当前位置: 仪器信息网 > 行业主题 > >

法微分试验器

仪器信息网法微分试验器专题为您提供2024年最新法微分试验器价格报价、厂家品牌的相关信息, 包括法微分试验器参数、型号等,不管是国产,还是进口品牌的法微分试验器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法微分试验器相关的耗材配件、试剂标物,还有法微分试验器相关的最新资讯、资料,以及法微分试验器相关的解决方案。

法微分试验器相关的论坛

  • 【资料】微分干涉相衬法及其应用

    [size=3][font=宋体][/font][size=2][font=宋体][/font][/size][/size][size=2][font=宋体]微分干涉相衬法(DIC)作为一种极具前途的分析检验方法,具有对金相样品的制备要求较低,所观察到的样品各组成相间的相对层次关系突出,呈明显的浮雕状,对颗粒、裂纹、孔洞以及凸起等能作出正确的判断,能够容易判断许多明场下所看不到的或难于判别的一些结构细节或缺陷,可进行彩色金相摄影等优点。但在目前的金相检验工作中,DIC法还利用得很少。[/font][/size][size=2][font=宋体]在金相显微镜检验方法中,微分干涉相衬法(DIC)是金相检验的一种强有力的工具,其特点主要为:[/font][/size][size=2][font=宋体]对金相样品的制备要求降低,对于某些样品,甚至只需抛光而不必腐蚀处理即可进行观察。优点是可以观察到样品表面的真实状态,如将试样抛光后在真空下发生马氏体相变,不用腐蚀就可以观察到马氏体的相变浮凸。 [/font][/size][size=2][font=宋体]所观察到的表面具有明显的凹凸感,呈浮雕状,样品各组成相间的相对层次关系都能显示出来,对颗粒、裂纹、孔洞以及凸起等都能作出正确的判断,提高了金相检验准确性,同时也增加了各相间的反差。 [/font][/size][size=2][font=宋体]用微分干涉相衬法观察样品,会看到明场下所看不到的许多细节,明场下难于判别的一些结构细节或缺陷,可通过微分干涉进行反差增强而容易判断。 [/font][/size][size=2][font=宋体]微分干涉相衬法基于传统的正交偏光法,又巧妙地利用了在渥拉斯顿棱镜基础上改良的DIC 棱镜和补色器([/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)等,使所观察的样品以光学干涉的方法染上丰富的色彩,从而可利用彩色胶卷或者数码产品(CCD 摄像头以及数码相机)进行彩色金相显微摄影。由于微分干涉相衬得效果与样品细节的浮雕像以及色彩都是可以调节的,因而比正交偏光更为优越。 [/font][/size][size=2][font=宋体]微分干涉相衬法在生物医学领域得到了广泛的重视,然而,到目前为止从发表的有关材料金相研究的论文中,国内外基于微分干涉相衬法进行材料金相研究的工作开展得很少。其原因主要有两个方面:一方面是由于配备微分干涉相衬部件的金相显微镜不是很多;另一方面,许多材料科学工作者还没有意识到微分干涉相衬法在材料研究中的优势。[/font][/size][size=2][font=宋体]一、微分干涉相衬法的基本原理:[/font][/size][size=2][font=宋体]微分干涉相衬法所需部件:起偏器、检偏器、微分干涉相衬组件插板(DIK组件插板),以及补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)。起偏器和检偏器是在对金相样品进行正交偏振光观察中必不可少的基本配套部件,组装在明/暗场照明组件中,也是微分干涉相衬法必不可少的部件。起偏器是把光源变为按东- 西方向振动的线偏振光;检偏器可以使满足干涉条件的相干光进行干涉。DIK组件插板是微分干涉相衬法的核心部件,其上装配有以渥拉斯顿棱镜为基础改良后的DIC棱镜。DIK组件插板上有两个调节旋钮,其中较大的一个用来调节组成DIC棱镜的两个棱镜间的相对位置,使其厚度产生微小的改变从而引起光程或光程差的微小变化,产生明显的干涉相衬效果;较小的一个用来调节DIC棱镜的高低位置,以配合不同倍数物镜后焦平面位置上的差异,从而确保DIC观察视场中能获得均匀的照明。补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)由石膏制成,插在线偏振光的照光路中用以增加一个光波波长约550nm的光程差,使干涉级序升高一级,保证视野中样品的不同组织细节获得丰富的色彩,从而利于金相组织的观察和分析。 [/font][/size][size=2][font=宋体]微分干涉相衬的基本原理:微分干涉相衬法的基本原理如图1所示。由光源出射的照明光经起偏器后变为东-西方向振动的线偏振光,第一次进入DIC棱镜内部时分为寻常光(o光)和非寻常光(e光),这两束光微微分开,而其振动方向相互垂直。当o光和e光穿出棱镜时,两者具有一定的光程差T1,这两束光通过物镜照射到样品上时,就有可能照射于不同的表面状态上。也就是说,这两束光的波前接触到了样品上的不平整表面、裂纹、微孔、凹陷、晶界等,都会产生不同情况的反射,再加上不同物相上光的折射率差异产生的光波相位变化,从而产生了新的附加光程差T0。当这两束光由样品表面反射后,穿过物镜第二次进入DIC棱镜,波前又产生了新的光程差T2 并进行合并。但这两束光仍然是相互垂直的线偏振光,并未产生干涉。在进入检偏器之前,总的光程差T总=T1±T0±T2只有符合光程差条件T总=(2k + 1)[/font][/size][size=2][font=Arial]λ/2[/font][/size][size=2][font=宋体],其中(k= 0,1,2等) 的光波波前,才可能通过检偏器。也就是说,线偏振光两次通过DIC棱镜后,只有那些经样品反射而其总光程差等于所用光源光波半波长奇数倍的波前,才能满足干涉条件而通过检偏器而进行干涉。当将DIC棱镜的两半部分进行适当的移动(即调节DIK 插板上较大的旋钮),则T1和T2 的比率就会发生变化:调节旋钮使DIC 棱镜在显微镜的光轴上为对称时(即棱镜上下两半部分没有相对位移),有T1=T2,视场中光强分布只与光程差T0有关,而T0是由样品上的不平整度以及物相造成的光波相位变化而引起的光程差。除了在样品表面上由于物相间折射率的差异导致的光波相位变化而引起的光程差之外,这种干涉方法所引起的样品光程差与o光和e光的分开距离x值(低于显微镜的分辨率极限,约012[/font][/size][size=2][font=Arial]μm[/font][/size][size=2][font=宋体])有关,还与样品表面上物相表面高度变化(凸起或凹下)梯度tg[/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]([/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]为o光或e光入射于样品表面的入射角)有关。即样品成像的反差取决于o光和e光波前在样品表面物相凸起或凹下的高度变化梯度所引起的光程差。当调节旋钮使DIC 棱镜上下两半部分产生相对位移时,物相表面凸起或凹下两个相反梯度所引起的光强差异就在显微镜的成像中产生了浮雕效果如图2所示,与单一方向斜射照明光所产生的近似立体效果相同。此时干涉效果是零级干涉级序下的微分干涉效果,灰度最大者为零级灰,在零级干涉级序下干涉相衬的效果最佳,同时也是最大的,但仅能以不同灰度层次显示。把补色器(或[/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)加在线偏振光的照明或检偏器之前的成像光路中,可以将线偏振光在样品不同物相或表面上引起的光程差扩大约550nm ,也就是扩大一个光波波长的长度,使干涉级序提高一级,把原先干涉出来仅以不同灰度显示出来的层次转为色彩鲜艳且富有立体感的彩色,零级灰转为红色(一级红),而其它的灰度阶也依次变为橙、黄、绿、紫、粉紫以至于金黄色等对应的颜色如图3 (见彩图页) 所示。虽然加入补色器后干涉出来的色彩非常丰富,但干涉相衬的效果(即浮雕效果) 要相应减弱一些。 [/font][/size]

  • 【求助】怎么用excel做一阶微分 二阶微分曲线呢?

    做NaOH滴定醋酸实验,得到了数据。。可以做出PH~V曲线。。但是怎么用excel做一阶微分 二阶微分曲线呢? 因为要求滴定终点的。高手指导啊。。。excel应该是能做出来的。。实验老师叫我们上网查方法。。无能没查到啊。。。坐等高手帮忙。。。。

  • 【谱图】微分干涉金相显微镜的简要介绍

    DMM-5000微分干涉金相显微镜采用优质的无限远光学系统,同时配备明暗场通用的长工作距离平场平场消色差物镜,多光路的系统设计,可同时支持双目镜筒观察和数码摄像装置观察。DMM-5000倒置金相显微镜可广泛应用于研究金属的显微组织,能在明场、暗场、偏光、微分干涉下进行观察和摄影,配备专用软件,更可同步进行测量分析。可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用。DMM-5000高级正置金相显微镜,选用优质的光学元件,配有超大视场目镜、落射照明器、平场无限远长工作距离明暗场物镜,可选用微分干涉(DIC)观测、获得高清晰的图像,使图像衬度更好。是针对半导体晶圆检测、太阳能硅片制造业、电子信息产业、治金工业开发的,作为高级工业金相显微镜使用。可进行明暗场观察、落射偏光、DIC观察,广泛用于工厂、研究机构、高等院校对太阳能电池硅片、半导体晶圆检测、电路基板、FPD、精密模具的检测分析。 DMM-5000C电脑型微分干涉金相显微镜是将精锐的光学显微镜技术、先进的光电转换技术、尖端的计算机成像技术完美地结合在一起而开发研制成功的一项高科技产品。既可人工观察金相图像,又可以在计算机显示器上很方便地适时观察金相图像,并可随时捕捉记录金相图片,从而对金相图谱进行分析,评级等,还可以保存或打印出高像素金相照片。

  • 关于tg微分的问题?

    请教:在tg曲线不是函数的情况下,如何得到微分曲线?(就是我的数据中同一温度下对应着好几个数值)问同学,说是先把tg曲线拟合成函数曲线再做微分曲线,另一个就是在同一个温度下只选取一个数值而成为函数曲线再做微分曲线。不知哪种方法可行,或者有其他的方法?

  • 【分享】微分干涉显微镜在金相研究方面的应用

    微分干涉显微镜对表面光洁度的测定:  电解抛光,化学抛光时,表面质量可用微分干涉金相显微镜加以鉴定。根据干涉条纹的形状可知表面光洁度的好坏,如条纹弯曲不大说明抛光或表面较平整。  微分干涉显微镜对金属塑性变形的研究:  用微分干涉显微镜可以精确地测定滑移带高度及多晶体试样内各处的变形程度等。  微分干涉显微镜对金相试样因共格相变发生浮凸的研究:  在金属里面的马氏体,贝氏体及魏氏体组织,用微分干涉金相显微镜能有效地鉴定表面浮的形状。用它进行观察可以使表面的肉眼无法观察到的浮凸体明显地程现出来。  微分干涉显微镜对LCD行业的检察应用:  在目前市场上供不应求的LCD行业来说,这是最适合不过的了,LCD属于一种精密型的产品,生产过程中许多部件都要用到显微镜。微分干涉金相显微镜主要用于在导电粒子方面的观察,这种粒子小到四五微米,肉眼根本玩法看见。用该类显微镜则方便许多。

  • 关于显微镜的微分干涉功能

    微分干涉差显微镜 - 简介 1952年,Nomarski在相差显微镜原理的基础上发明了微分干涉差显微镜(differential interference contrast microscope)。DIC显微镜又称Nomarski相差显微镜(Nomarki contrast microscope),其优点是能显示结构的三维立体投影影像。与相差显微镜相比,其标本可略厚一点,折射率差别更大,故影像的立体感更强。 DIC显微镜的物理原理完全不同于相差显微镜,技术设计要复杂得多。DIC利用的是偏振光,有四个特殊的光学组件:偏振器(polarizer)、DIC棱镜、DIC滑行器和检偏器(analyzer)。偏振器直接装在聚光系统的前面,使光线发生线性偏振。在聚光器中则安装了石英Wollaston棱镜,即DIC棱镜,此棱镜可将一束光分解成偏振方向不同的两束光(x和y),二者成一小夹角。聚光器将两束光调整成与显微镜光轴平行的方向。最初两束光相位一致,在穿过标本相邻的区域后,由于标本的厚度和折射率不同,引起了两束光发生了光程差。在物镜的后焦面处安装了第二个Wollaston棱镜,即DIC滑行器,它把两束光波合并成一束。这时两束光的偏振面(x和y)仍然存在。最后光束穿过第二个偏振装置,即检偏器。在光束形成目镜DIC影像之前,检偏器与偏光器的方向成直角。检偏器将两束垂直的光波组合成具有相同偏振面的两束光,从而使二者发生干涉。x和y波的光程差决定着透光的多少。光程差值为0时,没有光穿过检偏器;光程差值等于波长一半时,穿过的光达到最大值。于是在灰色的背景上,标本结构呈现出亮暗差。为了使影像的反差达到最佳状态,可通过调节DIC滑行器的纵行微调来改变光程差,光程差可改变影像的亮度。调节DIC滑行器可使标本的细微结构呈现出正或负的投影形象,通常是一侧亮,而另一侧暗,这便造成了标本的人为三维立体感,类似大理石上的浮雕。

  • 【求助】请问用IM6测微分电容的问题

    有谁用IM6测过微分电容?你测的电容值要不要考虑试样的面积?怎么算?我测的微分电容值很大,感觉可能是面积没考虑的缘故,请高手指点一下~!多谢了!

  • 【求助】激光粒度仪里的多峰曲线 关于积分和微分的读法!

    我想问一下,激光粒度仪里的积分和微分曲线的读法。测试结果为多峰分布,分为大小两堆,小堆里微分占最多的是21,对应的粒径是102.3nm,微分上下还有小于21的,积分在这堆的最末是17,是否可以这样理解:这小堆里占最多微分是21%,粒径是102.3nm,积分占全体的 17%。谢谢了!我的qq95100796,我的测试图不能上传!

  • 2014 牛津仪器 学无止“镜”——发现微观之美显微分析大赛

    2014 牛津仪器 学无止“镜”——发现微观之美OI 2014 Learn Beyond the Microscopy - Discovering the Beauty of Microanalysisl 大赛主题:1. 突破技术革新之路,挑战显微分析的最高极限2. 尽享科学研究最美,发现枯燥科研亦别有洞天l 参赛要求:1. 显微分析结果必须使用牛津仪器的设备完成http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif2. 参赛文件组成a) 参赛图片, 要求为像素在512X512以上的JPG格式(允许使用Photoshop等图像软件适当美化)b) 参赛图片相关的原始数据文件,如INCA软件采集的ipj格式文件或者Aztec软件采集的数据文件包c) 使用WORD文件陈述参赛项目: 包含根据图像意境命名的参赛作品名称,样品情况说明和采集参数设置 (如放大倍数,加速电压,采集时间等)3. 请将以上所有内容用压缩软件打包后Email发送至大赛组委会l 奖项设置:大会组委会将根据照片的艺术美感和显微分析技术难度分别进行评比奖项评奖人人数奖品最佳艺术奖组委会每种奖项分别设第一,二,三名第一名 iPad mini第二名 iPod nano第三名 iPod shuffle最佳技术奖组委会最佳人气奖用户会现场观众投票1. 优秀参赛图片将录入[size

  • 3104铝合金铸造组织微分干涉DIC图

    3104铝合金铸造组织微分干涉DIC图

    明场图:http://ng1.17img.cn/bbsfiles/images/2014/05/201405291626_500759_2219273_3.jpg微分干涉DIC图:http://ng1.17img.cn/bbsfiles/images/2014/05/201405291627_500760_2219273_3.jpg

  • 上海通微分析技术有限公司的色谱用户请在此后跟贴

    如果您是上海通微的国产色谱产品用户,您在使用其色谱产品方面有哪些问题或有哪些建议,如总体评价、外观、操作的方便性、软件的功能和易用性、配件种类及供应、常见故障、厂家的维修服务、厂家的技术支持和培训、对员工的意见等,请在此贴后跟贴说明,我们将收集您提出的问题在对话会上向厂商的老总或总工直接提出,促进他们改进自己的产品和服务。同时请您请写一下您的仪器的购买时间,型号,使用年限,使用情况等信息[b]上海通微分析技术有限公司介绍[/b]上海通微分析技术有限公司位于上海张江高科技园区,是由美国通微技术股份有限公司和中方伙伴共同投资成立的高科技企业。公司主要经营加压毛细管电色谱仪、液相色谱仪、制备液相色谱仪、色谱配套产品以及其他化学,生物,医药,环保等分析、分离产品。公司内设有企业博士后工作站,是全国分析仪器行业内唯一一家企业博士后工作站。公司以科技开发为企业的原动力,凭借国际微分析领域领先者——美国通微技术股份有限公司的雄厚技术、开发能力以及多年来在全球市场的丰富经验,率先在中国市场推出TriSepTM系列加压毛细管电色谱仪,为蛋白质组学、基因组学、中药现代化、环保及食品安全等研究领域提供了创新的技术手段。上海通微分析技术有限公司还生产为中国用户量身定做的EasySepTM-1000系列高效液相色谱。高品质的软硬件组合,全面兼容GLP规范,能够充分完全满足常规分析和半制备的需要。优质服务,是通微的发展之道。公司除提供产品安装、调试和售后维护等常规服务外,还不定期为客户举办色谱技术培训班,帮助客户开发分离、分析方法,提供样品检测等技术服务。高素质应用研发队伍和快捷的本土化售后服务,为客户解除分析分离工作的后顾之忧。[b]CEO兼首席科学家阎超博士介绍[/b]1956年10月生,东北人。1978年3月进入内蒙古民族师范学院化学系就读,1981年底毕业后留校任教。1985年在美国华盛顿Georgetown(乔治城)大学化学系攻读博士学位。1990年获博士学位后,留校作博士后研究。1991年在Sandoz Pharma Ltd. 公司的瑞士总部作博士后。1993年在Stanford(斯坦福)大学及Sandia国家实验室做研究。1993年创建美国通微技术股份有限公司。1999年创建天润通微(天津)分析技术有限公司。1993年组建海外华人创业联合会,曾五次组团回国考察访问。1991年为中国“最惠国待遇”去美国国会斡旋,并在白宫受到布什总统接见。1999年去华盛顿受到朱鎔基总理接见。2003年5月至今任上海通微分析技术有限公司的首席执行官兼首席科学家。目前担任南开大学、上海交通大学、华东师范大学、福州大学的客座教授,中国色谱协会常务理事兼副秘书长,《色谱》杂志副主编,中国分析仪器学会微分离仪器专业副主任委员。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制