多普勒测速仪

仪器信息网多普勒测速仪专题为您提供2024年最新多普勒测速仪价格报价、厂家品牌的相关信息, 包括多普勒测速仪参数、型号等,不管是国产,还是进口品牌的多普勒测速仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多普勒测速仪相关的耗材配件、试剂标物,还有多普勒测速仪相关的最新资讯、资料,以及多普勒测速仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

多普勒测速仪相关的厂商

  • 400-860-5168转4360
    多普勒环保科技为清华大学的专家团队所创办,是集研发、生产、销售、代理及售后服务为一体的科技创新型企业。采取国际高科技产品营销及自主创新相结合的经营策略,为国内环境监测部门、科研院所及高校、过滤行业(滤料&过滤器)、洁净生产工业、制药工业及检测中心等提供专业化的仪器、技术解决方案及售后服务。公司主要代理:德国、美国、英国、爱沙尼亚等国家的高科技大气环境监测产品,代理品牌包括:TOPAS、URG、AeroMegt、Sensors等,产品品类涵盖:颗粒过滤、气体吸附检测系列产品、环境气溶胶系列产品、车载尾气监测系统以及尾气遥感监测系统等大气环境监测产品。Topas于1991年11月成立于德国Dresden,在颗粒技术领域,Topas产品有着广泛应用。Topas产品品种繁多,包括:过滤测试台、洁净室测量、颗粒测量、气溶胶发生器、稀释器、车厢空调滤清器测试系统等相关颗粒物、气体检测产品,还可根据客户的实际需求进行测试台的设计定制。 多年来,多普勒环保科技一直致力于大气环境监测领域的研究和发展,在气溶胶发生器、稀释器、干燥器、静电中和器、纳米气溶胶粒子计数器及粒径谱仪、气溶胶传感器及仪器标定系统、过滤材料及口罩测试台、一般通风空调过滤器测试台、高效过滤器测试台、化学过滤器测试台、车厢空调滤清器测试台、发动机及空压机滤清器测试台、油雾分离器测试台、真空吸尘器滤芯测试台等测试领域具有国内及国际行业领先地位、在全球具有顶级品牌合作商。我们将秉承“技术领先、品质优良、用户至上、信誉第一”的经营理念,向着专业化的高科技方向发展,持续为客户提供最佳解决方案。
    留言咨询
  • 400-860-5168转1446
    北京欧兰科技发展有限公司专业代理、销售世界知名品牌的激光光谱探测系统;燃烧和流体诊断系统;激光多普勒测试系统;材料形变应力分析系统;太赫兹实验系统和组件;表面形貌测量;界面特性分析;液滴气泡分析仪;激光和光电子器件,包括皮秒,纳秒,飞秒,连续波激光器,固体激光器,气体激光器,半导体激光器,染料激光器,光学元件,精密位移台,压电陶瓷纳米制动器,纳米位移台,CCD相机,激光参数测量等仪器和设备。 主要产品有:和频光谱测量系统,四波混频光谱测量系统,皮秒时间分辨光谱测量系统,纳秒激光光谱测量系统;激光差分雷达 粒子成像测速系统(PIV);平激光诱导荧光PLIF分析系统,激光诱导白炽光LII分析系统;激光喷雾诊断系统;激光多参量联合测量系统;激光相位多普勒干涉仪PDI(PDPA, PDA), 激光多普勒测速仪(LDV);光学(激光)应力和形变分析系统;太赫兹时域光谱测量系统,太赫兹发射器和接受器组件;椭偏仪,布儒斯特角显微成像分析仪,表面等离子体共振成像分析仪,波导模分析仪,接触角测量仪,液滴气泡分析仪;高/中/低功率半导体泵浦和闪光灯泵浦的调Q/锁模飞秒/皮秒/纳秒固体激光器 准分子激光器,二氧化碳激光器,通讯用激光器 超快、超高帧频(增强型)CCD相机,增强型及特种CCD相机;各种光学材料和镜片,特种衍射光学元件;非线性晶体,红外晶体,激光晶体;各种电控和手动精密位移台,纳米位移台;激光能量计,功率计,激光光束品质分析仪;激光器电源及附件。 这些产品已经被广泛应用于物理、化学、材料、通讯、制造、能源、航空航天等领域。 我公司的产品技术先进,质量可靠,性能稳定。所代理的厂家不仅具有一流的产品和技术,还具备极强的产品研发能力,可以针对用户的实际应用需求提供最佳设计及配套硬件系统,高性价比的完整解决方案。 我公司始终坚持“诚信、合作,效率”的经营原则,竭诚为国内广大用户提供专业咨询以及快捷、优质、完善的产品应用咨询和技术支持服务。 “您的需求永远是我们的动力;您的满意永远是我们的目标!”
    留言咨询
  • 400-860-5168转4599
    四川物科光学精密机械有限公司(SiChuan Physcience Optics and Fine Mechanics Co., Ltd..)坐落于中国科技城-绵阳,依托于军民融合产业优势,主要从事光、机、电技术服务以及相关光电测试产品的研发和生产。公司能提供光机电一体化设计,精密光学元件,精密机械件到光机电模组的设计、装配,为客户提供一整套的光学解决方案。公司成立于2015年,为民营企业,注册资本500万元,营业范围为:光学、机械、电子产品、光机电一体化产品的设计、研发、生产、销售及技术服务;计算机软件的开发、销售及技术服务;机械加工,光学元件加工;光纤器件,电子元器件,金属材料,光学玻璃,仪器仪表的销售等。目前公司28人,其中具有博士学历学位3人 ,硕士学位2人,本科16人,大专7人。公司通过ISO9001质量体系认证,2019年被评为为四川省优秀军民融合企业,2018年荣获中国创新创业大赛军民融合专业赛三等奖。2019年公司作为任务承担单位承接重点领域预研基金项目,这是公司第一次直接承担的GJ级项目。公司有光学CAD设计部、电子实验室、光学精密加工车间、总装车间四个技术服务部门。公司主要从事光电产品设计研发以及各种光学元件的加工镀膜,产品质量和信誉得到一致的好评。具有承接各类光电仪器开发或者联合开发能力;对外接受各类光学元件、光学晶体、光学玻璃的光学加工、镀膜及其检测。目前公司产品主要有全光纤激光干涉测速仪,光子多普勒测速仪、纹影仪、光纤探针测试系统、光弹仪、平面激光诱导荧光测试系统、超声场光学显示系统、空气冲击波超压测量记录仪、光网靶弹丸速度测量仪,数字式光电延时同步控制器、精密电控位移台等。产品主要服务于爆轰物理、冲击波物理、空气动力学、弹道研究、航空航海发动机研究、激光设备等相关专业领域。目前服务单位有兵器213所、兵器204所、航空科技集团、中国空气动力研究与发展中心、中航发、中物院、中科院力学所、北京航空航天大学、北京理工大学、华中科技大学、中国科学技术大学等科研院所。以品质追求为核心,依赖专业的研发团队和精湛制造工艺,不断发展创新,精益求精,为国家相关专业领域提供优质服务。
    留言咨询

多普勒测速仪相关的仪器

  • 仪器简介:ADV 声学多普勒流速仪 最初是SonTek公司为美国陆军工程兵团水道实验室设计制造的。该流速仪运用多普勒原理,采用遥距测量的方式,对距离探头一定距离的采样点进行测量。如今,ADV已成为水力及海洋实验室的标准流速测量仪器。ADV系列包括:实验室声学多普勒流速仪16MHz MicroADV 用于实验室平均流速、边界层流速、紊流(雷诺应力)和波浪谱测量。小于0.09立方厘米的采样体积和高达50赫兹的采样频率 对低流速和紊流研究来说是一件理想的实验室仪器。现场型声学多普勒流速仪10MHz ADV 用于现场平均流速和紊流(雷诺应力)测量,既适用于实验室也适用于野外现场测量,具有极强的适应性和可靠性。海洋声学多普勒流速仪ADV Ocean 用于海流海底边界层,现场波浪谱和碎浪区紊流(雷诺应力)测量。坚硬的外壳和专业的设计使ADV Ocean成为恶劣环境中测流的理想仪器。ADV有三种频率:16MHz、10MHz、5MHz,主要技术指标如下:ADV探头有四种形式:三维-俯视、三维-侧视、三维-仰视、二维-侧视,测量单元(及测点)距探头距离可以为5厘米或10厘米。二维-侧视探头可用于水深极浅的情况(2-3厘米)。标准特征小于0.1立方厘米的采样体积,空间分辨率高最高16MHz的采样频率,时间分辨率高探头与电缆采用分体式设计,便于更换和维修接口处做防泼溅处理,采用水密接头采用多通道技术,工作台最多可以同时与六个探头建立连接恒久的工厂校准,免除周期性校准的麻烦不锈钢杆和防泼溅讯号处理器出色的滤噪性和卓越的低流速表现电源:12-24伏直流功耗:工作时2.5-4瓦,休眠时低于1毫瓦技术参数:16MHz MicroADV采样频率(Hz):0.1-50采样体积(cm3):0.09采样点距探头距离(cm):5分辨率(cm/s):0.01流速范围(cm/s):3,10,30,100,250准确度:实测流速之1%,0.25厘米/秒最大工作深度:6010MHz ADV 采样频率(Hz):0.1-25采样体积(cm3):0.25采样点距探头距离(cm):5或10分辨率(cm/s):0.01流速范围(cm/s):3,10,30,100,250准确度:实测流速之1%,0.25厘米/秒最大工作深度:605MHz ADV Ocean采样频率(Hz):0.1-25采样体积(cm3):2.0采样点距探头距离(cm):18分辨率(cm/s):0.01流速范围(cm/s):5,20,50,200,500准确度:实测流速之1%,0.25厘米/秒最大工作深度:250(迭尔林外壳),2000(不锈钢外壳)主要特点:高精度测出三维流速遥距测量,不干扰流场测点可以离边界非常近(毫米量级)可以用于极慢流速测量启动时无需启动数据所测数据包括声学逆向散射强度,经过标定可用来确定水体中的悬沙浓度
    留言咨询
  • 全场多普勒测速仪 400-860-5168转2793
    多普勒全场测速(DGV),是基于多普勒效应和图像测量的原理,为高空间分辨率、高超流场和复杂流场的测量提供条件。DGV-Doppler Global Velocimetry 多普勒全场测速仪,是测量流场中示踪粒子多普勒信号,将多普勒信号转换成图像信号,得到流场的整场速度场结果信息。它具有测速范围宽(适合高超流场测量)、激光无接触测量不干扰流场、三维速度场测量简单、速度场结果空间分辨率高等特点。目前设计的这套的DGV系统,是应用于大尺寸风洞内的流场测量,需要结合实际风洞测量特点,比如示踪粒子的选择、添加和播撒方式、系统控制调节和数据传输距离要求比较远、测速范围宽,DGV的信号弱等特点。DGV系统在实际实验中,存在信号弱、噪声强的特点。因此,消除各种噪声的影响,获得信噪比高的粒子多普勒图像是实验成功的关键。在DGV技术配置和实验中,为达到消除噪声,提高图像信噪比,需要采取了多种措施,以确保DGV系统即使在恶劣的测量应用环境中也能获得测量结果。测量原理示意图见左:DGV系统中选用窄线宽激光照亮流场;信号源相机经过分子滤波器以后,采集得到流场中示踪粒子的散射光信号,参考光相机是为了消除多普勒频移之外的因素引起的光强变化。示踪粒子的速度引起的散射光频移,体现在经过分子滤波器后的光强变化上,即通过分子滤波器将频移信号转化成光强信号。对高超流场测量,粒子的速度越高、频移信号越强,因此,DGV适合高超流场测量。同时,DGV对于粒子的播撒要求不很很高,因此,他也适合大尺寸风洞的测量。测速范围:最大可到3000m/s测量范围:120mmX120mm测量精度:0.8-1.4m/sDGV系统主要部件包括:激光器、激光器稳频、控制和校准器、片光源、光学分束器、导光臂、相机及配套滤镜和镜头、碘分子滤波器、温度控制模块、时序控制模块、采集和后处理软件等等。碘蒸汽和滤镜一体化设计:碘蒸汽盒和滤镜系统,是DGV/FRS系统的核心部件,它直接决定了相机消除噪声、得到高信噪比图像的能力。这也是其核心技术。北廷测量技术(北京)有限公司在其他航天技术部门的技术合作下,实现了高性能的碘蒸汽和滤镜一体化设计制作。该系统在测量环境恶劣的发动机内部的测量中,也能确保得到完美的测量结果。
    留言咨询
  • 光子多普勒测速仪PDV-8000T【简介】 : 光子多普勒测速仪PDV-8000 T 是成熟的超 高 速光学多普勒测速仪和PDV测速仪,可测量高达20km/s的速度,非常适合爆破等瞬态高速测量,并提供理想的高速时间解析结果和速度场可视化结果。 光子多普勒测速仪PDV-8000T基于光学多普勒效应,全部采用光纤传输光信号,利用光学干涉混频技术获得物体的速度信息。整个系统采用全光纤连接,不仅能提高系统的稳定性、减小体积,而且由于采用高性能的单模光纤,使系统的响应时间不再受限于光纤色散,可实现50 ps量级时间分辨率的速度测量。主机的结构组成经过高速实验验证及优化,达到优越的输出信号信噪比、有效地降低了测速误差。光子多普勒测速仪PDV-8000T【特点】:1.全光纤结构,无需光纤延迟线,结构简单紧凑、体积小、稳定性好2.可远距离传输,可到达污染严重、常规光路无法到达的地方3.响应速度快4.测速精度高5.可测量任意反射面物体的运动速度,可测量匀速运动6.宽带宽,无条纹丢失7.测量景深大,追踪距离长8.光探头采用模块式结构,便于更换,降低实验成本9.易于升级为多点测试系统,升级成本低10.功能强大、界面友好的数据处理软件光子多普勒测速仪PDV-8000T基于光学多普勒效应,全部采用单模光纤传输光信号,利用光学干涉混频技术获得物体的连续速度信息。光子多普勒测速仪PDV-8000T【技术指标】:参数 指标测速范围 0.1-10000m/s工作波长1550nm 激光输出功率(单通道)500mw响应时间50ps相对测速误差<1%测量景深1-500mm供电需求220V±20V50Hz工作温度 5-50℃测量通道数 1、2、4、8、16光子多普勒测速仪PDV-8000T【应用领域】: 光子多普勒测速仪PDV-8000T可应用于冲击波物理、爆轰物理、内弹道研究、新材料科学、激光高能粒子与材料的相互作用、空间科学、地质科学、医学诊断等领域。
    留言咨询

多普勒测速仪相关的资讯

  • 激光多普勒测速技术发展及应用漫谈(1)
    仪器信息网讯 2020年 12月1日23时11分,嫦娥五号探测器稳稳软着陆在月球,落月过程中,中国科学院上海技术物理研究所研制的激光测距测速敏感器发挥着重要作用,该多普勒激光测速精度可达0.1米/秒,将三个方向的多普勒激光测速的结果反馈给导航系统,确保航天器着陆更平稳。据悉,这也是多普勒激光测速技术首次在太空导航上得到应用。嫦娥五号激光测距测速敏感器和激光三维成像敏感器激光多普勒测速是什么?激光多普勒测速仪发展史又是怎样?本期,我们邀请北京航天光新科技有限公司 CEO 杨开健分享激光多普勒测速技术发展及应用。杨开健 北京航天光新科技有限公司 创始人兼CEO 1.激光多普勒测速仪原理激光多普勒测速仪基于光学多普勒效应利用多普勒频移实现对物体线速度的非接触测量。多普勒效应(Doppler effect)主要内容为:当声源与接收器(或观察者)之间存在相对运动时,使得接收器(或观察者)收到的声音频率,和声源发出的声音频率不同(出现频差)的现象。接收器接收的频率和声源发出的声波频率之间的差值就叫多普勒频率,其大小同声源与接收器之间的相对运动速度的大小、方向有关。多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。当然光波也具有多普勒效应。如图所示,激光多普勒测速仪出射的激光束入射到运动物体上,部分散射光仪器接收。由于仪器相对于物体有一定的运动速度,根据多普勒效应可知,仪器接收到散射光的频率与出射激光的频率不同,分别是和,这里指仪器出射激光的频率,指多普勒频率。多普勒频率与物体的运动速度有关,通过探测多普勒频率即可计算出物体的运动速度。激光多普勒测速仪原理示意图2.激光多普勒测速仪发展史——解决不同时代用户的需求痛点1964年Yeh和Commins首次观察水流中粒子的散射光频移,并证实了可利用激光多普勒频移技术来确定流动速度,Foreman和George,Golesfecion和Kreid,Pike,Huffaker等人进一步论述了多普勒技术原理、特点及其应用,使该项技术初步得以实用化,不仅可以测量液体流速,还可以测量气体的流速。70年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光单元有了进一步的发展,使得该系统的光路结构更为紧凑。光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了计数处理、光子相关及其它一些方法使激光多普勒技术测量范围更广泛,它的精度高、线性度好、动态响应快、测量范围大、非接触测量等优点得到了长足的发展。1975年在丹麦首都哥本哈根举行的“激光多普勒测速国际讨论会”标志着这一技术的成熟。80年代,激光多普勒技术进入了实际应用的新阶段,它在无干扰的液体和气体测量中成为一种非常有用的工具。可应用于各种复杂流动的测试,如:湍流、剪切流、管道内流、分离流、边界层流等。随着大量实际工程、机械测试的需要,目前,固态表面的激光多普勒技术也越来越受到重视:A. E. Smart,C. J. Moore等把该项技术应用到航空发动机的研究上 清华大学利用激光多普勒技术分析磁头的运行姿态溯;美、德开始激光光栅多普勒测量的研究,由光栅衍射主极大光束形成的多普勒信号,具有信噪比高、抗干扰能力强等优点,可用于各种机械的振动测量,但使用时须将光栅和测量目标相连接,限制了它的适用范围;F. Durst和M. Zare提出了PDA(相位多普勒)技术;他们研究发现,球形粒子对两束相交光束散射,会在周围光场形成明暗相间的干涉条纹。当用两个探测器接收多普勒信号时,两路信号之间存在的相位差与粒子大小成呈线性关系。这一技术被广泛应用于粒子大小的测量中,目前也被用于折射率的测量中;天津大学进行将激光多普勒技术用于固体表面面内位移远距离测量研究。3.从应用有限到技术逐渐商品化激光多普勒技术虽被证明是一种非常有用的技术,但它的仪器化产品在过去相当一段时期内受气体激光器体积庞大、信号处理技术相对落后的限制,在机械工业和大型工程领域的实际应用比较有限。近年来,许多微光学元件己经商品化,激光二极管的应用也为实现仪器小型化提供了便利条件,微小透镜取代了传统的透镜。计算机和数字信号处理技术的结合增大了振动量测量和分析的实时性和自动化程度,信号时域波形分析法、函数分析法、调和分析法等技术的成熟大大提高了测量的准确性和实用性。特别是随着传感技术和信息技术的发展,产生了一些新的测量方法,将多传感数据实时综合处理及分析变为可能,信号处理过程实现了信息化和综合化。半导体技术使得信号处理器体积减小的同时可靠性得到大大增强。这些技术的涌现,使得激光多普勒技术向着小型化、数字化、多维化、实用化、商品化等方向发展。目前,世界上许多国家已经有成熟的激光多普勒测速产品,如美国、德国、英国、丹麦、瑞典、新加坡等。应用于工业测量领域的光路结构大部分是双光束差动结构,该结构具有易对准、接收口径大等优点。该技术已经可以在钢铁、有色金属的轧机生产线的在线测量,或者用在线缆、造纸、印刷等行业的生产线的速度测量和长度累计。补充:国内激光多普勒技术研究现状据公开资料表明,国内目前从事激光多普勒技术研究的单位越来越多,清华大学、中国科学技术大学、大连理工大学、电子科技大学、国防科技大学、中国科学院上海技术物理研究所等单位都展开了激光多普勒测速技术研究。本网根据相关资料整理如下:(图源网络公开整理)欢迎广大业内人士分享更多科学技术干货内容,请投稿至liuld@instrument.com.cn
  • 新一代声学多普勒水流剖面仪M9 在水文测验中的应用(一)
    摘要:新一代走航式声学多普勒水流剖面仪M9克服了早期仪器的缺陷,采用多频、智能的多种工作模式,解决了困惑水文的高、低流速测流难题。M9灵活的配置,考虑不同用户的需求,可实现无线通讯、内置GPS、遥控,解决河床走底引起的多普勒流速仪流量测验误差。列举了各种不同条件、环境的河道,采用 M9实测的案例,显示了该仪器的优异性能。关键词:M9;多频;智能;脉冲相干、宽带、窄带多种工作模式自动切换;高、低速测流前言采用多普勒频移原理研制的走航式声学多普勒水流剖面仪,应用于水文测验已经有二十多年的历史。由于制作复杂、生产成本高、以及使用量不大等原因,世界上能够生产该类仪器的著名厂家仅为可数的几家,而且基本上集中在美国。近几年,国内部分厂家开始研制类似产品,并陆续投放市场。二十余年来,厂家历经了数次的改进,生产出了不少型号和不同工作频率的仪器,供不同条件和环境下的使用。其性能虽有了很大的提高,但因为最初的设计是针对海洋测流需要,这对于在内河河道上的使用,带来了一些不足;在水文测验中还是感到有些不尽人意。一直以来,困惑水文的高、低流速测流难题,仍然没有给出有效的解决方案。经过多年的研究和总结了目前所有多普勒流速仪产品存在的问题;美国赛莱默公司旗下的SonTek 公司在2009年开发出了最新一代的走航式声学多普勒水流剖面仪 M9/S5。经过数年多在世界各地的实际使用和比测,效果非常之好,成为了目前世界上最先进的一种声学多普勒流量计。M9 的技术指标和配置 考虑到不同用户的需要,M9系列的仪器有着灵活的配置。其标准配置为:仪器主机+10米电源/通讯电缆线(可延长);可安装在船舷边使用;实现主机与计算机之间的直接通讯。若装备有小型载体(船体)时,可配置无线电台的通讯方式,通讯距离可达1500米,实现主机与计算机之间的无线通讯。为了满足在河床走底情况下测流的需要,还可以选配内置的 GPS,有二种供选择;即 SonTek 的DGPS(亚米级精度),和SonTek 的RTK GPS(0.03米精度)。此外,M9/S5系列的仪器还可以配置SonTek自行研制的单体船,以及其它公司配套的三体船或自带动力的遥控船;这种浮体保证了仪器在测量时的平稳和较小的仪器入水深度。从上述技术指标可以看到,M9 从很浅的不到0.3米处河岸开始测量,一直到最深达80米的河床深度,仍然可以一次完成测量并计算出该测流断面的流量,这大大满足了全世界 85 % 以上河道测流的需求。M9/S5 的特点和优势作为一种全新的M9/S5,实际上是一款专为河流流量测验所设计的仪器。与老一代所有现有的多普勒流速仪相比,有以下几个特点:1、多种频率换能器的配置。4个一组的二种不同频率换能器用于流速的测量,满足了从浅水到深水的不同河床条件,只用一款仪器进行流量测验的需要。2、垂直声波探头专用于水深的测量。改变了原先采用斜向测速声波测量流速的同时,测量水深的方法。直接提高了水深的测量精度,以及流量的测量精度。500KHz工作频率的波束使得仪器的测量范围增加到80米之深。3、全自动的测量方式,有四种自动转换的功能工作模式的自动转换。仪器采用了一种 SmartPulseHD智能脉冲功能,基于实测动态的水深和流速,自动地选择 脉冲相干(PC)工作模式、或 宽带工作模式、或 窄带工作模式,这三种不同的工作模式都有其优点和弱点。M9/S5充分发挥了各种模式的优势,自动切换,使得仪器始终处于高分辨率的最佳性能比。? 测量单元的自动转换。可根据实测水深和流速,自动选择从0.02~4米的测量单元。保证在浅水时具有很高的分辨率;在深水时有更大的测量范围。? 二种不同频率换能器工作状态的转换。可根据实测的水深和流速,在浅水时采用高频的3MHz换能器测量流速,在深水时采用低频的1MHz换能器测量流速;仪器始终保持最佳的工作状态。? 采样频率的自动转换。可根据水深的变化,自动调整仪器每秒钟的采样频率,其最高采样频率达到 70Hz。在水深变化的情况下,尽可能地获取更多的采样数,以提高仪器的测量精度。以下图为例,在同一个测流断面上,用二种不同的仪器测量的成果。上图是采用老一代多普勒流速仪实测的成果;下图是M9 采用智能脉冲功能所表现的高分辨率,犹如HD“高清电视”的效果。测量精度大为提高。4、仪器内部的流量计算功能。内置微处理器直接计算流量数据,而不再依赖于外部的计算机和测量软件进行实测数据的处理和计算。M9在测量过程中,即使通讯中断,也不会影响到测量的过程,更不会因此而丢失数据。仪器测量运行时甚至可关闭计算机;而重新开机通讯后仍可获得全部数据。大大提高了测量的可靠性。16G内存可用于保存实测的流速、水深流量、GPS等大量数据5、可内置的GPS,满足了在走底河床情况下,仍然采用声学多 普勒 原理测量流量的可能性,而不必过虑因为采用外置GPS 所带来的不兼容等问题的困惑。SonTek 自行研制配套的DGPS(亚米级精度),和RTK GPS(0.03米精度),不同于市场上所选用的各种型号的GPS。DGPS不需要寻找地面上设置的基站,直接接收地球上空静止卫星的差分信号,以获得差分GPS 的精度。RTK GPS也不需要地面上已知点的支持,而自行在河岸的任何开阔处设立一个RTK基站。使得仪器的使用非常之灵活和简单。保证了在走底河床情况下的正确测流。6、多种通讯方式 - 有线与无线的选择。对于无线通讯,也可以根据需要,采用无线电台的通讯方式。有效的通讯距离达1500米。除了可使用计算机与主机之间的通讯之外,还可以采用平板电脑来控制主机测量的开始和结束,并在平板电脑屏幕上给出实测的各种数据、航迹和图表。使用非常方便。7、支持多国语言的操作、数据处理的计算机软件。可提供大量的实测数据,和经过计算、分析后的数据,同时提供多种方式,方便用户自行修正和处理数据。软件还可用于控制、下载、查看、分析数据等。
  • 多普勒流量计类型比较
    声学多普勒的水流测量系统是水与废水行业中的主要工具,不仅测量水流速度,还可以测量水位以及计算流量(排放量),并且测量数据的输出格式可轻松实现上传到商业数据记录器、SCADA系统、PLC以及远程遥测设备。仪器常用到名称如下:# ADFM–声学多普勒流量计# ADVM–声学多普勒流速# AVM–面积流速型流量计#“超声波”流量计上述术语有时可以互换使用,如“多普勒”。但并非所有多普勒系统均采用相同的工作方式,用于流量测量的多普勒系统大致可以分为两类:连续波 (CW) 和脉冲。SonTek声学多普勒系统(例如SonTek-IQ)就是脉冲多普勒,连续波式或脉冲式多普勒是否适合于特定场所将取决于环境因素和精度要求。价格通常被视为连续波式与脉冲式多普勒流量计之间的主要区别,有时这也是选择仪器时最重要的考量。然而,对大多数操作人员和管理人员而言,了解技术差异及其在野外环境的意义将有助于作出明智的选择,同样关系到设备操作、数据质量保障和未来的决策。本技术说明旨在从实践的角度阐明某些重要的技术差异。声学多普勒流速测量系统采用多普勒频移的物理原理来测量水流速度。多普勒原理指出了,如果声源相对于接收器运动,则接收器处的声音频率会与发射频率相偏移。请注意,多普勒系统实际上并未直接测量水流速度,而是测量悬浮在水柱中的散射颗粒的速度,并假设颗粒的运动速度与水流速度相同。如果没有反射信号的散射颗粒,则多普勒系统将无法测量速度。反射信号的振幅将随着水中散射颗粒的密度、颗粒材料及其在发射频率下的声波反射率以及与换能器的距离而变化。传输的声波信号从换能器呈几何图形传播,而且声音也被水所吸收。传输损耗与系统范围的平方成正比,而反射信号强度降低到系统噪声等级的距离决定了最大测量范围。需要注意的是此类多普勒系统无法直接测量流量(排放量)。流量是基于测得速度、测得水位和渠道截面积而计算出的参数。由于系统仅测量声波所在的渠道的部分水流速,因此使用教科书理论模型或特定于地点的校准(指标流速率定)将仪器测得的速度与平均流速相关联。然后将平均流速 (V) 乘以渠道截面积 (A) 以求出流量值 (Q=VA),其中渠道截面积由用户提供的有关渠道几何形状、仪器位置以及所测水位的信息所确定。因此,流量的准确度部分取决于估算流量时,渠道流速分布的信息量。以下是笔直且洁净的混凝土衬砌运河(显示的典型现场照片)中不规则速度分布的部分示例,这是在SonTek-IQ的开发过程中使用FlowTracker手持式ADV系统在密集间隔的离散单点中测得的流速:如示例中所示,渠道中的速度分布通常是不均匀的,并且边界层(如渠道的底部或侧面)附近的速度通常明显较低。仪器常用到名称如下:# 由于速度数据中的任何误差都会导致计算出的流量出现误差,因此仪器的速度测量精度至关重要。# 用户给出的渠道几何形状和仪器位置的误差将导致计算出的流量出现误差。# 将仪器测得的速度与平均流速相关联的方法将影响所计算出的流量的精度。多普勒原理同其他原理比较时,“多普勒”概念容易被默认为成“连续波”,这种误解会导致混淆和歪曲。由于多普勒的脉冲和连续方式是完全不同的,因此了解引用哪种多普勒方法总是重要的,本节将对此进行解释。连续波系统通常是单波束解决方案,这意味着采用单波束来接收声波信号。如果多普勒系统没有被定位为“脉冲”、“剖析”或“距离选通”仪器,则通常默示其为连续波系统。连续波系统最常使用独立的发射和接收换能器,从而发射相对于水深的长声脉冲。本质上,系统将连续信号发射到水中,同时监听信号反射。因此,接收的信号是沿声束范围里,所有散射介质的反射信号振幅与相位组合,任何空间信息都是未知的,因为不可能将特定回声信号与沿波束的对应位置关联。尤其是在浅水区,有些连续波系统更容易测量到从水面或河床反射的信号,因为连续波系统不跟踪反射来自哪个位置。这些错误的边界反射会给真实的测量带来明显的噪声和偏差。脉冲式多普勒系统(如SonTek-IQ)在水中传输短的声波脉冲,然后分段侦听反射信号,依据脉冲传输后的时间转换成脉冲在水中的传播距离,从而确定了作为信号源颗粒的位置。通过测量发射脉冲后的特定时间内反射的声波信号,系统能够测量水速的剖面,其中的水柱分成多个深度单元(也称为距离单元或层)。在每个单元中,水速是根据测量的声学数据计算的。这样做的效果是提供了从底部到水面的许多离散的、紧密间隔的测量数据。一些脉冲多普勒系统将报告来自单个测量单元的流速,而不是输出测量的剖面流速。也就是说,他们在得到速度剖面后计算平均速度。由于每个脉冲多普勒换能器既是发射器又是接收器(称为“单站”),因此系统在发射信号后必须等待一小段时间,以便有时间从系统中清除发射脉冲。这种暂停会在系统旁边产生一个无法收集数据的区域,这被称为“盲区”。SonTek-IQ系统具有四个用于测量水流速度的换能器:两束与测量上游和下游的系统的轴线对齐两束对系统侧面进行测量的偏斜波束因此,SonTek-IQ可以解释整个渠宽上某些水平速度的变化。另外,除压力传感器外,还具有一束用于精确测量水深的声束。连续波 (CW) 多普勒系统通常使用单声束来接收已被水中悬浮颗粒所反射的信号。通常,将系统置于渠道、管道或水流的中间,这意味着要测量的水流速度处于仪器前方的渠道中心。有些型号集成了用于测量深度的压力传感器。脉冲多普勒系统使用两个或多个声束来接收已被水中悬浮颗粒所反射的信号。声束被进一步“划分”为可测量整个水柱中各层水流速度的离散单元。对于SonTek-IQ,共有四束声束-一束在渠道中心朝向上游,一束在渠道中心朝向下游,一束偏斜声束朝向渠道右侧,一束偏斜声束朝向渠道左侧。SonTek-IQ还具有用于测量水深的第五束声束以及压力传感器。SonTek-IQ Plus版本提供了流量监测解决方案,适用于深度最大为5m的较大运河和自然环境。具有在水平和垂直方向跨渠道采集小至2cm的单元中的速度分析数据的功能。连续式多普勒系统连续、同步收发的运行方式,其中一个影响称为范围偏置。由于传输的信号与系统的距离越来越弱,因此距离传感器较近的粒子的声学反射对接收信号的影响将大于距离较远的信号。如果通道中的速度分布均匀,则靠近传感器的散射粒子的影响就无关紧要了。但如前所述,通道中的速度通常不均匀。位于发射端附近的散射颗粒产生的更强信号影响,会导致对离系统更近的声波反射产生范围偏差。由于声传输损耗(衰减、吸收),测距偏差问题随着渠道深度的增加而增加。■ 因此由于最大速度通常出现在水面下方,连续波系统的最大渠道深度会受到限制。例如,在水面附近可能存在对实际总流量有着重大影响的高流速情况,但是来自近水面速度的信号输入可能比来自靠近底部的较慢速度的信号输入要弱。通常情况是,底部沉积物浓度较高或颗粒较大,因此具有较强的反射特性。更为复杂的是,这种偏差会随着时间和条件而变化。散射颗粒通常在整个水柱中分布不均匀,并且不同材料的颗粒将具有不同的反射特性。例如,矿物沉积物将具有不同于絮凝剂的散射和反射特性,并且水柱中是否存在沉积物云团及其位置都能够引起幅值不断变化的偏差。在高动态的环境条件下。■ 因此即使在不同流量下校准连续波系统的做法,也可能无法解释和满足存在的众多未知变量。脉冲多普勒系统不受测距偏差的影响。由于系统专为测量精确定时的、以空间为参考的速度数据而设计,因此诸如SonTek-IQ类的脉冲多普勒系统通常会提供更高的速度精度、更高的速度范围和深度范围,从而可以计算出准确的排放量(流量)数据。■ 因此脉冲多普勒系统被认为在更大范围的条件下,尤其在因水力学、水质、颗粒大小和成分而变化的环境中,有更高的可靠性。多普勒流量计(如图所示的SonTek-IQ)根据从水中颗粒反射回来的信号来测量水流速度。通常,水流速度(由箭头表示)随深度和与边界的距离而变化,从而形成速度(流量)剖面(由曲线表示)。对于诸如SonTek-IQ之类的脉冲多普勒系统,颗粒的形状、大小和在水中的分布不会使速度测量结果产生偏差,因为每个测量结果均由在水柱中多个已知位置进行的多次测量组成。即使条件发生变化,脉冲多普勒系统也会捕获速度剖面信息。当流量发生变化或颗粒浓度随每日、季节性或运行因素而变化时,这将获得更精确的测量结果。由于连续波系统缺乏检测流量剖面的能力,因此通常依赖于流量校准,对于每种新的流量或颗粒条件,都可能需要重新校准。SonTek-IQ在意大利普利亚地区Vasca Tavoliere的部署示例。该定制安装架是由Consorzio di Bonifica della Capitanata设计的,旨在安全高效地维护仪器。声学多普勒流量计的典型硬件组件。连续波 (CW) 和脉冲多普勒系统均可采用一体或分体式配置。脉冲多普勒SonTek-IQ(左图)由包含传感器、处理和通讯电子设备的单个单元组成。大多数连续波系统由两个组件组成,传感器通过电缆连接到装有处理和通信电子设备的顶盒。多普勒仪器的波束角(声束“向上投射”到水中的角度)取决于制造商和某种型号。由于波束角会影响本仪器的有效测量范围,因此是一个重要参数。SonTek-IQ采用与垂直方向成35°的波束角,这意味着波束更为垂直。相反,许多连续波系统采用更为水平的波束角,例如与水平方向成20°角。当以更大的水平角度发送时,声脉冲在到达水面之前有着更长的传播距离,传播距离越长,连续波系统的信号越易衰减。在某些情况下,较深的水环境可能导致信号强度不足以测量水柱的中层或上层。某些连续波型号在低功率设置(首先产生较弱的信号)下运行,这进一步增加了在较长距离下信号丢失的可能性。■ 因此在较高的水位下,较大的水平波束角会使测量结果偏向靠近河床的水流速度。同样,通常会针对此类偏差或无法测量的区域校准连续波传感器,但如果环境条件不够稳定,则水深、流态或颗粒条件的任何变化(无论好坏)都会影响信号衰减,因此需要更改校准以保持数据准确性。由于连续发射和接收信号,连续波系统通常具有最小盲区要求极低的优势。■ 因此连续波系统可以在比脉冲多普勒系统更浅的深度进行测量,具体取决于换能器的设计和尺寸。此外,连续波系统通常采用分体两件式设计,并使用一根小型水下传感器电缆将其连接到位于水面某处的大盒子上。由于可以将处理电子设备、记录器和通信模块放置在较大的顶侧盒中,因此可以将水下传感器外壳作得更小,并且可以在较浅的深度进行测量。脉冲多普勒系统可以采用一体或分体式设计。SonTek-IQ是单个单元,只需连接到外部电源即可运行。但是,由于系统包含处理电子设备和内部记录器并采用了更多的声换能器,因此其尺寸可能比大多数连续波设计中可能采用的小型水下传感器要大。此外,如前所述,诸如SonTek-IQ类的脉冲多普勒在传感器面附近设计了最小的盲区。有时,与连续波式多普勒相比,脉冲式多普勒对操作深度的要求更高。SonTek-IQ采用与垂直波束角呈35°的角度,而许多连续波系统则采用通常未在文档中指定的更为水平的波束角。由于波束角的不同,许多连续波系统在较高水位时可能遭受更大的信号衰减,从而导致流场上层的采样不足或完全不可测的区域。如果低流量和低速度是预期条件,则必须注意连续波系统的工作原理可能会更受限制。由于连续波系统同时发射和接收信号,发射信号会干扰连续波系统检测多普勒频移为零的能力;因此无法检测到零速或低速。因此,连续波系统将表现出最低流速限值,低于该速度将无法可靠运行。脉冲多普勒系统通常没有流速限值规定。由于发射和接收脉冲都是定时的,因此脉冲多普勒电子设备能够检测与发射信号分离的零多普勒频移信号。这样,最低流速限值实质上即为系统的速度分辨率。这在存在回水条件、双向流动和分层流动的区域中提高了脉冲多普勒的功效,在这些区域中,速度较低和接近零的可能性更大。任何多普勒仪器收集的原始数据都是速度数据。尽管经常被忽略,但需要注意的是多普勒仪器如何将测得的速度转换为流量值。正如前面所讨论的,连续波系统不提供任何有关水柱中速度分布的信息。其单一测量结果是波束路径中可检测到的所有声反射的组合。总信号可能受到水柱中沉积物浓度的衰减和变化以及总测距偏差的影响。■ 因此通常需要校准连续波系统,以便以任何精度将测得的速度与实际平均渠道速度相关联。进行此校准时,仅在特定的校准条件下才可靠。对于条件一致且不变的地点,连续波系统的性能应与脉冲多普勒系统类似。然而,为了使连续波系统能够提供准确的速度数据,流场条件的任何变化都需要重新进行校准。在由于降雨、回水、底部附近的高沉积物负荷等可能导致条件变化的应用场合,将需要重新校准以涵盖每种特定情况。如果需要一定的精度要求,则应谨慎考虑设备、人工或服务中的初始校准费用和和潜在的持续校准费用。某些连续波系统会发布流量精度规格,即使流量是如上所述基于环境因素以及客户提供的并非直接测得的详细信息(例如渠道截面积)而计算得出的参数。这些流量精度规格通常依赖于理想、简化和不变条件的假设,因此,应谨慎对待。SonTek-IQ标准模型可测量速度剖面,然后处理数据以输出单个测量单元,并使用理论模型计算流量。SonTek-IQ Plus和SonTek-IQ Pipe模型可提供速度剖面,计算流量时,它们允许用户在使用理论模型或指标速度校准之间作出选择。与连续波系统相同,特定场所的率定可以比理论模型更准确地将测量速度与实际平均渠道流速关联。SonTek-IQ对多波束的引用进一步满足了更多选择,在流场内找到一个波束和区域随着条件的变化,提供最稳定的关系。对于SonTek-IQ,流量算法专为应用于小渠道、灌溉沟渠、排水渠、管道等而设计,其独特的波束几何形状在详细研究此类应用(第2页的参考图)速度条件的基础上,考虑了渠宽上的水平速度变化并提高了理论流量计算的性能。由于流量计算的多个变量取决于操作人员和环境特征(渠道截面积测量、仪器安装与设置、水力特性等),因此,SonTek发布了SonTek-IQ系统的速度精度而不是流量精度规格。建议根据公认的ISO或其他政府规定的标准,采用适当的现场技术和仪器(例如便携式机械流量计、声学多普勒流速计或声学多普勒流速剖面仪)定期评估并检查现场的流量精度。SonTek可应要求提供有关这些标准和方法的其他参考资料。在多普勒系统中,SonTek-IQ的另一个特点是同时使用中心线波束和偏斜波束。偏斜波束允许朝着渠道两侧测量速度。这些附加信息有助于更全面地理解整个测量横截面的流量。如果并未测量某个点的实际速度剖面,则可能尤其难以准确量化明渠流量条件,即使只是偶尔作为检测分析也是如此。如果没有这些附加信息,则用于根据测得的速度数据计算流量的方法通常需要依赖假设和估计。SonTek-IQ Pipe旨在用作可在大多数工业或农业应用中使用的底部或顶部安装式流量计。它可以提供从0.5m一直到5.0m的管道中的精确流量值,而与是否满管无关。尽管多普勒流量计可能精度极高,但用户设置和对细节的关注同样可能影响流量数据的优劣。尤其重要的是应验证传感器安装处的横截面尺寸。参考文献:1.SonTek-IQ Principles of Operation (2017).SonTek, A Xylem Brand, version 2.1.2.Schmitt, A., Huhta C., and Sloat J. (2012) Flow Modeling and Velocity Distribution in Small Irrigation Canals, SonTek, A Xylem Brand.3.Cook, M., Huhta C. (2013).Improved Water Resource Management using an Acoustic Pulsed Doppler Sensor in a Shallow Open Channel, SonTek, A Xylem Brand.4.Polonichko, V., Romeo, J. (2007).Effects of Transducer Geometry and Beam Spreading on Acoustic Doppler Velocity Measurements Near Boundaries, SonTek, A Xylem Brand.5.Metcalf, M.A. and Edelhauser,M.(1997) Development of a velocity profiling Doppler flow meter for use in the wastewater collection and treatment industry.Paper Presented at WEFTEC ’97.6.Wastewater Quality Monitoring and Treatment Edited by P. Quevauviller, O. Thomas and A. van der Beken C _2006 John Wiley & Sons, Ltd.

多普勒测速仪相关的方案

多普勒测速仪相关的资料

多普勒测速仪相关的试剂

多普勒测速仪相关的论坛

  • 【分享】科学家首次观察到分子层面的多普勒效应

    2011年05月12日 来源: 科技日报 作者: 常丽君  本报讯(记者常丽君)据美国物理学家组织网5月11日(北京时间)报道,由日本、瑞典、法国和美国科学家组成的国际研究小组,通过复杂的同步加速器实验,首次获得了微观层面也存在多普勒效应的实验证据,证明单分子的旋转也会产生多普勒效应。相关研究发表在近日出版的《物理评论快报》上。   多普勒效应也被称为“平移”效应:当物体以直线运动时,它发出的光或声波频率会发生改变。即朝观察者移动时接收频率变高,远离观察者移动时接收频率变低,当观察者移动时也能得到同样的结论。奥地利物理学家克里斯琴·多普勒1842年首次提出该理论,100多年来,人们只能在宏观物体的直线运动中以及行星或星系等大的旋转物体上观察到这种效应。在天体物理学中,这种旋转多普勒效应被用于探测天体的旋转速度。  “当一个行星旋转时,在朝向观察者旋转的一边,它发出的光的频率会变得更高;而在背离观察者的一边,频率变低。在分子水平也同样如此,但要在实验室里证明分子层面也存在多普勒效应非常困难。”该研究小组成员、俄勒冈大学退休化学教授T·达拉·托马斯说,“这是首次,我们在分子层面证明了这一理论的真实性。而且在分子这一微观尺度上,旋转多普勒效应甚至比分子在线性运动中显示的多普勒效应更加重要。”  多普勒效应在日常生活中也有广泛应用。如果你在限速30英里的路段超过了时速45英里,不管你是否意识到,都会收到多普勒效应带来的一张超速行驶罚单。路边的雷达测速仪,正是基于物体运动而产生的频率变化,来精确测定运动物体的速度的。  “很久前我们就知道了多普勒效应,但直到现在才在分子层面观察到旋转多普勒效应。”托马斯指出,这有助于人们更深入地理解分子光谱(利用分子辐射来研究分子组成和化学性质),以及用于研究高能电子等。  总编辑圈点  多普勒效应是我们在中学物理课中就熟悉的了:火车高速接近时的鸣笛声,听起来会比火车远离时的要尖锐一些。多普勒效应也体现在“红移”——离地球越远,星体的光越红(频率越低),这是宇宙膨胀理论的依据。如今在分子层面观察到多普勒效应,并没有理论上的突破,但仍值得赞叹。观测火星旋转很容易,但观测出旋转分子的远近端差异,需要多么精确的实验手段!

  • 多普勒流速仪的原理和技术参数

    多普勒流速仪是应用声学多普勒效应原理制成的测流仪,采用超声换能器,用超声波探测流速。测量点在探头的前方,不破坏流场,具有测量精度高,量程宽;可测弱流也可测强流;分辨率高,响应速度快;可测瞬时流速也可测平均流速;测量线性,流速检定曲线不易变化;无机械转动部件,不存在泥沙堵塞和水草缠绕问题;探头坚固耐用,不易损坏,操作简便等优点。多普勒流速仪适用于江河、海洋、岸边观测站、船只和浮标等场合的流速和水温测量,尤其适合于泥沙含量高、水草杂物多的江河水域测量使用。多普勒流速仪技术参数1.测流范围:0.02~7.00m/s 测量准确度:±1.0%±1cm/s   2.水温测量范围:0~40° 测温准确度:±1℃   3.工作水深:0.5~80m   4.测量方式:自动、手动   5.负重电缆:直接负重或悬挂两种方式   6.测量间隔:   自动方式:分0~90分钟选择值,以5分钟为最小递增或递减间隔单位   手动方式:可单次或连续多次测量,间隔任意   7.测速历时:自动方式:60秒、100秒二种 手动方式:10~120秒,键盘选择   8. 显 示 屏:128×64位汉字液晶显示   9.探头壳体耐密封压力:大于12个大气压   10.工作电源:AC220V、50Hz, ±10%; DC12V ±10%;内可增设蓄电池   11.存储:本机可以存储8100多组测量数据   12. 接 口:USB接口或串口;可提供GPRS、GSM无线远程通信功能   13.时钟:带年月日时分

多普勒测速仪相关的耗材

  • PDV光纤探头
    PDV光纤探头为于光子多普勒测速仪和激光干涉测速仪配件。技术参数: 直径1.0mm/1.8mm/2.4mm/3.2mm,金属套管封装;尾纤5m±0.05;FC/APC接头。0.9mm光纤护套;回损大于55db或者30dB,镀增透膜;工作距离大于30mm 接收效率大于90% PDV光纤探头由物科光学专业生产,性能稳定可靠
  • 多普勒外加超声波流量计DFM6.1 其他配件
    多普勒外加超声波流量计DFM6.11.流量计使用一个单一的外夹传感器,可应用于任何可传导超声波材质的管道,包括但不限于:碳钢,不锈钢,球墨铸铁,铜,FRP,PVC,ABS,管道直径范围12.5mm-4.5m2.测量以及指示流速,测量范围+0.03m/sec - +12.2m/sec以及-0.03m/sec - -12.2m/sec。测量精度为读数的±2%或者±0.03m/sec,取较大值。适用于满管,流体中颗粒或者气体的尺寸需大于100微米,浓度在75ppm以上。传感器1. 流量传感器为单一探头,不锈钢外壳。管道试外夹安装,无需断流。传感器可以-40℃-150℃的范围内连续工作,可短时间承受10公斤的压力(非永久浸没)。应该使用生产商推荐的安装耦合剂以及不锈钢支架。2. 传感器标配7.6m屏蔽双绞电缆,电缆可随意延长到152m3. 变送器应带电隔离,并设计为满足本质安全要求。设计应通过CE最大工业噪声抑制的测试4. 对于I级2区A、B、C和D组位置,传感器的等级应为非易燃性。变送器1. 变送器防护等级为IP66,聚碳酸脂外壳,带透明防护罩,适合于墙面安装。2. 变送器电子部件工作温度范围为-23℃-60℃,在型号相同的情况下,电路板可与其他流量计互换。供电电源为100-240VAC,50/60HZ,功率低于10VA3. 变送器有5个操作键,通过系统菜单的快捷键操作员可进行参数设置。4. 独立的4-20mA输出可输出流量数值,量程可自行设置,最大负载1000欧姆。5. 包含噪音抑制系统可过滤电磁干扰,经过工业电磁噪音测试,符合CE,以及欧盟2014/30/EU标准6. 符合UL/CSA/EN 61010-1标准7. 白色背光LCD显示屏,可以根据用户选择的单位显示流量值,累积流量,继电器状态,重要的诊断信息如信号强度。8. 2个5安培固态继电器,可编程用于流量脉冲输出,或设置为流量报警点。9. 可显示和累积正反向流量10. 内置数据记录器可记录26万组数据,通过USB可输出到外部存储设备,可绘制图形并生成报告。11. 电路部分为模块化,可在现场进行更换,插入即可。从现场安装选项设备会自动检测并装载软件菜单。根据客户可有其他特性: 传感器的本质安全等级应为I级,C、D组;II级,E、F、G组;III级,带本质安全隔离栅。 可标配15/30米屏蔽双绞电缆 可选9-32VDC电源输入,功耗低于10瓦特 可选串口通讯用于查看流量,累积流量,历史平均流量,历史累积流量,以及诊断数据,可选Modbus RTU,RS485,以及HART协议 可选便携式装备
  • 532nm 5W 连续多纵模 DPSS 激光器
    筱晓光子提供532nm 5W 连续多纵模DPSS 激光器采用其拥有的自对准谐振腔技术.采用AMR设计技术将LMX系列多纵模激光器的谐振腔被集成为一个体积小,损耗率极低的光学组件。 自对准谐振腔技术保证了我们的多纵模激光器的谐振腔长时间的可靠性,温度稳定性及对对机械震动的不敏感性.光束质量小于1.2,功率至高可达10w.是应用于拉曼检测、干涉测量、全息存储、生物检测、共聚焦显微、材料分析等领域性价比极高的产品。关键词:532nm激光器,532nm多纵模激光器,绿光多纵模激光器,多普勒测速仪,多普勒测速,多普勒激光器中心波长532nm输出功率5W通用参数产品特点CW:紫外线、蓝色、绿色、红色、红外线单模式操作的新颖专有设计非常低的噪音:0.5%功率从 10 mW 到 10 W产品应用激光干涉测量拉曼光谱全息术非线性光学激光显微镜技术参数PN#MP-532-5W-MM特性MinMax单位注释波长532.0532.5nm光束质量1.11.2NA噪声0.30.5%10 Hz – 1 GHz输出功率55.5W功率可调10100%光斑直径0.708mm发散角2.03.0mrad预热时间38Min温度控制范围050oC功耗600W偏振比1:200NA垂直指向稳定性 8urad/°C长期稳定性23%8 hours稳定性输入工作电压024V@5A电流激光头尺寸(一体化)350x105x80mm3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制