当前位置: 仪器信息网 > 行业主题 > >

二次供水检测

仪器信息网二次供水检测专题为您提供2024年最新二次供水检测价格报价、厂家品牌的相关信息, 包括二次供水检测参数、型号等,不管是国产,还是进口品牌的二次供水检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二次供水检测相关的耗材配件、试剂标物,还有二次供水检测相关的最新资讯、资料,以及二次供水检测相关的解决方案。

二次供水检测相关的资讯

  • 二次供水监测开启“互联网+” 时代
    二次供水水质在线监测系统将开启“互联网+”时代,未来手机上就能了解所在小区水质实时情况。12月18日,中科院上海微系统所-能讯传感技术联合实验室在上海发布二次供水水质在线监测系统,可实现24小时水质在线监测,明年3月正式投入上海市场。  水质监测设备进口替代空间大  2015 新环保法新增加了环境污染公共监测预警机制,对环境监测提出了更高要求。目前,二次供水陷入“最后一公里”水质监控困局。此次发布系统的前端无线传感监测系统外置水箱采样,无采集污染,自动实时监测包括浊度、余氯、ph、溶解氧等主要自来水水质指标,采用的自主研发的光学探头可使用8至10年左右。“在成本方面我们比国外公司大约节约了三分之一。”能讯环保董事长蒋洪明说。  长期以来,我国环境水质监测仪器主要依赖进口,国产水设备市场占有率不足10%,进口替代空间大。  前期投入后续收取服务费  这次中科院能讯联合实验室选择二次供水作为突破口,解决了二次饮用水在线监测系统的一些饮用水安全问题,还有报警功能。公司正在将水质监测做成app或者微信服务,届时人们打开手机就能了解所在小区的实时水质,就像现在了解天气和空气质量。  管理平台还可实现数据汇聚和共享。负责人金庆辉博士说,“目前有很多家庭安装了净水器,有了在线水质监测和大数据分析,就可以知道某个地区甚至某个小区水质到底如何,是否需要净化,重点从哪方面进行净化,净水器厂家甚至保健品厂商也可以根据不同地区的特点开发出更有针对性的产品。”  该系统已受到资本市场青睐。据透露,目前有五家投资机构进入了能讯环保公司,洽谈b轮融资。能讯环保也在积极筹备挂牌,可能先登录新三板,随后争取转到新兴战略板上市。蒋洪明表示,将努力在未来五年内建立地方性水污染数据库以及地方水污染应急响应机制,覆盖包括饮用水、地表水、地下水在内的立体水质在线监测网络,成为中国最大的第三方环境监测服务供应商。
  • 哈希无人化解决方案,为二次供水端口防疫排忧解难
    目前,全国许多地区疫情形势好转,进入到把握好防疫态势组织企业积极复工复产的阶段。在市政供水领域,为了实现防疫目标,供水企业可以采用对水厂和供水生产场所进行严格管控的方法,限制人员进出并保证24小时值班,严防病毒入侵。然而,在供水系统的“人员密集端口”二次供水阶段,以上措施很难生效。二次供水端口疫情期间主要困难:入户作业困难。部分地区的小区实施了封闭式管理,导致供水企业对铺设了二次供水管道的小区的设备检修遭遇重重困难。同时,出于减少人员流动、避免过多人员接触的目的,部分企业也不愿特殊时期派遣员工前往现场作业。对水质监测准确度提出更高要求。疫情期间,城市用水状况与平时相比变化很大。在疫情较轻区,工商行业企业大面积停业,用水量与往年比急剧下降,导致管道中水压增大,水龄难以把控;而在疫情较严重地区,除了工商行业的停业导致的用水量下降外,还有医院的用水量迅速升高的情况,因此市政供水情况更加复杂。面对这样复杂而两难的局面,需要供水企业在二次供水端口的水质监测做到准确、及时的同时,更需要实现自动化、无人化管理,对企业的水质监管能力提出了较大考验。 哈希在线分析仪MS6100作为专为中国用户设计的多参数在线分析仪,可以帮助二次供水企业实现无人化管理。帮助您有效防疫的同时,提高供水效益。 MS6100多参数在线分析仪具有以下特性:l 连续监测7大参数MS6100可连续监测包括余氯、总氯、浊度、PH、ORP、电导率和温度7种水质参数l 全新检测技术360°x90°浊度检测技术让浊度测量进入准确时代l 低维护量,维护间隔长长达3个月的试剂更换周期,减低试剂消耗,满足供水管网/二次供水监测无人值守要求l 自动化运行省心省力停水停电可自动保护和恢复,漏水漏液能自动切断水路防止仪器被淹l 通讯功能齐备配有2个RS485接口,采用标准的RTU Modbus通讯协议,让数据传输更灵活l 专为中国设计一体化设计,安装空间小。IP65级别外壳防护等级,恶劣工况也不用担心。 MS6100 多参数水质分析仪采用一体化设计,安装简易、维护量低、配置灵活、通讯功能齐全,停水停电自动保护、来水来电自动恢复,专为无人值守的应用场合设计。在疫情期间实现无人化管理的同时帮助您快速了解管网水质实时情况,使水厂或者管理中心能及时根据连续监测结果作出及时的工艺调整或者应急预案,先于问题出现之前解决。从而为当地居民提供更优质、更有保障的饮用水,在有效防疫的同时,提高供水效益。
  • 60%城市居民饮用二次供水存卫生隐患
    “一打开水龙头,我就吓一跳,放进盆里的水怎么会有杂质?”上海市杨浦区殷行路一小区业主抱怨道。  原来,不久前,物业贴出了清洗小区水箱的通知,清洗结束后,业主们却发现,水龙头里流出的水依然有杂质,当天小区里约400户住户无法使用饮用水。  据了解,在上海等大城市,一般六层以上民用建筑的供水都使用水箱二次供水,也就是说,约有60%的人都在饮用二次供水。然而,根据记者的调查,清洗水箱———这一关系到小区业主饮水安全的隐性物业服务,如今却在很大程度上遭遇“捣浆糊”(上海方言,意指打马虎眼、敷衍———编者注),而水质检测、监督等环节也存在漏洞。怎样才能让老百姓喝上安全的水,已成为城市管理中一个迫切需要解决的问题。  “看得到杂质,肯定不符合标准”  租住在上海市机场新村小区的一位房客向有关部门投诉,不久前,他发现自来水管放出的水中含有丝蚯蚓状的小红虫等肉眼可见的杂质,便向物业管理公司反映情况,但大半个月过去了,问题迟迟没有得到解决。  无独有偶。在上海康城、春申景城、天山河畔花园、东方城市花园等多个小区的业主论坛上,记者也看到了关于水里有杂质、红虫,或者是异色异味等问题的议论,有业主拆下了家里水龙头的滤网,发现上面有不少杂质。  仙霞路一小区的业主周先生告诉《法制日报》记者,他所住的小区是上世纪90年代末建成的住宅楼,用的是水泥面的水箱,业主们一直对用水水质怨声载道,当他们对楼顶水箱进行实地探查时,被里面的景象惊呆了:水箱内部青苔成片、铁锈成团———平时用的,竟然是如此脏水。  上海市黄浦区卫生监督所综合执法一科科长俞爱群告诉记者,该所在对水厂、水箱、现制现售水、管道水等的监督中,市民投诉水箱的水浑浊、有虫等问题最多。  上海市卫生监督所产品卫生监督科副科长应亮表示,“如果在水中看得到杂质,肯定不符合卫生标准,这样的水是不能饮用的”。  “红虫就是水蚯蚓,一般在中污带生存。”上海水产大学水产养殖学科教授王武介绍说,水蚯蚓的出现说明自来水已经受到一定程度的污染。但水质的污染程度是否会引起腹泻等问题,还需要看水蚯蚓的数量,并对水中的大肠杆菌等进行检测后才能知道。  有业内专家指出,屋顶水箱是供水二次污染中很重要的一个污染源,因为不少水箱是半开放式甚至开放式的,特别是一些水箱因为内壁材料不佳,就容易滋生微生物。一旦负责清洗水箱的房管或物业部门疏忽,就可能导致水质污染问题。  “究竟洗没洗,居民根本不知道”  市民李女士向《法制日报》记者反映,她所住的小区尽管每隔一段时间,就能看到小区物业贴出“因清洗水箱而停水”的告示,但究竟洗没洗,居民根本不知道。有一次清洗水箱时,她特别注意了一下,发现水箱里连水都没放出来,“这种情况下,又不可能爬上去看。水箱里的情况到底如何,恐怕只有物业自己知道”。  据了解,水箱的清洗消毒有着严格的要求和规定。“按照相关规定,二次供水应每季度清洗一次,现在大都降低到了一年两次的标准。”业内人士介绍说,即便如此,还有物业在清洗次数上打折扣,有的一年洗一次,更有甚者两年清洗一次,还有不少物业在清洗过程中“捣浆糊”。由于清洗水箱所需的药水、人工、工具都是成本,为了省下这笔费用,一些物业就派人放一下水做样子。其实物业费里已包括了清洗费,能节省一次,对物业来说也就是“盈利”。  根据规定,水箱清洗后要由超过一定比例的业主签名认可,水质要经疾病预防控制中心检测并公示检测结果,但时下没有几个小区能做到这点。  上海物业管理行业协会副秘书长王青兰坦言,“检测水样作为监督环节,在实际效果中有些形同虚设”。她表示,取样地点应来自于使用者家中,同时在清洗完成后的48小时内审核比较准确。然而,现在水样从何而来,送水过程有无“调包”,都存在漏洞,“肯定不排除物业公司在清洁过程中存在不正规的操作方式”。  “有没有机构专门监督物业”  “如果物业公司不能及时清洗水箱,有没有机构专门监督他们?”有上海市民提出这样的问题。  记者查阅了1993年制定颁布的《上海市二次供水水箱清洗消毒要求》后发现,该要求对于水箱清洗工作中涉及的清洗消毒人员的资格、清洗程序以及水箱周边环境卫生、清洗药物和工具的保管等问题,都有十分细致和明确的规定。  而根据1995年制定颁布的《上海市生活饮用水二次供水卫生管理办法》,对没有按照规定对水箱进行消毒和清洗的房屋管理单位,除责令其限期整改外,还可并处1000元以上10000元以下的罚款。然而,事实上,15年来,真正被处罚过的单位寥寥无几。  据了解,目前上海中心城区的水箱数量大约是11.4万个,而眼下上海市对二次供水进行的监督检查,主要由各区县卫生监督所进行抽检,抽检量为几千个水箱,因此难以做到对所有小区每个水箱的全覆盖检查。现场监督抽检也主要是对消毒剂指标和浑浊度指标的检测,但二次供水的其他检查环节,包括水样送检在内,是依靠物业公司的自身运作来完成的。  上海市卫生监督所相关工作人员表示,水箱的清洗消毒监管应该依靠社会各方面齐抓共管。目前,对闵行区的试点工作已经展开,对水箱清洗消毒的工作由区卫生局、房地局、自来水公司联合进行公示。此外,徐汇区也开始尝试聘请社区医院的预防和保健人员以及房地局人员做协管员,并请业委会派员加入到监管中。
  • 线上课堂:二次供水相关方案讲解
    线上课堂:二次供水相关方案讲解哈希公司夏日炎炎,少年们在高考考场上奋笔疾书,奔向大好前程;而哈希线上课堂也将知识带到您的身边,足不出户就能学习。 本期,哈希专家将为各位讲解二次供水的相关方案,并与大家分享自己的技术经验与心得体会。想要多多了解最新干货,就快戳最后的阅读原文,报名上课吧!天堂伞、蓝牙音箱、乐扣保温杯无限光电鼠标、胸包/斜挎包等直播抽奖主题:二次供水相关方案讲解参加费用: 免费参加方法: 文章底部点击阅读原文报名开始时间: 2020年7月15日星期三 下午14:00 报名成功后,我们将在会议开始前发给您参会链接,电脑、手机均可在线观看。不要犹豫,点击下方阅读原文,报名参与吧。END
  • 热烈祝贺《城镇供水管网末端水质在线监测智能化模块技术准则》标准第二次讨论会成功召开
    p  水是百姓生活中最最基本的需求,高品质的饮用水也是人民群众美好生活最基本的保障。随着我国高质量饮用水供水开始向农村普及,以武汉为代表的一部分城市也提升了对饮用水供水的水质要求。为了满足行业和市场的需要,《城镇供水管网末端水质在线监测智能化模块技术标准》标准第二次讨论会于2019年4月19日在济南隆重召开。本次讨论会由中国质量检验协会主办,中国质量检验协会水环境工程技术与装备专委会、青岛中质脱盐质量检测有限公司承办,山东省城市供排水水质监测中心、智慧水务产业技术创新战略联盟协办,山东省城市供排水水质监测中心、中国城市规划设计研究院城镇水务与工程研究分院、建设部城市水资源中心、建设部城市供水水质监测中心、水利部交通运输部国家能源局南京水利科学研究院、中国水利水电科学研究院水环境研究所、中国环境科学研究院湖泊环境研究所提供技术支持。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/06bfcb0f-1456-47fa-a6bb-6aff0df67d45.jpg" title="1.jpg" alt="1.jpg" width="481" height="313" style="width: 481px height: 313px "//pp style="text-align: center "参会代表合影/pp  中国质量检验协会净水设备专业委员会理事长兼秘书长邓瑞德、山东省城市供排水水质监测中心主任贾瑞宝、副主任孙韶华、中国城市规划设计研究院城镇水务与工程研究分院副总工程师,建设部城市供水水质监测/水资源中心总工程师宋兰合、海河流域水资源保护局副局长罗阳、江苏产业技术研究院水环境工程技术研究所标准所所长全新路、中科院西安光学精密机械研究所副研究员于涛、中国环境科学研究院水环境研究所副研究员焦立新、智慧水务产业技术创新战略联盟秘书长张善亮等领导专家出席了本次会议。/pp  此项标准主要起草单位,包括苏州瑞质斯旺仪表有限公司、深圳一目科技有限公司、青岛积成电子股份有限公司、浙江和达科技股份有限公司、山科智能科技股份有限公司、江苏迈拓智能仪表有限公司、中兴仪器(深圳)有限公司、青岛海尔施特劳斯水设备有限公司、赛莱默分析仪器(北京)有限公司、郑州沃特测试技术有限公司、青岛中质脱盐质量检测有限公司、株洲珠华智慧水务科技有限公司、北京华科仪科技股份有限公司、深圳市水净科技有限公司、河北德润厚天仪器制造有限公司、江西渥泰环保科技有限公司、河北华厚天成环保技术有限公司、湖南常德牌水表制造有限公司、郑州贯奥仪器仪表有限公司、哈尔滨供水集团有限责任公司水质中心、东莞水务监测中心等共计50余人参与本次讨论会。/pp/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/2ca7c2f7-2fa8-4b7a-b64f-6de67c233e61.jpg" title="宋兰合.jpg" alt="宋兰合.jpg" width="396" height="327" style="width: 396px height: 327px "//pp style="text-align: center "宋兰合,中国城市规划设计研究院城镇水务与工程研究分院副总工程师,/pp style="text-align: center "建设部城市供水水质监测/水资源中心总工程师/pp  会议由中国城市规划设计研究院城镇水务与工程研究分院副总工程师,建设部城市供水水质监测/水资源中心总工程师宋兰合主持。首先,由中国质量检验协会净水设备专委会邓瑞德理事长与山东省城市供排水水质监测中心贾瑞宝主任致辞。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/3c8ea7e0-2340-44d6-a7a5-ac9735e76f43.jpg" title="邓瑞德.jpg" alt="邓瑞德.jpg" width="492" height="317" style="width: 492px height: 317px "//pp style="text-align: center "邓瑞德,中国质量检验协会净水设备专委会理事长/pp  邓瑞德理事长在致辞中强调,饮用水作为人民群众享受美好生活的必须基础条件之一,关系到百姓的基本生活需求,是最基本、最重要的民生问题之一。十九大报告多次强调改善民生,而改善民生就一定要把控水的质量,做好水质监测工作。本次讨论会的召开,就是为了规范水质监测工作,将科学、权威的信息向社会公布,向百姓公布,让百姓在喝的到饮用水的同时,还能够明明白白地知道饮用水的质量,喝的放心,喝的健康。本次标准的制定是一件善事、好事,希望在座的专家本着对党和国家负责的精神,以科学、严谨的态度做好标准制定工作,制定出能够实施的标准。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/2294867e-c8c4-479f-92c9-38987c75a99e.jpg" title="贾瑞宝.jpg" alt="贾瑞宝.jpg" width="421" height="299" style="width: 421px height: 299px "//pp style="text-align: center "贾瑞宝,山东省城市供排水水质监测中心主任/pp  贾瑞宝主任在致辞中表示,栗战书委员长在主持水污染防治法座谈会时提出在提出管控水源污染防控的同时促进、扩大水质信息的公开。在水质标准还不完善的情况下,公开的水质信息的科学性就会打折扣。在这样的背景下,加快水质监测和水质管理的信息化建设非常重要。在国家标准化改革的大前提下,团体标准的作用必然得到加大和加强。本次制定的标准解决了入户系统水质监测这一重要环节的重要问题,抓到了管网供水问题的关键点。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/7ee0ac90-1548-4e7c-8b4c-2648e5414457.jpg" title="苑萍.jpg" alt="苑萍.jpg" width="468" height="333" style="width: 468px height: 333px "//pp style="text-align: center "苑萍,中国质量检验协会水环境工程技术与装备专业委员会常务副秘书长,青岛中质脱盐质量检测有限公司总经理/pp  随后,承办单位中国质量检验协会水环境工程技术与装备专业委员会常务副秘书长,青岛中质脱盐质量检测有限公司总经理苑萍作了协会标准工作汇报。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/88a74c88-896c-4a74-bdb9-3f50be56091c.jpg" title="马中雨2.jpg" alt="马中雨2.jpg" width="457" height="340" style="width: 457px height: 340px "//pp style="text-align: center "马中雨,山东省城市供排水水质监测中心/pp  之后由此次标准主笔专家,山东省城市供排水水质监测中心贾瑞宝主任主持了标准第二稿的讨论环节。山东省城市供排水水质监测中心马中雨代表标准主笔团队对标准编制修改情况进行汇报,并对标准制定的对标准下一步工作计划进行了安排和确认。接下来,与会代表结合产品、技术和实际应用提出了很多宝贵意见及建议。随后确定了标准进度安排,以及送审时间。随后,山东省城市供排水水质监测中心进行了拟申请立项标准工作汇报。/pp  最后,由中国质量检验协会净水设备专委会邓瑞德理事长作会议总结讲话并进行重要指示。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/6294ea9f-648f-4380-8301-da7f0f32bb44.jpg" title="邓瑞德12.jpg" alt="邓瑞德12.jpg" width="509" height="333" style="width: 509px height: 333px "//pp style="text-align: center "中国质量检验协会净水设备专委会理事长邓瑞德进行总结讲话/pp  邓瑞德理事长首先对参会专家表示感谢,并勉励参与标准编制工作的年轻科技工作者。邓瑞德理事长指出,参与标准制定工作需要进行大量的工作,查阅资料、进行实验,对于科技工作者本身的成长具有非常重大的意义,希望更多的年轻科技工作者能够加入到标准制定工作中来,在科研活动中飞速提升自己。/pp  同时邓瑞德理事长对标准制定工作同时提出了两点要求:一,希望在今后的标准讨论会上能够增加与会专家交流工作进展、最新的国家政策、标准编制等信息的机会,让感兴趣的人能够参与。二,希望参与本次标准编制的专家能够进一步强化交流,积极建言献策,在5月10日前将意见进行汇总。/pp/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/99dad581-3b3c-4b83-90ce-ad2728056d38.jpg" title="讨论会.jpg" alt="讨论会.jpg" width="573" height="243" style="width: 573px height: 243px "//pp style="text-align: center "讨论会现场/pp  改善水质,把控为先。为了把控好饮用水供水的水质,让饮用水走好供水管网的“最后一公里”,在线监测手段必不可少。相信智能化水质在线监测设备在解决供水管网末梢水质监测这一传统城镇供水水质监测的痛点、难点问题中将发挥巨大的作用。本次会议的召开极大地推动了饮用水入户水质在线监测智能化设备品质的标准化进程,对于解决当下饮用水入户水质在线监测智能化设备及应用领域的标准缺失问题意义重大。/ppbr//p
  • 土壤新标二次征求意见 检测指标又增加
    p  近日,环保部发布《土壤环境质量标准》(GB 15618-1995)修订二次征求意见稿。与初次发布的征求意见稿相比,此次稿件仍是将《土壤环境质量标准》分拆为《农用地土壤环境质量标准》和《建设用地土壤污染风险筛选指导值》。但标准内容有了一定的调整。《农用地土壤环境质量标准》继上次增加10项选测项目外,又增加一项检测项目——钼,此次征求意见稿含9项必测项目和12项选测项目,同时农用地土壤分类也做了一定调整。《建设用地土壤污染风险筛选指导值》检测标准取消了基本项目和其他项目的分类,检测指标增至121项。/pp  strong具体全文如下:/strong/pp style="TEXT-ALIGN: center"关于征求《农用地土壤环境质量标准(二次征求意见稿)》等三项国家环境保护标准意见的函/pp  各有关单位:/pp  为贯彻落实《中华人民共和国环境保护法》,保护土壤环境,防治土壤污染,保障人体健康,我部决定修订《土壤环境质量标准》(GB 15618-1995),并于2015年1月对标准修订草案公开征求意见。根据反馈意见和相关研究,标准修订项目组进一步梳理了土壤环境质量评价标准体系,修改完成了《农用地土壤环境质量标准(二次征求意见稿)》和《建设用地土壤污染风险筛选指导值(二次征求意见稿)》,并完成了配套标准《土壤环境质量评价技术规范(征求意见稿)》。/pp  根据国家环境保护标准制修订工作规定,现将上述三项标准规范征求意见稿及其编制说明印送给你单位,请研究并提出书面意见,于2015年9月15日前反馈我部。征求意见材料电子版可登录我部网站(http://www.mep.gov.cn/)“征集意见”栏目检索查阅。/pp  联系人:环境保护部科技标准司 段光明/pp  通信地址:北京市西直门南小街115号/pp  邮政编码:100035/pp  电话:(010)66556621/pp  传真:(010)66556213/pp  电子邮箱:biaozhun@mep.gov.cn/pp  附件:1.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/5c4d1e61-ce01-4522-b1b6-17615e9e54af.pdf"部分主送单位名单.pdf/a/pp  2img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/fbaec221-e690-4463-827d-ff99122d81d0.pdf"农用地土壤环境质量标准(二次征求意见稿).pdf/a/pp  3.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/25d68d18-4a4c-43cb-8ac8-172cb9a07c35.pdf"建设用地土壤污染风险筛选指导值(二次征求意见稿).pdf/a/pp  4.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/0ef78b61-cb17-4b94-a694-90e471050f26.pdf"土壤环境质量评价技术规范(征求意见稿).pdf/a/pp  5.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/cf934708-e3c8-4edd-93dc-7af0f53be3e6.pdf"土壤环境质量评价标准体系建设方案.pdf/a/pp  6.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/edc4b2ae-f5e9-4a5c-846f-1c1e9ba5dcb8.pdf"《农用地土壤环境质量标准(二次征求意见稿)》编制说明.pdf/a/pp  7.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/f95082ef-cdb4-4b63-8c63-16b04a9a5e1e.pdf"《建设用地土壤污染风险筛选指导值(二次征求意见稿)》编制说明.pdf/a/pp  8.img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201508/ueattachment/a597ee99-0ab5-4b52-9da3-1e5f03ce52de.pdf"《土壤环境质量评价技术规范(征求意见稿)》编制说明.pdf/a/pp/p
  • 新国标施压二次污染待解 饮用水6000亿市场
    再过一个多月,卫生部出台的饮用水新国家标准将于7月1日起正式强制推行,其相对于旧国标多出三倍多的水质指标要求,可以让百姓喝水更放心。  普通市民关心饮水安全,而投资市场则关心新国标的实施是否能带来一些新的投资机会。近两年来,水务行业频收政策利好,诸如污水处理、再生水利用等领域已相继掀起一个个投资热潮,此番饮用水净化市场又将迎来一个投资主题。据初步测算,新国标涉及上游自来水厂净化设施提标改造和下游家庭饮用水净化器两大细分领域,总投资规模将达到近6000亿元人民币。  作为政府公用事业的一部分,净化水市场的启动有可能遭遇巨大的资金缺口。这让此前备受业界关注的水价上调预期进一步加大,同时,多元化资本的渐次涌入,也为市场的加速释放注入了一股强劲动力。  新国标“倒逼”水厂提标改造  世界卫生组织(WHO)调查表明,全世界80%的疾病和50%的儿童死亡都与饮用水水质不良有关。饮用不良水质导致的疾病多达50多种,如消化疾病、传染病、各种皮肤病、糖尿病、癌症、结石病、心血管病等 由于水质污染,全世界每年有5000万儿童死亡,3500万人患心血管病,7000万人患结石病,9000万人患肝炎,3000万人死于肝癌和胃癌。在我国,因为水质污染引起的新发病种情况越来越多,“饮用水污染”已经成为中国最主要的水环境问题。  全国有共计4000余家自来水厂,为4亿多县级以上城市居民,每天供应6000万吨自来水。卫生部近日宣布自今年7月1日起在全国强制实施新的《生活饮用水卫生标准》,饮用水监测指标将从目前的35项提高到106项。据了解,新标准与现行的1985年版本相比,加强了对水质有机物、微生物和水质消毒等方面的要求,基本实现了饮用水标准与国际接轨。  “事实上,新国标早在2007年就制定颁布了,只不过当时并不要求强制执行,因此各地针对新标准要求进行的自来水厂提标改造热情并不高。”中国水网高级分析师肖琼告诉中国证券报记者,按照新国标要求,全国自来水企业在生产工艺、管理、维护等多个方面都必须做出相应调整,必须进行大量的技术改进和设备更新。  尽管新国标已制定出台达5年之久,但据中国证券报记者了解,目前国内除北京、上海等一部分一线城市以及东营、江阴等沿海发达城市已逐步实现城市主要自来水厂完成提标改造外,大多数城市仍沿用旧国标标准进行水质监测,有些甚至连旧国标的要求都达不到。  据清华大学饮水安全研究所所长刘文君介绍,我国98%城市供水处理技术长期来沿用“混凝—沉淀—过滤—消毒”四个单元处理过程组成的常规供水处理工艺,其理论主要是建立在传统的以黏土胶体微粒和致病细菌为主要去除对象的基础上。随着我国各地区水体污染状况的日趋严峻,源水水质不断恶化,用常规的净化工艺很难去除掉微污染水源水中含有的微量有机物、农药及氨氮等有害污染物。  肖琼认为,水质达标情况不理想,从另一个角度也意味着目前国内饮用水净化处理的市场空间还很广阔。  据她分析,目前国内一个10万吨的自来水厂要实现新国标要求的水净化处理,吨水投入大概需要600到700元,整个水厂投入为6000万到7000万元 如果按照住建部数据,全国4000家水厂有87%达标,意味着有520家水厂不达标,这些水厂如果都按10万吨单厂规模计算,相应的水处理提标改造投入将达312亿到364亿元。而据她预计,实际上,全国既有自来水厂提标改造所需投入要远远超出这一数字,甚至可达千亿元规模。  净水器产值将超五千亿  进一步的市场分析则指出,自来水厂升级改造只是饮用水新国标推出所创下的市场空间的一部分,更大的板块可能来自于下游终端家庭用水领域。  刘文君表示,目前全国市政供水系统普遍存在二次污染问题,如高层住宅的水箱供水,漫长的自来水输送管道,都会造成潜在的铁锈、水垢及微生物等污染问题。家庭取用时烧成开水可杀死微生物污染,但无法去除有机污染物和重金属离子。如此,用于满足家庭水净化的终端处理设备便迎来了市场需求的扩容。  据了解,中国现阶段的生活饮用水终端市场由瓶(罐)装饮用水、自来水终端制水、管道直饮水三分天下,其市场份额分别为:桶装水约占75%-80%,净水器约占20%-25%,管道直饮水约占0.2%。  根据前瞻产业研究院最新发布的研究报告,桶装水和管道直饮水二次污染问题,目前越来越受到关注,未来将逐渐被净水器所替代。  在欧美和日本、韩国等国家,净水器的家庭普及率达到70%左右,但中国家用净水器普及率仍不到2%,且其中多数为净化处理效果不佳,出水水质未完全达标的传统活性炭式低端净水设备。  上述报告认为,在国标强制推行形成的倒逼机制下,一些应用新处理工艺的中高端净水器将全面替代旧有市场。在需求的拉动下,预计2011-2015年中国净水器产量仍将保持40%左右的速度增长,2015年中国净水器产量有望达到2.6亿台。如果按目前市场上中高端净水器平均2000元/台的售价来测算,这一产业市场到2015年产值可达5200亿元。  无论是上游自来水厂提标改造,还是下游中高端净水器全面进入寻常百姓家,其所需设备均需采用目前越来越居于主流的膜处理工艺。业内分析指出,这一系列市场启动将开拓膜材料的巨大需求空间。
  • 陕西省检验检测机构信用风险分类管理办法(二次征求意见稿)
    各设区市、韩城市、杨凌示范区市场监管局,省质量技术评审中心,各检验检测机构,相关单位和专家:为加强我省检验检测机构监管和诚信体系建设,构建完善以信用为基础的新型监管机制,提升监管的科学性、精准性、有效性,省市场监管局组织起草了《陕西省检验检测机构信用风险分类管理办法(征求意见稿)》。前期已向社会公开征求意见,在充分吸收采纳相关意见的基础上进行修改完善的基础上形成了“二次征求意见稿”,现再次向社会公开征求意见。本次公开征求意见的时间为2024年4月2日至54月218日。有关单位和个人可将意见反馈至4825080@qq.com。请在电子邮件主题注明“检验检测机构信用分类监管再次征求意见反馈”。联系人:俞海源,联系电话:029-86138596。附件:1.陕西省资质认定检验检测信用风险分类管理办法(二次征求意见稿)2. 2.反馈意见表陕西省市场监督管理局2024年4月2日附件1陕西省资质认定检验检测机构信用风险分类管理办法(二次征求意见稿)第一章 总则第一条 为加强陕西省资质认定检验检测机构(以下简称检验检测机构)监管和诚信体系建设,构建完善以信用为基础的新型监管机制,提升监管的科学性、精准性、有效性,根据《陕西省社会信用条例》《检验检测机构监督管理办法》《检验检测机构资质认定管理办法》《市场监管总局关于推进企业信用风险分类管理进一步提升监管效能的意见》(国市监信发〔2022〕6号)等有关规定,制定本办法。第二条 本办法所称检验检测机构是指依法成立,取得陕西省检验检测机构资质认定部门颁发的检验检测机构资质认定证书的专业技术组织。本办法所称资质认定检验检测机构信用风险分级分类管理(以下简称信用风险分类管理)是指市场监督管理部门依托陕西省检验检测认证认可公共服务平台归集检验检测机构信用信息,建立信用风险分级分类指标体系,依据信用风险等级实施差异化监督管理。第三条 省市场监管局负责全省检验检测机构信用风险分类管理的统筹协调和制度建立,负责组织指导全省检验检测机构信用风险分类管理工作,负责建立管理陕西省检验检测机构信用风险分类管理平台(陕西省检验检测认证认可公共服务平台,以下简称管理平台)。全省各级市场监管部门按照“谁产生、谁提供、谁负责”的信用信息归集共享原则,将检验检测领域的双随机监督检查、重点专项检查、检验检测报告抽查结果、能力验证、行政处罚等信息依法依规记录归集到陕西省检验检测认证认可公共服务平台,并依据信用风险分级分类结果采取差异化的监管措施。第四条 检验检测机构信用风险分类管理,遵循科学合理、客观公正、内部评价、分类实施、协同运用的原则。第二章 指标体系建设第五条 省市场监管局从资质认定、监督检查、行政处罚、投诉举报、能力验证、统计年报和基础信息等七个维度,建立科学有效、运行规范的信用风险分类管理指标体系,并实施动态管理。第六条 检验检测机构信用风险分级分类指标信息应当“应归尽归”,记录及时、准确、规范、完整。第七条 省市场监管局在通用型企业信用风险分类管理模式基础上,结合检验检测领域特点,建立专业型信用风险分类模型。第三章信用风险分级分类第八条 根据国家信用风险分类管理要求,省市场监管局按照信用风险状况,依托管理平台按照定量与定性判定规则,将检验检测机构分类为信用风险低(A类)、信用风险一般(B类)、信用风险较高(C类)、信用风险高(D类)四类。第九条 满足下列全部条件的检验检测机构,应定为A类机构:(一)检验检测机构及其人员在从事检验检测活动中遵守法律、行政法规、部门规章的规定,没有行政处罚记录的;(二)在监督检查中,未发现违法违规行为,或发现存在不符合《检验检测机构资质认定管理办法》《检验检测机构监督管理办法》有关规定,但无需追究行政和刑事法律责任,采用说服教育、提醒纠正等非强制性手段予以处理的;(三)未被投诉举报,或被投诉举报,但经调查不存在违法违规行为的;(四)及时报送年度报告,数据客观准确的;(五)参加省局能力验证连续2年结果为“合格”的。第十条 存在下列条件之一的检验检测机构,应定为B类机构:(一)在监督检查中发现情节轻微的违法违规行为,被责令限期改正但不涉及行政处罚的;(二)被投诉举报,经调查违规情节轻微,被责令限期改正但不涉及行政处罚的;(三)及时报送年度报告,但数据存在瑕疵的;(四)参加省局能力验证结果为“补测合格”的。成立不满一年的资质认定检验检测机构,起始默认类别为B类。第十一条 存在下列条件之一的检验检测机构,应定为C类机构:(一)存在违法违规行为,被市场监管部门或行业主管部门行政处罚,被生态环境、公安等部门断网整改,或者被市场监管部门列入经营异常名录的;(二)被投诉举报,经调查存在违法违规行为,被行政处罚的;(三)在监督检查中被责令限期改正,但逾期未改正或改正后仍不符合要求的。基本条件和技术能力不能持续符合资质认定条件和要求,或者检验检测原始记录和报告归档留存不符合强制要求,或者(四)检验检测机构连续六个月未对外出具资质认定检验检测报告的;(四五)未及时报送年度报告,或者年度报告主要内容与实际严重不符的;(五六)参加省局能力验证结果为“不合格”的。第十二条 存在下列问题之一的检验检测机构,应定为D类机构:(一)检验检测机构作出虚假承诺或者承诺内容严重不实,由资质认定部门依照《行政许可法》的相关规定撤销资质认定证书或者相应资质认定事项的;(二)拒绝行政机关监督检查的;(三)被市场监管部门列入严重违法失信企业名单;或者被生态环境、公安等部门断网停线;或者被列入其他各类行政机关、司法机关“黑名单”的;(四)检验检测机构实际地址不存在,迁址未按要求进行变更或营业执照被吊销的;(五)连续十二个月以上未对外出具资质认定检验检测报告的;(六)未按照要求参加省局组织的能力验证,或能力验证的二次结果判定为“不合格”的;(七)国家“互联网+监管”系统中信用风险为E类,陕西省企业信用风险分类管理系统中信用风险为D类的;(八)提供虚假材料,以欺骗、贿赂等不正当手段取得信用评价等级的。(二)责令限期改正,但逾期未改正或改正后仍不符合要求的;(三九)出具不实、虚假检验检测报告的;(四)基本条件和技术能力不能持续符合资质认定条件和要求,对外出具报告的;(五)资质认定证书到期后或超出资质认定证书检验检测能力范围,对外出具报告的;(六)被市场监管部门列入严重违法失信企业名单;或者被生态环境、公安等部门断网停线;或者被列入其他各类行政机关、司法机关“黑名单”的;(七十)存在两条及以上行政处罚记录的;(八十一)被投诉举报,引发重大舆情事件,经调查存在违法违规行为的;(九)检验检测机构实际地址不存在或营业执照被吊销的;(十)连续十二个月以上未对外出具资质认定检验检测报告的;(十一)未按照要求参加省局组织的能力验证,或能力验证的二次结果判定为“不合格”的;(十二)国家“互联网+监管”系统中信用风险为E类,陕西省企业信用风险分类管理系统中信用风险为D类的;(十三二)发生重大安全生产、环境污染等事故的;(十四三)转让、出租、出借或伪造、冒用、租借资质认定证书和标志的;(十五四)其他存在其他严重违反法律、法违规规情形或因违法违规行为移送公安机关处理的;(十六)提供虚假材料,以欺骗、贿赂等不正当手段取得信用评价等级的。第十三条 检验检测机构信用风险分类依托检验检测综合监管平台实行实时评价,各市(区)市场监管部门要及时录入检验检测监督检查、行政处罚等指标信息,确保检验检测机构信用分类准确。生态环境、机动车领域检验检测机构信用分类应分别会同环境、公安部门联合实施。第四章 结果运用第十四条 检验检测机构信用风险分级分类结果与信用中国(陕西)互联互通,作为市场监管部门配置检验检测机构监管资源、实施“双随机、一公开”监管、重点监管等差异化监管的重要依据。第十五条 全省各级市场监管部门应运用检验检测机构信用风险分类结果,建立健全与信用风险分类相适应的监管机制,采取差异化监管措施,合理确定、动态调整抽查比例和频次,提升监管精准化和智慧化水平,实现信用风险分级分类结果在检验检测监管工作中的常态化运用。各市(区)市场监管部门可根据本行政区域实际情况,在本办法规定的信用风险分类基础上,制定更加具体的差异化监督检查计划方案,并在本行政区域内组织实施。第十六条 对A类检验检测机构合理降低抽查比例和频次,除投诉举报、新闻舆情、转办交办案件线索及法律法规另有规定外,不主动实施现场检查。可在证书有效期内安排一次现场检查,实现“无事不扰”,减少对检验检测机构正常营业活动的干扰,对其检验检测机构资质认定相关申请开放绿色通道。第十七条 对B类检验检测机构按照常规比例和频次开展抽查,一般不跨年度连续对其实施现场检查。第十八条 对C类检验检测机构实行重点关注,增加抽查比例和频次,每年现场检查不少于一次,并加强行政指导或行政约谈,对其检验检测机构资质认定相关申请不再适用告知承诺方式。第二十条 对D类检验检测实行严格监管,每半年至少现场检查1次,辖区市场监管部门应视情对其进行告诫、约谈,对其检验检测机构资质认定相关申请不再适用告知承诺方式。第二十一条对信用风险等级分级分类结果为A、B类的机构采取以下激励措施:(一)对许可周期内连续被确定为A类的检验检测机构,资质认定复查时可采取书面审查方式作出是否予以延续资质认定证书有效期的决定;(二)省局组织的能力验证活动,优先遴选A类检验检测机构作为能力验证承担机构;(三)对A类、B类的检验检测机构实施包容审慎监管,符合省局“首违不罚”“轻微违法减轻行政处罚”清单要求的,依法免予或减轻行政处罚;(四)支持A类、B类的检验检测机构采用告知承诺制方式申请检验检测机构资质认定。第二十二条 强化与农业、生态环境、公安、司法等部门的协同共享监管,推动跨部门联合确定检查对象、联合实施监督检查,实现线索互通、结果互认、依法实施联合惩戒、联合通报,拓展信用风险分级分类结果的应用场景。第五章 责任追究第二十三条 全省各级市场监管部门及其工作人员,在检验检测机构信用风险分类管理过程中,利用工作之便篡改、虚构、删除、泄露相关信息,情节严重或造成不良后果的,依法追究相关责任。第二十四条 公民、法人或其他组织以营利为目的非法批量获取机构信用风险分类管理数据,对信用风险分类管理信息化系统运行产生不良影响的,或非法篡改、虚构、删除、泄露相关信息的,依法追究相关责任。第二十五条 全省各级市场监管部门要强化检验检测机构诚信教育,引导检验检测机构和从业人员加强自身信用建设,夯实机构主体责任,促进检验检测行业有序发展。第六章 附则第二十六条 本办法由陕西省市场监督管理局负责解释。第二十七条 本办法有效期两年,自20234年 月 日起实施,有效期2年。附件2反馈意见表填报单位(如个人反馈意见无需填写单位):《办法》内容修改意见修改原因说明联系人:联系方式:
  • 环保法修正二次审议 增排污单位监测设备规定
    十二届全国人大常委会第三次会议6月26日起至6月29日在北京举行,备受关注的《环境保护法修正案(草案)》(以下简称《草案》)将进行第二次审议。  现行《环境保护法》自1989年正式施行至今,20多年未曾修改。2012年8月召开的十一届全国人大常委会第二十八次会议,对《草案》进行首次审议,并向社会公开征求意见。有专家提出,《环境保护法》作为环境领域的基础性、综合性法律,应当回应环境保护的制度需求,解决环境保护的突出问题,建议采用修订方式对这部法律作全面修改。  全国人大法律委员会副主任委员张鸣起6月26日在十二届全国人大常委会第三次会议上作了关于《草案》修改情况的汇报。  张鸣起说,《草案》新增以下内容:修正案对企业公开具体环境信息作了强制规定,重点排污单位应当向社会公开其主要污染物的名称、排放方式、排放浓度和总量、超标情况,及污染防治设施的建设和运行情况 重点排污单位应按规定安装使用监测设备,对其排放的污染物进行监测。  针对目前环保领域&ldquo 违法成本低、守法成本高&rdquo 的问题,《草案》将追究环境违法行为的刑事责任纳入修改内容,增加规定&ldquo 企业事业单位和其他生产经营者通过暗管、渗井、渗坑、高压灌注或者以其他逃避监管的方式排放污染物,构成犯罪的,依法追究刑事责任&rdquo 。  《草案》还规定,&ldquo 企业事业单位违法排放污染物,受到罚款处罚,被责令限期改正,逾期不改正的,依法作出处罚决定的行政机关可以按照原处罚数额按日连续处罚。&rdquo   同时,对政府及有关部门的工作人员在执行职务过程中滥用职权、玩忽职守、徇私舞弊的行为,《草案》加大了处罚力度。《草案》明确,对环境违法行为进行包庇的 伪造或者指使伪造监测数据的 应当依法公开环境信息而不公开的 依法应当做出限期治理或者责令停业、关闭的决定而未作出的 将征收的排污费或者环境保护专项资金截留、挤占或者挪作他用的,造成严重后果的,各级人民政府及其有关部门给予负责人撤职或者开除处分,其主要负责人应当引咎辞职。  张鸣起说,为将环境保护工作中一些行之有效的措施和做法上升为法律,完善环境保护基本制度,《草案》作如下修改:一是修改完善环境监测制度,增加&ldquo 建立环境信息共享机制&rdquo 的规定。二是增加规定&ldquo 未依法进行环境影响评价的建设项目,不得开工建设&rdquo ,&ldquo 建设单位未依法提交建设项目环境影响评价文件,擅自开工建设的,由环境保护行政主管部门责令停止建设,处以罚款,并可以责令恢复原状&rdquo 。三是明确联合防治协调机制,规定&ldquo 国家建立跨行政区重点区域、流域环境污染和生态破坏联合防治协调机制,实行统一规划、统一监测,实施统一的防治措施&rdquo 。四是增加环境经济激励措施,规定&ldquo 企业事业单位和其他生产经营者,在污染物排放已经达标的基础上,通过采取技术改造等措施,进一步减少污染物排放的,以及按照产业结构和城乡规划布局调整的要求关闭、搬迁、转产的,人民政府应当依法采取财政、价格、信贷、政府采购等方面的政策和措施予以支持&rdquo 。五是进一步强化地方各级人民政府对环境质量的责任,增加规定&ldquo 未达到国家环境质量标准的重点区域或者流域的有关地方人民政府,应当制定限期达标规划,并采取措施按期达标&rdquo 。六是加强对引进外来物种等行为的规范,规定&ldquo 引进外来物种以及研究、开发和利用生物技术,应当采取有效措施,防止对生物多样性的破坏&rdquo 。七是增加规定&ldquo 国家建立、健全生态保护补偿机制&rdquo 。
  • 圣湘生物布局快速药敏检测赛道 推进“二次创业”首季扣非增19倍
    日前,圣湘生物发布公告称,公司拟与关联方成立合资公司,并将亏损参股公司21.69%的股权转让至合资公司旗下。公司合计投资金额为人民币5333万元。  圣湘生物表示,将依托合资公司作为整体运营,进一步聚焦于快速药敏检测领域,加速促进产业研究、应用开发及商业转化。  记者注意到,在新冠检测红利消失后,圣湘生物业绩连跌,2023年公司提出“二次创业”的口号,拓展业务范围,寻求业绩增量。今年一季度,圣湘生物在多赛道、多领域的布局初显成效,业绩实现大幅回升。  投资布局快速药敏检测  圣湘生物深耕检测领域。根据5月8日发布的最新公告,公司拟与关联方湖南湘江圣湘生物产业基金合伙企业(有限合伙)(以下简称“产业基金”)共同投资合资公司湖南圣微速敏生物科技有限公司(以下简称“湖南圣微速敏”),其中,公司合计投资金额为人民币5333万元。  具体而言,公司以0元的对价取得湖南圣微速敏39.9985%的股权,对应注册资本399.985万元,目前尚未实缴。同时,公司拟将参股公司First Light21.69%的股权转让至湖南圣微速敏下属全资子公司,转让对价为221.58万美元。  股权转让交易完成后,湖南圣微速敏新增注册资本人民币1.2333亿元,公司按39.9985%的持股比例认购其中新增注册资本人民币4933.015万元,公司合计投资金额为人民币5333万元。  资料显示,First Light成立于2006年,专注于抗生素药物敏感性的快速检测产品开发,具有在快速药敏细分领域全球领先的创新性和技术基础。截至2023年12月31日,First Light总资产683.86万美元,净资产-400.51万美元,2023年营业收入166.99万美元,净利润-667.44万美元。  据了解,First Light开发的Multi Path平台是一款兼具单分子免疫检测、微生物鉴定以及快速抗生素药敏测试三种功能的POCT检测仪(小型封闭式一体化检测仪)。其自主研发的独特快速药敏技术能够解决目前检测病原体抗生素敏感所需时间长、失败率高的痛点,有助于改善抗生素错用、滥用的根本性临床问题。  圣湘生物表示,基于产业基金与公司在药敏检测领域未来发展前景及商业开发的共同认知,后续将依托湖南圣微速敏作为整体运营,进一步聚焦于快速药敏检测领域,加速促进产业研究、应用开发及商业转化。  一季度业绩止跌回升  圣湘生物是一家集诊断试剂、仪器、第三方医学检验服务为一体的体外诊断整体解决方案提供商,曾因第一时间研发出新冠病毒核酸检测试剂产品实现业绩大增并成功上市。  资料显示,圣湘生物成立于2008年,2020年8月28日登陆科创板。2020年,公司实现营业收入47.63亿元、归母净利润26.17亿元,同比分别增长12倍、65倍。  随着新冠疫情消退,圣湘生物的业绩降幅明显。数据显示,2021年至2023年,公司的营业收入分别为45.15亿元、64.5亿元、10.07亿元;归母净利润分别为22.43亿元、19.37亿元、3.64亿元,连续三年下滑。  圣湘生物也试图通过并购和产业投资拓展检测领域业务。  2021年,圣湘生物曾计划收购体外诊断第一股科华生物(002022),但由于后者陷入百亿仲裁案而“告吹”。2021年6月,公司收购基因测序仪公司真迈生物14.77%的股权,成为其第二大股东。  2023年上半年,圣湘生物还通过产业投资寻找机会。当年,公司设立了湖南湘江圣湘生物产业基金,首期募集规模4亿元,专门用以投资生物医疗产业链上下游相关产业,涉及体外诊断、生物医药、生物科技、大健康等领域公司。  2023年提出“二次创业”后,圣湘生物将病毒性肝炎检测、血液筛查、呼吸道检测、生殖道感染检测当作“第二增长曲线”的主要战略产线。在一系列动作之下,2023年四季度,圣湘生物的营收规模环比开始回升。  2024年一季度,圣湘生物业绩大幅增长,一季报显示,报告期,公司实现营业收入3.91亿元,同比增长100.31%;归母净利润8102.47万元,同比增长35.01%;扣非净利润7375.57万元,同比增长1962.06%。  对于一季度业绩增长,公司表示,主要系报告期内公司凭借早期前瞻性战略规划与投入布局,在多赛道、多领域逐渐进入发力期,相关业务收入同比快速增长所致。
  • 关于召开《光谱法水质在线快速检测系统》标准第二次讨论会的通知
    p  各有关单位:br//pp  经中国水利企业协会立项的《光谱法水质在线快速检测系统》标准已于2019年1月11日在上海召开了标准第一次讨论会。根据上次会议的修改意见和建议,标准起草工作组进行了多次修改和完善,形成讨论稿第二稿。为保证按时完成标准制定任务,经研究讨论决定,将于2019年3月下旬在北京召开《光谱法水质在线快速检测系统》标准第二次讨论会议。请贵单位选派参与标准编写的专家参加。现将相关事宜通知如下:/pp  一、会议时间地点/pp  2019年3月22日9:00-12:00开会(3月21日下午13:00-19:00报到,地址:北京中国职工之家饭店A座大堂,电话:010-68576699)/pp  二、参会人员/pp  主编单位和参编单位的标准编制相关负责人。/pp  三、会议内容/pp  (一)标准起草负责人对标准编制修改情况进行汇报 /pp  (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准送审稿 /pp  (三)标准下一步工作计划进行安排和确认。/pp  四、会议地点/pp  北京中国职工之家饭店A座四层NO.25会议室/pp  (地址:北京西城区复兴门外大街真武庙路1号,电话:010-68576699)/pp  五、注意事项/pp  (一) 为了便于标准编制工作开展和组织,请相关参编单位积极配合,提供相关人力、物力及资金支持,相关事宜请与我司联系。/pp  (二)食宿由组委会统一安排,住宿费用自理。为便于安排食宿,请参编单位提前提交报名回执表。/pp  六、联系方式/pp  联系人:苑 萍 18366223266/pp  电话:0532-80912156、80912157(传真)/pp  电子邮箱:lyndayuan@vip.163.com/pp  附件:/pp  1、报名回执单/pp  2、标准工作下达文件/pp style="text-align: right "  二零一九年二月十八日/ppbr//p
  • 华测检测“实验室消耗品招标”项目第二次线上说明会成功举办
    p  strong仪器信息网讯/strong 2020年3月30日,华测检测“实验室消耗品招标”项目第二次线上说明会在仪器信息网平台成功举办,10家计划参与投标的供应商参加了此次线上会议。此次说明会由华测检测认证集团股份有限公司(以下简称" 华测检测" )与仪器信息网联合主办,华测检测采购部负责人——荆春波女士、华测检测耗材采购负责人——姚引杰先生分别在说明会上做了发言,并针对各大供应商关注的一系列问题给出了明确的答案。/pp  姚引杰先生介绍,本次招标项目已完成供应商的初步审核,共10家厂商有资格进入招标项目的下一个环节。会议中姚引杰先生依据评标流程和招标文件,帮助参与的供应商理解评标方式、最终协议文本等内容,并提醒供应商在参与投标前一定详细查看招标要求,避免出现认知偏差。/pp  荆春波女士在现场进行招投标文件意见征集,根据供应商提出的问题进行解答,并承诺对所有供应商提供的文件统一透明化,严格遵守公平、公开、公正的原则。/pp  strong第一期“标准物质”招标流程及时间节点/strong/pp  说明会上,华测检测耗材采购部负责人姚引杰先生对该项招标的流程、重要时间节点、重新做了介绍,详情请见下表:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/21a21741-ce33-4595-ab6f-831444cfd899.jpg" title="华测-1.png" alt="华测-1.png"//pp  strong第一期“标准物质”参与供应商要求/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/6a330d00-270c-4fd8-a3f2-e047f2568537.jpg" title="华测-2.png" alt="华测-2.png"//pp  仪器信息网也会持续关注招标项目的后续进展。据悉,华测检测启动消耗品招标项目是在推动一种全新的商业模式,将把年采购金额约1.5亿元的的消耗品采购分成8个品类对外进行招标采购,本次“标准物质”仅是第一期,(详情请见华测检测a href="https://www.instrument.com.cn/news/20200305/523192.shtml" target="_blank" title="“实验室消耗品招标”" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "“实验室消耗品招标”/span/a项目说明会)。/p
  • 用二次离子质谱法检测锂——表面形貌与化学分析的相关性
    古德伦威廉(Gudrun Wilhelm) 乌特戈拉-辛德勒(Golla-Schindler)蒂莫伯恩塔勒(Timo Bernthaler) 格哈德施耐德(Gerhard Schneider)二次离子质谱 (SIMS) 允许分析轻元素,尤其是锂。研究者使用三种不同的探测器将二次电子图像与表面形貌、化学分析相关的元素映射相结合,过测量标准样品并将其质谱信息与老化阳极的质谱信息相比较来鉴定化合物,获得了对锂离子电池老化现象的新见解。介绍电动汽车、自行车和踏板车的使用正在增加,而这些都需要高性能、长寿命的电池。在开发这些电池时,需要了解的一个重要主题就是老化过程。如果锂电池老化,阳极表面会发生锂富集,这与功能性工作锂的损失成正比,将会降低电池的容量。然而,确切的结构和化学成分仍然难以捉摸。我们预计,将二次电子成像和二次离子质谱 (SIMS) 与锂的相关可视化相结合,将带来新的见解。材料和方法使用配备 Gemini II 柱、肖特基场发射电子枪、Inlens 检测器、Oxford Ultim Extreme EDS检测器和使用镓离子的聚焦离子束的 Zeiss crossbeam 540 进行研究。连接了 Zeiss 飞行时间检测器和 Hiden 四极检测器以实现 SIMS 分析。第三个检测器是一个扇形磁场检测器,它连接到使用氦或氖离子工作的 Zeiss Orion NanoFab。使用三种不同的 NMC/石墨电池系统证明了锂检测,这些系统具有降低的容量 ( 80%) 和更高的 900 次充电和放电循环。 结果使用扫描电子显微镜 (SEM) 检测二次电子可以使循环阳极箔的表面形貌具有高横向分辨率(图 1a、b、c):阳极石墨板覆盖有 (a) 薄壳(几纳米厚),(b)纳米颗粒(约 10-100 nm),(c)大的沉淀物,如球形颗粒(约 100-500 nm),以及微米范围内的大纤维。这些结构具有不均匀分布,表明局部不同的老化条件和过程。化学成分使用能量色散光谱法(EDS,图 1d)进行了分析。EDS 光谱检测元素碳、氧、氟、钠和磷。除碳外,检测到的最高量是氧和氟。很明显,EDS场光谱和点光谱是不同的:场光谱具有更高量的氧、氟和磷。相位映射表明EDS点谱的测量点位于氧和氟含量低的区域,氧和氟都是纳米颗粒的一部分。这证明了不均匀分布与局部不同的元素组成成正比。图:1:具有高横向分辨率的循环阳极箔的表面形貌;石墨板覆盖有(a)结壳,(b)小颗粒,(c)由球形颗粒和微米级纤维组成的大沉淀物;(d) 用 EDS 分析的循环阳极表面;所呈现的点和场光谱显示了氧、氟和磷含量的差异;氧和氟在相位映射中更喜欢相同的表面结构。SIMS 可以检测到高锂信号(m/z 6 或 7),这允许锂映射与二次电子图像相关(图 2a、b)。锂覆盖整个表面并且是所有表面结构的一部分:结壳、纳米颗粒以及大小纤维。由于氧的电负性提高了对锂的检测,因此可以检测到具有高氧浓度的粒子的高信号。锂具有不同的键合伙伴,导致不同的表面结构。示例性地,显示了质荷比 33 和 55(图 2c,d)。M/z 33 是大纤维结构的一部分,而 m/z 55 在小纤维结构中富集。必须仔细解释质荷比。M/z 33 可以解释为正离子 Li2Li3+、OLi2+ 和 Li2F+。M/z 55 可以解释为锰。铜、钴和镍存在于与锰相同的表面结构中。这些元素表明正极材料(Mn、Co、Ni)的分解和负极集流体(Cu)的浸出。结壳和纳米颗粒均不含 m/z 33 和 m/z 55。在正离子质谱中只能检测到 m/z 6、7 和 14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。在正离子质谱中可以检测到图7和14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。 图 2:与 SIMS 元素映射 (bd) 相关的循环阳极箔的表面形貌 (a);(b) 锂覆盖整个表面,是所有表面结构的一部分;(c) m/z 33 和 (d) m/z 55(锰)偏好不同的表面结构,表明不同的化合物。使用 Zeiss Orion NanoFab [1] 测量了隔膜的阳极侧,与传统 SIMS 相比,它具有更高的横向分辨率。横向分辨率取决于离子探针的尺寸,因此 NanoFab 的横向分辨率显着提高(图 3)。可以识别球形颗粒和纳米颗粒。对于 (b) m/z 6 (锂)、(c) m/z 19 (氟)和 (e) m/z 16 (氧),球形颗粒显示出高信号。纳米粒子包含相同的元素和额外的 (d) 硅 (m/z 28)。可以使用每个像素的平均计数来半定量地解释质谱结果。这证明了球形颗粒和纳米颗粒的不同化学组成。 图 3:循环隔膜的表面形貌(阳极侧);与 SIMS 元素映射相关;沉淀物中含有锂和氟以及少量的氧气;纳米粒子含有锂、氟、硅和氧;二次离子质谱测量的半定量解释。SIMS 质谱由元素峰和分子峰组成。元素峰代表单个同位素,分子峰由几个同位素组成。通过将分子峰与标准样品的峰光谱进行比较,可以精确解释分子峰。这已在下一步中完成,并允许确定表面结构的化合物。图 4a 显示了化合物 LiF 的质谱(正离子)。可以找到几个峰:m/z 6、7、14 和 m/z 32 和 33 附近的一系列峰。这些是可以解释为 Li(6 和 7)和 Li2(14)的主峰。该组可能被视为 Li2Li3+ 或 OLi2+ 或 Li2F+。锂同位素 6 和 7 导致几个 m/z 比。该质谱可以与循环阳极的质谱(正离子)进行比较(图 4b)。主峰显示出良好的相关性,而由于循环阳极上的低 LiF 含量,强度较小的峰可能不可见。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。 图 4:(a) LiF 质谱与 (b) 循环阳极质谱的比较;m/z 6、7、14、32 和 33 的峰可以与循环阳极质谱相关;m/z 33 的正确解释需要进一步的标准样品测量。结论显示结壳、纳米颗粒和大沉淀物的不均匀表面形貌可以通过二次电子图像进行可视化,并通过 EDS 和 SIMS 进行分析。使用 SIMS 进行的锂分析表明,所有结构都包含具有不同键合伙伴的锂,例如纳米颗粒中的氧、氟和硅,球形颗粒中的锂、氟和氧,以及小纤维结构中的锰。标准样品(例如 LiF)的制备能够通过质谱解释来定义准确的化合物。 致谢我们感谢 Hiden GmbH 的四极质谱仪和 Graham Cooke 的有益讨论,我们感谢 Peter Gnauck、Fouzia Khanom、Antonio Casares 和 Carl Zeiss 使用 Orion 进行 SIMS 测量,我们感谢 Hubert Schulz 在飞行探测器,我们感谢 IMFAA 合作者的帮助和项目 LiMaProMet 的财政支持。联系古德伦威廉(Gudrun Wilhelm)德国,阿伦(Aalen),阿伦大学(Aalen University),材料研究所 (IMFAA),gudrun.wilhelm@hs-aalen.de 参考文献:[1] Khanom F.、Golla-Schindler U.、Bernthaler T.、Schneider G.、Lewis B.:显微镜和微量分析 25 (S2) S. 866-867 (2019) DOI:10.1017/S1431927619005063 ---------------------------------------------------------------------------------------------------关于作者古德伦威廉(Gudrun Wilhelm)德国,阿伦大学(Aalen University),材料研究所 (IMFAA),Gudrun Wilhelm 在弗里德里希-亚历山大-埃尔兰根-纽伦堡大学学习地球科学,重点是矿物学。2019 年,她以科学员工和博士生的身份加入阿伦大学材料研究所(IMFAA)。她的研究重点是锂离子电池的老化机制。主要方法有扫描电子显微镜法、能量色散光谱法和二次离子质谱法。原文Lithium detection with Secondary Ion Mass Spectrometry,Wiley Analytical Science 2022.8.10翻译供稿:符 斌
  • 涉嫌行贿 某环境监测仪器厂商二次闯关IPO又失败
    p  据证监会网站7月11日披露,最新审核结果显示,浙江皇马科技股份有限公司(下称皇马科技)、浙江春风动力股份有限公司(下称春风动力)、辰欣药业股份有限公司(下称辰欣药业)、起步股份有限公司(下称起步股份)以及中广天择传媒股份有限公司(下称中广天择)共五家公司首发获通过,而力合科技(湖南)股份有限公司(下称力合科技)首发未通过。/pp  资料显示,首发被否的力合科技已经是第二次冲击IPO了,此前一次是在2017年1月,当时由于取消审核而暂时搁置。/pp  力合科技是一家环境监测仪器制造商,根据招股书显示,公司拟在上交所公开发行不超过2000万股,募集资金2.06亿元,其中5000万元补充流动资金,其余用于环境监测体系建设项目、运营服务及第三方监测、研发中心建设项目。/pp  发审委之所以未通过力合科技的上市申请,从其提出询问的问题,主要集中在涉嫌行贿等违法行为。/pp  问询内容显示,报告期内力合科技存在因涉嫌单位行贿被司法机关立案和部分高管、员工涉及到多起商业贿赂案件的情形,发审委要求公司作出详细披露。此外,发行人有关销售、投标、资金费用管理等方面的内部控制制度是否健全且被有效执行也是发审委审核的重点。财务问题方面,力合科技需要进一步说明报告期各期期末公司应收账款余额较高、是否存在通过第三方公司回款进行冲抵的方式调节应收账款账龄的情形。/pp  可以发现,发审委对于申报企业违法违规、内部企业管理以及应收账款的合理性方面要求尤为严格。力合科技也是今年以来发审委第51家审核未通过的企业。/p
  • 水质检测 每季度至少1次
    南方日报讯 (记者/黄少宏)昨日,《广州市用户共用用水设施维护管理办法(草案征求意见稿)》(下称《办法》)亮相,并拟规定商品房(房改房)小区用户共用用水设施进行维修改造,可申请使用物业专项维修资金。《办法》还要求二次供水水质至少每季度检测1次,检测报告要向用户公示。  在目前的城市社区中,用户共用用水设施坏了,有些小区业主却不愿掏钱维修,导致供水企业不得不“自掏腰包”。为此,《办法》规定,商品房(房改房)小区用户共用用水设施需要进行维修、改造的,设施所有权人可以向市物业专项维修资金中心申请使用物业专项维修资金或者向市住房保障办申请使用单位住房维修资金。  供水设施未交由供水企业维护时,除二次供水储水池(箱)的清洗、消毒外,由设施的所有权人或其委托的其他用户共用用水设施管理单位负责设施维护管理,确保设施正常运行。  《办法》要求供水企业建立二次供水设施资料档案,把每次清洗消毒的工作记录及送检水样的检测报告归档。每次清洗消毒或改造维护完毕,须将水样送二次供水水质检测机构检验。检验结果应当符合国家有关生活饮用水卫生标准要求,否则应当采取重新清洗消毒等措施,直至水质达标。水样检测报告须在二次供水水质检测机构签发之日起7个工作日内向用户公示。
  • 210万!鹰潭市综合检验检测中心涉粮检验仪器设备采购(第二次)
    项目编号:JXXMYT2022-03-C11425-1项目名称:鹰潭市综合检验检测中心涉粮检验仪器设备采购(第二次)采购方式:公开招标预算金额:2100000.00 元最高限价:2037000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求鹰购2022F000572005旋转蒸发仪2套200000.00元详见公告附件鹰购2022F000572007气相色谱仪1台600000.00元详见公告附件鹰购2022F000572006气相色谱-质谱联用仪1台800000.00元详见公告附件鹰购2022F000572008液相色谱原子荧光联用仪1台500000.00元详见公告附件合同履行期限:中标人须在成交通知书发出之日起7个工作日内与招标人签订采购合同,合同生效之日起45天内到货安装、调试完毕并验收合格交付使用。本项目不接受联合体投标。
  • Hiden Analytical推出二次离子质谱仪,适用于锂电池检测
    科学仪器供应商 Hiden Analytical 近期宣布,其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。这项技术具有高灵敏度和分辨率,适合低质量锂检测,将大幅推进锂离子电池研究的进程。  (图片来源:Hiden Analytical)  现在,人们对电动汽车和便携式电子设备的需求日益增长,更加需要可靠、有效的储能系统。锂离子电池被视为有前景的解决方案,但只有深入了解电池内部的复杂过程,才能进一步提高性能和安全性。Hiden Analytical 的 FIB-SIMS 为这一挑战提供了强大的解决方案,使研究人员能够获得关于电池内部锂分布和浓度的重要信息。  该研究展示了 Hiden Analytical 的 FIB-SIMS 在高灵敏度和高精度检测锂等低质量元素方面的能力。Hiden Analytical 的 FIB-SIMS 可与聚焦离子束扫描电子显微镜(FIB-SEM)无缝集成,为研究人员提供诸多优势,如相关成像、原位样品制备和三维元素分析。这样的组合有助于全面了解锂离子电池的微观结构,从而开发更高效、更安全的储能系统。该公司技术营销经理 Dr. Dane Walker 表示:" 很高兴看到 FIB-SIMS 技术在锂离子电池研究领域得到应用。这项突破表明,Hiden Analytical 致力于推进科学研究,为不断发展的储能市场提供尖端解决方案。"  产业分析人士表示,锂电池检测主要应用在锂电池领域,受到锂电池产业快速发展带动,锂电池检测应用需求持续攀升,行业发展前景较好。在生产方面,我国众多企业布局在领域,市场竞争激烈,但国内产品目前主要布局在低端的单体电池领域,在高端的电池组领域仍依赖进口。未来随着终端对于锂电池要求提升,未来锂电池检测向高精度方向发展。关于Hiden Analytical(点击了解)  Hiden Analytical 成立于1981年,位于英格兰沃灵顿。是世界著名的四极杆质谱仪及相关分析仪器的设计和生产者。客户多数都是工作在新技术研究的前沿,如等离子体、表面科学,致力为全球有关领域的研究者提供了最先进的技术手段,使其研究水平居于国际领先地位。产品
  • 关于《无人船船载水质监测系统》等2项标准第二次讨论会时间调整通知
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/3bc56d7f-38dd-4b47-aeb7-4bc4f26d3ef5.jpg" title="232.jpg" alt="232.jpg"//pp  各有关单位:/pp  根据中国质量检验协会与中国水利企业协会关于下达《无人船船载水质监测系统》《水质监测无人船安全作业技术标准》两项标准立项的通知(中检联发〔2019〕3号),为保证按时完成标准制定任务,进一步完善标准,经研究讨论决定,因疫情防控原因推迟的《无人船船载水质监测系统》等两项标准第二次讨论会举办时间调整为2020年5月21日通过视频会议召开,现就会议有关事宜通知如下:/pp  一、会议时间和方式/pp  会议时间:2020年5月21日上午9:00-17:00。/pp  会议方式:使用亿联会议软件召开会议,参会专家、起草负责人使用手机或笔记本电脑下载亿联会议(https://www.yealink.com.cn/)并注册登录,申请加入指定的企业通讯录,在云会议室选择进入视频会场参会。/pp  二、会议内容/pp  (一)标准起草负责人对标准编制修改情况进行汇报 /pp  (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准征求意见稿 /pp  (三)对标准下一步工作计划进行安排和确认。/pp  三、联系方式/pp  苑 萍 18366223266, lyndayuan@vip.163.com/pp  文 翔 13661041954, stevencsw8292@163.com/pp  王 军 010-63204884, slqx@mwr.gov.cn/pp  许汉平 010-63203604/pp style="text-align: right "  中国质量检验协会/pp style="text-align: right "  中国水利企业协会/pp style="text-align: right "  2020年4月17日/ppbr//p
  • 中国生物检测监测产业技术创新战略联盟召开第一届第二次理事会
    仪器信息网讯 2017年1月6日,中国生物检测监测产业技术创新战略联盟第一届第二次理事会在江苏沭阳召开。来自沭阳县的各级领导、中国科学院院士陈洪渊、联盟理事长张学记、联盟秘书长周蕾以及联盟副理事长、常务理事、理事等30余人出席会议。 会议现场  沭阳县委常委、组织部部长张智超首先由沭阳县委常委、组织部部长张智超致辞。张智超对来到沭阳的院士及各位专家表示了欢迎和感谢,接着向各位参会嘉宾介绍了江苏沭阳的县情概况。随后,张智超介绍了沭阳县政府针对人才所设立的关于岗位、购房、租房等一系列补贴政策。另外,张智超还介绍了沭阳县政府针对高层次创新创业人才的扶持政策和人才项目。最后,张智超介绍了沭阳所建立的国家级经济技术开发区—沭阳经济技术开发区、沭阳软件产业园和沭阳高层次人才创新创业产业园的概况。  联盟秘书长、军事医学科学院微生物流行病研究所研究员周蕾  联盟秘书长、军事医学科学院微生物流行病研究所研究员周蕾则着重介绍了中国生物检测监测产业技术创新战略联盟的概况、2016年工作总结以及2017年初拟规划。  中国生物检测监测产业技术创新战略联盟(以下简称“联盟”) 成立于2015年12月12日,隶属于中国产学研合作促进会,旨在基于基金设置、开放技术平台、国内外交流、法律咨询等职能的设置,践行联盟核心定位“促进材料、器件与生物检测监测技术的交叉融合,从而推动原创高性能新型生物检测监测技术的研究与产业化,一方面,有效解决临床检验,食品安全,疾控应急、生物反恐,违禁筛查等领域所面临的生物检测监测相关问题 另一方面,以生物检测监测领域为带动,推动包括材料、器件在内的多领域协同创新与产业升级”。  目前,联盟理事长单位为北京科技大学,理事长由北京科技大学生物工程与传感技术研究中心主任、美国医学与生物工程院院士张学记教授担任 秘书长单位为军事医学科学院微生物流行病研究所,秘书长由军事医学科学院微生物流行病研究所研究员周蕾担任。联盟目前注册在案团队有64个,包括17家研究所、33家高校、3家医院和11家企业。其研究领域包括生物医药中的微生物医学检验 化学中的分析化学、纳米材料,微纳器件及表界面 物理中的光电子、智能传感和仪器制造等。创新存在于产、学、研、用、金等各个环节。  联盟的目的在于加强企业与科研团队之间的互动与融合。对于企业来讲,可以提升产品与市场需求的吻合度,提高同类产品的竞争力 对于科研团队来讲,以市场需求为牵引的创新,可以提高成果转化的成功率 而对于投资企业来讲,有利于挖掘有升值前景的原始创新技术和产品。联盟的宗旨是作为学界内部学科交叉、原始创新的平台,成为创新成果在政、学、研、用、金之间转移、转化、成熟、落地的桥梁。  目前联盟已建立了一系列对外信息发布的平台,自成立至今,成功举办了两场学术交流研讨会,还在仪器信息网成功举办了线上的网络讲堂,可以说,借助了各种媒体宣传了联盟的理念 在基金支持服务方面,也有了一定的工作进展 在产业拓展方面,中国生物检测监测产业技术创新联盟深圳创新研究院已于2016年12月28日成立 人才队伍提升方面,联盟理事长张学记教授当选美国医学与生物工程院院士、副理事长谭蔚泓当选中国科学院院士、理事汪夏燕教授获国家杰出青年科学基金。  2017年,联盟除拟成立中国仪器仪表学会分析仪器分会-生物检测监测仪器专业委员会外,还将成立沭阳、青岛、兰州创新研究院等实体机构。之后,在联盟理事长张学记教授和中国科学院陈洪渊院士的带领下,各位与会嘉宾热烈讨论了关于联盟建设与未来发展的建议。  联盟理事长、北京科技大学生物工程与传感技术研究中心主任、美国医学与生物工程院院士张学记  中国科学院院士陈洪渊  王建俊少将  中国仪器仪表学会分析仪器分会副理事长刘长宽  联盟副理事长、北京大学教授刘虎威  江南大学教授詹晓北  武汉康复得生物科技股份有限公司董事长李青山  联盟副理事长、南京大学教授鞠熀先  北京理工大学教授屈锋  西北大学国家微检测系统工程技术研究中心副主任崔亚丽  中国仪器仪表学会分析仪器分会副秘书长吴爱华  中国科学院上海生科院营养所研究员尹慧勇  美国乔治亚州立大学教授王鹏  北京中润兆和技术咨询有限公司创始人王坤  2016年中国生物检测监测产业技术创新战略联盟年会暨沭阳生物医药产业论坛即将召开,请关注仪器信息网后续报道。
  • 关于召开无人船船载水质监测系统等两项标准第二次讨论会的通知
    p style="text-align: center "  中国质量检验协会与中国水利企业协会/pp style="text-align: center "  关于召开无人船船载水质监测系统等两项标准/pp style="text-align: center "  第二次讨论会的通知/pp style="text-align: center "  中检联发﹝2020﹞1号/pp  各有关单位:/pp  根据中国质量检验协会与中国水利企业协会关于下达《无人船船载水质监测系统》《水质监测无人船安全作业技术标准》两项标准立项的通知(中检联发〔2019〕3号),该两项标准已于2019年11月21日在杭州召开了标准第一次讨论会。/pp  为保证按时完成标准制定任务,进一步完善标准,经研究讨论决定,我会将于2020年2月21日在北京召开《无人船船载水质监测系统》等两项标准第二次讨论会议,现就会议有关事宜通知如下。/pp  一、组织单位/pp  主办单位:中国质量检验协会/pp  中国水利企业协会/pp  承办单位:青岛中质脱盐质量检测有限公司/pp  支持单位:/pp  中国水利水电科学研究院/pp  珠江水利委员会珠江水利科学研究院/pp  生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心/pp  水利部交通运输部国家能源局南京水利科学研究院/pp  大连海事大学无人驾驶船舶技术与系统协同创新研究院/pp  自然资源部第一海洋研究所/pp  河海大学河长制研究与培训中心/pp  中国科学院西安光学精密机械研究所/pp  哈工大(威海)船海光电装备研究所/pp  深圳市百纳生态研究院有限公司/pp  中科院软件研究所南京软件技术研究院/pp  二、时间/pp  (一)报到时间:2020年2月20日13:00-20:00/pp  (二)会议时间:2020年2月21日09:00-14:00/pp  三、会议地点/pp  会议酒店:北京中国职工之家酒店/pp  酒店地址:北京市西城区真武庙路1号/pp  酒店电话:010-68576699/pp  四、会议内容/pp  (一)标准起草负责人对标准编制修改情况进行汇报 /pp  (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准征求意见稿 /pp  (三)对标准下一步工作计划进行安排和确认。/pp  五、联系方式/pp  苑 萍 18366223266,lyndayuan@vip.163.com/pp  生江磊 18561658536,shengjianglei@foxmail.com/pp  王 军 010-63204884,slqx@mwr.gov.cn/pp  六、注意事项/pp  (一)食宿由组委会统一安排,住宿费用自理 /pp  (二)为便于安排食宿,请参会人员提前一周提交回执表。/pp  附件:《无人船船载水质监测系统》等两项标准参会人员回执表/pp  中国质量检验协会 中国水利企业协会/pp  2020年1月2日 2020年1月2日/pp  附件/pp  《无人船船载水质监测系统》等两项标准/pp  第二次讨论会参会人员回执表/ptable border="1" cellspacing="0" cellpadding="0" width="631" style="border: none margin-left: 9px margin-right: 9px"tbodytr style=" height:40px" class="firstRow"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"单span /span位/span/p/tdtd width="546" colspan="8" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"br//td/trtr style=" height:40px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"通信地址/span/p/tdtd width="546" colspan="8" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"br//td/trtr style=" height:40px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"邮政编码/span/p/tdtd width="124" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"br//tdtd width="58" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"传真/span/p/tdtd width="157" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"br//tdtd width="76" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="font-size:16px font-family: 方正仿宋简体"E-mail/span/p/tdtd width="132" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"br//td/trtr style=" height:40px"td width="84" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"标准名称/span/p/tdtd width="547" colspan="9" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"br//td/trtr style=" height:49px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"姓名/span/p/tdtd width="58" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"性别/span/p/tdtd width="80" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"职务/span/p/tdtd width="121" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"办公电话/span/p/tdtd width="156" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"手机/span/p/tdtd width="132" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"电子邮件地址/span/p/td/trtr style=" height:49px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"br//tdtd width="58" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"br//tdtd width="80" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"br//tdtd width="121" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"br//tdtd width="156" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"br//tdtd width="132" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="49"br//td/trtr style=" height:41px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="58" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="80" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="121" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="156" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="132" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//td/trtr style=" height:41px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="58" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="80" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="121" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="156" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//tdtd width="132" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="41"br//td/trtr style=" height:84px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="84"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"房间预定/span/p/tdtd width="546" colspan="8" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="84"pspan style="font-size:16px font-family:方正仿宋简体"大床span_/span房()间,span_/span双床span_/span间()间;入住时间自span____/span至span_____/span。/span/ppspan style="font-size:16px font-family: 方正仿宋简体"(/spanspan style="font-size: 16px font-family:方正仿宋简体"注:双床房span560/span元span//span天含早span)/span/span/p/td/trtr style=" height:104px"td width="84" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="104"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"备注/span/p/tdtd width="546" colspan="8" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="104"p style="text-align:center"span style="font-size:16px font-family:方正仿宋简体"参会单位务必提前一周通过电邮方式将附件表格填好,发送到规定的邮箱。/span/p/td/tr/tbody/tablep  联系人及联系方式:/pp  苑 萍 18366223266/pp  lyndayuan@vip.163.com(请将回执发至此邮箱)/ppbr//p
  • 徐州供水行业培训圆满结束|哈希精彩瞬间
    徐州供水行业培训圆满结束|哈希精彩瞬间哈希公司 6月21日至23日,徐州供水行业培训班于刘湾水厂培训基地顺利举行。该培训班针对供水处工作人员、各县(市)区主管部门业务科长、徐州首创公司及各县(市)区供水企业分管生产管理、工程技术、客服部门负责人,对臭氧生物活性碳工艺、净水工艺过程中常见问题的管控给、供水管网漏损率控制措施、以及供水服务体系建设等内容进行了教学讲解。学员们于现场观摩学习了供水管网的应急抢修演练。哈希工程师任廷晟讲解相关政策哈希的两位专家在本次培训中,分别以城乡供水一体化建设与在线水质检测方案和供水数字化探索为主题,为学员们进行了讲解。有关城乡供水一体化建设与在线水质检测的方案,以政策为导向,城乡用水普及率研究城乡供水一体化趋势 哈希专家为学员们讲解了城乡供水一体化的各种模式,包括区域性集中供水,分散供水集中管理,和分级组合管理模式。根据城乡供水的监测规定与需求,有针对性的提供解决方案,用实际案例为供水水质检测与管理平台提供支持与方便。数字化建设目标与思路在供水数字化探索部分中,哈希专家带领学员们了解了供水数字化建设思路,智慧厂站建设方案,数字化调度与二次供水,智能客服与舆情管理以及供水大数据分析等知识要点。对智慧水厂的总体架构,工艺流程,工艺智能决策等进行了科普介绍,旨在提高学员们对智慧厂站的建设效益的理解。讲解数字化建设思路二次供水与实验室相关产品MS6100水质在线分析仪-MS6100多参数水质分析仪可应用于饮用水管网、二次供水、泳池水。多参数水质分析仪可连续监测包括余氯、总氯、浊度、pH、ORP、电导率和温度7 种水质参数MS6100多参数水质在线分析仪的浊度模块采用全新的360°x90°检测技术,让浊度测试更快更准确便捷配置灵活可选,通讯功能齐备占地小,易安装,维护量更低,专门为无人值守的应用场合设计哈希城乡一体化实验方案余氯系列产品DR300、DR3900浊度系列产品2100Q、TL23系列pH系列产品 HQ系列实验室、在线电极END
  • 供水企业全过程水质管理及监测能力建设
    一、管理是中国供水水质安全的核心 面对诸多的挑战,中国供水企业实现稳定达标,水质安全的目标,最根本、最核心的路线是建立和完善以水质为核心目标,实现&ldquo 从源头到龙头&rdquo 全覆盖的质量目标管理体系。质量目标管理是以目标为导向,以人为中心,以成果为标准,而使组织和个人取得最佳业绩的现代管理方法。是指在企业个体职工的积极参与下,自上而下地确定工作目标,并在工作中实行&ldquo 自我控制&rdquo ,自下而上地保证目标实现的一种管理办法。 根据企业管理理论,对于中国供水企业,水质质量目标管理体系建设应遵循重视人的因素、建立目标锁链与目标体系、重视结果的原则,按照以下程序建立: 1. 目标设置 目标设置包括以下内容: 以水质安全为水质总体核心目标,以《生活饮用水卫生标准GB5749-2006》为水质质量目标管理总体衡量指标;分解水质总体目标,根据制水工艺特点,确定各工艺环节内控目标,并以此建立各部门、个人目标;确定为完成目标所需的资源,考核及奖惩机制;2. 建立实现总体目标的生产过程管理:建立各制水工艺环节为实现水质企业内控目标的规章制度及行动计划并执行。3. 考核评估:对每个制水工艺的水质内控目标及行动计划进行定期考核评估,兑现奖惩制度。4. 改善计划:根据考核评估结果,对工艺及人员偏差进行分析,并加以改进。从全球范围来看,供水企业的管理发展一般经历了从单一的结果管理,到全过程管理,从粗放管理到精细化管理,从常态管理到应急管理的不同发展阶段,具体如下:管理是否完善,是一个不断积累,不断提高的过程,但也是企业质量管理的必需。二、全过程水质分析监测能力建设饮用水全过程水质监测的必要性和重要意义 全过程水质监测能力的建设,包括水质监测设施的建设和水质监测人员的技术达标建设。这两方面无疑都需要供水企业投入一定的人力和经济成本。那么,其建设的意义和目的何在?首先,企业需要监测水质是否达标,包括:饮用水水源是否达标,出厂水和管网末梢水是否达标。目的是监测自来水生产的&ldquo 原料&rdquo 及&ldquo 产品&rdquo 是否合格。建立全过程水质监测能力的第二个目的,或者说更加重要的目的,供水企业通过对制水工艺过程中水质监所测到的数据,对水厂制水工艺进行过程中的精细运营管理,是实现全面达标及安全供水的核心手段。全过程水质分析监测能力,是供水企业建立并实施质量目标管理体系的基础技术前提,是实现供水水质安全的基础技术支撑。全过程水质分析监测能力,按照制水工艺流程、水质分析类型,以及监测层次,分为:全流程水质分析监测、全类型水质分析监测,以及全层次水质分析监测三个方面。 首先从制水工艺的流程来看,水质监测含了水源监测、净水厂工艺运行监测以及输配水系统监测,这一系列监测过程,我们又可以称之为全流程水质监测系统从监测类型来看,可以分为在线监测和实验室分析检测,同时还有便携式监测和应急移动监测。从监测层次和应用部门而言,又可以分为水厂内部监测、水司中心化验室监测,以及各行政主管部门的行政督察监测。以上各部分,共同构建成了全过程水质监测能力建设的整体理念。为了更好地理解饮用水全过程水质监测需要具备的能力,从而为实现以水质为核心的全过程质量管理,HACH将数十年全球制水供水企业服务经验,与当今中国政府相关规定及标准相结合,针对供水企业的全过程水质分析监测能力,细分为8大类,20个小项,具体如下: 图2-1 全过程水质监测能力组成上图内容基本涵盖了当今全球制水供水企业所应具备的全部全过程水质分析监测能力,能够满足企业以水质安全为核心的水质管理体系建设的要求。供水企业全过程水质监测能力建设技术路线图但由于中国供水企业从资金到人才储备等各方面的差异化非常明显,要实现全过程水质分析监测能力不是一蹴而就的,需要根据面临关键挑战、国家相关政策、企业自身管理完善的阶段,及资金情况,总体规划,分步实施。回顾全球先进制水供水企业,为满足其自身水质管理体系建设和发展历程,基于当今中国供水安全面临的挑战,以及能力建设需要的投资情况,HACH将上述细分的水质分析监测能力,按照中国供水企业发展的单一结果管理、粗放式过程管理、精细化管理,以及应急管理的管理发展阶段,设计出中国供水企业全过程水质分析监测能力建设的路线图: 1. 建立企业自身基本的水质判断及评估能力该阶段对应企业管理的单一结果管理阶段。要建立企业水质管理体系,首先要有判断水质是否达标的能力,即检查原料质量&ndash 水源水质是否达标;以及产品质量&ndash 末梢水水质是否达标的能力。这一阶段主要包括供水企业中心化验室常规能力建设和基础的移动应急监测能力建设。常规能力建设按照住建部要求,每个省份至少具有两个具备106项全分析能力的企业,地级市目标为42项常规,县级为每日必检10项的能力。针对目前水质突发事件频发的现状,各供水企业可以配备一些基础的便携应急监测设备,以提升常规应急监测能力。2. 建立基础的制水工艺运行管理监测能力。该阶段对应企业管理的粗放式过程管理阶段。该阶段能力主要应具备:水厂化验室监测、出厂水的在线监测、以及水源水常规基础参数的在线监测的能力。这一阶段监测能力建设,主要是为了使企业可以对进出厂水的水质状况做到初步的实时把控,初步实现企业关键质量控制点的过程管理。3. 建立制水工艺运行精细化管理监测能力该阶段对应企业管理的精细化过程管理阶段。该阶段能力主要应具备:水厂运行班组监测能力建设、制水关键工艺关键参数在线监测能力建设、管网在线监测和水源水重点特征污染物在线监测能力建设。根据制水工艺,分为:预处理、混凝沉淀、滤池、深度处理、消毒在线监测,并根据在线监测的数据,精细化管理各工艺段的生产运行。另外,供水企业可以根据自身源水特征设立重点特征污染物实施在线监测,实行侧重性水质预防监测,可有效避免重大污染事故的发生。而管网检测,则可以将水质监测的触角覆盖至终端用户,达到全流程水质监测的目的。4. 供水企业监测能力建设的第四阶段,是建立快速的水质突发事件监测预警能力。供水企业在达到了以上三个阶段后,可以说已经基本完成了常态背景下的监测能力建设。但是,为了因对一些突发事件和不可预知的事件发生,供水企业还需要建立快速的水质突发事件监测预警能力。在我国过去的几年中,也发生了一些有负面影响的水质污染事件。由于突发事件的不可预见性和复杂性,能够在第一时间及时发现问题并采取应急预案加以管控是极其重要的。因此,水源水质预警检测能力,已经得到了越来越多的供水企业的重视和应用。在预警监测系统的帮助下,企业可以对水源突发污染事件(安全事故,自然灾害,恐怖袭击)进行综合预警&mdash &mdash 为启动应急处理预案提供时间保证。三、总结:饮用水全面达标、安全供水的目标实现,其核心及根本保障是供水企业建立完善全面的以水质为核心的质量管理体系和流程。供水企业根据自身现有情况,逐步完善提高以水质为核心的质量管理体系,并根据质量管理的要求,渐进式、逐步提高水质监测能力,从而最终实现全过程水质监测能力,是现实可行的。作为全面质量管理的基础支撑,建立全过程水质监测能力是刻不容缓的任务。更多详情请点击
  • 半导体硅片检测标准汇总 涉气相色谱、二次离子质谱等多类仪器
    p  span硅基半导体材料是目前产量最大、应用最广的半导体材料,90%以上的半导体产品都离不开硅片。/spanspan硅片行业是资金和技术密集型行业,垄断度极高,目前前四厂商市场占有率占比超过80%,分别是/spanspan日本信越、日本SUMCO、台湾环球晶圆、德国世创。/span/pp  硅元素是地壳中储量最丰富的元素之一,以二氧化硅和硅酸盐的形式大量存在于沙子、岩石、矿物中。硅从原料转变为半导体硅片要经过复杂的过程:首先硅原料和碳源在高温下获得纯度约98%的冶金级硅,再经氯化、蒸馏和化学还原生成纯度高达99.999999999%的电子级多晶硅。半导体材料的电学特性对杂质浓度非常敏感,而硅自身的导电性不佳,常通过掺杂硼、磷、砷和锑来精确控制其电阻率。一般,将掺杂后的多晶硅加热至熔点,然后用确定晶向的单晶硅接触其表面,以直拉生长法生长出硅锭,硅锭经过金刚石切割、研磨、刻蚀、清洗、倒角、抛光等工艺,即加工成为半导体硅片。根据制造工艺分类,半导体硅片主要可以分为抛光片、外延片、SOI 硅片等。根据半导体尺寸分类,半导体硅片的尺寸(直径)主要有 50mm(2 英寸)、75mm(3 英寸)、100mm(4 英寸)、150mm(6 英寸)、200mm(8 英寸)、 300mm(12英寸)等规格。目前硅片生产以8英寸和12英寸为主,其中8英寸硅片主要应用于电子、通信、计算、工业、汽车等领域,而12英寸硅片多用于PC、平板、手机等领域。/pp  在生产环节中,半导体硅片需要尽可能地减少晶体缺陷,保持极高的平整度与表面洁净度,以保证集成电路或半导体器件的可靠性。硅片检测要检查直径、厚度、弯曲、翘曲、缺陷、晶面、表面污染(有机物)、电阻率、晶面取向、氧碳含量、表面平整度和粗糙度、微量元素含量、反射率等。使用到的仪器有测厚仪、显微镜、XRD、气相色谱、X射线荧光光谱、二次离子质谱、电阻率测试仪等。/pp style="text-align: center "strong硅片测试国家标准/strong/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center"tbodytr style=" height:18px" class="firstRow"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pstrongspan style="font-family:宋体"标准编号/span/strong/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pstrongspan style="font-family:宋体"标准名称/span/strong/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T11073-2007/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片径向电阻率变化的测量方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T13388-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片参考面结晶学取向/spanspanX/spanspan style="font-family:宋体"射线测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T14140-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片直径测量方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T19444-2004/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片氧沉淀特性的测定/spanspan-/spanspan style="font-family:宋体"间隙氧含量减少法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T19922-2005/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片局部平整度非接触式标准测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T24577-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"热解吸气相色谱法测定硅片表面的有机污染物/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T24578-2015/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片表面金属沾污的全反射/spanspanX/spanspan style="font-family:宋体"光荧光光谱测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T26067-2010/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片切口尺寸测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T26068-2018/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片和硅锭载流子复合寿命的测试非接触微波反射光电导衰减法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T29055-2019/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用多晶硅片/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T29505-2013/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片平坦表面的表面粗糙度测量方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30701-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"表面化学分析硅片工作标准样品表面元素的化学收集方法和全反射/spanspanX/spanspan style="font-family:宋体"射线荧光光谱法/spanspan(TXRF)/spanspan style="font-family:宋体"测定/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30859-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用硅片翘曲度和波纹度测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30860-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用硅片表面粗糙度及切割线痕测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30869-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用硅片厚度及总厚度变化测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T32280-2015/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片翘曲度测试自动非接触扫描法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T32281-2015/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能级硅片和硅料中氧、碳、硼和磷量的测定二次离子质谱法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T32814-2016/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅基/spanspanMEMS/spanspan style="font-family:宋体"制造技术基于/spanspanSOI/spanspan style="font-family:宋体"硅片的/spanspanMEMS/spanspan style="font-family:宋体"工艺规范/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T37051-2018/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能级多晶硅锭、硅片晶体缺陷密度测定方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6616-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"半导体硅片电阻率及硅薄膜薄层电阻测试方法非接触涡流法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6617-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片电阻率测定扩展电阻探针法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6618-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片厚度和总厚度变化测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6619-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片弯曲度测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6620-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片翘曲度非接触式测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6621-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片表面平整度测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T29507-2013 /span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片平整度、厚度及总厚度变化测试自动非接触扫描法/span/p/td/tr/tbody/tablep  据 Gartner 预计,2017-2022 年半导体增速最快的应用领域是工业电子和汽车电子;预计2020年半导体发货总量将超过一万亿,其中增长率最高的半导体细分领域包括智能手机、汽车电子以及人工智能等。/pp  需要相关标准,请到a href="https://www.instrument.com.cn/download/L_5DBC98DCC983A70728BD082D1A47546E.htm" target="_self"仪器信息网资料中心/a查找。/p
  • 《厦门市提升城市供水水质三年行动方案》发布
    p  厦门市人民政府办公厅《关于印发提升城市供水水质三年行动方案的通知》(厦府办〔2018〕218号,2018年11月23日)现已主动公开,内容如下:/pp  各区人民政府,市直各委、办、局,各开发区管委会,各大企业,各高等院校:/pp  《厦门市提升城市供水水质三年行动方案》已经市政府研究通过,现印发给你们,请认真组织实施。/pp style="text-align: center "  厦门市提升城市供水水质三年行动方案/pp  提升城市供水水质,是一项涉及千家万户,关系人民群众身心健康的重大民生工程。为全面提升我市饮用水水质,确保人民群众喝上安全、放心、优质的饮用水,特制定本行动方案。/pp  一、总体目标/pp  (一)水源水质。到2020年底,市、区集中式饮用水水源水质全面达到或优于Ⅲ类水标准,Ⅱ类水比例进一步提高。湖泊、水库型水源不出现水华现象。/pp  (二)饮用水水质。到2020年底,市、区饮用水综合合格率达98%以上,出厂水浑浊度控制在0.3NTU以下,管网水浑浊度控制在0.5NTU以下,城市用户终端水浑浊度指标优于国家标准,色度控制在10度以下,出厂水游离氯控制在0.3-2mg/L范围内。确保饮用水水质优于国家标准,力争全国领先。/pp  (三)供水能力。构建安全可靠、供应充裕、水质优良、水压达标、调度灵活、经济合理、远近结合,并能适应各类不同用户供水要求的城市供水系统。到2020年,全市供水能力达228.7万吨/日,城市供水管网漏损率降至10%以下。/pp  二、主要任务/pp  (一)饮用水水源建设管理/pp  1.加强饮用水水源地环境监管。环保部门要定期组织开展水源地周边环境安全隐患排查和饮用水水源地环境保护专项行动,重点加快饮用水水源保护区规范划定、立标定界,加大环境违法问题查处和水源地污染排查力度,建立整治台账,制定整治方案和监管措施。2019年底前,完成区级以上城市水源地环境保护专项整治。开展水源地周边环境风险全面评估,编制风险源名录。(责任单位:市环保局、市水利局、市执法局、集美区政府、同安区政府)/pp  2.稳妥处置突发水环境污染事件。制定和完善突发环境事件和饮用水水源突发环境事件应急预案,落实责任主体,明确预警预报与响应程序、应急处置及保障措施、物资储备等内容,依法及时公布预警信息。发生影响饮用水水源水质污染事件时,环保、水利部门要及时向当地人民政府报告,并通报城市供水主管部门和供水单位。(责任单位:市环保局、市水利局、市执法局、集美区政府、同安区政府)/pp  3.加快水源工程建设。2020年底前,各区具备双水源供水或者应急备用水源,暂不具备双水源或应急备用水源条件的供水区域,需具备跨区域清水调度能力。在保证连通区域水量、水质及水生态安全的前提下,推进汀溪水库群至翔安原水输水工程、石兜-莲花-汀溪水源连通工程、长泰枋洋水利枢纽工程建设,推进九龙江北溪雨洪利用工程前期工作,提升全市水资源调配、供水保障和防御水旱灾害能力。(责任单位:市水利局、市市政园林局、各区政府、市政集团)/pp  4. 加强自备水源管理。水利部门要依法关停城市公共供水管网覆盖范围内的自备水源,严禁自备水与城市供水混用,确需保留且水质满足标准要求的,需报经市政府、所在地区政府同意。在城市公共供水管网覆盖范围内不再批准新建地下水自备水源,逐步取消城市饮用水地下水源,取水许可证到期后不再延续,可将原地下水源调整为应急水源。(责任单位:市水利局、各区政府)/pp  5.加强移动风险源管控。环保部门要根据省政府划定的水源保护区范围,合理精准划定移动风险源管控区域,及时通报公安、交通等部门。公安交通管理部门要合理划定危险化学品运输禁行路段,加强道路交通安全管理,交通运输管理部门要强化危险化学品运输管控。(责任单位:市环保局、市水利局、市公安局、市交通运输局、集美区政府、同安区政府)/pp  (二)城市供水厂规划建设/pp  1.编制供水专项规划。根据新一轮厦门市城市发展定位和目标,供水专项规划着眼构建安全可靠、供应充裕、水质优良、水压达标、调度灵活、经济合理、远近结合,并能适应各类不同用户供水要求的城市供水系统。水厂用地指标要充裕,为深度处理预留足够的发展用地。规划、市政、供水企业要及时跟进供水专项规划的编制情况,全市供水能力按照远期服务800万人口基础上,做到适度超前、有所富余,做好规划与建设的衔接。(责任单位:市市政园林局、市规划委、各区政府、市政集团)/pp  2.加快推进水厂新建扩建进度。加快推进杏林水厂扩建工程、西山水厂一期工程施工进度,确保杏林水厂扩建工程与西山水厂一期工程在2019年建成通水。加快推进翔安水厂二期工程、海沧水厂三期工程、舫山水厂三期工程前期工作,争取早日开工建设,确保翔安水厂二期工程在2020年建成通水。鼓励应用臭氧活性炭、膜处理等深度处理技术。(责任单位:市市政园林局、集美区政府、海沧区政府、同安区政府、翔安区政府、市政集团、舫山水司)/pp  (三)市政供水管网改造/pp  1.全面排查全市市政供水管道。城市供水主管部门要组织供水企业加快开展供水管网排查,各区应积极配合,全面摸清管径、管材、标高、使用年限等信息,在2019年6月底前建立管网电子信息档案。(责任单位:市市政园林局、各区政府、市政集团)/pp  2.有序实施供水管网新建改造。按照省委、省政府要求,2018-2020年,每年下达我市供水管网新建、改造任务为80公里。供水企业要按照年度计划,明确具体项目清单、责任单位、责任人、完成时限,有序推进供水管网建设,务必完成年度任务目标。2020年底前基本完成改造任务,公共供水管网漏损率控制在10%以内。(责任单位:市市政园林局、各区政府、市政集团)/pp  (四)二次供水建设管理/pp  1.完善二次供水管理机制。一是各区对辖区内的二次供水设施做好建档工作,日常考评工作做到每年100%全覆盖,督促二次供水设施产权人每季度对水箱(池)进行清洗消毒。二是各区对无人管理的二次供水单位要落实属地街道、社区的责任,补齐管理短板,做好水箱清洗消毒及日常管理工作。三是市建设行政主管部门及各区负责物业管理的部门应配合将市政部门对物业企业管理二次供水设施的检查情况记入物业企业信用档案。四是卫计部门在现有二次供水水质监测工作的基础上,进一步扩大检测范围,加密检测频次,严格监督水质不达标的二次供水设施单位,并跟踪其整改落实情况。五是执法部门依法对未按规定进行清洗、消毒,或者未按照规定管理导致水质不合格的二次供水设施管理单位进行处罚,督促其完成整改。(责任单位:市市政园林局、市卫计委、市建设局、市执法局、各区政府、市政集团)/pp  2.加大政府统筹实施力度。成立老旧小区二次供水设施改造工作领导小组。各区政府作为实施主体,负责辖区内老旧小区二次供水设施改造年度计划的制订并组织实施,力争2020年底前基本完成老旧小区供水设施改造任务。鉴于二次供水改造项目的特殊性、专业性,各区政府可委托供水企业承担具体的改造任务。在二次供水改造实施过程中,区、街道、社区及供水企业应会同物业、居民建立良好的信息交流机制,迅速妥善地解决现场难题和各种突发情况。(责任单位:市市政园林局、市卫计委、市财政局、市发改委、市建设局、市执法局、各区政府、市政集团)/pp  3.明确新建二次供水设施建设机制。根据投融资主体的不同采取相应的建设机制。一是财政投融资项目二次供水设施建设,积极试行委托供水单位进行建设,费用由建设单位承担,供水单位与建设单位签订供水设施建设合同,建设资金以财政部门审核为准。二是社会出资项目二次供水设施建设,提倡按照市场定价的机制委托供水单位进行二次供水设施建设。由建设单位或产权人自行建设的二次供水设施,其设计方案应当征求供水单位意见,采用符合标准的产品、材料和设备,强化工程质量监管,竣工后经供水单位验收合格,方可接入公共供水管网系统。为确保新建二次供水设施建设质量,新建、在建项目二次供水设施应严格执行《厦门市居住建筑二次供水技术规程》及相关法律、法规,相关部门要对二次供水设施方案设计、审图、施工过程质量监督、竣工验收进行全过程管控,杜绝不合格的二次供水设施投入使用。同时,按要求配备人防力量及物防、技防设备。(责任单位:市市政园林局、市发改委、市建设局、市卫计委、市政集团)/pp  (五)城市供水信息化/pp  1.强化水源地水质在线检测。环保、水利部门要完善水源地水质在线监测,2019年底前区级以上集中式饮用水水源地全面实现水质自动在线监测和视频监控,依托省水环境统一监测平台实现互联共享。(责任单位:市环保局、市水利局、集美区政府、同安区政府、湖里区政府)/pp  2.建立供水水质在线监测。2019年底前完成城市供水厂出厂水、管网水在线监测和生产过程的视频监控,2020年底前完成区级供水厂出厂水、管网水在线监测和生产过程的视频监控。实现供水全过程监督管理,接入省级供水管理信息系统,实现环保、水利、市政、海洋渔业等部门从水源到供水全过程的监测数据共享。(责任单位:市市政园林局、湖里区政府、同安区政府、翔安区政府、市政集团)/pp  3.加快管网信息化建设。2020年底前,按照省里统一标准,城市供水企业要建立管网地理信息系统(GIS),其他区级供水企业逐步推进管网地理信息系统(GIS),实现水量、水压、水质的实时采集、处理和分析,保障城市供水安全,降低供水管网漏损率。加快物联网技术应用,融合各类相关数字化信息,推进城市智慧水务建设,提高供水安全保障和服务水平。(责任单位:市市政园林局、市水利局、市环保局、市政集团)/pp  (六)从水源到水龙头全过程监督/pp  环保、水利部门要加强水源水质监测,确保市级水源地水质一旬一测、区级水源地水质一月一测。城市供水主管部门要督促供水企业每年开展两次出厂水、管网水全分析检测,没有全分析检测能力的水厂要委托专业机构检测。卫计部门要对市区集中供水单位每季度开展一次监督检查,每年制定全市生活饮用水监督检查方案,抽查集中式供水、二次供水的卫生管理情况。相关主管部门和供水企业要定期向社会相应公开水源水质状况、供水厂出水和用户水龙头水质状况,接受社会监督。(责任单位:市环保局、市水利局、市市政园林局、市卫计委、市政集团)/pp  (七)推广优质管材设备/pp  制定供水产品、材料、设备性能等方面的标准要求,建立对供应商和施工单位的考评和黑名单制度,保证供水设施材料设备质量和施工质量安全可靠。推广优质管材,DN75以上的管道材质优先选用钢管、球墨铸铁管等管材 DN75及以下的管道优先选用不锈钢管。逐步推广与直饮水标准相适应的内衬不锈钢复合钢管、薄壁不锈钢管等优质管材。(责任单位:市市政园林局、市建设局、各区政府、市政集团)/pp  三、保障措施/pp  (一)加强组织领导。市、区政府是提升城市供水水质工作的责任主体,要把提升城市供水水质作为促进全民健康、保障公共安全和公共卫生的重大任务来抓,要把提升城市供水水质工作纳入当地经济社会发展总体规划,列入为民办实事项目和政府工作目标责任制。2018年底前各区政府要制定提升城市供水水质三年行动具体实施方案,报市城市供水主管部门备案。建立由市政、水利、卫计、环保、发改、财政、建设等部门参与的城市供水水质提升工作联席会议制度,全面指导、统筹、督促做好饮用水水源地环境整治、水源保护、供水设施工程建设改造、资金投入、二次供水管理等各项工作。/pp  (二)明确部门职责。城市供水主管部门负责城市供水设施建设改造和运行的监督管理工作。水利部门负责城市供水水源开发、利用、保护和取用地下水的监督管理工作。环保部门负责城市供水水源污染防治的监督管理工作。卫计部门负责饮用水卫生监督管理工作。发改部门负责城市供水价格制定。公安、交通部门负责饮用水水源保护区道路交通安全管理和危险化学品运输管控。财政、执法等部门应当按照各自职责,共同做好城市供水管理工作。各相关部门应按职责分工,加强协调和联动,确保各项工作措施落到实处。/pp  (三)建立水价调整机制。市价格、城市供水等主管部门应遵循“补偿成本、合理收益、分类定价、促进节水、公平负担”的原则,合理确定供水价格,建立并实施供水终端价格与水资源费、水利工程供水价格的联动机制,完善供水价格调整机制,适时启动水价调整,以促进供水企业生产经营和安全保障的良性循环。/pp  (四)加大财政支持力度。市、区政府要加大对提升城市供水水质工作的投入,重点加大管网更新改造和老旧小区二次供水设施改造的扶持力度。市、区政府要拓宽资金来源渠道,通过政府补助、社会捐资、一事一议等方式筹措资金,形成多元化投入机制,多渠道筹集提升城市供水水质资金。/pp  (五)建立考核督查机制。城市供水水质提升工作应纳入区级政府绩效考评内容,饮用水水源水、出厂水、龙头水水质合格率要纳入食品安全考核内容。各区要制订切实可行的工作措施,加强监督检查,严格考核评估,强力推进供水水质提升各项工作。各区政府和市直有关部门要每半年报送工作进展情况,由市政部门汇总后报告市政府。市政、卫计、环保、水利等部门每年联合开展供水水质提升工作专项督查,对贯彻不力、行动缓慢、实施效果差、未及时完成目标任务的单位将进行重点督查、通报、约谈,严格落实责任追究制度。/p
  • 热烈祝贺《光谱法水质在线快速检测系统》标准第二次讨论会成功召开
    p  2019年3月22日是第27届“世界水日" ,也是第32届“中国水周”的第一天。为响应习主席号召,探索水生态文明建设,做好水资源的开源工作,由中国水利企业协会立项,青岛中质脱盐质量检测有限公司发起,中国水利水电科学研究院水环境所、由中国质量检验协会水环境工程技术与装备专业委员会、复旦大学、中科院西安光学精密机械研究所、中国科学院水生生物研究所联合技术支持的《光谱法水质在线快速检测系统》标准第二次讨论会在北京隆重召开。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/9e465b9c-9c51-442d-b793-360c3d8f5f45.jpg" title="全体合影.jpg" alt="全体合影.jpg" width="488" height="262" style="width: 488px height: 262px "//pp style="text-align: center "span style="font-size: 14px "i全体合影/i/span/pp style="text-align: left "  中国水利企业协会张金宏会长、中国水科院水环境所彭文启所长、海河流域水资源保护局副局长罗阳、中国水科院水环境所高级工程师曹峰博士、复旦大学纪新明教授、南京大学李文涛博士等领导专家出席了本次会议。深圳一目、阿夸斯、赛莱默、中兴仪器、厦门斯坦道、奥谱天成、益清源、安杰环保、深圳水净、汉威、北京智科远达、华科仪、浙江西地、河北德润厚天、武汉正元、武汉天虹、深科健等企业技术专家参与了此次标准讨论会。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/5e35e82e-10dc-4546-9561-b586d2db51f5.jpg" title="海河流域水资源保护局,罗阳副局长.png" alt="海河流域水资源保护局,罗阳副局长.png" width="347" height="231" style="width: 347px height: 231px "//pp style="text-align: center "ispan style="font-size: 14px "海河流域水资源保护局,罗阳副局长/span/i/pp  会议由海河流域水资源保护局罗阳副局长主持。首先,标准发起单位青岛中质脱盐质量检测有限公司总经理苑萍致辞并做了标准编制工作汇报。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/9285bb46-fd3e-4271-8d6f-94dcc9670ef5.jpg" title="青岛中质脱盐质量检测有限公司总经理,苑萍.jpg" alt="青岛中质脱盐质量检测有限公司总经理,苑萍.jpg" width="362" height="240" style="width: 362px height: 240px "//pp style="text-align: center "ispan style="font-size: 14px "青岛中质脱盐质量检测有限公司总经理,苑萍/span/i/pp  之后由此次标准主笔专家曹峰博士主持了标准第二稿的讨论环节。各位领导专家对标准的第二稿进行了热烈讨论,结合新产品、新技术和市场应用提出了很多宝贵意见,会后将形成会议纪要,经过标准制定工作组修改后广泛征集业内意见与建议。随后确定了标准进度安排,以及送审时间。接着由此项标准主要技术支持单位,中国水利水电科学研究院水环境研究所彭文启所长对标准编制工作进行了总结与指导。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/d7edce44-83c3-4bcf-a69c-5e7cc02bf89c.jpg" title="中国水利水电科学研究院水环境研究所,彭文启所长.png" alt="中国水利水电科学研究院水环境研究所,彭文启所长.png" width="348" height="230" style="width: 348px height: 230px "//pp style="text-align: center "ispan style="font-size: 14px "中国水利水电科学研究院水环境研究所,彭文启所长/span/i/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/6fb53df5-2b31-4a0d-b6fb-a60798fc3040.jpg" title="中国水科院水环境所高工,曹峰博士.png" alt="中国水科院水环境所高工,曹峰博士.png" width="350" height="243" style="width: 350px height: 243px "//pp style="text-align: center "ispan style="font-size: 14px "中国水科院水环境所高工,曹峰博士/span/i/pp  最后,由中国水利企业协会张金宏会长传达了协会指示与标准的指导精神。张会长首先对此次标准讨论会的编制成果给予了高度赞同,并对包括参编领导专家、企业专家、发起单位及各参编单位在内的所有参与标准编制人员的工作给予了高度肯定。/pp  张会长指出,技术研讨是标准编制环节中非常重要的一环,这一环节的好坏直接影响着标准的最终质量。本次参加技术研讨的专家来自科研院所、大专院校和生产企业等不同领域,具有广泛的代表性。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/523299c6-bd4c-49d0-bdf1-191090c39525.jpg" title="中国水利企业协会,张金宏会长.png" alt="中国水利企业协会,张金宏会长.png" width="341" height="247" style="width: 341px height: 247px "//pp style="text-align: center "span style="font-size: 14px "i中国水利企业协会,张金宏会长/i/span/pp  张会长强调,团体标准一定要代表行业和市场的意见,才能被大家所认可,并广泛采用和运用实施。一定要充分征求相关单位及专家意见,才能制定出具有生命力和竞争力的标准。同时可以通过征求意见将标准宣传出去,让更多人能够接触、认知制定的标准。/pp  同时,张会长对标准下一步工作提出了要求:各编制单位应当继续积极配合工作,加强调查研究,做好实验论证,为标准编制工作提供强有力的技术支撑,争取标准尽快发布实施。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/c40d07ef-3a9e-4b04-b73d-839950193860.jpg" title="讨论会现场.png" alt="讨论会现场.png" width="349" height="179" style="width: 349px height: 179px "//pp style="text-align: center "ispan style="font-size: 14px "讨论会现场/span/i/pp  今年“中国水周”提出了“坚持节水优先,强化水资源管理”的主题。“节水优先”是习近平总书记十六字治水方针第一条,“强化水资源管理”则是水利部明确的“补短板、强监管”水利工作总基调的内在要求。此次标准讨论会的召开弥补了现有光谱法水质在线监测系统的空白,进一步完善了水质在线监测工作所需的技术指导与规范,推动了水质监管的标准化进程,对整个水利、水务行业的发展起到了积极的影响。/ppbr//p
  • 二次离子质谱可以测什么?
    二次离子质谱(secondaryionmassspectroscopy,简称SIMS),是一种非常灵敏的表面成份精密分析仪器,原理利用质谱法分析初级离子入射靶面后,样品表面被高能聚焦的一次离子轰击时,一次离子注入被分析样品,把动能传递给固体原子,引起中性粒子和带止负电荷的二次离子发生溅射,然后根据溅射的二次离子的质量信号,对被轰击样品的表面和内部元素分布特征进行分析。通过不同的操作模式,测试可以得到表面质谱、表面成像、深度剖析和三维分析信息,用来完成工业生产和科研研究过程中所需的掺杂和杂质深度数据;浅注入和超薄膜的超高分辨率深度分析;芯片结构及杂质元素定性定量分析;薄膜的组成和杂质的测量等,这种技术本身具有“破坏性”的物质溅射,可以应用在包括但不仅限于金属及合金、半导体、绝缘体、有机物、生物膜分析对象上。质量分析器可采用单聚焦、双聚焦,飞行时间、四极杆、离子阱、离子回旋共振等,其中飞行时间离子质谱TOF-SIMS是通过将二次离子质谱分析技术(SIMS)与飞行时间质量分析器(TOF)结合起来,由于其一次脉冲就可得到一个全谱,离子利用率最高,能最好地实现对样品几乎无损的静态分析,分析速度快和样品的消耗极少,分析质量范围宽,对有机、无机材料都有很好的分析能力。
  • 甘肃省或将迎来一次水质检测仪器“大采购”
    根据甘肃省卫生计生委最新印发的《2015年甘肃省饮用水卫生监测工作方案》显示,今年甘肃省将在全省14个市(州)和86个县(市、区)城区和至少70%的乡镇辖区设置饮用水卫生监测点。  其中,兰州市设62个监测点,13个地级市设20~40个监测点,县和县级市设6个监测点,监测点的设置除涵盖城区内全部的市政供水外,还应当包括自建供水;监测点包括出厂水、末梢水和二次供水。此外,每个监测乡镇(含所辖村)设2~4个监测点,监测点的设置应当优先选择农村饮水安全工程供水类型,其次是其他集中式供水和分散式供水;监测点包括出厂水和末梢水。此外,在每个县选择4所农村学校检测末梢水,其中包括3所农村饮水安全工程覆盖的学校和1所采用自建设施供水的学校。  上述《方案》还要求,地级以上城市进行水质常规指标、氨氮及可能存在风险的指标监测,其中对市政供水枯水期出厂水进行水质指标安全分析。县级城区和乡镇辖区对水质常规指标和氨氮指标进行监测。  同时,《方案》中还透露,中央财政对水质监测和实验室设备进行补助(监测任务和实验室设备资金安排以财政部、国家卫生计生委下发通知为准)。由此,仪器信息网编辑预测,甘肃省未来一段时间或将就氨氮检测仪等水质常规指标检测仪器进行一次&ldquo 大采购&rdquo ,粗略估计相关仪器采购规模将有上千套。敬请相关仪器供应商关注。编辑:刘玉兰
  • 天尔新品|水质在线多参数检测仪强势来袭
    为了适用于自来水厂、小区二次供水、泳池水、供水管网、工业过程水、农业用水、卫生疾控、等相关行业的水质实时检测,天尔仪器最新研发生产了一款多参数水质检测仪,它是集水质监测传感器、数据处理单元,内部水流管路单元为一体的水质数据采集系统,可直接将多种水质在线测定项目集成在一台整机内部,在10.1寸安卓高清工业触摸屏上集中察看和管理,灵敏度高,抗干扰力强,操作界面简单易学,可同时测量pH、溶解氧、电导率、ORP、余氯等多种项目.支持定制化服务。◆ 采用10.1寸安卓高清工业级电容式触控屏,灵敏度高,运行速度快,图片处理细节细腻,稳定性好,适合长期不间断使用,使用寿命长;◆ 检测池流量可控式设计,测量值不受外界水流量变化的影响;◆ 标准化接口,模块化设计,安装简易、操作便捷,可根据客户需求定制相应监测参数;◆ 运用PC端数据软件,具有在线监测、曲线分析、记录数据、手机APP实时查询、导出数据等功能。◆ 水路采用串联式设计,工作效率高,用水量少;◆ 流通池内置排气阀门,通过开启阀门将流通池内的空气排出,从而减少气泡对电极读数的影响;◆ 水电分离,腔体之间独特设计,具有良好的密封性、屏蔽性,耐腐蚀,抗干扰;◆ 可实现多个参数同时在线监测,提高集成度,降低运行维护成本,每个通道独立工作,互不影响;◆ 无需添加试剂,无二次污染,响应速度快,传感器使用寿命长;◆ 可实现pH、电导率、溶解氧、ORP、浊度、温度等参数的测量.
  • REACH法规第二次注册时限注册情况
    2013年9月10日,欧盟ECHA发布了第二次注册时限前(截至2013年5月31日)提交的注册的情况。统计显示,共提交了9030个卷宗,涉及到约2998种物质,企业交付的0.45亿欧元的注册费。  企业在376项卷宗中提出了770项的测试提案,其中的653项是为了满足REACH法规附件IX中的信息要求,ECHA将在2016年6月1日前评估所有的测试提案。  此外,ECHA收到了在254个卷宗中的301项的机密性要求。其中大多数的机密性要求都是关于安全数据表中的信息(包括公司的名称、注册号及物质的使用信息),ECHA将在接受这些要求前对其进行评估。而所有的非机密性信息则在年底前进入注册物质在线数据库。  ECHA提醒业界,即使在取得了注册号后,仍然要维护和更新其卷宗。此外,业界还需要保持REACH-IT以便接收来自EACH的信息。  详情参见:http://echa.europa.eu/view-article/-/journal_content/title/registration-numbers-granted-to-9-030-reach-2013-registrations
  • “雷磁”水质分析解决方案助力生活饮用水标准检测方法
    最新版《生活饮用水卫生标准》(GB 5749-2022)于2022年3月15日获批发布,2023年4月1日实施,这次修订历时16年之久。日前,国家市场监督管理总局批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准,并定于2023年10月1日起实施,以代替实施16年之久的GB/T 5750-2006 《生活饮用水标准检验方法》系列标准。据悉,此次修订除了满足GB 5749《生活饮用水卫生标准》中水质指标的检验需求,提高饮用水水质检验工作的效率,更主要的是为了解决GB/T 5750-2006存在的问题和不足。事关饮水健康!16年之后,生活饮用水卫生标准及检验方法迎来了哪些改变?同时对生活饮用水检测的相关仪器市场会产生怎样的影响?仪器信息网邀请上海仪电科学仪器股份有限公司(简称仪电科仪)为大家进行了详细解答。仪器信息网:本次《生活饮用水卫生标准》和《生活饮用水标准检验方法》的修订,具有什么重要的意义?是基于怎样的需求做出这样的改变?重点解决哪些方面的问题? 上海仪电科仪:我国经济飞速发展,水环境及饮用水卫生状况发生了较大变化,净水工艺也在不断提高,原标准已逐渐无法满足人民群众日益增长的美好生活需要。为适应现阶段我国饮用水国情,保证居民饮水用水安全,国家进行了本次《生活饮用水卫生标准》和《生活饮用水标准检验方法》的修订。这次修订不仅完善了城乡一体化的饮用水水质评价要求,还进一步强化了“从水源到水龙头”全过程全链条的管理,内容涉及生活饮用水水质要求,水源水质要求,集中式供水单位卫生要求,二次供水卫生要求,涉及饮用水卫生安全的产品卫生要求等。仪器信息网:《生活饮用水卫生标准》相较于之前有哪些重要的变化?新增或者删减了哪些指标? 上海仪电科仪:本次标准修订指标遴选的主要原则是反映我国当前的水质问题和水质风险,因此更加关注感官指标、消毒副产物指标、风险变化等,既可反映我国当前的饮用水水质状况,同时也体现了污染物健康效应的最新研究成果。调整内容如下: 1) 调整指标分类方法: 根据水质指标的特点,将指标分类方法由原标准的“常规指标和非常规指标”调整为“常规指标和扩展指标”,修改后指标分类表述更确切,避免了歧义的产生。其中,常规指标指反映生活饮用水水质基本状况的水质指标;扩展指标指反映地区生活饮用水水质特征及在一定时间内或特殊情况下水质状况的指标。 2) 调整指标限值、数量和项目: 新标准根据最新的人群流行病学和毒理学等相关学科的研究成果,结合我国实际情况,修订调整了9项指标限值,其中8项指标限值都比原标准有所提升。同时,水质指标由原标准中的106项调整为97项,包括常规指标43项和扩展指标54项。仪器信息网:相对应的,GB/T 5750-2023《生活饮用水标准检验方法》在哪些方面完善了原标准的不足之处?有哪些新增加的、调整的仪器方法或者技术? 上海仪电科仪:GB/T 5750-2023大幅增加了高通量的分析方法,扩展了质谱技术的应用范畴,也重点加强了自动化程度高检测方法,进一步强化了以人为本的制标理念,充分体现了方法标准的配套性和前瞻性,增加了现场检测的方法便利性(余氯、总氯)。 新增内容:例如,相比GB/T 5750.7,新版修订内容增加了高锰酸盐指数2种方法:分光光度法、电位滴定法;相比GB/T 5750.11,新版修订内容对原有指标中游离余氯、总氯进行了修订,增加了2个检验方法:生活饮用水中游离氯的现场 N,N-二乙基对苯二胺(DPD)、生活饮用水中总氯的现场 N,N-二乙基对苯二胺(DPD)。 调整内容:例如增加了部分术语和定义:最低检测质量 (minimum detectable mass),能够准确测定的被测物的最低质量;最低检测质量浓度(minimum detectable mass concentration),最低检测质量所对应的被测物的质量浓度。仪器信息网:新版《生活饮用水卫生标准》和《生活饮用水标准检验方法》的相继实施会对生活饮用水检测及相关仪器市场产生怎样的影响?是否会引起相关仪器市场的增加? 上海仪电科仪:标准和检验方法的变化,首先影响到的是仪器应用上的要求,会对相关第三方检测机构及仪器生产厂商的仪器设备提出新的要求,比如氨(以N计),从非常规指标变为常规指标;对一些现场检测方法进行了拓展,比如余氯、总氯等的现场检测等;一些新的方法得到了大量应用,比如流动注射法、连续流动法、液相-原子荧光联用、液相-质谱联用等,新方法的应用,将会引发这一类仪器的市场增量。仪器信息网:应对新标准的变化,贵单位可以提供哪些相关的仪器和解决方案?有哪些突出的技术优势? 上海仪电科仪:一是对于高锰酸盐指数——电位滴定法,推荐仪器是ZDJ-5B型自动滴定仪。这款产品的技术优势包括:①采用阀门滴定管一体化设计,直接更换,有效避免干扰;②支持动态滴定、等量滴定、预设终点滴定、恒滴定和手动滴定等多种滴定模式;③可定义计算公式,直接显示计算结果;④支持滴定方法的建立、编辑、拷贝和查阅,以及滴定结果重新计算功能,满足复杂滴定;⑤支持数据管理,可存储100套滴定方法和200套符合GLP要求的滴定结果;⑥支持数据统计分析和用户管理功能;⑦支持USB、RS232连接PC,双向通讯,支持U盘即插即用,随机赠送REX滴定专用软件;⑧可直接连接自动进样器实现批量样品的自动测量。ZDJ-5B型自动滴定仪二是对于高锰酸盐指数——分光光度法,公司可推荐仪器及解决方案是:DGB-425便携式水质分析仪+COD-401-1便携式消解器。仪器内置了基于酸性高锰酸钾氧化法-比色法测高锰酸盐指数的测试方法。检测方法直接调用,无需进行波长选择,也可直接读取测量结果,无需换算,自动锁定测量值。同时还提供高锰酸盐指数校准溶液和工作试剂包,一套可以实现100次样品的测量,满足批量多次实验要求。三是对于游离余氯——生活饮用水中游离氯的现场 N,N-二乙基对苯二胺(DPD)、总氯——生活饮用水中总氯的现场 N,N-二乙基对苯二胺(DPD)的检测,可推荐仪器是DGB-402F型便携式余氯/总氯测定仪。DGB-402F型便携式余氯/总氯测定仪• DPD法测量原理,直测量程0.02-3.00 mg/L,通过稀释法可拓展至10 mg/L,精度±3%或±0.02mg/L,重复性≤1.0%• 内置校准曲线,一键校零,一键完成测量• 标配余氯、总氯校准试剂包以及工作试剂包和便携式防护箱仪器信息网:您如何评价水质检测市场未来发展的需求情况?有哪些新技术或者应用方向值得关注? 上海仪电科仪:未来,水质检测实验室分析将对高通量的分析方法以及自动化程度高检测方法需求会提高,现场检测对便携式或移动式检测仪器的标准符合性以及现场快速的配套需求也会增加,预制试剂包特定场景化应用值得关注。仪器信息网:未来贵单位在水质检测领域有什么样的发展布局?有哪些新的产品或者技术即将推出? 上海仪电科仪:在水质检测领域,未来上海仪电科仪将进一步完善产品线,比如比色法水质分析仪,以及高通量自动化系列产品和饮用水在线监测类仪表。涉及到的应用场景会有饮用水城镇供水,饮用水农村供水,管道分质供水,饮用水污染开展饮用水应急监测,二次供水,直饮水,重大活动,饮用水水质监测等。今年,即将推出的新品将有:1、 实验室分析以及现场检测仪器:1)升级版 DGB-403F型便携式消毒剂测定仪集成2个特定吸收峰波长的 LED 光源,可实现余氯/总氯/一氯胺/二氧化氯/亚氯酸盐/氯酸盐/过氧化氢等7项消毒剂类检测项目,无需稀释,直接取样测量,余氯和总氯的直测范围可到12.0mg/L。DGB-403F2) 钨灯光源浊度计系列台式和便携式全覆盖3) 升级版LED光源浊度计系列4)升级版DGB-480型多参数水质分析仪集成8个特定吸收峰波长的 LED 光源,可实现60多个水质项目的检测。2、 二次供水/饮用水水质在线监测类仪表:1)SJG-702饮用水水质多参数水质分析仪• 模块化设计,支持pH值,TDS,浊度,余氯/总氯/二氧化氯,温度的测定,各测量参数可自由组合,灵活配置• 适用于测量饮用水管网水,二次供水水质监测2)SJG-791B在线消毒剂监测仪• 电极法测量余氯,总氯,二氧化氯或臭氧• 适用于测量自来水水源,饮用水管网水,二次供水水箱,污水消毒工艺,医疗污水及游泳池的消毒剂含量3)WZT-701B型在线浊度监测仪• 适用于低浊度样品如自来水、饮用水、二次供水、工业过程用水的浊度值测量• 测量量程为0.005-20.000NTU
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制