当前位置: 仪器信息网 > 行业主题 > >

油封径向力测试仪

仪器信息网油封径向力测试仪专题为您提供2024年最新油封径向力测试仪价格报价、厂家品牌的相关信息, 包括油封径向力测试仪参数、型号等,不管是国产,还是进口品牌的油封径向力测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合油封径向力测试仪相关的耗材配件、试剂标物,还有油封径向力测试仪相关的最新资讯、资料,以及油封径向力测试仪相关的解决方案。

油封径向力测试仪相关的论坛

  • 求购1台径向粗糙度测试仪

    用途:测试黑色橡胶辊粗糙度,直径5~15mm,粗糙度在零点几个微米到2微米之间。要求:径向运动测试(不是轴向),价格20万以下。

  • 【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    [color=#cc0000][size=18px]摘要:本文特别针对圆柱形锂离子电池的径向导热系数,开展了测试方法研究。在不破坏电池和只有电池圆周外表面的边界条件下,分别采用了恒温和恒流两种测试方法建立了相应的测试模型和解析表达式,并通过有限元仿真来验证了测试模型和解析表达式的准确性,为测试仪器的设计提供了有效指导,为在其他规格锂电池热性能测试中的推广有重大意义。[/size][/color][hr/][size=24px][color=#cc0000]1. 问题的提出[/color][/size][size=18px]  锂离子电池有多种规格和外形尺寸,所以锂电池的热性能参数测量会涉及多种测试方法和测试仪器设备。我们首先选择圆柱形锂离子电池的热性能测试开展研究,特别是针对圆柱形锂离子电池径向导热系数测试技术开展研究,主要出于以下几方面的考虑:[/size][size=18px]  (1)圆柱形锂离子电池是目前最常见的电池类型之一,应用十分广泛,而圆柱形锂电池径向导热系数测试技术并未成熟,国内外都还处于阶段,所报道的各种测试方法误差较大,无法满足电池热模型和热管理的需求。[/size][size=18px]  (2)锂电池的圆柱形结构非常特殊,特别在径向方向上只有一个圆周面,在不破坏电池条件下进行热性能测试,则只有一个圆周外表面能用来进行产生相应的测试边界条件,这往往是热性能参数测试技术中难度最大的测试。如果能够在圆柱形电池径向方向实现热性能参数测试,并能够达到满足的测量精度,则可以将测试技术很容易推广应用到棱柱形和袋装电池。[/size][size=18px]  (3)圆柱形锂离子电池中的自热热量通常是最低的,要低于棱柱形和袋装电池中的热量。同样,所研究的测试方法如果能够在热量较低的圆柱形锂电池上获得满意的测量精度,则可以在棱柱形和袋装电池的高热量测量中得到更高的测量精度。[/size][size=18px]  (4)另外,通过圆柱形锂离子电池径向导热系数测试技术的研究,可以尝试实现锂电池热性能测试仪器的多功能化、模块化、快速化和低造价。[/size][size=18px]  本文将特别针对圆柱形锂离子电池的径向导热系数,开展测试方法研究。在无损电池和只有电池圆周外表面的边界条件下,建立相应恒温和恒流两种测试模型和解析表达式,并通过有限元仿真来验证测试模型和解释表达式的准确性,预期为测试仪器的设计提供有效指导。[/size][size=24px][color=#cc0000]2. 圆柱形锂电池径向导热系数测试解析模型[/color][/size][size=18px]  根据圆柱形锂电池的内部结构和传热方向,圆柱形锂电池的径向传热方式都是一个典型的径向圆周四散方式,因此采用柱坐标形式来描述圆柱形电池的测试模型,如图2-1所示,而其他形式的测试模型都无法准确描述圆柱形电池的传热方式。对于一个半径为R、高度为H的圆柱形锂电池,其径向导热系数测试的边界条件只能产生在r = R处的圆周外表面上。[/size][align=center][size=18px][img=,250,311]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070846574960_9557_3384_3.png!w533x664.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图2-1 圆柱形锂电池径向导热系数测试模型[/color][/size][/align][size=18px]  如果假设圆柱形电池的上下两个端面为绝热面,那么电池外表面上的边界条件无外乎传热学中的三类边界条件,即恒定温度、线性升温和交变温度。由于被测电池尺寸相对较大,而且交变温度这种第三类边界条件的较难实现和解析模型非常复杂,因此我们只针对恒定温度和线性升温这第一和第二类边界条件开展相应的测试方法研究。[/size][size=18px]  对于图2-1所示的柱坐标径向加热情况,热量仅沿径向流动。因此,温度分布在空间上是一维的,热流也是一维热流,并假设径向导热系数是均匀的,并且在较小的温度区间内与温度无关。[/size][size=18px][color=#cc0000][b]2.1. 第一类边界条件:恒温测试解析模型[/b][/color][/size][size=18px]  第一类边界条件是表面温度恒定,也就是在测试过程中,起始温度为T0的电池突然放置在温度Ts的环境中,而且此环境温度要高于起始温度T0,并保持恒定不变,由此热量通过电池径向进行传递,而在电池两个端部处于绝热状态。[/size][size=18px]  以第一类边界条件进行的恒温测试,这里假设圆柱形电池是一个无限长棒传热模型,电池内的热传导方程为:[/size][align=center][size=18px][img=,690,128]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070851382180_6133_3384_3.png!w690x128.jpg[/img][/size][/align][size=18px]  其中T(r,t)是电池内坐标r处在时刻的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。那么方程(1)的解为:[/size][align=center][size=18px][img=,690,100]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852022891_578_3384_3.png!w690x100.jpg[/img][/size][/align][size=18px]  特征值λn由方程J0(λn)的根获得,J0表示第一类0阶贝塞尔函数。[/size][size=18px]  当加热时间足够长之后,方程(2)可以简化为:[/size][align=center][size=18px][img=,690,75]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852313819_8684_3384_3.png!w690x75.jpg[/img][/size][/align][size=18px]  其中αr=kr/(ρCp)为径向热扩散系数。对方程(3)两端去对数后,得:[/size][align=center][size=18px][img=,690,69]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853086401_7706_3384_3.png!w690x69.jpg[/img][/size][/align][size=18px]  由此可见,方程(4)是一个随时间变化的线性方程,通过其斜率m中包含着感兴趣的径向热扩散系数。对于圆柱形电池这种柱状坐标内的热传递,此时A1=1.6021,λ1=2.4048,那么方程(4)的斜率为:[/size][align=center][size=18px][img=,690,53]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853455432_5404_3384_3.png!w690x53.jpg[/img][/size][/align][size=18px]  由此,可以通过测量获得内部温升变化数据,经过对数转换后得到一条直线,由此直线的斜率就可以通过方程(5)计算得到电池的径向热扩散系数。[/size][size=18px]  在测试过程中不允许破坏圆柱形锂电池,因此在实际测试中并不能在电池内部上插入温度传感器获得T(r,t)测量值,但可以采用热流传感器在电池外表面获得热流随时间变化曲线。同样,通过对此恒温加热过程中的热流密度变化曲线取对数,其对数随时间的变化曲线也是一条斜率为方程(5)的直线。具体推导过程不再详述。[/size][size=18px]  在此恒温测试过程中,电池比热容随温度的变化为:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854129544_7533_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px]  其中A代表电池圆周侧面受热面积,q(t)代表热流计检测的热流密度,m代表圆柱形电池的质量,dT/dt代表升温速率。[/size][size=18px]  假设在此温度变化范围内比热容是一个与温度无关的常数,那么在圆柱形电池从起始温度投入到环境温度T0中并最终达到稳定,则有:[/size][align=center][size=18px][img=,690,58]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854434347_7090_3384_3.png!w690x58.jpg[/img][/size][/align][size=18px]  这样,通过得到的径向热扩散系数和比热容,结合圆柱形电池密度ρ的单独测量值,则可以计算得到径向导热系数kr:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854588515_1777_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px][color=#cc0000][b]2.2. 第二类边界条件:线性升温测试解析模型[/b][/color][/size][size=18px]  第二类边界条件是表面温度线性升温,也就是在测试过程中,电池外表面加载恒定热量来加热电池,并假设在整个加热过程中恒定热量不会随时间发生损失。另外由于圆柱形电池是轴心对称结构,电池四周侧面加热形式会使得电池轴心线上是一个绝热状态。由此,电池内的热传导方程和相应的边界条件为:[/size][align=center][size=18px][img=,690,209]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855152111_5660_3384_3.png!w690x209.jpg[/img][/size][/align][size=18px]  其中θ(r,t)是高于起始温度T0的温升θ(r,t)=T(r,t)-T0,T(r,t)是电池内坐标r处在时刻t的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。[/size][size=18px]  由于只有恒定热流进入系统,没有任何热损失,这个测试模型并没有一个稳定的解,从理论上讲,电池温度会随着时间不断上升。实际上,随着加热时间的增大,辐射等效应会限制电池温度的无限升高,而电池的热性能测试只在相对较低的温度范围内进行,辐射等效应可以忽略不计。因此,θ(r,t)的表达式可以通过电池的平均温度(用θm(t)表示)必须随时间线性上升而导出。已经证明,对于这种表面温度线性变化的瞬态问题,由θ(r,t)减去θm(t)得到的子问题有一个解,该解包括稳态分量s(r)和指数衰减瞬态分量w(r,t)。[/size][size=18px]  平均温升θm(t)可通过考虑电池质量的总比热容来确定。通过使用线性叠加和特征函数展开来解决剩余的子问题,最终的解被导出为:[/size][align=center][size=18px][img=,690,155]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855468233_8537_3384_3.png!w690x155.jpg[/img][/size][/align][size=18px]  方程(10)表明,在电池中任意处的温升有三个分量:第一即随时间线性增加的分量,其斜率与比热容成反比;第二是一个随时间不变的空间变化项,与径向导热系数成反比;第三是指数衰减项,其时间常数与径向热扩散系数成反比,当时间常数足够大之后,也就是说加热时间足够长,第三项的指数衰减项可以忽略不计,也就是说此时电池内部温度变化进入了准稳态过程。一般来说,对于第二类边界条件的传热问题,基本上都是一个准稳态问题。[/size][size=18px]  在测试过程中探测的是电池表面(r=R)温度,在进入准稳态过程后,那么方程(10)可以改写为:[/size][align=center][size=18px][img=,690,63]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856126333_2457_3384_3.png!w690x63.jpg[/img][/size][/align][size=18px]  由此可见,在进入准稳态过程后,电池表面的温升随时间变化将是一个以时间为变量的线性函数。对于这种恒定热流径向加热的测量方法,如果电池密度可以单独测量,并假设在小的温度范围内密度不随温度发生变化,那么就可以利用此线性温升函数的斜率和截距同时测定电池的比热容和径向导热系数。[/size][size=24px][color=#cc0000]3. 有限元仿真模拟[/color][/size][size=18px]  从上述获得的不同边界条件时的表面温度解析表达式,可以采用恒温和恒流两种不同测试方法来实现对电池径向导热系数和比热容的测量。依据测试方法进行测试仪器设计和实施具体测试试验前,还需进行有限元仿真模拟计算,一方面是验证测试模型的准确性,另一方面是确定被测电池样品之外其他辅助测量部件对测试模型的影响,由此对测试仪器设计、具体试验方法和校准修正进行指导。[/size][size=18px]  在有限元仿真模拟中,选择了与电池热性能相近的各向同性塑料类材料。这样做的目的一方面是有准确和可溯源的材料,另一方面是可以采用其他测试方法(如瞬态平面热源法和热流计法等)对这些材料进行准确测量以便于对比。所选材料为ABS塑料,其密度为1020kg/m3,导热系数为0.2256W/mK,比热容为1386J/kgK。有限元仿真为随时间变化的瞬态形式,起始温度为20℃,总加热时间为600s。[/size][size=18px][color=#cc0000][b]3.1. 恒温加热测试方法的模拟[/b][/color][/size][size=18px]  在恒温加热测试的仿真模拟中,为缩小瞬态仿真的计算量,根据圆柱形电池的轴对称性取圆柱形电池的四分之一进行仿真。仿真对象完全按照18650圆柱形电池尺寸设计(直径26mm,高度65mm),考虑到要在电池表面安装薄膜热流计,设计了一个厚度为0.1mm的纯铜圆筒来代表实际测试中紧贴电池表面的绝缘膜和薄膜热流计等,最终设计的测试仿真模型如图3-1所示。[/size][align=center][size=18px][img=,200,442]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848153976_8892_3384_3.png!w323x715.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-1 有限元仿真模型[/color][/size][/align][size=18px]  当圆柱形电池从起始温度20℃开始在表面温度突然提升至25℃后,在电池整体达到温度稳定后降温至20℃。对于这个完整的加热过程,仿真结果如图3-2所示,显示了仿真计算得到的电池轴心温度和电池表面热流密度随时间变化曲线。图3-3显示了表面热流密度变化曲线及其对数形式的对比。[/size][align=center][size=18px][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848451495_7520_3384_3.png!w690x407.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-2 恒温加热方法有限元仿真结果:电池轴心温度和表面热流密度变化曲线[/color][/size][/align][align=center][size=18px][color=#cc0000][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849029885_9003_3384_3.png!w690x407.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-3 恒温加热方法有限元仿真结果:表面热流密度变化曲线及其对数形式[/color][/size][/align][size=18px]  从图3-3可以看出,电池表面热流密度曲线的对数形式是一条直线,其斜率为0.005323。根据方程(5),则可以计算得到径向热扩散系数为1.556×10-7m2/s,与仿真计算的理论值1.596×10-7m2/s相差了2.5%。同样,对获得的表面热流密度按照时间进行积分,根据方程(7),则可以计算得到比热容为1378J/kgK,与仿真计算的理论值1386J/kgK相差了0.6%。根据仿真得到的热扩散系数和比热容,则可以计算的电池径向导热系数为0.2186W/mK,与理论值0.2256W/mK相差了3.1%。[/size][size=18px]  从上述仿真结果可以明显看出,电池径向导热系数测量结果的误差主要来自径向热扩散系数,这是因为在仿真计算的测试模型中考虑了铜制薄膜所带来的影响。如果不考虑铜制薄膜而只对电池本身进行仿真,径向热扩散系数的相对误差为1.3%,比热容的相对误差为0.1%,径向导热系数的相对误差为1.3%。[/size][size=18px]  通过以上恒定温度测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了恒定温度测试方法的有效性,证明了用方程(5)可测量径向热扩散系数,用方程(7)可测量比热容,以及最终准确得到径向导热系数,并具有很高精度。由此可以实现只需检测圆柱形电池表面热流变化就可以同时测量电池的径向热扩散系数、径向导热系数和比热容。[/size][size=18px]  (2)恒定温度测试方法的一个显著特点是加热温度可以任意设定,即可以在一个较窄的温度区间内(如1℃范围)测试相应的导热系数和比热容,并通过温度的台阶式不断升高来覆盖较大温度范围导热系数和比热容的测量。另外,这个能力一方面可以用来测量整个被测样品内部相变过程中的热性能,另一方面可用来代替绝热量热计进行电池热失控测量。[/size][size=18px]  (3)通过仿真发现,在测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如薄膜热流计、加热膜、均热膜和绝缘膜等)对测量的影响。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)恒定温度测试方法中,测量径向热扩散系数的误差较比热容的误差略大,虽然都可以获得较高的测量精度,而比热容的测量精度更高。[/size][size=18px]  (5)这种恒定温度测试方法的另一个特点是测试时间较长,一个温度步长的测量就需要近40分钟,如果采用多温度步长来覆盖较宽的温度区间,则需要更长测试时间。[/size][size=18px][color=#cc0000][b]3.2. 恒流加热测试方法的模拟[/b][/color][/size][size=18px]  在恒流加热测试方法的仿真模拟中,同样采用图3-1所示的仿真模型,但边界条件是恒流加热方式。当设定加热功率为0.3W时,仿真结果如图3-4所示。[/size][align=center][size=18px][color=#cc0000][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849223050_1234_3384_3.png!w690x468.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-4 恒流加热方式有限元仿真结果[/color][/size][/align][size=18px]  图3-4所示的仿真结果显示了电池中心轴线和外表面温度随时间的变化,为了便于观察还显示了内外温度差。从内外温差曲线可以看出,在开始加热的400s后,温差曲线开始保持恒定不再变化,完全进入了准稳态过程,400s以后的外表面温度随时间变化呈现出线性状态。线性拟合400s后的表面温升曲线,得到一个标准的线性方程θ(R,t)=0.0237t+3.0094。由方程(11)可以得到:[/size][align=center][size=18px][img=,690,66]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856479346_3131_3384_3.png!w690x66.jpg[/img][/size][/align][size=18px]  根据已知的热流密度Q、电池半径R和密度ρ,则可以同时获得电池的径向导热系数和比热容,分别为0.2376W/mK和1400J/kgK。[/size][size=18px]  将仿真模拟的计算结果与设定值比较可以发现,仿真结果得到的导热系数偏差约5%,比热容则偏差约1%。这种偏差主要是由于代入计算的0.3W加热功率并没有完全用来加热电池,部分功率用于加热了铜膜。[/size][size=18px]  对仿真测试模型进行更改,去掉铜膜,使0.3W加热功率完全作用在电池上,此时得到的径向导热系数和比热容分别为0.2269W/mK和1380J/kgK,与设定值相比误差在0.5%左右,完全与设定值吻合。[/size][size=18px]  通过上述恒定热流测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了用方程(11)描述准稳态过程中电池表面温升是合理的,由此实现了只需检测电池表面温度变化就可以同时测量电池的径向导热系数和比热容。[/size][size=18px]  (2)需要注意的是,用方程(11)得到的径向导热系数和比热容,是整个温升范围内的平均导热系数和平均比热容,并不是某一个温度点下的热性能数值。由于整个温升区间较小,认为在此温度区间内导热系数和比热容是常数。[/size][size=18px]  (3)测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如加热膜、均热膜和绝缘膜等)对测量的影响,这些部件因自身热容会损耗掉一部分加热功率。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)径向导热系数测试对上述其他部件的影响最为敏感,比热容测试则并不敏感,这就是径向导热系数准确测量的难度所在。[/size][size=24px][color=#cc0000]4. 结论[/color][/size][size=18px]  特别针对圆柱形锂离子电池径向导热系数测试技术开展了研究,建立了简单易操作的测试方法,并用有限元仿真对测试方法进行了验证,整个研究工作得出以下结论:[/size][size=18px]  (1)针对圆柱形锂离子电池径向导热系数,建立了恒温和恒流两种测试时模型和相应的测试方法。有限元仿真模拟证明了这两种测试方法都具有很高的测量精度,完全可以应用在实际测试中,这对锂离子电池的热性能测试有着重要意义。[/size][size=18px]  (2)建立的两种测试方法,都可以通过一次升温试验就可以获得径向导热系数、径向热扩散系数和比热容数值。特别是恒温测试方法还可以进行宽温区范围的热性能参数随温度变化的测量,甚至可进行整个相变过程中的热性能测量。[/size][size=18px]  (3)建立的等温测试方法,已经基本具有了常用的加速绝热量热仪的功能,可代替和补充加速绝热量热仪进行电池的热失控检测。[/size][size=18px]  (4)建立的两种测试方法简单且易于实现,试验操作方便,非常适合电池性能考核中其他变量的加载,如电池充放电过程中的热性能检测。[/size][size=18px]  (5)圆柱形锂电池径向导热系数测试方法上的突破,可将恒温和恒流两种测试方法推广应用到其它规格锂离子电池的热性能测试中,可进行各种加载条件和各个方向上的锂电池热性能测试。[/size][size=18px]  (6)所研究的恒温和恒流两种测试方法原理简单,边界条件易于实现,非常有利于低价仪器化和模块化,以及与其他测试仪器的集成。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高速粗铝线焊接强度测试仪 拉脱力测试设备

    [color=#ff6600]问[/color]:贵阳董副总,从事粗铝线的客户想采购焊接强度测试仪,寻找焊接强度测试仪,希望推荐比较好的焊接强度测试仪厂家?[color=#ff6600]答:[/color]小编为了方便大家想采购焊接强度测试仪,给大家推荐一下科准测控的焊接强度测试仪,方便大家做想采购焊接强度测试仪时候的参考:科准测控制造厂是一家以研发制造焊接强度测试仪为核心的高新技术型企业,主要经营疲劳拉伸力焊接强度测试仪、电脑式焊接强度测试仪、芯片焊接牢固度焊接强度测试仪。拥有完整、科学的质量管理体系。焊接强度测试仪广泛应用于微电子封装、SMT焊接器件、0402元件、晶片、光电子元器件、ic焊点、金丝键合研究所材料力学研究、材料可靠性测试等应用领域,是Bond工艺、SMT工艺、键合工艺等不可缺少的动态力学检测仪器,能满足包含有:金属、铜线、合金线、铝线、铝带等拉力测试、金球、铜球、锡球、晶圆、芯片、贴片元件等推力测试、锡球、BumpPin等拉拔测试等等具体应用需求,功能可扩张性强、操控便捷、测试高效准确。可根据要求定制底座、夹具、校验治具、砝码和测试工具满足各种不同尺寸的样品。科准测控有限责任公司以诚信、实力和产品质量获得业界的认可。欢迎朋友莅临参观、指导和业务洽谈。[b]焊接强度测试仪设备特征:[/b]1、采用测试工位自动模式,在软件选择测试工位后,系统自动到达对应工作位。2、每项传感器采用独立防碰撞及过力保护系统。3、三个工作传感器,采用独立采集系统,保证测试精度。4、软件自动生成报告及存储功能,支持MES系统。5、荷重单位显示N、Ib、gf、kgf可自由切换。6、人性化的操作界面,人员操作方便。7、每项测试工作采用独立安全限位及限速功能。8、智能数据分析软件,自动记录并计算多点测试数据的Cpk值,可记录单点测试的力值、时间曲线。9、根据客户测试需求,非标定制各种精密测试夹具,有效确保用户测试数据的真实性。[b]焊接强度测试仪产品优势:[/b]1、电脑自动选取合适的推拉刀,无需人手更换2、采用进口传动部件结合独特力学算法,确保机台运行稳定性及测试精度。3、多功能精密四轴自动控制运动平台,采用进口传动部件,确保机台的高速、长久稳定运行。4、旋转盘内置三个不同量程测试传感器,满足不同测试需求,避免因人员误操作带来的设备损坏。5、优异的可操控性,左右双摇杆控制器,可自由摆放手感舒适,操作简单便捷。6、 强大分析软件进行统计、破断分析、QC报表,测试数据实时保存与导出,方便快捷。7、机载统计数据按照等级,平均值,标准差和CPK分布曲线显示测试结果。8、弧线形设计便于调整显微镜支架。9、显微镜光源为双光纤LED,冷光源,不发热,可随意弯曲。10、XY平台,可以根据要求定制,满足更广泛的测试范围。11、图像采集系统,快速简单的设置,安装在靠近测试头位置,以便帮助更快地测试。提高测试自动化速度。[b]设备成功案例:[/b]在上海、河南、安徽、北京、嘉善、苏州、昆山、四川、江苏、厦门、徐州、浙江、陕西、深圳等地区均有科准测控焊接强度测试仪的相关成功案例,欢迎大家前往实地考察。[b]设备常见系列:[/b]1、常用类型:自动焊接强度测试仪、功率强大焊接强度测试仪、全自动焊接强度测试仪、单柱焊接强度测试仪、数显焊接强度测试仪.....2、常见型号:mfm1000焊接强度测试仪、dage焊接强度测试仪、fm1200焊接强度测试仪.....3、试验功能:剪切力、钝化层剪切力、推力、拉力、粘合力.....[b]测试机的采购渠道:[/b]1、线下:可以找直接生产厂家定制、经销商可以批发代理。2、线上:京东、淘宝、知乎商家、抖音等合法线上渠道3、电话:直接拨打厂家销售人员的电话或者400电话,免费服务热线等方式[b]品牌有哪些?[/b]目前焊接强度测试仪市场的常用及认可品牌有(非官宣):科准测控、克拉克、德瑞茵、达格、力新宝、博森源.....等厂家及品牌[b]采购前需要注意的事项:[/b]一般在采购一个产品之前,先找到正规靠谱的生产厂家,然后需要咨询价格以及详细了解焊接强度测试仪的维修手册、维护、板卡驱动、夹具定制、拉力测试耗材、操作原理、相对湿度、力值显示售后服务等条件,可以找供应商提供焊接强度测试仪的产品图片、效果图、彩页、案例图、视频综合进行参考,对各方面都满意后,就可以直接下单采购了。上述内容就是关于焊接强度测试仪的全面解析介绍,从原理到怎么使用、校准方法以及注意事项,仅供您参考了解,如有不足之处欢迎各位用户及同行探讨交流互相补充,如需要详细了解其他相关封装测试设备,可以拨打我们的电话,了解更多!

  • WLP-202平均粒径测试仪操作规程

    辽宁丹东WLP-202平均粒径测试仪操作规程[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24636]WLP-202平均粒径测试仪操作规程[/url]

  • 【转帖】酒精测试仪的原理

    目前使用的酒精测试基本上利用同样的原理,那就是呼吸中的酒精浓度和血液中酒精浓度会呈现出一定比例关系。当人饮酒时,酒精被吸收,但并不会被消化,一部分酒精挥发出去,经过肺泡,重新被人呼出体外。经测定,这种呼出气体中的酒精浓度和血液中酒精浓度的比例是2100:1,也就是说,每2100ml呼出气体中含有的酒精,和1ml血液中含有的酒精,在量上是相等的。通过这个比例,交警就可以通过测定驾驶者的呼气,很快计算出受测者血液中的酒精含量。目前,市面上常用的酒精测试仪,按照不同测试方式,大致可分为三类:Breathalyzer、Intoxilyzer和Alcosensor III or IV。Breathalyzer是一种利用化学反应剂来测定呼出气体中酒精浓度的测试仪。1954年,美国印地安那州的一位警察罗伯特伯肯斯坦发明了Breathalyzer,这是世界上第一台酒精测试工具。直到今天,它仍是世界上使用频率最高的酒精测试仪。 除了一般测试仪都有的构件外,Breathalyzer还配有两只装着化学混合剂的玻璃瓶。当受测者的呼气通过这些玻璃瓶时,如果气体中含有酒精,瓶中的混合剂会从橙色变成绿色,而化学反应产生的电阻也会令指针移动,精确标示出呼气中酒精的浓度,并通过微电脑将其换算成血液酒精的浓度。 Intoxilyzer是通过酒精分子吸收红外线的程度,来确定酒精的含量;Alcosensor III or IV是通过带有正负电极的燃料电池来完成测试工作。这种电极由铂金属制成,当含有酒精的气体进入燃料电池时,会和铂发生反应,产生电流生成读数。这些酒精测试仪都十分敏感。如果没有酒精测试仪的“帮忙”,警察就只能通过血检或尿检的方式来测定驾驶者有没有喝过酒,但这种检查工作会耗去1-2天的时间。

  • 剥离力测试仪

    剥离力测试仪

    AR-1000剥离力测试是设计用来执行PSTC,ASTM,TLMI,FINAT和AFERA嬠/font][/back]粘附和释放测试程序 美国cheminstruments微川仪器 AR-1000剥离力测试仪可以测量90-180°之间的任何角度的测量,包含从1 LB 至 50 LB的传感器可以选,如果选配EZ-LAB软件可以在电脑上生成曲线等,更加方便数据的采集与分析。[img]http://ng1.17img.cn/bbsfiles/images/2013/12/201312101629_481499_2408923_3.jpg[/img] 美国cheminstruments AR-1000剥离力测试仪主机[img]http://ng1.17img.cn/bbsfiles/images/2013/12/201312101632_481500_2408923_3.jpg[/img] 美国cheminstruments AR-1000 剥离力测试仪 5 lb传感器

  • 【讨论】酒精测试仪的秘密

    如今,大家都开车,你对交警所使用的酒精测试仪了解多少?  从呼气中测定血液酒精浓度  从外表上看,酒精测试仪没有什么特别。它一般由一个吹口、一根管子和一个可通过气体的膛组成。其他更高级的设备,则会因为仪器所依据的不同测试原理而不同。不过仅从操作上看,这真是个神奇的东西。接受测试的人只要深深地往吹口里呼一口气,十几秒后,它就能显示出受测者血液中所含的酒精浓度。  目前警察使用的酒精测试基本上利用同样的原理,那就是呼吸中的酒精浓度和血液中酒精浓度会呈现出一定比例关系。当人饮酒时,酒精被吸收,但并不会被消化,一部分酒精挥发出去,经过肺泡,重新被人呼出体外。经测定,这种呼出气体中的酒精浓度和血液中酒精浓度的比例是2100:1,也就是说,每2100ml呼出气体中含有的酒精,和1ml血液中含有的酒精,在量上是相等的。通过这个比例,交警就可以通过测定驾驶者的呼气,很快计算出受测者血液中的酒精含量。如果没有酒精测试仪的“帮忙”,警察就只能通过血检或尿检的方式来测定驾驶者有没有喝过酒,但这种检查工作会耗去1-2天的时间。

  • 【求助】激光衍射粒度分布测试仪

    我单位需购买一台激光衍射粒度分布测试仪,测试样品为对苯二甲酸,现用筛分法测定粒度分布,粒度从45um到大于250um,平均粒度在110--130um之间。现要求如下:1当然要准确。2分析速度快。3能同时给出体积比和重量比 4仪器操作简单,但用工作站控制。 5仪器维护方便,比如样品池易清洗,更换镜头方便或不用换镜头。初步打算选择英国马尔文公司Mastersizer 2000型或美国贝克曼LS系列。请各位老大给个建议,特别是用过的老大!!!如果那位有LS系列的详细资料请发给我邮箱zyxdbox@yeah.net谢谢!!!!

  • SPF 紫外防护测试仪哪里可以做校准/计量

    单位新买了一台SPF 紫外防护测试仪,牌子是Solarlight 的,找来当地计量机构的老师,发现一个问题。就是由于机器的构造问题,因为是必须像显微镜一样平板放置样品,所以他的探头无法垂直伸进去接受光线,无法计量,所以想请问:1.是否有这种平放置探头可以接受光源2.这种SPF 紫外防护测试仪需要计量哪些参数谢谢!

  • 石油、化工、香精行业闪点、蒸汽压测试仪

    石油、化工、香精香料原料属于易燃液体,通常在进行产品的生产,运输及存储过程中都需要判断易燃程度和安全程度。闪点和饱和蒸汽压通常作为危险品理化性质的重要指标,是一项安全性指标,是危险品(石油产品、化工产品)的必检项目。同时,准确、稳定、精确的闪点和饱和蒸汽压的测试仪器至关重要的。Grabner全自动微量闭口闪电测试仪和饱和蒸汽压测量仪随之应运而生,极大的满足了客户因测量闪点过程中遇到的测量不准确、样品用量大、产生污染气体、重复性差、操作繁琐、测量条件苛刻、仪器不稳定等问题的需求。欢迎来电咨询,13918906838,谢谢。

  • 【分享】微孔分布测试仪的主要特性

    微孔分布测试仪主要应用领域:催化剂,广泛用于石化、化工、医药、食品、农业、精细化工等领域;吸附剂,如活性炭、分子筛、活性氧化铝等,广泛用于环保领域;颜填料,无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉等;陶瓷材料原料,氧化铝、氧化锆、氧化钇、氮化硅、碳化硅等;炭黑、白炭黑、纳米碳酸钙等用于橡塑材料的补强剂等;新型电池材料,如钴酸锂、锰酸锂、石墨等电极材料;发光稀土粉末材料;磁性粉末材料,如四氧化三铁、铁氧体等;纳米粉体材料,包括纳米陶瓷材料、纳米金属材料,纳米银粉、铁粉、铜粉、钨粉、镍粉等;其他,如超细纤维、多孔织物、复合材料、沉积物、悬浮物等  微孔分布测试仪的主要特性:  测试时间:多点BET法比表面积平均每个样品15分钟,孔径分布测试、孔隙度测试平均每个样品100分钟  主要功能:可实行BET比表面积(多点及单点)测试,Langmuir比表面积测试,炭黑外比表面积测定,吸附、脱附等温曲线测定,BJH孔径分布、总孔体积和平均孔径测定;  真空系统:极限真空度6×10-2Pa  微孔分布测试仪测量范围:比表面积≥0.01M2/g至无规定上限,孔尺寸0.7~400nm;  样品数量:可同时测定1-4个样品;  测量精度:≤±2%;  微孔分布测试仪的压力控制:高精度压力传感器,数字显示,精度0.2%,独特的充气与抽气速度自动控制系统  运行方式:高度自动化,智能化,长时间运行可以无人看管自行测试  测试气体:高纯氮气(不用氦气),氮气消耗量极小  微孔分布测试仪的吸附过程:样品不需要频繁从液氮杜瓦瓶中进出,液氮消耗极少  软件系统:在Windows平台上,提供过程控制和数据采集、处理、报告系统,多种测试方法可自由方便选择,在计算机屏幕上,同步显示吸、脱附,比表面积及微孔分布测量仪测试过程、可随时查看已完成部分的测试数据;本机软件功能强大、界面友好、兼容性高、使用方便;

  • 注射器拔出力测试仪

    注射器拔出力测试仪也叫注射器针头护帽拔出力测试仪,是专业检测预灌封注射器组合件的试验仪器,该仪器符合YBB00112004国标检测,注射器拔出力测试仪由济南三泉中石研发生产。  注射器拔出力测试仪的研发工程师告诉我们:市场上预灌封注射器质量问题十分严重,国家药品监督管理局不定期进行抽查,发现不合格产品居多,主要是易氧化物的最大残留量、容量允差和注射针的牢固度等问题,影响到产品的使用安全。另外注射器针头护帽的拔出力也是很多企业没有重视的检测项目。下面给大家介绍下注射器拔出力测试仪的性能参数:  测试原理  将试样装夹在医药包装撕拉力测试仪两个夹头之间,两夹头做相对运动,通过特殊夹头将进行穿刺或开启力试验,通过注射器拔出力测试仪测力系统精确测试此过程中的力值变化与位移变化,从而得出相应力值数据。  适用范围  注射器拔出力测试仪 YYB-01应用于安瓿瓶、丁基胶塞、铝塑组合盖、聚丙烯组合盖、薄膜、复合膜、药用铝箔、PVC硬片、预灌封注射器、注射针等药品包装材料,进行折断力、穿刺力、滑动性、开启力、拉伸强度、热合强度、剥离强度等拉压撕试验。  仪器特点  注射器拔出力测试仪支持多种试验模式,配合不同试验夹具可满足不同实验要求,夹具更换方便快捷。仪器采用进口品牌高精度传感器,测试结果精确稳定,无极调速可满足不同实验对试验速度的要求。医药包装撕拉力测试仪是一款多用途高性能医药包装综合性能测试仪器。注射器拔出力测试仪应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位。

  • 【分享】笔记本型电缆故障测试仪介绍

    笔记本型电缆故障测试仪,作为计算机领域的一个典型应用,在技术上无疑是进步。计算机的大容量数据存贮处理功能,网络的数据传输功能,方便的信息管理功能,给电缆故障测试仪仪器提供了一个更好的平台,使用好了,无疑是会对提高测试水平起到一个事半功倍的推动作用。 但是,任何事情都有两个方面,笔记本电缆故障测试仪也有它的固有缺点,在某些环境、某些场合下、它的使用确实不如用单片机控制的液晶显示的电缆故障测试仪来得方便。   (1)、笔记本电脑电缆故障测试仪的组成形式: 目前市场上流行的笔记本电缆故障测试仪,其核心是闪测仪不同,定点仪、路径仪与一般的电缆故障测试仪相同,测试原理也相同,它有以下几种形式: ①、闪测仪采用一个笔记本数据采集器,定点仪、路径仪独立装箱使用,即两箱一包式、或一箱一包式,这种形式的闪测仪,完全靠笔记本电脑进行数据采集和操作,对电脑依赖性最髙,电脑出了任何问题,都会直接影响测试仪使用。 ②、闪测仪采用将笔记本数据采集器及路径仪信号源合二为一的形式。定点仪独立装箱。一般为两箱一包式。这种配置,与第一种配置一样,故障粗测完全依赖于笔记本电脑。    ③、闪测仪有独立的操作和显示系统,闪测仪上面有笔记本电脑接口。路径仪、定点仪独立装箱。这种配置,笔记本作为辅助测试仪器,可有可无。一般情况下,用户很少使用笔记本来测试,因为用单片机系统来测试故障方便快捷,所以这种配置只增加了仪器的复杂性和成本,实际意义不大。   ④、闪测仪采用电脑主板,显示器用液晶显示器,这种闪测仪,实质上与单片机控制的闪测仪性能基本相似。由于使用电脑主板,其数据存贮容量比使用单片机的闪测仪大。另外,有的闪测仪可以带软驱,USB接口等等,与笔记本电脑通信比较方便。但是这种闪测仪,也有与笔记本闪测仪同样有的缺点,使用相对变的复杂一些。

  • 肉类水分快速测试仪有声光报警功能吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]肉类水分快速测试仪有声光报警功能吗,肉类水分快速测试仪通常具有声光报警功能。当数据采样结果与前数次采样结果的算术平均值结果超过设定的阈值(如2.0%)时,仪器会显示的数据闪烁报警,表明被测样品水分含量不均匀性较大,或者仪器在操作过程中针状传感器插入样品有不正常现象(如未完全插入被测样品或插入脂肪、皮肤等非肌肉组织中)。同时,仪器还具备语音提示功能,可以对水分测定结果和关键异常情况进行语音报警。用户可以根据需要设置打开或者关闭语音提示。除了声光报警功能,肉类水分快速测试仪还具有多种智能功能,如电池欠压提示、采样操作失误提示、样品水分含量不均匀提示、仪器工作状态显示、采样次数显示、数字滤波、基准值自动计算等,这些都提高了仪器的实用性和准确性。请注意,不同型号的肉类水分快速测试仪可能具有不同的功能和特点,因此在实际使用中,建议参考具体仪器的说明书或操作手册,以了解其详细的声光报警功能以及其他特性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291128506082_1169_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【分享】平板载荷测试仪的注意事项及技术参数

    平板载荷测试仪适用于粗、细粒土和土压实后的路基、路层等的地基系数的测试,也可用于计算均匀地基的变形模量,平板载荷测试仪主要测试地基土的应力与变形特性,确定铁路、公路路基、基层等的地基系数。 平板载荷测试仪在使用时应注意两点,第一:压力表应保持清洁,百分表不要随意扯拉或冲击,测杆部分不能粘上灰尘和油污,百分表、压力表不用时,要盖上塑料护盖,置于室内干燥处,以利防裂、防潮。第二:油泵的液压油应定期补充,用10号机油,加油孔的位置在缸体的尾部,储油量为1升。 平板载荷测试仪的技术参数:荷载板直径:300mm     千斤顶加载范围:0-30T千斤项行程: 120mm       测桥跨度:3000mm     手动泵额定压力:70Mpa    压力测试范围:0-25mPa     位移测试范围:0-10mm

  • 纺织测试仪器简介

    纺织测试仪器简介及其分类 近十年来,我国制造业发展迅速,产业不断升级换代,产品质量、工艺水平、生产设备等一年上一个台阶。世界经济一体化的今天,企业发展朝着更加正规、产品质量更加稳定、生产工艺更加先进、标准规范更加严谨的道路前进。我国作为世界第一大纺织品生产国,出口国,国内厂家大大小小,林林总总,多如牛毛。工厂如何生产质量稳定,客户满意的产品?企业靠什么在市场竞争中不断发展?质量是先决条件。只有靠严格的质量管理、靠严谨的科学检测仪器才能保障质量、赢得市场。 纺织品的色牢度、印染、经纬密度、强力、张力、防水性能等等等等都有着相应的规定,达到一定的标准,才能进入门槛、开拓市场,使企业不断发展前进。常见的标准有AATCC,GB,ISO,JIS等。当前国内国际纺织测试仪器生产企业众多,各类测试仪器品种繁多、型号各异,可以基本满足当前各方面的纺织品测试要求。纺织是个大的行业,仪器仪表也是大的行业,但纺织测试仪器行业,市场总量有限,科技含量较高,就当前国内情况看,纺织品测试仪器行业已基本进入规范化发展阶段。纺织测试仪器主要包括以下几类:一、织物面料及辅料测试仪器克重仪、撞钮机、纺织天平、取样刀、裁切机、检针机、闪光测速仪、照布镜、织物密度仪、显微镜、织物强力拉力机、拉链疲劳测试仪、织物起毛起球仪、钮扣拉力试验机、沾水度测定仪、织物平磨仪、织物测厚仪、织物密度镜、织物撕裂仪等。二、印染色牢度烘箱测试仪器摩擦色牢度测试仪、耐洗色牢度试验机、染色牢度摩擦仪、耐汗渍色牢度测试仪、水平燃烧测试仪、垂直燃烧测试仪、45度燃烧测试仪、缩水率测试仪、Whirlpool洗衣机、Whirlpool干衣机等。三、纱线纤维棉麻皮毛测试仪器电子单纱强力机、缕纱测长仪、纱线捻度仪、手摇捻度仪、摇黑板机、纱线张力仪、单纤维强力机、全自动单纱强力机、条粗测长仪、棉纤维光电长度仪、便携式棉纤维气流仪、束纤维强伸度仪、罗拉伸长仪(含强伸器)、原棉杂质分析机、棉花分级室照明灯箱、原棉回潮率测定仪、纤维切断器、纤维切片器、纤维油脂快速抽取器等。四、通用纺织检测仪器及耗材等标准光源对色灯箱(VeriVide, GretaMacbeth, JAG等)、色差仪、烘箱、恒温恒湿箱,AATCC白棉布、欧标、美标伴洗布、JIS沾色、变色灰卡、美标九级比色卡、ISO/GB沾色、变色灰卡、纺织品标记笔、褪色笔、AATCC1993洗涤剂、1993 WOB洗涤剂、AATCC多纤维布、AATCC九级比色卡、AATCC变色灰卡、AATCC沾色灰卡、SDC皂粉、IEC(B)洗涤剂、IEC(A)洗涤剂、ECE(B)洗涤剂、

  • 【分享】接地电阻测试仪的历程

    你知道接地电阻测试仪的发展历程吗?你了解最初人们使用的接地电阻测试仪的测量方法是什么吗?如果不知道,那么我将带你去游历一下接地电阻测试仪的过去。  最初人们对接地电阻的测量是用伏安法,这种试验是非常原始的。在测定电阻时须先估计电流的大小,选出适当截面的绝缘导线,在预备试验时可利用可变电阻R调整电流,当正式测定时,则将可变电阻短路,由安培计和伏特计所得的数值可以算出接地电阻。      伏安法测量地阻有明显的不足之处,第一:繁琐、工作量大。试验时,接地棒距离地极为20~50米,而辅助接地距离接地点40~100米。另外受外界干扰影响极大,在强电压区域内有时无法测量。五六十年代苏联的E型摇表测量取代了伏安法测量。由于携带方便,又是手摇发电机,工作量比伏安法小。七十年代国产接地电阻测试仪问世,无论在测量范围、分度值、准确性还是结构、体积、重量,都要胜于"E"型摇表。因此,相当一段时间内接地电阻仪都以手摇表为典型仪器。手摇式表在使用时,应将设备自身接地体与设备断开,以避免接地体影响测量的准确性。上述仪器由于手摇发电机的关系,精度都很差。  八十年代数字接地电阻测试仪的投入使用给接地电阻测试带来了生机,虽然测试的接线方法同手摇表没什么两样,但是其稳定性远比摇表指针式高得多。在此基础上又出现了一种数字式接地电阻测试仪,测试时采用两线法在线测量,不必打辅助接地桩,把水管、暖气管道或交流电插座的零线做为辅助接地,能测量接地电阻、土壤电阻率、交流电压等指标,并有自动补偿功能,不仅提高了测量精度,还具有防误操作、智能提示等功能。这使接地电阻测量更方便和快捷。后又发展为3线法和四线法。其缺点是在一些无良好辅助接地或不能打地桩的环境下不能使用。真正接地电阻测试仪技术的一个创举是在九十年代---钳口式地阻仪的诞生打破了传统式测试方式。钳口式接地电阻测试仪称得上接地电阻测试的一大革命,钳口式接地电阻测试最大特点是使用快捷、方便,只要钳住接地线或接地棒就能测出其接地电阻。但钳口式地阻仪主要用于检查在地面以上相连的多电极接地网络,通过环路地阻查询各接地极接地情况,但不能替代整个网络的工频接地电阻测量。同时由于钳口法测量采用电磁感应原理,易受干扰,测量误差比较大,不能满足高精度测量要求。  接地电阻测试仪真实值为什么至今仍是一个悬而未解的难题?主要是没有理想的测量仪器,接地摇表由于众所周知的原因,测试值精度很差,有时同一个接地电阻成了一个抽象的物理量,使人很难捉摸。随着科学仪器的发展,先进接地电阻测试仪完全控制了接地电阻测试仪的领域,可以做到测试值正确无误。目前智能式接地电阻测试仪不仅功能强大,而且可以应付现场各种复杂情况,如有效地排除干扰、自动跟踪最合适测试条件、出现各种问题当即智能提示等等。可见随着科技的不断地发展,以前一些不可解决的问题,现在已经在慢慢的不断解决了。

  • 推拉力测试仪工作原理

    推拉力测试仪分为两种,一种是数显式推拉力测试仪,另外一种是指针式推拉力计  推拉力计是由一个高精度的应变片式传感器及一个集成电路组成  当力作用与传感器时,传感器会发生形变,从而使阻抗发生变化,同时使激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器,转换成便于处理的数字信号输出到CPU运算控制,CPU根据键盘的命令以及程序设定将这种结果输出到显示器,直至显示这种结果。  以推拉力计的工作原理是根据:胡克定律F=kx。写作: F=k.x  其中:“F”,表现弹簧的弹力,而弹力是弹簧产生形变时对施力物的作用力。  “x”,是弹簧伸长或缩短的长度,注意“x”是以弹簧没有形变时的长度为基准,即x=x'-x0或x=x0-x'。  “k”,叫弹簧的劲度系数,它描写单位形变量时所发生弹力的大小,k值大,阐明形变单位长时须要的力大,或者说弹簧“硬”.k跟弹簧资料,是非,粗细等都有关系。k的国际单位是牛/米。  假如将几个相同的数显推拉力测试仪串联或并联起来后,这个新的弹簧的劲度系数不再是本来的劲度系数.设两个劲度系数都是k的弹簧串联后的劲度系数为k1,则有F=k1·x,由于a点的弹力也为F,所以对弹簧1可写两个劲度系数都是k原长雷同的弹簧并联时的劲度系数为k2,则有F=k2·x 数变小,并联后的变大。  数显推拉力测试仪,他用数显方法显示丈量到的力,读数就比弹簧机械式要方便我多了  1.即使是在垂直向上拉,而且是静止的情况下,弹簧测力计的拉力与重力大小是相等的,然而,弹簧的拉力的方向确与重力的方向相反,而力是矢量单位,是有方向性的,所以弹2簧的拉力就是重力的说法不对。  2.假如在垂直方向上,用弹簧测力计拉侧重物向上做加速活动时,推拉力计弹簧测力计的拉力大小大于重物的重力。  3.其它情形略。

  • 【分享】漏电开关测试仪的功用

    漏电开关测试仪,又叫漏电开关检测仪、漏电保护器测试仪、剩余电流动作保护器检测仪、剩余电流动作保护器测试仪、是工程质量监督站和建筑公司必备的检测仪器,可以测量漏电开关的动作时间和动作电流。最新的 LCT—GX2型漏电保护器测试仪主要用于测试漏电保护器的漏电动作电流、漏电不动作电流以及漏电动作时间。单相、三相漏电保护器均可测试。漏电保护器 动作特性 单片机 断电检测 低压配电系统中装设漏电保护器(剩余电流动作保护器)防止电击事故的有效手段之一,也是防止漏电引起电气火灾和电气设备损坏事故的技术措施。 漏电开关测试仪主要用于测试漏电保护器的漏电动作电流,漏电不动作电流以及漏电动作时间,适用于检测漏开关/电源插头线的导通极性,绝缘,线芯高压性能。漏电开关测试仪可广泛应用于供电部门,农电部门,漏电保护器生产厂家,建筑、矿山、机床等行业的劳动安检部门以及广大电工。

  • 【分享】光功率测试仪的特征及应用

    光功率测试仪是用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器,也是一种高智能化、高精度、高灵敏度的光功率测试仪器。光功率测试仪易于使用,只需连接光纤即可读取结果,可进行宽动态范围、高精度的光功率测量、高分辨率的损耗测量和稳定度测试。 光功率测试仪采用最先进的手持式仪表专用集成芯片,实现超低功耗运行,具有滤波测量功能,双端口直通设计,测试期间可保证OLT 到ONT 的全程通讯。光功率测试仪采用高清晰真彩色液晶屏显示测量值,人机界面友好、显示界面美观清晰、显示字体大小适中、便于操作人员读取数据及判断线路信号状态。内部集成带保护装置的高效智能充电电路,有效保证长时间的工作测试能力,同时其便携的设计更方便用户外出携带。光功率测试仪具有功率范围宽、性价比高、可靠性好、操作简单、测试精度高等特点,能够在网络中的任何位置对网络中所有的PON信号进行现场快速同步测量。 光功率测试仪主要用于可线性或非线性显示光功率,既可用于光功率的直接测量,也可用于光纤链路损耗的相对测量。光功率测试仪广泛应用于光纤通信、有线电视系统施工、光光纤CATV工程及维护、光纤传感研究、光通信设备、光纤、光无源器件的测试。

  • 注射器连接力测试仪

    注射器连接力测试仪是制药机械检测仪器中应用较为广泛的一种,全称为注射器针与针座连接力测试仪,这款仪器由济南三泉中石研发并生产,注射器连接力测试仪符合国标YBB00112004的检测。注射器是一种常见的医疗用具,用于医疗设备、容器、如有些色谱法中的科学仪器穿过橡胶隔膜注射。将气体注射到血管中将会导致空气栓塞,从注射器中去除空气以避免栓塞的办法是将注射器倒置、轻轻敲打、然后在注射到血流之前挤出液体。注射器针筒可以是塑料也可以是玻璃制成的,并且通常上面都有表示注射器中液体体积的刻度指示。注射器连接力测试仪的检测对于保证医疗器械的质量有着重要的意义。下面介绍下注射器连接力测试仪的基本信息:技术特征大液晶显示测试过程、PVC操作面板配备微型打印机,快速打印实验结果通过调换不同夹具,可扩展进行多种试验项目限位保护、自动回位等智能配置,保证用户的操作安全丝杠传动系统速度随意调节,注射器连接力测试仪保证试验速度及位移准确性一机具备拉压试验、剥离强度、开启力、穿刺力等四项单独实验项目,满足不同包材测试需要专业电脑软件操作系统,注射器连接力测试仪方便用户连接计算机进行数据保存、分析、打印采用进口传感器系统,注射器连接力测试仪的测试精度在行业内遥遥领先,有效的保证了试验结果的准确性仪器配置标准配置:注射器连接力测试仪主机、微型打印机、胶塞穿刺力夹具、拉环开启力夹具、测试软件、通信电缆选用配置:折断力夹具、组合盖开启力夹具、拉伸夹具等注射器连接力测试仪是一款多用途高性能医药包装综合性能测试仪器,广泛应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位,济南三泉中石研发生产的注射器连接力测试仪现已被多家知名药企采购使用,包括北京协和药厂、哈药集团、海正辉瑞制药、黑龙江哈尔滨医大药业、山东鲁抗医药集团、深圳华润九新药业、河北爱尔海泰制药等近千家企业。文章来自知名的检测仪器研发生产厂家--济南三泉中石实验仪器有限公司官方网站,欢迎转载,转载请标明出处。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制