当前位置: 仪器信息网 > 行业主题 > >

可视对讲

仪器信息网可视对讲专题为您提供2024年最新可视对讲价格报价、厂家品牌的相关信息, 包括可视对讲参数、型号等,不管是国产,还是进口品牌的可视对讲您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可视对讲相关的耗材配件、试剂标物,还有可视对讲相关的最新资讯、资料,以及可视对讲相关的解决方案。

可视对讲相关的资讯

  • 哈希售后服务卡赠礼服务活动 第一轮兑奖开始
    提交售后服务卡 赢取精美礼品&rdquo 活动自开始以来,得到了客户的热烈响应。第一轮兑奖即将开始,近日我们将联系幸运客户,将免费服务或精美礼品送到您身边。哈希公司为感恩客户,在活动第二阶段将更多优惠带给您。即日起至2013年9月30日,您依然可以选择一次免费服务抽奖,还可以选择参与即赠礼方案。四合一多功能液晶汽车数显胎压计等您来领取!还等什么,现在就来,提交售后服务卡,服务礼品随您选!登录哈希官网提交售后服务卡,或将产品包装箱中的售后服务卡填好邮寄或传真给我们,您还可以&ldquo 随手拍发邮件&rdquo ,完整填写售后服务卡,拍照,发送至邮箱 macomchina@hachservice.com。更多详情,请登录哈希官方网站:http://www.hach.com.cn/shtml/201324140737.shtml 更多详情请点击
  • 我国研发高分辨“脑地图”可视仪
    人脑中错综复杂的神经元网络,就如同地球上密布的道路网,如今人们借助遥感卫星分辨地球上的路网容易多了,但要绘制“脑地图”,似乎远比发射几颗遥感卫星困难许多。近日,华中科技大学的专家,正着手解决这一问题,他们开始研发高分辨全脑神经元网络的可视化仪器。  该校骆清铭教授领导的团队经过8年的攻关,在国际上率先建立了可对厘米大小样本进行突起水平精细结构三维成像、具有自主知识产权的显微光学切片断层成像系统(MOST),该研究成果曾发表于《科学》(Science)期刊上。MOST技术相对于传统成像技术优势明显,创造出迄今为止最精细的小鼠全脑神经元三维连接图谱,为实现全脑网络可视化创造了必要条件。此研究成果将在脑结构、脑功能、脑疾病,以及药物作用效果等研究中发挥非常重要的作用。  骆清铭介绍说,通过MOST技术将会更全面深入地了解大脑结构和功能,为治愈多种神经性疾病提供重要的手段。该成果曾入选“2011年度中国十大科学进展”。
  • 岛津应用:多层薄膜的可视观察的同步测定
    使用岛津红外显微镜AIM-9000及AIMsolution分析软件,可以在对扫描点进行可视观察的同时,测定该扫描点的光谱。通过可视观察的同步测定可以实时确认各扫描点的图像和光谱。另外,因为AIMsolution分析软件以相同颜色显示各扫描点及其光谱,所以不仅可视觉确认扫描信息,还可以简单地进行大气校正等数据处理和检索操作。 本文向您介绍通过可视观察的同步测定对多层薄膜进行分析的示例。使用AIM-9000、AIMsolution Measurement软件和AIMsolutin分析软件,在每一个操作步骤都可以瞬间获得准确的数据,实现了前所未有的轻松分析。 了解详情,敬请点击《可视观察的同步测定-多层薄膜的透射测定-》
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    仪器信息网讯 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。   岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope TRIO ),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。   成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。   岛津公司于2014年推出成像质谱显微镜 iMScope TRIO 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长。本文介绍了岛津日本合作实验室大阪大学Shimma教授基于iMScope TRIO 在领域拓展方面开展的部分工作。   1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性   2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析   3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。给药后的果蝇腹部检测出大量吡虫啉成分果蝇脑部GABA成分的分布   4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 给药后的马毛中DexaSP 分布检测结果   iMScope TRIO 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。   基于此,2020年7月9日,岛津“镜质合璧,还原真实”新品发布会将在仪器信息网举办,届时岛津将携新一代iMScope 成像质谱显微镜产品首次与中国用户见面。   届时尽请关注!
  • 微生物代谢的原位拉曼可视化定量分析成功实现
    记者21日从中科院海洋研究所获悉,该所研究员张鑫课题组和孙超岷课题组共同合作,基于共聚焦显微拉曼技术,通过三维定量成像实现了长期、近实时、非破坏性的微生物监测,对微生物生长和代谢情况进行可视化及定量分析,为未来分析微生物原位生物过程提供了新思路。研究成果近日发表于《微生物学谱》上。固体培养基培养的菌落的三维定量成像示意图 课题组供图记者了解到,张鑫课题组在之前的工作中,观测到我国南海冷泉环境中单质硫含量丰富。随后,孙超岷课题组发现了冷泉细菌Erythrobacter flavus 21-3可以高效氧化硫代硫酸钠生成单质硫,张鑫课题组通过拉曼光谱鉴定后发现单质硫结构为环状S8,研究成果发表在生物学领域权威期刊《国际微生物生态学会杂志》。后续两个课题组合作将E. flavus 21-3及其突变株布放到深海冷泉喷口附近进行原位培养,证实该菌株在深海原位环境中也能形成硫单质,相关成果发表在国际生物学期刊《微生物学》,为解释我国南海冷泉喷口广泛分布硫单质的成因提供了重要理论依据。E. flavus 21-3在高氧条件下的三维拉曼成像分析 课题组供图由此可见,微生物是深海硫形成和循环的重要贡献者,其介导的硫代谢的研究对于了解深海硫循环至关重要。然而,由于深海环境极端复杂,采样困难、微生物难于分离培养等因素,以及缺少对硫元素的形成的近实时无损的监测方法,深海微生物的原位探测面临巨大挑战。目前,主要通过经典的生物和化学方法研究硫元素的生成过程,例如X射线吸收近边结构、高效液相色谱、透射电子显微镜、离子色谱法或化学计量法等。但是,这些方法主要通过取样来获知特定时间点的微生物代谢情况,不能在不破坏样品的前提下连续监测其在时间尺度上的代谢过程;并且,其中一些方法样品制备复杂,会破坏细胞的原位真实性;也可能会出现取样不均匀及污染的情况,导致难以实现连续的原位观察。因此,亟需新的方法突破此瓶颈。低氧条件下E. flavus 21-3的三维拉曼成像分析 课题组供图共聚焦显微拉曼三维成像技术拥有低成本、快速、无标签和无破坏性的优势,具有将定性、定量和可视化完美结合的潜力,为我们解决相关问题提供了新的思路。因此,为证明此技术的潜力,研究团队构建了一套固态基底上微生物群落拉曼三维定量原位分析方法,将光学可视化与拉曼定量分析相结合,可在时间和空间两个维度上无损定量表征微生物群落代谢过程。该技术已成功应用到深海冷泉细菌E. flavus 21-3硫代谢过程的原位监测。据介绍,基于拉曼三维成像进行体积计算和比率分析,课题组对不同环境下的菌落生长和代谢进行了量化,发现了生长和代谢方面不为人知的细节,为厘清深海冷泉生物群落中广泛分布的硫单质成因提供了重要技术支持。“据我们所知,这是首次尝试长期监测菌落在固体培养基中生长的原位无损技术。我们能够快速确定代谢产物,推断反应发生的途径,并快速筛选产硫细菌。由于这一成功的应用,不仅证明了该方法在未来对微生物原位过程的可视化及定量分析的潜力,也为研究深海中附着在岩石沉积物等固体表面上的微生物提供了新的思路。”张鑫对《中国科学报》表示。该研究得到了国家自然科学基金、中国科学院A类战略性先导专项、中国科学院海洋大科学研究中心重点部署项目、泰山青年学者计划等项目联合资助。
  • 三维表面模型可视化软件Vayu 1.0发布
    包括古生物学在内,众多科研领域已经在前所未有的精度和广度上大规模应用X射线计算机断层扫描以及三维重建技术,随之对生成的三维表面模型的可视化效果方面也提出了更高的需求。目前大部分三维重建处理软件在处理三维表面模型方面能力较弱,已有的三维表面模型软件通常未对生物学三维表面模型数据作相应的优化,且在使用上往往存在上手困难,操作复杂,无法处理大数据文件等问题。 Vayu 主界面与部分案例展示针对以上问题,为了提升化石和现代生物成像数据的可视化效果,中国科学院古脊椎动物与古人类研究所卢静研究员团队自主研发了专门用于处理三维表面模型的新的免费软件Vayu 1.0,并在《古脊椎动物学报》上详细介绍了该软件的基本功能、操作流程以及相关案例展示。Vayu 1.0主要针对化石及现代生物成像数据可视化需求进行优化,可以广泛应用于古生物、生命科学、医学、考古等多学科领域三维表面模型的可视化乃至虚拟空间交互等方向。Vayu 1.0软件提供了一整套针对三维表面模型的编辑、渲染、标注、分析等可视化工具,同时自带VR模式以及快捷的动画制作方法,让使用者能在最短时间内掌握对三维表面模型进行快速渲染和动画制作,为三维表面模型的可视化提供了新工具。Vayu 1.0还包含虚拟现实(VR)模式和一站式动画制作平台等多种可视化工具,为各领域的三维表面模型渲染与可视化提供了新发展方向和思路。除此以外,Vayu 1.0在博物馆科普教育与学校教育等领域也可以提供广泛的应用场景。 Vayu 三维可视化渲染动画展示Vayu 现代鲨鱼身体内部三维结构VR动画该研究得到了中国科学院院战略性先导科技专项(B类)、国家自然科学基金优秀青年基金等项目的资助。论文链接:http://www.vertpala.ac.cn/CN/10.19615/j.cnki.2096-9899.221020软件下载链接: http://admorph.ivpp.ac.cn/download.html
  • 岛津成像质谱显微镜应用专题丨米曲可视化
    镜质合璧 还原真实成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析 引言米曲是清酒酿造中的关键元素。它在清酒酿造中的主要作用被认为是提供分解淀粉和蛋白质的消化酶。众所周知,米曲成品的成分对清酒的品质(味道和香气)有很大的影响。然而,目前为止对米曲质量的评估经常依赖于首席酿酒师的经验。这意味着此领域相关科学知识的不足,且仍有发展空间。当首席酿酒师评估米曲质量时,米曲的物理结构,即外观和质地似乎是质量指标之一。在过去的研究中利用扫描电子显微镜来研究米曲的内部结构,但直到近几年,评估米曲结构和成分关系的研究仍然进展甚微。由于岛津iMScope成像质谱显微镜可同时观察样品结构和成分分布,在本应用报告中,我们将iMScope应用于发酵领域,并尝试可视化分析米曲结构和成分分布。 如图1所示,质谱成像(MSI)是非常适合观察米曲结构以及决定其有效成分分布的技术。MSI应用于食品的论文,已有芦笋中天冬酰胺和姜黄根中姜黄素分布可视化的应用报告⑴,⑵。本文针对食品科学研究中的“发酵”新应用领域,尝试着将米曲内的结构和成分分布可视化。由于米曲非常易碎,在进行MSI分析时,未经前处理制作米曲切片几乎是不可能的。因此,我们研究了各种切片制备方法,并成功实现从生米到蒸米和米曲过程中的代谢物可视化分析。图1 质谱成像(MSI)工作流程 实验 2-1试剂使用羧甲基纤维素(CMC)(FUJIFILM Wako)为包埋剂,配制浓度为4%的CMC水溶液,并将溶液放入70℃的恒温箱过夜来确保完全溶解。本实验中使用的基质是α-氰基-4-羟基肉桂酸(CHCA)和N-(1-萘基)聚乙烯二胺二盐酸盐(NEDC)(Merck),溶剂为乙腈、异丙醇和甲醇(FUJIFILM Wako)、超纯水。 2-2切片制备使用清酒酿造用的抛光率为70%的山田锦大米(白鹤酒造株式会社)制成的蒸米和米曲。生米可视化研究中使用市售大米。如前所述,这些样品材料极其脆弱。因此,采用冷冻切片机制备切片并使用粘性冷冻膜(cryo-lab)回收获得的切片。将米粒包埋在上文所述的4%羧甲基纤维素溶液中,在-80℃冷冻。切片厚度为20 μm,获得的薄膜利用导电双面胶带(3M公司)固定在ITO涂层玻璃载玻片上(无MAS涂层,表面电阻:100 Ω/m2)(松浪玻璃工业株式会社)(图2)。图2 米曲切片制备 2-3基质涂敷在检测米粒切片和米曲切片中的磷脂时,使用岛津iMLayer基质升华系统将CHCA沉积在样品表面(图3),接着喷涂CHCA溶液(3)。基质升华的膜厚度为0.5 μm。利用由乙腈、异丙醇、超纯水(3: 1: 6)构成的含0.1 %甲酸的混合溶剂溶解CHCA,调节其浓度为10 mg/mL。已知可以有效电离葡萄糖的基质NEDC,利用iMLayer进行升华,升华时设置温度为220℃、时间为10分钟。NEDC基质升华后,利用5%甲醇溶液进一步进行重结晶。图3 iMLayer基质升华系统 2-4质谱成像MSI检测使用岛津iMScope成像质谱显微镜进行。激光照射次数为100次/点。正离子模式检测磷脂,空间分辨率为25 μm,负离子模式检测葡萄糖,空间分辨率为50 μm。检测范围:正离子模式m/z 400-800,负离子模式m/z 180-230。在所有检测中,激光强度均设置为45,检测器电压为2.1 kV。 2-5构建MS图数据分析和MS图像构建采用岛津MSI分析软件Imaging MS Solution和IMAGEREVEAL MS进行。IMAGEREVEAL MS是通过统计学功能实现非靶向分析的软件。它拥有卓越的校正函数(图像过滤、像素插值),并含有“相似图片提取”功能。本文后半部分所示的葡萄糖可视化数据是利用IMAGEREVEAL MS软件进行分析。 结果 3-1生米、蒸米和米曲中磷脂的分布图4显示了生米、蒸米和米曲切片中胆碱的分布。胆碱是一种在米曲制作过程中分布和数量会发生巨大变化的典型成分。生米的结果在碾米之前测得,且结果表明胆碱累积在大米胚芽中。在碾碎后的蒸米中,来自胆碱的峰急剧下降,但在米曲的内部则观察到极强的峰。这表明胆碱在米曲发酵过程(即米曲制作过程)形成。因此,使用MSI 可以观察到米曲制作过程中胆碱数量和空间分布发生急剧变化的现象。图4 生米、蒸米和米曲中胆碱的分布 在米曲的内部还观察到各种磷脂(包括溶血磷脂)的累积(图5)。尤其是溶血磷脂酰胆碱LPC(16:0),m/z 496.34和LPC(18:2),m/z 520.34显示这一趋势(4)。而磷脂m/z 748.35和786.30的MS图像显示出其在米曲中的不均匀分布。这种异质性被认为由曲霉(米曲霉,Aspergillus oryzae)侵入蒸米中生长出雾状菌丝导致,这个过程就被称为“hazekomi”。下一部分我们将介绍一种将hazekomi过程可视化的方法开发以及将这种方法与MSI结合使用的结果。图5 米曲(山田锦,稻米抛光率:70 %)中溶血磷脂和磷脂的分布 3-2hazekomi可视化及其与MSI的配合使用⑸,⑹haze指的是米曲霉菌丝在蒸米表面扩散时呈现的白点,在首席酿酒师进行米曲目检时被作为一个结果指标。在早期的hazekomi可视化研究中,Yoshii等人发表了一篇基于扫描电子显微镜(SEM)观察的报告,他们通过将米曲霉传播过程直接可视化的方式成功观察到了米曲中米曲霉的生长,该结果有助于改善制曲过程(7)。 利用SEM将hazekomi过程可视化时,观察微观区域的能力是一个重要特征。不过,我们认为将整个米曲hazekomi过程可视化的方法以及可获取成分分布信息的技术也是有用的。为了解决这一问题,我们引入了采用β-葡萄糖醛酸酶(GUS)作为标志基因的GUS报告系统用于hazekomi可视化。具体来说,通过构建米曲霉GUS表达株以及生产使用该菌株的米曲(以下称为GUS米曲)来实现对制曲过程中米曲霉生长的清晰观察。GUS米曲的使用实现了通过颜色反应来可视化米曲霉位置,而当这种技术和MSI配合使用时,可获取关于成分分布的信息。这两种技术的结合同时实现了整个米曲的hazekomi可视化以及成分分布的可视化研究。 在此我们将对这种旨在把GUS报告基因系统应用于米曲的创新研究进行阐述。GUS报告基因系统最初是为了将植物组织中菌丝体的可视化而开发的。在植物组织中,常见做法是将样品浸泡在5-溴-4-氯-3-吲哚-β-D-葡萄糖苷(X-Gluc)溶液中,这是一种用于着色的显色底物。拥有极硬细胞壁的植物组织即便是长期浸泡在X-Gluc溶液中,也能够毫无问题地维持样品观察所需的形态。 不过,如前所述,米曲非常脆弱,且其性状和植物组织完全不同。这意味着采用现有的着色方案将极为困难。事实上,我们证实了在米曲浸泡在X-Gluc溶液中固定着色所需时间内,样品的形态由于吸水而发生了很大的改变。为了避免这一问题,必须改变添加X-Gluc的方式。因此,我们构思了一种通过将X-Gluc溶液喷洒在GUS米曲切片上的方法来可视化分析hazekomi过程。 图6显示了采用这种方法得到的结果。这里制曲使用的是抛光率为70%的抛光白鹤锦稻米(白鹤酒造株式会社的酒米),并在制曲开始24h、31h以及43h后取样。随着制曲的进行,可以观察到靛蓝色从曲的表面渗透到内部。尤其是在43小时之后、制曲完成时,不仅在曲的表面,在内部也能检测到浓烈的靛蓝色,表明米曲霉已经到达了稻米内部。 曲的一个主要作用是在酿造(发酵)阶段提供各种酶,以便形成酵母菌所需的营养。观察到的主要酶为α-淀粉酶或葡萄糖淀粉酶,这两者会形成作为酵母生长所需的葡萄糖。此外,也有报道表示α-淀粉酶可能是影响曲霉菌丝体侵入性生长的非常重要的酶。图6 GUS米曲中hazekomi过程的可视化分析(比例尺:1 mm(插入图片:200 μm)) 尽管既往研究中报道了制曲后葡萄糖的增加,但hazekomi和葡萄糖分布之间的关系尚未明确。在制曲过程每个阶段的米曲质谱图中,确实观察到了葡萄糖峰强度的升高(图7)。已有报道表明NEDC可以增加癌组织中葡萄糖检测的灵敏度(8)。因此,当使用NEDC作为葡萄糖MSI的基质时,[M+Cl]-= m/z 215.02在负离子模式下被检测到。 为了研究GUS米曲的hazekomi过程和葡萄糖分布之间的关系,使用GUS染色切片相邻的切片进行了MSI,比较获得的葡萄糖离子强度和GUS染色图像的分布,图8显示其结果。 观察葡萄糖分布及与GUS染色图像的叠加可以了解到从制曲初始阶段到后期阶段,葡萄糖从外到内增加。这一结果表明hazekomi和葡萄糖分布之间存在相关性。 另外,有些区域由于X-Gluc为深色且葡萄糖强度很高而成像为蓝色(黑色箭头显示),同时在本实验中也能看到有些部分虽然也观察到了hazekomi,但葡萄糖强度低,例如以黑色圆圈表示的区域。这些结果表明位置不同,hazekomi产生的葡萄糖量存在差异性。今后,可以通过包含各种代谢物(例如氨基酸、糖类、糖醇)分析的探讨来实现从化学角度更好地了解hazekomi现象。 虽然目前的考察着重于葡萄糖并解释了伴随hazekomi过程葡萄糖分布的变化,但可以想象,形成的酶的扩散范围和活性也会受到诸如米粒特征等其他因素的影响。这种新的可视化技术(GUS米曲和MSI的融合)预期可以改进米曲和其他曲衍生产品的制曲流程。图7 利用NEDC基质获得的葡萄糖峰的时间依赖性变化图8 GUS米曲中葡萄糖([M + Cl]–)的可视化(比例尺:1 mm) 结论 在本研究中,分析了磷脂在山田锦大米(清酒酿造米)中的空间分布,并利用白鹤锦米(白鹤酒造株式会社的专有清酒米)可视化分析hazekomi过程和葡萄糖分布之间的关系。同时还利用白鹤锦米制备了一种表达GUS的米曲品系,并用于揭示hazekomi过程和葡萄糖分布之间的关系。这种新的可视化技术利用了GUS米曲和MSI相结合,可有助于更好地了解米曲和其他曲衍生产品的制曲流程并改进制曲方法。由于本实验中采用的岛津iMScope成像质谱显微镜能同时实现微观区域的光学显微镜观察以及显微镜下的质谱分析,将iMScope应用于各种酒曲和其他麦芽的分析,可以获得发酵领域相关新科学知识。 iMScope QT(图9)是iMScope的新一代产品,于2020年6月发布。在延续iMScope TRIO卓越的显微镜观察功能和空间分辨率的同时,新的iMScope QT提供了更高的质量分辨率、检测灵敏度和分析速度,让分析变得更轻松。同时,由于能够分析更宽的质量范围,期待MSI技术可以进一步扩展在不同研究领域应用的可能性。图 9 iMScope QT 参考文献(1) K. Miyoshi, Y. Enomoto, E. Fukusaki, and S. Shimma, Shimadzu Application Note (No. 57).(2) S. Shimma and T. Sagawa, Shimadzu Application Note (No. 63).(3) S. Shimma, Y. Takashima, J. Hashimoto, K. Yonemori, K. Tamura, and A. Hamada, J. Mass Spectrom., 2013, 48, 1285(4) N. Zaima, N. Goto-Inoue, T. Hayasaka, and M. Setou, Rapid Commun.Mass Spectrom., 2010, 24, 2723.(5) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, S. Shimma, J. Biosci.Bioeng., 2020, 129, 296(6) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, and S. Shimma, J. of Brew.Soc.Japan (in press).(7) M. Yoshii and I. Aramaki, J. of Brew.Soc.Japan, 2001, 96, 806.(8) J. Wang et al., Anal.Chem., 2015, 87, 422. 文献题目《成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma *1, 2, Yoshihiro Tamada *3, Adinda Putri Wisman *1, Shuji Hirohata *3, Katsuya Gomi *4 Eiichiro Fukusaki *1,2*1 大阪大学工程研究生院生物技术系*2 大阪大学岛津组学创新研究室*3 白鹤酒造株式会社*4 日本东北大学农学研究生院未来生物产业的生物科学与生物技术系
  • 探索风味分析方法数字化、可视化新思路
    探索风味分析方法数字化、可视化新思路海能仪器携GC-IMS(气相离子迁移谱)技术参加第二届风味科学国际学术研讨会 5月28日上午,由美国化学学会(ACS)发起,江南大学、北京工商大学、上海应用技术大学、中山大学联合主办,江南大学承办的第二届风味科学国际学术研讨会(The 2nd International Flavor and Fragrance Conference,IFF2018)在江苏无锡召开。会议为期四天,来自17个国家和地区的高校、科研院所、企业,共计350余名代表参加了本次会议。本届会议汇聚了国际一流的风味研究学术大咖、知名学者,四天的学术交流包括7个主题报告,47个大会报告和132个学术海报展示,设置了风味与香气感知、风味化合物合成、风味分析技术等多个研讨主题。 随着中国经济和社会的发展,人民生活水平不断提高,人们对食品的要求不再只是营养,日益凸显的是对风味的追求。传统的分析仪器已经无法满足科研工作者对风味分析可视化、差异化、直观化、在线化的要求,此时需要有新的分析方法和技术的引入,用于捕捉关乎风味的痕量小分子化合物,帮助科研工作者们更好的分析和研究风味。气相离子迁移谱(GC-IMS)作为一款无需样品前处理、专注捕捉与风味相关的痕量(ppb级)小分子VOCs的仪器,经气相色谱柱和离子迁移管的二次分离,再通过软件处理可将样品之间风味物质形成指纹谱图,差异可视化、非常直观形象,软件自带的PCA同时可对样品进行聚类分析。更重要的是GC-IMS技术将风味物质的研究细化到分子级别(定性分析),进一步帮助科研人员研究风味差异源于哪些成份。 FlavourSpec风味分析仪 值此时机,海能仪器携旗下的GC-IMS(气相离子迁移谱)产品技术参会,并派出Hans Ruedi Gygax(Flavour/Fragrance Science Expert香精/香料科学专业)带领的工程师团队。会上由Hans做了专业的技术与学术报告,向大家介绍分享了GC-IMS技术及相关应用方案。 会议期间,曾与我们共同合作开发过应用方法的导师们也将GC-IMS技术作为报告主题和墙报内容,并分享了他们使用该技术在各自科研领域所取得的成果。 会上,来自高校的教授专家及相关领域专业人员参观了我们的展位,并就GC-IMS技术应用问题与在场工程师团队进行了交流与探讨,为后续的风味方法的开发与研究奠定了合作的基础。 通过此次会议,我们看到气相离子迁移谱作为感官评价及风味分析领域中的新技术,正得到越来越多科研工作者的认可和肯定,这使我们深有感触。相信在未来的日子里,气相离子迁移谱技术会为广大的科研工作者和行业专家解决更多感官评价及风味分析的应用问题。我们会以此为已任,在GC-IMS技术上不断推出更多的应用方案,为风味研究的发展贡献自己的一份力量!
  • 中科院建立重金属离子可视化检测新方法
    中科院合肥智能机械研究所王素华研究团队近期在重金属离子污染现场快速敏感检测研究领域中取得重要进展,建立了可视化检测的新方法,并研制出新型的可视化传感器。相关研究成果分别发表在美国化学会的Analytical Chemistry、英国皇家化学会的Journal of Materials Chemistry和Nanotechnology国际期刊上。  痕量重金属离子检测目前主要依赖于原子吸收、原子荧光、电感耦合等离子体、质谱等实验室方法。尽管这些方法检测精度比较高,但仪器耗资昂贵、运行费用高、操作要求多,检测比较费时、费力,而且测量时需萃取、浓缩富集或抑制干扰等复杂前处理过程。  针对这些难题,智能所研究人员通过设计制备出针对汞离子的特异性有机螯合配体,与汞离子通过配体交换反应形成螯合物,进一步在发光量子点表面发生快速的阳离子取代反应,导致量子点的荧光效率发生改变,从而通过荧光强度和颜色的变化实现对汞离子的高灵敏选择性检测(Anal. Chem. 2012, DOI: 10.1021/ac302822c)。随着汞离子浓度的增加,荧光发射峰位逐渐向长波方向移动,同时伴随着量子点的黄光会逐渐演变成红光(如图示)。研究人员进一步设计并组装了针对汞离子的纸质传感器,实现了对纯水、自然湖水中汞离子的快速可视化检测。  研究团队提出的可视化检测方法具有不依赖大型贵重的分析仪器、可进行裸眼观测、响应时间快等优点,能够实现痕量重金属离子的现场快速可视化检测。  研究人员又设计并研制了一种基于发光氧化石墨烯的新型比率荧光纳米复合探针,通过探针不同颜色荧光的比率变化,可将其应用于可视化检测分辨不同价态的铁离子(Fe2+)。在紫外光照下,随着Fe2+浓度的增加,探针的荧光颜色从红色变为蓝色,从而实现对Fe2+的可视化检测(Nanotechnology 2012, 23, 315502)。此外,研究团队还通过对氧化石墨烯的多层规整自组装,研制出了由多层氧化石墨烯组装的电极材料,结合电化学原理,可实现对铜离子的高选择性和敏感检测(Journal of Materials Chemistry 2012, 22, 22631)。  该研究得到国家973项目“应用纳米技术去除饮用水中微污染物的基础研究”、国家自然科学基金委及中科院“百人计划”支持。图示:针对重金属汞离子的现场快速可视化检测
  • 单细胞可视化分选技术全新来袭,分离效率高达100%!
    近年来,随着单细胞组学、单细胞克隆研究的持续走热以及循环肿瘤细胞研究的不断深入,如何高效、准确地进行单细胞分选成为研究工作中的桎梏。传统单细胞分离手段无法保证所得的样品内只有一个单细胞,导致下游的实验出现误差。英国iotaSciences公司经长期的技术积累研发推出的新型单细胞可视化分选系统-isoPick,可确保分选所得的样品中只有一个单细胞,分离效率高达100%,且结果可验证、可追踪,有效化解了单细胞分选的难题。 近日,Quantum Design中国与IotaSciences公司正式成为战略合作伙伴,将单细胞可视化分选系统-isoPick引进中国,旨在为中国研究人员提供一个可靠且功能强大的单细胞分选平台和全新的解决方案!单细胞可视化分选系统-isoPick 单细胞可视化分选系统-isoPick基于创新的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选。分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。isoPick也可将单细胞样品按照特定的体积直接转移到96孔板或PCR管中,无缝衔接到单细胞下游应用,确保后续单细胞组学信息完整性。单细胞可视化分选系统的优势:全自动化流程操作简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧部分发表文献:单细胞可视化分选系统已发表于Cell、Advanced Science、Small Methods、Nature Communications等期刊,如下为具有代表性的文献:Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.用户名单:样机试用:为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师预约参观试用!
  • 东方德菲新品推荐---微观可视化驱油工作站
    化学驱油技术是一项比较大的系统工程,涉及高分子化学、油田化学、地质、油藏等多个学科,比注水开发研究要复杂的多, 针对微观可视化驱油机理研究问题,北京东方德菲仪器有限公司与中石油勘探开发研究院提高采收率国家重点实验室共同研发生产了系统集成型可视化驱油系统,即VMF100微观可视化驱油工作站。 VMF100微观可视化驱油工作站,通过可视化的微流控技术,记录和分析驱替液在微纳尺度通道芯片中的驱油过程。VMF100是定量描述不同化学驱油体系微观驱油机理的实验工作站,高效识别剩余油,并表征高含水期微观剩余油的渗流特征,VMF100工作站具有高集成化、高操控精度、芯片多样化、 分析可视化等特点,是微观驱油机理研究必不可少的设备之一。微观可视化驱油工作站由原油注入系统、驱替液压力注入系统、压力监测系统、芯片密封系统、微纳孔道芯片,微观视频系统、操作分析软件组成。该工作站可以完美记录和控制饱和油及驱替的动态过程,评价剩余油再启动能力,并分析剩余油的渗流特征。 微观可视化驱油工作站的功能 1、精密控制和记录饱和油的动态过程原油注入系统采用精密注射泵恒流控制模式,将原油注入微孔道芯片内形成饱和油。微观视频系统可以记录整个饱和油的动态过程。如下图2、精密控制和记录驱油的动态过程驱替液注入系统采用压力恒流模式,将驱替液注入饱和油芯片形成动态驱替。微观视频系统可以详细记录整个驱替的动态过程,如下图:3、剩余油分类识别统计剩余油识别分类统计软件可以定量处理石英芯片的驱替实验视频以及 数值模拟水驱油实验视频,分析整个实验过程中各种类型(膜状流、滴状流、柱状流、多孔状和簇状流)剩余油的数量、面积分布随含水饱和度的变化情况等,结果数据可做进一步处理。 VMF100的性能指标:1.原油注入系统驱动方式:微步进处理器驱动设置方式:彩色LED触屏设置注射范围:0.5ul-50ml直接推力:16kg流速范围:1.28pl/min-88.28ml/min稳定精度:0.05%最小推进速度:0.18um/min2.驱替液注入系统驱动方式:压力驱动方式压力流量设置方式:软件程序控制及本机独立控制压力流量显示方式:彩色LED显示屏通道数量:双通道或三通道zuida压力:200Bar流速范围:7.5nl/min-5ml/min流速精度:7.5nl/min3.压力监测系统压力传感器:全氟油压力传感器压力数据显示及输出:实时显示/输出压力数据压力测量范围:0-115PSI压力测量精度:0.0007PSI4.芯片密封系统密封方式:强磁性密封zuida耐压:500PSI密封尺寸:1/16 peek 管密封5.微纳孔道芯片芯片材质:石英玻璃刻蚀方式:湿法刻蚀模型类别:仿真均质模型、非均质裂缝模型、平行通道模型、环道模型模型尺寸:1.5cm×1.5cm ,可根据客户要求定制孔道尺寸:20um×7um ,可根据客户要求定制芯片尺寸:6cm ×6cm6.显微视频系统主机:体式显微镜采集系统:2000万像素彩色CMOS相机放大范围:3.75×-67.5×工作距离:71mm物镜:0.5平场复消色差物镜光源:LED光源实验平台:强磁实验台7.系统集成1)内置部件:流量剂专用支架流量池专用通孔压力监测系统安装板内置多孔电源2)外置部件:仪器箱体配有24寸触控电脑8.软件功能1)基础功能-剩余油分析:视频记录饱和油的动态过程视频记录驱油的动态过程实时记录驱油压力的动态变化分析不同类型剩余油的数量分布分析不同类型剩余油的面积分布2)拓展功能1-孔道参数:孔道配位数分布孔道孔喉比分布孔道等效半径分布孔道最窄半径分布3)拓展功能2-微观接触角:自动识别微观孔道接触角孔道微观接触角概率密度曲线
  • 量子扭转显微镜可视材料内电子波
    据最新一期《自然》杂志发表的研究,以色列魏茨曼科学研究所的研究人员开发了一种新型扫描探针显微镜,即量子扭转显微镜(QTM),它可以创造出新的量子材料,同时观察其电子最基本的量子性质。这项研究为量子材料的新型实验开辟了道路。  大约40年前,扫描探针显微镜的发明彻底改变了电子现象的可视化方式。尽管当今的探针可在空间的单个位置获取各种电子特性,但迄今为止扫描显微镜无法实现的是,在多个位置直接探测电子的量子力学存在,并提供对电子系统的关键量子特性的直接存取。  QTM原理涉及两层原子般薄的材料相互“扭曲”或旋转。事实证明,扭转角度是控制电子行为的最关键参数:仅将其改变十分之一度,就可将材料从奇异的超导体转变为非常规的绝缘体,但这个参数在实验中也是最难控制的。  基于独特的范德华尖端,QTM可创建原始的二维异质结,这为电子隧穿进入样品提供了大量相干干涉路径。由于在针尖和样品之间增加了一个连续扫描的扭转角,这种显微镜可沿着动量空间的一条线探测电子,类似于扫描隧道显微镜沿着真实空间的一条线探测电子。  实验演示证明了针尖的室温量子相干性,研究人员还施加了较大的局域压力,观察扭曲的双层石墨烯的低能带逐渐平坦化。  研究人员称,新工具可直接将量子电子波可视化,可观察它们在材料内部表演的量子“舞蹈”,其还为科学家提供一种新“透镜”来观察和测量量子材料的性质。  如此深入地窥探量子世界,可帮助揭示关于自然的基本真相。未来,QTM将为研究人员提供前所未有的新量子界面光谱,以及发现其中量子现象的新“眼睛”。
  • 我国学者在“可视化”原子尺度制备研究方面取得进展
    图1借助电场调控原子扩散获得两种不同异质结构的原位制备过程 在国家自然科学基金项目(批准号:11525415,61601116,51420105003)等资助下,东南大学孙立涛教授团队在“可视化”原子尺度制备研究方面取得进展。研究成果以“通过调控原子扩散实现不同异质结构的原位制备(Tailoring atomic diffusion for in situ fabrication of different heterostructures)”为题,于2021年8月10日在《自然通讯》(Nature Communications)在线发表。  具有优异性能的异质纳米结构对于新型电子器件的开发与制造尤为重要。扩散被认为是制备异质纳米结构的主要技术方法,然而现有方法很难实现原子尺度扩散的精准调控,也很难实现单一异质纳米结构的可控合成,这严重制约了未来纳米器件的制造精度与制造水平。  针对以上问题,孙立涛教授研究团队发展了一种基于原位透射电子显微技术的“可视化”原子尺度制备方法,通过电场调控实现了同一体系两种不同异质结构纳米单体(核壳结构和分段异质结构)的原位制备(图1)。与传统制备方法相比,不但制备的可控性好,整个制备过程还实现了原子尺度上的实时观测,原子的扩散迁移机制和结构相变过程等一目了然。该方法通过电场方向控制原子发生定向扩散的方向,焦耳热引起的温度变化调控原子扩散方式(表面扩散或体扩散),从而制备不同异质结构的纳米单体。该研究成果表明电场调节原子扩散是一种可控制备单一异质纳米结构的有效方法,同时也有助于更好地理解材料间原子扩散方向和扩散方式的微观驱动力和相关机制,让原子尺度制备方法更精准、更可控。  “可视化”原子尺度制备是孙立涛研究团队提出的基于原位电子显微学技术,集力、电、光、热等多种加工手段于一体,实现原子尺度下材料与器件的精准制造与实时表征的新方法,不但可以直接揭示原子制备过程中的新原理、新机制,对实现稳定、可控的原子尺度制造也具有重要推动作用。
  • 智能化管理,实现噪声监测“自动化”与数据“可视化”
    2023年,16部门发布“声十条”,提出2024年底前,设区的市级城市完成功能区声环境质量自动监测系统建设工作,并与省级和国家生态环境监测系统联网。鼓励有条件的县级城市开展功能区声环境质量自动监测;2025年1月1日起,设区的市级以上城市全面实现功能区声环境质量自动监测,统一采用自动监测数据评价。不仅如此,一系列行业领域噪声自动检测技术规范等也陆续发布。据了解,“十四五”期间,国家将实现全国地级及以上的城市建成3800多个自动监测站点,目前,全国噪声领域科研及产业发展已形成一定规模。随着技术的进步,现代噪声监测系统正朝着智能化、网络化方向发展,利用物联网、大数据分析等技术实现远程实时监控和预警,使得噪声管理更加精准高效,市场更加广阔。为了解当前噪声监测技术进展、应用成效、行业状况及挑战机遇,向大家展现当前噪声监测市场现状,仪器信息网开展了“噪声监测现状与市场动态”主题约稿活动,本篇文章为北京爱唯施环境科技有限公司回稿内容。生产生活中工业运营的噪声会导致一系列问题,从居民健康污染到居民不动产贬值等。减轻工业噪音污染的一揽子方法往往导致更大更贵的一揽子工程。那么,运营者在部署噪声管理策略时,首先的难点是如何在最低的投入下减少系统的总监控成本和资源。工程噪音控制、声屏障和限制营业时间只是有效噪音管理实践的几个例子,这些方法通常需要大量投资,而精确智能化部署可以减少超额监测成本,确保更有效地缓解噪音。澳大利亚Envirosuite公司(简称:EVS),旗下子公司爱唯施,有30多年的环境管理经验,以自主开发的智能环境管理软件和噪声监测设备为平台,向客户提供实时及持续的噪声监测,分析报告,溯源预测等功能为一体的专业噪声管理方案。(1)智能噪声监测软件实现环境数据可视化和自动化:EVS 的Omnis和Anoms是基于云的数据管理平台,提供24/7的噪声监测与数据分析,以专用算法和建模将远程设备的数据可视化,实时设定、监控和导出报告,以实现自动管理其辖区的多个环境参数。包括预测潜在的环境噪音问题,跟踪噪音水平随时间的变化,以及环境影响评估等。同时提供噪声事件回放以及噪声阈值警报功能,可用于即时调查违规的噪声事件(频谱图或波形格式),还可以根据导致超标的原因进行噪声分类,帮助了解哪些噪声源不合规,以便进行降噪措施调整以提高噪音合规性。图:EVS 的智能噪声监测软件实现环境数据可视化和自动化(2)适用于任何环境的全天候实时噪声监测设备:EVS 提供专业的全天候噪声监测设备EMU3700 ,可部署在机场、工业、市政运营区内或周边社区的任何场地。EMU3700能够捕获准确的噪音和天气数据,这些数据与EVS噪音监测软件的专有算法相结合。为用户提供可视化的数据分析与见解。用户友好界面可实时查看噪音和天气数据。使操作人员能监控从设备端到远程的数据。包括测量指数,多种标准的报告格式,警报和报告的触发级配置。产品符合AS/NZS 62368-1 CE & FCC等安全性和合规性标准,独立IEC61672:2013 1级型批认证。Envirosuite的NMT 3700系列专门设计用于在恶劣环境中进行永久、移动和便携式的无人值守操作和噪声监测。产品可以安装部署于采矿作业、工业设施,机场,城市环保和建筑工地等各种行业应用。案例1:北京首都国际机场噪声监测项目北京首都国际机场于2005开始使用EVS为其安装25个噪声监测终端NMT和ANOMS 机场噪声管理软件,通过不同站点安装NMT噪声监测设备,实时监测记录站点周边的噪声数据, 并通过ANOMS远程管理软件进行噪声监测与分析报告,管理雷达、飞行计划、天气和投诉等一系列环境管理解决方案。爱唯施对后期运维方面的站点校准、硬件软件使用和技术支持、对硬件故障进行判断和排除、对软件服务进行定期维护和检测。用我们的解决方案跟踪噪声、航班,解决投诉,有效处理了机场与居民、航空公司和其他利益相关者的关系。为机场环境管理和噪声合规提供了稳定而有力的支持。图:Envirosuite 噪声监测智能化管理系统案例2:北京生态环境监测中心 声环境质量自动监测项目北京生态环境监测中心采用EVS噪声管理方案进行城市声环境监测,监测系统于 2007 年安装、2008 年 2 月通过最终验收,已经过多年连续工作,系统在全市包括 1 个监控中心(C/S 架构,服务器及系统软件、客户端软件)、18套噪声监测设备(16套设备在线运行, 2套设备备用),爱唯施提供专业技术人员和团队,对本系统提供运行维护服务保障。为项目提供专业的噪声监测管理和报告,运行多年来以其专业性和运行稳定性为国家站噪声采集和分析提供了重要数据,获得了一致的好评和认可。噪声监测市场在全球范围内呈现出增长的趋势,中国噪声监测系统行业也在不断发展壮大。&zwnj 这些趋势反映了社会对噪声污染问题的关注度提高以及对噪声监测和管理需求的增加。Envirosuite使用专有技术和实时可视化数据来帮助行业和社区的噪声监测管理并保持合规性,EVS的环境智能技术提供灵活和量身定制的解决方案来帮助您应对噪音及振动的挑战,通过改善环境性能使世界变得更加美好。
  • FEI 5500万美元收购3D可视化软件公司VSG
    2012年8月1日,FEI宣布其已经收购法国VSG??集团(Visualization Sciences Group),收购价格为4480万欧元,约5500万美元。 VSG提供高性能的三维可视化软件产品和工具,其客户包括石油和天然气、地质、采矿、生命科学、材料科学和工业检测等。  &ldquo 我们的战略是为我们的客户提供完整的成像和可视化解决方案,而收购VSG是加速和延伸了该战略,&rdquo FEI总裁兼首席执行官Don Kania说。&ldquo VSG的产品和开发能力与我们的目标市场非常契合,尤其是在我们高增长的自然资源和生命科学业务方面。我们的客户对成像系统创建数据的分析需求不断增加。与此同时,FEI打算继续发展VSG的不断增长的软件业务。我们对VSG的解决方案留下深刻印象,包括先进的3D渲染、开放的应用程序框架、面向对象的三维数据库和强大的三维数据管理能力。VSG拥有强大的管理团队和优秀的员工。&rdquo   &ldquo 与FEI相结合,使我们增加了广度和实现继续增长的分销??能力,&rdquo VSG总裁兼首席执行官Jean-Bernard Cazeaux评论到。&ldquo 我们期待着为FEI在高增长的市场的机会贡献力量,在那些市场FEI有坚实的客户基础,如生命科学和自然资源,并期待着在所有FEI的应用市场贡献我们的专业力量。&rdquo
  • 科学家发明体内DNA合成可视化新技术
    瑞士苏黎士大学的研究人员研发了一种新物质,可用来标记和观察动物体内的DNA合成过程。该技术的应用为药物研发提供了新策略。相关研究论文于12月5日在线发表在美国《国家科学院院刊》(PNAS)上。  详细了解动物体内DNA和蛋白质等大分子合成是理解生物系统和设计疾病治疗策略的必要条件。通常,通过人工合成小分子标记物掺入生物体自身合成过程来达到可视化DNA合成的目的。但是,直到现在该方法有一个重大的局限性:标记物具有毒性并导致细胞死亡。内森利德基(Nathan Luedtke)领导的小组研发了一种叫“F-ara-Edu”的核苷。用它来替换胸腺嘧啶脱氧核苷,标记DNA对生物体基因组功能几乎没有影响,毒性也大为降低,检测也更灵敏。  利德基表示,通过可视化新DNA的合成,就能够鉴定病毒感染和肿瘤增长的位点。这将引领药物研发新策略。(科学网 任春晓/编译)  相关仪器及方法:热型质谱仪  完成人:内森利德基课题组  实验室:瑞士苏黎士大学有机化学研究所  更多阅读  PNAS发表论文摘要(英文)
  • 可视化技术为薄膜沉积研究降本增效
    当前,我国半导体设备依旧高度依赖于海外企业,并且在核心技术和零部件上受到一定的限制。作为半导体产业重要的一环,薄膜沉积设备可以说牵一发而动全身。而中国作为半导体设备的重要市场,随着各地半导体项目的林立,晶圆代工厂的产能扩建热潮以及自主可控进程的推进,薄膜沉积设备厂商也迎来了快速成长和突破的新黄金期。对此,仪器信息网特邀请天津中环电炉股份有限公司介绍了其薄膜沉积设备。不断加大研发投入,为用户提供试用平台据了解,薄膜沉积领域在过去一直处于国外品牌独占市场。在此背景下,天津中环集中力量,借鉴国际先进经验,结合国内特色,开发了独具特色的薄膜沉积设备。其主要薄膜沉积产品包括CVD12IIIH-3-G、双相气流二硫化钼沉积设备、等离子薄膜沉积设备PECVD12IIH-3-G、三源流化床薄膜沉积设备等,凭借优异的性能,多次帮助用户在Science等多种国际级顶级期刊发表高影响力文章及成果,更是几乎进入了目前主流实验领域全部实验和部分高难度实验。天津中环的1200℃预加热双温区PECVD集成系统目前我国总体上看在薄膜沉积设备技术还处于新兴产业,发展时间短,技术积累薄弱,专业人才稀缺。市场处于萌芽阶段,但后续市场规模和技术需要又相当高。对此,天津中环认为,必须加大投入,无论资金、技术、人力等,不加大投入一但被国外产品拉开差距,建立技术壁垒,我国该产业很难发展,以至于薄膜沉积领域科研严重受制。正是在这种不断的研发投入下,天津中环现有产品已基本达到与国际龙头企业参数一致、价格更低、操作更容易、维护更简单。国内市场已经占据较多份额,主要客户群体有中科院所、大专院校、研究所、企业研发部门和检验部门。其中73%为实验领域。目前用户主要关注产品的技术参数和实验效果,为了更好的服务用户,天津中环组织人力、物力积极筹建实验室,为客户提供设备试用平台,目前天津中环实验室已经可以完成大多数实验,并得到理想的实验结果。确保客户采购设备后能够达到使用效果。另辟蹊径,绕开壁垒,突破“卡脖子”技术在贸易战以来,全社会都关注“卡脖子”问题,而在薄膜成绩领域当然也存在一定的“卡脖子”现象。在真空领域、气体控制领域特别明显,如高真空无油泵、特种气体流量控制等方面尤为突出。据透露,天津中环在5年前就发现问题,并积极联合各相关企业进行联合开发,通过特殊的设备结构、独特的设计理念另辟蹊径的达到了与国外类似的实验结果。从根本上绕过了一定的技术壁垒。谈到未来发展趋势时,天津中环认为未来的实验室和工业领域对于薄膜沉积技术更倾向于可视化的沉积与制备,可以更加直观的发现问题和解决问题。目前沉积设备都是盲烧。无法直观的展现沉积过程与沉积状态。这大大延缓了实验进度,阻碍了科学工作者的实验思路。基于对未来发展趋势的判断,天津中环于4年前着手研发可视化烧结、沉积设备。目前已经达到8微米级别的可视化分辨率,产品在陶瓷烧结、金属冶炼熔渗、高温接触角分析等领域获得无数好评,想成了稳定销售。下一步,天津中环还将着重研发纳米级分辨精度产品,为薄膜沉积领域打开一条新路。关于天津中环天津中环电炉是一家成立于1993年的股份制企业,现有产品专利40项,于2017年成功上市,具备研发、生产、实验等能力,产品上专精于实验电炉与薄膜沉积类设备及外延产品。在近年来半导体产业热潮下,天津中环主要业绩同比上一年度提高接近30%,三年平均增长18.7%。连续8年实现销售额增长超过10%。天津中环产品主要应用于材料行业、陶瓷行业、金属冶炼、处理。生物材料以及化学化工行业。
  • 激光超声波可视化检测仪技术填补国内空白
    11月28日,激光超声波可视化检测仪技术在西安航空基地正式通过科技成果鉴定。这一技术的国产化,填补了业界空白,大大缩小了与世界发达国家在无损检测仪器研发与生产方面的差距,是我国无损检测领域的一项重大突破。   无损检测在各制造行业的品质管理中,一直扮演着举足轻重的角色。其中,超声波检查因其安全、经济、简便而得到了广泛应用,但无法对任意复杂形状以及非金属物体内部缺陷实现高效、直观地检测。随着碳纤维复合材料、陶瓷基复合材料等新型材料的广泛应用,航空工业也得到了前所未有的发展,但迄今对这些新型材料的无损检测还缺乏有效的手段。  由西安金波检测仪器有限责任公司研发的激光超声波可视化检测仪,成功突破了无损检测领域中的这一世界科研难题。该检测仪的问世,对任何形状物体及绝大多数材料的内外部探伤,小到电子元器件,大到飞机机身部分均可进行无损检测,并可在高温、有毒等恶劣环境下工作。使用激光超声波可视化检测仪对飞机机翼、火车车轴等高速运载工具部件以及发电设备、压力容器等产品进行定期检查,可以最大限度地延长其安全使用寿命,避免重大事故的发生。  如果传统的超声波无损检测技术被比喻为“收音机”技术,则激光超声波可视化无损检测技术就属于“电视机”技术。激光超声波可视化检测仪由检测单元和激光单元组成,可简单地将超声波的传播过程可视化,并根据波形变化检查出被测物体内部或表面的损伤,通过计算机屏幕清晰、实时地观察。由于激光超声波可视化检测仪技术实现了无损检测的可视化,对物体内部存在的缺陷及损伤的识别变得非常容易,且可防止无损检测中经常发生的漏检和误判。  金波公司研发的“激光超声波可视化探测仪”,是西安航空基地入区企业科技创新的典型范例。西安航空基地具有集飞机设计研究、生产制造、试飞鉴定、教学为一体的航空产业体系,同时具备各类与航空产业有关的高科技研发群,对于“激光超声波可视化检测仪”的使用、推广、乃至产品改良都提供了得天独厚的广阔空间与平台。依托激光超声波可视化检测仪,目前西安航空基地已成立无损检测服务平台与工程技术研发中心,先后为近百家西安航空基地入区企业及国内航空、航天、军工、核电、电力领域企业提供服务,出具检测报告80余份,解决了众多目前无法解决的难题,大大提高了我国的无损检测技术水平,进一步提升了航空产品的可靠性与安全性。
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope iTRIO /i),前端是strong搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI)/strong,strong后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。/strongiMScope iTRIO /i是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "岛津公司strong于2014年推出成像质谱显微镜 iMScope iTRIO /i以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长/strong。本文介绍了岛津日本合作实验室strong大阪大学Shimma教授基于iMScope iTRIO /i在领域拓展方面开展的部分工作/strong。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "br//pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 229px " src="https://img1.17img.cn/17img/images/202006/uepic/8836d4b4-9fea-4393-b991-a4ed888b4e16.jpg" title="1.png" alt="1.png" width="600" height="229" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="text-align: justify text-indent: 2em "轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性/span/strong/pp style="text-align: justify text-indent: 2em "span style="text-align: justify text-indent: 2em "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope iTRIO /i对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 /pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 388px " src="https://img1.17img.cn/17img/images/202006/uepic/ef44e6ca-ea8c-42a4-9efa-fa1f77260e78.jpg" title="2.png" alt="2.png" width="600" height="388" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em "strong芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析/strong/pp style="text-indent: 2em line-height: 1.75em "strongbr//strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 218px " src="https://img1.17img.cn/17img/images/202006/uepic/59dd0c6e-d0c9-42b9-8093-e5992653b81d.jpg" title="3.png" alt="3.png" width="600" height="218" border="0" vspace="0"/ /pp style="text-align: center text-indent: 2em line-height: 1.75em "strong给药后的果蝇腹部检测出大量吡虫啉成分/strong /pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/202006/uepic/7de7f4fa-d0e3-435c-9432-fcba56308d4c.jpg" title="4.png" alt="4.png" width="600" height="399" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em " strong果蝇脑部GABA成分的分布/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。/spanbr//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/010bad1f-4e37-4900-b7b8-284a581772bf.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "strong给药后的马毛中DexaSP 分布检测结果/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "iMScope iTRIO /i通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "基于此,2020年7月9日,strongspan style="color: rgb(0, 112, 192) "岛津/span/strongspan style="color: rgb(0, 112, 192) "span style="color: rgb(227, 108, 9) "strong“镜质合璧,还原真实”/strong/spanstrong新品发布会/strong/span将在仪器信息网举办,届时岛津将携strong新一代iMScope 成像质谱显微镜产品首次与中国用户见面/strong。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong届时尽请关注!/strong/ppbr//p
  • 肿瘤演进与诊疗的分子功能可视化研究重大研究计划2022年度项目指南
    关于发布肿瘤演进与诊疗的分子功能可视化研究重大研究计划2022年度项目指南的通告国科金发计〔2022〕40号 国家自然科学基金委员会现发布肿瘤演进与诊疗的分子功能可视化研究重大研究计划2022年度项目指南,请申请人及依托单位按项目指南所述要求和注意事项申请。国家自然科学基金委员会2022年8月15日肿瘤演进与诊疗的分子功能可视化研究重大研究计划2022年度项目指南 肿瘤演进与诊疗的分子功能可视化研究重大研究计划旨在通过对肿瘤演进和诊疗的关键分子功能可视化,形成对恶性肿瘤本质的新认识。  一、科学目标本重大研究计划的总体科学目标:揭示肿瘤演进过程的关键调控分子与功能甄别、分子信息网络与病理表型以及基于分子功能可视化的肿瘤诊断、疗效评估和预后判定,阐述肿瘤发生的分子基础、肿瘤异质性的演化规律以及肿瘤微环境的特征构成,明确肿瘤各演进阶段的生物学表征和恶性本质及影像-病理-组学融合诊断意义。二、核心科学问题本重大研究计划的核心科学问题:肿瘤演进过程中关键分子的信息提取、特征确定、功能可视化及其诊疗意义。三、2022年度资助研究方向根据本重大研究计划总体布局,2022年度拟资助以下研究方向,鼓励申请人采用多学科交叉的研究手段,注重与信息科学、化学科学、数理科学等领域的合作。(一)重点项目和培育项目。1.恶性肿瘤演进过程中肿瘤异质性和微环境功能可视化。针对肿瘤异质性和肿瘤微环境主要组分,进行肿瘤组织类型、分子分型与组学信息的功能关联,分析和可视化解析恶性肿瘤演进过程中肿瘤微环境功能与肿瘤异质性形成的关系及调控机理,为创建原创性可视化技术奠定基础。2.恶性肿瘤影像、病理与多组学融合的智能诊断与疗效评估。根据肿瘤治疗临床需求,利用影像、病理和多组学信息的交叉和融合技术,探索人工智能(AI)辅助的肿瘤精准诊断和治疗新理论和新策略,建立肿瘤智能诊断、演进预测、疗效评估与预后判断的技术规范和应用模式。3.恶性肿瘤临床诊疗相关关键分子功能可视化新方法和新技术的初步转化应用。围绕恶性肿瘤演进中关键分子功能的可视化,将原创性的原理和技术转化应用于恶性肿瘤临床诊疗流程中的一个或多个环节,开展前瞻性临床试验,研究其安全性和有效性,并推动临床应用。(二)集成项目。1.恶性肿瘤演进过程中肿瘤异质性和微环境可视化智慧诊断。基于恶性肿瘤演进过程中肿瘤异质性和肿瘤微环境形成与功能调控机理的可视化解析,集成创新理论;利用影像、病理和多组学信息融合的创新技术,实现AI辅助的肿瘤异质性和微环境的功能可视化智慧诊断。2.恶性肿瘤临床诊疗关键分子功能可视化技术创新及临床研究。围绕恶性肿瘤临床诊疗相关的关键分子功能可视化诊疗技术开展研究,并转化应用于恶性肿瘤临床诊疗流程中的一个或多个环节,开展多中心临床试验,证明其有效性、临床收益和风险,形成临床诊疗原创技术。四、项目遴选的基本原则围绕核心科学问题,本重大研究计划强调和鼓励:(一)对实现总体科学目标的贡献率。(二)促进科学问题解决的新思路、新方法。(三)学科交叉,多组学、病理和影像信息的融合。 (四)促进我国相关领域发展的国际合作与共享。五、2022年度资助计划2022年拟资助集成项目2-4个,直接费用资助强度约为350万元/项,资助期限为4年,集成项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”;拟资助重点支持项目3-5项,直接费用资助强度约为260万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”;拟资助培育项目3-5项,直接费用资助强度约为60万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日-2025年12月31日”。具体资助项目数和资助经费将根据申请情况和申请项目研究工作的实际需要而定。六、申报要求及注意事项(一)申请条件。本计划项目申请人应当具备以下条件:1.具有承担基础研究课题的经历;2.具有高级专业技术职务(职称);在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1.本计划项目实行无纸化申请。申请书提交时间为2022年9月15日-9月21日16时。(1)申请人应当按照科学基金网络信息系统中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划将紧密围绕核心科学问题,对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本计划拟解决的核心科学问题和本指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“集成项目”、“重点支持项目”或“培育项目”,附注说明选择“肿瘤演进与诊疗的分子功能可视化研究”,根据申请的具体研究内容选择相应的申请代码。培育项目和重点支持项目的合作研究单位不得超过2个,集成项目的合作研究单位不得超过4个。(4)申请人应当按照重大研究计划申请书的撰写提纲撰写申请书,突出有限目标和重点突破,应在“立项依据与研究内容”中首先论述与本指南最接近的研究方向的关系,以及对解决核心科学问题和重大研究计划总体科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。(5)由于医学科学研究对象的特殊性,涉及人和动物的生物医学研究,请申请人和依托单位注意在项目申请及执行过程中严格遵守针对相关医学伦理和患者知情同意等问题的有关规定和要求,包括在申请书中提供所在单位或上级主管单位医学伦理委员会、实验动物伦理委员会的审核证明(电子申请书应附扫描件),未按要求提供上述证明的申请项目将不予资助。(6)涉及病原微生物研究的项目申请,应严格执行国务院关于《病原微生物实验室生物安全管理条例》和有关部委关于“伦理和生物安全”的相关规定;涉及人类遗传资源研究的项目申请应严格遵守《中华人民共和国人类遗传资源管理条例》相关规定;涉及高致病性病原微生物的项目申请,应具备生物安全设施条件,随申请书提交依托单位或合作研究单位生物安全保障承‍诺,未按要求提供上述证明的申请项目将不予资助。2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年9月21日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于9月22日16时前在线提交本单位项目申请清单。3.其他注意事项。(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本计划将每年举办1次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本计划指导专家组和管理工作组所组织的上述学术交流活动。(四)咨询方式。国家自然科学基金委员会医学科学部七处联系电话:010-62329157
  • 中微公司:已开发出小于5纳米刻蚀设备,刻蚀设备收入增长58.49%
    3月31日消息,昨日中微公司发布其2020年年报,报告期内,中微公司实现营业收入22.73亿元,较上年增长16.76%。归属于上市公司股东的净利润4.92亿元,同比增长161.02%。扣非净利润2331.94万元,同比减少84.19%。中微公司在年报中表示,2020年归母净利润实现翻倍增长主要源于:(1)中芯国际科创板股票投资公允价值变动收益约2.62亿元;(2)公司2020年计入非经常性损益的政府补助较2019 年增加约2.26亿元。而该年扣非净利润较上年同期减少84.19%,则是由于实施股权激励产生的股份支付费用约1.24亿元(属于经常性损益)。图片来源:中微公司年报截图从营收构成来看,中微公司来自半导体设备产品销售的收入达到17.99亿元,来源于设备相关配件的营收为4.42亿元,而设备支持服务的收入则为0.33亿元。产品销售中源于刻蚀设备的收入为12.89亿元,同比增长约58.49%;源于MOCVD设备的收入为4.96亿元,同比下降约34.47%。图片来源:中微公司年报截图在年报中,中微公司就刻蚀技术的未来发展作出了分析。分析指出随着芯片制程向5纳米及更先进制程发展,当前浸没式光刻机受光波长的限制,需要结合刻蚀和薄膜设备,采用多重模板工艺,利用刻蚀工艺实现更小的尺寸。刻蚀技术及相关设备的重要性因此进一步提升。而在2D存储器件的线宽接近物理极限后,NAND闪存已进入3D时代,在其制造工艺中,增加集成度的主要方法不再是缩小单层上线宽而是增加堆叠层数。3D NAND层数增加要求刻蚀技术实现更高的深宽比。中微公司指出,为应对上述趋势,自身在刻蚀设备技术上的研发进展包括:(1)在逻辑集成电路制造环节,其开发的12英寸高端刻蚀设备已运用在国际知名客户65 纳米到5纳米的芯片生产线上;同时,其根据厂商的需求,已开发出小于5纳米刻蚀设备,用于若干关键步骤的加工,并已获得批量订单。目前正在配合客户需求,开发新一代刻蚀设备和包括更先进大马士革在内的刻蚀工艺,能够涵盖5纳米以下更多刻蚀需求和更多不同关键应用的设备。(2)在3D NAND芯片制造环节,其电容性等离子体刻蚀设备可应用于64层和128层的量产,同时根据存储器厂商的需求正在开发新一代能够涵盖128层及以上刻蚀应用及相对应的极高深宽比的刻蚀设备和工艺。此外,电感性等离子刻蚀设备已经在多个逻辑芯片和存储芯片厂商的生产线上量产,正在进行新技术研发,以满足5纳米以下的逻辑芯片、1X纳米的DRAM芯片和128层以上的3D NAND芯片等产品的ICP刻蚀需求,并进行高产出的ICP刻蚀设备研发。在用于制造LED外延片的MOCVD设备技术上,中微公司表示,其用于Mini LED生产的MOCVD设备的研发工作进展顺利,已有设备在领先客户端开始进行生产验证;此外,制造Micro LED等应用的新型MOCVD设备也正在开发中。中微公司在年报中称,去年全年其研发投入总额为6.40亿元,其中包含股份支付费用0.49亿元。若剔除股份支付费用则全年研发投入为5.91亿元,较2019年增长39.16%,主要由于新工艺的研发,包括存储器刻蚀的CCP和ICP刻蚀设备、Mini-LED大规模生产的高输出量MOCVD设备、Micro-LED应用的新型MOCVD设备等。
  • Science:新的可视化技术让电镜都要遭淘汰
    p style="text-align: center "img width="500" height="313" title="201603021706111347.jpg" style="width: 500px height: 313px " src="http://img1.17img.cn/17img/images/201603/noimg/7a1ec47f-f19b-4270-8e1d-b31287684551.jpg" border="0" vspace="0" hspace="0"//pp  a title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "真核生物/span/a核的分子结构很大程度上仍未被开发。在2月25日的Science上发表的研究运用最新的冷冻电子断层成像技术(Cryo-ET)对a title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "HeLa细胞核/span/a周围进行了三维快照。Cryo-ET提供的三位细胞图像现在有越来越高的分辨率,已经达到了亚纳米级的具有细胞形态的分辨率。/pp  原位成像技术是很具有挑战性的,因为有很多限制,但是现在可以克服了:(i)低温聚焦离子束可以洞察冷冻的细胞和组织,这些样本直接通过透射电子显微镜TEM观察会太厚。(ii)直接观测提高了冷冻透射电镜的图像质量。(iii)最近开发的电压相位板(VPP)提高了特别是低空间频率的相,且没有散焦需要对比,让获得的图像能直接显示结构状况。/pp  Hela细胞通过绿色荧光蛋白标记& #946 -微管蛋白,mCherry标记组蛋白2B。冷冻电子断层成像技术对核附近的三维图像分析显示可以对在核内和核膜的大分子复合物直接可视化。/pp style="text-align: center "img width="500" height="321" title="1.png" style="width: 500px height: 321px " src="http://img1.17img.cn/17img/images/201603/noimg/4cc5407a-09b1-4d75-8492-ed3eb13800eb.jpg" border="0" vspace="0" hspace="0"//pp  为了提供更好的量化的检测,该研究对80S的核糖体进行了检测,单个核糖体产生平均分辨率为28img width="18" height="20" title="QQ截图20160304111628.jpg" style="width: 18px height: 20px " src="http://img1.17img.cn/17img/images/201603/noimg/c84cbc0e-83e3-459e-88f8-a590434c82fb.jpg" border="0" vspace="0" hspace="0"/的图像,而后根据他们在内质网的空间排列,内质网结合的核糖体(每143粒)产生了分辨率为35img width="18" height="20" title="QQ截图20160304111628.jpg" style="width: 18px height: 20px " src="http://img1.17img.cn/17img/images/201603/noimg/66bf6e39-479d-4c00-bd4b-12227f0a9942.jpg" border="0" vspace="0" hspace="0"/的图像。亚X线断层对核糖体的平均和分类体现了这种细胞质翻译机器的自然结构和组织。/pp style="text-align: center "img width="500" height="213" title="2.png" style="width: 500px height: 213px " src="http://img1.17img.cn/17img/images/201603/insimg/ee3add8e-4904-43be-a77d-22c7bbdf5346.jpg" border="0" vspace="0" hspace="0"//pp  大分子复合物通常不能严格地确定,因为它的结构是根据功能改变的。该研究对核孔复合物的大型动态结构分析显示显示了这项新技术可以检出单个复合物的差异。/pp style="text-align: center "img width="450" height="388" title="3.png" style="width: 450px height: 388px " src="http://img1.17img.cn/17img/images/201603/noimg/6a1c1a19-cd57-4550-aa7b-c318a22d5f6e.jpg" border="0" vspace="0" hspace="0"//pp  Cryo-ET可用于对以前难以琢磨的结构比如核小体的链,核层状结构的丝进行原位可视化。/p
  • 代理英国Nanosight可视型纳米颗粒分析仪
    代理英国Nanosight可视型纳米颗粒分析仪
  • 我国科学家发展无酶荧光可视化快速检测有机磷农残新策略
    近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队基于比率荧光材料构建可视化传感平台,实现快速定量检测环境和食品中的草甘膦。相关研究成果发表在Journal of Hazardous Materials上。  草甘膦凭借其高效、快速等特点成为国际上使用量最大的除草剂,在有机磷农药中占有重要位置。但较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标,高残留、毒性强等问题将直接影响到消费者安全。因此,发展快速、高选择性地检测草甘膦残留方法成为了控制和处理有机磷农残污染与危害的关键环节。目前人们通常采用实验室仪器或酶抑制法等检测方法来保证农残检测的灵敏度和选择性,但这些方法通常存在对环境要求苛刻以及操作复杂等问题。因此,建立高选择性及高灵敏的草甘膦残留快速定量分析方法对贸易、环境、食品和人体健康都具有重要意义。  鉴于此,研究人员基于比率荧光纳米传感器开发了一种新型且无酶的便携式传感平台用于草甘膦的快速可视化检测。该传感器由设计制备的蓝色碳点(CDs)和金纳米团簇(Au NCs)构成,当草甘膦与碳点反应时,聚集诱导猝灭(ACQ)导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。由于该传感器不依赖于酶,仅通过荧光色度变化,所以在极短时间(2秒)内即可实现对草甘膦的快速可视化响应及读数检测,检测限(LOD)低至4.19 nM,远低于国家标准。此外,研究人员还结合3D打印技术及智能手机颜色识别器,开发了便携式荧光检测平台,可在实时/现场条件下对草甘膦进行快速可视化定量监测,为农药残留现场快速检测提供了新的策略。  上述研究工作得到了国家自然科学基金项目、安徽省重点研究与开发计划、国家重点研发计划和安徽省博士后科研计划的支持。     论文链接图1 比率荧光传感器快速可视化定量检测草甘膦残留示意图图2 基于智能手机的监测平台可视化定量检测草甘膦
  • 岛津成像质谱显微镜应用专题丨板蓝根可视化
    质谱成像技术揭示板蓝根中化学成分的空间分布 板蓝根(Isatidis Radix)为十字花科菘蓝属植物菘蓝(Isatis indigotica Fortune)的干燥根,具有清热、解毒、凉血、利咽等功效。作为清热解毒类的代表药物,板蓝根与广泛用于各类感冒的预防和治疗,在严重急性呼吸综合征(SARS)、甲型H1N1流感等疾病的防治中发挥了积极作用。新型冠状病毒肺炎(COVID-19)爆发以来,各版《诊疗方案》和“三药三方”中也不乏板蓝根的身影。板蓝根的抗病毒抗炎药效显著,但化学成分复杂,质量评价难度较高,因而一直是国内外研究的热点。 目前研究学者已经从板蓝根中分离得到近400个化合物,综合文献报道主要可归纳为生物碱、含硫化合物、苯丙素、核苷、氨基酸、有机酸、酚、黄酮、蒽醌、萜、醇、醛、酮、腈、酯、糖、甾醇、肽、鞘脂等19大类。研究药用植物化学成分的空间分布,有助于了解其形态学结构和功能。尽管板蓝根的化学成分研究已经十分深入,但其分子空间分布鲜见报道。质谱成像(mass spectrometry imaging,MSI)技术是近年新兴的分子成像技术,通过直接测定样品表面的离子信号获得其空间分布信息,具有非靶向、无需标记和多成分同时检测的优势。与光学图像采集技术结合后,既可观察到高分辨率的形态图像,又可对特定的分子进行鉴定和可视化分布分析,在生命科学领域显示出巨大的应用前景。本文首次采用高分辨质谱成像技术对板蓝根化学成分的空间分布进行分析。利用大气压基质辅助激光解吸电离-离子阱-飞行时间质谱(atmospheric pressure matrix assisted laser desorption combined with ion trap-time-of-flight mass spectrometry,AP-MALDI-IT-TOF/MS)扫描不同产地药材横切面,鉴定所含化合物,并观察化合物空间分布模式和富集位置,结合偏最小二乘回归(partial least squares regression,PLSR)算法,对不同样品进行分类。研究思路见图1。 图1 AP-MALDI-IT-TOF/MS成像技术揭示板蓝根中化学成分的空间分布 1. iMScope TRIO 成像质谱显微镜测试条件质谱成像技术在植物、动物、人体组织中的内源性成分和药物代谢组分的可视化检测方面发展迅猛,但在中药分析领域的应用才刚开始起步,且多用于新鲜采集的原植物或中药材。而真正用于市场流通和临床应用的中药材为干品,制备满足MSI测试需要的切片比较困难,故相关研究鲜见报道。在制备板蓝根干品冰冻切片时,其干燥、坚硬、易碎的结构带来了极大的挑战,故对冷冻切片的厚度、温度,切片固定方式,基质种类和添加方式等进行了详细的优化。板蓝根药材经明胶包裹冷冻后,先用双面碳导电胶贴牢后,再用冰冻切片机切制40 μm的组织切片,分别喷涂2, 5-DHAP溶液和1, 5-DAN溶液作为正、负离子的基质。主要质谱条件如下:激光照射直径:40 μm,像素间隔80 μm,扫描范围:m/z 100-500,m/z 500-1000。 2. 板蓝根中化合物的AP-MALDI-IT-TOF MSI可视化分布根据离子的准确质荷比、同位素丰度比,与对照品和液质一、二级数据比对,并结合文献检索和数据库搜查,初步鉴定了多个化合物类别118个质谱峰(见图2)。成像质谱显微镜将光学显微镜和质谱仪的优势整合,既可观察到形态图像,又可对分子进行鉴定和可视化分布分析,在软件上可简便且高精度地重叠观察光学显微镜图像与质谱分析图像,详细解析感兴趣区域。本文采用AP-MALDI-IT-TOF MSI技术首次揭示了板蓝根中化合物的空间分布, 图3和 图4展示了板蓝根横切面的木栓层、皮层、韧皮部、形成层、木质部及部分化合物在特定空间区域的分布。综合分析,板蓝根中化合物大多富集于营养储存的组织韧皮部,与之相比,水分输送组织木质部中集中分布的成分较少。 图2 板蓝根MALDI-IT-TOF MS成像化合物鉴别结果图3 板蓝根横切面光学图 (a) 和oxindole (b)、3-[2' -(5' -hydroxymethyl) furyl]-1(2H)-isoquinolinone-7-O-β-D-glucoside (c)、coniferin (d)、guanine (e)、histidine (f)、 proline (g)、arginine (h)、cyclo(L-Phe-L-Tyr) (i)等成分正离子质谱成像图 图4 板蓝根横切面光学图 (a) 和 isatindigoside F (b)、clemastanin B (c)、maleic acid (d)、malic acid (e)、citric acid (f)、sucrose (g)、isovitexin (h)、vanillin (i) 等成分负离子质谱成像图 3. PLSR法区分不同产地板蓝根药材将4个产地的各3批板蓝根药材分别划分到4个组。以样品横切面的AP-MALIDI-IT-TOF MSI数据为Y值,组别为X值,在正、负离子模式和m/z 100-500、m/z 500-1000两个扫描范围内,分别建立PLSR回归模型。由图5可见,在4个模型中,样品规格的预测值和实际值均呈现良好的相关关系,说明采用PLSR法可对不同产地的板蓝根进行准确的区分。 图5 MALDI-IT-TOF MS成像结合PLSR回归区分不同产地板蓝根样品 正离子m/z 100-500范围 (A)、负离子m/z 100-500范围 (B)、正离子m/z 500-1000范围(C)、负离子m/z 500-1000范围 (D) 本文相关内容由中国食品药品检定研究院的聂黎行研究员提供,详细研究内容已正式发表于Frontiers in Pharmacology - Ethnopharmacology, 2021, https://doi.org/10.3389/fphar.2021.685575。 文献题目《Microscopic Mass Spectrometry Imaging Reveals the Distributions of Phytochemicals in the Dried Root of Isatis indigotica》 使用仪器岛津iMScope TRIO 作者Li-Xing Nie1,2, Jing Dong3, Lie-Yan Huang2, Xiu-Yu Qian2, Shuai Kang2,4*, Zhong Dai2 and Shuang-Cheng Ma1,2*1 Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China2 National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China3 Shimadzu China Innovation Center, Beijing, China4 College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
  • 让单克隆细胞成活率更高!单细胞可视化分选培养系统-isoCell重磅来袭
    近年来,随着单细胞组学、单细胞克隆研究的持续走热、循环肿瘤细胞研究的不断深入,如何高效、准确地分选单细胞成为研究工作中的桎梏。作为单细胞分选与培养领域领先者,英国iotaSciences公司推出了单细胞可视化分选培养系统-isoCell,不仅确保分选所得的样品中只有单个单细胞,分离效率高达100%,更进一步实现了将挑选出的单个细胞自动化地、直接地培养成单克隆细胞系,且分选与培养过程全程可验证、可追踪,保证每一个单克隆细胞系均来自单细胞。Quantum Design中国作为iotaSciences公司的战略合作伙伴进一步将单细胞可视化分选培养系统引进中国,为中国研究人员提供可靠且功能强大的单细胞分选与培养技术和解决方案。 单细胞可视化分选培养系统-isoCell iotaSciences公司特有的网格式单细胞腔室技术(GRID技术)是单细胞可视化分选培养系统-isoCell自动化分离和培养单细胞解决方案的核心。该技术每个腔室尺寸微小、光学清晰度卓越且无边缘效应(如下图所示),可以清晰地查看腔室内的细胞数量与形态。设备创新性的将GRID技术与可视化分选相结合,确定腔室内只有单个细胞,通过自动化地微流控技术从GRID腔室挑选出单个细胞用于下游应用,也可以在GRID腔室内将单个细胞直接培养成单细胞系,单克隆细胞系成活率高。 单细胞的分选与培养操作流程高度自动化保证了单细胞的高活性与单克隆细胞系的高成活率,且全流程可视化监控确保了每一个单克隆细胞系均来自单个细胞。单细胞可视化分选培养系统-isoCell的优势:☛ 全自动化流程☛ 操作条件温和,对单细胞无损伤☛ 全培养、分析流程可追踪☛ 单细胞分离效率高达100%☛ 单克隆细胞系构建成活率高☛ 直接转移到PCR管或96孔板☛ 结构紧凑,体积小 文献举例: 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications 等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询!用户名单 用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)”使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。“
  • 孙立涛教授团队在可视化原子尺度制造方向取得重要成果
    近日,东南大学孙立涛教授团队与美国劳伦斯伯克利国家实验室郑海梅教授团队和华东理工大学方海平教授团队合作,结合实验和分子模拟,首次从原子尺度揭示了刻蚀过程中完整的固-液-气三相反应的机制。2022年5月26日,相关研究以“Solid–liquid–gas reaction accelerated by gas molecule tunnelling-like effect”为题发表在Nature Materials上。研究团队也以此文献礼东南大学120周年华诞。该工作的通讯作者是东南大学的孙立涛教授,美国劳伦斯伯克利国家实验室郑海梅教授以及华东理工大学的方海平教授。王文博士(现工作单位为郑州大学)、徐涛副研究员、陈济舸副研究员为共同第一作者。研究团队基于原位电子显微学系统实时观察了纳米气泡可加速(~20倍)湿法刻蚀的全过程,首次从原子尺度揭示了刻蚀过程中完整的固-液-气三相反应机制,为发展高效、高精度制造工艺与方法提供了新的实现手段和制造原理。湿法刻蚀广泛应用于半导体制造等重要领域,但湿法刻蚀方向选择性有限,很难得到尺寸精确可控的微纳结构。微纳尺度的固-液-气反应是集成电路制造中的基本物理化学过程,还涉及晶体管加工中的清洗、抛光等关键工艺。当前7nm、5nm等先进晶体管器件对于内部金属、半导体和介电层等结构的几何尺寸具有亚纳米级的严苛精度要求。受限于表征手段,上述工艺研发仅能依靠离线检测手段表征。该研究结果对建立工艺参数-结构尺寸模型,加速工艺研发具有基础性支撑作用。该项研究中涉及的固-液-气三相反应在自然界和工业界广泛存在,除湿法刻蚀外,还有如大气腐蚀、生物有氧呼吸、光催化、燃料电池等。由于在纳米尺度追踪单个颗粒以及三相界面的演变非常困难,所以一直缺乏对反应动力学的定量分析和对三相界面处气体传输机制的准确理解。孙立涛教授团队利用电子束辐解水产生氧气气泡,构建并实时观察了溴化氢水溶液中氧气气泡刻蚀金纳米棒的固-液-气三相反应(如图1所示)。图1:液体池内建立的固-液-气反应示意图。观察发现,当金纳米棒周围没有纳米气泡时,该纳米棒逐渐被氧化刻蚀演变成表面光滑的椭球形并最终消失;但当金纳米棒周围存在纳米气泡时,靠近纳米气泡的位置的纳米棒会被加速刻蚀,并演变成局部凹陷的结构。值得指出的是,当发生局部凹陷时,纳米棒和纳米气泡并非是直接接触的,二者之间存在超薄液膜(如图2所示)。大量实验结果定量分析可知,仅当纳米气泡与固体之间的距离小于临界尺寸(~1 nm)时,刻蚀速率才显著提升(一个量级以上);否则,刻蚀速率几乎不变。纳米气泡参与刻蚀反应存在临界距离的这一发现,颠覆了一般认为“气泡越靠近固体反应物反应越快”的传统认知。图2:存在氧气纳米气泡时金纳米棒的刻蚀过程。图3:纳米棒顶部有氧气纳米气泡时的刻蚀过程。华东理工大学方海平教授团队和中国科学院上海高等研究院陈济舸副研究员等,利用经典分子动力学和第一性原理分子动力学模拟指出,纳米气泡的存在并未影响溴离子在金纳米棒的表面的吸附位置,而纳米气泡中释放的氧气分子在金纳米棒表面吸附是加速反应的关键。当纳米气泡与金纳米棒表面之间液层的厚度大于~1 nm时,纳米气泡所释放的氧气分子通过浓度梯度主导的扩散穿过液层到达金纳米棒表面,此过程速度较慢。但当纳米气泡与金纳米棒表面之间液层的厚度减小到~1 nm以内时,氧气分子的输运过程具有“类遂穿”效应,氧气分子以极高速度穿过液层吸附到金纳米棒表面,从而极大地加速了刻蚀反应。该研究首次从原子尺度揭示了完整的固-液-气反应路径:(1)当液层厚度大于临界值时,氧气分子在液层中经历浓度梯度主导的扩散;(2)当液层厚度小于临界值时,氧气分子在范德华力作用下迅速吸附在固体表面上;(3)氧气分子在固体表面参与化学反应(如图4所示)。该成果使得湿法刻蚀技术在刻蚀方向、尺寸的可控性大幅提升成为可能,也极有可能发展为未来微纳加工领域的新技术。此外,研究人员提出了几种适用于不同场景提升三相反应的方法,对未来调控涉及固-液-气三相的微纳加工、多相催化等过程具有重要意义。图4:金纳米棒的固-液-气刻蚀机理。为了验证该机制的普适性,孙立涛教授团队还在溴化氢水溶液中研究了氧气气泡对钯纳米立方块的刻蚀,并得到了一致的结论。该工作得到了国家杰出青年基金项目、国家重大科研仪器设备研制专项项目、国家自然科学基金国际合作项目、国家自然科学基金面上项目、上海市自然科学基金等项目的支持。相关论文信息:https://doi.org/10.1038/s41563-022-01261-x
  • 研究员开发便携式传感平台实现有机磷农残的快速可视化检测
    草甘膦凭借其高效、快速等特点成为国际上使用量最大的除草剂,在有机磷农药中占有重要位置。但较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标,高残留、毒性强等问题将直接影响到消费者安全。   因此,发展快速、高选择性地检测草甘膦残留方法成为了控制和处理有机磷农残污染与危害的关键环节。目前人们通常采用实验室仪器或酶抑制法等检测方法来保证农残检测的灵敏度和选择性,但这些方法通常存在对环境要求苛刻以及操作复杂等问题。因此,建立高选择性及高灵敏的草甘膦残留快速定量分析方法对贸易、环境、食品和人体健康都具有重要意义。   近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队基于比率荧光材料构建可视化传感平台,实现快速定量检测环境和食品中的草甘膦。相关研究成果发表在Journal of Hazardous Materials上。   该传感器由设计制备的蓝色碳点(CDs)和金纳米团簇(Au NCs)构成,当草甘膦与碳点反应时,聚集诱导猝灭(ACQ)导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。由于该传感器不依赖于酶,仅通过荧光色度变化,所以在极短时间(2秒)内即可实现对草甘膦的快速可视化响应及读数检测,检测限(LOD)低至4.19 nM,远低于国家标准。   此外,研究人员还结合3D打印技术及智能手机颜色识别器,开发了便携式荧光检测平台,可在实时/现场条件下对草甘膦进行快速可视化定量监测,为农药残留现场快速检测提供了新的策略。   上述研究工作得到了国家自然科学基金项目、安徽省重点研究与开发计划、国家重点研发计划和安徽省博士后科研计划的支持。图1 比率荧光传感器快速可视化定量检测草甘膦残留示意图图2 基于智能手机的监测平台可视化定量检测草甘膦
  • FLIR VS290-32:受限空间可视化的好帮手!
    工业内窥镜说到工业内窥镜,相信很多公共事业、制造等行业的小伙伴们都比较熟悉,因为在一些大型机器日常巡检的过程中,常规手段往往 “无从下手”,巡检人员无法靠近,检查设备无法深入,这就导致检查结果不够详尽,很多隐藏问题不能被找到。这时候,就需要工业内窥镜出马啦~随着科学技术的发展,工业内窥镜的出现很好地解决了狭窄空间检测的问题,最近菲力尔公司新推出的FLIR VS290-32,是业界新款集红外成像摄像头和可见光摄像头于一身的工业外可视视频内窥镜,不仅可以满足工业内窥镜检测狭窄区域的需求,还可以通过红外热像镜头发现异常的热点,及时确定故障点! ★多项国际认证,安全巡查FLIR VS290-32 是菲力尔公司新推出的工业级、经电气安全等级认证、功能灵活的双传感器视频内窥镜,可快速发现隐藏的故障,无需操作人员进入不便位置和空间。 ★电气检测安全等级为 CAT IV 600 V 级,摄像探头和底座的防尘和防水等级分别为 IP67 级和 IP54 级,能够满足要求最苛刻使用环境的需要,可大幅提升在发电厂、配电系统、制造设施等难以到达的狭小空间进行检测工作的便利性;★ 使用160×120真热像仪和200万像素可见光相机双传感器,搭载长达两米的可替换式摄像探头,支持现场轻松更换相机探头,可在安全距离内检查地下配电室、大型齿轮箱、电机、阁楼、匍匐空间和其他工业应用内部情况。★快速准确定位,留存检测结果FLIR VS290-32可使用颜色警报(等温线)快速识别问题区域,还可利用内置的SD存储卡或USB-C下载和分享图像和视频。★ 使用3.5英寸超大彩色显示屏清晰查看结果,搭配FLIR Lepton红外传感器,可提供热/冷颜色警报或等温线选项,可以在-10℃至400℃的极宽温度范围内快速识别问题区域;★ 搭载 FLIR Systems 专利多波段动态成像 (MSX) 技术,将可见光场景细节叠加至全红外图像上,大幅提升图像清晰度,可为准确、安全地评估和鉴定潜在问题提供有效依据;★ 使用随附的SD存储卡保存图像和视频,然后通过USB-C数据线上传至PC,留存好检查的步骤和细节,可以为评估和鉴定潜在问题提供有效依据,让工作进度流程有迹可循,获得领导和用户的信任;★快速创建并与团队成员分享报告,使用FLIR Thermal Studio安排维修工作。★附加功能齐全,应用广泛。FLIR VS290-32除了在专业上功能丰富,在设备的其他设计上也尽量满足检查工作的需求。★ 配备小型探头和高亮LED工作灯,可以在黑暗环境中为多波段动态成像工作提供照明;★ 使用双位电池充电器和锂离子充电电池,充满电后可连续工作六个小时;★ FLIR VS290-32可以用在公共事业中的下水管道、地下室、涡轮机、发电机、泵、给水加热器、冷凝器、热交换器、管道、电机阀、变速箱等的检查,还可以用在制造行业中模塑板之间、大型变速箱或电动机中、有安全栅的内部区域热交换器、燃气轮机、小型风洞等的检查,亦或者用在房屋的阴暗空间或密闭空间的排查等,FLIR VS290-32红外内窥镜套件应用范围非常广泛!FLIR VS290-32红外内窥镜套件将工业内窥镜和红外热像仪相结合既满足了工业内窥镜检查狭窄空间的需求红外热像镜头也可以准确定位故障点一机多用,性价比超高目前在京东、天猫官方旗舰店均有售想要抢购的菲粉们赶快进入店铺咨询客服带走它吧~
  • 化学所印刷微生物可视化检测芯片方面取得进展
    细菌、病毒、真菌等与生命健康相关。临床常用的细菌检测方法是平板计数法,需要将菌液培养1-2天,操作繁琐,费时费力,亟待发展快速灵敏的细菌检测新方法,这是纳米生物检测领域的重要目标之一。中国科学院化学研究所绿色印刷院重点实验室宋延林课题组在纳米光子结构的印刷制备、光学性质调控、机理研究和生物检测应用等方面取得了系列进展(Angew. Chem. Int. Ed., 2021, 60, 24234;Chem. Rev., 2022, 122, 5, 5144–5164;Matter, 2022, 5, 1865-1876;Adv. Mater. Interfaces, 2022, 9, 2102164;Sci. Bull., 2022, 67 , 1191–1193;ACS Nano, 2022, 16, 10, 16563–16573)。科研人员利用绿色印刷技术精确地控制纳米光子结构的组装过程,通过周期性地排列结构单元实现了显著的光子共振增强效应,为超灵敏可视化检测生物标志物提供了新途径。近日,该课题组将一维纳米结构的光学信号放大作用与蒸发过程中毛细力驱动的颗粒预富集相结合,设计出快速超灵敏的微生物检测芯片。研究以聚苯乙烯微球悬浮液为墨水,在基底上印刷制备了大面积的一维纳米光子结构,并利用聚苯乙烯微球表面大量的羧基高效偶联抗体,特异性地识别待检测样本中的致病菌。研究发现,将毛细力诱导的咖啡环效应引入微生物检测,可在基底上对目标病原体进行预富集,提高检测效率。除了捕获细菌,纳米光子结构还具有强的光场局域能力,可显著增强细菌的散射光信号,提高检测灵敏度,能够在单细胞水平上对其物理特征如生理环境、活性、繁殖状态进行可视化分析。进一步,研究实现了连续监测水、血清、尿液以及蔬菜等样本中的细菌情况。这种生物检测芯片制备简单、成本低,能够结合普通的商业显微镜或者手机直接获取检测结果,在医疗诊断、食品安全、环境监测和农业等领域具有广阔的应用前景。相关研究成果发表在Advanced Materials上。研究工作得到国家自然科学基金、科技部、中科院和北京市的支持。基于一维纳米光子结构生物芯片快速、超灵敏检测细菌感染
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制