当前位置: 仪器信息网 > 行业主题 > >

离子源质谱仪

仪器信息网离子源质谱仪专题为您提供2024年最新离子源质谱仪价格报价、厂家品牌的相关信息, 包括离子源质谱仪参数、型号等,不管是国产,还是进口品牌的离子源质谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离子源质谱仪相关的耗材配件、试剂标物,还有离子源质谱仪相关的最新资讯、资料,以及离子源质谱仪相关的解决方案。

离子源质谱仪相关的论坛

  • 质谱仪小知识——离子源

    http://simg.instrument.com.cn/bbs/images/brow/em09502.gif以前还真没接触过质谱,只是因为最近公司进了各种各样的质谱,看看各种牌子的,慢慢的就知道了什么ab的,bruke,micromass等等各家的质谱,也知道版友们说的QQQ,tof,traq等等是神马东西。呵呵,当然,在大虾门面前都是小菜了。 学习总是个循序渐进的过程,因为公司本身的业务要求,比较注重维修维护方面,所以先从仪器的部件下手,先了解一下各式各样的质谱的离子源啦,下面是一些离子源的小资料,供像我们这样的小菜了解了解。 液质联用和气质联用气质联用仪(GC-MS):适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 GC-MS一般采用EI和CI离子源。EI:电子电离源,最常用的气相离子源,有标准谱库CI:化学电离源,可获得准分子离子。PCI,NCI液质联用(LC-MS):不挥发性化合物分析测定,极性化合物的分析测定,热不稳定化合物的分析测定,大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;液质的离子源种类比较多,这里只列主要的几个。大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测,对于极性大的样品效果好一些;APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测,对极性小的样品效果较好。APPI:大气压光电离源,适用于弱极性的化合物,如多环芳烃等ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题,一般用ESI 和 APPI 搭配使用比 ESI 和APCI 的应用范围更广一些。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,

  • 2011 BCEIA 质谱仪器与技术评议--聚焦离子源

    2011 BCEIA“质谱仪器与技术评议”活动安排活动一 2011质谱技术评议--聚焦离子源时间:2011年10月13日 上午9:00-12:009:15 CaptiveSpray离子源技术与应用,布鲁克公司蒲海,9:40 解吸电晕束离子源的开发与进展,岛津公司孙文剑,10:05 封闭式可调气氛电喷雾离子源研发,好创生物朱一心,10:30 多通道直接进样系统与应用,华质泰科刘春胜,10:55 离子淌度离子源,AB 公司蒋鸿剑,地点: 北京展览馆二号馆二层第八会议室活动二 便携式气质联用仪现场评议时间:2011年10月13日 下午13:00-17:00地点: 北京展览馆二号馆二层第八会议室中国分析测试协会分析测试仪器技术评议办公室

  • 【讨论】如何维护和清洗质谱仪的离子源?

    对于您使用的质谱仪,您是怎么维护和清洗其离子源的?需要注意什么?请把您的维护和清洗经验与大家一起分享一下吧,对大家都是很有帮助的。=======================================[size=4] [font=隶书][color=#00008B]各位板友,大家最好能将详细的清洗过程和步骤详述一下,总体性的概述相信很多人都已有所了解,重要的是清洗的过程、使用的材料、注意的事项,如何做好等等,这些都是很重要的问题,尤其是对于许多初学者而言,您们的经验总结就是最好的教材[/color]~[/font][/size]

  • 实验室分析仪器--质谱仪电子轰击型离子源及原理

    电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i3.antpedia.com/attachments/att/image/20220126/1643178178685018.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品

  • 质谱年会最新产品-纸喷雾离子源质谱仪

    质谱年会最新产品-纸喷雾离子源质谱仪

    [align=center]质谱年会最新产品-纸喷雾离子源质谱仪[/align]2019年4月在 MSACL US2019研讨会上,质谱研发厂商重磅推出最新直接采样系统纸喷雾离子源。我正好有幸在2019年8月12号新旧动能转换-中美精准医疗高峰论坛亲眼见到了这一新技术的真机,新技术都会得到大家的宠爱,在茶歇时间我们都围过去询问了很多关于纸喷雾的问题,那么纸喷雾离子源到底是什么呢?纸喷雾直接采样技术实际上是通过实现:无样品前处理、极低的有机溶剂消耗量、无样品残留和快速准确地完成药物分析为目标,只需3步即可完成质谱分析:Step 1. 将含有滥用药物及内标物的血液或尿液直接加载在三角形纸片中,制备出尿斑及血斑;Step 2. 将湿润溶剂滴加在样品点上;Step 3. 加入喷雾溶剂且同时施加喷雾电压辅助化合物电离。 整个过程由仪器自动完成,无需人工操作。下图是操作流程图。[img=,690,246]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131734271500_3641_3255306_3.jpg!w690x246.jpg[/img]每天,分析实验室面临着不同挑战,这可能源自样品积压,更高的样品成本,以及如何找到有经验的实验室技术人员,色谱维护和停机时间。[img=,690,389]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131734437364_8661_3255306_3.jpg!w690x389.jpg[/img]纸喷雾离子源以独特方式解决了这些问题,将纸喷雾离子源与下一代最新技术质谱仪结合起来,通过基于自动化,高通量,直接质谱的样品分析,缩短了测试结果所需时间并降低测试成本。纸喷雾离子源允许使用稀释和喷射的方法,最大限度的减少溶剂消耗和耗时的样品前处理步骤,如衍生化,同时无需专家级操作人员,并尽可能减少仪器停机时间。下图为纸喷雾离子源质谱仪。[img=,690,543]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738305176_7995_3255306_3.jpg!w690x543.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738308356_1121_3255306_3.jpg!w690x517.jpg[/img]那么纸喷雾直接采样技术代替传统的液相色谱分离主要优势体现在以下四个方面:● 极大缩短分析时● 提高分析通量● 搭载高通量多样品板加载器● 实现8小时内完成约240个样品的筛查检测[color=#3E3E3E]在常规[/color][color=#3E3E3E]UHP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][/color][color=#3E3E3E]分析中,峰宽通常在几秒内,这经常导致每个化合物色谱峰点数不够影响实验结果的情况。而纸喷雾直接采样技术,使用纸喷雾直接采样技术,化合物会同时在[/color][color=#3E3E3E]1-2min[/color][color=#3E3E3E]采集时间内被洗脱,这给化合物[/color][color=#3E3E3E]SRM[/color][color=#3E3E3E]扫描提供了充足的时间。[/color]利用技术,我们尝试对尿斑中19种滥用药物进行快速筛查分析,并对其中两个化合物——可卡因、苯甲酰爱康宁进行定量测定。为了评估测试灵敏度能否满足相应化合物分析要求,分别测试各化合物目标浓度曲线下面积(AUC)需大于等于基质空白面积的四倍。 结果表明19种化合物均符合要求。在定量方面,使用内标法对可卡因与苯甲酰爱康宁进行定量分析,线性范围在5-1000ng/mL下定量曲线如图所示:[img=,690,323]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738496740_8727_3255306_3.jpg!w690x323.jpg[/img][img=,690,313]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738496415_846_3255306_3.jpg!w690x313.jpg[/img][align=center][color=#3E3E3E]15[/color][color=#3E3E3E],[/color][color=#3E3E3E]100[/color][color=#3E3E3E],[/color][color=#3E3E3E]800[/color][color=#3E3E3E]三个浓度水平下[/color][/align][align=center][color=#3E3E3E]基质加标样品定量测试精密度与准确度[/color][/align]通过高通量自动化流程,使用先进的机械臂点样器可以探测样品板,可以容纳多达十块样品板,可无人值守分析多达240个样品。样品板装载器条形码读取功能被整合到LIS系统中,简化了工作流程。样品板见下图。[img=,690,550]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131739124513_4316_3255306_3.jpg!w690x550.jpg[/img][img=,690,1189]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131739133984_686_3255306_3.jpg!w690x1189.jpg[/img]

  • 实验室分析仪器--质谱仪的离子源种类及各自原理

    离子源是质谱仪器最主要的组成部件之一,其作用是使被分析的物质分子或原子电离成为离子,并将离子会聚成具有一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学电离和光致电离等。各种电离方法是通过对应的各种离子源来实现的,不同离子源的工作原理不同,其结构也不相同。离子源是质谱仪器的一个重要部分,它的性能直接影响仪器的总体技术指标。因此,对各种离子源的共性要求如下:①产生的离子流稳定性高,强度能满足测量精度;②离子的能量发散小;③记忆效应小;④质量歧视效应小;⑤工作压强范围宽;⑥样品和离子的利用率高。[b]一、电子轰击型离子源[/b]电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115431647.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品。[b]二、离子轰击型离子源[/b]利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。[b]1、溅射过程及溅射电离的机理[/b]一个几千电子伏能量的离子束(初级离子)和固体表面碰撞时,初级离子和固体晶格粒子相互作用导致的一些过程如图2所示。一部分初级离子被表面原子散射,另一部分入射到固体中,经过一系列碰撞后,将能量传递给晶格。获得一定能量的晶格粒子反弹发生二级、三级碰撞,使其中一些从靶表面向真空发射,即溅射。溅射出来的晶格粒子大部分是中性的,另有一小部分粒子失去电子或得到电子成为带正电或负电的粒子,这部分带电粒子称为二次离子。[img=b5d7ca2ed153a848f53723f1c88a292.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115377492.jpg[/img]图2 溅射离子过程关于二次离子产生的机理,有许多学者进行了研究, Evans的综述认为有两种过程导致二次离子产生。一种是“动力学”过程,连级碰撞的结果使电中性的晶格粒子发射到真空中,其中一部分处于亚稳激发态,它们在固体表面附近将价电子转移到固体导带顶端而电离。另一种是“化学”过程,认为在样品靶中存在化学反应物质,比如氧,由于氧的高电子亲和势减少了自由导带电子数目,这就降低了在固体中生成的二次离子的中和概率,允许它们以正离子发射。反应物质可能是固体中本来就存在的,也可以是以一定的方式加入体系的。在这两个过程中,“化学”过程起主导作用。[b]2、几种常用的一次离子源[/b]目前在离子轰击电离方式中,用于产生一次离子的离子源型号很多,主要介绍下面两种类型的离子源:冷阴极双等离子体源和液态金属场致电离离子源。[b](1)冷阴极双等离子体源[/b]世界上不同厂家制造的SMS仪器,所选用的冷阴极双等离子体离子源可能因生产厂家及型号不同,外形结构差异很大,但基本工作原理类同。图3为冷阴极双等离子源的基本结构示意。冷阴极双等离子体离子源具有电离效率高、离子流稳定、工作可靠及能产生极性相反的引出离子等特点。[b](2)液态金属场致电离离子源[/b]场致电离离子源通常使用的金属有镓、铟、铯等,使用金属离子轰击固体样品表面产生负的二次离子,多用于氧、硫、碳等非金属元素的分析。由于一次金属离子在样品表面会产生电荷累积效应,因此需要配合电子枪使用。图4是铯源的基本结构示意。[img=6e861f14b1d8243a7d37f50da23bf84.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116476680.jpg[/img]图3 冷阴极双等离子源的基本结构示意图[img=c72458c7b868299d2724613ef5b0b90.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116400622.jpg[/img]图4 铯源的基本结构示意图[b]三、原子轰击型离子源[/b]与离子轰击电离相似,原子轰击电离也是利用轰击溅射使样品电离的,所不同的是用于轰击的粒子不是带电离子,而是高速的中性原子,因此原子轰击电离源又称为快原子轰击源(fast atom bombardment source, FAB)。原子轰击源是20世纪80年代发展起来的一种新技术。由于电离在室温下进行和不要求样品气化,这种技术特别适合于分析高极性、大分子量、难挥发和热稳定性差的样品。具有操作方便、灵敏度高、能在较长时间里获得稳定的离子流、便于进行高分辨测试等优点。因此得到迅速发展,成为生物化学研究领域中的一个重要工具。原子轰击既能得到较强的分子离子或准分子离子,同时也会产生较多的碎片离子;在结构分析中虽然能提供较为丰富的信息。但也有其不足,主要是:[b]①甘油或其他基质(matrix)在低于400的质量数范围内会产生许多干扰峰,使样品峰识别难度增加;②对于非极性化合物,灵敏度明显下降;③易造成离子源污染。[/b]原子轰击源中使用的轰击原子主要是Ar原子。在放电源中,氩气被电离为Ar,经过一个加速场,Ar具有5~10keV的能量,快速的Ar进入一个充有0.01~0.1Pa氩气的碰撞室,与“静止”的Ar原子碰撞,发生电荷交换。即:Ar(快速)+Ar(静止)→Ar(快速)+Ar[sup]+[/sup](静止)生成的快速Ar原子保持了原来Ar[sup]+[/sup]的方向和大部分能量,从碰撞室射出,轰击样品产生二次离子。在射出碰撞室的快原子中还来杂有Ar[sup]+[/sup],在碰撞室和靶之间设置的偏转极可以将Ar[sup]+[/sup]偏转掉,仅使Ar原子轰击样品。图5是原子轰击源的结构示意。此外,氙气(Xe)、氦气(He)等其他情性气体的原子也可用作轰击原子使用。[img=76a94ac1e2c48555b7631bc4a90a183.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116426694.jpg[/img]图5 原子轰击源的结构示意图[b]四、放电型离子源[/b]利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117263374.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离。[b]五、热电离离子源[/b]热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117555301.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源。[b]六、电感耦合等离子体离子源[/b]利用高温等离子体将分析样品离子化的装置称为电感耦合等离子体离子源,也叫ICP离子源。等离子体是处于电离状态的气体。它是一种由自由电子、离子和中性原子或分子组成的且总体上呈电中性的气体,其内部温度可高达上万摄氏度。电感耦合等离子体离子源就是利用等离子体中的高温使进入该区域的样品离子化电离。ICP离子源主要由高频电源、高频感应线圈和等离子炬管组成(图8)。利用高频电源、高频感应线圈“点燃”等离子体炬管内的气体使其变成等离子体。等离子体炬管由三根严格同心的石英玻璃管制成。外管通常接入氩气,流量控制在10~15L/min,它既是维持ICP的工作气流,又起到冷却作用将等离子体与管壁隔离,防止石英管烧融;中间的石英管通入辅助气体,流量为1L/min左右,用于“点燃”等离子体;内管通入0.5~1.5L/min载气,负责将分析样品送进等离子体中进行电离。由于ICP离子源是在常压下工作的,因此产生的离子还必须通过一个离子引出接口与高真空的质量分析器相连,这就需要应用差级真空技术,如图8所示。通常是在样品锥和截取锥之间安装一个大抽速前级泵,在此形成第一级真空,此真空维持在100~300Pa范围。截取锥之后为第二级真空,装有高真空泵,真空可达0.1~0.01Pa范围。电感耦合等离子体离子源最大的特点是在大气压下进样,更换样品非常简单、方便。此外,由于等离子体内温度很高,样品电离的效率高,因此,电感耦合等离子体离子源可提高质谱仪器元素的检测灵敏度。但是,同样在高温状态下生成的分子离子也会严重干扰对被检测样品成分的鉴别。超痕量分析中,样品处理过程中应注意可能有来自试剂、容器和环境的污染。[img=9ce118fc568554297ba172fbfaa3aa8.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117157289.jpg[/img]图8 电离耦合等离子体离子源示意图[b]七、其他类型的电离技术1、激光电离技术[/b]具有一定能量的激光束轰击样品靶,实现样品蒸发和电离,即激光电离(laser ionization,L电离的概率取决于激光脉冲的宽度和能量。当选择单色光激光器作为电离源,可进行样品微区分析,样品的最小微区分析区域与激光的波长有关。分析灵敏度在10量级,分析深度为0.5um,空间分辨率1~5um。随着激光束的不断改进,剖析深度可以达到几十微米,配备数字处理系统,还可得到样品的三维离子分布图。激光电离飞行时间质谱仪就是一种典型的使用激光电离技术的质谱分析仪器。从脉冲激光束开始照射样品,到质谱分析的完成,时间很短,分析效率极高。现在,随着激光技术的快速发展和激光发生器生产成本的降低,激光电离技术已越来越多地用在不同类型的质谱仪上,得到广泛应用。[b]2、激光共振电离技术[/b]激光共振电离(laser resonance ionization,LRI)是20世纪70年代发展起来的激光电离的另一种形式,基本原理是基于每种元素的原子都具有自己确定的能级,即基态和激发态。量子力学揭示这些能级是分离而不是连续的。当某一个处于基态的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了激光特定能量的光子,跃迁到激发态能级,便实现了共振激发。处于激发态的原子如能再吸收光子,只要两次吸收的光子能量之和大于该原子的电离能,即可使该原子电离,这一过程称为 LRI LRI的基本特征是:对被激发的元素具有非常强的选择性。LRI与质技术相结合组成的激光共振电离质谱仪(laser resonance ionization mass spectrometry,LRIMS)是20世纪后期发展起来的一种新型质谱技术,能够有效地排除其他同位素质谱测量过程中难以克服的同质异位素干扰,灵敏度、丰度灵敏度高,适合核反应过程中的低产额裂变核素测量,也为地球化学、宇宙化学研究中的稀有核素分析提供强有力的支持。Mainz大学使用该技术测量了Ca、u、Np等元素,对Ca的探测限达到10[sup]6[/sup]个原子。曼彻斯特大学采用冷端富集与激光脉冲电离方式实现了惰性气体的高灵敏度分析,对[sup]132[/sup]xe的探测限达到1000个原子

  • 实验室分析仪器--质谱仪放电型离子源及原理

    利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178279378020.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离

  • 实验室分析仪器--质谱仪离子轰击型离子源及原理

    利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。[b]1、溅射过程及溅射电离的机理[/b]一个几千电子伏能量的离子束(初级离子)和固体表面碰撞时,初级离子和固体晶格粒子相互作用导致的一些过程如图2所示。一部分初级离子被表面原子散射,另一部分入射到固体中,经过一系列碰撞后,将能量传递给晶格。获得一定能量的晶格粒子反弹发生二级、三级碰撞,使其中一些从靶表面向真空发射,即溅射。溅射出来的晶格粒子大部分是中性的,另有一小部分粒子失去电子或得到电子成为带正电或负电的粒子,这部分带电粒子称为二次离子。[img=b5d7ca2ed153a848f53723f1c88a292.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178216624641.jpg[/img]图2 溅射离子过程关于二次离子产生的机理,有许多学者进行了研究, Evans的综述认为有两种过程导致二次离子产生。一种是“动力学”过程,连级碰撞的结果使电中性的晶格粒子发射到真空中,其中一部分处于亚稳激发态,它们在固体表面附近将价电子转移到固体导带顶端而电离。另一种是“化学”过程,认为在样品靶中存在化学反应物质,比如氧,由于氧的高电子亲和势减少了自由导带电子数目,这就降低了在固体中生成的二次离子的中和概率,允许它们以正离子发射。反应物质可能是固体中本来就存在的,也可以是以一定的方式加入体系的。在这两个过程中,“化学”过程起主导作用。[b]2、几种常用的一次离子源[/b]目前在离子轰击电离方式中,用于产生一次离子的离子源型号很多,主要介绍下面两种类型的离子源:冷阴极双等离子体源和液态金属场致电离离子源。[b](1)冷阴极双等离子体源[/b]世界上不同厂家制造的SMS仪器,所选用的冷阴极双等离子体离子源可能因生产厂家及型号不同,外形结构差异很大,但基本工作原理类同。图3为冷阴极双等离子源的基本结构示意。冷阴极双等离子体离子源具有电离效率高、离子流稳定、工作可靠及能产生极性相反的引出离子等特点。[b](2)液态金属场致电离离子源[/b]场致电离离子源通常使用的金属有镓、铟、铯等,使用金属离子轰击固体样品表面产生负的二次离子,多用于氧、硫、碳等非金属元素的分析。由于一次金属离子在样品表面会产生电荷累积效应,因此需要配合电子枪使用。图4是铯源的基本结构示意。[img=6e861f14b1d8243a7d37f50da23bf84.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178217279729.jpg[/img]图3 冷阴极双等离子源的基本结构示意图[img=c72458c7b868299d2724613ef5b0b90.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178218901488.jpg[/img]图4 铯源的基本结构示意图

  • 你知道几种质谱离子源?

    [font=Optima-Regular, PingFangTC-light]质谱[/font][font=Optima-Regular, PingFangTC-light]仪之间分类一般是按质量分析器来分,如通常我们所说的飞行时间质谱或者四级杆质谱等,但同一台质谱仪可以配几种离子源,每种离子源有哪些特点,该如何选择?[/font][font=Optima-Regular, PingFangTC-light]今天咱们就详细说下质谱主要的几种电离方式及离子源[/font][font=Optima-Regular, PingFangTC-light]。[/font][font=Optima-Regular, PingFangTC-light][size=14px]样品在离子源中电离成离子,比较常用的离子源有与[/size][/font][b][font=Optima-Regular, PingFangTC-light][size=14px][color=#ff4c00]GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光电离(APPI),以及基质辅助光解吸离子化(MALDI)[/color][/size][/font][/b][font=Optima-Regular, PingFangTC-light][size=14px]等等。[/size][/font][font=Optima-Regular, PingFangTC-light][size=16px][color=#0052ff][b]电离方式和离子源[/b][/color][/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]1、电轰击电离(EI)[/b]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。[b]2、化学电离(CI)[/b]电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]3、大气压化学电离(APCI)[/b]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。[b]4、二次离子质谱(FAB/LSIMS)[/b][/size][/font][b][font=Optima-Regular, PingFangTC-light][size=14px][color=#ff4c00]在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。[/color][/size][/font][/b][font=Optima-Regular, PingFangTC-light][size=14px]主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。[b]5、等离子解析质谱(PDMS)[/b]采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]6、激光解吸/电离(MALDI)[/b][/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。[b]7、电喷雾电离(ESI)[/b]电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。[/size][/font]

  • 【质谱比较】气质与液质的离子源区别

    离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。本期主题:气质与液质的离子源区别讨论内容:1、气质与液质常用的离子源2、气质与液质的离子源在离子形成上主要区别在哪?筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 实验室分析仪器--质谱仪热电离离子源原理

    热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178311471374.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源

  • 质谱的离子源系统

    离子源系统的作用就是将中性原子或分子转换成具有一定能量和一定形状的正或负的聚焦良好的离子束。根据被分析物质的状态,它的物理化学性质,选择合适的电离方式。并随着电离方式的不同(例如:电子轰击、离子轰击、场致电离、光致电离、化学电离等),配置必要的组件,组成相应的离子源系统。在离子源电离区域形成的离子,经离子源透镜公聚成品质良好的、合乎需要的离子束。整个离子源的由中性原子或分子到离子的转换效率,取决于离子源的电离效率和离子光学系统的离子传输效率。这对那些要求实现高灵敏度质谱分析的课题,是十分重要的。

  • 【我们不一YOUNG】质谱有哪几种离子源

    [align=center][/align][font=Tahoma, Helvetica, SimSun, sans-serif][size=18px][color=#444444]质谱仪常用的离子源有五种,分别是电子轰击源(EI)、化学电离源(CI)、电喷雾电离源(ESI)、大气压化学电离源(APCI)和基质辅助激光解吸电离源(MALDI)。1、电子轰击源(EI)原理:EI源是用在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱上的,是一种“硬电离”。EI源主要由电离室(离子盒)、灯丝、离子聚焦透镜和一对磁极组成。其主要的工作原理是灯丝发射出具备70eV能量的电子,经聚焦并在磁场作用下穿过离子化室到达收集极。此时进入离子化室的样品分子在一定能量电子的作用下发生电离,内能较大的离子在与中性分子(如He)碰撞时能够自发裂解产生更多的碎片离子。所有的离子被聚焦、加速聚焦成离子束进入质量分析器。优势:对于大部分有机物来说,EI源的这种硬电离方式不仅可以看到母离子,而且可以看到很多碎片离子,便于进行结构解析。而且标准谱库就是利用EI源在70eV的碰撞能量下轰击已知的纯有机化合物,电离后分子离子进一步破碎产生丰富的碎片离子,形成具有丰富“指纹”信息的标准质谱图,这些标准质谱图存储起来成为标准谱库。我们在相同的碰撞能量下进行实验获得的质谱可以与标准谱库进行对比进而对化合物进行定性分析。劣势:当样品分子稳定性不高时,分子离子峰的强度弱,甚至没有分子离子峰。当样品不能气化或遇热分解时,则更看不见分子离子峰。适用物质:可挥发的,热稳定的,沸点一般不超过500℃,分子量一般小于1,000的有机物。2、化学电离源(CI)这是一种软电离技术,是分子和离子反应的研究结果在分析化学中的直接应用。CI源始于20世纪50年代,产生的碎片很少,在分析化学中具有巨大的潜力。在化学电离过程中,电子首先轰击试剂气体以生成试剂离子。样品分子随后通过分子和离子反应途径被试剂离子电离。20世纪70年代被认为是化学电离发展的一个里程碑。当时,研究人员解决了化学电离需要在真空环境下工作这一缺点,使化学电离可以在大气条件下工作。大气化学电离从电晕放电提供能量,不需要真空环境,这大大增加了化学电离应用的范围,化学电离已被广泛应用于质谱技术中。3、电喷雾离子源(ESI)ESI源一般是用于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用仪器中,这种电离方式基本不产生碎片峰,故称为软电离。其主要的工作原理是:包裹着样品的溶剂进入电喷雾探头,通过加着高压的毛细管,高电压使得液体表面带上电荷,溶剂被周围加热的氮气气化从而挥发,随着溶剂蒸发,溶剂表面的库伦排斥力越来越大,引起液滴爆炸,最后生成单个离子进入质量分析器。优势:由于是软电离的方式,因此适合做分子量确认。对于分子量大,稳定性差的化合物,也不会在电离过程中发生分解;可以生成多电荷离子,例如,一个分子量为10,000Da的分子若带有10个电荷,则其质荷比只有1,000Da,进入了一般质量分析器可以分析的范围之内。劣势:ESI源要求待测样品在溶液中必须能够形成离子;流动相中缓冲盐的种类和浓度对灵敏度均有显著影响,因此流动相的选择非常重要;基质抑制现象较为明显。适用物质:它适合于分析极性、难挥发的化合物,可用于热不稳定化合物的分析。4、大气压化学电离源(APCI)原理:APCI源是介于ESI源和EI源之间的一种离子源,主要应用于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用仪中,其也是产生(M+H)+或(M-H)-等准分子离子峰,几乎不产生碎片。其主要的工作原理是:样品流经热喷雾器,加热器辅助样品分子快速蒸发。电晕针持续放电使得源内O2或N2分子电离,O2或N2离子将电荷转移给溶剂分子,溶剂离子将电荷转移给目标分子,最终目标离子进入质量分析器。优势:有些分析物由于结构和极性方面的原因,用ESI源不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子。劣势:APCI主要产生的是单电荷离子,所以分析的化合物分子量一般小于2,000Da。适用物质:中等极性或低极性的小分子化合物,样品要有一定的挥发性,热稳定性,要能够进行气态离子化。5、基质辅助激光解吸电离源(MALDI)MALDI是一种质谱软电离技术,MALDI使用激光能量吸收基质以最小碎片化的方式从大分子中产生离子。对于热敏化合物,如果将它们快速加热,就可以防止它们被热分解。MALDI技术与此原理类似:在一个很小的区域中,在很短的时间间隔(ns数量级)中,激光向目标上的分析物提供高强度脉冲能量,使其在瞬间解吸并电离,而不会产生热分解。MALDI是一种用于直接蒸发和电离非挥发性样品的质谱电离方法,但其电离机理尚不清晰。优势:MALDI被广泛用于测量生物大分子的分子量,例如多肽、蛋白质、核酸、聚合物的分子量分布以及低聚物分析。MALDI质谱具有灵敏度高、适用范围广、操作简单的特点。适用物质:大分子、高极性、不易挥发、热不稳定的样品。[/color][/size][/font]

  • 质谱仪--有机质谱仪的日常维护、清洗

    1.机械泵和分子泵的维护机械泵的维护主要是更换机械泵油。通过机械泵的油面窗口可以看到泵油的颜色,正常情况下,泵油的颜色应该为无色或者浅黄色如果泵油颜色变暗或呈深褐色,表明泵油的质量下降,需要更换,一般情况下每三个月更换一次。不同公司的泵油不可以混合使用,当需要更换不同公司品牌的泵油时,必须用新泵油润洗至少一次。维持适当的油面高度也是机械泵的日常维护工作之一,当机械泵处于工作状态下时,油面高度应在最小与最大刻度之间。机械泵需要定期进行震气,震气的目的是将捕集在回油装置的机械泵油重新抽回至机械泵内,以确保机械泵内有足够的油,同时震气也能将溶解在机械泵油里面的气体和溶剂尽量排出。震气时只需将震气阀打开保持15min左右,一般情况下每周进行一次震气。此外,机械泵需要定期清理散热片上的灰尘,以免灰尘积累较厚影响散热机械泵的连接管路也需要定期检查是否老化损坏,如果老化损坏必须及时更换,不然将影响仪器抽真空效果。安装真空部件时,用甲醇湿润无尘纸沿一个方向将外露的O形圈擦拭干净,并将与O形圈接触部件的相应位置也擦拭干净,否则这两个地方任何部位有纤维、颗粒之类的物质残留,都会令密封不实而导致漏气,从而影响仪器真空度。分子泵的日常维护内容相对较少,有的分子涡轮泵每隔数年需要更换润滑油芯。平常保持分子泵的良好散热和避免非正常断电能在一定程度上延长分子泵的使用寿命。2.空气过滤网的清洗一般质谱仪都配有空气过滤网,该网能有效地过滤空气中的灰尘颗粒物,需要定期取出用清水清洗干净后晾干再安装回去。如果过脏无法清洗干净或者损坏时,需要更换新的过滤网。空气过滤网若长时间未清洗或更换,积累灰尘导致堵塞,将影响质谱仪电路板及其他部件的散热,严重时将影响数据的采集。有的质谱仪虽然配备了冷却循环水系统,也需要定期清洗或更换空气过滤网及水过滤网。3.离子源的维护离子源的维护主要是离子源的清洗。这里以目前较为常用的ESI离子源为例,简单阐述其清洗要点,ESI离子源的清洗非常重要一般情况下,每隔几天就需对离子源进行一次清洗。各个仪器厂家的ESI离子源虽然存在一定差别,但清洗的方法却大同小异。首先是离子源的拆卸,每个仪器厂商的离子源耦合到质谱上的方式不尽相同,一般参照仪器规程小心将离子源拆下,置于干净不易脱落毛絮的布上,如:无纺布、镜头布等,注意静电防护,操作人员需戴上干净的无粉手套。然后是离子源的清洗,将离子源拆散后,置于干净的烧杯中,加入有机溶剂(如甲醇、丙酮异丙醇等),超声清洗30min左右。注意:选择何种清洗溶剂可以根据实验所做的样品类型组合交替超声清洗。最后将清洗干净的离子源晾干或用氮气吹干,原样装回。需要留意的是每个步骤都需要特别小心,轻取轻放,避免硬物碰伤。如果ESI探针内使用的是石英毛细管而不是金属毛细管时,需特别留意石英毛细管的棕色涂层是否有不齐整现象,必须将石英毛细管末端切割平整,否则将严重影响喷雾效果。而使用金属毛细管时需要留意末端是否有弯折情况,若有需要则更换金属毛细管,否则严重影响喷雾效果。4.质谱透镜系统的清洗清洗质谱传输透镜首先需要将质谱仪彻底关机,整个过程需要穿戴干净的无粉手套,按照仪器的操作规程小心地将质谱透镜取出,用蘸润甲醇(色谱纯)的无尘纸轻轻将透镜擦拭,注意同时需要对透镜孔的内部进行清洗。与清洗ESI离子源类似,将透镜置于干净的烧杯中,根据透镜的污染情况选用相应的溶剂超声清洗30min左右,如甲醇、50%甲醇或其他有机溶剂。应避免透镜与硬物触碰损坏,同时避免接触无机酸碱,否则有腐蚀透镜的可能。超声清洗完毕后,取出晾干或用氮气吹干,按正确的流程安装回质谱仪上。5.质谱仪的校正质谱仪需要定期进行校正,用户可根据测试样品的需求制定仪器校正计划。一般情况下,每次重新开机都需要对仪器或仪器的某些项目进行校正,当然不同公司的质谱仪的质量稳定性存在一定差别,所需要的校正频率也不一样。对于质量精度很高的高分辨质谱仪所需要校正的频率相对较高,校正时需要配制或者购买仪器厂家专用的校正液,按照仪器校正规程对仪器进行校正。质量校正是质谱仪日常维护中非常重要的一环,只有在仪器质量轴准确的情况下,才能收集到可靠有效的实验数据。6.质谱仪工作环境的保证为确保质谱仪在一个良好的环境下运行环境的温度、湿度均需要控制在质谱仪正常工作的范围内。同时,需要保证质谱仪的供电正常,负载达到要求,接地良好。并且,质谱仪应避免安装在多尘,离地铁、铁道较近的有振动的区域内。

  • 【原创大赛】【第四届原创】新型质谱离子源的研究及其应用

    参评论文题目:Single Photon Ionization and Chemical Ionization Combined Ion Source Based on a Vacuum Ultraviolet Lamp for Orthogonal Acceleration Time-of-Flight Mass Spectrometry.论文概述:基于光强为1011光子/秒的真空紫外(VUV)灯,成功研制了一种单光子电离(SPI)和化学电离(CI)两种软电离模式可以快速切换的组合离子源。该离子源利用光子能量为10.6 eV的VUV光作为SPI的光源,使电离能低于10.6 eV的有机物分子产生SPI;同时利用电场加速光电子轰击试剂气体,产生O2+试剂离子,与电离能高于10.6 eV的有机物分子之间发生CI使其电离。两种电离模式可以在2 s之内实现快速切换。通过将离子源气压提高到100~102 Pa的中等真空气压范围,并增加有效电离光程的方法,有效提高了仪器的检测灵敏度。在SPI模式下,对苯、甲苯、对二甲苯的检测灵敏度分别达到3 ppbv、4 ppbv和6 ppbv。而利用SPI和CI模式的切换,实现了较宽电离能范围的复杂混合有机物的在线监测,解决了SPI可电离物种受限的问题。论文中将SPI/CI组合离子源和自行研制的飞行时间质谱仪相结合,已成功应用于长链烷烃脱氢反应过程和水中消毒副产物的在线监测,其在石油化工中的催化过程监测以及环境中有机污染物在线监测领域有着广阔的应用前景。

  • 【原创大赛】安捷伦9575C质谱仪离子源、四级杆拆卸清洗解析

    【原创大赛】安捷伦9575C质谱仪离子源、四级杆拆卸清洗解析

    前几天对安捷伦的5975C质谱仪更换真空泵油时,更换完成后调谐发现仪器调谐结果异常,异常现象如下:[img=,690,371]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141023_01_1726548_3.jpg[/img]调谐结果出现800多个峰,拆卸离子源进行清洗,以下为清洗步骤,[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141029_01_1726548_3.jpg[/img]拆卸之前要拍好照片,避免到时线路接错,不过这个其实有规律的,一般电路板的左边线对应离子源的右边线。另离子源其实大部分是加热线和温度传感器的线,规律找到可以不用拍照。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141033_01_1726548_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141033_02_1726548_3.jpg[/img][img=,690,919]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141034_01_1726548_3.jpg[/img][img=,690,919]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141034_02_1726548_3.jpg[/img][img=,690,919]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141034_03_1726548_3.jpg[/img]以上就是离子源的全部拆卸,清洗直接用超细的氧化铝粉加超纯水进行,(也可以用无水乙醇混成糊状),打磨除灯丝及螺丝外的金属零件表面,特别注意离子轨道内各部分。这需要耐心打磨,打磨完用超纯水清洗两、三遍,超声清洗除去氧化铝粉,HPLC的甲醇超声清洗;HPLC的丙酮清洗,以上两步用于去除极性物质,最后用HPLC级的正己烷清洗,放置在烘箱40度下进行烘干。烘干完后重新安装回去。拆卸过程有个人拍照是很关键的,可以避免有些部件不知道怎么安装回去!!!切记!!!有图有真相。然而清洗完离子源后重新安装回去,质谱故障问题仍然没有解决。进一步拆卸仪器。将高能打拿极和光电倍增管拆卸,丙酮表面清洗清洗(似乎可以不要,可能有损伤)。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141051_02_1726548_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141051_01_1726548_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141051_03_1726548_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141051_04_1726548_3.jpg[/img][img=,418,347]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141051_05_1726548_3.jpg[/img]红色圈上的为光电倍增管和高能打拿极。将四级杆拆卸下来,用HPLC级的甲醇进行冲洗,这个甲醇用量比较大,要挺多的,我用4L一桶的进行冲洗,用了起码2L。冲洗完用电吹风机进行吹干,冷风吹,起码20-30min,甲醇本身挥发性强,所以很容易干。另甲醇毒性比较大,要在通风橱内操作,冲洗过程要注意安全!!!!!!吹干后安装回去,抽真空后3h,调谐正常,水比较大,在可接受范围,抽真空过夜后,水含量比较低,以下为仪器调谐报告。[img=,690,493]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141102_01_1726548_3.png[/img]以上是本次仪器故障的一个过程,有部分过程未进行拍摄,整个故障查找共花费3天时间。开始不想动四级杆部分,毕竟能不动尽量不动,但该问题似乎只有进行全面的清洗才能处理好。如果按照这个过程来,估计一天时间基本就可完成维修、维护过程。以上仅个人观点,如有不足还请多指教。若想自己拆卸,后果自负。

  • 7种质谱电离方式和离子源

    [color=#ff0000][b]1. 电轰击电离(EI)[/b][/color]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为 10eV 左右,50~100eV 时,大多数分子电离界面最大。70eV 能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定。电子轰击电离是应用最普遍、发展最成熟的电离方法。EI 的优点在于易于实现,质谱图再现好,而且含有较多的碎片离子信息,有利于未知物结构的推测。其缺点为当样品分子稳定不高时,分子离子峰的强度低,甚至没有分子离子峰。当样品不能汽化或遇热分解时,则更没有分子离子峰。电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。[color=#ff0000][b]2. 化学电离(CI)[/b][/color]原理是在离子室中通入反应气(压力上升到约 1Torr),用 200~400eV 的电子轰击使反应气分子电离,然后样品分子在高压下与反应气离子发生离子-分子反应生成样品离子。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合 EI/CI 离子源。试剂气一般采用甲烷气 ,也有 N2,CO,Ar 或混合气等。试剂气的分压不同会使反应离子的强度发生变化 ,一般源压为 0.5~1.0 Torr。反应气通常是甲烷、胺、异丁烷等气体。[color=#ff0000][b]3. 大气压化学电离(APCI)[/b][/color]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为63Ni 辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达 9L/S。需要采取减少源壁吸附和溶剂分子干扰。大气压电离是由 ESI 衍生出来的方法。样品溶液仍由具有雾化气套管的毛细管端流出,被氮气流雾化,通过加热管时被汽化 。在加热管端进行电晕放电使溶剂分子被电离形成反应离子,这些反应离子与样品第 179 页分子发生离子-分子反应生成样品的准分子离子。与经典 CI 不同的,是 APCI无须加热样品使之汽化,因而应用范围更广。由于要求样品分子汽化,因而 APCI主要用于弱极的小分子化合物的分析。[color=#ff0000][b]4. 二次离子质谱(FAB/LSIMS)[/b][/color]分析化学论坛在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成 MH 离子,其中有些反应会形成干扰。[color=#ff0000][b]5. 等离子解析质谱(PDMS)[/b][/color]分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流采用放射同位素(如 Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于 FAB/LSIMS,可分析多肽和蛋白质。[color=#ff0000][b]6. 激光解吸/电离(MALDI)[/b][/color]波长为 1250~775 的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为 10000/1。根据分析目的不同使用不同的基质和波长。[color=#ff0000][b]7. 电喷雾电离(ESI)[/b][/color]电喷雾电离采用强静电场(3~5KV),形成高度荷电雾状小液滴,经过反复、的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。ESI 电离是很软的电离方法,通常没有碎片离子峰,只有整体分子的峰。有利于生物大分子的测定。

  • 质谱仪器的真空要求

    质谱仪器的真空要求质谱仪器必须在良好的真空条件下才能正常操作,一般要求质量分析器的真空优于10-4pa。质谱仪器所检测的离子必须要有较大的自由程才可以到达检测器,其他气体成分也可能与离子发生反应影响检测,在质谱仪中工作的部件(如离子源灯丝、较密排布的高压极板)需要在高真空下才能稳定工作。因此,质谱仪中的部件需要一个真空环境进行工作。但不同类型的质谱仪器对真空的要求不同,既与仪器的类型有关,又与仪器的大小有关;质谱仪器的不同部分对真空的极限要求也不同,质量分析器是所有部分中对真空要求最高的,离子源对氧的分压要求比较苛刻,但对总压的要求则比质量分析器低几个数量级。所以真空系统的配置要视实际情况而定

  • 影响质谱仪灵敏度的因素有哪些 。

    [b][color=#cc0000]影响质谱仪灵敏度的因素有哪些 。[/color][color=#cc0000]质谱仪的灵敏度是指其检测和分析低浓度样品的能力。影响质谱仪灵敏度的因素有很多,主要包括以下几点:1.离子源:离子源是质谱仪中负责将样品转化为离子的部件。离子源的类型和参数设置对质谱仪的灵敏度具有很大影响。不同的离子源适用于不同类型的样品,如电喷雾(ESI)、基质辅助激光解吸/电离(MALDI)和化学电离(CI)等。2.质量分析器:质量分析器是质谱仪中负责对离子进行质量分析和检测的部件。质量分析器的类型和性能对质谱仪的灵敏度也有很大影响。常见的质量分析器有四极杆(Quadrupole)、飞行时间(Time-of-Flight, TOF)、离子阱(Ion Trap)等。3.离子传输效率:从离子源到质量分析器的过程中,离子的损失会影响质谱仪的灵敏度。优化离子传输路径、降低离子损失可以提高质谱仪的灵敏度。4.检测器:检测器负责将离子信号转换为电信号。检测器的性能和灵敏度对质谱仪的整体灵敏度具有重要影响。常见的检测器有电子倍增器(Electron Multiplier)、光电二极管阵列(Photodiode Array)等。5.背景噪声和信号噪声比:背景噪声是指质谱仪内部和外部环境引起的非目标离子信号。降低背景噪声、提高信号噪声比有助于提高质谱仪的灵敏度。6.样品处理和分离方法:样品处理方法和分离技术(如液相色谱、气相色谱)对质谱仪灵敏度有一定影响。合适的样品处理和分离方法可以提高目标分子的检测效果,降低非目标分子的干扰。7.质谱仪的参数设置和校准:质谱仪的参数设置和校准会影响其灵敏度。合适的参数设置和准确的校准可以提高质谱仪的检测性能,从而提高灵敏度。例如,离子源的电压、流速、温度等参数设置需要根据样品类型和目标分子进行优化。8.数据处理和分析软件:质谱数据处理和分析软件可以对信号进行滤波、去噪和基线校正等操作,从而提高信号的可靠性和灵敏度。合适的数据处理策略可以更好地区分目标信号与背景噪声,提高质谱仪的检测灵敏度。9.仪器维护和清洁:质谱仪的长期使用可能导致仪器内部污染、零件磨损等问题,影响其灵敏度。定期对质谱仪进行维护和清洁,例如清理离子源、更换消耗品等,有助于保持仪器的良好性能。10.实验室环境:实验室环境的温度、湿度、气流、电磁干扰等因素对质谱仪的灵敏度也有一定影响。维持良好的实验室环境有助于提高质谱仪的稳定性和灵敏度。影响质谱仪灵敏度的因素多种多样。要提高质谱仪的检测灵敏度,需要从多个方面进行优化和调整。这包括选择合适的离子源、质量分析器和检测器,优化样品处理和分离方法,调整质谱仪参数设置和校准,使用合适的数据处理和分析软件,以及保持良好的实验室环境和仪器维护。通过这些措施,可以使质谱仪在分析低浓度样品时具有更高的灵敏度和准确性。[/color][/b]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制