当前位置: 仪器信息网 > 行业主题 > >

污泥沉降定仪

仪器信息网污泥沉降定仪专题为您提供2024年最新污泥沉降定仪价格报价、厂家品牌的相关信息, 包括污泥沉降定仪参数、型号等,不管是国产,还是进口品牌的污泥沉降定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合污泥沉降定仪相关的耗材配件、试剂标物,还有污泥沉降定仪相关的最新资讯、资料,以及污泥沉降定仪相关的解决方案。

污泥沉降定仪相关的论坛

  • 【资料】污泥浓度、污泥指数、污泥沉降比的测定

    污泥浓度的测定 污泥浓度是指曝气池中污水和活性污泥混合后的混合液悬浮固体数量。单位:mg/L。污泥浓度、污泥指数、污泥沉降比的测定 污泥浓度的测定 污泥浓度是指曝气池中污水和活性污泥混合后的混合液悬浮固体数量。单位:mg/L。 实验室样品采集在干净的玻璃瓶内,采样之前用待采的水样清洗三次,然后采集具有代表性的水样100―200ml,盖严瓶塞。应尽快分析。 测定步骤 滤纸准备 用扁嘴无齿镊子夹取定量滤纸放于事先恒重的称量瓶内,移入烘箱中于103―105℃烘干半小时后取出置于干燥器内冷却至室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.2mg,记录(W1)。将恒重的滤纸放在玻璃漏斗内。 试样测定 用100ml量筒量取充分混合均匀的试样100ml,静止30分钟后读取沉淀后污泥所占的体积V(ml)。 倾去上述量筒中清液,用准备好的滤纸进行过滤量筒中的污泥,并用少量蒸馏水冲洗量筒,合并滤液。(为提高过滤速度,应采用真空泵进行抽滤。)将载有污泥的滤纸放在原恒重的称量瓶里,移入烘箱中于103―105℃下烘2~3小时后移入干燥器中,使冷却到室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.4mg为止,记录(W2)。 计算污泥浓度 C污泥浓度(mg/L)=(W2–W1)×106÷100

  • 【世界环境日】活性污泥老化后沉淀速度加快的原因

    主要是原因:微生物种群结构变化:随着污泥的老化,活性污泥中的微生物种群会发生改变,那些具有高效降解有机物能力的微生物数量减少,而那些不易降解有机物的微生物以及衰老死亡的微生物比例增加。这些老化或死亡的微生物细胞壁变得更脆弱,容易破碎,形成的絮体结构较为松散,因此在重力作用下更容易快速沉淀。絮体结构变化:老化污泥的絮体虽然体积变大,但是结构变得较为松散,内部空隙增大。这种结构特征使得水流能够更轻易穿透絮体中心,减少了水流阻力,加速了沉淀过程。生物黏附性降低:活性污泥老化还伴随着微生物表面电荷性质的变化,可能是正电荷减少或负电荷增加,导致微生物颗粒之间的静电排斥力减弱,相互间的黏附性降低,易于聚集并迅速沉淀。代谢活性下降:老化的污泥中微生物代谢活性降低,产泥量减少,但同时死亡的微生物细胞增多,这些死亡细胞往往比重较大,沉降性能优于活细胞,从而加快了整体的沉淀速度。食微比(F/M)降低:活性污泥老化通常发生在食微比(F/M,即食物与微生物量之比)长期过低的情况下,这会导致微生物营养不足,生长繁殖受阻,进一步促进了污泥的老化和沉淀速度的提升。

  • 污泥即时监测系统

    污泥即时监测系统

    [img=,637,498]http://ng1.17img.cn/bbsfiles/images/2017/07/201707031305_01_3194653_3.jpg[/img]污泥即时监测系统 • 即时监控通过图像对污泥沉降过程进行监控内置PC进行线上数据传输、储存和分析• 稳定可靠能适应各种监测环境,如不同电导率、污泥密度和透明度比手工方法测定污泥沉降的高度更简便、全面、易操作• 高自动化程序控制自动运行,且能与其他线上监测系统联网自动进行日常污泥沉降检查工作SVI系统连续线上污泥沉降监测系统:• 测量组件1升样品缸和捕捉影像用的数位相机• 操作组件自动进样和清洗测量模式可进行图像捕捉污泥沉降状态监测• 软件储存即时影像分析数据显示影像分析和测量数据 技术规格原理: 线上传统污泥沉降性能监测(图像分析式)数据记录类型: SSD储存,即时储存读/写操作方法: 自动或手动光源: LED测定时间: 沉降模式(30min),填充、余液返回、清洗及空白模式,可调整测量范围: 0 - 1000ml(污泥)测量时间间隔: 1小时,2小时,3小时(可选)数据储存间隔 : 1分钟,2分钟,3分钟(可选)精度: 《±3%污泥沉降高度(相对测量范围)圆柱容器容积: - 1000mi(柱状)影像格式: - 1/3" CCD SharP高分辨率有效像素(图像): - NTSC: 768(-)X494(V),高解析度,480TVLines运行中读写: 线上SVI仪表软件,选用Windows2000,XP,VISTAPC规格: Windows XP,SSD影碟32GB,内存1GB;10.4"SXGA TFTVGA彩色显示屏接口规格: RS-232交换网路: RTL8100B 10/100Mbps(标准接口)安装环境: 温度0 - 45℃,相对湿度95%尺寸/重量: 600X1800X650mm(长X宽X高),80Kg电源: AC220V,50/60Hz功率 : Max135W,AC220V,620mA

  • 沉降菌检测

    沉降菌的检测是怎么样的原理呢?例如车间内30min沉降 结果菌落没有生长可以判定就是没有菌落吗?一般作业区也不可能一点菌落都没有啊?还是说她的判定只是个定性的呢 不太明白

  • 【资料】污泥处理-污泥处理步骤

    首先,原污泥通过污泥泵由二沉池打到另一个池子中从而和上清液分离。因为原污泥的含水率通常能达到99.5%,所以污泥必须浓缩,有多种可行的方法用于减少污泥的体积。例如真空过滤和离心等机械处理的方法通常用于将污泥以半固体形式处置之前。通常这些方法是污泥焚烧处理的准备工作。如果计划采用生物处理,则多数才用重力沉降或者是气浮的方法进行浓缩。这两种情况所对应的污泥仍然是流态的。   重力浓缩池的设计和运行类似于污水处理中的二沉池。浓缩功能是主要的设计参数,为了满足更大的浓缩能力,浓缩池基本上比二沉池要深。一个设计正确,运行良好的重力浓缩池至少能提高两倍的污泥含泥量。也就是说,污泥的含水率可以有99.5%减少到98%,或者更少。这里值得一提的是,重力浓缩池的的设计要尽量基于中式结果的分析,因为合适的污泥负荷率与污泥的属性的有很大关系的。   如果采用溶气气浮浓缩,需要有一小部分的水,通常是二沉池出水,在400kPa的压力下充气。这种过饱和的液体通入罐底,而污泥在大气压下通过。气体以小气泡的形式和污泥中的固体颗粒黏附,或则是被包围,从而带动固体颗粒上浮到表面。浓缩了的污泥的上部被除去,而液体由底部流回溶气罐充气。   体积减少后,污泥中含有大量的有害成分,在处置之前需要将之转化为惰性成分。最常用的方法是生物降解稳定。因为这个过程目的在于将物质转化为最终无菌产物,所以常应用消化的方法。污泥消化既能进一步的减少污泥体积也能使所含固体转化为惰性物质并且大体的上没有病菌。通过厌氧消化或好养消化都能达到污泥消化目的。   污泥含有多种有机物,因此需要多种微生物来分解。有关资料将厌氧消化中的微生物分为两类:产酸菌和甲烷菌。所以,我们也能把厌氧消化分为两步。第一步,由兼性厌氧菌和厌氧菌组成的产酸菌通过水解作用溶解有机固体。接着溶解质由发酵作用转化为酒精和低分子量分子。第二步,有严格厌氧菌组成的甲烷菌将乙酸、酒精、水和二氧化碳转化为甲烷。因为两种菌群只能在无氧的环境下存活,所以厌氧消化的反应器必须是密闭的。设计容器的时候同时也要考虑另外的一些因素,例如:温度、pH值和混合物搅拌。   污泥也可以通过好氧消化稳定。这种消化基本上只能用于可生化污泥而不能用于初沉池污泥,伴随着二沉池和污泥浓缩池中污泥体积的减少,这个工艺需要不断的鼓气。好氧消化多应用于深度曝气系统。再者,好氧消化对环境条件不敏感,也不局限有流行变化。  污泥消化以后,污泥中的有机物能被去除并且能进一步的减少污泥体积。接下来,污泥需要处置。多种方法可以用来有效的处置污泥。其中包括焚烧、卫生填埋和用作化肥以及土壤改良剂。原污泥可以用来焚烧,可以有效地减少含水率。添加燃料可以用来引起和维持燃烧,城市垃圾也可能用来达到这个目标。原污泥和消化污泥也可以用卫生填埋来处置。污泥的土地应用实践了好几年,而现在只限于处理消化污泥。污泥的营养成分有利于植物成长,而其颗粒特性可用于土地改良。这些应用局限有饲料作物和非人类消费,而运用于支持可食用植物的可能性正在研究中。污泥土地应用的主要限制因素为植物富集金属毒性和水体富营养污染。污泥的应用可通过在流态时由喷淋器喷淋、沟渠导流或直接注入土壤。去水污泥可以由传统农用机械铺设在土地之上在和培养土壤。   上述文字指的是一般污泥的处理。因为污泥能造成环境的污染,所以我们需要尽最大的努力使之无害化。现在,很多导致类型污染的具有不同特性污泥正在研究中。在本文中,我将叙述一种来自于人类产油和石油工业的污泥,这个代表性污泥称之为含油污泥。   大量的污泥产生,而这种污泥中含有相当大量的油,必须在最终处置之前将之去除。炼油厂产生的污泥不能被安全的处置,除非将其含油量去除到一定程度。此外,在炼油厂的油水分离系统和储油罐中因为含油原料的累积而产生的污泥的处理费用很高,并且对环境造成很严重的污染。石油是一种疏水混合物例如:烷烃,芳香烃,树脂和沥青。许多化合物是有毒性的,致突变的和致癌的。它们的排放的受到严格控制的,因为它们对人体健康和环境的负面影响,它们被美国环保部门分类并列为环境污染物优先。   有很多种方法可以用来处理含油污泥。化学和物理的方法例如:焚烧、氯氧化、臭氧氧化和燃烧,生物的处理方法例如:生物修复、传统堆肥法等等。现在,随着技术的发展,含油污泥的低温冷处理和生物修复成为了两条有效的处理途径。   低温冷处理技术作为一种物理的处理方法能有效地增加污泥的脱水性质,改变絮凝剂的结构形式并减少污泥周围的水含量。比较那种“初沉降”,冷处理能够除掉溶液中的杂质,因此达到更好浓缩目的,最近就是在讨论冷处理的这种好处。据我们所知,现在的资料中没有讨论冷处理技术来分离油泥中的油的可行性。但是,如果在自然条件允许的许多国家里,冷处理技术提供了一种有效的处理含油污泥的处理和处置的方法。   通过比较常规方法处理和冷处理之后污泥,我们可以发现,冷处理之后的样品上面浮了一层油。最后我们可以发现试管中分三层:最上面的一层是清的浮油,底层是一层深色的沉降物,中间一层是清水。原始的污泥经过24小时的沉降,可以看见上浮液和底部沉降物,但是没有可见的油相。通过上面的叙述的现象揭示了简单的冷处理能有效分离油泥中的油。   物理化学的方法可以用来处理油泥,但是费用却是很高的。堆肥和通过接种降解油类菌种或激活原有生物进行生物修复被看为两种经济的方法来对付油污染。堆肥有些看得见的优点例如:基建和维护费用低、设计和运行简单并能去处部分的油。然而,堆肥处理基本上不能达到现在环境的标准了。   油泥中含有的大部分油是难于生物降解的。很多研究证明了生物修复对含油土壤的高效处理,但是只是针对含油量高的污染物。大部分实验在实验室中进行,而行业应用的很少。生物修复才刚刚开始,这个意味着先进的处理技术。

  • 【世界环境日】正确控制污泥回流比的方法

    以下是几个关键的控制方法:污泥浓度控制:定期监测混合液悬浮固体(MLSS)浓度,确保其维持在一个适宜的范围内,一般介于2000mg/L至4000mg/L。如果MLSS超过此范围,应及时排放剩余污泥,以避免因污泥浓度过高导致的处理效率下降和出水水质恶化。污泥沉降比(SV)控制:SV是衡量活性污泥沉降性能的指标,正常值通常在15%至30%之间。若SV值上升,表明污泥沉降性能下降或污泥量增多,此时应增加剩余污泥排放量以改善沉降性能并维持稳定的SV值。污泥负荷控制:根据进水负荷和活性污泥的生物降解能力,计算污泥的理论产生量,并据此调整排放量,确保曝气池内的污泥负荷(F/M,即食物与微生物质量比)在适宜范围内,一般为0.25至0.5kgBOD/kgMLSSd,以维持良好的处理效果和污泥活性。MISS控制法:通过计算公式Vw=V(MLSS-MLSS0)/RSS来确定剩余污泥排放体积,其中Vw为要排放的剩余污泥体积,V为曝气池容积,MLSS为实测污泥浓度,MLSS0为目标维持的浓度值,RSS为回流污泥浓度。这种方法适用于水量水质变化不大的污水处理厂,通过调整排放量以维持设定的MLSS浓度。F/M控制法:通过调整进水的有机负荷和排泥量,维持一个稳定的F/M比,以控制污泥增长速率和排放量,确保处理系统稳定运行。连续或间歇排泥:根据实际情况选择连续排泥或周期性排泥,连续排泥有利于维持系统稳定,而间歇排泥则可以根据水质变化和处理需求灵活调整。监控系统运行状态:定期检查曝气系统、搅拌设备的工作状态,确保曝气充分,混合均匀,避免死区和短流现象,这些都间接影响污泥的生成和排放控制。

  • 【世界环境日】曝气池剩余污泥排放量的控制方法

    以下是几个关键的控制方法:污泥浓度控制:定期监测混合液悬浮固体(MLSS)浓度,确保其维持在一个适宜的范围内,一般介于2000mg/L至4000mg/L。如果MLSS超过此范围,应及时排放剩余污泥,以避免因污泥浓度过高导致的处理效率下降和出水水质恶化。污泥沉降比(SV)控制:SV是衡量活性污泥沉降性能的指标,正常值通常在15%至30%之间。若SV值上升,表明污泥沉降性能下降或污泥量增多,此时应增加剩余污泥排放量以改善沉降性能并维持稳定的SV值。污泥负荷控制:根据进水负荷和活性污泥的生物降解能力,计算污泥的理论产生量,并据此调整排放量,确保曝气池内的污泥负荷(F/M,即食物与微生物质量比)在适宜范围内,一般为0.25至0.5kgBOD/kgMLSSd,以维持良好的处理效果和污泥活性。MISS控制法:通过计算公式Vw=V(MLSS-MLSS0)/RSS来确定剩余污泥排放体积,其中Vw为要排放的剩余污泥体积,V为曝气池容积,MLSS为实测污泥浓度,MLSS0为目标维持的浓度值,RSS为回流污泥浓度。这种方法适用于水量水质变化不大的污水处理厂,通过调整排放量以维持设定的MLSS浓度。F/M控制法:通过调整进水的有机负荷和排泥量,维持一个稳定的F/M比,以控制污泥增长速率和排放量,确保处理系统稳定运行。连续或间歇排泥:根据实际情况选择连续排泥或周期性排泥,连续排泥有利于维持系统稳定,而间歇排泥则可以根据水质变化和处理需求灵活调整。监控系统运行状态:定期检查曝气系统、搅拌设备的工作状态,确保曝气充分,混合均匀,避免死区和短流现象,这些都间接影响污泥的生成和排放控制。

  • 【原创】沉降离心机沉降系数

    沉降离心机沉降系数: 1、沉降系数 (sedimentation coefficient,s)根据1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度。沉降系数是以时间表示的。 用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。或s=v/ω2r。s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒.2、基本原理 物体围绕中心轴旋转时会受到离心力F的作用。当物体的质量为 M、体积为V、密度为D、旋转半径为r、角速度为ω(弧度数/秒)时,可得: F=Mω2r 或者 F=V.D.ω2r (1) 上述表明:被离心物质所受到的离心力与该物质的质量、体积、密度、离心角速度以及旋转半径呈正比关系。离心力越大,被离心物质沉降得越快。 在离心过程中,被离心物质还要克服浮力和摩擦力的阻碍作用。浮力F}和摩擦力F}}分别由下式表示: F’=V.D’.ω2r (2) F’’=f dr/dt (3) 其中D}为溶液密度,f为摩擦系数,dr/dt为沉降速度(单位时间内旋转半径的改变)。 基本原理 在一定条件下,可有 : F=F’+F’’ V.D. ω2r =V.D’ω2r + f. dr/dt dr/dt =Vω2r (D-D’)/f (4) 式(4)表明,沉降速度与被离心物质的体积、密度差呈正比,与f成反比。若以S表示单位力场(ω2r=1)下的沉降速度,则 S=V(D-D’)/f 。S即为沉降系数。 http://www.centrifuges.com.cn/news02.htm

  • 【资料】污泥处理!

    定 义 (suldge treatment ):对污泌泥进行浓缩、调治、脱水、稳定、干化或焚烧的加工过程。目 录简介污泥分类各种处理类型污泥处理分类几种污泥处理的方法及优缺点分析①污泥的卫生填埋②污泥的直接土地利用③污泥的焚烧污泥处理-污泥处理利用的技术污泥处理-污泥处理步骤1.2.关于污泥处理的研究污泥处理设备WGB-300型污泥固化拌和站LWnJ系列泥浆分离脱水机卧式螺旋卸料沉降离心机简介 污泥分类 各种处理类型污泥处理分类 几种污泥处理的方法及优缺点分析:①污泥的卫生填埋 ②污泥的直接土地利用 ③污泥的焚烧污泥处理-污泥处理利用的技术 污泥处理-污泥处理步骤 1. 2.关于污泥处理的研究 污泥处理设备 WGB-300型污泥固化拌和站 LWnJ系列泥浆分离脱水机 卧式螺旋卸料沉降离心机展开 编辑本段简介污泥分类  原污泥 (raw sludge):未经污泥处理的初沉淀污泥。二沉剩余污泥或两者的混合污泥。   初沉污泥 (primary sludge): 从初沉淀池排出的沉淀物。   二沉污泥 (secondey sludge ):从二次沉淀池(或沉淀区)排出的沉淀物。   活性污泥 (activated sludge): 曝气池中繁殖的含有各种好氧微生物群体的絮状体。   消化污泥 (activated sludge): 经过好氧消化或厌氧消化的污泥,所含有机物质浓度有   一定程度的降低,并趋于稳定。   回流污泥 (returned sludge): 由二次沉淀(或沉淀区)分离出来,回流到曝气池的活   性污泥。   剩余污泥 (excess activated sludge): 活性污泥系统中从二次沉淀池(或沉淀区)排   出系统外的活性污泥。   污泥气 (sludge gas): 在污泥厌氧消化时,有物分解所产生的气体,主要成分为甲烷和   二氧化碳,并有少量的氢、氮和硫化氢。俗称沼气。各种处理类型污泥消化 (sldge digestion): 在氧或无氧的条件下,利用微生物的作用,使污泥中的   有机物转化为较稳定物质的过程。   好氧消化 (aerobic sigestion): 污泥经过较长时间的曝气,其中一部分有机物由好氧   微生物进行降解和稳定的过程。   厌氧消化 (anaerobic digestion): 在无氧条件下,污泥中的有机物由厌氧微生物进行   降解和稳定的过程。   中温消化 (mesophilic digestion ):污泥在温度为33-530C时进行的厌氧消化工艺。   高温消化 (thermophilic digestion ):污泥在温度为53-330C进行的厌氧消化工艺。   污泥浓缩 (sludge thickening): 采用重力或气浮法降低污泥含水量,使污泥稠化的过   程。   污泥淘洗 (elutriation of sludge ): 改善污泥脱水性能的一种污泥预处理方法。用清   水或废水淘洗污泥,降低消化污泥碱度,节省污泥处理投药量,提高污泥过滤脱水效率。   泥脱水 (sludge dewatering ): 对浓缩污泥进一步去除一部分含水量的过程,一般指机械脱水。   污泥真空过滤 (sludge vacuum filtration ): 利用真空使过滤介质一侧减压,造成介质两侧压差,将污泥水强制滤过介质的污泥脱水方法。污泥压滤 (sludge pressure filtration ): 采用正压过滤,使污泥水强制滤过介质的污泥脱水方法。污泥干化 (sludge drying ): 通过渗滤或蒸发等作用,从污泥中去除大部分含水量的过   程,一般指采用污泥干化场(床)等自蒸发设施。污泥焚烧 (sludge incineration ):污泥处理的一种工艺。它利用焚烧炉将脱水污泥加   温干燥,再用高温氧化污泥中的有机物,使污泥成为少量灰烬。编辑本段污泥处理分类污泥处理前,首先要了解污泥的分类,才能确定污泥处理的方法:   1.自来水厂沉淀池或浓缩池排出的物化污泥处理污泥分类:属中细粒度有机与无机混合污泥,可压缩性能和脱水性能一般。   2.生活污水厂二沉池排出的剩余活性污泥处理污泥分类:属亲水性、微细粒度有机污泥,可压缩性能差,脱水性能差。   3.工业废水处理产生的经浓缩池排出的物化和生化混合污泥处理污泥分类:属中细粒度混合污泥,含纤维体的脱水性能较好,其余可压缩性能和脱水性能一般。   4.工业废水处理产生的经浓缩池排出的物理法和化学法产生的物化细粒度污泥处理   污泥分类:属细粒度无机污泥,可压缩性能和脱水性能一般。   5.工业废水处理产生的物化沉淀粗粒度污泥处理污泥分类:属粗粒度疏水性无机污泥,可压缩性能和脱水性能很好。编辑本段几种污泥处理的方法及优缺点分析①污泥的卫生填埋  这种处置方法简单、易行、成本低,污泥又不需要高度脱水,适应性强。但是污泥填埋也存在一些问题,尤指填埋渗滤液和气体的形成。渗滤液是一种被严重污染的液体,如果填埋场选址或运行不当会污染地下水环境。填埋场产生的气体主要是甲烷,若不采取适当措施会引起爆炸和燃烧。②污泥的直接土地利用  污泥土地直接利用因投资少、能耗低、运行费用低、有机部分可转化成土壤改良剂成分等优点,被认为是最有发展潜力的一种处置方式,科学合理的土地利用,可减少污泥带来的负面效应。林地和市政绿化的利用因不易造成食物链的污染而成为污泥土地利用的有效方式。污泥用于严重扰动的土地(如矿场土地、森林采伐场、垃圾填埋场、地表严重破坏区等需要复垦的土地)的修复与重建,减少了污泥对人类生活的潜在威胁,既处置了污泥又恢复了生态环境。③污泥的焚烧  湿污泥干化后再直接焚烧应用得较为普遍,没有经过干化的污泥直接进行焚烧不仅十分困难,而且在能耗上也是极不经济的。   以焚烧为核心的污泥处理方法是最彻底的污泥处理方法,它能使有机物全部碳化,杀死病原体,可最大限度地减少污泥体积;但是其缺点在于处理设施投资大,处理费用高。

  • 控制污泥膨胀的调节运行工艺措施有哪些?

    调节运行工艺控制措施对工艺条件控制不当产生的污泥膨胀非常有效。具体方法有:1、在曝气池的进口加粘土、消石灰、生污泥或消化污泥等,以提高活性污泥的沉降性能和密实性。2、使进入曝气池的污水处于新鲜状态,如采取预曝气措施,使污水尽早处于好氧状态,避免形成厌氧状态,同时吹脱硫化氢等有害气体。3、加强曝气强度,提高混合液溶解氧浓度,防止混合液局部缺氧或厌氧。4、补充氮、磷等营养盐,保持混合液中碳、氮、磷等营养物质的平衡。在不降低污水处理功能的前提下,适当提高F/M。5、提高污泥回流比,降低污泥在二沉池的停留时间,避免在二沉池出现厌氧状态。6、当PH值低时应加碱性物质调节,提高曝气池进水的PH值。7、利用在线仪表的手段加强和提高化验分析的时效性,充分发挥预处理系统的作用,保证曝气池的污泥负荷相对稳定。

  • 【资料】关于活性污泥法工艺参数控制方面问题

    关于活性污泥法工艺参数控制方面问题有不少网友问过我关于活性污泥工艺参考数控制方面的问题,虽然这方面专业书上都有介绍,但大多是局限于理论上的,所以对工艺运行参数有一个实践应用中的理解问题,如回流污泥量和回流比,如果按专业书介绍的方法来控制将会造成很大的负面影响,据我所知,不少处理装置都存在不少问题。以下根据回复网友在关于这方面的提问,以问答形式说明关于回流污泥量和回流比的问题,供各位参考。问:污泥回流比是回流污泥量与进水量之比,相关专业书认为活性污泥工艺中污泥回流比应该相对稳定,如果这样的话,回流污泥量就要根据进水量的变化而变化,实际运行中是否应该这样控制?答:不能这样做,在运行管理中,污泥回流比只能起参考作用,我们说的回流污泥量也不含有浓度的概念,实际上回流污泥量是不可任意调节的,它受限于污泥性质和二沉池运行状态等因素。问:为什么你说回流污泥量不含浓度的概念? 答:这就要说到二沉池的作用,二沉池的作用主要是泥水分离和回流污泥浓缩,如要增加回流污泥量,必须增加二沉池的出泥量,这样二沉池的污泥层会下降,使污泥在二沉池的浓缩时间减少,此时,进曝气池的回流污泥量虽增加,但回流污泥的浓度却下降,回流至曝气池的污泥绝对量并不会增加。 问:按你这样说,如果进水水量增加了,为了使污泥负荷相对稳定,又如何来增加曝气池污泥浓度呢?答:增加曝气池污泥浓度的办法就是停止剩余污泥排放或少排泥。问:不少专业书上都介绍了回流污泥量的估算式,如:用污泥沉降体积、污泥指数等方法来估算回流污泥量,按你前面所说的,难道这些估算方法都不对吗? 答:也不能这样说,书上的这些估算式中不可能都考虑到污泥性质和二沉池的运行状况等诸多因素的,是纯理论性的,它可使我们了解主要参数的相互间关系,从这个意义上说没有错,如果在日常运行中完全按估算式来控制,那就错了,有时甚至会造成严重的负面影响和后果。问:能解释一下“有时甚至会造成严重的负面影响和后果”这话的意思吗? 答:由于活性污泥系统的污泥是在曝气池和二沉池之间循环流动的,按前面的计算法,污泥沉降性能差是就要增加污泥回流比,这样的话,由于回流量增加,废水在曝气池的实际停留时间相对减少,而进二沉池混合液量又增加,使二沉池进水水能增大,严重影响泥水分离,更易造成漂泥,从而造成恶性循环。 问:以你之见,在日常运行中回流污泥量应该如何控制呢?答:尽可能稳定回流污泥量,污泥回流比可以变化,当然回流污泥量的稳定也是相对而言的,可根据二沉池污泥层的高度来小范围调节,而不是有些专业书说的根据进水量来调节。 如前所述,二沉池的作用主要是泥水分离和回流污泥浓缩。故在这种情况下,应该在不影响泥水分离的前提下,二沉池的污泥层应该适当高一些,这样回流污泥量虽然减少,但其浓度会提高,进入曝气的污泥量并不会减少。问:你说回流比可以有较大的变化,难道运行中就不用控制了答:没错!要控制的是回流污泥量,我认为回流比是设计参数而不是工艺运行参数,在设计上有用,如污泥污泥管的通量和回流污泥泵的配制等。上篇关于回流污泥量控制原则中说到“在不影响泥水分离的前提下,二沉池污泥层应适当控制高一些”,可能有人会有疑问或异议,并担心产生其他负面影响,如沉淀池污泥易缺氧,在有硝酸氮存在时易发生反硝化而导致部分污泥上浮。 要说明的是:我只是说污泥层“适当”控制高一些,我上篇中提出回流污泥量要相对稳定,并没说不能调节,但只能是小范围内波动;沉淀池污泥层高易引起污泥缺氧而发生反硝化与污泥层高有关系,但防止这样的情况发生关键是要在曝气池缺氧区尽可能去除硝酸氮,没有反硝化功能的系统,也可在好氧区控制同步硝化-反硝化条件来降低硝酸氮,此外,曝气池DO控制高一些也可减少或避免上述情况的发生,也就是说对类似的问题要有正确的综合分析思路。

  • 【世界环境日】控制曝气池剩余污泥排放量的方法

    污泥浓度控制:定期监测混合液悬浮固体(MLSS)浓度,确保其维持在一个适宜范围内,一般在3000-4000mg/L。如果MLSS超过这个范围,应当增加剩余污泥的排放量,反之则减少排放量。污泥沉降比(SV)控制:SV是衡量污泥沉降性能的指标,正常范围在15%-30%。若SV值持续偏高,表明污泥沉降性能不佳或污泥浓度升高,此时应增加排泥量。若SV值过低,则可能意味着活性污泥量不足,应适当减少排泥或调整曝气强度。MISS控制法:MISS是指混合液悬浮固体浓度。可依据公式Vw=V(MLSS-MLSS0)/RSS来确定剩余污泥排放体积,其中Vw为排放的污泥体积,V为曝气池容积,MLSS为实测浓度,MLSS0为期望维持的浓度,RSS为回流污泥浓度。这种方法适用于水量水质变化不大的情况下。污泥负荷(F/M)控制:根据进水有机负荷和曝气池内活性污泥量调整排泥,维持合理的F/M(食微比),过高或过低的F/M都可能导致系统不稳定,合理控制有助于维持曝气池内微生物活性和污泥量的平衡。连续或平均排泥:尽量采取连续排泥或平均排放策略,避免因一次性大量排泥导致曝气池内微生物环境突变。动态调整:根据进水流量、有机物浓度以及季节变化等因素,动态调整排泥策略,确保曝气池运行稳定。监控和测试:定期检测进出水水质、曝气池内MLSS、SV30、溶解氧(DO)等参数,结合实际运行数据调整排泥量。通过上述方法综合调控,可以有效控制曝气池内剩余污泥的排放量,保证污水处理系统的稳定运行和出水水质达标。

  • 离心机沉降系数测定

    离心机沉降系数测定沉降系数测定是分析离心机最主要的用途。通常只需要几十毫克甚至几十微克样品,配制成1~2毫升溶液,装入分析池,以几小时的分析离心,就可以获得一系列的样品离心沉降图。根据沉降图可以作样品所含组分的定性分析,亦可以测定各组分的沉降系数和估计分子大小,作样品纯度检定和不均一性测定,以组分的相对含量测定。1.原理  沉降系数的测定原理就是在恒定的离心力场下测定样品颗粒的沉降速度。因为样品颗粒很小,不能直接看到它们的沉降运动,所以把离心时样品颗粒的界面移动速度看作是样品颗粒的平均沉降速度。通常使用Schlieren和吸收光学系统来记录界面沉降图。在沉降图中样品界面一般表现为一个对称的峰,峰的最高点代表界面位置。通常沉降系数测量精度为±2%,但是如果面界图型表现为不对称峰型,或希望沉降系数测量精度达到±1%或更小的情况时,按峰的最高点作为界面位置就不够了这时应该使用二阶距法计算界面位置。2.沉降系数测定实例⑴样品:牛血清白蛋白⑵样品溶液与离心:按0.6%浓度将牛血清白蛋白溶于0.14M NaCl、0.01M磷酸缓冲液中,pH7.0。用12mm厚双槽分析池,一边加入溶液一边加入溶剂,约各0.3ml。分析池与平衡池平衡重量,使平衡池比分析池轻0.5g以内,然后分别装入分析转头。分析转头装于分析离心为什么,关转动腔,抽真空。开 Schlieren光光源,选择工作速度一60000转/分,离心室温。转动腔达到真空后离以机开始运转加速,此时在观察窗口可以看到离心图型。达到工作速度后即为恒速离心。待看到样品峰的尖端后即可以6分钟间隔照相,共照6张。照完相即可关机,取出样品液,清理转头和分析池。照相用强反差显影冲洗后即得Schlieren光路沉降图形照片。⑶沉降图象测量:Schlieren沉降图可以用比长仪,读数显微镜,或投影仪测量。要求测量的横向量程为6cm,测量精度应优于10μm。通常读数显微镜已能满足要求。投影仪可以使图象放大于屏幕上,读测比较容易,眼睛不易疲劳。测量时把沉降图象的底片放于测量仪器上,使液面的垂直线与测量仪中的垂直线重合,然后用十字标线依次测量内参孔,液面,界面峰尖,和外参考孔的位置,每个图象至少读测三次,取平均值。依次把每个图象依同样方法测量,把数据列成表。照相号x1(mm) x2(mm) x3(mm) x4(mm) (x3-x1)/a log1 45.426 37.626 33.807 13.810 0.6125 0.79672 45.640 37.830 33.351 13.420 0.6485 0.79923 45.890 38.070 32.895 13.663 0.6854 0.80174 45.733 37.921 32.163 13.523 0.7161 0.80395 45.802 38.000 31.580 13.593 0.7507 0.80626 46.009 38.211 31.172 13.800 0.7830 0.8084(4)沉降系数S的计算:沉降图测量完,先检查每一张图和第六张图的x2-x1值,二张图的x2-x1值的差应该小于界面峰位置的测量误差。实测x2-x1的差值为0.002,说明液面在离心30分钟内变动为 0.002mm。界面峰在30分钟内移动距离是第六号图的x1-x3减第一号图的x1-x3,是3.208mm,其峰位测量意味着允许为0.03。可内陆液面变动0.002mm远小于峰位测量误差0.03mm,说明离心时没有发生漏液。  按a=(x4-x1)/1.7求算光路对分析池的放大倍数,然后按(x3-x1)/a求算界面峰离开内参考孔的实际距离,再按x=5.65+(x3-x1)/a求算界面峰离开旋转中心的实际距离,再由对数表求算logx植,计算数据亦列于表5中。3.离心图象的分析  当离心刚开始时如果见到有快速沉降的

  • 沉降动力学

    用紫外-可见分光光度计测定一定浓度的纳米颗粒的动力学沉降曲线,为什么我的吸光度随着时间的递进,吸光度数值反而是往上走的?我看的文献都是降下去的啊

  • 【讨论】国标中沉降菌测试

    1.国标中关于沉降菌“采样点的位置”中有描述:工作区采样点位置离地面0.8-1.5m(略高于工作面)。关于这一高度如何把握呢?房间里要摆放多个培养皿,如果放在地上是比较方便的,而如若离地面有那么一个高度,要拿什么来支撑呢?如果是尘埃粒子和浮游菌测试,采样头可通过支架调节高度,沉降菌...... 2.沉降菌测试中“采样注意事项”中有描述:培养皿在用于检测时,为避免培养皿运输或搬动过程造成的影响,宜同时进行对照试验,每次或每个区域取1个对照培养基。这里的每次是指的每一次环境检测中只用做一个对照培养基么?活着每个区域是指的洁净区中每个房间都需要一个对照培养基么?前者似乎对照培养就少了点,而后者又显得多了些。这应该怎么理解呢?3.环境监测中浮游菌和沉降菌中可用培养基有大豆酪蛋白胨琼脂或沙氏葡萄糖琼脂,前者是我们经常选用的,那么后者呢,沙氏一般是用于霉菌酵母菌培养的呢?在环境监测中难道也是针对性的测试霉菌酵母菌的么?

  • 城市污泥属于哪一类?用什么方法测定?

    如题,城市污泥属于哪一类?应该用什么方法测定?有的人说属于沉积物,可以采用土壤和沉积物的方法进行测定,有的人说属于固废,可以采用固废的标准进行检测。但我查到了CJ/T221-2005城市污泥标准检验方法,第一个疑问,既然有行业测定污泥的标准为什么不采用城市污泥的标准来测定呢?第二个疑问,对于沉积物的理解我更偏向于河流中的底泥,污泥是人为收集的大量污水处理后沉降形成的其组成更加复杂,应该可以归类于固废。但不论是沉积物还是固废,其定义都没有明确说明包含了污泥。第三个疑问,以上两种方法不论是用的土壤和沉积物还是固废,是否都属于方法偏离?这种偏离是否合理?比如我用地表水的石墨炉测定镉的监测方法来测定废水中的镉,这种超出适用范围的是否可取?请各位帮忙解答下,万分感谢!

  • 沉降菌平皿摆放

    做沉降菌实验时,平皿的盖子应该怎么放置呢,是架在盛有培养基的平皿边缘吗(这样会不会减少了沉降面积),还是需要敞开放置。

  • 【第一届网络原创作品】地表水样品沉降时间对铁锰测定的影响分析

    【第一届网络原创作品】地表水样品沉降时间对铁锰测定的影响分析

    再发一篇自己写的文章作为参赛作品.因为我是做实验室应用这块的,而且有幸仪器没怎么坏过,所以维修方面写不出什么经验了.只能写点应用方面的文章,不当之处请大家指正.摘要:地表水中铁锰总量的高低是评价水质优劣的重要指标。地表水中铁锰总量与总悬浮颗粒物浓度成正比。地表水中铁锰主要来源于悬浮颗粒物的吸附,溶解态铁锰很少。水样中铁锰含量随自然沉降时间的延长而逐渐降低。而当水样自然体系中加入硝酸后情况有所不同。因此,样品采集回来后样品的自然沉降时间是影响测定结果的一个主要原因之一。关键词:地表水;沉降时间;铁锰总量;测定1.实验理论地表水中总铁、总锰即包括溶解态铁锰和颗粒吸附的不可溶性铁锰。若仅测定溶解态铁锰,只需将样品通过0.45um滤膜后用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定即可,如要测定铁锰总量则需进行消解后测定。当地表水中泥沙含量较高时,颗粒吸附大量的不可溶性铁锰。此时,泥沙含量高低会直接影响铁锰的测定结果。地表水体受船只搅动等外界因素影响,泥沙含量变动较大。泥沙受重力作用自然沉降,样品采集后于不同的沉降时间取样测定,分析结果相差甚远。而当水样加入硝酸固定后沉降情况是否一样不得而知。因此,笔者设计如下实验加以验证和讨论。2.实验部分2.1.实验仪器及试剂耶拿ZEEnit700[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计硝酸(优级纯)、盐酸(优级纯)、氯化钙(分析纯)2.2.实验一于某断面采集五次样品,样品编号分别为A、B、C、D、E。摇匀后测定铁锰总量,并同时测定总悬浮颗粒物(SS)。2.3.实验二静置实验:选取样品B、C、E,每个样品摇匀,分别于静置0.5h、1h、2h、4h、6h、8h、12h、24h、48h、72h时段取上层液100.0ml,分析铁锰总量。抽滤实验:将样品通过0.45um滤膜后测定可溶解性铁锰。2.4.实验三于该断面另取样品F,加优级纯硝酸20.0ml后摇匀,分别于静置0.5h、1h、2h、4h、6h、8h、12h、24h时段取上清液100.0ml,分析铁锰总量。3.结果与讨论3.1.分析结果实验一的分析结果见表1。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101624_132227_1604896_3.jpg[/img]实验二的分析结果见表2和表3。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101627_132228_1604896_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101628_132229_1604896_3.jpg[/img]B、C、E三个样品的铁锰含量与自然沉降时间的分布关系可见图1和图2。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101634_132231_1604896_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101636_132232_1604896_3.jpg[/img]实验三的分析结果见表4。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101638_132233_1604896_3.jpg[/img]F样品在加酸固定后的铁锰含量与沉降时间的分布关系可见图3和图4。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101641_132234_1604896_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902101641_132235_1604896_3.jpg[/img]3.2.讨论(1)、本实验部分操作根据GB 11911-89进行。实验二部分的静置实验与国标有所不同,是在不加酸的自然体系中测定铁锰总量。实验三部分则是按照国标方法加入硝酸固定后测定铁锰总量。(2)、从表1的分析数据可以看出:①随着水体中总悬浮颗粒物(主要是泥沙)含量的升高,混匀水样中的铁锰总量也逐渐增大。这说明泥沙吸附的铁锰对地表水中铁锰总量作了主要贡献,地表水中泥沙含量的高低将直接影响铁锰总量的高低。②该断面混匀水样中总铁与总锰的浓度比值在22.6-29.8之间。(3)、从表2和表3的分析数据及图1、图2可以看出:①随着自然沉降时间的延长,样品铁锰总量的测定结果逐渐降低。②地表水中溶解性铁锰均小于检出限。由此可见,地表水中铁锰大部分是不可溶性的,主要来源于悬浮颗粒物的吸附。③从实验现象看,静置72小时后溶液并未澄清,表明仍有细小颗粒物悬浮于水体中。反映在分析结果中即静置72小时后上清液中仍有一定的铁锰含量。④样品B经沉降48小时后上层液铁锰总量的削减率分别为87.8%和89.2%;样品C经沉降72小时后上层液铁锰总量的削减率分别为91.4%和96.3%;样品E经沉降48小时后上层液铁锰总量的削减率分别为98.3%和94.6%。由此可说明在自然体系中同一样品铁与锰的沉降速率是大致相同的。(4)、从表4和图3、图4可以看出:当水样原来的自然体系因加入硝酸后上层液铁锰总量不随沉降时间延长而成规律性降低。笔者认为这是由于水体中原有的自然体系因加入硝酸而遭到破坏所致。地表水含有一定量的胶体物质,直径在10-6—10-4mm之间,颗粒小,重量轻,单位体积所具有的比表面积很大,因而其表面具有较大的吸附能力,可以吸附大量的金属离子。同类胶体因带有同性电荷而相互排斥,不能相互粘合而处于稳定状态。所以胶体颗粒不能依靠重力作用自行沉降。而当水体中加入硝酸后,相当于加入了电解质,原来的自然体系被破坏,胶体颗粒变大,相互发生碰撞从而絮凝(实验现象确是如此,当加入硝酸混匀后发现形成大量矾花)。同时,该体系由于加入酸后还存在铁锰的溶出效应,吸附于颗粒物表面的铁锰逐渐被溶解,从固相向液相转移。此时体系中存在两种效应,即沉降效应和溶出效应。从图3看,在加入硝酸静置0—2小时时段总铁浓度呈下降趋势,沉降速度大于溶出速度。静置2小时之后总铁浓度呈上升趋势,大部分颗粒物已沉降,上层液浊度明显减小。此时沉降速度减小,溶出效应占主导作用。从图4看,在加入硝酸静置0—4小时时段总锰浓度呈上升趋势,溶出速度大于沉降速度。静置4小时后总锰浓度呈下降趋势,溶出速度减小,沉降效应占主导作用。对比图3和图4可见,当自然体系中加入酸静置时,前期锰的溶出速度大于铁的溶出速度,后期锰的溶出速度下降较快,而铁的溶出速度下降较慢。4.结论综上所述,地表水自然体系中铁锰总量与总悬浮颗粒物的浓度成正比。自然沉降时间对地表水中铁锰总量的测定有非常重要的影响。而当水样自然体系加入酸固定后,其上层液铁锰浓度的变化情况与自然体系有所不同。在同一流域的同步监测中如果各断面采样时间同步,但在取样分析前的沉降时间不一致,所得分析结果将大相径庭。笔者认为这是同步监测中所得数据可比性不强的一个主要原因。建议采用统一的沉降时间分析样品,使不同实验室间的测定结果具有可比性,更能反映水质的真实情况。

  • 沉降菌单位

    测公共卫生空气沉降菌标准中单位是cfu/皿,评价标准是个/皿,这样的话出报告是以哪个为准呢,这两个单位有区别吗

  • 【分享】处理污泥包括哪些工艺过程

    污泥处理的主要目的是减少水分,为后续处理、利用和运输创造条件;消除污染环境的有毒有害物质;回收能源和资源。污泥的处理工艺包括污泥的浓缩、消化、脱水、干化及焚烧等方法以及最终处理。 (1)污泥的浓缩。污泥浓缩的目的是使污泥初步脱水、缩小污泥体积.为后续处理创造条件。浓缩脱水方法有重力沉降浓缩、上浮浓缩以及其他浓缩方法。 (2)污泥消化。为了减少污泥量,防止污染环境和提高利用价值,一般需经过消化处理。污泥消化即是借助微生物的代谢作用,使污泥中有机物质分解成稳定的物质,去除臭味,杀死寄生虫卵,减少污泥体积.回收利用消化过程中所产生的沼气。 (3)污泥脱水与干化。污泥经浓缩和消化之后,其含水率仍在96%左右,体积很大,不便于运输和使用,需要进一步脱水干化处理,其主要方法有自然蒸发法和机械脱水法两种。 (4)污泥焚烧。污泥干化后.含水仍达10%一15%,体积仍较大,通过焚烧可将污泥中水分和有机杂质完全去除.并杀灭病原微生物。有些污泥含有有毒物质而不宜作农肥,或因其他原因使污泥难以利用时,为防止污染.也采用焚烧方法。焚烧污泥的装置为焚烧炉。 (5)污泥的最终处理。污泥含有重金属离子等有毒物质时,还须做最终处理,深埋或投弃海洋。但一般极少进行最终处理,而是在处理过程中随时使用。

  • 沉降体积比

    干混悬剂沉降体积比检测时,加多少干混悬剂合适呢?

  • 【分享】酸沉降监测技术规范

    酸沉降监测技术规范 Technical Specifications for acid deposition monitoring ( HJ/T 165-2004  2004-12-09实施) 根据《中华人民共和国环境保护法》第十一条“国务院环境保护行政主管部门建立监测制度、制定监测规范”的要求,制定本技术规范。本规范规定了酸沉降监测的点位设置、采样方法、监测频次、样品的分析项目与相应的分析方法、监测的质量保证、监测数据的处理与上报等内容。本规范为首次发布,于2004年12月9日起实施。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=100216]酸沉降监测技术规范[/url]

  • 溶出度的沉降篮

    中国药典规定:溶出度测定当正文规定需要使用沉降篮或其他沉降装置时,可将片剂或胶囊剂先装入规定的沉降装置内。胶囊剂品种,用桨法,但未规定用沉降篮,直接放进去,胶囊会浮在水面上。是就这样做,还是要方法变更,换成加沉降蓝?

  • 盐雾试验箱盐雾沉降率的调整方法

    影响盐雾沉降率的因素较多,但其中与用户调整有关的参数有二个:1、喷雾压力;2、喷雾塔高度。在各点盐雾沉降率相近的情况下,只调整喷雾压力即可。如各点盐雾沉降率相差较大并有局部点超标时,仅靠调整喷雾压力不能解决问题,就需要对喷雾塔高度进行调整。 喷雾塔式结构是一种目前国产盐雾试验箱上应用较广泛的结构。喷雾塔式结构的外观像一个直塔,盐雾通过塔顶的斜形口喷出,塔放在试验工作区且可移动。它是一种可移动的塔式喷雾装置,是从折射和反射结构改进演化而产生的。它综合了两种结构的优点,并针对其存在的不足,将喷雾装置从固定式改成可移动式,使盐雾沉降率调整变得容易。一般来说,通过喷雾塔的移动,靠近塔的空间盐雾沉降率就大。另外,调节喷雾塔开口调试也可调整出雾量的大小,即高度减少,盐雾沉降量下降。因此,可方便地利用上述特点使盐雾试验箱盐雾沉降率满足标准要求。

  • 有关石墨矿沉降池的COD

    请教大家有没有做过石墨矿选矿废水中的COD呢?我按规定做了车间排污口的COD和沉降池的COD值,一个达到几千,一个不到一百,我的测定值得不到大家的认可,我想知道对于石墨矿的生产废水来说,经过三级沉降,没有特别的处理设施,只是沉降后的沉降池的水的COD值真的会这么小吗?他们说沉降后只有悬浮物会降下来,COD不可能降下来,但是我的测定值就是这样的,我不想怀疑自己,所以向大家请教了!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制