程  开启仪器--校准仪器--进行测量--关闭仪器[url=http://www.dscr.com.cn/show.asp?id=374][color=#333333]超声波测厚仪[/color][/url]  三、操作步骤  基本测量步骤  1.准备好待测工件   2.将测头插头插入主机的测头插座中   3.仪器开机   4.判断是否需要校准仪器。如果需要,选择适当的校准方法进行校准   5.测量。将测头垂直接触工件的测量面,并轻压测头的加载套,当测头与被测工件表面接触稳定后,随着一声蜂鸣声,屏幕将显示标识和测量值。如果测量标识闪烁或无测量标识则表示测头不稳定.移开测头后,测量标识消失,厚度值保持。  6.仪器关机。  四、操作注意事项  1.如果在测量中测头放置不稳,会引起测量值与实际值偏差较大   2.如果已经进行了适当的校准,所有的测量值将保持在一定的误差范围内   3.仪器的任何一个测量值都是五次看不见的测量平均值   4.为使测量更加精确,可在一个点多次测量,并计算其平均值作为最终的测量结果   5.显示测量结果后,一定要提起测头至距离工件10mm以上,才可以进行下次测试。

  • 影响涂层测厚仪测量精度的一些因素

    影响[url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]测量精度的一些因素  a基体金属磁性质  磁性法测厚受基体金属磁性变化的影响(在实际应用中,低碳钢磁性的变化可以认为是轻微的),为了避免热处理和冷加工因素的影响,应使用与试件基体金属具有相同性质的标准片对仪器进行校准 亦可用待涂覆试件进行校准。  b基体金属电性质  基体金属的电导率对测量有影响,而基体金属的电导率与其材料成分及热处理方法有关。使用与试件基体金属具有相同性质的标准片对仪器进行校准。  c 基体金属厚度  每一种仪器都有一个基体金属的临界厚度。大于这个厚度,测量就不受基体金属厚度的影响。  d 边缘效应  本仪器对试件表面形状的陡变敏感。因此在靠近试件边缘或内转角处进行测量是不可靠的。  e 曲率  试件的曲率对测量有影响。这种影响总是随着曲率半径的减少明显地增大。因此,在弯曲试件的表面上测量是不可靠的。  f 试件的变形  测头会使软覆盖层试件变形,因此在这些试件上测出可靠的数据。  g 表面粗糙度  基体金属和覆盖层的表面粗糙程度对测量有影响。粗糙程度增大,影响增大。粗糙表面会引起系统误差和偶然误差,每次测量时,在不同位置上应增加测量的次数,以克服这种偶然误差。如果基体金属粗糙,还必须在未涂覆的粗糙度相类似的基体金属试件上取几个位置校对仪器的零点 或用对基体金属没有腐蚀的溶液溶解除去覆盖层后,再校对仪器的零点。  g 磁场  周围各种电气设备所产生的强磁场,会严重地干扰磁性法测厚工作。  h 附着物质  本仪器对那些妨碍测头与覆盖层表面紧密接触的附着物质敏感,因此,必须清除附着物质,以保证仪器测头和被测试件表面直接接触。  i 测头压力  测头置于试件上所施加的压力大小会影响测量的读数,因此,要保持压力恒定。  j 测头的取向  测头的放置方式对测量有影响。在测量中,应当使测头与试样表面保持垂直。  2.使用仪器时应当遵守的规定  a 基体金属特性  对于磁性方法,标准片的基体金属的磁性和表面粗糙度,应当与试件基体金属的磁性和表面粗糙度相似。  对于涡流方法,标准片基体金属的电性质,应当与试件基体金属的电性质相似。  b 基体金属厚度  检查基体金属厚度是否超过临界厚度,如果没有,可采用3.3中的某种方法进行校准。  c 边缘效应  不应在紧靠试件的突变处,如边缘、洞和内转角等处进行测量。  d 曲率  不应在试件的弯曲表面上测量。  e 读数次数  通常由于仪器的每次读数并不完全相同,因此必须在每一测量面积内取几个读数。覆盖层厚度的局部差异,也要求在任一给定的面积内进行多次测量,表面粗造时更应如此。  f 表面清洁度  测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀产物等,但不要除去任何覆盖层物质  磁性法测厚受基体金属磁性变化的影响(在实际应用中,低碳钢磁性的变化可以认为是轻微的),为了避免热处理和冷加工因素的影响,应使用与试件基体金属具有相同性质的标准片对仪器进行校准 亦可用待涂覆试件进行校准。

  • 高精度涂层测厚仪的测量原理

    [url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]是一种常用的检测仪器,具有测量误差小、可靠性高、稳定性好、操作简便等特点,被广泛用于制造业、金属加工业、化工业等领域中。特曾测厚仪的原理是什么呢?下面小编就来具体介绍一下,希望可以帮助到大家。  磁感应测量原理  采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达到0.1um,允许误差达1%,量程达10mm。  磁性原理测厚仪可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。  电涡流测量原理  高频交流信号在测头线圈中产生电磁场,测头靠近导体时,就在其中形成涡流。测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯,例如铂镍合金或其它新材料。与磁感应原理比较,主要区别是测头不同,信号的频率不同,信号的大小、标度关系不同。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0.1um,允许误差1%,量程10mm的高水平。  采用电涡流原理的测厚仪,原则上对所有导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆,塑料涂层及阳极氧化膜。覆层材料有一定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。虽然钢铁基体亦为导电体,但这类任务还是采用磁性原理测量较为合适。  迪斯凯瑞GT-100高精度涂层测厚仪可无损地直接测量磁性材料(如钢、铁、合金和硬磁性钢)等物体表面上的非磁性覆盖层厚度(如:油漆、塑料,陶瓷,橡胶,铜,锌、铝、铬、铜等)。非磁性金属基体上非导电覆盖层的厚度(如铜、铝、锌、锡等基底上的珐琅、橡胶、油漆镀层)。

  • 涂层测厚仪和超声波测厚仪的不同之处

    涂层测厚仪和超声波测厚仪的不同之处涂层测厚仪:磁性和电涡流两种测量方法,可无损地检测磁性金属基体上非磁性覆盖层的厚度(如钢铁合金和硬磁性钢上的铝、铬、铜、锌、锡、橡胶、油漆等)以及非磁性金属基体上非导电的绝缘覆盖层的厚度(如铝、铜、锌、锡上的橡胶、塑料、油漆、氧化膜等。 超声波测厚仪是利用超声波的原理对金属、塑料、陶瓷、玻璃及其他任何超声波的良导体进行测量。一般是用在工业生产领域中对材料或零件做精确测量,其另一重要方面是可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。  超声波测厚仪http://www.dscr.com.cn/show.asp?id=374是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。  超声波测厚仪分为普通型与涂层型,普通型一般需要将测量点打磨出金属光泽后测量,涂层型分为只测量涂层厚度和透过涂层测母材两种;因为波的反射原理,只测量涂层厚度的超声波测厚仪品牌较多,而透过涂层测母材的超声波测厚仪较少。  测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。

  • 铁铝双用涂层测厚仪测厚仪CQ-X5(FN)

    铁铝双用涂层测厚仪测厚仪CQ-X5(FN)双功能技术的测厚仪, 完成磁感应和电涡流测量自动转换 http://www.szjmyiqi.com/up/image/201309/20130906153790149014.jpg http://www.szjmyiqi.com/up/image/201309/20130906153710011001.jpg http://www.szjmyiqi.com/up/image/201309/2013090615270230230.jpg http://www.szjmyiqi.com/up/image/201309/20130906152722842284.jpg 产品简介CQ-X5(FN)涂层测厚仪采用了双功能测量技术即磁性和涡流测厚方法,能够自动识别磁性或非磁性底材,然后采用相应的测试方法,可无损地测量磁性金属基体(如钢、铁、合金和硬磁性钢等)上非磁性覆盖层的厚度(如铝、铬、铜、珐琅、橡胶、油漆等) 及非磁性金属基体(如铜、铝、锌、锡等)上非导电覆盖层的厚度(如:珐琅、橡胶、油漆、塑料等)。本涂层测厚仪具有测量误差小、可靠性高、稳定性好、操作简便等特点,是控制和保证产品质量必不可少的检测仪器,广泛地应用在制造业、金属加工业、化工业、商检等检测领域。该产品已经通过华南国家计量测试中心、广东省计量科学研究院验证,并荣获相关证书,深受各大厂家青睐。 适用范围: CQ-x5(FN)涂层测厚仪是铁铝基材双用的测厚仪,可以测量包括铝或铜底材上的特富龙、珐琅、瓷釉、环氧树脂、阳极氧化层或涂料的厚度测量。测厚仪磁感应测试方法应用的涂镀层包括锌、镉、涂料或粉末喷涂。 测试特点:精度高、稳定性好 铁基和非铁基底材自动识别、仪表能自动识别基材种类 切换LCD会显示“NFe”或“Fe 无需校准、一键操作 一体化探头、小巧实用、测量快速精确 自动开、关机以延长电池使用时间技术参数 测量厚度及精度 0-1999μm ± (3.0%+2μm) 0-40mil ± (3.0%+0.1mil) 公英制转换 μm/mil 双显 数据存储 10组数据 技术优势 零点校准 自动开机 内置防腐探头 LCD180度反转显示 电源 1.5V电池(AAA)×1 机身重 70g 机身尺寸 108mm×46mm×23mm产品结构图 http://www.szjmyiqi.com/up/image/201310/20131002161424492449.jpg CQ-X5(FN)涂层测厚仪面板图 CQ-X5(FN)测厚仪标准清单:CQ-x5(fn)涂层测厚仪主机 * 1台保证卡 * 1本说明书 * 1本[color=#000

  • 【分享】影响涂层测厚仪测量值精度的因素

    1.影响因素的有关说明   a 基体金属磁性质   b 基体金属电性质基体金属的电导率对测量有影响,而基体金属的电导率与其材料成分及热处理方法有关。使用与试件基体金属具有相同性质的标准片对仪器进行校准。   c 基体金属厚度  每一种仪器都有一个基体金属的临界厚度。大于这个厚度,测量就不受基体金属厚度的影响。本仪器的临界厚度值见附表1。   d 边缘效应   本仪器对试件表面形状的陡变敏感。因此在靠近试件边缘或内转角处进行测量是不可靠的。   e 曲率试件的曲率对测量有影响。这种影响总是随着曲率半径的减少明显地增大。因此,在弯曲试件的表面上测量是不可靠的。   f 试件的变形测头会使软覆盖层试件变形,因此在这些试件上测出可靠的数据。   g 表面粗糙度   基体金属和覆盖层的表面粗糙程度对测量有影响。粗糙程度增大,影响增大。粗糙表面会引起系统误差和偶然误差,每次测量时,在不同位置上应增加测量的次数,以克服这种偶然误差。如果基体金属粗糙,还必须在未涂覆的粗糙度相类似的基体金属试件上取几个位置校对仪器的零点;或用对基体金属没有腐蚀的溶液溶解除去覆盖层后,再校对仪器的零点。   g 磁场   周围各种电气设备所产生的强磁场,会严重地干扰磁性法测厚工作。   h 附着物质   本仪器对那些妨碍测头与覆盖层表面紧密接触的附着物质敏感,因此,必须清除附着物质,以保证仪器测头和被测试件表面直接接触。   i 测头压力   测头置于试件上所施加的压力大小会影响测量的读数,因此,要保持压力恒定。   j 测头的取向   测头的放置方式对测量有影响。在测量中,应当使测头与试样表面保持垂直。 2.使用仪器时应当遵守的规定   a 基体金属特性   对于磁性方法,标准片的基体金属的磁性和表面粗糙度,应当与试件基体金属的磁性和表面粗糙度相似。   对于涡流方法,标准片基体金属的电性质,应当与试件基体金属的电性质相似。   b 基体金属厚度   检查基体金属厚度是否超过临界厚度,如果没有,可采用3.3中的某种方法进行校准。   c 边缘效应   不应在紧靠试件的突变处,如边缘、洞和内转角等处进行测量。   d 曲率   不应在试件的弯曲表面上测量。   e 读数次数   通常由于仪器的每次读数并不完全相同,因此必须在每一测量面积内取几个读数。覆盖层厚度的局部差异,也要求在任一给定的面积内进行多次测量,表面粗造时更应如此。   f 表面清洁度 测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀产物等,但不要除去任何覆盖层物质

  • 【资料】超声波测厚仪的工作原理和设计方案

    超声波测厚仪的工作原理和设计方案超声波测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种,由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。  1. 工作原理  超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。  HT系列超志波测厚仪,在采用国内外先进技术的基础上,运用单片机技术研制 的一种低功耗低下限袖珍式的智能测量仪器,不仅有测量不同材质厚度的仪器,而且有单测钢,超薄型的,同时均可配套高温测厚探头。  2. 测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。  3. 影响测量精度的原因  (1) 覆盖层厚度大于25μm时,其误差与覆盖层厚度近似成正比;   (2) 基体金属的电导率对测量有影响,它与基体金属材料成分及热处理方法有关;   (3) 任何一种测厚仪都要求基体金属有一个临界厚度,只有大于这个厚度,测量才不会受基体金属厚度的影响;   (4) 涡流测厚仪对式样测定存在边缘效应,即对靠近式样边缘或内转角处的测量是不可靠的;   (5) 试样的曲率对测量有影响,这种影响将随曲率半径的减小明显地增大;   (6) 基体金属和覆盖层的表面粗糙度影响测量的精度,粗糙度增大,影响增大。

  • 【讨论】塑料薄膜上的镀金层厚度

    塑料如PPS或PET(厚2微米)上的镀金层、镀镍层如何测量?本网上查到的测厚仪是用于:非磁性金属基体上非导电覆盖层采用涡流测厚法,而磁性金属基体上非导电覆盖层采用电磁感应测厚法,无法满足塑料膜上的磁性材料镀层厚度(镍)或非磁性材料镀层(金)厚度测量!先谢谢了!

  • 什么是涂层测厚仪?一体式和分体式有什么区别?

    涂层测厚仪是一款专业测量金属材料表面涂层覆盖层物体厚度的专业无损检测仪器。它根据金属基体不同使用不同的测量方法。[b]1、工作原理A、磁性测厚方法:[/b]利用永久磁铁测头与导磁的钢材之间的吸力大小与处于这两者之间的距离成一定比例关系可测量覆层的厚度,这个距离就是覆层的厚度。[b]B、涡流测厚方法:[/b]当测头与被测式样接触时,测头装置所产生的高频电磁场,使置于测头下的金属导体产生涡流,其振幅和相位是导体与测头之间非导电覆盖层厚度的函数。即该涡流产生的交变电磁场会改变测头参数,而测头参数变量的大小,并将这一电信号转换处理,即可得到被测涂镀层的厚度。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=MGZkYWZlMzZiYTE3NDM0NzIzZDJkNWVlNDNiZjAzYjcsMTY0OTkyNjk5NTkyMg==[/img][b]2、适用范围[/b]A、磁性测厚方法:可无损地测量磁性金属基体(如:钢、铁、镍)上非磁性覆层的厚度(如:镀锌、铬、油漆、电泳、珐琅、橡胶、粉未、搪瓷、防腐层等)。B、涡流测厚方法:可无损地测量非磁性金属基体(如:铝、铜、不锈钢)上非导电覆层的厚度(如:油漆、粉末、塑料、橡胶、珐琅、搪瓷、喷塑料等)。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=Zjg1ZTk3ZjQ4ZWVlMTE1YWIwNjBiOTBhMWExMzRlZTYsMTY0OTkyNjk5NTkyMg==[/img][b]3、应用领域[/b]广泛地应用于涂装行业、制造业、金属加工业、化工业、造船、机械、商检等检测领域。[b]4、一体式和分体式涂层测厚仪有什么区别?A、一体式涂层测厚仪:[/b]ELB-CTG1500/ELB-CTG1500D:主要测量平面工件,适合管径要求直径30MM以上的产品测量。主要应用于国内汽车行或国内涂料行业市场。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=Yzk4ZmNlNTVkNjFhOGMwZjg0ZmE5YmRlNDVmMDM2M2YsMTY0OTkyNjk5NTkyMg==[/img][b]B、分体式涂层测厚仪:[/b]ELB-CTG1250S/ELB-CTG1250SD主要运用于电镀行业(镀锌,镀铬等)/涂装行业(油漆,喷涂等),探头直径小,适合较小工件,平面,管面的产品都可测量。ELB-CTG6000S /ELB-CTG9500S主要运用于防火涂料/防腐涂料等较厚的涂层测量,测量速度快,精度稳定,可通过计量,可调高数值[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=YWE3ZmYyODU4ZDAwODhmMGRmZjkzMzg4OTMwYzQ4ZDgsMTY0OTkyNjk5NTkyMg==[/img]

  • 涂层测厚仪如何分类

    对材料表面保护、装饰形成的覆盖层如涂层、镀层、敷层、贴层、化学生成膜等在有关国家和国际标准中称为覆层(coating)。  覆层厚度测量已成为加工工业、表面工程质量检测的重要一环是产品达到优等质量标准的必备手段。为使产品国际化我国出口商品和涉外项目中对覆层厚度有了明确的要求。  覆层厚度的测量方法主要有:楔切法、光截法、电解法、厚度差测量法、称重法、X射线荧光法、β射线反向散射法、电容法、磁性测量法及涡流测量法等。这些方法中前五种是有损检测测量手段繁琐速度慢多适用于抽样检验。  X射线和β射线法是无接触无损测量但装置复杂昂贵测量范围较小。因有放射源使用者必须遵守射线防护规范。X射线法可测极薄镀层、双镀层、合金镀层。β射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。  随着技术的日益进步特别是近年来引入微机技术后采用磁性法和涡流法的测厚仪向微型、智能、多功能、高精度、实用化的方向进了一步。测量的分辨率已达0.1微米精度可达到1%有了大幅度的提高。它适用范围广量程宽、操作简便且价廉是工业和科研使用最广泛的测厚仪器[url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]。  采用无损方法既不破坏覆层也不破坏基材检测速度快能使大量的检测工作经济地进行。  一、磁吸力测量原理及测厚仪  永久磁铁(测头)与导磁钢材之间的吸力大小与处于这两者之间的距离成一定比例关系这个距离就是覆层的厚度。利用这一原理制成测厚仪只要覆层与基材的导磁率之差足够大就可进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成型所以磁性测厚仪应用最广。测厚仪基本结构由磁钢接力簧标尺及自停机构组成。磁钢与被测物吸合后将测量簧在其后逐渐拉长拉力逐渐增大。当拉力刚好大于吸力磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。新型的产品可以自动完成这一记录过程。不同的型号有不同的量程与适用场合。  这种仪器的特点是操作简便、坚固耐用、不用电源测量前无须校准价格也较低很适合车间做现场质量控制。  二、磁感应测量原理  采用磁感应原理时利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小来测定覆层厚度。也可以测定与之对应的磁阻的大小来表示其覆层厚度。覆层越厚则磁阻越大磁通越小。利用磁感应原理的测厚仪原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时仪器自动输出测试电流或测试信号。早期的产品采用指针式表头测量感应电动势的大小仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪分辨率达磁感应测厚仪_电涡流测量原理_磁吸力测量原理及测厚仪_电涡流原理的测厚仪到0.1um允许误差达1%量程达10mm。  磁性原理测厚仪可应用来精确测量钢铁表面的油漆层瓷、搪瓷防护层塑料、橡胶覆层包括镍铬在内的各种有色金属电镀层以及化工石油待业的各种防腐涂层。  三、电涡流测量原理  高频交流信号在测头线圈中产生电磁场测头靠近导体时就在其中形成涡流。测头离导电基体愈近则涡流愈大反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯例如铂镍合金或其它新材料。与磁感应原理比较主要区别是测头不同信号的频率不同信号的大小、标度关系不同。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0.1um允许误差1%,量程10mm的高水平。  采用电涡流原理的测厚仪原则上对所有导电体上的非导电体覆层均可测量如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆塑料涂层及阳极氧化膜。覆层材料有一定的导电性通过校准同样也可测量但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。虽然钢铁基体亦为导电体但这类任务还是采用磁性原理测量较为合适。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制