当前位置: 仪器信息网 > 行业主题 > >

油分浓度仪

仪器信息网油分浓度仪专题为您提供2024年最新油分浓度仪价格报价、厂家品牌的相关信息, 包括油分浓度仪参数、型号等,不管是国产,还是进口品牌的油分浓度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合油分浓度仪相关的耗材配件、试剂标物,还有油分浓度仪相关的最新资讯、资料,以及油分浓度仪相关的解决方案。

油分浓度仪相关的资讯

  • 近红外法可测血液中甘油三酯浓度
    中性脂肪即甘油三酯,是高血压和心脏病的主要原因。日本产业技术综合研究所日前宣布,该所开发出一种新装置,只需用近红外光照射指尖几秒钟,就能检测出血液里中性脂肪的浓度。  研究人员注意到,波长介于可见光和红外线之间的近红外光具有不容易被人体吸收的性质,因此通过向手指尖端照射近红外光,然后分析透过手指的光,就能检测血液内中性脂肪的浓度。  现有的近红外光测试装置灵敏度很低,为确保透过身体组织的光的强度,需要长时间照射,既不方便又有安全问题。新的分光装置能在更广范围内收集很微弱的光,其灵敏度达到以前水平的1000倍,从而能进行快速准确的检测。  这种新装置只有约3公斤重,便于携带,将手指放在照射近红外光的光纤顶端,装置就会在显示器上显示出检测值。在利用试制的新装置对就餐前后血液中的中性脂肪进行检测时,研究人员发现就餐后人体血液中的中性脂肪开始升高,约4小时后达到峰值。研究人员通过将检测值分为5个阶段,来显示脂肪的摄取状况。  研究小组准备推动医疗机构明年开始采用这种新装置,并准备继续开发面向家庭的相关产品。
  • 上头电子烟就是毒品,SERS增强手持拉曼实现烟油中低浓度新精活物质快检
    14日,中新网记者从青海省烟草专卖局(公司)获悉,近日,西宁市烟草专卖局联合大通县公安局成功破获一起“上头电子烟”案件,抓获犯罪嫌疑人3名。该案是青海省首例“上头电子烟”案件,是烟草、公安紧密协作的一起典型案例。  电子烟的液体盒可更换,含有与丙二醇相混合的尼古丁,以及各种香料和调味剂。电子烟可以做成各种口味,吸引青少年等人群吸食。相较于二代传统毒品,三代毒品具有少剂量强效果特性,不法商贩为增加回头客,在烟油中添加了大麻等违禁成分的电子烟,“上头电子烟“外观虽与普通电子烟相似。但吸食后会在不知不觉中染上毒瘾,过量吸食则会出现昏迷、休克、窒息、猝死等情况,危害性极大,已被国家禁毒委员会办公室列为毒品施行管制。  拉曼光谱是分子结构研究的一种分析方法,每一种分子都有其特有的光谱,其光谱就称为“分子指纹光谱”,照此原理运用拉曼光谱技术进行电子烟油合成大麻素快速检测具有天然优势。  但拉曼光谱是是一种散射光谱,在混合物基质下,所有基质会生成同一条光谱,浓度高或者信号强的物质容易凸显,烟油主要基质以丙二醇为主,所以即使添加了合成大麻素,常规拉曼检测结果不显示。图1-常见烟油检测结果(丙二醇)那么厦门大学拉曼研究团队技术如何通过拉曼技术进行烟油中合成大麻素的检测?  普识纳米基于拉曼光谱技术研发了手持式拉曼光谱仪非接触式新型毒品检测仪器,配合源自厦门大学拉曼研究团队技术的增强拉曼方案,轻松检测烟油中毒品,特别适合现场快速安全鉴别。操作简单、检测快速,检出限可达到ng级(浓度0.01%),检测限已获得公安部报告,灵敏度高。不仅可以检测烟油,烟丝烟草也能检测,适用性高。图2-助力公安局准确检测三代毒品-新精活物质-合成大麻素  不仅能够检测合成大麻素,针对其他伪装毒品、掺杂毒品、强荧光干扰等毒品检测难题,普识纳米的技术也发挥同样优质检测能力。检测方法适用于固体、液体、黏稠胶状等各种检材,已实现300多种毒品(含三代毒品芬太尼类、合成大麻素)的高灵敏特异定性鉴别,检出限低至pg~ng级别。  该方法的强适用性在面对于层出不穷的新型毒品发挥了很好的拓展性,利用仪器自建库功能,可快速建立新型毒品项目数据库,迅速开展禁毒工作。  普识纳米也提醒大家,提高警惕,远离毒品,坚定意志力,不被各种伪装毒品诱惑。如有发现售卖、吸食“上头电子烟”行为,也请及时向当地公安机关等部门举报,为禁毒工作助一份力。
  • 如何测量高浓度溶液的荧光光谱?
    1. 前言荧光分析法可用于物质的定量和定性分析,而且灵敏度高,对于稀溶液来说,荧光强度和样品浓度成线性关系。那么如何准确测量高浓度的溶液样品呢?图1和图2分别是使用10mm矩形样品池+标准样品池支架和10mm矩形样品池+固体样品支架的测定示意图。图1 10mm矩形样品池+标准样品池支架图2 10mm矩形样品池+固体样品支架从图中可以看出,使用图1的方式测量高浓度样品时,激发光无法到达样品内部,并且在液体表面更容易产生荧光,这种现象被称为自吸收。由于样品本身对荧光的吸收,造成更短波长处的荧光消失。如果稀释样品不合适,则需要选用图2的方式测量高浓度样品,通过使用固体样品支架,捕捉样品表面的荧光。2. 应用实例-橄榄油的三维荧光光谱在此实验中,我们测量了市售橄榄油和初榨橄榄油的三维荧光光谱,并比较了荧光强度。样品:不同浓度的橄榄油测量附件:固体样品支架 测量结果:四种样品的三维荧光光谱图3 品牌A橄榄油的三维荧光光谱图4 品牌A初榨橄榄油的三维荧光光谱图5 品牌B橄榄油的三维荧光光谱图6 品牌B初榨橄榄油的三维荧光光谱使用日立荧光分光光度计F-7100以60000nm/min的扫描速度,获得了多个样品的高信噪比光谱。在所有测试的橄榄油三维荧光光谱中,在两个区域(i)、(ii)处观察到荧光,计算(ii)/(i)的荧光强度比,可以看出,两个品牌的初榨橄榄油与橄榄油相比,初榨橄榄油的强度比更高。3. 总结使用荧光分光光度计测量高浓度样品溶液时,注意样品自吸收对荧光光谱产生的影响。日立荧光分光光度计搭配固体样品支架,以高通量测量了高浓度橄榄油的三维荧光光谱,测量结果准确。
  • 小学生500元自制粉尘浓度对比检测仪
    天气不好的时候,要不要开窗换气,许多人很纠结,西城区黄城根小学的郭宇华和回民小学杨易格,两位六年级的小学生却仅仅花费了500元自制出一台粉尘浓度对比检测仪,让大家不再纠结。  这台巴掌大小的仪器,比PM2.5小一半的微粒都能测出来,而且还能同时测室内外空气,实现同步比对,提醒何时最适宜开窗通风。这台仪器不仅博得了清华、北大、北师大、北理工等高校专家的青睐,还被评为第34届北京青少年科技创新大赛一等奖。  小学生发明的&ldquo 便携式粉尘浓度对比检测仪&rdquo 到底有什么神奇之处?  &ldquo 市场上的粉尘检测仪要么检测室内,要么检测室外,不能联网对比检测。我们做的检测仪不仅成本低、检测数据可信、可靠,而且能通过蓝牙传输装置,实现多个测试点检测数值间的无线传输、比较分析。&rdquo 郭宇华小大人儿般一本正经地为记者介绍:&ldquo 这对仪器分主机、副机,主机摆在室内,副机摆在室外,通过采集室内外的粉尘浓度,无线传输数据,进行实时对比,从而判断是否适宜通风换气。&rdquo   郭宇华和杨易格俩人经过对牛街等二环、三环周边的居民区数次采样分析,得出的结论是:生活在市区,尤其是交通主干道的居民,早晨晚间都不宜打开窗户通风,因为仪器数据显示,这时室内的粉尘量往往低于外界环境。  郭宇华从小爱天文,曾连续两届荣获市区级天文知识、天文摄影竞赛奖项 他还痴迷地铁,自幼热衷考察地铁系统,纷繁线路了熟于胸,自诩&ldquo 上知天文,下晓地铁&rdquo 。他的小发明刚刚入围第29届全国青少年科技创新大赛,暑假里他将代表北京队参加这项全国性赛事,所以六一也不能闲着。
  • 科学家研发石墨烯材料传感器可检测分子级气体浓度变化
    英国南安普顿大学和日本先进科学技术研究所的科学家研发了一种以石墨烯为原材料的传感器,能检测出室内空气污染且精度极高。这一研究近日发表在《科学进展》期刊上。新研发的传感器可以感应到来自建筑、家具用品的二氧化碳分子以及挥发性有机化合物(VOC)气体分子。近年来,由个人居住环境中的空气污染引起的健康问题与日俱增。  这些有害化学气体的浓度水平一般在几十亿分之一(ppb),用现有的环境传感技术难以检测到,因为这些传感器只能检测到浓度为百万分之一(ppb)的此类气体。  该研究团队研发出的石墨烯传感器在通电后,可使单个的二氧化碳分子一个一个吸附到石墨烯材料上,并在分子水平上检测其浓度。其原理是:装置中的石墨烯材料采用单原子悬浮束式层状结构,石墨烯材料周边有弱电场分布。当单个二氧化碳分子或挥发性有机气体分子接触或离开石墨烯材料时,石墨烯的电阻率受影响发生改变,传感器能够检测到这种变化,由于能够检测到分子级的浓度变化,因此这种传感器拥有相当惊人的精度。在试验中,原型传感器可检测到一分钟内30ppb的二氧化碳浓度变化。而且传感器非常紧凑小巧,科学家相信其有望应用于制成便携廉价的空气污染监测装置。
  • 日本JFE川铁 新品 MK-90润滑脂铁粉浓度仪 中国上市
    佰汇兴业(北京)科技有限公司最新代理日本(JFE )川铁株式会社的最新产品MK-90润滑脂铁粉浓度仪。 MK-90是对润滑脂中的铁粉浓度进行在线连续测量的装置,根据对铁粉浓度的管理可及早发现轴承及齿轮的异常磨损。产品显著特点:只需把润滑脂配管穿过机器的简单测试测定范围在0~2.0wt%测试高精度差只在± 0.02wt%最多每次可进行5点测定DC4~20mA外部模拟输出更多信息,请登陆我司网站 www.bhxytech.com 佰汇兴业(北京)科技有限公司北京市海淀区西八里庄路69号西楼201室电话 010-88115228 传真010-88142618E-mail:info@bhxytech.comwww.bhxytech.com
  • TOPAS发布曲轴箱窜气浓度测试系统 TOPAS新品
    一、仪器描述旁路测试台BBT143用于测量旁路气体中的油浓度。旁路测试台BBT143是一个可移动测量系统,测量曲轴箱出气(旁路)中油滴浓度。它由GMS141重量方法与光度计测量方法结合,能够有效且节约时间记录发动机的油耗量。对于压力补偿,一个风机可以补偿测量系统的压力损失。另外,光度计PAP612可以检测管道中的油膜,喷油等。二、仪器特点? 节约时间,在宽浓度范围内可重复检测旁路中油雾浓度。? 与发动机实验台集成? 最高达到旁路的全流量300l/min? 可以进行压力补偿? 腔体加热避免冷凝? 光度计两波段测量,精度高? 易于使用和快速调试三、仪器应用? 测量发动机实验台旁路(Blow-by)的油雾浓度? 评价油雾分离器? 在线监测油雾浓度创新点: 发动机曲轴箱中油雾废气主要以气溶胶形式存在,这些油雾废气不仅影响发动机的寿命,而且还污染了进气,从而增加了汽车污染物排放。 目前在国内测量曲轴箱通风系统中油雾浓度都基于计重法,这种重量法有如下几点不足。一、过滤器没有保温。因为油雾气溶胶中不可避免的的含杂有水蒸气和少量未燃尽的汽油,如遇冷,水蒸气和汽油会凝结,从而影响测量结果。二、没有旁路。发动机在达到稳定工况之前需要一段时间,没有旁路作为调节,过滤器上收集的就不全是稳定工况的油雾气溶胶。三、实验终止条件不确定。不同发动机,甚至同一发动机在不同负载和转速条件下油雾排放浓度差异很大,无法事先确定,进而无法确定实验终止时间。四、影响发动机工作。随着实验进行,机油加载,过滤器压力损失增加,会对发动机的运行造成影响。五、发动机油谱图完成需要一周甚至更长的时间。 Topas最新研制的曲轴箱窜气浓度测试系统,BBT-143采用重量法和光学测试原理相结合的原理研制而成;光学在线测量方法在测量曲轴箱油雾排放方面具有极大优势。在发动机试验台架上,光学方法测量发动机闭式曲轴箱通风系统油雾浓度排放谱图(机油消耗量),能够显著缩短试验时长。根据测试结果,可以进一步优化活塞、增压器,通过设置油雾分离器上下游测量点,可以分析油雾分离器的实际工作效率。曲轴箱窜气浓度测试系统 TOPAS
  • 上海蓝耀与上海宝钢集团公司成功签署微量浓度氢分析仪的供货合同
    2012年,上海蓝耀与上海宝钢集团公司成功签署微量浓度氢分析仪的供货合同宝钢集团有限公司简称宝钢(Baosteel),是国务院国有资产监督管理委员会监管的国有重要骨干企业,它的总部位于上海。子公司宝山钢铁股份有限公司,简称宝钢股份,是宝钢集团在上海证券交易所的上市公司。宝钢集团有限公司被称为中国改革开放的产物,1978年12月23日,就在十一届三中全会闭幕的第二天,在中国上海宝山区长江之畔打下第一根桩。经过30多年发展,宝钢已成为中国现代化程度最高、最具竞争力的钢铁联合企业。2012年,宝钢连续第九年进入美国《财富》杂志评选的世界500强榜单,位列第197位,并当选为“全球最受尊敬的公司”。标普、穆迪、惠誉三大评级机构给予宝钢全球钢铁企业中最高的信用评级。截至2012年末,宝钢员工总数为130401人,分布在全球各地。宝钢集团公司是中国最大、最现代化的钢铁联合企业。《世界钢铁业指南》评定宝钢股份在世界钢铁行业的综合竞争力为前三名,认为也是未来最具发展潜力的钢铁企业。在汽车用钢,造船用钢,油、气开采和输送用钢,家电用钢,不锈钢,特种材料用钢以及高等级建筑用钢等领域,宝钢股份在成为中国市场主要钢材供应商的同时,产品出口日本、韩国、欧美四十多个国家和地区。
  • 爱拓发布PRM-2000a 高精度在线浓度计新品
    【产品介绍】ATAGO(爱拓)低浓度高精度在线折光仪PRM-2000α ,又称在线浓度计,由检测部件(传感器)与显示部件(显示器)构成,专为低浓度样品而设计,可同时测量折射率(nD)和Brix值(蔗糖/高果糖玉米糖浆/无(低)糖饮料),低浓度(Brix 0.000-20.000% 折射率1.32069-1.36500),高精度( 折射率±0.00001, Brix ±0.007 ),非常适合检测各种低浓度液体。ATAGO(爱拓)低浓度高精度在线折光仪PRM-2000α ,七段LED彩色显示屏,远距离也能读数清晰,广泛应用在食品,饮料,制药以及化工行业,帮助在线管理稀释过程,混合过程以及最终产品的浓度/水分/混合比率的浓度监测,还可以用于在线清洗过程的效果监控。【应用范围】在线折光仪PRM-2000α用于生产线液体折射率、可溶性固含量(Brix)和浓度等连续检测。1、实时监测各类低糖饮料、功能性饮料、低浓度液体在生产线上的实时浓度 2、可溶性固含量和浓度的连续检测(蒸发,溶解,混合,稀释,提取等工艺) 3、切削油、润滑油浓度的检测 4、洗涤剂浓度的检测 5、工业清洗剂的检测6、低浓度样品(低糖茶,低糖饮料等)7、淀粉液、纯静水8、咖啡、果汁9、酒精饮料10、各种表面处理剂【技术参数】型号PRM-2000α货号3641测量项目折射率(nD),Brix(三类产品[ATC]:蔗糖,高果糖玉米糖浆和无糖饮料[≤2%]),浓度(%)(ATC),温度(℃)测量范围折射率(nD)1.32069 ~1.36500 Brix 0.000 ~ 20.000%分辨率折射率(nD)0.00001 Brix 0.001%(分辨率可切换:0.001% [默认],0.005% 或 0.01%)测量精度折射率(nD)±0.00001(1.32069 ~ 1.33681)折射率(nD)±0.00010(1.33682 ~ 1.36500)Brix ±0.007%(Brix 0.000 ~ 2.000%)Brix ±0.050%(Brix 2.001 ~ 20.000%)*通过自动温度补偿功能,测量低于 Brix 2% 的样品时可以获取最高精度。测量温度-35.0 ~ 165.0°C温度补偿范围5 ~ 90°C显示系统七段 LED 显示器输出方式RS-232C,DC 4 ~ 20mA测量时间约 1 秒电源AC 100 ~ 240V,50/60Hz电缆检测部件至显示部件之间的标准长度15m(最长可达 200m)材质棱镜:人工蓝宝石 样品槽:SUS316L耐压性0.98MPa环境温度5 ~ 40°C功率30VA国际防护等级检测部件:lP67显示部件:lP67尺寸和重量检测部件:10.8x33.57x10.8cm,4.1kg显示部件:19.2x10x24cm,3.3kg创新点:ATAGO(爱拓)第一台在线折光仪,又称为在线折射仪,诞生至今已有75年了,在这75年中,ATAGO(爱拓)的在线折射仪成员也不断壮大,先后诞生了在线浓度计型号为CM-780N、CM-800α ,PRM-100α 。2015年,ATAGO(爱拓)也再添新丁——PRM-2000α 高精度型在线折光仪PRM-2000a 高精度在线浓度计
  • 拉丝油(伸线油)管理使用手册
    用ATAGO(爱宕)折光仪控制拉丝油(伸线油)浓度拉丝油(又叫伸线油、伸线液、拉丝液等)是铜丝生产工艺中必不可少的工业助剂,可以在铜丝拉伸工艺中降低金属线与眼模的磨损,并获得良好的冷却效果。被广泛的适用于电线生产、铜丝拉伸等行业中。伸线油浓度与铜丝的产品品质密切相关,所以在实际生产中需要严格控制伸线油浓度,以确保拉伸出高品质的铜线。ATAGO(爱宕)master-10a、PAL-1、PR-32a、RX-5000a等多款型号的不同精度的折光仪(糖度计)被用户应用于检测伸线油的浓度。一.润滑与水溶性铜伸线油自然界中两个物体互相接触并作用对运动时,就有磨擦现象.在金属线伸拉过程中,此磨擦现象产生大量的热,并造成金属线与眼模(DIES)的磨损.要降低磨擦阻力,减少金属线与眼模的损耗,并获得良好的冷却效果就得使用水溶性铜伸线液.水溶性铜伸线注解是一种水溶性润滑剂,良好的伸线油兼肯润滑与冷却之用,能降低金属线与眼模的磨擦磨耗(abrasive wear),并避免金属线的腐蚀磨耗(corrosion wear).铜伸线液即为达到在上的润滑与冷却目的而制造,需要的伸线油必须润滑性高防锈性强,消泡性高,清洁性了,乳化系统更完美,现场操作方便,伸线机容易维护,才能伸拉出高品质的铜线.二.伸线油管理有计划有组织有系统的安排下推动的润滑作业称为伸线油管理.管理的重要就如同人体健康的维持一样,良好的管理才能使机械设备健康与长寿,并使产品的品质优良,是现代化工厂管理的一个离要课题.管理的要点有:1.选用适当的伸线油2.使用前适当的储存:最好储存于室内,避免日晒雨淋冰冷的户外.3.使用时,按一定的时间添补油剂及水分.定期检查伸线液的品质与换油,并作成记录4.废油处理水溶性铜伸线油使用中的管理1.水质的测定:水占现场伸线液的绝大部分,所以水质的优劣与伸线液的好坏有直接关系,调配现场乳液时宜加适量伸线油于软水中为宜.(最佳液温应于40度正负3度,超过50度容易劣化).测定:硬度50PPM以下,氯离子10PPM以下,而且不含硫酸根离子的软水.硬度在200PPM以上为不良的硬水.本公司可代为检验.2.浓度测定:伸线油浓度对工艺的影响最为最要,一般情况下使用浓度约为2%到3.5%,依不同环境而异。国内主要采用的是糖度计法或叫折光仪法,ATAGO(爱宕)master-10a、PAL-1、PR-32a、RX-5000a等多款型号的不同精度的折光仪(糖度计)被用户应用于检测伸线油的浓度。 3.乳化安定性的测定:乳化愈安定,则直接加强其润滑与清洁性。A.标准法:ASTM D 1479,以配好的伸线液静置24小时后再测定伸线液底层含油量的变化.B.简易法:以500PPM的硬水调配成乳液再煮沸三分钟,观察浮油程度.若能有光学仪器看其乳液中油滴的半径就更好.4.泡沫测定:伸线液需要消泡系统,以维持政党作业.A.标准法:ASTM D 892,加油料于1000毫升量筒,使油面高度为180毫升,加温至93.5度时,放入清洁多孔石球,通所体后于固定时间记录泡沫高度.B.简易法:置伸线液于试管一半高度,以手押住试管口,来回震荡三次,观其消泡速率是否在五秒内泡沫全消.C.软水和纯水使用寿命长,但泡沫较多,可加适量的消泡剂调.低温泡沫多,高温泡沫较少.5.润滑交通测定:美国联邦政府650号标准试验法,即采用四球试验机试验.6.老化物含量测定:伸线液使用后,难免有外来污柒物及润滑剂本身氧化及劣化,此些不良物即统称老化物.由老化物之多寡可推定换油时间.老化物的容许量为含油时的10%.A.简易法:于试管内添加10毫升伸线液,加半毫升的氨水,再加10毫升****及半毫升的乙醇,震荡后静置一小时,观看有机液与水溶液层间老化物层的厚度.B.老化物的检验法较繁锁,现用电导度测,简易直接有效.7.腐蚀试验:即测定铜线的防锈性.A.标准法:ASTM D 130或CNS 1219 K 323,用磨光铜片浸入加热至100度之伸线液中,经过3小时后取出检查,再与标准铜片比较.B.简易法:将上述测定时间减至3分钟,即煮沸分钟后观看铜片的变色程度.8.铜离子含量测定:伸线液内铜离子含时的测定与老化物的测定有相似的意义,由铜离子的多寡可扒测换油时间,油槽内的铜离子不要超过600-700PPM.A.标准法:以原子光谱吸收仪(AA)测定.B.简易法:加1毫升伸线液于125毫升的分液漏斗中,加入49毫升蒸馏水,以盐酸调PH3.0,再加10毫升成色液,震汇此分液漏斗,再静置待有机层分清后,由分液漏斗漏出有机层,由比色仪的450NM处比色而测定铜离子浓度.成色液由本公司免费供应.9.PH值测定:以前的伸线液需有PH8-10的值,最近欧美的伸线液都为PH8.0-9.2为宜.A.标准法:以PH仪测定B.简易法:以PH纸的颜色变化来测定.PH纸与试液接触时间再需要三分钟,才能有较正确的颜色变化.10.电导度测定:电导度的测定可测知伸线液的离子浓度过高的离子浓度会破坏伸线液及损害铜线的品质.测定法:以电导仪或电阻仪测定.11.细菌检测:细菌会吞噬油中的脂肪酸,破坏伸线油的乳化,产生粘稠物或非粘稠物,使伸线液变臭,变脏而老化,影响线材品质.伸线油浓度对工艺的影响最为最要,一般情况下使用浓度约为2%到3.5%,依不同环境而异。国内主要采用的是糖度计法或叫折光仪法,ATAGO(爱宕)master-10a、PAL-1、PR-32a、RX-5000a等多款型号的不同精度的折光仪(糖度计)被用户应用于检测伸线油的浓度。
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • 海洋溢油事件频发 油指纹鉴别技术是时代之需
    溢油事故:超级杀手  “据不完全统计,1976~2006年,我国沿海平均每4天发生一起溢油事故,其中,溢油量在50吨以上的溢油事故60多起。”国家海洋局北海环境监测中心主任高振会告诉记者,“随着我国对外开放和海洋经济的迅速发展、海洋石油勘探开发规模不断加大、海上石油运输日益繁忙,加之我国未来对石油需求的不断增加、油运市场的不断壮大,我国海域可能是未来溢油事故的多发区和重灾区。海上溢油事故正逐渐成为十分敏感的问题。”  海洋溢油被称为海洋生态环境的超级杀手,是我国近海经常发生的重要环境灾害之一。随着我国经济的不断发展,各类油污染事件呈上升趋势,发生的频率与风险正日益加大,这给我国海洋生态环境、生态资源及人民群众带来了重大损失。  高振会举例说,2002年,一艘装载8万吨原油的马耳他籍“塔斯曼海”轮船在渤海湾发生撞船事故,大量原油泄漏,经过评估,这起事故给我国带来的环境经济损失达1亿多元。除此之外,各种地沟油、加油站漏油、发电厂及机修厂漏油也是油污染的主要来源,而它们直接危害到周围居民的健康。  发展,迫在眉睫  溢油源的确定和损失评估是溢油事故处理的重要依据,因此,发展溢油鉴别与损害评估技术越来越迫切。  “海洋溢油具有突发性、偶然性和瞬时性,加之其在海洋环境中的复杂变化,使得其损害的对象也十分广泛。但目前我国缺乏专门的海洋溢油科研平台,部分基础研究成果零散分布,缺乏有效的海洋溢油快速鉴别与损害评估技术,给查找肇事者、有效保护我国海洋生态环境带来诸多困难。”高振会告诉记者,面对我国沿海经济的迅速发展,我们应该逐步开展以溢油监测与鉴别技术、溢油的生态环境影响评估、溢油现场处置与生态修复技术为重点的研究与应用示范工作,从而指导我国海洋溢油环境保护工作。  针对溢油事故频发及其对海洋环境的巨大损害,目前国际上很多国家和地区都建立了相关的专业研究机构,如美国早在1978年就在海岸警备队成立了油品鉴别中心实验室 欧洲的比利时、丹麦、德国、挪威、葡萄牙和英国等6个国家的研究机构也于1983年在对油类分析研究的基础上,建立了欧洲海上溢油鉴定系统,后经过两次修订于1992年被《波恩协议》所接受,作为《波恩协议》内部溢油鉴别的推荐方法。这些机构在溢油方面开展的研究成果,不仅促进了海洋溢油相关技术的发展,并在海洋行政管理中发挥了重要作用。而我国在这方面却一直落后于这些发达国家。  我国也应时代发展的需要,于2007年在国家海洋局北海分局建立了我国第一个溢油鉴别与损害评估技术重点实验室,促使海洋科学技术研究及成果转化与海洋行政管理的结合。  油指纹鉴别技术是时代之需  溢油鉴别与损害评估技术重点实验室通过溢油监测与鉴别技术、溢油的生态环境影响、溢油应急处置及生态修复等方向与多学科交叉研究,深入了解海洋溢油的特征和规律,准确查明各种溢油来源,对其造成的海洋生态环境损害作出客观评估,为修复受损的海洋生态环境、发展海洋突发事件研究的理论体系、发展相应的高新技术提供技术平台,为我国海洋减灾防灾和维护国家海洋权益提供科学依据。该实验室以溢油监测与鉴别技术、溢油的生态环境影响和溢油现场处置与生态修复技术为主要研究内容和方向。  高振会向记者介绍,这些技术中油指纹鉴别技术至关重要。  该技术最早始于20世纪60年代,美、日等国家在70年代相继推出标准方法,北欧标准也在80年代颁布。近些年来,随着技术的发展和研究的不断深入,各国都在不断完善自己的溢油鉴别体系,并建立起了自己的油指纹库,我国也正在着力建设自己的标准油指纹库。  高振会解释说,所谓的油指纹鉴别就是基于油品指纹的差异性,通过对溢油和可疑溢油源油样的“油指纹”进行比对,从而实现溢油源的排查和确认。  众所周之,原油是由上千种不同浓度的化合物组成,这些化合物通过不同的分析检测手段获得不同的信息,如利用色谱获取的组分信息、利用光谱获得的各种光谱特征,这些信息就是反映油品特征的油指纹。  油指纹的差异性主要受到3个方面因素的影响:首先,原油的形成和聚集过程中的因素,包括原油生源岩本身的有机质特征、热环境以及原油在地层和油井内的运移 其次,原油通过不同的炼制过程获得的成品油,因为炼制过程不同,不同的需求,以及运输、储存等过程的不同,不同成品油的油指纹不同 最后,油品溢出到环境中后的风化和混合,不同的风化过程、不同的环境背景和环境中其他烃类污染源带来的混合,油指纹也会发生不同程度的变化。  记者了解到,为提高溢油鉴定能力,为海洋行政执法管理提供科学依据,国家海洋局北海分局建立了气相色谱、气相色谱—质谱、红外光谱、荧光光谱及物理方法等一套国际先进的油指纹库建设体系和多手段逐级鉴定体,承担并完成了油指纹库建设体系及关键技术研究。  关键之处显身手  “在我国科技工作人员的努力下,在认真梳理、总结多年工作成果并广泛借鉴国内外先进经验的基础上,我国现已完成了国家标准《海面溢油鉴别系统规范》的制定。该标准是在行业标准部分内容的基础上,广泛吸收《欧洲溢油鉴别系统》(NT CHEM 001,1991)和美国ASTM相关标准中先进的油指纹鉴别技术,研究石油指纹的化学分析方法、溢油鉴定程序和判定方法,较之前行业标准已经有了质的飞跃,溢油鉴定流程方面实现了与国际接轨。”高振会高兴地对记者介绍。  高振会进一步补充说,这些技术目前已经得到了很好的应用,积累了较丰富的实践经验。如长岛海域油污染事件鉴定、埕岛海域油污染鉴定、“塔斯曼海”轮溢油鉴定、威海“恒冠36”轮溢油事件鉴定、绥中36-1油田F31井溢油污染鉴定、黄骅滩涂溢油鉴定、黄岛溢油鉴定等几十起溢油事故鉴定中,这些技术都发挥了关键性作用。尤其是2006年“长岛海域油污染事件”中,北海分局北海监测中心基于油指纹鉴定技术,排除了多种溢油嫌疑,成功地确定溢油来源,为事件的处理提供了有力证据。
  • HORIBA红外测油仪受到500强德企认可
    HORIBA红外测油仪受到500强德企认可 ------长春汉高表面技术有限公司OCMA-310验收成功 近日,我司成功为长春汉高表面技术有限公司验收日本HORIBA生产的红外测油仪OCMA-310。长春汉高表面技术有限公司是世界500强企业德国汉高集团(Henkel)在华投资的企业。主要生产经营汉高粘接、密封、车底涂料及金属表面预处理等产品。由于他们主要给汽车制造厂做表面处理,其中要用到一些表面活性剂,最后他们测量汽车表面和槽池内的表面活性剂的含量和油份的含量。众所周知OCMA-310是可以检测水或者海水中的油分浓度、小巧的自动油分浓度计。通过手动操作,可以从样品中抽出油分,进行检测.排液。所以工程师和使用者在现场先测一个总量,然后用二氧化硅吸附出表面活性剂,再测一次油的含量,最后总量减去油的含量就是表面活性剂的含量,依此理论经过几次的调整萃取时间和分层时间、测量时间最终完成精确测量。 长春汉高表面技术有限公司的主要客户有:一汽-大众、一汽轿车、一汽解放公司、一汽吉林汽车有限公司、沈阳宝马、青岛汽车厂、哈飞汽车、哈轻、长春轨道客车、鞍钢、本钢、通钢及汽车零部件制造业。从这一系列用户不难看出,HORIBA红外测油仪未来将有可能成为业界衡量油分含量的一个标准测量仪器。从而使行业的标准得到统一化,起到了标杆的作用。最后再次恭贺长春汉高表面技术有限公司红外测油仪验收成功。
  • ATAGO(爱拓)手持浓度计免费赠送火热招募中
    ATAGO(爱拓)成立70多年来,一直致力于物理特性测试仪器的研发和推广,作为全球折光仪与旋光仪的市场领导者,我们贴近基层客户测试需求和民用市场需求开发的手持数显浓度计广受用户认可,ATAGO(爱拓)也一直致力在各个领域于推广手持便携式浓度测试工具,为了让更多用户使用上国际先进技术的手持浓度计,我们特别回馈,推出&ldquo 100台PAL数显手持浓度计免费赠送试用&rdquo 活动,用户可根据自身检测需求选择合适的PAL系列的型号,免费试用一年。试用期间,客户可完全享有仪器的使用权和支配权。只要您符合以下情况,即可联系我们免费申请获取ATAGO(爱拓)PAL迷你系列任意一款:联系方式:TEL 020-38108256 FAX 020-38109695 info@atago-china.com 孙小姐A: 需要测试以下样品浓度的工业生产客户、全国连锁餐饮企业客户、果蔬生产或贸易流通企业;B:经营状况良好,对管理和质量控制有严格的要求和期望;C:愿意测试,并且愿意配合提供试用报告。获赠企业资格确认ATAGO(爱拓)拥有最终的选择权和解释权,获赠名单将定期公布。活动期限:即日起至申请数量结束,活动停止。先到先得。 产品型号名称赠送试用数量适用对象PAL-1糖度计80个适用于几乎任何果汁、调味品等食品与饮料的糖度测量和清洗液、工业助剂等水溶性液体的浓度测定PAL-03S盐度计1个盐水、腌制水等溶液的NaCl(g/100g)浓度控制PAL-06S海水盐度计1个 PAL-S乳制品浓度计2个测量含脂类、深色及乳状样品,如牛奶等乳制品的干物质含量PAL-Pâ tissier糕点糖度计2个适用于糕点制作过程中添加物的白利度控制和波美度控制PAL-27S豆浆浓度计2个餐饮豆浆浓度控制PAL-91S乙二醇浓度2个汽车、供暖、制造等行业冷冻液或防冻液浓度控制PAL-39SH2O2(双氧水)浓度计2个适用于医疗、化工、食品等行业中需要使用双氧水的场合PAL-40SNaOH(烧碱)浓度计2个适用于纺织化纤、化工、食品、造纸等行业中需要使用NaOH的场合PAL-38SDMF(二甲基甲酰胺)浓度计2个适用于皮革化纤、化工、造纸等行业中需要使用DMF的场合PAL-Urea车用尿素液浓度计2个适用于柴油发动机尾气处理中车用尿素液浓度控制PAL-102S切削油浓度计2个适用于金属加工、机械制造等过程中水溶性切削液浓度控制 PAL迷你系列更多的产品应用详情可登陆我们的官网:http://www.atago-china.com或联系ATAGO(爱拓)中国分公司联系方式:TEL 020-38108256 FAX 020-38109695 info@atago-china.com 孙小姐
  • 赫施曼助力生产环境中纳米二氧化钛粉尘浓度的检测
    纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域。作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。在纳米材料生产环境中,粉尘颗粒面积较大,氧吸附较多,在有粉尘的环境中存在可燃性气体时,会大大增加粉尘爆炸的危险性。另外人体吸入粉尘会引起以肺为主的全身性疾病。根据GB/T 41456-2022,将空气中纳米二氧化钛粉尘采集到捕集液中,形成二氧化钛粉尘分散液。当分散液浊度T≤T0时,用二安替吡啉甲烷分光光度法测定其浓度;当分散液浊度TT0时,用过氧化氢分光光度法测定其浓度。注:分散液浊度T0 :取生产现场的纳米二氧化钛产品配制成1.8 mg/L的分散液,用浊度计测得的浊度值即为T0。以分散液浊度T≤T0为例,测定方法如下:1.配置溶液(1)二安替吡啉甲烷溶液称取25.0g二安替吡啉甲烷于1000mL烧杯中,加入400mL7.4%盐酸(采用37%盐酸配制而成),加热并搅拌至完全溶解,冷却,转移至500mL的容量瓶中,用7.4%盐酸定容至刻度,混匀,保存于棕色瓶中,4℃±2℃下冷藏。使用前1h取出。有效期1个月。(2)消解液向1000mL烧杯中加入350mL浓硫酸和200g硫酸铵,置于电热板上加热至硫酸铵全部溶解,然后自然冷却至室温,转移至500mL广口瓶中。(3)二氧化钛储备液称取500.0 mg二氧化钛产品于100mL烧杯中,加入消解液10mL,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变为无色透明时取下,冷却,转移至1000mL容量瓶中,用蒸馏水定容至刻度,混匀。(4)二氧化钛使用液用移液管移取二氧化钛储备液5mL置于250mL容量瓶中,用蒸馏水定容至刻度,混匀。2.工作曲线的绘制(1)取6个50ml容量瓶,分别加入二氧化钛使用液0mL、1.0mL、2.0mL、3.0 mL、4.0mL和5.0mL。(2)向上述6个溶液中均依次加入8.0mL5.9%盐酸、2.0mL10g/L抗坏血酸和10.0mL50g/L二安替吡啉甲烷溶液,用蒸馏水定容至刻度,播匀,得到不同浓度的溶液。(3)分别移取(2)的6个溶液到比色皿中,用紫外-可见分光光度计在波长390nm处,以试剂空白为参比,测试吸光度,每个样品测试3次,计算其平均吸光度。(4)以二氧化钛浓度为横坐标,平均吸光度为纵坐标,绘制工作曲线。工作曲线的直线拟合相关系数R² 应不小于0.999,否则重新绘制。3.分散液中纳米二氧化钛粉尘浓度的测试(1)将分散液样品至少超声5min。(2)用移液管取(1)分散波样品50mL于100mL烧杯中,在80℃条件下烘干。(3)在(2)样品中加入10mL消解液于烧杯中,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变成无色透明时取下,冷却,转移至50 mL容量瓶中。(4)在(3)样品中,依次加入8.0mL的5.9%盐酸、2.0mL的10g/L抗坏血酸和10.0mL的50g/L二安替吡啉甲烷溶液,用蒸馏水定容至50mL,摇匀。(5)将(4)溶液转入比色皿中,用紫外-可见分光光度计在波长390nm处,测定吸光度,每个样品测试三次,计算其平均吸光度。最后计算纳米二氧化钛粉尘质量浓度。实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中盐酸等的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 红外分光测油仪测定水中石油类技术探讨
    1红外分光测油仪与石油类简介   1.1红外分光测油仪   红外分光测油仪是一种借助红外技术对水体当中的油含量进行测定的专用仪器,该仪器的应用范围较广,能够对多种不同水体中的石油类进行测定,其测量原理是利用光谱能量的吸收与转换进行内部成分的定性分析与定量计算,借助红外分光光度法测量,对样品进行光谱扫描,从而显示出样品的光谱及吸收峰的波数位置,快速、准确地测出水体当中各种油份的浓度含量。红外分光测油仪属于一体化的光学系统,它的体积相对较小且重量较轻,便于携带,结构简单、操作方便,测量速度较快,测量一次样品通常只需要1min左右。   1.2石油类   我国现行的HJ637-2012标准中规定,在实验过程中,可以被CCl4萃取,并且在波数2930、2960、3030谱带处有特征吸收的物质,被称之为总油,它是由两个部分组成,其中一部分为石油类,另一部分为动植物油类。石油类是能够被CCl4萃取,但却并不会被MgSiO3所吸附的物质。   2红外分光光度法对水中石油类的测定   水体中石油类含量的测定是环境监测的重要项目之一,由于总体石油类的成分较为复杂,并且地区不同组成也不相同,烃类是其最主要的一种成分。HJ637-2012标准中给出了测定水中石油类的方法,即红外分光光度法。下面本文通过实验的方法,对红外分光光度法测定水中石油类技术进行分析。   2.1实验过程   2.1.1试剂与材料。本次实验中,所有试剂均选用的是与国家标准规定要求相符的分析纯化学试剂,实验过程中使用的水全部都是蒸馏水,具体有以下几种试剂:HCl、正十六烷、异辛烷、苯、CCl4、无水Na2SO4、MgSiO3、石油类标准贮备液、正十六烷标准贮备液、异辛烷标准贮备液、笨标准贮备液以及吸附柱等等。   2.1.2仪器设备。本次实验中的主要仪器设备包括红外分光光度计、旋转振荡器、分液漏斗、玻璃砂芯漏斗、锥形瓶、样品瓶、量筒、比色皿等等。   2.1.3试样制备。①采样。实验过程中使用的所有样品全部按照国家规范标准的规定要求进行采集,具体做法如下:使用容积为1000ml的样品瓶,对地表水及地下水进行采集,使用容积为500ml的样品瓶对生活污水及工业废水进行采集,随后向样品瓶中加入适量的HCl,对样品进行酸化处理,使其pH值≤2.0。②保存样品。经过酸化处理之后的样品若是不能在24h以内进行测定,则必须采取妥善的方式加以保存,最佳的存放条件为2-5℃左右冷藏,最长期限为3d。③制备。本次试验中,试样的制备分为两个部分,即地下水与地表水试样的制备和生活污水与工业废水试样的制备,具体过程严格按照HJ637-2012标准中给出的方法进行,以此来确保试样的整体质量。   2.1.4校准。量取正十六烷和异辛烷两种标准贮备液各2.0ml,同时量取苯标准贮备液10.0ml,分别装于容量瓶当中,然后用CCl4进行定容,至标线位置处,再以人为的方式摇匀,三种标准溶液分别为正十六烷20mg/L、异辛烷20mg/L、苯100mg/L;使用CCl4作为参比溶液,并用4cm比色皿对三种标准溶液在2930cm-1、2960cm-1、3030cm-1波数处的吸光度进行测量,三种标准溶液在上述三个波数处的吸光度符合式(1),可得到联立方程,求解后便可获得相应的校正系数。   (1)   上式当中, 表示CCl4中总油的含量(单位:mg/L);A2930,A2960,A3030表示对应波数下测得的吸光度;X、Y、Z表示与各种C-H键吸光度相对应的系数;F表示校正因子。   2.1.5总油及石油类浓度的测定。①总油。先将未经过MgSiO3吸附的萃取液移至4cm比色皿当中,然后用CCl4作为参比溶液,在三个波数处分别对其吸光度进行测定,以此来计算出总油的浓度。②石油类。石油类浓度的测定方法与总油相同,在此不进行累述。总油的浓度减去石油类的浓度便可获得试样中动植物油类的浓度含量。   2.2测定过程的注意事项   在测定过程中,应对如下事项加以注意:选用的CCl4吸光度应当低于0.12,并且在2800cm-1-3100cm-1之间扫描,不得出现锐锋;选用的红外分光光度计应当能够在3400cm-1-2400cm-1之间进行扫描。若是红外分光光度计在出厂时设定了校正系数,则可直接进行检验;每一批样品在进行分析之前,都必须做方法空白实验,并且空白值必须低于HJ637-2012标准中给出的检出限;实验完毕后,CCl4废液应当存放在密闭性较好的容器当中,进行妥善处理,不得随意丢弃,以免造成污染。   结论:   综上所述,本文以实验的方法,利用红外分光光度计对水中石油类的测定过程进行了简要分析,红外分光光度法是HJ637-2012标准中明确规定的测定水中石油类的方法,由于该方法在测定过程中需要使用CCl4,而该试剂本身的毒性较大,所以在实验过程中必须予以注意,以免引起安全事故。
  • 优普发布半自动测油仪新品
    红外光度测油仪UP-1001利用油类物质在波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)、3030cm-1(芳香烃中C-H键的伸缩振动)谱带处有吸收,利用光谱能量的吸收与转换进行定性,定量分析。红外光度测油仪UP-1001利用油类物质在波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)、3030cm-1(芳香烃中C-H键的伸缩振动)谱带处有吸收,利用光谱能量的吸收与转换进行定性,定量分析。应用领域:适用于工业废水、生活污水、油烟油雾、土壤中石油类以及动植物油类的测定。执行标准:《HJ637-2018水质 石油类和动植物油类的测定 红外分光光度法》《HJ1077-2019固定污染源废气 油烟和油雾的测定 红外分光光度法》《HJ1051-2019土壤 石油类的测定 红外分光光度法》半自动测油仪UP-1001技术参数:波数扫描范围3400 cm-1 ~2400cm-1 (2941nm~4167nm)波数准确度±1cm-1波数重复性±1cm-1仪器检出限≤0.02mg/L测量重复性2%测量准确度±2%吸光度线性范围0.0000~1.9999AU测量范围0.02~800mg/L低检出浓度0.002mg/L(水样浓度)基线漂移1%/4h不同配比测量误差5%通讯接口蓝牙显示10.1寸平板电脑外型尺寸540*246*160(mm)请根据实际外形尺寸修正重量13Kg电源220V±20V,50Hz±1Hz,40W湿度80%温度5~35℃半自动测油仪UP-1001仪器特点:稳定性好:采用一体化光学系统,光程短,能量大,稳定性好,信噪比高。漂移小:探测器既采集光源发光时的信号,又采集光源熄灭时的信号,实现零点实时自动调零。定位精确:采用余割原理进行波数精确定位扫描,使波数定位精度小于一个波数。不同配比测量误差小:模拟水中油成份,测定任意组分标油的误差小于百分之五,使仪器真正为实际水样服务。全光谱测量:全波数测量并实时显示图谱,既可定性分析,又可定量测量。测油专用软件:测油专用软件(已申请软著),集谱图扫描、分析、计算、存储于一体,使操作更轻松。具备自检及结果判定功能:能量不正常则提示,同时提示可能造成的原因,供故障排查参考,具备软件判断样品是否超标提示功能;远程操控:仪器选用10.1英寸Windows10平板电脑,嵌入主机仪器,平板电脑可灵活取下,实现远程操控, 主机预留外接电脑通讯控制接口。通讯方式:蓝牙、RS232通讯。创新点:用油类物质在波数分别为2930cm-1(CH2基团中C-H键的伸缩振动)、2960cm-1(CH3基团中C-H键的伸缩振动)、3030cm-1(芳香烃中C-H键的伸缩振动)谱带处有吸收,利用光谱能量的吸收与转换进行定性,定量分析。半自动测油仪
  • 水中油测试---红外光度测油仪
    供水安全始终是我国经济社会发展的重要问题。疫情过后,水生态安全仍将是我国的长期战略,对我国社会的可持续发展、居民的身体健康等方面起到重要的支撑作用,我们认为国家仍将持续加大对水生态安全各方面(供水、污水、水环境)的基础设施建设力度和资本开支力度,水生态一体化、系统化的保护与治理工作也将持续推进。B1170红外光度测油仪是一款高精度的分析仪器,采用一体化光路系统,光路设计合理,信号强,信噪比高。采用铝合金铸造底座,经自然失效处理,外置电源,注塑外壳,美观大方,体积重量轻,在作为实验室仪器的同时也可以当便携仪器使用。仪器特点1、开关电源供电,电源范围宽2、独创的样品和参比池自动切换机构,精确定位、消除误差、使机械误差影响趋近于零3、余割方式进行波数精确定位扫描,使波数定位精度小于一个波数4、真正三波数,符合国际“HJ 637”不需要作标准曲线,只做一组校正系数5、模拟水中油成份,测定任意组份标油的误差小于百分之五,使仪器真正为实际水样服务6、设有专用餐饮油烟测量菜单,完全按国家饮食油烟排放标准GB18483测量饮食业油烟7、中文菜单操作,配有大屏幕液晶显示器8、不需标样定标,测量结果可以打印输出可脱离计算机单独使用9、可连接计算机系统操作,波数可以自由补偿定位10、既能定量测量,也能定性分析;谱图清晰,能够分辨出各种干扰物质技术参数波数扫描范围:3400cm-1~2400cm-1波数重复性:±1cm-1波数准确度:±1cm-1谱图分辨率:1 cm-1吸光度线性范围:0.0000~1.9999相关系数:r0.999(红外非分散方法)基本测量范围:0.02~800mg/L检出浓度:0.0001mg/L检出浓度:80000mg/L(稀释测量)检出限3SD:0.2mg/L基线漂移度:1%/4h不同配比测量误差:5%(配比不同比例混合烃模拟实际水样)电 源:220V±10V 50HZ±1HZ湿 度:80%温 度:5~35℃外形尺寸:500×250×150(mm)重 量:5.5kg
  • 【安装】中国航油西南战略储运基地 8套LDI ROW溢油监测仪投入运行
    大型储油罐日常操作造成的意外溢油可能会污染地下水和地表水,因此储油基地大多数建设及设施都需满足“水中无油”政策。当漏油发生时,需要对作业进行审查,并采取措施减轻和避免损害。泄漏检测的延迟会导致声誉、环境和当地基础设施受损,及早发现可以更容易地遏制大规模泄漏,并可以改进与当局的协调工作,以管理泄漏反应。中国航油西南战略储运基地建设项目对保障西南地区航油供应,完善西南地区航油体系发挥重要作用。为确保储油基地的安全运营,提升基地的应急响应能力及保护周边环境,该项目于2023年底购置了8套防爆型ROW 荧光法溢油监测仪,布设于储油罐区域排水渠,用于实时监测并准确排查任何可能的溢油事件。上周奕枫仪器工程师来到项目所在地重庆对ROW荧光法溢油监测仪进行了安装调试,并为基地安全工程师进行了现场培训。目前,8套溢油监测设备均已投入正常运行。 安装现场设备调试 操作培训产品介绍ROW系列荧光法溢油监测仪是一种自动非接触式传感器(远程光学观察器),可实时监测水中油品或化工品污染,高度准确且易于维护,它可以及时发现并提醒漏油或化工品污染以便在污染扩散失控之前做出反应。它使用石油/化工品的天然荧光检测任何从船用柴油到植物油到喷气燃料等油类,发现污染立即进行现场声光报警,并将数据远程传输到需要的服务器。无论是在污水排放口还是在进水口,它都可以提供24小时/7天的全天候工业和环境水监测。ROW 荧光法溢油监测仪有多种型号可选,可适配不同应用场景及轻油,中油,重油不同油类。如ROW防爆型整个系统通过了DNV的ATEX/IECEx认证,设计用于安装在易燃气体、蒸汽或雾气等可燃浓度经常存在的危险区域。工作原理为了能够从水面以上最高10m的位置检测厚度为1μm的浮油,ROW溢油监测仪采用365nm的紫外脉冲光束照射水面,激发目标区域的油分子产生荧光,检测器能够从其他物质中鉴别油分子的信号,并给操作者报警。LDI有20年相关监测经验,确保测量结果可靠。报警方式水表溢油监测报警系统具有多种溢油报警方式可选:可通过RS485通讯,LAN通讯,GPRS无线通讯,0~20mA模拟信号或0~10V输出信号,继电器连接声光报警器,Email或短信等方式报警。相关链接:ROW溢油监测及报警系统解决方案https://www.instrument.com.cn/netshow/SH102145/news_660880.htm ROW溢油监测系统全球应用案例https://www.instrument.com.cn/netshow/SH102145/news_624045.htm ROW溢油监测系统视频介绍https://www.instrument.com.cn/netshow/SH102145/video/6874.htm
  • 南京市高淳大型餐饮场所在线监控油烟浓度 明年实现全覆盖
    p  南京市高淳区餐饮专项整治行动中,对120多家机关食堂和1000多家餐饮企业的厨房加装油烟净化装置,预计明年实现全覆盖。同时,引入第三方对规模以上餐饮场所的油烟浓度进行在线监控,破解部分地方“只装不用”的问题。/pp  近日,有记者在南京市高淳区固城湖南路一处餐馆的后厨看到,厨房排风口通往街道路边,中午12点半就餐高峰期,厨房里煎炒煮炸,热火朝天,但排出的气体油烟味并不重。厨房工作人员介绍,这是因为厨房排风口加装了油烟净化装置,不仅如此,厨房的下水道也加装了简单净化设施。在工作人员指引下,记者看到,两个洗碗池排水口连接一个油水分离器,打开分离器盖子可以看到,里面分为三格,第一格是沉渣,第二格隔油,第三格为简单净化后的厨房污水,“有了这个装置,就不用倒开水融化管道上的油块了,只需要定期清理油水分离器。”餐馆管理人员邢小冬说。/pp  “由于餐饮油烟主要集中在城市核心区、商业区、居民区等人口集中区域,而且是低空排放,对人们生活影响较大,”南京市高淳区环保局相关负责人说,该区从去年6月起,在全区开展餐饮专项整治行动,要求所有餐饮服务业安装油烟净化装置、建立隔油沉渣设施,实现油烟、污水达标排放。经排查梳理,高淳区目前约有1160家餐饮企业,其中,面积达500平方米的规模以上企业约有30多家。今年5月,该区又将120多家企事业单位的食堂纳入整治范围。/pp  高淳区以“谁污染谁治理”原则,要求餐饮经营方负责加装油烟和污水净化装置,同时,引入第三方,对规模以上的餐饮企业和就餐人数超过50人的企事业单位食堂加装油烟排放浓度监控设施,实时在线监控排放浓度,破解有的企业“只装不用”的问题。/pp  记者在高淳区城乡建设局食堂的后厨看到,厨房排风管道加长了5米多,不仅增设了油烟净化器,还加装在线监控设备和一个约1立方米大的风柜。高淳区环保局的工作人员曹伟拿出手机现场展示,在手机终端应用上,可查看这处油烟排放的浓度。“只要装置有效运行,排放浓度低于每立方米2毫克的现行国家油烟排放标准,如果未处理直排,油烟浓度可达每立方米8毫克以上。”曹伟说。/pp  南京市高淳区环保局相关负责人说,该区秉承生态立区理念,区委、区政府高度重视污染治理,不达排放标准的场所将被严查。据悉,目前高淳已有多家单位的食堂因不达标而不得不关停,整治工作已完成约65%,预计明年底将实现所有餐饮企业和企事业单位食堂净化装置全覆盖。/p
  • 为增纯奶浓度 绿赛尔乳品掺加2008年问题剩奶粉
    2009年5月,山东淄博市3万多绿赛尔牛奶的订户被告知“由于设备原因,暂时停止送奶”,而送奶业务到2009年的7月才逐渐恢复正常。今年1月底,国家有关部门公布曝光了2009年绿赛尔乳业有限公司的产品三聚氰胺超标后,很多绿赛尔牛奶的订户才弄明白停奶的原因。  绿赛尔在事后被注销了食品生产许可证,企业也被淄博另一家乳企康智多生物科技有限公司兼并。  据了解,绿赛尔在制作纯牛奶的过程中,添加了一部分“问题奶粉”。该企业当时的3名有关人员在事发后也被警方控制。  曾是淄博第二大乳企  公开资料显示,绿赛尔1997年11月成立,是淄博张店区马尚镇九级村的龙头村企。企业性质属集体所有制,从属于金塔实业总公司,而金塔实业总公司的董事长正是九级村的村支书袁有平。2003年绿赛尔固定资产达5860万元,拥有原料生产基地15处,年销售2.5亿元。公司2003年4月通过ISO9001质量体系认证,拥有先进乳制品加工生产线18条。  与这些“辉煌”简介相悖的是,2009年9月,国家质检总局发布《关于注销天津市蓟源水业有限公司等754家企业的827张食品生产许可证的公告》,其中就包括绿赛尔。公告显示,此次注销的绿赛尔公司食品生产许可证,产品名称为“饮料”,其中包括果(蔬)汁及果(蔬)汁饮料、含乳饮料及植物蛋白饮料,注销时间为2009年8月12日。  九级村是一个已经城市化的居民社区,村委会的办公楼就在整齐的住宅小区内。“奶厂在2008年底就转让了。”2月5日,村委会内的一位工作人员说,2008年底,集体所有制的绿赛尔就转让给了个人,以后就和九级村没有关系了。当时业内对于绿赛尔转让的话题比较忌讳,“坊间的传言有很多个版本,但大都说厂子被贱卖了。”  据淄博一位资深业内人士介绍,2008年的时候,淄博本地有三家乳业,得益乳业占市场7成,绿赛尔占2成,康智多占1成。  被疑在奶中加“问题奶粉”  早报记者注意到,在三鹿奶粉事件后,得益、绿赛尔等乳制品企业相继购置了高效液相色谱等检测设备,开展了乳制品中三聚氰胺的自检工作。而根据2008年11月有关绿赛尔的新闻报道称:三鹿事件发生后,绿赛尔公司投资30万元购置了一台美国产SSI高效液相色谱分析仪,实现了对三聚氰胺等有害物质的精量检测,成为淄博市首家使用此仪器的生产企业。  “绿赛尔要是不转让,说不定也不会出事。”知情者透露,绿赛尔转让后,一部分职工由于种种原因离开了工厂,其中有些是技术骨干,该企业的技术力量出现下滑。业内人士称,绿赛尔出事的那批纯牛奶(生产批号:2009-4-25),按照当时绿赛尔的设备应该可以检测出三聚氰胺超标,但当时可能厂内就没有对产品进行有关指标的检测就直接让产品出厂了。  关于三聚氰胺从何而来,知情者称,绿赛尔当时将2008年剩下的一些奶粉添加到鲜奶当中制作纯牛奶,而问题恰恰出在了剩奶粉上。一位熟悉厂内操作的人士说,当时的绿赛尔收上来的鲜奶可能比较稀,达不到纯牛奶的蛋白浓度,所以添加了奶粉以增稠。而按照生产规范,生产纯牛奶必须用鲜奶,添加奶粉本来就是违规操作。  没有销毁“问题奶粉”,生产纯牛奶时违规添加奶粉,产品出厂时不按规定进行有关指标的检测,就在这一系列的违规操作后,绿赛尔的超标纯牛奶就这样出现在了每个订奶户的家中。坊间传言称,绿赛尔是被内部员工举报,说其生产纯牛奶时违规添加奶粉而被有关部门查处的。
  • 关于红外测油仪的雷区,你中招了吗
    随着工业的规模的不断扩大和发展,国家对地表水的物探越来越严重,其中石油类是地表水必测项目之一,国内不少地区环监部门对工业废水、生活污水、油烟油雾等都采用在线监测方式来监控油类污染物。红外分光测油仪作为检测水中油含量的一种水质检测仪器,可以快速准确地测定水中油浓度。  但是在使用红外测油仪的时候也会出现很多认知的误区,接下来说说红外测油仪的常见误区,看看你“中招”了没有。  误区一:  产品证书与产品质量严重不符  我们都知道,各种产品认证书均不是产品质量保证书。红外测油仪技术源于它的研发基础,研发基础来源于创新。而仪器的光源脉冲调制技术对于部分厂家是不懂的,若计算仪器校正系数也不清楚的话,乱用标准曲线,这样是不合理的。因此,用户在购买一定要仔细甄别。  误区二:  全国红外测油仪的技术指标都“差不多”  目前多数政府采购多为招标方式购买,标书编写了有一定技术指标要求后,各个投标单位纷纷响应。招标指标怎么写,投标指标就怎么写,然后把价格拉下来,容易中标。这样一来,全国的红外测油仪的技术指标也就“统一”了。其实投标指标都能写得到,但是能不能做到那就是另一回事了。所以我们在购买仪器后验收时一定要多加注意。  误区三:  红外测油仪不采用计算机也可以使用  红外测油仪是必须配备计算机的,并且计算机的种类很多,比如:单片计算机、单板计算机、微型计算机、台式计算机、笔记本计算机。那么看上没有计算机控制的仪器,其实内部也是采用单片计算机或单板计算机控制的,否则污染计算国标。不能说它不使用计算机,只是它采用的是低档计算器或计算机,局限性太大。  误区四:  都是红外测油仪,测量结果有没有谱图都一样  红外测油仪在测油项目中收到的干扰特别多,即使是由于萃取后脱水不干净也会产生干扰。如果您的仪器没有谱图显示,那么测量结果有无干扰、是油是水便说不清,当然测量结论也就说不清了。所以说红外测油仪要求先定性、后定量,只有看清被测物是油以后,我们才能说它的含量是多少。
  • 武汉教授研发鉴别仪器 地沟油现形仅需10分钟
    到底什么样的油算是地沟油?还真没有人说得清。因为目前国内还没有检测地沟油的统一标准。武汉有专家研发了一种地沟油鉴别方法,6月刚通过湖北省科技厅鉴定,来自中国粮油学会等专家鉴定称该方法&ldquo 检测时间短,成本低,操作简单&rdquo ,&ldquo 对合格食用植物油识别正确率达95.2%,地沟油的正确率达到80.5%&rdquo ,&ldquo 达到国际先进水平&rdquo 。  该项目由武汉轻工大学和武汉矽感科技有限公司合作完成。项目第一完成人、武汉轻工大学何东平教授,长期担任全国粮油标准化技术委员会油料及油脂技术工作组组长,也是卫生部地沟油检测方法专家组成员。  据介绍,他们使用的鉴别仪器是利用&ldquo 离子迁移谱仪&rdquo 法,我国最早引进该仪器用于农产品中瘦肉精、膨大剂等的检测,经使用完全拥有自主知识产权的软件系统,他们尝试用该仪器来测油。  &ldquo 地沟油尽管炼制过程让人作呕,但经过过滤、加热、沉淀、分离,散发着恶臭的垃圾就能变身为清亮的&lsquo 食用油&rsquo ,所含脂肪酸组成都在合格率内,用常规的检测手法很难&lsquo 揪&rsquo 出它们,地沟油穿的&lsquo 马甲&rsquo 是高仿的,真假难辨,我们用数学建模的方式,去撕下它的马甲&rdquo 。  该方法准不准?据介绍,研究人员对2000多个油脂样本,做了盲样测试,经测试,对合格食用植物油识别正确率达95.2%,地沟油的正确率达到80.5%。在国内,这还是首创。据了解,检测时间只需要20秒,10分钟左右就可以获得检测结果。  整台检测仪器约洗衣机大小,&ldquo 考虑进行微型化,甚至可以手持&rdquo ,何东平表示,正与有关部门积极接洽,在不久将来,监测部门有望用上这些设备。
  • 发动机润滑油变质?一键解锁岛津解决方案
    1、什么是润滑油?对于装配有内燃机的车辆、建筑机械、船舶、飞机等器械设备而言,发动机润滑油在润滑、冷却、清洁和防锈过程中起到十分重要的作用。如润滑油变质,则会导致润滑性能下降、发动机内部出现磨损,进而缩短发动机使用寿命并引发故障。 出于物理因素、高温加热、金属磨损颗粒及燃料污染物等影响,机油成分及其添加剂会分解或产生化学变化,从而导致润滑油变质。因此,建议使用不同类型的分析仪对润滑油变质实施分析,确定更换机油时机及应实施何种发动机维护工作。 图1 发动机润滑油变质常见原因 美国ASTM国际标准指定一种通过可变参数来评价润滑剂变质程度的方法。本文中,我们根据ASTM标准中所指定的分析方法,对润滑油变质、污染物、磨损和添加剂实施了分析与评估,其间使用了傅立叶变换红外光谱仪(FT-IR)、气相色谱仪(GC)和电感耦合等离子体原子发射光谱仪(ICP-AES)等设备。 表1 FT-IR、GC和ICP-AES的润滑油分析项目示例2、使用紧凑型FT-IR实施润滑油变质分析红外光谱法所提供的数据(光谱)可反映出物质结构。在FT-IR润滑油分析中,可采集由于磺化、硝化等组成物变化所引起的变质信息,还可以获取由于氧化引起的羰基增量信息。分析同样可提供烟炱和其他物质污染物的相关信息,并可获取由于水分污染而引发的羟基增量信息。此外,如润滑油包含抗氧化剂或抗磨组分,那么可通过特有峰值来确定是否由于润滑油变质而导致添加剂减量。 此项研究中,我们使用紧凑型、高性能FT-IR和易用液体分析单元对润滑油变质实施评价。图2 结合使用IRSpirit和Pearl液体池 2-1丨方法 结合使用IRSpirit与Pearl 0.1 mm光程液体池,对样品A和样品B的废旧机油与新机油实施分析。样品A和样品B的详细信息如下: 表2 样品详细信息 2-2丨结果图3 样品A和样品B的光谱 根据FT-IR分析结果,样品A中确认存在水污染及由于氧化和硝化而引起的变质。样品B中,抗氧化剂量减少,但并未观察到由于氧化变质引起的光谱变化。因此可假定使用抗氧化剂有效防止了机油氧化。 使用FT-IR,无需实施样品预处理即可实施润滑油分析,Pearl液体池在每次分析后,能够简单、快捷地实现池体单元清洁工作。此外,由于能够以高精度保持光程长度,因此所获数据在符合ASTM E2412要求的同时,还可以确保高可重现度。 然而,由于FT-IR方法灵敏度不高,因此很难区分低浓度污染物(如:燃料和冷却剂)。GC和ICP-AES方法适用于此类详细分析。 3、利用GC快速分析发动机润滑油中的燃油稀释率发动机润滑油中如果混入汽油或柴油等燃料油,那么会导致润滑油粘度降低、无法发挥其润滑性能。因此,燃油稀释率(含量)通常作为判断机油是否需要更换的一个关键指标。测定发动机润滑油中的燃油稀释率,一般采用配备氢火焰离子化检测器(FID)的GC法,该方法是最为准确检测方法之一。 但是,当分析高沸点化合物样品时,该方法存在的弊端是分析时间较长,分析效率低。ASTM D7593将反吹技术引入气相色谱法,可实现燃油稀释率的快速分析。该系统可应用于发动机润滑油中汽油、柴油和生物柴油分析。 在此项研究中,使用了配备反吹系统的气相色谱法和利用氮气作为载气进行分析,从而节约分析成本。图4 岛津反吹系统 3-1丨方法使用配备有反吹系统的Nexis GC-2030气相色谱仪对发动机润滑油中的燃油稀释率进行分析。根据汽油n-C12和柴油n-C20的停留时间,设置反吹起始时间。 表3 分析条件3-2丨结果图5 发动机润滑油中稀释汽油分析色谱图图6 混入柴油的基油样品的长期连续分析 表4 稀释汽油分析的重现性(%,n = 10)表5 稀释柴油的重复性(%,n = 10)使用配备反吹系统的气相色谱仪实现了测定时间小于2分钟的高效率汽油稀释率测定和小于4分钟的高效率柴油稀释率测定。仅需将样品放置于小瓶中即可进行分析,无需任何预处理操作(如:溶剂稀释)。此外,Nexis GC-2030可同时使用两套反吹系统流路让生产率提高一倍。 该系统具有良好的重现性,并在使用廉价氮气载气的同时,满足ASTM D7593中的要求。在 600次分析中,所得稀释率的重现性 % RSD为2.3%,每实施200次分析对耗材(如:隔垫) 进行一次维护,此处显示出其出色的长期稳定性。特别是对于质量控制部门而言,由于需要进行大量样品的常规分析,因此对于低成本、快速分析的需求十分迫切。本应用中,我们介绍了一种使用配备有反吹系统的Nexis GC-2030气相色谱仪对发动机润滑油的燃油稀释率进行经济高效、快速的分析方法。 4、使用ICP-AES分析废旧润滑油中的添加剂元素、磨损金属和污染物分析润滑油中的金属磨损可为评估润滑油变质和发动机状态提供有用信息。同时,在润滑油中添加富含各类有机金属物质的多种添加剂可增强其润滑性能。为保证润滑油质量(实现质量控制),控制添加剂浓度十分重要。根据ASTM D5185和D4951,指定使用有机溶剂稀释的ICP-AES测定废旧润滑油中所含有的添加剂元素、磨损金属和污染物。 本研究中,我们使用岛津ICPE-9820发射光谱仪,根据ASTM D5185中针对废旧润滑油样品所指定的22种元素(包括ASTM D4951中所述的9种元素)实施分析,并同样对未经使用的润滑油样品实施分析以作参考,样品均使用有机溶剂进行稀释。ICPE-9820采用垂直方向的炬管设计,可有效防止积碳,并在无需加氧的条件下,为有机溶剂样品进行稳定的分析。 4-1丨方法 使用岛津ICPE-9820进行测定。测定条件见表6。常规ICP仪器进行有机溶剂样品分析时,通常须将氧气导入等离子体中,以防炬管管口上形成碳沉积。然而,岛津ICPE-9820采用了可抑制碳沉积的炬管,几乎可完全消除由样品和有机溶剂形成的积碳。因此,即使在分析煤油、二甲苯和MIBK等品类的有机溶剂样品时,ICPE-9820依然无需导入氧气来抑制碳沉积。此外,由于岛津ICPE-9820采用真空光室,因此在分析类似硫等波长处于真空紫外区域元素时,无需使用消耗昂贵、高纯度气体的吹扫光室,可节约分析成本。 表6 分析条件废旧汽车润滑油(行驶里程约4000公里)与仅用于分析样品的新润滑油。样品预处理包括:各样品称约10 g,然后用100 mL的煤油进行稀释。使用煤油准确稀释SPEX油基21元素混合标准溶液(500μg/g)、SPEX油基单元素标准溶液(5000μg/g)与重油硫含量标准样品(重量的1.05%)制备标准溶液。 此外,用煤油稀释油基Y(钇)单元素标准溶液(5000μg/g),并作为内标元素添加至所有样品中,从而使所有样品保持固定浓度。 为了验证测定值,将上述标准溶液添加至废旧润滑油中,制备5 mg/L溶液,用作低浓度元素加标回收测试样品。此外,对于高浓度元素,使用煤油将废旧润滑油稀释50倍以制备稀释测试样品。 4-2丨结果表7给出分析结果。针对废旧润滑油,高浓度元素稀释测试和低浓度元素的加标回收测试均获得了接近100%的优异结果。此外,同样列出针对新润滑油实施分析所获的分析结果,以供参考。使用ICPE-9820,可以稳定地分析废旧润滑油中的溶解元素,而无需导入氧气。 表7 润滑油的分析结果峰值回收率(%)=(C1-C2)/B×100(C1:加标样品定量值;C2:非加标样品定量值;B:加标浓度)稀释测试(%)= I/S×100(I:稀释前样品的定量值;S:5倍稀释样品的定量值×5)检测极限:DL = 3×σBL×κ(σBL:背景强度的标准偏差;κ:浓度/强度):小于检测极限 5、结论• 使用FT-IR、GC和ICP-AES可获得关于润滑油变质分析的有用信息。 • 紧凑型IRSpirit和Pearl可轻松获取符合ASTM E2412要求的数据。 • 使用GC-2030反吹系统可对润滑油燃料稀释品实施经济有效的分析。 • 使用ICPE-9820,无需导入氧气即可稳定分析润滑油中的溶解元素。 文章参考:ASTM E2412-10、ASTM D7593-14、ASTM D5185-18、ASTM D4951-14
  • 红外分光测油仪的检测范围及校准方法
    红外分光测油仪是一款可以用于地表水、地下水、生活污水、工业废水、土壤中的矿物油和动植物油及废气中油烟和油雾排放检测的仪器设备,现在使用越来越广泛,今天小编就来介绍一下红外分光测油仪的相关情况。红外分光测油仪检测范围:红外分光测油仪检出限:DL≤0.04mg/L(四氯乙烯空白液测定11次的3倍SD)方法检出限:检出限为0.06mg/L;当样品体积为500ml,萃取液体积为50ml时(HJ637-2018标准)最低检出浓度:0.003mg/L样品测量范围:0~100%油(富集和稀释)基本测量范围:0.0-800mg/L重复性:RSD ≤ 0.6%(30-80mg/L 油样测定 11 次 )准确度误差:≤2%相关系数:r0.999扫描速度:全谱扫描,快速模式45 秒钟/次,精密模式3分钟/次波数范围:3100cm-1 ~ 2800cm-1 (即 3200nm ~ 3570nm )红外分光测油仪如何校准?1.选择:选择一条空白检测的曲线作为检测页背景线条;2.清空:将已选择的背景曲线清空,检测页将不显示背景曲线;3.校正系数计算:根据上方所选的四类样品计算出XYZF的值;4.保存:将计算出的XYZF的值进行保存;5.选取数据:选取用于计算标准曲线法参数的数据;6.计算:根据所选数据计算出相应公式;7.清空:将已保存的标准曲线法参数清除;8.保存:将计算得出的标准曲线法参数进行保存。红外分光测油仪校准页为出厂前对光路、基本波长和三个检测点进行校准,由于红外分光测油仪出厂前已经校准完毕,用户不需要对其进行设置,直接进行样品检测即可。
  • 蛋白质浓度测定常用的三种方法
    测定蛋白质浓度的方法有很多,科研工作者广泛使用的方法比如紫外吸收法,双缩脲法,BCA方法,Lowry法,考马斯亮蓝法,凯氏定氮法等等 ,今天小编以UV法,BCA法,考马斯亮蓝法,其中的三种方法的测定蛋白质浓度的原理、优缺点、操作以及注意事项做详细介绍。UV法这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白 质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受 到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。(1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor(2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果:蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D,其中d为测定OD值比色杯的厚度,D为溶液的稀释倍数BCA法原理:BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂混合一起即成为苹果绿,即 BCA 工作试剂。在碱性条件下,BCA 与蛋白质结合时,蛋白质将 Cu2+ 还原为 Cu+,工作试剂由原来的苹果绿色变为紫色复合物。562 nm 下其光吸收强度与蛋白质浓度成正比。BCA 蛋白浓度测定试剂盒,Abbkine的蛋白质定量试剂盒(BCA法)提供一个简单,快捷,兼容去污剂的方法,准确定量总蛋白。成分试剂 A100 mL试剂 B2 mL标准蛋白(BSA)1 mL×2,1 mg/mL保存条件 运输温度:室温(标准蛋白 4~8 ℃ 运输)保存温度:室温(标准蛋白 -20 ℃ 保存)有效日期:12 个月使用方法方法一:96 孔板1. 配制 BCA 工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液。充分混匀。2. 将蛋白标准品按 0 μL,1 μL,2 μL,4 μL,6 μL,8 μL,10 μL 加入 96 孔板的蛋白标准品孔中。加灭菌双蒸水补足到 10 μL。取 10 μL 待测样品加入 96 孔板的待测样品孔中。每个测定要做 2~3 个平行。3. 向待测样品孔和蛋白标准品孔中各加入 200 μL BCA 工作液(即样品与工作液的体积比为 1:20),混匀。4. 37 ℃ 温浴 30 min。冷却至室温。5. 酶标仪 562 nm 波长下测定吸光度。6. 制作标准曲线。从标准曲线中求出样品浓度。方法二:试管法1. 配制工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液,充分混匀。工作液配制的量要与测定所用的比色杯对应。每个测定要做 2~3 个平行。本处列举的比色体系所用的是 0.5 mL 的比色杯。如比色杯规格不同,体系需要放大到实验将采用的比色杯准确读数所需要的体积。2. BSA 标准品和样品的准备:样品用水或其它不干扰显色反应的缓冲液配制,使待测定的浓度位于标准曲线的线性部分。每个反应准备 3 个平行测定。标准曲线一般 5~6 个点即可。根据样品的估测浓度确定各点的具体浓度。稀释 BSA 时可以用水或与样品一致的溶液。如待测样品的浓度约为 200 μg/mL,可按下表的次序加入 BSA 标准品、样品及 BCA 工作液。3. 取适量体积的标准蛋白,以蛋白液:工作液=1:20 的比例混匀。37 ℃ 温浴 30 min。冷却至室温。4. 将样品与标准品在 562 nm 波长下测定吸光度。考马斯亮蓝法实验原理:考马斯亮蓝 (Coomassie Brilliant Blue) 法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量测定微量蛋白浓度快速、灵敏的方法。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。目前,这一方法是也灵敏度最高的蛋白质测定法之一。考马斯亮蓝 G-250 染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰 (lmax) 的位置,由 465 nm 变为 595 nm,溶液的颜色也由棕黑色变为蓝色。通过测定 595 nm 处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸 (特别是精氨酸) 和芳香族氨基酸残基相结合。突出优点(1)灵敏度高,据估计比 Lowry 法约高四倍,其最di蛋白质检测量可达 1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比 Lowry 法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要 5 分钟左右。由于染料与蛋白质结合的过程,大约只要 2 分钟即可完成,其颜色可以在 1 小时内保持稳定,且在 5 分钟至 20 分钟之间,颜色的稳定性最好。因而完全不用像 Lowry 法那样费时和需要严格地控制时间。(3)干扰物质少。如干扰 Lowry 法的 K+、Na+、Mg2+ 离子、Tris 缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA 等均不干扰此测定法。缺点(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g-球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠 (SDS) 等。试剂与器材1、试剂 考马斯亮蓝试剂:考马斯亮蓝 G-250 100 mg 溶于 50 mL 95% 乙醇中,加入 100 mL 85% 磷酸,用蒸馏水稀释至 1000 mL。2、标准和待测蛋白质溶液(1)标准蛋白质溶液结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用 0.15 mol/L NaCl 配制成 1 mg/mL 蛋白溶液。(2)待测蛋白质溶液。 人血清,使用前用 0.15 mol/L NaCl 稀释 200 倍。3、器材 试管 1.5×15 cm(×6),试管架,移液管管 0.5 mL(×2) 1 mL(×2) 5 mL(×1);恒温水浴;分光光度计。操作方法 一、制作标准曲线 取 7 支试管,按下表平行操作。摇匀,1 h 内以 0 号管为空白对照,在 595 nm 处比色。绘制标准曲线:以 A595 nm 为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。二、未知样品蛋白质浓度测定 测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的 A595 nm 值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。注意事项(1)在试剂加入后的 5-20 min 内测定光吸收,因为在这段时间内颜色是最we定的。(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,测定完后可用乙醇将蓝色的比色杯洗干净。(3)利用考马斯亮蓝法分析蛋白必须要掌握好分光光度计的正确使用,重复测定吸光度时,比色杯一定要冲洗干净,制作蛋白标准曲线的时候,蛋白标准品最好是从低浓度到高浓度测定,防止误差。
  • 用于核桃油中γ-生育酚回收的超临界流体萃取技术和加压溶剂萃取技术的比较
    用于核桃油中&gamma -生育酚回收的超临界流体萃取技术(SFE)和加压溶剂萃取技术(PSE)的比较Jeff Wright and Thomas DePhillipo Waters Corporation, Milford, MA, U.S.应用效益超临界流体为不适用于反相的化合物提供了强大的解决方案。这两种技术都被认为是绿色技术,因为它们比其它竞争性的技术需要更少的溶剂。尽管被认为是一种温室气体,CO2或者是现有流程的一种副产品,或者是从SFE/SFC流程的应用环境中获取并返回到环境当中;因此,它对形成温室效应不起作用。其他效益包括但不限于:更快的分析时间、更有选择性的萃取、更少的干燥时间和更低的运行成本;所有这些效益都会大大提高实验室的通量。沃特世解决方案Method Station SFC系统、SFE100萃取系统、2998光电二极管阵列(PDA)检测器、SunFire&trade Prep Silica色谱柱、Empower&trade 软件关键词SFE、PSE、SFC、生育酚、绿色技术、核桃油引言&gamma -生育酚是人类饮食(如植物籽和坚果)中摄取的维生素E的主要形式。过去,一些营养补充公司都将重点放在了&alpha -生育酚的健康效益上。然而,最近的各项研究表明,与&alpha -生育酚不同,&gamma -生育酚具有抗发炎的特性。1事实上,一些人类与动物研究表明,&gamma -生育酚的血浆浓度与心血管疾病和前列腺癌的发病率成反比关系。1现在,研究人员已经认识到,&gamma -生育酚可能具备以前没有考虑到的药物性能。1超临界二氧化碳与油的兼容性本身就适于超临界二氧化碳萃取技术。超临界流体萃取(SFE)比其他碳氢化合物萃取技术具有许多显著优势,包括:■ 萃取时间更快■ 萃取选择性更多■ 溶剂用量减少(90%~100%)■ 溶剂处理成本降低 另外,SFE对于在分析之前无干燥时间或无萃取后处理。SFE非常适合从天然产品中萃取油。在其临界点以上,CO2表现出像液体一样的密度,同时保留像气体一样的扩散性、表面张力和粘度。这些特性导致很高的质量传递,对多孔固体的穿透力更大,同时保留了类似于液体的溶剂强度。 压力溶剂萃取技术(PS E)在理论上与S F E技术相似,只有一个主要的区别:PSE技术中采用的溶剂通常是己烷或一些其他碳氢化合物溶剂。在PSE过程中,和SFE一样,将样本放入一个压力容器中,在给定的温度、压力和流速下处理,以萃取目标分析物。 由于其水溶性有限,从坚果中提取油更适于正相流体色谱法(NPLC)。超临界流体色谱法(SFC)是NPLC的一项非常有利的替代方法。超临界CO2的低粘度和强扩散性加快了分析时间,同时消耗少量的溶剂。另外,与质谱仪连用时,SFC就不需要使用己烷或庚烷等溶剂。 本应用文献说明了SFE及其竞争技术PSE的使用,使用相同的通用仪器去除核桃中的&gamma - 生育酚。对这两种技术的比较,重点是比较总处理时间、总碳氢基溶剂需量和总&gamma - 生育酚萃取量。然后,SFC会用于将&gamma - 生育酚与其他具有相似极性的基质组分分开。试验采用沃特世Method Station SFC系统对本试验中进行的所有萃取进行分析。采用沃特世SFE100萃取系统来执行PSE和SFE萃取。标准品处理&gamma -生育酚标准品通过Sigma Aldrich(货号:T1782-100mg)取得并在己烷中稀释(J. T. Baker,HPLC级),得到浓度为1 毫克/毫升的溶液。然后进行连续稀释,形成校正曲线。样品处理将38克核桃放入一个食品加工机中弄碎,并放入一个带过滤器的100 cc用手指拧紧的容器组合件中。SFE和PSE技术的基本萃取条件如下:SFE的条件SFE系统: SFE100C10流速: 7 毫升/分钟压力: 450巴SFE修饰剂: 乙醇(J. T. Baker,HPLC级)萃取容器: 100 cc萃取温度: 50 ˚ C共溶剂: 0.5 mL 乙醇萃取时间: 在上述条件下动态萃取40分钟PSE的条件SFE系统: SFE100C10流速: 7 毫升/分钟萃取容器: 100 cc萃取温度: 50℃压力: 250 巴萃取温度: 50℃PSE溶剂: 100%己烷PSE净化溶剂: CO2萃取时间: 动态萃取40分钟;CO2净化/干燥5分钟SFC的条件SFC系统: Method Station流速: 3 毫升/分钟进样量: 40 &mu L检测: 2998 PDA检测器(扫描范围210至320纳米),&lambda max:295纳米,吸光度补偿色谱柱: SunFire Prep Silica,5 &mu m,4.6 x 250 mm柱温: 40℃共溶剂: 甲醇梯度: 时间(分钟) %共溶剂 0.0 至 6.0 5 6.0 至 7.0 5 至 40 7.0 至 10.0 40 10.0 至 10.1 5 10.1 至 13.1 5反压: 120 巴数据管理Empower 软件结果和讨论从核桃中萃取油以后,收集溶剂(SFE和PSE分别为20mL和280mL)被去掉,然后测试剩余油中的&gamma -生育酚。图1 所示为&gamma -生育酚标准品在SunFire Prep Silica色谱上的梯度洗脱(根据上述条件)及其相应的PDA光谱。通过SFC质谱实现了良好的鉴定,采用APCI+ 模式在417.5(&gamma -生育酚的中波 = 416.69)这一点上产生了强信号(数据未显示)。 图2和图3分别为核桃油萃取物的典型色谱图和SFE和PSE的PDA光谱。 表1 显示了对于每种技术&gamma -生育酚的定量结果。对照校正曲线分析时,SFE萃取了0.096 mg/mL,而PSE萃取了0.032 mg/mL。 SFE和PSE都是在相同的温度和处理时间下运行。SFE技术使用的溶液总量明显比PSE要少,这就意味着节省了大量时间。由于干燥时间减少和溶剂处理成本降低,SF E法还节约了其他方面的成本。相比PSE技术要蒸发280毫升溶剂,SFE技术只需蒸发20毫升溶剂,需时较少。对于两者中任一流程,分析之前基本不需要任何样品处理,同时分析也简单、快速(40分钟)。图4 显示的是在SFE萃取前和萃取后核桃的情况。颜色变化是由于在萃取过程中去掉了油的原因。结论实验结果反映了SFE和PSE技术可以成功地在相同的仪器上执行。将CO2作为&gamma -生育酚的萃取和分析的主要溶剂的优势在于,提供了一种简单、快速和绿色技术的强大组合,同时与PSE和其他碳氢基替代方法相比,最大限度地减少了溶剂使用量和降低了处理成本。由于其具备可升级性,SFE是适于从核桃以及其他天然产品中萃取&gamma -生育酚的可行的试用/生产工艺。 参考文献[1] AM J Clin Nutr.2001年12月;74(6): 714-22. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 变压器油检测专用气相色谱仪的主要特点与参数
    变压器油检测专用气相色谱仪的简介    变压器油分析气相色谱仪是根据电力部部颁标准,广泛吸收国内外同类仪器的优点而创新设计的多用途气相色谱仪。仪器采用双柱并联分流柱系统,具有热导和双氢焰三检测器及转化炉,能一次进样实现油中溶解气体组分的全分析。仪器主要应用于电力系统充油电气设备内部故障检测,仪器兼有一机多用功能,可用于六氟化硫杂质分析,氢冷发电机冷却介质分析,锅炉烟气分析,天然气分析和环境检测分析等。另外,还广泛应用于石油.化工.矿山等系统的气体分析。    变压器油检测专用气相色谱仪的主要特点    1、采用微机控制,键盘设定,液晶显示,有随即记忆功能;    2、检测器的信号,加热器的数值,加热炉温度,流量传感器读数或储存的柱补偿基线的信号都可以分配到一个模拟的输出通道;    3、自机检测及故障诊断,断电保护储存的实验数据,秒表和运转定时器,键盘锁定功能;    4、氢火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴,操作简单;输入信号可进行对数放大,减少了干扰,灵敏度高,线性好,量程宽。可安装美国HP-5890气相色谱仪微型热导检测器,实现完全对接;    5、高性能检测器及甲烷转化器,检出能力完全满足电力部对变压器油中气体组分含量的测定及环保监测对微量CO,CO2检测;    6、采用二次分流柱系统,分析速度快,重现性好;    7、双氢焰设计,使低含量的烃类和高含量的CO,CO2分别检测,避免相互干扰,提高了检测灵敏度;    8、可安装本公司生产的顶空进样器,减少了对样品的污染;    9、采用新型柱填料,双柱温流程,使C2H2检出时间提前,灵敏度提高,分析周期缩短。    10、测定组分:TCD:H2,O2。    变压器油检测专用气相色谱仪的技术参数    1、柱室温度:室温+5℃~400℃,控温精度±0.05℃    2、检测室温度:室温+15℃~400℃,控温精度±0.05℃    3、转化炉温度:室温+15℃~360℃,控温精度±0.1℃    4、TCD灵敏度,对H2的最小检测浓度5ppm    5、FID检测限    对C2H2的最小检测浓度0.1ppm;对CO,CO2的最小检测浓度2ppm    6、电源条件:220V±10%,50±0.5HZ    7、功率:约2kw
  • 绝缘油析气性测定仪的主要作用
    绝缘油析气性测定仪(DGA,Dissolved Gas Analysis)的主要作用是检测和分析电力设备(如变压器、开关设备等)中绝缘油中溶解气体的类型和浓度。其主要作用包括:故障诊断与预警: 绝缘油析气性测定仪可以检测到设备中潜在的故障和问题。不同类型的故障(例如局部放电、过热、电弧放电等)会导致绝缘油中特定气体的生成和浓度变化。通过分析油中的气体组成,可以及早发现设备可能存在的问题,并提前预警,有助于采取预防性维护措施,避免设备的突发故障。设备健康状态监测: 定期进行绝缘油析气性测定可以有效监测设备的健康状况。通过比较不同时间点的测量结果,可以跟踪设备运行过程中绝缘油中气体浓度的变化趋势,评估设备的运行状态和健康程度。这有助于制定合理的维护计划和决策,延长设备的使用寿命。分析故障类型: 不同类型的电气故障(如局部放电、电弧放电等)会在绝缘油中产生特定类型和比例的气体。通过绝缘油析气性测定,可以分析油中气体的组成,进而推断可能存在的具体故障类型。这对于准确诊断故障、定位问题和指导后续维修具有重要意义。准确的维护决策支持: 绝缘油析气性测定仪提供的数据可以作为维护决策的重要依据。基于分析结果,可以制定维护策略、优化资源分配,确保设备的安全运行和可靠性。综上所述,绝缘油析气性测定仪通过分析绝缘油中溶解气体的类型和浓度,能够帮助电力设备运行维护人员实现故障预测、设备健康状态监测、故障诊断和有效的维护决策支持,从而保障电力设备的安全运行和可靠性。
  • 得利特实验室检测仪器---台式酸浓度计,台式碱浓度计
    目前,便携化、智能化、快捷化、多功能化的仪器才是市场发展的主流,虽然在某些场合对大型仪器的使用非常有必要,但在绝大多数的检测活动中,轻巧便携、操作简单、功能多样化的产品显然更受欢迎,所以我国的水质分析仪器制造水平要追平国际,就需要在这些方面下苦功夫,避免出现产品结构单一、功能单一、缺乏创新等状况。仪器生产商要积极进行市场调研,根据市场需求积极创新,发展出更满足客户需要的产品。当下我国的环保形势良好,国家对环境监测仪器的需求大,在政策上也多有扶持,所以行业内要及时抓住机遇,依托政策,积极引进先进技术,聚集人才,研发属于我们自己的国之重器,让国产仪器真正走出国门。当然,我国的仪器行业还存在一个状况,就是两极分化严重,一大批企业徘徊在中低端产品线上,而能与世界水平比肩的却寥寥无几,如果不能解决这个问题,长此以往,对我国的仪器行业发展并没有任何好处,水质分析仪器也如是,可见国产仪器商们要走的路还很长。B1120台式酸浓度计在电力工业中广泛应用的电磁式酸碱浓度计的新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示: 4位0.8英寸LED显示测量介质:HCl、NaOH、NaCl、H2SO4(每台仪表只能测量一种介质,订货时指明测量介质)量  程: HCl 0~10% H2SO4 0~5%精 度:  2.0级 (常用点校准后误差可小于0.05%)    分 辩 率:  0.01%温度补偿范围:(5~55)℃仪表供电: AC 220V 50Hz 5W仪表外形尺寸: 270×200×90mm探头尺寸: 39×100mm,引线长度1m仪表重量: 1.25kgB1130台式碱浓度计在电力工业中广泛应用的电磁式酸碱浓度计的zui新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示:4位0.8英寸LED显示测量介质:NaOH、NaCl(每台仪表只能测量一种介质,订货时指明测量介质)量  程:NaOH 0~5% NaCl 0~5%(重量百分比)精 度: 2.0级 (常用点校准后误差可小 于0.05%)    分 辩 率: 0.01%温度补偿范围: (5~55)℃仪表供电:AC 220V 50Hz 5W仪表外形尺寸:270×200×90mm探头尺寸:39×100mm,引线长度1m仪表重量:1.25kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制