当前位置: 仪器信息网 > 行业主题 > >

冷压接钳

仪器信息网冷压接钳专题为您提供2024年最新冷压接钳价格报价、厂家品牌的相关信息, 包括冷压接钳参数、型号等,不管是国产,还是进口品牌的冷压接钳您都可以在这里找到。 除此之外,仪器信息网还免费为您整合冷压接钳相关的耗材配件、试剂标物,还有冷压接钳相关的最新资讯、资料,以及冷压接钳相关的解决方案。

冷压接钳相关的资讯

  • 无锡冠亚制冷加热控温设备助力制药化工,参展CPHI 2019
    为了加强制药化工行业交流,分享行业内外对应的成果,2019年6月18日-20日为期三天的CPHI CHINA 2019在上海新国际博览中心隆重举办,当然,无锡冠亚作为仪器设备行业的翘楚,在本届CPhI上,我们将为制药化工行业提供高性能的制冷加热控温设备,诚挚邀请新朋老友莅临展台(展位号:W5P22),洽谈合作!  CPhI China 世界制药原料中国展是一场国际化、高质量的行业盛宴,在众多制药化工和仪器设备厂家的共同的努力下不断前进,无锡冠亚恒温制冷技术有限公司致力于制冷加热控温系统、超低温冷冻机、新能源电池/电机控温系统、加热循环系统、防爆电气设备、试验设备、工业冷冻室的研发、生产和销售。  经过近10多年的发展,无锡冠亚提供的制冷加热控温设备为制药、化工、科研、新能源、元器件等领域带来了强有力的技术支持。从2005年开始,无锡冠亚便立志为客户提供全面的制冷加热控温解决方案,为后来的发展中争取了更多合作厂商,创造了更大的市场价值。  无锡冠亚的成功源于公司制冷加热控温设备强大的技术支持,成立至今,公司凭借与个制药化工企业之间的战略合作关系,以及不断优化的公司自身运作和服务质量,无锡冠亚每年都为数以千计的客户提供产品,服务于科研机构、元器件、化工、制药等众多领域。  “诚信、公开、诚实、公平”是无锡冠亚多年坚持的原则,正是因为有这样的坚持,才塑造了公司员工和客户之间的互相尊重、坦诚沟通、高效互动的健康环境。如今,每一位冠亚人都坚信“科学技术能为人们带来高品质的生活”,并以此为目标而不断奋斗,立志生产出更加专业、精密、实用的科学仪器。  2019年6月18-20日,第十九届世界制药原料中国展,展位号:W5P22,无锡冠亚制冷加热控温设备与您不见不散!
  • 润滑油和冷却液系列讲座 之课题一: 冷轧油
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题一: 冷轧油课题一将重点讨论润滑剂在冷轧油中的应用。通过案例分析,阐述LUM专利STEP技术是如何表征颗粒,液滴以及分散性的特征。如需详细了解,请注册并在线聆听LUM专家的分享。主讲人:Dr. Arnoal Uhl ( LUM 全球技术销售负责人)会议持续时间:60分钟会议语言:英语会议时间:2021年9月14日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 亚洲首台KRIOS冷冻电镜落户清华
    8月25日,亚洲首台KRIOS冷冻电镜在清华大学安装落成,同时启动了清华大学生命科学与医学研究院(医研院)和荷兰FEI公司的全面合作,双方负责人分别在合作仪式上签字。  根据合作协议,FEI公司无偿为清华大学医研院提供一台价值约140万美元的Tecnai TF20冷冻透射电镜一年的使用权限,用于开展重要生物大分子复合体三维结构和功能的研究。同时,FEI公司今后将利用其强大的研发能力和广泛的业内影响力,在项目研究、应用服务、人员培训、软硬件维护与升级等方面给清华大学以充分的支持。  近年来,FEI公司的高端冷冻透射电镜被广泛用于基于冷冻电子显微学的生命科学领域的许多前沿工作,并得到了专家们的广泛认可。据请华大学医研院副院长施一公教授介绍,以前对病毒的研究看不到更细微的环节,而通过这台仪器可观测到0.3—0.4纳米级,可以看到细胞表面的受体结构和细胞的原位结构以及氨基酸系列,所以这一高端仪器的引进,对破解人类的未知病毒,特别是严重危害人类健康的病毒等具有重要和深远的意义。  据悉,清华大学以此为契机引进了7名海归人士展开深入研究。
  • 自主专研加热制冷循环机 无锡冠亚打造品牌形象
    在制药化工行业中,实验室控温是其发展的重要组成部分,加热制冷循环机的运行,对于制药化工行业的发展也是有着一定作用的。在实验室中,加热制冷循环机也称为了不可或缺的组成部分。  随着近年来对科研事业的重视,加热制冷循环机等仪器设备发展也迎来的一定的发展机遇,无锡冠亚恒温制冷技术有限公司(以下简称无锡冠亚)是一家专业从事制冷加热控温仪器开发、研究、生产、销售的仪器生产商,无锡冠亚一直致力于提升中国实验室生产力水平,希望通过专业、细致和全面的技术支持服务不断践行“为客户创造更多价值”的承诺。目前,无锡冠亚已成为一家多元化科技型企业。  无锡冠亚拥有十多年的研发经验, 不仅能提供多种可靠的实验室仪器、设备,还能为客户度身定制系统的制冷加热控温整体解决方案。在多年的运营下,无锡冠亚已经和全国多家知名制药化工企业长年达成深度合作,在技术创新、产品研发、营销渠道等多领域不断前行,无锡冠亚在产品研发和改进上拥有着雄厚的实力,而这也让无锡冠亚的仪器在产品质量、性能、价格、售后服务等多方面具备强劲的市场竞争优势。  除了加热制冷循环机外,无锡冠亚也同时经营冷水机、冷冻机、工业冰箱、超低温冷冻箱、新能源电池电机测试用控温系统等,为制药、化工、医疗、军工、新能源、芯片、机械等多个行业提供了众多可靠的产品。无锡冠亚知道,一个好的品牌形象会让公司收益良多,无锡冠亚高瞻远瞩,积极探索,力求用可靠的产品和妥帖的服务打造良好品牌形象。  在加热制冷循环机国产仪器设备市场上,未来的市场竞争还会更加激烈,无锡冠亚要保持竞争优势,仍需刻苦专研,以产品品质说话!
  • 生物物理所重大进展:90S核糖体前体冷冻电镜结构获解析
    核糖体是由RNA和大量蛋白质构成的大型分子机器,负责地球上所有生物的蛋白质合成。在真核生物中,核糖体组装是个非常复杂的过程。核糖体在成熟过程中需要和大量的组装因子暂时结合,形成了一系列核糖体前体复合物。小亚基核糖体在组装过程中形成两个主要的中间体:早期的90S和晚期的pre-40S前体。90S前体是个巨大的复合物,除了含有核糖体RNA和蛋白质组分,还含有约50个非核糖体蛋白质和U3 snoRNA,分子量高达5百万道尔顿。  中国科学院生物物理研究所叶克穷实验室利用冷冻电镜和单颗粒重构技术获得了出芽酵母90S核糖体前体的3个电子密度图,其中最好的密度图的整体分辨率达到4.5埃。研究人员利用已知的晶体结构、从头建模和化学交联质谱数据构建了接近完整的90S结构模型。  90S的结构显示新生核糖体小亚基折叠形成多个分离的亚结构,并和大量组装因子结合。核糖体前体RNA的5' 间隔区域、U3 snoRNA和大量组装因子形成巨大的基座,支撑新生核糖体的结构。结构还揭示了U3 snoRNA和核糖体前体RNA结合的新颖方式。该结构对理解核糖体小亚基的早期组装原理和组装因子的功能具有里程碑的意义。  报道该工作的论文Molecular architecture of the 90S small subunit pre-ribosome 于2月28日在eLife 杂志在线发表。  叶克穷是该论文的通信作者,孙奇、朱星、奇佳和安卫东是共同第一作者。合作者董梦秋和谭丹以及叶克穷课题组多位研究人员对该研究也有重要的贡献。中科院生物成像中心为该研究提供关键的冷冻电镜研究设备和技术支持。该研究得到了国家自然科学基金委、中科院战略性先导科技专项(B类)、科技部和北京市政府的资助。  文章链接 90S核糖体前体的冷冻电镜结构
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • 走进海尔生物医疗 走进亚洲最大的低温冷链研发和制造基地
    海尔生物医疗隶属于海尔集团,是中国领先的低温冷链研发和制造企业。在低温、冷冻、冷链技术方面,海尔生物医疗的产品填补了国内低温技术的空白,带着对低温技术的好奇,近日,仪器信息网一行三人特别拜访了海尔生物医疗,为您揭开亚洲最大的低温冷链研发和制造基地的神秘面纱。海尔生物医疗研发制造基地  国内首创低温冷链技术,打破国外技术垄断  长期以来,国内超低温市场几乎没有国产厂商的身影。2006年,海尔生物医疗推出的零下86度超低温冰箱,完全打破了国外品牌长达30多年的技术垄断,替代进口产品,为国家节约了大量外汇资金。  目前,海尔生物医疗现有产品共包括17个系列,一百多个规格型号,超低温冰箱、深低温冰箱、低温冰箱、血液冷藏箱、医用冷藏箱、生物安全柜等低温冷链及实验室等产品都是海尔生物医疗目前主要的产品线,产品年产量可达20万台左右。产品主要应用在医院、血站、高校科研、疾控等专业领域。另外,商检、质检、药检等国家政府机构也在使用海尔生物医疗的相关产品。  据介绍,海尔生物医疗自主研发的生物安全柜将为行业树立全新的安全标准。经过10年技术沉淀,历时两代迭代升级,海尔智净生物安全柜首创智净“恒风速”专利,解业内所有安全柜久用过滤器堵塞 风速降低或不均匀 造成人员易感染、样本受污染的隐患。并提供业内最全3Q年检服务,整机三年包修等服务。随着生命科学等行业的快速发展,生物安全柜的市场前景十分乐观,未来也将成为海尔生物医疗的代表性产品之一。  除此以外,工作人员还为我们介绍了冷链监控系统、液氮罐和自动化存储设备等产品。交流现场  主持起草多项国家标准,并多次获奖  据介绍,海尔生物医疗在低温技术领域相继主持起草了《低温保存箱》、《药品冷藏箱》,《血液冷藏箱》等国家标准。获得国家发明专利4项,“国际领先”技术认定8项。还获得了“国家新产品”、“十年成就奖”等荣誉。  2013年,海尔生物医疗推出了全球第三代、触摸屏、智慧型海尔超低温冰箱DW-86L959,该款产品通过触摸屏智慧存储,实现了与人的交互,引领了全球超低温冰箱的发展潮流。同年12月,海尔凭借“低温冰箱系列化产品关键技术及产业化”项目,获得国家科技进步二等奖。该奖项是中国低温制冷行业唯一国家科技进步奖,也是对海尔生物医疗在中国低温冷链行业重要地位的肯定。  2015年4月,在ACCSI 2015中国科学仪器发展年会颁奖典礼上,海尔生物医疗的节能芯超低温冰箱DW-86L728J获得了2014年度绿色仪器和2014年度科学仪器优秀新品两项大奖。  由此可见,海尔生物医疗正在引领中国低温冷链行业从完全依靠进口,走向了自主研发,自行制造的研发之路,并从产品创新走向了标准创新的自创品牌之路。  先进工厂设备,为产品质量保驾护航亚洲最大的低温冷链制作基地  走进工厂内部,可以看到先进的工业设施,完善的生产设备,洁净的工厂环境…。从2006年成立至今,海尔生物医疗一直引领中国低温冷链市场的发展。据介绍,海尔生物医疗全部产品的生产线,都采用专业的发泡设备,氦气检漏和真空舱检漏,全系列制冷剂自动灌注,同时使用压机油干燥过滤设备,真正为用户提供制冷能力强,质量可靠、经久耐用的产品。超低温冰箱专业检测生物安全柜总装线血液冷藏箱总装线  今后,海尔生物医疗将通过生物样本库带动的高端医疗科研用户资源,进入临床诊断试剂及设备研发、样本大数据信息系统等生命科学及转化医学上下游产业链,并支持中国民族生物医疗产业发展。  最后,我们还参观了位于海尔工业园内的海尔大学。校园内部,环境优美,山水环绕,文化气息非常浓郁,也正是这种文化氛围为海尔培养了很多后备人才。海尔大学一览  海尔生物医疗低温冷链领域表现出的民族使命感、民族自主品牌形象都带给我们太多的震撼,其在产品质量、企业管理等方面所做的一切都值得国内同行用心思考和学习。同时,相信海尔生物医疗定会不断的突破和发展,为中国低温冷链市场再添更多、更优质的产品和服务。撰稿:张葳
  • 物理所利用冷冻电镜解锁石墨嵌锂阶结构微观本质与演变
    石墨是商用锂离子电池的关键负极材料,也是最常见的二维材料。锂离子嵌入石墨会形成一系列阶结构,阶的微观结构决定着石墨嵌入化合物的物理化学性质。然而它的微观图像及其形成和转变动力学并不清晰,这限制了准确预测石墨嵌入化合物相关性质与性能,也阻碍了石墨在不同工况下的实际应用,比如快速充电。目前,研究人员主要提出了两种模型(Rüdorff-Hofmann和Daumas-Hérold模型)来描述石墨嵌锂形成的阶结构及其演变(图1a-b)。这两种模型显示出相同的长程有序结构,而具有不同的短程结构。揭示阶结构的微观真实面纱需要借助对纳米或者原子结构敏感的表征技术,如透射电子显微镜(TEM)。由于石墨材料对辐照敏感,常规TEM难以得到石墨及其嵌入化合物的真实纳米或者原子结构。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心特聘研究员王雪锋、研究员王兆翔和副研究员肖睿娟等利用冷冻透射电子显微镜(cryo-TEM)和其他表征技术以及理论计算与模拟在纳米尺度上揭示了锂离子嵌入石墨后形成阶结构的特征及其演变机制。  结果发现,锂离子不均匀地嵌入石墨层间,产生局域应力,导致石墨结构发生扭曲变形,形成位错。不同阶结构之间的转变是通过锂离子扩散以及位错的移动、相互作用和转换实现的。每种阶结构锂化石墨在宏观上是均匀的(具有特征的平均晶面间距和衍射花样的长程有序排列),但在微观上是不均匀的(由不同的阶结构和位错组成)。基于此,该团队提出局域畴结构模型(Localized-domains model,图1c)来描述石墨嵌锂过程中的结构演变。该研究结果联结了锂化石墨中的长程有序结构和局域结构,更新了人们对阶结构及其演变的认识,提出通过缺陷工程改善石墨嵌锂动力学并有望应用于快充电池。 图1 不同石墨嵌锂结构模型示意图 图2 电化学锂化过程中石墨长程结构的演变。(a)原位XRD;(b)锂化过程中石墨的电压曲线(电流密度为20 mA g-1)。 图3 锂化石墨局域结构的演变。不同阶石墨嵌锂化合物的iFFT图像(a-h)及缺陷分数统计(i)。   图4 锂化石墨中缺陷的类型及其演变。(a)缺陷示意图及其对应的iFFT图像和应力分布;不同阶石墨嵌锂化合物中的缺陷类型演变(b)及应力分布(c-g)。 图5 锂化石墨中的长程结构和短程结构。不同阶石墨嵌锂化合物的iFFT图像(a-d)及其中的短程结构(e-h)和平均晶面间距(i-l)。   图6 Ⅲ阶石墨(LiC18)中三种不同缺陷的结构演变。三种初始(a-c)及弛豫后(d-f)的具有不同缺陷的LiC18结构;(g-i)三种结构中锂离子的扩散路径;(j-l)(e)中结构随着时间的演变。
  • 物理所利用冷冻电镜解锁石墨嵌锂阶结构微观本质与演变
    石墨是商用锂离子电池的关键负极材料,也是最常见的二维材料。锂离子嵌入石墨会形成一系列阶结构,阶的微观结构决定着石墨嵌入化合物的物理化学性质。然而它的微观图像及其形成和转变动力学并不清晰,这限制了准确预测石墨嵌入化合物相关性质与性能,也阻碍了石墨在不同工况下的实际应用,比如快速充电。目前,研究人员主要提出了两种模型(Rüdorff-Hofmann和Daumas-Hérold模型)来描述石墨嵌锂形成的阶结构及其演变(图1a-b)。这两种模型显示出相同的长程有序结构,而具有不同的短程结构。揭示阶结构的微观真实面纱需要借助对纳米或者原子结构敏感的表征技术,如透射电子显微镜(TEM)。由于石墨材料对辐照敏感,常规TEM难以得到石墨及其嵌入化合物的真实纳米或者原子结构。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心特聘研究员王雪锋、研究员王兆翔和副研究员肖睿娟等利用冷冻透射电子显微镜(cryo-TEM)和其他表征技术以及理论计算与模拟在纳米尺度上揭示了锂离子嵌入石墨后形成阶结构的特征及其演变机制。结果发现,锂离子不均匀地嵌入石墨层间,产生局域应力,导致石墨结构发生扭曲变形,形成位错。不同阶结构之间的转变是通过锂离子扩散以及位错的移动、相互作用和转换实现的。每种阶结构锂化石墨在宏观上是均匀的(具有特征的平均晶面间距和衍射花样的长程有序排列),但在微观上是不均匀的(由不同的阶结构和位错组成)。基于此,该团队提出局域畴结构模型(Localized-domains model,图1c)来描述石墨嵌锂过程中的结构演变。该研究结果联结了锂化石墨中的长程有序结构和局域结构,更新了人们对阶结构及其演变的认识,提出通过缺陷工程改善石墨嵌锂动力学并有望应用于快充电池。相关成果以Localized-Domains Staging Structure and Evolution in Lithiated Graphite为题发表在Carbon Energy上。上述研究工作得到国家自然科学基金委和北京市自然科学基金的资助。论文链接 图1 不同石墨嵌锂结构模型示意图 图2 电化学锂化过程中石墨长程结构的演变。(a)原位XRD;(b)锂化过程中石墨的电压曲线(电流密度为20 mA g-1)。 图3 锂化石墨局域结构的演变。不同阶石墨嵌锂化合物的iFFT图像(a-h)及缺陷分数统计(i)。   图4 锂化石墨中缺陷的类型及其演变。(a)缺陷示意图及其对应的iFFT图像和应力分布;不同阶石墨嵌锂化合物中的缺陷类型演变(b)及应力分布(c-g)。 图5 锂化石墨中的长程结构和短程结构。不同阶石墨嵌锂化合物的iFFT图像(a-d)及其中的短程结构(e-h)和平均晶面间距(i-l)。   图6 Ⅲ阶石墨(LiC18)中三种不同缺陷的结构演变。三种初始(a-c)及弛豫后(d-f)的具有不同缺陷的LiC18结构;(g-i)三种结构中锂离子的扩散路径;(j-l)(e)中结构随着时间的演变。
  • 南科大冷冻电镜中心:6台最先进 1台独家定制 瞄准世界前三
    p style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/56726cd4-dd5e-45c4-a263-71b5603f050c.jpg" title="1.jpg" alt="1.jpg" style="width: 300px height: 179px " width="300" vspace="0" height="179" border="0"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "科研人员在读取数据  /span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/36e4eddb-047d-49db-b3d1-d74e9393cc11.jpg" title="2.jpg" alt="2.jpg" style="width: 300px height: 488px " width="300" vspace="0" height="488" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "/spanspan style="color: rgb(0, 176, 240) "科研人员将样品放进冷冻电镜设备中/span/pp  一个“显微镜”有多贵?答案是千万或者上亿元。/pp  在南方科技大学冷冻电镜中心一栋普通科研楼里,就藏着这些身价惊人的“大家伙”。这些“宝贝”被精心呵护,娇贵得甚至容不下一点噪音。与此同时,科学家通过它们,不停地读取着生命科学、新材料、新能源研究领域中不可或缺的重要密码。/pp  2018年11月19日,南科大冷冻电镜中心正式揭牌。全部建成后,这将是我国配套最齐全、最先进的冷冻电镜实验室,同时规模也将跻身世界前三。近日,深圳商报记者走进这里,探访这些表面低调却内有乾坤的“大显微镜”。/pp strong 6台机器世界先进,还有“独家定制”/strong/pp  南科大冷冻电镜中心是深圳市政府出资、南科大牵头建设的重大基础科学设施平台,旨在支撑深圳市、粤港澳大湾区及中国南方在生物医药、精准医疗、新能源、新材料方面的科学研究及产业升级。/pp  南科大冷冻电镜实验室拟安装300千伏冷冻电镜6台及其它71台/套相关辅助仪器和样品制备设备。目前,项目一期的2台300千伏冷冻电子显微镜已经完成安装调试,投入使用。据南科大冷冻电镜实验室主任王培毅教授介绍,这6台设备都是世界上最先进的,其中还有一台是南科大冷冻电镜中心根据需求“独家定制”的,可以说是“世界唯一”。/pp  strong2017年诺贝尔化学奖得主理查德· 亨德森曾预言,这里将会成为全球最大的三个冷冻电镜中心之一,未来的研究能力将会达到全球的前5%。/strong/pp  在全球范围,冷冻电镜近几年热度飙升,成为科学界“兵家必争之地”。2017年诺贝尔化学奖颁给了在这个领域做出贡献的三位科学家,更是说明冷冻电镜炙手可热。那么,究竟什么是冷冻电镜?王培毅教授告诉记者,冷冻电镜是电子显微镜的一种,它的工作原理和光学显微镜类似,也是通过光与样品的相互作用而成像。只是冷冻电镜所用的光源不是人们平时见到的可见光,而是电子。由于波长的限制,可见光的分辨率一般是1500倍以下,而电子的波长非常短,大约是普通光波长的十万分之一左右,因此冷冻电镜的分辨率可以达到更高的程度,能够直接观测到蛋白质分子一类的生物大分子的精细结构。/pp  以生物医药领域的应用为例,冷冻电镜技术就是“把组成动、植物的蛋白用生物学的方法取出后,以快速冷冻的方式冷冻到液氮温度(-196度),这样可以保持蛋白的活性。在这种状态下用冷冻电镜观察活蛋白,可以达到零点几纳米的分辨率,由此准确判断药物靶标的位置,并根据药物靶标来开发新药。”因为可以“看”得更精细,所以冷冻电镜技术在很多领域都被广泛应用,被视做是材料科学、生命科学等学科基础研究的利器。/pp  “目前,全国购置的冷冻电镜有27台,主要集中在北京、上海等地。我们购买的冷冻电镜,根据研究的领域不同有所侧重,有些偏重于材料科学,有些偏重于生命科学。我们定制的那一台‘世界唯一’的冷冻电镜,就是希望它能够在重大疾病的诊断方面发挥作用。”王培毅教授告诉记者,2019年将是南科大冷冻电镜中心非常重要的一年,除了定制的那一台冷冻电镜外,其他购置的电镜将陆续到位,安装、调试后,电镜中心的工作将在2020年迈上新台阶。/pp  strong“大家伙”很娇贵也很辛苦/strong/pp  隔着玻璃,记者顺着王培毅教授的指引,看到了目前已经使用的两台冷冻电子显微镜静静矗立。但是,近300平方米的机房内,却没有工作人员忙碌的身影。/pp  这是为什么?“首先,我们的机房内一般是没有人的,工作人员的工作都通过计算机远程操控完成,只在装样品的时候才进入十几分钟。另一个原因是,今天实验室内有施工,考虑到施工带来的噪音会影响电镜工作,所以今天我们不提取数据。”王培毅教授的解释让记者大吃一惊——这些“身材魁梧”的“大家伙”,原来是一点噪音都会受影响的“娇小姐”!/pp  因为冷冻电镜十分精密,所以对环境的要求很严苛。据王培毅教授介绍,为了减少振动带来的影响,机房的地面厚度约1米,且是独立建设的,跟周围建筑物完全分离,甚至连空调的风速都必须严格监控。机房内必须经过严格的消磁,在里面是没有手机信号的。机房内的温度、湿度都恒定,温度变化每小时不超过0.2℃。还有一个房间专门用来制作样品,房间内的湿度保持在20%,因为只有在这样相对干燥的环境里才能保证样品的质量。如此小心翼翼地“伺候”,就是为了让冷冻电镜更好地运转、工作。要知道,除了每个月两天的维护、保养时间外,冷冻电镜可是24小时连轴转的。/pp  “冷冻电镜与普通材料电镜最大的不同在于,冷冻电镜的结果是统计结果,需要大数据。普通的材料电镜,拍一张照片就有结果,但冷冻电镜需要拍成千上万的照片,然后用统计学的方法把结果算出来。这也就说明了,为什么一般机构购置冷冻电镜都需要两台以上,因为它要解析一个样品,需要几十个小时甚至更长的电镜时间。”冷冻电镜的相机灵敏度有多高?王培毅教授打了一个比方——相当于在几万公里的高空可以看到桌子上的一瓶水。这些高精度的照片存储量惊人,“一台电镜一天就能采集2T以上的数据量”,而后的数据分析和解读无疑也是一项巨大的工程。/pp  strong期待中国原创靶向药从这里走出/strong/ppstrong  这几台世界先进的“大家伙”,究竟能为老百姓带来什么?/strong/pp  王培毅表示,在生活水平日益提高的情况下,健康成为人人关心的焦点。对于深圳而言,下一阶段的城市发展,生物医药和健康产业将是巨大的“增长点”。南科大建设世界一流的冷冻电镜中心,目的就是通过利用国际最先进的科学技术,发展基础科学研究,聚焦重大疾病诊断、新药开发、精准医疗、功能材料研发和基础学科建设等领域,促进深圳新材料、医疗卫生、健康产业和高等教育的发展,同时积极服务于国家战略需求,造福百姓。/pp  尽管冷冻电镜未来在许多领域都有很大的应用空间,但在王培毅心目中,冷冻电镜研究的终极目标还是为了人类的健康事业。“想要解决重大的疑难疾病的治疗问题,就必须要研发药物,然而药物的研发过程极其漫长,从研发到上市一般需要历经十年。治疗白血病的药物研发前后则是经历了近100年。而冷冻电镜可以通过低温冷冻技术,观察活的原始样本,进而用于研究致病机理,例如发现癌症的致病机理,从而推动癌症等重大疾病的诊断和治疗,极大地缩短制药的时间。”王培毅教授说,自己的最大心愿就是缩短靶向药物的研发时间,助力中国研发自己的原创药。/pp  除了生命科学领域的课题外,目前南科大冷冻电镜中心的研究重点还有新能源和新型化合物。此外,实验室还将积极开展多学科交叉研究,并与学校已经建成的X射线晶体学平台、生物质谱蛋白质组学分析平台形成互补,开展国际上最前沿的蛋白质科学研究,为结构生物学、细胞生物学、神经科学,化学、材料科学等领域搭建交叉学科平台。/pp  “各个学科对于冷冻电镜的需求是十分巨大的。目前我们还未全面对外开放,但排队的样品已经排到了春节以后。”这个春节,王培毅教授和他的团队将在忙碌中度过了??/pp  strong小资料/strong/ppstrong  冷冻电镜/strong/pp  2017年诺贝尔化学奖,授予了瑞士科学家雅克· 杜博歇、美国科学家约阿希姆· 弗兰克以及英国科学家理查德· 亨德森,以表彰他们在冷冻显微术领域的贡献。/pp  理查德· 亨德森上世纪90年代改进了传统电子显微镜,取得了原子级分辨率的图像 约阿希姆· 弗兰克在上世纪七八十年代开发了一种图像合成算法,能将电子显微镜模糊的二维图像合成清晰的三维图像 雅克· 杜博歇发明了迅速将液体水冷冻成玻璃态以使生物分子保持自然形态的技术。这些发明使低温冷冻电子显微镜的各部件得到优化。/pp  2013年以来,低温冷冻电子显微镜日渐成熟并获得广泛应用。如今研究者可以在生物分子的生命周期内对其进行冷冻和成像,将以往不为人知的分子生命状态呈现出来。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201901/uepic/c2a4b517-02a9-4da8-b95a-a30a0276234b.jpg" title="00.jpg.png" alt="00.jpg.png" style="width: 300px height: 267px " width="300" vspace="0" height="267" border="0"//p
  • 哈希浊度仪在京唐公司1700冷轧厂废水处理车间的应用
    在钢铁行业冷轧厂的废水处理车间中,为保证处理完成后最终排放的水质浊度和电导率达标,在最终排放水管道上安装了在线的浊度检测仪和在线电导率仪。京唐公司1700冷轧厂废水处理车间主要就采用了哈希公司的HACH sc100浊度仪,量程为0~40NTU,精度为0.50%;和哈希公司的HACH c53电导率仪量程为0~5000uS/cm,精度为2.00%。从投产至今的三年多的运行中,这两个仪表起了很大的作用。在日常使用中,数据准确,便以维护,且一直运行未出现故障。使我们车间排出的水质在浊度和电导率这两个指标中一直达标,充分达到了环保的要求。此外,仪表数据传输的准确性,使操作者在操作室即可掌握外排水的准确的浊度和电导率,可以实时调整操作,以保证水质的合格。更重要的是,哈希浊度仪和电导率仪在将近4年的运行中一直都有足够的准确性和稳定性,为我们的设备维护节省了很多人力物力,大大减少了备件费用。鉴于哈希水质仪表的各种优点,我们在后期的二冷轧厂废水车间的建设中仍然使用了哈希的水质分析仪表。更多详情请点击
  • 冷冻电子显微学与“细胞器、亚细胞及原位结构生物学研究”专题报告会召开
    pstrong仪器信息网讯/strong 第六届全国冷冻电子显微学与结构生物学专题研讨会在北京隆重召开,研讨会由中国生物物理学会冷冻电子显微学分会(以下简称:中国冷冻电镜分会)主办,北京大学承办,中国电子显微镜学会低温电镜专业委员会协办。19日下午,“细胞器、亚细胞及原位结构生物学研究”作为大会三大专题之一,在中科院生物物理所孙飞研究员主持下,顺利召开。会议围绕“细胞器、亚细胞及原位结构生物学研究”共安排了6个专题报告,吸引了来自海内外400多名代表与会。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/6d2dd523-e8dd-419b-b1a2-47d32db518f5.jpg" title="全景小.jpg" alt="全景小.jpg"//pp style="text-align: center "  研讨会现场/pp  中国科学技术大学毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告,分享在A型γ-氨基丁酸受体(GABAARs)的原位结构和组织研究方面的成果。毕国强用高分辨率冷冻电子断层扫描(Cryo-CLEM),确定了GABAARs在培养的海马神经元的抑制性突触中的结构。定位分析显示,GABAARs超复合物具有固定的11nm受体间距离但相对角度可变。这些超级复合物形成多受体网络,与随机分布的受体相比具有更低的Voronoi熵。受体网络进一步组织成具有~18nm的相界的中间组件。这种分层的自组织既保持规律性又灵活性,从而可以在突触信息处理中实现平衡的可靠性和可塑性。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/201906/uepic/26ffc5a5-9914-4e50-a103-e06077a70894.jpg" title="毕国强.jpg" alt="毕国强.jpg" width="450" vspace="0" height="283" border="0"//pp style="text-align: center "  毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告/pp  染色质结构的高度动态变化在基因转录调控过程中起重要作用,并受多种表观遗传调控因子,如DNA 的甲基化、组蛋白的化学共价修饰、组蛋白变体置换、染色质结构蛋白的动态结合、ATP 依赖的染色质重塑以及非编码RNA 等的调控。中国科学院生物物理研究所朱平的《细胞核内染色质的电镜结构研究》报告介绍了利用冷冻切片、电镜和电子断层成像、CLEM等技术,在体外组装的染色质纤维纤维结构、以及用不同方法制备的细胞核内染色质结构研究的一些初步结果。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/201906/uepic/4ed382f4-dba9-497e-ad1b-0a2ccab43a89.jpg" title="朱平.jpg" alt="朱平.jpg" width="450" vspace="0" height="283" border="0"//pp style="text-align: center "  朱平作《细胞核内染色质的电镜结构研究》报告/pp  中国科学院生物物理研究所纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告。报告内容中展示了所开发的冷冻和干涉单分子定位成像技术、冷冻超分辨光电融合成像技术。展示了使用csCLEM(cryogenic super-resolution correlative light and electron microscopy)精确确定蛋白质与其天然细胞结构之间的空间关系的研究过程和成果。在构建冷冻超分辨成像系统时,发现几种荧光蛋白(FP)是光可切换的并且发射更多的光子,可以得到更高的、与超分辨率成像相当的定位精度。引入冷冻切片,将csCLEM扩展到哺乳动物细胞,并观察到线粒体蛋白与线粒体外膜在三维纳米分辨率下的良好相关性。纪伟分享了最新工作进展,借助新设计的超稳定冷台,将冷冻超分辨成像系统升级为超稳定的超分辨荧光冷冻显微镜。该冷冻显微镜具有出色的热稳定性和机械稳定性,10小时内的温度波动小于0.1K,并且在5小时内三维机械漂移小于200nm。报告中的应用实例表明,超分辨荧光冷冻显微镜系统适合长时间观察和csCLEM实验。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/201906/uepic/76fdeaad-1028-4e9b-a7bb-b3164af3baac.jpg" title="纪伟.jpg" alt="纪伟.jpg" width="450" vspace="0" height="283" border="0"//pp style="text-align: center "  纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告/pp  此外还有,生物化学与细胞生物学研究所何勇宁作《Architecture of cell–cell adhesion revealed by electron microscopy》报告,北京生命科学研究所何万中作《Direct synthesis of EM-visible gold nanoparticles on genetically encoded tags for single-molecule visualization in cells》报告,清华大学李赛作《Three-dimensional imaging by Cryoelectron tomography and subtomogram averaging at sub-nanometer resolution》报告。虽然是研讨会的最后一场,但全场观众依然聚精会神,台上台下展开了热烈交流。/pp  会议期间,借助冷餐会及会议间隙,特别设立了Poster交流环节,并在19日现场颁发了Poster奖。清华大学田元元、北京大学程稼萱、中国生物物理所吴春玲、浙江大学黄子惠、清华大学徐魁、中山大学邵千芊、中国生物物理所黄小俊、北京大学康云路获得Poster奖。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/ea3738f8-7e43-4327-9700-90aaccbf460a.jpg" title="poster.jpg" alt="poster.jpg"//pp style="text-align: center "  孙飞教授、高宁教授与Poster奖获得者合影留念/ppbr//p
  • 践行“两学一做”送温暖 88名贫困学生 “小脚丫”不再冷
    2016年的冬天已经悄然而至,当我们在为穿哪件衣服、配哪双鞋子而陷入选择困惑时,可曾知道,在贵州贫困山区有一群孩子们,他们上学需要翻山越岭,他们无法选择鞋子,甚至还没有冬鞋。聚光科技立足实际,将“两学一做”学习教育与公益活动有机结合,时刻把贫困儿童冷暖放在重要的位置,将“两学一做”学习教育不断深化。 在寒冷冬天来临之前,聚光科技党委、工会开展“温暖小脚丫”活动,为贵州黔西县观音洞镇观音洞村景山小学的88名贫困学生送去急需的鞋子。  11月8日,在景山小学支教8年多的杨明老师特别开心,这是他收到聚光科技寄来包裹的日子,他亲手把88双鞋子,200多双袜子分发给每一个孩子,看着孩子们终于把破旧不堪的鞋子换成赞新的鞋子时,笑容一直没有从他脸上消失过。聚光科技开展的此次活动不仅为山区的孩子们送去了爱心与温暖,也向社会再次展示了努力践行社会责任的实际行动和践行“两学一做”成果。2017年,我们还将继续开展“温暖小脚丫”的爱心活动,呼吁更多的爱心人士、爱心企业参与进来,让温暖之旅继续,让更多山区学校的孩子们感受到社会的关爱和温暖。  (注:本次用于购买鞋袜的爱心款来源于聚光科技爱心义卖)收到爱心鞋袜的孩子们
  • TSI公司将参加第二十九届中国制冷展
    美国TSI公司将参加于2018年4月9日-11日在北京于中国国际展览中心新馆举办的"中国制冷展"。 "中国制冷展"由中国制冷学会、中国制冷空调工业协会共同主办。世界各地的制冷空调暖通专业组织都将齐聚"中国制冷展",吸引来自100多个国家和地区的超过六万名专业观众前往参观。 美国TSI公司针对制冷、空调、供暖、通风等领域的测试需要,将于会上展示多种检测技术和设备,可适用于室内外的不同应用和监测需求。TSI推出了无线AIRPRO™ 仪器平台,AirPro系列仪器是无线风速和压力测量应用性解决方案,能够为用户提供更方便的测量结果获取方式、无以伦比的精度、无缝的多数据报告以及用户友好的操作界面,让用户能够实现快速、直观的操作,极大地提高生产效率。首先发布的仪器包括风速计 (AP500)和各种即插即用的探头选项,以及微压计 (AP800) 。这些设备能够和TSI开发的AirPro Mobile应用软件以及用户自定义特性组件配套使用,满足您的需求。AirPro Mobile应用软件支持Android和iOS操作系统。 AirPro Mobile高级版和专业版特性组件能够记录测量计算结果和数据,避免了手动操作和人工编写文档。您能够很方便地分享可导出到报告中的测量结果、图片和评论,节约了您在工作现场的时间。此解决方案将可靠的仪器和日常使用的基于Android和iOS的智能设备通过无线通讯结合起来,能够极大地提高您的测量效率,并为您提供了更好的报告功能。这个全新的解决方案将为您提供许可证和探头管理、延长维修合同和高级探头可替换组件,让您享受到无需停机的高级维修服务。尽管AirPro测量探头专为无线应用设计,此探头具有TSI一贯的高可靠性、高精确性和高整体性能。随着雾霾天气的日趋严重以及人们对室内空气质量的不断关注,使用完全适合国标检测标准的TSI公司的DUSTTRAK系列便携式PM2.5快速检测仪,可以快速检测颗粒物的质量浓度。TSI 公司的ACCUBALANCE 数字式风量罩可测定流经各种风口(散流器、百叶等)的风量。体积轻巧,仅重3.4Kg,便于携带使用。把风量罩安放在风口上,就可由数字显示屏直接读出进风或排风量。TSI公司同时还将展出一款强大的完全适合国标的检测标准的手持式多功能通风测试仪器VELOCICALC 9565 型系列产品,以及AirAssure™ 室内PM2.5在线监测仪,可提供实时的、精确可靠的商业建筑室内 PM2.5 粉尘浓度的监测。敬请大家届时光临美国TSI集团中国公司在中国国际展览中心新馆 E2馆G28 的展位! 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。在节能舒适领域,TSI通风测试仪器用于测量包括风速、风量、温度、湿度和压差等重要的通风参数,以提高室内环境的舒适度和安全性。并对室内空气质量中评估温度、湿度、室外空气百分比、二氧化碳、一氧化碳和空气中颗粒物等参数进行测量,这些参数对于监测居住人员热舒适度和确保健康的室内环境非常重要。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • UL Solutions为四方光电颁发基于UL60335-2-40标准的亚太地区首张A2L冷媒传感器
    2024年6月14日,UL Solutions为四方光电股份有限公司颁发基于UL60335-2-40标准的亚太地区首张新型环保冷媒泄漏监测传感器的认证证书。授证仪式在四方光电技术中心报告厅举行,UL Solutions建筑环境安全科技事业部全球总经理 Karine Johnfroe、亚洲区总经理许洁、四方光电董事长熊友辉博士等双方代表20余人参加了本次活动。仪式前,UL Solutions建筑环境安全科技事业部全球副总裁兼总经理Karine Johnfroe通过远程视频连线向四方光电表达了祝贺。亚洲区总经理许洁表示:“四方光电作为亚太地区首个获得A2L冷媒传感器UL认证的企业,这一荣誉不仅是对四方光电在技术创新方面卓越表现的高度肯定,更是对其在环保和可持续发展领域贡献的认可。在全球气候变化日益严峻的今天,如何减少温室气体排放、推动绿色技术的发展,已经成为我们共同面临的重要课题。四方光电以实际行动践行了这一使命,通过不断的技术研发和创新,成功推出了A2L冷媒传感器这一具有划时代意义的产品。四方光电的A2L冷媒泄漏监测传感器能够保证A2L冷媒的安全高效使用,对推动制冷行业的绿色发展具有重要意义“。他强调四方光电的这一成就不仅为中国制冷行业树立了新的标杆,更为全球应对气候变化、实现可持续发展提供了宝贵的经验和范例。 四方光电董事长熊友辉博士发表讲话,他表示:“UL Solutions作为全球著名的的独立认证机构,一直致力于通过科学和创新推动世界向更安全、可持续的方向发展。四方光电取得认证不仅要感谢四方光电A2L冷媒传感器研究和产业化团队的创新开发和精诚合作,更感谢UL Solutions的认证测试团队在过去几个月里专业而高效的工作。六年前,四方光电就开始从事A2L冷媒泄露传感器的研究开发,并进行过NDIR红外、热导、超声波等各种原理的可行性研究,最终选择NDIR 技术作为首要研究内容,开发了AM4203RM-R454B/ R454C等产品。这次A2L冷媒泄漏监测传感UL认证证书的获得,体现了四方光电的技术创新能力和高质量产品的产业化能力,这也将大大加快四方光电A2L冷媒泄露传感器的市场化和国际化进程。传感器作为工业装置供应链中重要部件,其质量和安全性至关重要,四方光电正在努力打造传感器领域的国际品牌,非常需要UL Solutions的支持和协助,我们将一如既往地与UL Solutions保持紧密合作,把四方光电更多的智能传感器产品推向世界。” 随后,UL Solutions 建筑环境安全科技事业部亚洲区总经理许洁为四方光电颁发了A2L冷媒传感器UL60335-2-40及CSAC22.2 N0.60335-2-40认证证书。 此次证书的获得不仅彰显了四方光电卓越的技术实力和创新能力,也进一步巩固了四方光电在冷媒监测传感器产品领域的地位。未来,双方将继续携手推动全球绿色环保事业的发展,为全球应对气候变化、实现可持续发展做出贡献!
  • 如何精确控制冷媒充注,提高制冷系统能效比
    随着全球对环保和能效的日益重视,制冷系统的能效和稳定性成为了关注的焦点。在这一背景下,电子冷媒压力表能够提供精确的压力和温度数据,成为了优化制冷系统运行、提高能效以及减少能源浪费的关键工具。01传统机械冷媒表性能单一精度差在制冷系统的安装以及维护过程中,操作人员需要观察蒸发压力、冷凝压力、过热度、过冷度等系统的关键运行参数,来判断系统是否存在潜在故障源,从而快速准确地定位并修补系统。冷媒压力表,也称制冷剂压力表或加氟表,主要用于检测系统冷媒不同阶段的压力值,方便工作人员掌握设备的运行状况,在空调热泵调试维修过程中被广泛应用。传统机械冷媒表虽然能够满足基本的测量需求,但在精度、功能、操作便捷性等方面存在明显的不足。它们容易受到环境温度和压力变化的影响,导致测量结果不准确。此外,传统机械表通常仅限于测量压力,无法同时测量温度等其他重要参数。随着制冷技术的不断进步,电子数显冷媒压力表逐渐崭露头角。华盛昌DT-8921专业级电子冷媒压力表,就是一款高精度、高量程、多用途的专业型冷媒测试数字压力表,用户可以比以往更快、更可靠和更灵活地处理制冷系统和热泵上的所有测量。02多功能冷媒表让制冷更高效更环保华盛昌DT-8921专业级电子冷媒压力表在空调冷媒循环系统的检测和维护方面表现出色,支持压力测试、温度测试、真空负压测量,覆盖了40种常用制冷剂特性参数测量。1压力测试压力测量可用于检查制冷系统的泄露密封性。使用传统冷媒表测量气密性,测量数值往往会受到环境温度影响而变得巨大,测量人员只能选择特定环境条件或者花费很长的测量时间。DT-8921电子冷媒压力表测量范围广泛,高压承压达到800PSI,量程从0至500PSI,测量精度为±1PSI,分辨率达到0.1PSI。有两个带温度补偿的高精度宽量程电子压力传感器,可以有效降低温度对测量的影响,快速、准确地测量高低压。2真空负压测量抽真空是空调安装维护过程中的重要步骤,它主要是为了清除系统中的不凝性气体以及水分。很多制冷系统在运行一段时间之后,发现压力偏高,电流偏大,这些可能是系统抽真空没有彻底的原因。DT-8921电子冷媒压力表在测量常规压力的同时也能测量制冷系统的真空负压。同时还能从屏幕上看到水分蒸发温度、环境温度以及它们的差值,实现制冷系统及热泵抽真空过程中精确可靠的测量。3温度测量压缩机长时间过热不仅会降低电机绝缘性能和可靠性,还会降低润滑能力,导致润滑油碳化和酸解。DT-8921电子冷媒压力表温度测量范围-40~204°,精度±1℃,分辨率0.1℃,有两个外接钳式温度探头接口,将探头夹在压缩机的进气口和排气口处,可以快速检测两处温度差,判断压缩机是否过热。可以同时连接3个温度探头,同时测量周围环境温度。华盛昌DT-8921专业级电子冷媒压力表还具备自动检测蒸发和冷凝温度,自动热泵模式无需切换制冷剂软管等功能。适用于各种制冷系统,如HVAC空调系统、汽车空调系统、热泵等,能够满足抽真空、冷媒填充、保压测试等维护工作的需求。在全球追求环保和能效的时代背景下,华盛昌DT-8921专业级电子冷媒压力表不仅是制冷系统和热泵维护的得力助手,更是推动行业进步的重要力量。选择华盛昌,就是选择专业、高效与可靠的测量解决方案,为制冷行业的可持续发展注入新的活力。
  • UL Solutions为四方光电颁发基于UL 60335-2-40标准的亚太地区首张A2L冷媒传感器认证证书
    2024年6月14日,UL Solutions为四方光电股份有限公司颁发基于UL 60335-2-40标准的亚太地区首张新型环保冷媒泄漏监测传感器的认证证书。授证仪式在四方光电技术中心报告厅举行,UL Solutions建筑环境安全科技事业部全球总经理 Karine Johnfroe、亚洲区总经理许洁、四方光电董事长熊友辉博士等双方代表20余人参加了本次活动。仪式前,UL Solutions建筑环境安全科技事业部全球副总裁兼总经理Karine Johnfroe通过远程视频连线表达了祝贺。UL Solutions建筑环境安全科技事业部亚洲区总经理许洁表示:四方光电作为亚太地区首个获得A2L冷媒传感器UL认证的企业,这一荣誉不仅是对四方光电在技术创新方面卓越表现的高度肯定,更是对其在环保和可持续发展领域贡献的认可。在全球气候变化日益严峻的今天,如何减少温室气体排放、推动绿色技术的发展,已经成为我们共同面临的重要课题。四方光电以实际行动践行了这一使命,通过不断的技术研发和创新,成功推出了A2L冷媒传感器这一具有划时代意义的产品。四方光电的A2L冷媒泄漏监测传感器能够保证A2L冷媒的安全高效使用,对推动制冷行业的绿色发展具有重要意义。他强调四方光电的这一成就不仅为中国制冷行业树立了新的标杆,更为全球应对气候变化、实现可持续发展提供了宝贵的经验和范例。四方光电董事长熊友辉博士发表讲话,他表示:UL Solutions作为全球著名的独立认证机构,一直致力于通过科学和创新推动世界向更安全、可持续的方向发展。四方光电取得认证不仅要感谢四方光电A2L冷媒传感器研究和产业化团队的创新开发和精诚合作,更感谢UL Solutions的认证测试团队在过去几个月里专业而高效的工作。六年前,公司就开始从事A2L冷媒泄漏传感器的研究开发,并进行过NDIR红外 、热导 、超声波 等各种原理的可行性研究,最终选择NDIR技术作为首要研究内容,开发了AM4203RM-R454B/ R454C等产品。这次A2L冷媒泄漏监测传感器UL认证证书的获得,体现了四方光电的技术创新能力和高质量产品的产业化能力,这也将大大加快四方光电A2L冷媒泄漏传感器的市场化和国际化进程。传感器作为工业装置供应链中重要部件,其质量和安全性至关重要,四方光电正在努力打造传感器领域的国际品牌,非常需要UL Solutions的支持和协助,我们将一如既往地与UL Solutions保持紧密合作,把四方光电更多的智能传感器产品推向世界。随后,UL Solutions 建筑环境安全科技事业部亚洲区总经理许洁为四方光电董事长熊友辉博士颁发了A2L冷媒传感器UL 60335-2-40及CSA C22.2 No.60335-2-40认证证书。此次证书的获得不仅彰显了四方光电卓越的技术实力和创新能力,也进一步巩固了四方光电在冷媒监测传感器产品领域的地位。未来,双方将继续携手推动全球绿色环保事业的发展,为全球应对气候变化、实现可持续发展做出贡献!
  • Science封面:AI与冷冻电镜揭示「原子级」NPC结构,生命科学突破
    近日,《Science》杂志以封面专题的形式发表了 5 篇论文,共同展现了通过 AI 技术来揭示人类和非洲爪蟾的核孔复合体(NPC)结构。开始正文之前,我们先来看一张图片,在下图中,很明显可以看出,图的右半部分所代表的信息更加丰富,结构也更清晰。而左半部分 2016 年的图,则结构较为单一,代表的信息比较少:其实上面展示的是核孔复合体(NPC)图像。核孔复合体,由约 1000 个蛋白质亚基组成,担负着真核生物细胞核与细胞质之间繁忙的运输大分子的任务,也是其连接胞质和细胞核的唯一双向通道。除了协调运输外,NPC 还组织必要的转录、mRNA 成熟、剪接体和核糖体组装等重要生命活动。NPC 强大的作用,已然成为疾病突变和宿主 - 病原体相互作用的关键点。得益于低分辨率下全核孔结构以及高分辨率下核孔组成结构技术的发展,细胞核孔受到越来越多的关注。然而,利用这些信息正确组装 30 多种不同蛋白质副本,并构建高分辨率的三维结构,一直是一项艰巨的挑战。近日,《Science》杂志以封面专题形式发表了 5 篇论文,其中 3 篇论文共同揭开了人类核孔复合体的近原子分辨率冷冻电镜结构,另外两项研究通过非洲爪蟾呈现了脊椎动物核孔复合体的单颗粒冷冻电镜图像。这篇封面文章将多项研究成果拼接在一起,形成的人类 NPC 图像接近原子级。论文地址:https://www.science.org/doi/pdf/10.1126/science.add2210这一研究成果建立在多项研究之上,包括数十年的生物化学重建、X 射线晶体学、质谱学、诱变和细胞生物学等。使用大幅度改进的冷冻电子断层扫描重建人类 NPC,并用人工智能技术精确建模组件。还有其他研究提高了单粒子冷冻电镜的分辨率,使脊椎动物 NPC 的二级结构元素和残基水平细节的可视化成为可能。分子组合丰富了我们对脊椎动物和人类 NPC 构建的理解——从旧的核支架到将各个部分连接在一起的连接蛋白,以及从核膜锚定到中央运输通道上方的细胞质丝。这里报告的研究成果,代表了实验结构生物学与人工智能的合作共赢,是人类探索生物微观世界的又一次胜利。另外,也证明了正在进行的分辨率革命,在我们寻求了解大分子组件的构造和设计原理方面,具有不可替代地作用。下图为 2022 年人类核孔复合体的横截面视图,新解析的成分包括对称核心(橙色)和细胞质细丝(黄色):五篇研究论文论文 1:《Architecture of the cytoplasmic face of the nuclear pore》论文地址:https://www.science.org/doi/10.1126/science.abm9129核孔复合体(NPC)是核质转运的唯一双向通道。尽管最近在阐明 NPC 对称核心结构方面取得了一些进展,但对于 mRNA 输出和核孔蛋白相关疾病的热点来说,不对称分布的细胞质表面仍然难以捉摸。加州理工学院等机构的研究者报告了通过结合生化重建、晶体结构测定、冷冻电子断层扫描重建和生理验证而获得的人类细胞质面的复合结构。虽然物种特异性基序在中央转运通道上方锚定了一个进化上保守、约 540 千道尔顿(kilodalton)异六聚体细胞质细丝核孔蛋白复合体,但 NUP358 五聚体束的附着取决于外套核孔蛋白复合体的双环排列。他们揭示的复合结构及其预测能力为阐明 mRNA 输出和核孔蛋白疾病的分子基提供了丰富的基础。人类 NPC 的细胞质面论文 2:《Architecture of the linker-scaffold in the nuclear pore》论文地址:https://www.science.org/doi/10.1126/science.abm9798尽管人们已经可以确定 NPC 对称核心中结构化支架核孔蛋白的排列,但它们通过多价非结构化接头核孔蛋白的内聚性仍然难以捉摸。通过结合生化重建、高分辨率结构测定、冷冻电子断层扫描重建和生理验证,加州理工学院的研究者阐明了进化上保守的接头支架结构,产生了人类 NPC 的约 64 兆道尔顿(megadalton)对称的近原子复合结构核。虽然接头通常起刚性作用,但 NPC 的接头支架为其中央转运通道的可逆收缩和扩张以及横向通道的出现提供了必要的可塑性和稳健性。他们的结果大大推进了 NPC 对称核心的结构表征,为未来的功能研究打下了基础。人类 NPC 对称核心的接头支架结构。论文 3:《AI-based structure prediction empowers integrative structural analysis of human nuclear pores》论文地址:https://www.science.org/doi/10.1126/science.abm9506虽然核孔复合体(NPC)介导核质转运,它们错综复杂的 120 兆道尔顿架构仍未完全得到了解。马克斯 普朗克生物物理研究所等机构的研究者报告了具有显式膜和多构象状态的人类 NPC 支架的 70 兆道尔顿模型。他们将基于 AI 的结构预测与原位和细胞冷冻电子断层扫描、综合建模相结合。结果表明,接头核孔蛋白在亚复合体内和亚复合体之间组织支架,以建立高阶结构。微秒长的分子动力学模拟表明,支架不需要稳定内外核膜融合,而是扩大中心孔。他们举例阐释了如何将基于 AI 的建模与原位结构生物学相结合,以了解跨空间组织级别的亚细胞结构。人类 NPC 支架架构的 70 兆道尔顿模型。论文 4:《Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex》论文地址:https://www.science.org/doi/10.1126/science.abl8280西湖大学和清华大学以 3.7-4.7 埃(angstrom)的分辨率对非洲爪蟾 NPC 的细胞质环亚基进行单粒子冷冻电子显微镜重建。其中,Nup358 的氨基末端域的结构被解析为 3.0 埃,这有助于识别每个细胞质环亚基中的五个 Nup358 分子。研究者最终的细胞质环亚基模型包括五个 Nup358、两个 Nup205 和两个 Nup93 分子,以及两个先前表征的 Y 复合体。Nup160 的羧基末端片段充当每个 Y 复合体顶点的组织中心。结构分析揭示了 Nup93、Nup205 和 Nup358 如何促进和加强主要由两层 Y 复合体形成的细胞质环支架的组装。非洲爪蟾 NPC 双层细胞质环的 Cryo-EM 结构。论文 5:《Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold》论文地址:https://www.science.org/doi/10.1126/science.abm9326哈佛医学院等机构的研究者使用单粒子冷冻电子显微镜和 AlphaFold 预测,从非洲爪蟾卵母细胞中确定了近乎完整的 NPC 细胞质环结构。具体地,他们使用 AlphaFold 预测核孔蛋白的结构,并使用突出的二级结构密度作为指导来适应中等分辨率的地图。此外,某些分子相互作用通过使用 AlphaFold 的复杂预测进一步得到建立或确认。研究者确定了五份 Nup358 的结合模式,它是最大的 NPC 亚基,具有用于转运的 Phe-Gly 重复序列。他们预测 Nup358 包含一个卷曲螺旋结构域,可以提供活性以帮助它在一定条件下作为 NPC 形成的成核中心。非洲爪蟾 NPC 细胞质环的 Cryo-EM 结构。
  • 冷冻电镜成果揭示抗偏头痛药物选择性作用机制
    偏头痛是一种影响极为广泛的神经系统疾病,在全球范围内波及超过10亿人口,造成了巨大的社会经济负担。据统计,欧洲每年因偏头痛造成超过270亿欧元的经济损失,在中国约每11个成人中就有1人遭受偏头痛的困扰。此外,偏头痛还会伴随包括抑郁症、焦虑症、癫痫、肥胖和其它慢性疼痛等一系列病症,给患者及其家庭带来沉重负担。   5-羟色胺(5-HT)家族受体是偏头痛、抑郁症、精神分裂症等中枢神经疾病的重要靶点。其中,5-HT1B、5-HT1D和5-HT1F三种亚型与偏头痛的治疗密切相关。多年以来,靶向5-HT1B/1D的激动剂曲普坦类药物被广泛用于偏头痛的治疗。然而,该类药物的血管收缩特性给患有冠心病、脑血管疾病或高血压病史的患者带来了一定的治疗风险。2019年,美国FDA批准了一种高选择性靶向5-HT1F的新型急性偏头痛治疗药物——拉米替坦(Lasmiditan)。拉米替坦能有效地避免曲普坦类药物在心血管方面的副作用,然而其选择性靶向5-HT1F受体的机理尚不明确。5-HT1F作为极具前景的抗偏头痛靶点,对其结构、功能以及选择性药物的作用机制的研究具有重要意义。   近日,中国科学院上海药物研究所徐华强课题组利用冷冻电镜技术,首次解析了5-HT1F受体结合G蛋白以及抗偏头痛药物拉米替坦的复合物结构,揭示了拉米替坦选择性结合5-HT1F受体的结构基础。   冷冻电镜技术,也叫冷冻电子显微镜技术,是在低温下使用透射电子显微镜观察样品的显微技术,即把样品冻起来并保持低温放进显微镜里面,用高度相干的电子作为光源从上面照下来,透过样品和附近的冰层,受到散射。研究人员再利用探测器和透镜系统把散射信号成像记录下来,最后进行信号处理,得到样品的结构。   冷冻电镜技术作为一种重要的结构生物学研究方法,它与X射线晶体学、核磁共振一起构成了高分辨率结构生物学研究的基础。这项技术获得了2017年的诺贝尔化学奖。获奖理由是“开发出冷冻电子显微镜技术(也称为低温电子显微镜技术)用于确定溶液中的生物分子的高分辨率结构”,简化了生物细胞的成像过程,提高了成像质量。   徐华强课题组的成果以“Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-HT1F–G protein complex”为题,于2021年7月8日在《细胞研究》(Cell Research)上在线发表。 5-HT1F属于5-HT1亚家族成员,但在同源性和配体激活效应上与该亚家族的其它亚型差别相对较大,这也使得5-HT1F成为具有潜力的选择性抗偏头痛靶点。研究团队经过纯化、冷冻制样和数据处理等条件摸索,突破了5-HT1F受体-G蛋白复合物表达量低、复合物组装不稳定的技术瓶颈,最终获得高质量的复合物结构。5-HT1F受体的胞外区附近结构相对其他5-HT亚型受体具有显著的构象变化,这也是药物拉米替坦能够高选择性结合5-HT1F受体的结构基础。a-b. 5-HT1F-Gi-拉米替坦复合物的电镜密度图(a)和原子模型(b); c. 拉米替坦的结合口袋示意图; d. 拉米替坦与5-HT1F受体的相互作用模式图; e. G蛋白招募实验显示拉米替坦对5-HT1F受体具有高度选择性。 徐华强课题组长期致力于在5-羟色胺家族受体的结构与功能研究,并取得了一系列系统性的重要成果。该研究团队于2013年在Science上发表首个5-HT1B受体的晶体结构1;于2018年在Cell Discovery上发表了首个拮抗状态的5-HT1B受体结构2;于2021年3月在Nature上发表3个不同亚型的5-HT受体与G蛋白复合物的冷冻电镜结构,并首次揭示了5-HT受体的脂质调控、组成型激活以及与抗精神分裂症、抗抑郁药物阿立哌唑的作用机制3。该团队在5-HT1F受体和抗偏头痛药物的作用机制上取得的成果,进一步实现了5-HT受体系统研究领域的重要突破。   上海药物所和上海科技大学联合培养博士生黄思婕、上海药物所博士生徐沛雨和研究助理谭阳霞为文章的共同第一作者;上海药物所徐华强研究员和蒋轶研究员为文章的共同通讯作者。该研究获得了国家重点研发计划、中国科学院战略性先导科技专项、上海市市级科技重大专项、国家自然科学基金和国家科技重大专项的资助。
  • 南科大冷冻电镜中心正式揭牌,将成为中国规模最大的冷冻电镜设施中心
    p style="text-indent: 2em text-align: justify "2018年11月19日,南方科技大学冷冻电镜中心揭牌仪式在南科大生物楼举行。2017年诺贝尔化学奖获得者、冷冻电镜技术开创者之一Richard Hendersen,深圳市发改委副主任蔡羽,南方科技大学校长陈十一,中国科学院院士隋森芳等出席仪式。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/b83644de-356d-4e5f-9341-72a1a5e4725a.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em text-align: center "揭牌仪式现场/pp style="text-indent: 2em text-align: justify "南科大冷冻电镜中心是深圳市政府出资、我校牵头建设的重大基础科学设施平台,旨在支撑深圳市、粤港澳大湾区及中国南方在生物医药、精准医学、新能源新材料方面的科学研究及产业升级。南科大冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。经过一年多的前期准备工作,目前项目一期的2台300kv冷冻电子显微镜已经完成安装调试,投入使用。冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/7a1b61e0-a88d-4542-9e00-fb3cdc96a122.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em text-align: center "陈十一致辞/pp style="text-indent: 2em text-align: justify "陈十一在仪式上致辞,他代表南科大对与会嘉宾的到来表示欢迎,对深圳市委市政府对南方科技大学冷冻电镜中心的支持表示感谢,同时也对冷冻电镜中心负责人王培毅和工作人员前期的辛勤工作表示肯定。他表示,未来几年,冷冻电镜中心将致力于把基础知识和药物开发结合起来,在深圳的工业发展中扮演重要角色。南科大将以此为契机,秉承和发扬“敢闯敢试、求真务实、改革创新、追求卓越”的创校精神,为深圳市社会和经济的发展继续贡献力量。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/17b55b90-20aa-4b77-85b2-0fddf9d79466.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em text-align: center "Richard Henderson致辞/pp style="text-indent: 2em text-align: justify "Richard Henderson在致辞中对南科大冷冻电镜中心的落成表示祝贺,并表示为这个优秀的冷冻电镜中心的建立感到由衷高兴。他指出,南科大冷冻电镜中心落成之后,将会成为全球最大的三个冷冻电镜中心之一,另外两个分别在美国和英国。目前,世界上大概有100个类似的研究机构,南科大冷冻电镜中心落成之后,其研究能力将会达到全球的前5%,对相关科研领域的研究产生更大的影响。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/524b4e7f-e049-43a5-8cb4-e08283ee6ed4.jpg" title="4.jpg" alt="4.jpg"//pp style="text-indent: 2em text-align: center "蔡羽致辞/pp style="text-indent: 2em text-align: justify "蔡羽表示,南科大冷冻电镜中心是生命科学、新材料、新能源领域基础性、关键性的重大科研设施,填补了深圳市、广东省、中国南方地区在该领域的空白,为我市及地区相关领域内的科学研究及产业升级转型提供了支撑平台,希望冷冻电镜中心为深圳市、粤港澳大湾区的产业升级及进一步经济社会全面发展提供新的动力源泉。/pp style="text-indent: 2em text-align: justify "随后,冷冻电镜中心负责人王培毅、Richard Henderson、蔡羽、隋森芳共同为南方科技大学冷冻电镜中心揭牌。/pp style="text-indent: 2em text-align: justify "Thermofisher Scientific亚太区材料与科学事业部总经理Marc Peeters、Thermofisher Scientific公司代表Jonathan Jing、中国航天科工深圳航天工业技术研究院董事长崔玉平、中国国际金融集团董事总经理陈十游也在仪式上致辞。/pp style="text-indent: 2em text-align: justify "南方科技大学第二附属医院、深圳市第三人民医院院长刘磊,加州大学洛杉矶分校教授周正洪,加州大学旧金山分校教授程亦凡,牛津大学教授章佩君等参加了揭牌仪式。/pp style="text-indent: 2em text-align: left "冷冻电镜发展国际研讨会也于同日在南科大图书馆111报告厅举行。/p
  • 南方科技大学冷冻电镜实验室将揭牌 拟安装10台冷冻电镜
    p  在深圳市的大力支持下,南方科技大学冷冻电镜实验室即将在南科大校园内落成,并投入使用。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/1.gif" height="282" width="500"//centerp/pp  2017年10月4日三位科学家因为开发并发展了冷冻电镜技术而获得诺贝尔化学奖。南科大在学校发展的战略布局上充分展现了前瞻性,早在2017年6月 10日,冷冻电镜项目就已正式立项,并邀请我国目前最优秀的青年结构生物学家之一杨茂君教授主持。“栽下一棵梧桐树,凤凰就来了”,南科大冷冻电镜实验室主任王培毅教授这样形容实验室对海内外人才强大的吸附力。自项目启动以来,实验室已吸引了来自海内外诸多青年才俊和重量级专家学者的加入。其中包括行业内唯一的中科院院士、我国最早使用冷冻电镜开展生物大分子研究工作的隋森芳院士。今年7月,2017年诺贝尔化学奖的三位得主之一、美国哥伦比亚大学 Joachim Frank教授将应我校陈十一校长邀请到访南科大,探讨开展进一步合作。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C2%201.gif" height="282" width="500"//centerp/pp  南方科技大学冷冻电镜实验室拟于今年年底正式挂牌成立,届时将同时举办国际研讨会,几乎所有在冷冻电镜方面的国际著名科学家都将出席,包括另一位2017年诺贝尔化学奖得主、剑桥大学MRC-LMB的Richard Henderson教授。/pp  冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。图像是我们理解一切事物的关键所在,将那些人眼不可见的物体成功地可视化,通常是科研产生突破的基础。 长久以来,人们认为电子显微镜只能用于非活性生物样品的成像,因为电子显微镜的高强度电子束会严重损伤生物样品,是冷冻电子显微技术改变了这一切。现在,研究人员可以将具有活性的生物大分子快速冷冻到液氮温度(-196度),并在此温度下保持和转移,使样品最大限度保持原来形态。并将那些以前无法看见的生物变化的动态过程实现可视化——这对我们从原子尺度了解生命过程,以及研发药物带来决定性的影响。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C3%201.gif" height="282" width="500"//centerp/pp  南方科技大学冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。目前,两台300千伏冷冻电镜已完成安装,进入电镜性能综合调试阶段,预计将于8月开始试运行。一台120千伏电镜将于7月上旬投入使用。据悉,有关冷冻电镜的配置,我校前期作了大量调研工作,包括与实验室科学顾问委员会成员Richard Henderson教授进行了深入探讨,以保证每台冷冻电镜除了拥有一般共性之外,在配置上同时各具不同特性,以适应与支持南科大冷冻电镜实验室在接下来即将开展的一系列世界前沿性基础及应用研究。此外,实验室将积极开展多学科交叉研究,力争在冷冻电镜的软、硬件技术,设备和应用方面取得新的突破,克服冷冻电镜目前操作复杂、控制程序繁琐及应用成本较高的缺陷,实现冷冻电镜的常规应用。并与学校已经建成的X射线晶体学平台、生物质谱蛋白质组学分析平台形成互补,开展国际上最前沿的蛋白质科学研究,为结构生物学、细胞生物学、神经科学,化学、材料科学等领域搭建交叉学科平台。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C4%201.gif" height="282" width="500"//centerp/pp  地处粤港澳大湾区核心的深圳是一座新兴科技产业云集的城市,也被人们誉为中国最具有硅谷气质的城市。今年5月26日在深圳举行的“未来论坛X深圳峰会” 上,我校校长陈十一曾指出:和硅谷相比,深圳欠缺的还是基础研究能力,也包括应用基础研究,产业和研究的对接。南方科技大学建设的世界一流冷冻电镜实验室,旨在通过利用这一国际最先进的科学技术之一,大力发展基础科学研究,聚焦重大疾病诊断、新药开发、精准医疗、功能材料研发和基础学科建设等领域,促进深圳新材料、医疗卫生、健康产业和高等教育的发展。同时积极服务于国家战略需求,造福14亿中国人。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C5%201.gif" height="282" width="500"//centerp/pp  在新一轮科技革命和产业变革中,中国将创新作为引领发展的第一动力,把科技创新摆在国家发展全局的核心地位,大力实施创新驱动发展战略。在国家重大需求的牵引和顶层设计的指导下,利用冷冻电镜的技术优势,在核心技术和关键领域实现重大突破,对产业升级、经济转型发展产生巨大推力,正是南方科技大学冷冻电镜实验室建立的初衷和目标。/pp style="text-align: right "  文字:任亦/pp style="text-align: right "  视频制作:李艺松/pp style="text-align: right "  摄像:蔡秉伦 黄立斌/p
  • SP第五届冷冻干燥技术线下研讨会圆满结束!
    6月10-14日,德祥科技有限公司于北京,上海,广州三地进行了三场重量级的研讨会。会议上各大药企研发大拿与SP Scientific公司的技术骨干进行了深入沟通。此次会议就冻干产品关键参数的获取以及如何快速智能优化冻干工艺、晶核控制技术以及如何影响冻干工艺的开发和*的产品质量、晶核控制技术如何应用于生产等主题进行了详细的讲解,并在现场就客户提出的各种问题进行了深入的探讨和交流,现场客户都受益匪浅。 会议上,专家介绍了新全智能工艺摸索Smart与传统冻干工艺摸索的区别。传统冻干工艺摸索历来是“试错配方”驱动的审判过程,一个产品的传统冻干工艺的优化基本都需要至少运行4-8批次的样品,花费至少超过3-4个月的时间,甚至超过半年一年的也有很多,*得出的工艺还不一定是最优的。在不断的试错摸索中浪费了大量的人力、物力和财力才得出一条较合适的冻干工艺,而这个时间成本对于我们药品上市来说是至关重要的。新全智能工艺摸索Smart技术仅需简单的运行一到两个批次,系统即可自动调整得到最优化的冻干工艺。大量节省了研发工艺的时间,且能获得整个冻干过程中的各种关键的过程参数和产品参数,如:样品的升华阻力、冰层表面温度、冰层厚度、升华速率、产品底部温度等,为过程分析提供了强有力的数据,为工艺优化提供了科学的理论依据。研究表明,主干燥阶段样品每升高1℃,冻干时间节约13%,Smart技术能让主干燥阶段的样品升高到最合适的温度,以大量节省主干燥的时间。此次会议对药企的研发部门和生产部门都有着非常大的帮助。现在越来越多客户意识到,冻干出的产品质量和外观与预冻过程息息相关。传统的预冻过程导致明显的过冷现象产生,过冷程度高成核温度低会形成较小冰晶,较小的气体通道,导致升化阻力变大,干燥时间变长。且在此过程中,不同样品间的冷冻速度、成核温度及成核时间都是不一致的,这会导致升华速率也不一致,从而使冻干后的样品无论是形态还是品质都具有潜在的不均匀性。为了解决这一问题,SP的专家介绍了目前最成熟且最先进的晶核控制技术:Controlyo瞬间成核技术,该技术通过加压减压的原理实现了所有样品瓶在同一时间同一温度同时瞬间成核,保证了样品的匀一性。利用晶核控制技术冻干后的样品,可以大大减少瓶破损率,改善产品外观,提高生物样品稳定性,减少复溶时间,提高瓶间样品的均一性,与FDA倡导的QbD原则一致,且非常易于放大到生产。另外,此技术利用在较高的温度下成核,增大孔隙,降低产品升华阻力,使主干燥的时间大大减少,可大大提高生产产能。成核温度每增加1度,干燥时间可减少3%。在冻干领域享有盛誉的Pikal教授曾就此发表过一篇文章:“Control and characterization of the degree of super-cooling can provide a solution to what is perhaps the biggest freeze drying scale-up problem” (1)过冷度的控制和表征能够为冻干放大过程中可能存在的*问题提供一种解决方案。6月15日周六在华南理工大学医学院,部分客户还有幸参观并体验了学院中的Lyostar高端智能中试研发型冻干机,了解仪器的构造和软件的设计,并亲手Hands on尖端技术Smart和Controlyo, ,实时感受到了瞬间结晶的震撼和全智能工艺摸索技术的强大,并现场就各种工艺问题进行了探讨。 目前许多生物制剂中API(活性药物成分)的性质提升了对过程控制和具备某些特定的能力的需要,为了满足*产品质量和生产的需要,我们提供完整的解决方案:SMART技术-主干燥的智能优化工具,可节省75%工艺研发时间。Controlyo技术-瞬时结晶技术,能够让您的预冻过程不再是随机事件。SMART™ 、ControLyo™ 的结合,使漫长复杂的工艺摸索变得简单快捷,工艺环节更加科学!二者的结合创造了冻干工艺研究领域的一个最高峰。我们的使命是:Freeze Drying Control!提供最*的仪器和最先进的技术,让客户非常自信的在最短的时间内用最高的效率,拿最科学完整的数据,从配方筛选到新产品临床和上市!更多产品和应用详情咨询,请拨打400电话,联系德祥的专业技术团队。
  • TSI公司将参加第二十七届中国制冷展
    美国TSI公司将参加于2016年4月7日-9日在中国国际展览中心新馆举办的“国际制冷、空调、供暖、通风及食品冷冻加工展览会”(简称中国制冷展)。 “中国制冷展”由中国国际贸易促进委员会北京市分会、中国制冷学会、中国制冷空调工业协会共同主办。世界各地的制冷空调暖通专业组织都将齐聚“中国制冷展”,吸引来自100多个国家和地区的超过五万名专业观众前往参观。 美国TSI公司针对制冷、空调、供暖、通风等领域的测试需要,将于会上展示多种检测技术和设备,可适用于室内外的不同应用和监测需求。 随着雾霾天气的日趋严重以及人们对室内空气质量的不断关注,使用完全适合国标检测标准的TSI公司的DUSTTRAK系列便携式PM2.5快速检测仪,可以快速检测颗粒物的质量浓度。 TSI 公司的ACCUBALANCE 数字式风量罩可测定流经各种风口(散流器、百叶等)的风量。体积轻巧,仅重3.4Kg,便于携带使用。把风量罩安放在风口上,就可由数字显示屏直接读出进风或排风量。 TSI公司同时还将展出一款强大的完全适合国标的检测标准的手持式多功能通风测试仪器VELOCICALC 9565 型系列产品,以及AirAssure? 室内PM2.5在线监测仪,可提供实时的、精确可靠的商业建筑室内 PM2.5 粉尘浓度的监测。 敬请大家届时光临美国TSI集团中国公司在中国国际展览中心新馆W4馆A30的展位! 更多信息,请关注美国TSI公司官方网站: www.tsi.com/cn 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 冷冻电镜结构CRO平台获2亿元B轮融资 加速“千靶万苗®”计划
    以冷冻电镜结构解析为特色的药物发现 CRO 企业 “佰翱得” 宣布完成 2 亿元 B 轮融资。本轮融资由康君资本、君联资本联合领投,夏尔巴投资跟投。本轮融资将用于加码冷冻电镜平台和加速“千靶万苗”计划,促进“新靶标、新机制、新分子实体”的新药研发“源头创新”。无锡佰翱得生物科学有限公司成立于2009年3月6日,法定代表人为缪文彬,注册资本为4412万元,经营范围包括生物试剂、化学试剂、药物中间体、原料药的研发等。该公司大股东为江苏双良科技有限公司,持股48.53%,且后者由缪双大持股20%。该公司有3家对外投资企业,包括佰翱得(无锡)新药开发有限公司等。佰翱得是一家致力于提供高品质创新药物和技术研发服务的高科技企业。主要提供蛋白表达纯化、生物大分子结构解析、体外生物分析、化学研发外包等服务业务,建成了以复杂药靶蛋白制备为核心、以结构生物学为特色的新药发现一体化CRO服务平台。佰翱得专注于新药研发的源头——药物发现阶段,以结构生物学为特色,提供从药靶基因到蛋白到冷冻电镜结构的药物发现一体化特色 CRO 服务。公司拥有超过百人的复杂药靶蛋白制备团队和超过百人的结构生物学团队,同时具备 X-ray 晶体结构解析、冷冻电镜 SPA 单颗粒分析和 MircroED 微晶电子衍射三大技术,百分之九十的客户来自海外,以吴家权博士为首的海归科研团队累计与客户合作发布 SCI 论文 20 余篇。 作为原有结构解析业务的自然延伸,佰翱得于 2017 年筹建冷冻电镜(Cryo-EM)平台,2018 年完成团队搭建,2019 年装备国内工业界首台冷冻电镜,全球首家推出基因到冷冻电镜结构 CRO 服务。2020 年装备包含 Titan Krios 在内的多套高端冷冻电镜。佰翱得冷冻电镜平台累计已为客户完成超过近百个蛋白复合物冷冻电镜结构解析,最高精度达到 2.1Å,完成了以卡马西平为代表的多个参考化合物结构、晶型和手性的 MicroED 结构解析。佰翱得总经理吴家权此前介绍,“在新药开发过程中,只有一小部分药靶蛋白是可以通过晶体结构获得其结构信息,而绝大部分不能结晶的药靶蛋白也许能通过冷冻电镜技术获得结构信息。”在缺乏晶体结构信息的前提下,研发企业往往需要花费大量的时间和精力进行化合物合成,通过大量生物测试以建立化合物的构效关系。一旦通过结构生物学技术获取到晶体结构后,科学家们即可直观地“看到”3D的结构信息,从而可以快速的建立化合物的构效关系,减少化合物合成的数量及时间、从而快速而准确地发现新药。基于结构的药物分子设计成为了“佰翱得”目前在最具竞争力且最具特色的业务。据悉,全球范围内如今也仅有维亚生物、德国Proteros等少数几家具备这种服务能力。佰翱得已为近 200 家国内外客户提供了超过 3000 个新药研发项目服务,积累了丰富的 “Lead generation” 经验。针对新药研发 “源头创新” 的痛点,佰翱得于 2020 年正式启动 “千靶万苗” 计划,将在三年内建立新药研发必需的包括药靶蛋白库、药靶蛋白结构库、苗头化合物库和复合物结构库等多个工具库,为客户源源不断提供新靶点,大幅加速 “源头创新” 新药研发进程。在服务海外客户的同时,佰翱得正在加快拓展国内市场,目前已与多家知名新药研发企业达成战略合作,积极探索不同合作模式,全方位赋能国内新药研发产业。更多冷冻电镜相关报道:2021年全国电子显微学学术年会生命科学与电镜平台专场集锦(上)2021年全国电子显微学学术年会生命科学与电镜平台专场集锦(中)2021年全国电子显微学学术年会生命科学与电镜平台专场集锦(下)
  • 虹科分享 | 结合《药品冷链物流运作规范》浅谈如何进行药品供应链监测
    2021年11月26日,国家市场监督管理总局发布了修订的《药品冷链物流运作规范》(标准号为GB/T28842-2021),适用于冷藏药品在生产与流通过程中的物流运作管理,进一步完善冷藏药品冷链监管长效机制。新国家标准的发布实施,标志着冷链物流行业的发展更加规范化、具体化。由于药品的特殊性,医药冷链物流技术的要求比较高。《药品冷链物流运作规范》的修订能够提高药品冷链物流运作的物流服务水平、规范企业操作,降低药品冷链物流环节的质量风险,促进药品冷链物流行业的转型升级。以下主要是对《药品冷链物流运作规范》(标准号为GB/T28842-2021)中关于医药冷链中温度和温湿度要求的详细解读。 “本文件规定了药品冷链物流过程中的总体要求,人员与培训、设施设备与验证管理、温度监测与控制、物流作业、应急管理以及内审与改进等方面的要求。”进一步明确了贮存、运输环节的温度监测与控制管理。 “8.1.3收货时,收发货双方应同时查验运输设施设备显示的温度及环境温度,对温度数据以及运输时间等质量状况进行重点检查、记录,签字确认,并根据以下要求进行收货处理。a)资料齐全、符合冷链运输温度要求的,收货方可接收;b)资料不齐全但符合冷链运输温度要求的药品,收货方可于符合说明书要求的环境中暂存该药品,待资料齐全后办理收货手续;c)温度不符合要求的药品,应将其隔离存放于符合说明书要求的环境中,通报本企业质量管理部门处理,并且立即与药品生产企业联系,依据各方意见进行评估,确定收货或者拒收;d)不能提供本次运输过程温度记录的药品,应当拒收。“规定了冷藏药品在收货、验收阶段,对收货区、验收区的环境要求,药品交接双方的交接手续、温度监测以及文件资料的要求,增加了对收货温度不符合要求情况的处理、对销售后退回冷藏药品相关证明材料的要求、冷藏药品待验区域的要求。 “应在年度周期内对不同型号的在用冷藏车和冷藏箱、保温箱进行极端温度环境条件验证,在确保一致性的前提下,同型号同批次的在用冷藏车和冷藏箱、保温箱的验证可根据企业的实际情况进行合理优化。““7.2应实时监控温度,温度监测数据应可读取且存档,每日异地备份,备份数据存放场所应当确保安全。“规定了医药产品冷链物流涉及的温控仓库、温控车辆、冷藏箱、保温箱及温度监测系统性能确认的内容、要求和操作要点。并且进一步明确了对设备安装、设施设备验证计划、验证控制文件等的要求。 由此可见,温控药品的运输和存储过程中的温度将会影响到药品的质量,温度过高或者过低都会影响药品其安全性和有效性,因此需要严格监测温控药品整个供应链的温度,确保不断链,确保温度数据完整。 具有WHO PQS预认证的虹科LIBERO PDF温度记录仪,用于医药冷链物流、临床试验、药品存储过程中的温度监测,为全球数千家医药及物流企业提供可靠的冷链数据监测。WHO PQS合格评定是一种验证疫苗冷链产品质量符合性的严格的产品认可制度。世界卫生组织(WHO)依据所制定的严格的技术规范及测试标准对各类疫苗冷链产品的性能质量进行合格评定(Pre-qualification)。 WHO从性能、质量和安全(PQS)计划对产品和设备进行资格预审,以确保成员国和联合国采购机构确信其适合用于免疫接种计划。当非政府组织分发所需疫苗的时间可能有限时,这种设备和设备的资格预审可以更快、可靠地作出决定。 虹科LIBERO PDF温度记录仪具备高精度,高稳定性,操作简单的特点,符合GxP的要求,可提供IQ/OQ认证。测量完成后无需软件和配件,直接插入电脑的USB接口,即可生成一份不可修改的加密PDF报告,符合FDA21CFR Part11。并且LIBERO系列PDF温度记录仪均具有上海化工院的货物运输条件鉴定书和北京DGM的航空运输条件鉴定书,可安全空运。 以下是虹科LIBERO产品系列的具体介绍: HK-LIBERO Cx一次性PDF温度记录仪测量和记录周围环境中的温度。具有一次性使用不用回收、操作方便快捷,无需软件和附件等特点。测量完成之后,直接插入电脑的USB接口,即可生成一份不可修改的PDF数据报告。符合ISO标准19005-1文档管理,用于长期保存电子文档(PDF/A),符合FDA 21CFR Part11。 HK-LIBERO Cx(BLE)系列PDF数据记录仪能够测量和记录周围环境中的温度/温湿度数据与曲线,具有蓝牙无线传输功能,通过手机APP可以实现无线读取记录仪里的PDF报告、控制开始和停止记录、添加备注信息等功能,无需将记录仪从您的设备或包装中取出来。并且和HK-LIBERO Cx一次性PDF温度记录仪一样能够导出不可修改的PDF报告。
  • 诺奖得主详解:冷冻电镜如何引发分辨率革命
    更清楚地看见生命分子的结构,有助于我们了解分子的功能和各个组分之间的相互作用。图源:EMBL。Credit: Agnieszka Obarska-Kosińska/EMBL and MPI of Biophysics编者按:2023年,Frontiers for Young Minds期刊网站再度邀请五位诺贝尔奖得主,专门为青少年撰写关于他们的研究的科普文章。《赛先生》获授权翻译了这一系列文章。了解生物的分子结构,一方面有助于科学家更好地理解这些分子的生物学功能,另一方面也对药物研发具有重要的指导意义。在下面这篇文章中,2017年诺贝尔化学奖得主理查德亨德森与Frontiers for Young Minds杂志撰稿人诺亚塞格夫,详解冷冻电子显微镜技术的发展历程,以及它如何引发生命分子结构的分辨率革命。诺亚塞格夫 理查德亨德森 | 撰文Ano-GPT | 翻译瞿立建 | 校译理查德亨德森博士。他与雅克杜博歇(Jacques Dubochet)教授和约阿希姆弗兰克(Joachim Frank)教授因“开发冷冻电子显微镜,用于溶液中生物分子结构的高分辨率测定”,获得了2017年的诺贝尔化学奖。图片:A. Mahmoud,来源:诺奖官网。本文基于塞格夫对亨德森的采访撰写而成。结构生物学是观察构成生命的各种分子的结构,这些分子存在于人类和其他动物中,也存在于微生物和植物之中。为了解析这些结构,结构生物学家使用越来越精确的成像技术,从而“看见”或确定更小更多样的分子的结构。冷冻电子显微镜是一种非常先进和强大的成像技术:电子被发送到冷冻样品中,以确定单个分子的结构,其放大倍数足以看见原子。这些图像使我们更深入地理解生命的基本结构和功能。在本文中,我们将描述冷冻电子显微镜掀起的这场“分辨率革命”的发展过程。受访者亨德森博士因为这方面的贡献最终获得2017年的诺贝尔化学奖。眼见为实:看见微观的生命分子生物体包含许多重要的结构,并进行着多种活动。在人体内,我们有很多器官,它们由细胞构成,而细胞内又有很多细胞器和分子执行维持生命所必需的功能,例如能量代谢、排出废物、物质运输和抵抗有害因子等(图1)。为了了解生物体的工作原理并最终造福人类,我们需要密切观察这些微观分子的结构,以及这些结构执行的活动。结构生物学的使命便是观察这些生物组分的结构。过去,科学家们会从生命体内正在发生的特定活动着手,例如能量的代谢、转换和存储,再寻找参与其中的分子,通常是蛋白质和酶,然后才能去解析这些分子的结构。图 1:细胞内部的艺术效果图。您可以将细胞内部想象成一个密集的游乐场,其中包含许多不同的分子和细胞器,每个分子和细胞器都执行其独特的功能。要了解生命的运作方式,我们需要了解这些生命分子的结构和功能。然而在2000年,这一从功能到结构的研究思路发生了变化。因为这一年,通过人类基因组计划,科学家首次整理出完整的人类遗传信息的“指令集”(DNA碱基序列),这些遗传信息,甚至有约80%是之前不知道的。从那时起,通过基因信息,科学家可以在不必事先了解其功能的情况下先确定相关分子的结构。这开辟了结构生物学的全新路径。那么,科学家又是如何确定这些分子的结构呢?答案是:电子!电子和显微镜电子是存在于原子中的微小带电粒子,它的流动产生了电力。电子也是光和其他形式的电磁辐射——如X射线——的来源。你能相信吗,直到1895年,人类才发现了电子。在那一年,电子首次被英国剑桥大学物理系的科学家约瑟夫汤姆孙(J. J.Thomson)识别并命名。40年后的1935年,J. J.汤普森的儿子乔治汤姆孙(G. P. Thomson)证明了电子作为一种粒子,也同时表现出波的性质:它具有频率和波长,就像其他波一样。汤姆孙父子都获得了诺贝尔奖:父亲是因为电子作为粒子的发现,儿子是因为电子作为波的发现。不久之后,科学家意识到,如果电子表现得像波一样,从某种意义上说,它们一定也表现得像光一样,因为光也是一种波。因此,科学家想到也许可以用电子照亮他们想要观察的微小样品,就像我们基于可见光用眼睛、相机或普通显微镜来观察物体一样,这就是电子显微镜的起源。电子的波长很短,大约是可见光波长的十万分之一。而波长越小,样品放大的倍数越大。这意味着用电子拍摄的照片能显示出更多的细节,也就是说电子显微镜具有很高的分辨率。由于它的高分辨率,电子显微镜可以解析以前不可能看清楚的微小分子的结构。电子显微镜如何工作?电子显微镜中装有能够发射高能电子束的装置,能够穿过待研究的样品(如图2A所示)。当电子穿过样品时,它们与样品中的原子相互作用而偏离原来的行进路径——称为衍射,偏离方式决定于样品中原子排列的方式。因此,电子通过样品时“拾取”了其结构信息。电子随后通过特别设计的电磁场进行聚焦,这种电磁场称为电磁透镜,类似于相机内的镜头,然后被电子探测器记录下来。在这个阶段,科学家得到了从样品中衍射的电子的图像,然后将其转换为样品本身的图像。这种转换基于简单的物理学,其描述了被测物体与所成图像之间的关系。这一转换取决于许多因素,包括电子的波长和所使用的透镜,但这都由显微镜专家来处理。图 2:电子显微镜。(A) 在电子显微镜中,电子源释放出一束热的高能电子,穿过被置于真空环境的样本。当电子与样品相互作用时,它们会发生衍射(散射),随后被特殊透镜收集和聚焦,然后被电子检测器检测。(B) 剑桥大学的电子显微镜,它允许科学家对冷冻生物样本进行成像。图片来源:剑桥大学电子显微镜的挑战尽管电子可以帮助我们获得非凡的分子图像,但仍需克服重大挑战。首先,正如量子物理学告诉我们的那样,单个电子的活动具有不确定性。当你问电子遇到特定分子时会发生什么时,他们不会给出明确的答案。相反,他们有一定的概率(可能性)参与每个可能的结果。在电子世界中,所有可能发生的事情都确实发生了,每个选项都有确定的概率。这意味着科学家必须从许多电子中收集答案,并开动头脑,将这些信息组合起来。为实现这一目标,我们用数百万个电子照射样本,并使用它们的总体平均值来获得合理的答案。其次,电子的能量非常高,在成像过程中必须要穿过样品,而这会对样品造成损坏。 这 些超高能电子和任何其他类型的高能辐射一样,可以将样品分子中的电子打出来。 这会改变样品分子的形状和特性,因为生物分子相对脆弱。 因此,科学家很难在单个生物分子被破坏之前获得足够的结构信息。 应对这一挑战的一种方法是,拍摄许多独立的、相同的分子的图像: 至少 500 个,并对图像进行平均以获得分子典型的结构。 另一种方法是以特殊方式冷却样品,使其更能抵抗电子损伤——这将在下一节中介绍。另一个挑战在于,电子一旦靠近任何原子就会发生衍射。这意味着电子源和样品之间必须畅通无阻,这样电子才能到达目标分子,而不会因其他分子(如空气中的氧气和氮气)挡道而散射。换句话说,科学家必须在电子显微镜的样本周围创造一个真空。然而由于生物分子总是处在含水溶液中(想一想血液中的分子),水分子难免会蒸发到真空之中,此外水分的蒸发还会使样本过于干燥,这又通常会损坏样本中的生物分子。面对这些问题,结构生物学家发挥他们的创造力,利用水的独特性质来应对这一挑战。水在极低温度下能保持液态吗?为了解水的独特性质,您可以尝试下面这个实验(图 3 )。拿一个带盖的空罐子,装满水,在水下拧紧盖子从而避免罐子里混入气体,然后将其放置于冰箱的冷冻层。一天之后,罐子里的水温将下降至− 10 °C 或− 20 °C(通常情况下水会在0 °C时结冰)。第二天,把罐子从冰箱里拿出来看看——水是变成了固态冰,还是保持液态?图 3:家里的过冷水。(1) 取一个空罐子,装满水,确保里面没有气泡。(2) 将罐子密封好 (3) 放入冰箱冷冻一天。(4) 然后,取出罐子。水是结冰的还是液态的?如果它仍然是液体,你就制得了过冷水!大多数情况下,您会发现水仍然是液态,尽管它已经冷却到低于其冰点 (0 °C) 的温度。在我们的实验中,我们希望将水进一步冷却到− 170 °C 以下,因为在这个温度下它变得平静又稳定。我们还希望避免产生冰晶,因为它们会干扰我们的测量。为此,我们必须使用雅克杜博歇 实验室开发的特殊冷却方法,他与我 (理查德亨德森) 、约阿希姆弗兰克于2017 年共同获得了诺贝尔化学奖。在这种方法中,我们要用到非常冷的液体乙烷或丙烷(天然气中的成分,组成原子只有碳和氢),将乙烷/丙烷液体冷却至− 185 °C,然后我们将一层非常薄的水膜浸入其中,这层水膜在极端时间内——约千分之一秒——迅速冷却,以至于没有时间形成有组织的冰晶,而是保持无序的液态形式 [1],我们称之为无定形冰。这样,我们就得到了过冷水。热电子和冷样品的神奇组合事实证明,过冷水的薄膜非常适合我们想要用电子显微镜成像的生物分子悬浮在其中。当我们将这个冷却步骤添加到成像过程中时,就是所谓的冷冻电子显微镜技术。冷冻电子显微镜技术使我们能够应对前文提到的两个挑战:一方面它使标本稳定,从而更能抵抗高能电子的破坏,另外,它允许生物分子处于自然的水环境中,避免水蒸发到真空之中。它还有一个更重要的优势:与大多数其他液体不同,水在冷却到 4 °C 以下时会膨胀,这一特性有助于生物分子在过冷水中保持完好。想象一下,如果水在冷却时收缩,它就会挤压甚至破坏要成像的分子。这种相当简单但高效的冷冻电子显微镜成像方法使我们大大提高了生物分子成像的分辨率。这就是它有时被称为“分辨率革命”的原因。图 4:冷冻电子显微镜拍出的图像。(A) 一种称为腺病毒的致病病毒的结构。该图像显示了称为衣壳的外表面,它是包裹病毒遗传物质的蛋白质外壳。颜色代表距球体中心的距离:红色距离中心最远,蓝色距离最近。(B) 一种参与微生物能量产生的酶。颜色代表酶的各个次级结构单元(片段)。(C) 2013 年(左,浅紫色)和 2017 年(右,深紫色)冷冻电子显微镜的分辨率对比。图片来源:(A) 改编自参考文献 [2];(B) 改编自参考文献 [3];(C) Martin Hö gbom ,斯德哥尔摩大学,基于 V. Falconieri 的图像。冷冻电子显微镜的未来电子是对生物分子成像的最佳粒子。为了让您了解它们有多好,我们把它们与另外两种常用粒子进行比较:X 射线光子(类似于光子,但波长较短)和中子(一种来自原子核的粒子)。我们可以计算出成像时所获得的结构信息量与该粒子在样本中造成的损害的比值,以此来衡量该粒子的成像效果。根据该标准,电子比 X 射线好 1000 倍,比中子好3倍!这就是我和我的同事多年前开始使用电子而不是其他粒子的原因。如今,冷冻电子显微镜已经获得非常成功的应用,使用它的结构生物学家的数量已经很多了,但还在迅速增加。冷冻电子显微镜仍有很大的改进空间。一是改进电子探测器,它们仍然不够大或效率不够高,使我们实际所用的电子比理论上应使用的电子要多得多。此外,当电子束接触样品时(包括水分子和生物分子),如果能进一步减少样品的运动将会改善成像效果[4, 5] 。我们相信,在大约 5 年的时间里,应对这些挑战将会取得重大进展。届时我们将拥有更强大的工具,让我们更好地理解许多生物学问题,例如生命如何运作以及如何繁殖。我们获得的信息可能有助于我们维护人、动物和植物的健康。我们可以期待冷冻电子显微镜的光明前景!给年轻人的建议我,理查德,想分享一些我在整个职业生涯中遵循的实用建议。这些建议来自1960 年诺贝尔生理学或医学奖得主彼得梅达沃 (Peter Medawar) 的著作。获得诺贝尔奖后,彼得梅达沃出版了《可解的艺术》(The Art of the Soluble)和《寄语青年科学工作者》(Advice to a Young Scientist)两本书。他在书中说,科学和生活中有很多有趣的东西,我们应该对一切事物保持好奇。但我们也应该选择一些我们特别感兴趣的东西来做。此外,他说科学家们应该致力于当前可以被回答的科学问题,而不是 100 年后才能被解决的那一类遥远的问题,因为那已经超出了科学家的一生。他认为科学是可解决的艺术,得专注于可以解决的问题。科学家应该基于现在的技术回答当前可以被回答的问题。我读大学的时候学的是物理,当时,我想知道物理学会走向何方,我记得我列了一个清单,列出了关于未来所有有趣的话题。有聚变研究,涉及从氢聚变中产生无限的能量。然后是高能粒子物理学,这一领域的研究促成了新粒子的发现,包括希格斯玻色子等。还有固体物理学,它推动了计算机工业和微芯片的发展。生物物理学、天体物理学、宇宙学、黑洞和中子星等都是其他有趣的话题。如果我选择其中的任何一个主题来研究,它们都会同样有意思、令人兴奋。所以,如果你决定从事科学,你必须选择你感兴趣的东西,这样你的研究和工作就是自发的,而不是因为受到任何人的强迫。当你有兴趣和上进心时,遇到困难也不太会困扰你——你只会把它当作一个挑战并继续前进。一旦你选择了一个有趣的主题,在你真正朝着那个方向前进之前,最好尽可能多地了解你为研究这个主题可以进行的各种活动。如果经过 6 个月或一年的努力,结果证明你的想法不是很好,请不要犹豫重新思考并寻找新的方向。与过去相比,今天的科学发展非常迅速。仅在 100 年前,我们甚至不知道 X 射线和电子的存在,而现在我们掌握了整个人类基因组的信息,我们拥有处理 DNA 的复杂方法,并且我们几乎可以弄清楚我们想要的任何东西。未来 100 年将是活着的好时机——也是成为科学家的好时机。享受你的生活,把自己投资在你最感兴趣的事情上!作者致谢:感谢 Alex Bernstein 提供插图、Susan Debad 对手稿的编辑。封面图来源:英国医学研究理事会(MRC)分子生物学实验室 via PNAS.
  • QIAGEN(凯杰)亚洲总部迁入上海“药谷”
    上海, 2009年9月8日—— 今天QIAGEN(凯杰)庆祝亚洲区总部迁入上海市浦东新区张江高科技园区。该庆典由公司CEO Mr. Peer M. Schatz主持,来自业界和政府机构的代表将参加庆典。2006年QIAGEN(凯杰)将亚洲区总部设在上海,之前分散在各地的资源和员工将全部迁入公司在张江高科技园区的新址,该园区被誉为中国的生物技术中心。QIAGEN(凯杰)首席执行官及执行委员会主席Peer M.Schatz  “亚洲对于QIAGEN (凯杰)在全球的发展至关重要,” Mr. Schatz 说,“亚洲是QIAGEN(凯杰)发展最快的区域,即使在全球经济金融危机期间,公司生命科学和分子诊断两个部门在本地区的业务都有明显的增长,2009年第一第二季度与去年同期相比分别增长26% 和43%。值此机会,我要感谢本地区客户对我们的支持。同时,我也为我们的团队和伙伴的出色表现感到自豪,感谢他们为公司发展所作的贡献。公司在新总部的投资也说明了我们进一步促进公司在本地区发展的决心,以及本地区业务对QIAGEN(凯杰)的重要意义。”  新总部也将使公司更好地为张江高科技园区的客户服务,园区有15家跨国性药物研发中心,32家合同研究组织(CRO),29家制药厂和200多家生物医药公司。现在QIAGEN(凯杰)可以更方便地为他们提供公司的新技术和应用,减少为园区成千名科学家送货的时间。“在整个价值链中张江高科技园区为各阶段提供了富有竞争力的平台,因此是QIAGEN(凯杰)新亚洲总部的理想选择。”张江(集团)有限公司常务副总经理,张江功能区域管委会副主任刘小龙先生说,“这再一次说明张江高科技园区是全球领先的生命科学和诊断公司的理想选择,我们非常欢迎QIAGEN(凯杰)的到来,希望公司不断发展。”QIAGEN(凯杰)亚洲区总裁施晨阳博士  “QIAGEN(凯杰)亚洲总部陷入张江高科技园区为我们核心业务提供了拓展新机会 —— 包括生物医药研究、分子诊断、药物开发和行业应用,”QIAGEN(凯杰)亚洲区总裁施晨阳博士说,“通过投资新的总部办公楼,我们为进一步的发展奠定了基础,它将帮助我们在亚洲进一步推广我们先进的样品制备和分析技术。”  QIAGEN(凯杰)在亚洲地区:  QIAGEN(凯杰)亚洲是公司发展最快的地区。2005年公司开始发展在亚洲地区的业务,目前在亚洲的中国、韩国、马来西亚、新加坡和印度设有10个办公室,拥有400多名员工。包括日本的分公司,净销售额约占QIAGEN(凯杰)销售总额的13%。2006年,QIAGEN(凯杰)凭借公司在亚太区分子检测市场的创新策略获得了Frost & Sullivan 竞争策略领导奖。  关于QIAGEN(凯杰):  QIAGEN(凯杰)是一家荷兰上市公司,是全球领先的样本制备和分析技术的供应商。样品制备技术用来分离和处理从血液或组织等样品中提取的DNA、RNA和蛋白,而分析技术使这些分离的分子可被检测,便于生物学研究和疾病检测。QIAGEN(凯杰)已经开发了500多种全面的产品组合,包括试剂和自动化解决方案。QIAGEN(凯杰)产品的主要客户包括分子诊断实验室、学术研究领域,制药和生物技术公司,行业应用用户(例如法医鉴定,动物和食品检测,以及药物过程控制等)。QIAGEN(凯杰)的分析技术涵盖最广泛的分子诊断产品,包括检测宫颈癌元凶 —— 高危型人乳头瘤病毒(HPV)金标准的digene HPV Test。QIAGEN(凯杰)的产品在30多个国家通过专业的销售团队和全球化的分销网络进行销售,在全球拥有3150名员工。更多关于凯杰的信息请登陆www.qiagen.com。
  • 【4月15日-17日】冷杉与您相约第20届中国环博会(上海)!
    【第20届中国环博会(上海)】冷杉与您相约——时间丨4/15-4/17地点丨上海市浦东新区龙阳路2345号(上海新国际博览中心)展位号丨E4馆G46号诚意奉献最大的体验与优惠这是一次我们与您相互了解的机会冷杉将携最新气态污染物在线解决方案在线气相色谱仪、气体动态稀释仪等亮相展会现场直观为您展现冷杉的品牌实力与技术产品优势还有资深技术人员与您面对面交流为您定制专业环保解决方案︾ 并且诚意奉献最大的优惠现场采购享多重优惠更有精美好礼相送关于展会中国环博会秉承其母展—全球旗舰环保展慕尼黑IFAT展的卓越品质,深耕中国环保产业19年,专注于水、固废、大气、土壤、噪声等环境污染治理全产业链解决方案的展示交流,是全球环保主流品牌与领先企业的首选展示交流平台,也是亚洲旗舰环保盛会。 IE expo2019第二十届中国环博会将于2019年4月15-17日在上海新国际博览中心举行。为了满足环保企业的展示需求,本届展会将扩大展示展馆扩大至13个馆,于W1、W2、W3、W4、W5、E1、E2、E3、E4、E5、E6、E7、N5馆,集中展示世界领军污水处理、泵管阀、固体废弃物处理、资源回收利用、大气污染治理、场地修复、环境监测、环境服务业等环境污染治理领域的优秀企业、前沿技术与优质解决方案。冷杉作为环境监测行业的新起之秀,在这环保行业盛会上将展示相关领域的前沿技术,并期待与业界专家探讨交流产业走势、开拓合作机会。
  • 真空冷冻干燥机制冷系统常见的故障及排除方法
    真空冷冻干燥机制冷系统常见的故障及排除方法 真空冷冻干燥机广泛用于医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-18N系列立式冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。   真空冷冻干燥机制冷系统常见的故障及排除方法:   1)高压报警。出现高压报警的主要原因有:   ①冷却水水温过高或冷却水量不足。   ②冷凝器内部结垢,导致换热效率降低。   ③压缩机工作时,低压管道发生泄漏,从而导致外界空气进入制冷系统。   ④制冷管道存在未开足阀门或因管道被堵而造成排气不畅的情况。   解决办法:   ①降低冷却水温度或增加水流量。   ②清洗冷凝器的冷却水管路。   ③对制冷管道进行检漏,如果在工作中无法实现该项操作,可将水冷凝器上方的截止阀打开,使存在于冷凝器中的空气排放出一部分。   ④将压缩机管道.上的阀门开启到最大。   2)水压报警。水压报警的主要原因有:   ①冷却水供水压力不足或供水泵不运转。   ②水压力控制器故障。   解决办法:   ①增大外部供水压力或检修供水泵。   ②检查压力控制器的触头是否能正常工作或检查在其线路.上是否存在其他问题。   3)压缩机吸气温度异常。吸气温度异常的主要原因是膨胀阀调节不当,开启度过小或过大,导致回气量过小或过大。其解决办法是对膨阀进行调节,如回气量过大,应关小开启度,如回气量过小,应开大开启度,调节过程中以微调为主,多观察压缩机的回霜情况。   4)膨胀阀堵塞。堵塞分泌物物堵塞(脏堵)和冰堵塞两种。   ①杂物堵塞。在堵塞不严重时,可用扳手轻轻敲打阀体,经振动使阀体疏通。若不奏效或膨胀阀很快又重新堵塞,则说明堵塞严重,应拆卸膨胀阀,对膨胀阀滤网进行清洗,清洗完后重新装上即可。   ②冰堵。出现冰堵,应更换冷凝器出液端过滤器。   5)载冷剂泄漏   可用肉眼观察,查找板层,软管上的泄漏点。若发现可疑漏点,应放空板层或软管内的载冷剂,对泄漏点进行充压确认,确认后放气补好泄漏点,重新加入载冷剂并排出板层和软管内气体。
  • 183万!磁场辅助冷冻冷藏试验箱(国产)+超高压处理系统(国产)+气相色谱-离子迁移谱联用仪(进口)采购项目
    项目编号:ZJCT7-ZZZX2022-01项目名称:磁场辅助冷冻冷藏试验箱(国产)+超高压处理系统(国产)+气相色谱-离子迁移谱联用仪(进口)预算金额:183.4000000 万元(人民币)最高限价(如有):183.4000000 万元(人民币)采购需求:序号内容数量单位预算金额(万元)简要技术要求、用途备注1磁场辅助冷冻冷藏试验箱(国产)1台18详见采购文件2超高压处理系统(国产)1套35.6详见采购文件3气相色谱-离子迁移谱联用仪(进口)1套129.8详见采购文件合同履行期限:中标合同签订后30天本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制