当前位置: 仪器信息网 > 行业主题 > >

污泥剪切定仪

仪器信息网污泥剪切定仪专题为您提供2024年最新污泥剪切定仪价格报价、厂家品牌的相关信息, 包括污泥剪切定仪参数、型号等,不管是国产,还是进口品牌的污泥剪切定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合污泥剪切定仪相关的耗材配件、试剂标物,还有污泥剪切定仪相关的最新资讯、资料,以及污泥剪切定仪相关的解决方案。

污泥剪切定仪相关的资讯

  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • 全自动核酸剪切仪新品Megaruptor
    Diagenode公司推出全自动核酸剪切仪新品Megaruptor Diagenode公司推出全自动核酸剪切仪新品Megaruptor 比利时 Diagenode公司自成立以来,一如既往地服务表观遗传学研究领域,为表观遗传学科学工作者们提供卓越的自动化设备和优质的抗体等试剂,完善了该领域的实验流程同时提高了实验效率,研发的Bioruptor系列非接触式超声破碎设备,卓有成效地高重复性地解决了染色质片段化和核酸片段化,为chip(染色质免疫共沉淀)和二代测序等下游实验完美对接。在第三代测序仪器出现后,核酸大片段测序得以实现,全自动核酸剪切仪Megaruptor就是用于核酸大片段化的三代测序。Diagenode 全自动核酸剪切仪 MegaruptorMegaruptor的完美设计,使其具有简单化、自动化、高重复性,可以获得2 kb-75 kb长度的DNA片段。剪切性能卓越,不受DNA样品来源、集中度、温度、盐浓度的限制,完全符合了科研人员的实验要求。同时,在无人员值守的情况下,友好的软件系统可以允许两个样品相继被片段化处理,不存在交叉污染。科研人员只需要简洁有效地设定好参数,仪器便可以自动化地进行处理获得目的片段。仪器特点:设定目的片段长度(2kb-75kb),快捷方便地获得集中于目的长度的片段分布获得高质量文库,用于Illumina?, Ion Torrent?, 和 PacBio? 平台自动多端口阀,配置五通道的洗涤平台全程有软件控制,洗涤、剪切自动一体化,彻底解决管路堵塞问题一次可剪切两个样本,剪切参数可完全独立全程电脑程序自动操控,操作界面友善不须定期校正,仪器维护容易绝佳的结果重复性与精准的剪切范围技术参数1. 自动多端口阀,配置了5信道的洗涤平台用于洗涤DNA2. 全程由软件控制:洗涤、切割自动一体化。绝无有卡管问题3. 可产生完全随机、均匀、完整具有代表性的目标大小DNA片段4. 切割DNA片段大小:2-10kb 组件;13Kb-75kb组件, 剪切范围最宽广5. 样品DNA浓度:1-50ng/ul, 最适浓度为20ng/ul6. 样品DNA原始长度:对切割片段大小无影响7. 样品体积:50-400ul8. 一次可上两个样本, 剪切参数可完全独立9. 处理时间:每个样品10-20分钟, 包含样本处理与自动管线清洗时间10.计算机(笔记本)为标准配备及操控软件11.试剂:优化好, 客户可自行配置上海博谊生物科技有限公司是比利时Diagenode公司全自动核酸剪切仪 Megaruptor的代理商,欲知更多产品详情,请联系我们。 发布者:上海博谊生物科技有限公司联系电话:021-51691651E-mail:18616023651@163.com
  • 施一公组首次报道人源剪切体原子分辨率结构
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title="微信图片_20170512000929_副本.jpg"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp  5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。/pp  剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title="微信图片_20170512001013_副本.jpg"//pp  这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。/pp  人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title="微信图片_20170512001027_副本.jpg"//pp  此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title="微信图片_20170512001044_副本.jpg"//pp style="text-align: center "图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”)/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星”/span。/ppbr//p
  • 胶黏剂拉伸剪切试验方法电子拉力拉伸试验机
    胶黏剂拉伸剪切试验方法电子拉力拉伸试验机:原理试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为 MPa。试样1)试验机:使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1%。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。试验机应保证试样夹持器的移动速度在 (5±1) mm/min 内保持稳定。2)量具:测量试样搭接面长度和宽度的量具精度不低于 0.05 mm。3)夹具:胶接试样的夹具应能保证胶接的试样符合要求,在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法,但不能用于仲裁试验。4)标准试样的搭接长度是(12.5±0.5)mm,金属片的厚度是 (2.0± 0.1 ) mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。5)试样数量不应少于 5 个,仲裁试验试样数量不应少于 10 个;对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度,两者中选择前者较好。测试时金属片所受的应力不要超过其屈服强度 σS ,金属片的厚度 δ可按式( 11-12)计算:δ=( Lτ) /σ S (11-12)式中:δ——金属片厚度;L——试样搭接长度;τ——胶粘剂拉伸剪切强度;σS ——金属材料屈服强度(MPa)。试样制备1)试样可用不带槽或带槽的平板制备,也可单片制备。2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。试验条件试样的停放时间和试验环境应符合下列要求:1)试样制备后到试验的最短时间为 16 h,最长时间为 30 d。2)试验应在温度为( 23±2)℃ 、相对湿度为( 45~55)%的环境中进行。3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于 0.5 h;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于 16 h。实验步骤1)用量具测量试样搭接面的长度和宽度,精确到 0.05 mm。2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为( 50± 1)mm3)开动试验机,在 (5±1) mm/min 内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 力学所戴兰宏团队揭示非晶合金剪切带涌现的时空序列与临界行为
    非晶合金(又称金属玻璃)因具有一系列优异性能,在空天、国防、能源等领域显示出广阔应用前景。然而,非晶合金极易形成纳米尺度变形局部化剪切带,而剪切带快速扩展诱致的宏观脆性严重地限制了其走向广泛的工程应用。因此,非晶合金剪切带问题成为力学、物理与材料等相关领域共同关注的重要课题。本征上,非晶合金剪切带涌现是一类远离热力学平衡下时空多尺度耦合的非线性过程。空间上,固有的结构不均匀性会引起强烈的变形及动力学行为的梯度效应。时间上,涵盖原子振动、原子团簇协同重排、塑性流动等多个速率过程。这些事件均具有各自的特征时间和空间尺度,他们的关联耦合控制剪切带涌现,使变形高度集中在宽度或厚度为数十纳米的带状区域,并以近声速的模式快速扩展。与原子周期有序排列的晶态合金不同,原子长程拓扑无序堆垛的非晶合金变形内蕴三种高度耦合纠缠的原子尺度运动:剪切、体胀和旋转。这三种局域原子运动的强纠缠是非晶合金剪切带涌现精细物理图像尚未探明的关键瓶颈。近期,中科院力学所戴兰宏研究团队在该问题研究上取得新进展。基于连续介质力学理论框架,研究人员首先提出了一个同时考虑仿射和非仿射变形信息的两项梯度模型(Two-term gradient model, TTG模型),可以完整地描述无序固体介质的局部变形场,突破了目前广泛使用的单纯仿射或非仿射模型的局限。研究人员进一步完成了对剪切、体胀、旋转这三个高度纠缠的局域运动的解耦,并在原子尺度上定义了全新的局部剪切、体胀、旋转运动事件的定量描述符。为了表征这三类原子团簇运动,提出了剪切主导区(shear dominated zone, SDZ)、体胀主导区(dilatation dominated zone, DDZ)及旋转主导区(rotation dominated zone,RDZ)的概念和定量表征方法,克服了目前流行的剪切转变区(shear transformation zone, STZ)不能表征原子团簇旋转运动和定量描述体胀运动的不足。在此基础上,研究人员利用大规模分子动力学模拟,对非晶合金从均匀变形到局部化剪切带涌现全过程进行精细表征。通过追踪SDZ、DDZ及RDZ原子团簇运动演化时空序列,发现初始宏观均匀变形阶段剪切、体胀及旋转团簇运动事件呈现出类似“军队行动”式的步调协同一致行为,具体表现为SDZ、DDZ及RDZ在空间离散的“类液”软区随机同步激活。基于统计学的极值理论分析,研究人员发现在这个阶段,体胀局域运动事件较剪切和旋转事件的空间分布展现出更明显的非高斯长拖尾特征,表明体胀局域化流动(DDZ)起先导的主控作用。原子团簇通过体胀运动(DDZ)完成局部软化过程,随着变形加剧,这种体胀局域软化进一步激活其邻近硬区的旋转运动,进而逐渐打破了SDZ、DDZ和RDZ三者间同步激活,转变为SDZ、DDZ及RDZ的非均匀间隔分布。增强的RDZ运动又进一步加剧了SDZ和DDZ局域运动,进而诱发硬区团簇的软化。当软化程度达到临界时,硬区壁垒被打破,激活的SDZ、DDZ及RDZ相互贯穿形成剪切带。研究人员进一步基于逾渗理论,对SDZ、DDZ及RDZ原子团簇运动事件从初期均匀变形阶段的随机离散激活到变形局部化剪切带涌现时的群体贯穿演变全过程进行定量分析,发现剪切带涌现属于定向逾渗(directed percolation),并且呈现出临界幂律标度行为。本项工作提出的两项梯度(TTG)模型及三种原子团簇运动单元(SDZ、DDZ及RDZ)新概念为无序固体介质变形定量描述提供了基本工具,所揭示的剪切带涌现过程原子尺度精细图像及临界行为为深入认知非晶合金剪切带提供了新的线索。该研究成果近期以“Hidden spatiotemporal sequence in transition to shear band in amorphous solids”为题发表在Physical Review Research 4, 23220 (2022),第一作者为博士生杨增宇。该项研究工作得到了国家自然科学基金重大项目“无序合金的塑性流动与强韧化机理” 、基础科学中心项目“非线性力学的多尺度问题”、中科院B类战略性先导科技专项项目“复杂介质系统前沿与交叉力学”等资助。论文链接:doi:10.1103/PhysRevResearch.4.023220图1 非晶合金剪切带中的旋转(涡旋)、剪切和体胀运动事件图2 剪切-体胀事件与旋转事件的关联“破缺”,空间分布从同步激活转变为交替间隔分布图3 剪切带涌现前出现原子旋转团簇运动(RDZ)显著增强(图中白色气泡代表RDZ,也即原子运动的涡旋结构)图4 非晶合金剪切带涌现原子尺度演变过程示意图
  • 836.6万元!三峡大学获批重大仪器项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”
    据三峡大学网站信息,三峡大学于近日接到国家自然科学基金委通知,获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”。该项目由李建林教授主持申报,直接经费836.6万元,执行期限五年。该类型项目是三峡大学自建校以来首次获批,也是三峡大学受国家自然科学基金项目单项资助额最高的项目。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题,为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双1,2,曹晓1,2,张嘉琪1,2,韩迎春1,2,赵欣悦1,2,陈全1,21.中国科学院机构长春应用化学研究所高分子物理与化学国家重点实验室 长春1300222.中国科学技术大学应用化学与工程学院 合肥230026作者简介:陈全,男,1981年生.中国科学院长春应用化学研究所研究员.本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造.于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的DistinguishedYoungRheologistAward(2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《NihonReorojiGakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者:陈全,E-mail:qchen@ciac.ac.cn摘要:流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工.本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词:流变学/剪切流场/剪切流变测试目录1.流场分类2.剪切旋转流变仪概述2.1测试原理2.2测试模式3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述3.1.1输入(输出)应变为施加在样品上的应变3.1.2流场为简单的剪切流场3.1.3输入(输出)应力为样品的黏弹响应3.2测试中常见问题I:仪器和夹具柔量3.3测试中常见问题II:仪器和夹具惯量的影响3.4测试中常见问题III:样品自身惯量的影响3.5测试中常见问题IV:二次流的影响3.5.1同轴圆筒夹具二次流边界条件3.5.2锥板和平板夹具二次流边界条件3.6测试中常见问题V:样品表面张力3.6.1样品的各向对称性3.6.2样品本身表面张力大小3.6.3大分子聚集3.7测试中常见问题VI:测试习惯3.7.1样品的制备:干燥和挥发问题3.7.2确定样品的热稳定性3.7.3样品体系是否达到平衡态3.7.4夹具热膨胀对测试的影响3.7.5夹具不平行和不同轴对测试的影响4.结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可.流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况.最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯.笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1.流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场.更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”).流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应.虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如SentmanatExtensionalRheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因.图1中分别展示了剪切和拉伸2种形变[14].施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动.剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直.而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变.同样,连续的拉伸形变称为拉伸流动.拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行.施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离.在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场.然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度.在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场.假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图1Figure1.Illustrationoftworepresentativemodesofdeformation:thesimpleshearforwhichthedirectionofvelocitygradientisperpendiculartothatofvelocity,andtheuniaxialelongationforwhichthedirectionofvelocitygradientisparalleltothatofvelocity.(ReprintedwithpermissionfromRef.[14] Copyright(2012)Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数.为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的.即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17].该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18].然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2.剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧).目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪.本小节主要围绕旋转流变仪展开介绍.旋转流变仪主要分为应力控制型和应变控制型2种.应力控制型旋转流变仪一般使用组合式马达传感器(combinedmotortransducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separatemotortransducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用.之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别.对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T(T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数.因此,可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图2Figure2.GeometryandparametersKγandKσofparallel-plate,cone-and-plateandCouettefixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试.但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性.例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20].(2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择.此外,需要注意的是,为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度.(3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应.在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应.根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图3Figure3.ThedifferentresponsesofNewtonianfluid,Hookeansolid,andviscoelasticmaterialstotheimposedsteadyflow(stressgrowth,transientorsteadymodethatdependsonthefocus),stepstrain(stressrelaxation,transientmode),stepstress(creepandrecovery,transientmode)andsmallamplitudeoscillatoryshear(SAOS,dynamicmode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应.通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式.通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力.剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动.(2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等.其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stressrelaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creepandrecovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stressgrowth).这些测试的共性是关注样品在一个特定刺激下的转变过程.以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间.(3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应.以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间.通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(smallamplitudeoscillatoryshear,简称SAOS).对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间.当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(largeamplitudeoscillatoryshear,简称LAOS).需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心.因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力.然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题.需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1)应变作用在样品上;(2)应力为样品自身的响应;(3)流场为简单剪切流场.这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠.接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.3.1.1输入(输出)应变为施加在样品上的应变该假设的关键在于没有考虑仪器和夹具柔量的影响,即假设样品的应变可以直接从角位移得到.然而,在力的作用下,仪器和夹具自身也会旋转一定的角度.只有当该角位移远小于作用在样品上角位移时,上述假设才能成立.由于夹具通常由不锈钢或者其他金属材料制造,其模量通常在~1011Pa或者更高的范围,而测试样品,特别是高分子材料即使是在玻璃态,模量通常小于1010Pa,因此,似乎夹具的形变可以忽略.但是,需要指出的是,平板和锥板的夹具通常被设计成细长空心的圆柱形,而夹具中间的样品通常为扁平的圆片状,这种形状上的差异会显著增加夹具柔量的影响.除此之外,夹具与样品之间的滑移也可造成施加应变和样品实际应变的区别[21~23].这种滑移会消耗一部分施加的角位移,假设被消耗的角位移为θslip,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff).对于平行板样品,由于应变参数Kγ=R/H,这使得在相同的实际应变Kγθeff下,旋转的角位移θeff随着板间距H的增加而增加,而θslip则改变较少,因此,滑移的效应会随着板间距的增加而弱化,该结果也可以用做滑移是否存在的间接判据:即如果存在滑移,则其造成的误差会随着板间距的增加而减少.对于滑移效应更为直接的判据就是通过微小的示踪粒子直接观测板附近的粒子的运动是否和板的运动一致.3.1.2流场为简单的剪切流场上文中提到,剪切流变仪设计的一个基本原则就是生成纯粹的剪切流场并记录样品在该流场下的响应.然而,由于受到界面和样品自身的影响,样品中实际的流场未必为纯粹的剪切流场,该效应通常在大剪切速率下出现.例如,对于同轴圆筒夹具测试低黏度样品,当泰勒数大于一个定值时,或者对于平行板和锥板测试低黏度样品,当雷诺数大于一个定值时,流场会偏离简单的剪切流场.以平行板为例(如图4所示),在高雷诺数下,由于离心作用,旋转的上板附近的流体沿着板的径向向外运动,为了填补这些流体流出的空隙,静止下板附近的流体会沿着径向向内运动,这2种流体的运动就会造成一次流基础上出现叠加的二次流,从而导致测试扭矩的增加和相应的剪切增稠假象[24].图4Figure4.Thesecondaryflowoccurswhensampleunderrotarygeometrymovesradiallyoutwardandsampleonthestaticgeometrymovesradiallyinward.对于具有一定弹性的样品,假设其自身的松弛时间为τ,当韦森堡数Wi=τγ˙大于1时,也可能会在低泰勒数(同轴圆筒)或者低雷诺数(平行板或者锥板)的条件下出现弹性非稳定二次流,这种二次流的出现也会造成剪切增稠的假象.下文中,我们会对同轴圆筒和锥板以及平板出现二次流的边界条件进行更详细的讨论.此外,在高度缠结的高分子溶液或者高分子熔体等黏度较高的体系中,剪切速率过高的时候可能会出现剪切带或者较强的壁面滑移,这种剪切速率的非均一分布往往有利于体系自由能的降低.对于高分子熔体,在高剪切速率时,自由表面附近可能出现熔体破裂的现象.这些现象的出现也都会导致测量体系的流场严重偏离简单剪切流场.通常,剪切带、壁面滑移和熔体破裂等现象都会导致体系的应力减少及随之增强的剪切变稀效应(应力或者黏度随时间急剧下降).对于一些极端的情况,甚至会出现剪切应力σ不随剪切速率γ˙γ˙的增加而增加的特殊现象(此时黏度η=σ/γ˙γ˙~γ˙β且β≤−1).为了减弱熔体破裂的现象带来的实验误差,通常可以采用锥板加组合板的特殊夹具(cone-partitionedplate,简称CPP夹具)(如图5所示).CPP夹具中,锥板(绿色)与马达相连,组合板分为2个部分,中心平板(尺寸小于锥板,灰色)和环绕中心平板的环状板(蓝色),两者同轴且分离,共同组合成类似于与锥板同等大小的平板.其中,中心板与传感器相连并记录扭矩,环状板与仪器相连且被固定.测试过程中,一般熔体破裂发生在样品边缘.因此,只要当破裂的边缘没有深入到中心板,所记录的扭矩受到边界熔体破裂的影响就可以忽略[25].图5Figure5.SchematicviewoftheCPPfixture.Green:cone red:sample blue:outerpartition(section) yellow:translationstages(section) orange:bridge(section) grey:innertool(Drawingnotinscale).Thesamplediskshouldhavesizesufficientlylargerthantheinnerplate.(ReprintedwithpermissionfromRef.[25] Copyright(2016)AmericanChemicalSociety)3.1.3输入(输出)应力为样品的黏弹响应其实,上述二次流出现是由样品内部流场的不稳定性带来的效应,会导致额外的应力.在流变测试中,另一个无法忽略的就是测试扭矩的贡献中包含仪器和夹具自身的惯量的贡献.对于真实样品的测试扭矩应该等于测试总扭矩减去仪器和夹具自身的惯量造成的额外扭矩.上面文中提到,对于纯弹性的流体,流变测试中其自身的弹性产生的扭矩T与旋转角度θ具有正比的关系,即T~θ,此时T相对于θ的相位角δ为0°;对于纯黏性的样品,流变测试中其自身的黏性所产生的扭矩与旋转角度相对于时间的导数具有正比的关系,即T~θ˙,此时T相对于θ的相位角δ为90°;对于惯性导致的扭矩,其大小与加速度成正比,即T~θ¨,此时T相对于θ的相位角δ为180°,这种区别可以作为出现惯量效应的判据.例如,在动态测试中,样品黏弹性引起的相位角在0°和90°之间,一旦测试时出现了90°和180°之间的相位角,则必然出现了仪器惯量效应.特别是在高频动态测试中,由于θ=θ0sin(ωt),则惯量I贡献的扭矩高达T0=Iω2θ0,因此,商业的旋转流变仪通常频率ω的测试上限在102rad/s.虽然有些仪器支持测试更高的频率,如103rad/s或者更高,但是测试高于102rad/s的数据时,需要时刻注意分析惯量对于扭矩的贡献.此外,由于自由表面的存在,表面张力对于扭矩的贡献有时也是难以忽略的,该贡献在低黏度的样品中表现得尤为突出.由于表面张力的存在,样品具有收缩表面积的趋势,这会造成剪切作用下界面形状或面积变化时额外的法向力或者剪切力.例如,在平板和锥板夹具中,样品过度充满或者未充满的时候,样品的自由表面会产生突出或者凹陷的曲面结构,这种曲面结构的产生会引起额外的法向力.当样品在剪切流场中,自由表面的面积也会随之出现波动性的变化,这种变化通常会产生弹性应力响应,从而导致额外的应力贡献.通常可以通过填充合适量的样品、增加样品的各方向对称性和引入表面活性剂降低表面张力等方法来抑制表面张力的影响.下文中,我们会结合一些实验实例进一步阐释上述旋转流变仪测试的假设条件失效的情况.此外,我们总结了流变测试中一些不良测试习惯导致无法正确获取实验数据的情况.最后,我们会针对上述内容,给出一些避免类似错误结果的建议.3.2测试中常见问题I:仪器和夹具柔量流变仪能够准确测量样品模量的一个前提是传感器和夹具的柔量远小于样品的柔量,或者换言之,传感器和夹具的刚度远大于样品的刚度(刚度等于柔量的倒数).其中,夹具的刚度不仅与夹具的模量相关,也与夹具的尺寸和形状相关.如果将夹具设计成圆柱形,则其刚度κ与夹具横截面半径R的4次方成正比,与圆柱体的高h成反比:一方面,为了抑制样品的温度对传感器和马达的影响,并减少夹具的惯量,平行板和锥板夹具常被设计成细长的形状(较小的R和较大的h),这种结构会减少夹具的刚度;另一方面,为了增加样品的测试扭矩,常将样品制成扁平的形状,这种形状的差别使得夹具与样品刚度的区别远低于制造夹具的材料和样品模量上的区别,而导致实际施加在样品上的真实应变低于设定应变,这种应变的误差会导致样品流变测试结果的显著误差.例如,刘琛阳等分析了双头应变控制型流变仪ARESG2(TA)的仪器柔量对线性黏弹性的影响[26].如图6(a)所示,在样品模量大于105Pa时,用25mm平行板的测量结果明显偏离8mm平行板的测量结果.虽然样品的模量不发生变化,样品的刚度随着尺寸R的增加而增加,造成了测量时夹具产生了更多的形变,这导致了实际施加在样品上的应变的减少和相应的测试模量的降低;为了说明这个问题,图6(b)展示了相对于指令应变(黑色方块),经过传感器校正后的实测应变(红色圆点)较小,而经过夹具校正后的应变则更小(绿色三角),该应变可反映施加在样品的实际应变.图6Figure6.(a)Theeffectofgeometrycomplianceonlinearviscoelasticity (b)Comparisonofcommandedstrain(as100%),measuredstrain(withforcerebalancetorquetransducers(FRT)compliancecorrection),andcorrectedstrain(withtoolcorrection)obtainedforapolyisobutylenesampleat−20°Cusing25mmparallelplates(ReprintedwithpermissionfromRef.[26] Copyright(2011)SocietyofRheology)为了准确地测量样品的模量,通常建议选取合适尺寸的夹具来直接测量.由于夹具的形变通常正比于扭矩,因此在测量较高模量范围的样品时,为避免柔量的影响,需减少样品和夹具尺寸来降低扭矩.而对于测量较低黏度的样品,需要增加样品和夹具的尺寸来增加扭矩,使得扭矩大于仪器传感器的测试下限.笔者的经验是,25mm板使用的上限通常为~105Pa,8mm板的使用上限为~107Pa,而如果需要准确地测量高分子玻璃态模量(~109Pa),需要使用3mm左右的夹具.对于黏度极低的样品,除了选择更大的板(如50或60mm的夹具)以外,还可以使用过采样技术(oversampling)[27],拓宽动态测试的扭矩测试下限,提高相位角的准确程度.但是考虑到小夹具上样的困难,可利用柔量校正来拓展夹具的使用上限.很多流变学者具体研究了柔量的校正方法,例如1982年,Gottlieb和Macosko[28]讨论了仪器柔量对动态流变测量的影响以及力传感器的校正方法.在2008年,Hutcheson和McKenna[29]详细地研究了夹具尺寸对玻璃化转变区附近的流体的动态振荡测试和应力松弛测试结果的影响,并提出相应的校正方法.本文以Hutcheson和McKenna的校正方法为例[29],简单介绍一下动态剪切数据的校正方法.为了准确测定特定夹具下整个仪器系统的柔量系数,作者设计加工了上下板“连体”的参比夹具(如图7所示),并直接测量了参比夹具的柔量.根据柔量相加原则,流变仪器实测复合扭转刚度κ0∗的倒数等于仪器夹具刚度κt和样品刚度κs∗的倒数之和:由于仪器和夹具的柔量均来源于其固体弹性,可以将两者简化为一个与黏弹样品串联的弹簧,其刚度可简化为实数κt.在已知κt的基础上,可利用公式(6)校正测试的实验数据κmes∗,得到样品的实际复数刚度κs∗.图7Figure7.Asimpleschematicshowingthegeometryofthesolidrodandthedisposableplatens(ReprintedwithpermissionfromRef.[29] Copyright(2008)AmericanInstituteofPhysics).3.3测试中常见问题II:仪器和夹具惯量的影响对于仪器和夹具惯量的校正是准确进行瞬态和动态流变测试的基础.旋转流变仪测得的扭矩不仅来源于样品自身的应力响应,也来源于马达和夹具在加速过程中的惯量贡献.早在1991年,Krieger等讨论了单头的应力控制型流变仪仪器和夹具惯量对测试的影响[30],他们发现,当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.最近,Lauger等研究了流体在振荡剪切模式下的仪器和夹具惯量的影响[31],并给出了通过流变仪测量的实测扭矩、样品产生的扭矩以及仪器和夹具自身惯量产生的扭矩的三者之间的矢量关系(图8).图8Figure8.Vectordiagramoftorques,includingaccelerationtorqueTa,totalorelectricaltorqueT0,andsampletorqueTs,whereδδandααarephaseangleofT0andTs,respectively.ThesampletorquecanbedecomposedintoviscouspartTvandelasticpartTe(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology).其中,仪器测试的实测扭矩T0等于样品扭矩Ts和仪器加速惯量产生的扭矩Ta之和.换言之,样品产生的扭矩应该等于总扭矩减去仪器加速时惯量产生的扭矩,该扭矩可利用相位角分解成弹性贡献部分Te和黏性贡献部分Tv.此外,Lauger等研究表明[31].:对于牛顿流体,惯量产生的扭矩与样品扭矩的比率可表达为其中I为测量设备的转动惯量,|G∗|为样品的复数模量的绝对值,ω为测试的角频率.然而,需要指出的是公式(8)仅适用于牛顿流体,对于黏弹性体系并不准确.据此,可以通过计算仪器和夹具惯量产生的扭矩与样品扭矩之比来判断仪器和夹具惯量的影响.例如:图9展示了Lauger等利用单头的MCR系列流变仪(AntonPaar)测试黏度为4mPas的S4oil频率扫描测试.在测试的频率范围内,该流体应为牛顿流体.其中蓝色正三角表示实测的扭矩T0,绿色倒三角表示校正了仪器和夹具惯量贡献后的样品贡献的扭矩Ts.在最低频区域,实测扭矩与样品贡献扭矩近似相等,说明样品的贡献占主导,此时测得的复数黏度(红色圆)接近样品稳态黏度4mPas.但是随着频率的增加,实测扭矩大于样品贡献的扭矩且两者差距逐渐增加,在频率小于25rads−1(竖箭头所示)的区域,虽然实测扭矩已经远大于样品的扭矩贡献,即实测的T0/Ts已接近2个数量级(横箭头所示,这与通过公式(8)计算的结果Ta/Ts=Iω2Kσ/(Kγ|G∗|)=IωKσ/(Kγ|η∗|)=95近似相等),经过校正得到的样品扭矩计算的黏度仍然接近4mPas,说明测试结果仍然有效.该例子展示了当前流变仪的技术水平已经臻于成熟:即使在惯量贡献的扭矩占主导的情况下,仍然可以通过仪器校正得到准确的样品扭矩.但是在频率高于25rads−1区域惯量校正开始失效,造成了稳态黏度激增的假象.图9Figure9.FrequencysweepmeasurementontheS4oilsamplewithviscosityof4mPas(CP60-0.5geometry).Inadditiontothecomplexviscosity,themeasuredtotaltorqueT0andthesampletorqueTsobtainedaftertheinertiacorrectionareplottedagainstangularfrequencyωω.Arrowspointtodatapointsat25rads−1(seetext),abovewhichtheinertiacorrectionfails.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)在动态振荡测试中,样品黏弹性引起的相位角应当在0°和90°之间(图8所示),因为90°和0°相位角分别对应纯黏性和纯弹性的扭矩贡献Tv和Te,而惯量产生的相位角为180°.图8中,高频处仪器测试的实测扭矩T0远大于样品测试扭矩Ts,表明仪器加速扭矩Ta在测试T0中占据主导,此时的相位角应接近180°.因此,一旦测试时出现了90°和180°之间的相位角,或者动态测试出现G' ~G"~ω2的结果,即可判定出现了仪器惯量效应[32].为了避免实验测试中的不良数据,仪器惯量造成的扭矩Ta与材料自身产生的扭矩Ts之比Ta/Ts应小于一个极限值(该值与仪器的状态和校正的准确性相关).减少惯量影响的一个行之有效的方法是选择合适的夹具.公式(8)中,与夹具几何尺寸相关的参数为Kσ/KγKσ/Kγ.对于锥板,Kσ/Kγ=3β/(2πR3),因此,减少锥角ββ和增加板半径R均有利于减少惯量影响,而对于平板,Kσ/Kγ=2h/(πR4),因此,减少板间距h和增加板半径R均有利于减少惯量影响,或者选择更轻质的夹具来减少I亦可减少惯量影响.总之,无论锥板或平板,增加R或者选择轻质夹具都是减少惯量影响的有效手段.为了降低仪器和夹具惯量影响,对于单头的应力控制型流变仪,需要定期进行惯量的校正,并在更换夹具时做相应的校正.对于双头的应变控制型的流变仪,使用具有力反向平衡功能的传感器可以极大地抑制惯量带来的误差,其表现虽远超单头的流变仪,但也无法完全消除惯量的影响.因此,需要对具体的实验测试结果进行综合的分析和甄别.3.4测试中常见问题III:样品自身惯量的影响剪切流变仪测试中一个基本假设是流场的单一性,即流场是纯粹的剪切流场,这一假设在高速振荡测试过程中失效[33].即在振荡测试中,流变仪通过夹具迫使样品产生往复运动,使得样品内部产生剪切波,当板(夹具)间距与剪切波波长相当或大于剪切波波长时,样品的自身惯量的影响会使得施加样品的剪切流场偏离纯粹的剪切流场.Schrag给出了在剪切流变测试不受该剪切波干扰的临界条件[34],即板间距需远小于其波长λs,其表达式为:式中ρ是流体的密度,|η∗|=|G∗|/ω是复数黏度的绝对值,其中|G∗|是复数模量的绝对值,δ是相位角.研究表明,在给定的频率范围内选取合理的板间距h是减少样品惯量影响数据误差的关键.以水为例,密度为ρ≈1gcm−3,黏度为η≈10−3Pas,相位角δ≈90°,当频率ω=102rads−1时,可估算出λs≈0.9mm.用平板测试一般要求间距在0.5~1mm,因此无法满足hλs.当使用锥板测试时,板间距最宽的部分可以估算为h=βR,因此,半径为25mm、锥角为1°的锥板,h=0.44mm,同样也无法满足hλs.由公式(9)可知剪切波长λs随着样品黏度的增加而增加,因此,上述问题一般不会在黏度较高的高分子溶液或高分子熔体中出现.图10展示了Lauger等利用双头的MCR系列流变仪(AntonPaar)对牛顿流体S4oil在半径相同(R=30mm),锥角分别为0.5°(红色)、1°(绿色)、2°(蓝色)不同的夹具下的振荡剪切测试,研究了样品惯量对流体相位角的影响[31].该流体在测试范围内为牛顿流体.我们发现样品在低频区域表现牛顿流体性质,相位角均为90°,随着频率的增加,相位角逐渐降低,流体出现了一定的弹性响应,且锥角越大,相位角降低越多(箭头指向).相位角的减少导致了储能模量G' ~ω2的标度区域的出现,该结果非常类似于黏弹流体的松弛末端行为,但其实为样品惯量造成的实验假象.显然,此相位角减少的不同来源于测试夹具的区别而非样品的区别.究其原因,是锥板最外侧的板间距βR(0.5°,1°,2°板分别为0.26,0.52和1.05mm)逐渐逼近于通过公式(9)计算出来的λs≈2.0mm,使得样品惯量造成的实验误差逐渐显现.图10Figure10.Phaseangle(circles)andstorageG' (triangles)andlossmodulusG"(squares)fortheS4oilmeasuredinSMTmodewiththreeconeangles,0.5°(red),1°(green),2°(blue).Thearrowindicatesthedirectionofincreasingtheconeangle.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)3.5测试中常见问题IV:二次流的影响在稳态或瞬态测试中,高剪切速率时,由于流动不稳定性的影响可能导致剪切流场出现失稳,造成二次流的出现[24,35~37],使得剪切流变仪测试中剪切流场单一性的基本假设失效.二次流叠加在剪切流场上,会增加仪器测量的扭矩,导致测试样品的表观黏度突然增加.研究表明,对于不同夹具,均可出现二次流.下面我们将对同轴圆筒、锥板和平板3种夹具的几何流场出现二次流的边界条件进行阐述,并通过实例展示二次流对实验数据的影响.3.5.1同轴圆筒夹具二次流边界条件泰勒给出了牛顿流体在同轴圆筒夹具的测量过程中失稳的临界条件[38~40]:可避免Taylor-Couette涡流出现的稳定区间的泰勒数Ta满足:其中R1和R2分别为同轴圆筒夹具中流体的内径和外径(如图2所示),而同轴圆筒夹具的剪切速率为:γ=ΩKγ≈ΩR1/(R2−R1),由此可以得到避免Taylor流的条件:3.5.2锥板和平板夹具二次流边界条件锥板和平板具有不同于同轴圆筒的边界条件,其产生二次流的一个主要原因是离心作用:即高速转动的板附近的流体产生沿着半径方向向外的速度分量,同时诱发静止板附近的流体向内流动(如图4所示).对于锥板和平板夹具,雷诺数Re可定义为[41]:其中h为特征的板间距(平行板h等于间距,锥板h=βR).Turian等研究表明[41],对于利用锥板和平板测试的牛顿流体,实际扭矩T和理想稳定流场下的扭矩T0之比与雷诺数相关:给定T/T0误差1%,即T/T0=1.01,可以得到一个特征的临界雷诺数Recrit=4,该情况下尚未发生持续的湍流.利用Recrit和剪切速率γ˙=ΩR/h,可以估算锥板和平板稳态剪切的临界条件:据此我们可以根据实验条件和夹具参数计算出不稳定流场的临界条件.从公式(14)可以看出,选择较小h的平行板可以抑制二次流,但h过小的时候,两板间微小的不同轴或不平行都会被放大,影响测试的准确性[42].因此,需要选择合适的板间距.为了更直观地展示牛顿流体的二次流不稳定流场对实验数据的影响,图11是我们利用单头应力控制型流变仪MCR-302(AntonPaar)实测的水在剪切速率扫描实验中的黏度相对剪切速率的图,可以看出,在低剪切速率出现的类似于剪切变稀的现象(蓝色区域)可能由于传感器扭矩低于仪器测试下限(Tmin=0.11~0.25μNm)或者表面张力的影响,而在高剪切速率下(红色区域),剪切增稠的异常现象是由于板的高速转动引发了二次流.图11Figure11.SteadyshearflowmeasurementsofH2Ousingcone-and-platewithdiameterof50mm,thescatteredplotsintheblueregimeareobtainedfromtorquebelowthelow-torquelimit,thethickeningbehaviorintheredregimeisduetosecondaryfloweffect.3.6测试中常见问题V:样品表面张力在使用旋转流变仪测试低黏度的牛顿流体时,表面张力往往会影响到测试结果.很多低黏度流体异常的实验数据都和其表面张力有关[42,43].而表面张力的产生与样品的各向对称程度、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系[32,44~47].为了使读者更加清楚地了解表面张力对流变实验数据的影响,下面我们将分别从样品的各向对称性、样品自身表面张力的大小以及样品自身存在吸附和聚集3种情况阐述表面张力对实验结果的影响.3.6.1样品的各向对称性保证样品的各向对称是流变测试中获得准确实验数据的基础,样品的各向非对称性可能在填充上样时即存在,如过度填充或者填充不足均可造成样品的各向非对称性,各向非对称性也可能在测试过程中产生,如样品的边界在流场下存在一定的形状的波动,或样品不对称的挥发引起样品边缘与板的接触线和接触角的不对称性.Ewoldt等[32,44]研究低黏度样品的剪切流变测试时,发现测试扭矩会受到这些边缘形状变化的影响(如图12所示).对比完全对称的理想条件,非理想情况下接触线、接触角Ψ(s)和半径都发生了明显的变化.将接触线看作闭合曲线,可沿闭合曲线积分得到由表面张力引起的扭矩变化.例如,沿z轴的扭矩Tz可表示为:图12Figure12.(a)Contactlineandinterfaceangle:idealversusnon-idealcases.Inthenon-idealcase,asymmetriesareexaggeratedcomparedtotypicalloadingandcanalsooccurasaresultofoverfilling (b)Contactlineinz=0planerepresentedbyanarbitraryparametriccurve,r–r_(s).(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).公式中,r(s)是半径,Γ(s)是表面张力,t^l,r是闭合曲线的切线矢量.从公式(15)中可知表面张力产生的扭矩与接触线的几何形状、样品的表面张力和界面角均相关.样品填充不足或过量填充都会导致表面张力引起扭矩增加.此外,样品挥发也可导致样品填充不足,是高分子溶液或水凝胶体系流变测试过程中最容易忽略的问题.图13显示了Johnston等[44]研究了随着水分蒸发,样品从填充过度到填充不足过程中扭矩的变化.他们发现,刚开始填充过度会随着水蒸发而缓解,扭矩先减小并保持了一定时间,之后的样品量继续减小导致样品填充不足,接触线断开,此时产生更大的扭矩,然后扭矩会继续保持,直到在更长的时间再次提高.出现此现象的原因是水蒸发会同时导致接触线和接触角的改变,从而增加了样品的各向非对称性.因此,对于溶液体系的测试,需要考虑溶剂挥发、样品填充不足导致表面张力引起的扭矩增加,这些因素会影响测试结果.图13Figure13.Evaporation-inducedcontactlinemigration,whichcausessurfacetensiontorque.Thegeometryisparallelplate(diameter40mm)withconstantvelocityΩΩ=0.01rads−1.Insetimages(viewsfrombelow)illustratethecontactlinesoftheoverfilledandunderfilledcases(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).3.6.2样品本身表面张力大小样品自身的表面张力的不同也可造成测试结果的显著不同.Johnston等[44]讨论了水和正癸烷在稳态剪切测试过程中测试扭矩与剪切速率的依赖关系,虽然两者室温下的黏度近似,分别为1.17和1.57mPas,利用同轴圆筒测量的低剪切速率下的扭矩却大相径庭,这主要源于水和正癸烷表面张力的不同(75和25.3mNm−1),从图14可以看到,相对于正癸烷溶液,具有更高表面张力的水在低剪切速率下显示出由表面张力导致的扭矩平台1μNm,值得注意的是,其中4组水的测试结果表现出该扭矩平台,但仍有2组水的测试结果没有表现出扭矩平台,Johnston等认为这可能与前面3.6.1节讨论的接触线的不确定性有关.图14Figure14.Steadyshearflowwithdifferentsurfacetension(waterandn-Decane)usingtheconcentricdoublegap(DG)geometry(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology)3.6.3大分子聚集对于一些低黏度的蛋白溶液体系,在低剪切速率下的流变测试时,通常需要考虑空气与水界面处形成的蛋白表面膜产生的界面张力和蛋白溶液中蛋白聚集的影响[46,47],表面膜形成和蛋白聚集可导致包括黏度增加、剪切变稀增强和表观屈服应力的出现,这些表面的因素有时会误导研究人员对溶液的整体流动特性的判断.例如,Castellanos和Colby等研究了牛血清蛋白和抗体溶液黏度对剪切速率的依赖性[47].他们发现:不含表面活性剂成分的牛血清蛋白在液-气界面处形成聚集膜,在低剪切速率下出现明显的表观屈服应力和相应的η∼γ˙−1η∼γ˙−1的屈服区域(图15(a)).添加表面活性剂能抑制和延缓蛋白表面膜的产生,从而弱化了屈服区域,但经过较长的等待时间(41天),蛋白聚集导致屈服区域逐渐重新形成(图15(b)).图15Figure15.(a)Increaseofapparentviscosityofsurfactant-freeBSAsolutionsduringtheproteinaggregation.(b)Increaseofviscositywithtime,owingtotheproteinaggregationinthemAbsolutionsevenafterintroductionofthesurfactant.(ReprintedwithpermissionfromRef.[47] Copyright(2014)TheRoyalSocietyofChemistry)3.7测试中常见问题VI:测试习惯如上面所述,3个基本假设都是在比较极端的情况下会失效,如样品刚度足够高,需要考虑仪器和夹具柔量的影响;黏度足够低或者剪切强度足够大,需要考虑仪器夹具惯量和样品惯量的影响以及施加流场是否为纯粹的剪切流场.而在实际流变测试中,也有一些情况满足上述3个基本假设,却得不到准确的测量数据.下面总结了流变测试过程中一些容易忽略的问题.为了避免这些问题,提高流变测试的正确性和准确性,需要建立良好的测试习惯.3.7.1样品的制备:干燥和挥发问题对于聚合物熔体,如果样品干燥不充分时,或者测试过程中暴露在湿度较大的环境中,样品中的微气泡和水分会对测试结果产生显著影响,尤其含有氢键和离子极性组分的聚合物(如离聚物),溶剂(如水)对其流变行为的影响明显.此外,对于水凝胶和溶液体系,测试前和测试过程中需要考虑样品自身溶剂挥发对测试结果的影响,对于溶剂高挥发性的溶液体系这是常见的问题,通常可以使用液封(如用石蜡油密封水溶液)的方法避免溶剂的挥发.图16展示的是Wolff等[48]对聚二甲基硅氧烷树脂(PDMS)在具有气泡(圆)和无气泡(三角)条件下的频率扫描测试,发现损耗模量几乎不受气泡的影响,松弛末端满足G' ' ∼ω1∼ω1标度关系,而储能模量受气泡影响较大,逐渐偏离G' ∼ω2标度关系,这是气泡/样品界面的慢松弛过程导致的.图16Figure16.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforaPDMSsiliconeoilwithandwithoutbubbles(ReprintedwithpermissionfromRef.[48] Copyright(2013)Spring)图17展示了Shabbir等[49]对聚四氢呋喃磺酸锂离聚物(PTMO-Li)在干燥和一定湿度条件下的频率扫描测试,他们发现湿度对离聚物的流变性能有很大影响,储能模量和损耗模量相较干燥条件下下降一个数量级左右,由此可见干燥样品对于流变测试的重要性.图17Figure17.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforPTMO-Liindriedandundriedstates.(ReprintedwithpermissionfromRef.[49] Copyright(2017)SocietyofRheology)3.7.2确定样品的热稳定性在进行流变测试之前,对于不熟悉的聚合物样品,需要进行TGA和DSC测试,了解样品的热稳定性和玻璃化转变温度,以便于测试条件的选择,比如:低温测试时样品接近玻璃态,模量接近109Pa左右,样品较高的模量下突然变化夹具间隙会导致仪器法向力的激增,损坏空气轴承和力传感器;高温测试时,不了解样品热稳定性,测试温度过高会导致样品发生化学交联和降解行为,影响测试结果.通常,对于容易交联的样品,可以采取添加少量稳定剂的办法抑制化学交联,获取准确的实验数据.图18展示了Stadler等[50]对低分子量低密度聚乙烯分别在加入少量稳定剂和不加稳定剂条件下,复数黏度随时间扫描变化,可以看出当时间经过4300s之后,样品黏度突然增加,这主要由于体系中含少量双键的组分发生化学交联导致,而加入少量稳定剂的样品持续到8.24×105s(~9.5天)后,样品才开始降解,说明加少量稳定剂的办法可以有效抑制样品的化学交联.此外,为排除样品在测试过程中发生变化,对测试产生的影响,建议完成所有测试后,再次重复第一步测试,通过数据重复性来考察样品是否在测试过程中发生变化,以保证样品数据的可靠性.图18Figure18.ThermalinstabilityofsamplemLLDPEF18F.Thesamplewithoutstabilizerexceedsthe±5%criterionafter4300sowingtothecrosslinking,whilethesamplewithstabilizerstayswithinthiscriterionfor8.24×105s(≈9.5days).(ReprintedwithpermissionfromRef.[50] Copyright(2014)Springer).3.7.3样品体系是否达到平衡态在测试过程中确保样品体系在测试前是否达到平衡稳态是获取准确数据的前提.例如超高分子量聚乙烯样品,从结晶状态加热到熔体状态后,往往需要较长时间才能达到链充分缠结的平衡态.例如,图19展示了超高分子量聚乙烯样品在加热到160°C熔融后,体系从低缠结状态达到缠结平衡态的过程中储能模量G' 的变化,作者发现,热平衡时间随着合成分子的时间(图中标示),也即分子量增加而增加,对于合成30min的样品,热平衡时间长达约一天之久[51].这种缠结程度低于平衡缠结程度的样品也可以通过在稀溶液中沉降高玻璃化温度的长链高分子(如高于缠结分子量的聚苯乙烯)来制备[52,53].图19Figure19.Buildupofmodulusindisentangledpolymermeltswithtimeofultra-high-molecular-weightpolyethylene.ThetopschemeshowsthemechanismandthebottomfigureshowsthemeasuredstoragemodulusG' (t)againsttime(symbols),whereG' (t)hasbeennormalizedbytheequilibriumplateaumodulusGN0.Curvesarethepredictionsbasedontubetheory.(ReprintedwithpermissionfromRef.[51] Copyright(2019)AmericanChemicalSociety)此外,对于高填充体系、不相容聚合物共混物等极难达到平衡态的体系,常需高速施加预剪切,使体系保持初始态的一致性.需要注意的是,该初始态往往处于非平衡态.3.7.4夹具热膨胀对测试的影响除了前面3.1和3.2节提到夹具柔量和惯量对测试结果的影响,在测试过程中还需要考虑夹具的热膨胀对测试结果的影响,不同材质的夹具具有不同的热膨胀系数.现在很多仪器在输入夹具类型时已经考虑到热膨胀系数.但是很多自制的夹具和可抛弃的夹具在使用之前需要人为地测量热膨胀系数并输入.此外,样品也具有一定的热膨胀系数,因此在测试温度范围很宽时,需要在加热过程中适当增大板间距,在降温过程中适当减少板间距,从而保持样品的填充程度一致.此外,还需考虑控温组件的结构也会对夹具的传热温度梯度造成影响[54],即使是同一个夹具在不同控温组件下的膨胀系数也是不同的,夹具膨胀系数的差异直接会影响设置夹具间距的大小,尤其在设置夹具间距很小的情况下(如锥板),板受热膨胀可能会使两板直接接触,造成法向应力的激增从而损坏空气轴承和力传感器.3.7.5夹具不平行和不同轴对测试的影响保证夹具的平行与同轴也是获取实验数据的关键.随着测试夹具频繁使用,以及不小心跌落,非常容易造成夹具不平行和不同轴,这样会导致仪器校零出现误差以及仪器法向力影响测试结果.因此,在测试中需要注意夹具的正确使用,特别是不要将不使用的夹具立在桌面上或者高处,以防止跌落造成夹具的变形.4.结论与展望本文结合作者多年的流变测试经验,从流场类型和仪器的特征出发,对流变仪进行了简单的分类.重点阐述了旋转流变仪的工作原理,剪切流变测试的假设条件及其失效的情况,和实际测试中一些不良的测试习惯及其导致的结果.简言之,流变仪器测试时,只有当输入或输出的应变或应力为施加在样品上的应变或应力,且流场为纯粹的剪切流场时,测试的结果才是可靠的结果.这些基本前提都是会在一定的测试条件下失效.我们结合一些实验实例,具体解释了这些假设条件失效的情况,以及在实际流变测试中仪器完全满足基本假设的情况下,一些不良测试习惯对测试的影响,具体总结如下:(1)当样品的刚度接近仪器夹具和传感器的刚度时,在样品形变的同时,仪器夹具和传感器也会发生一定的形变,造成样品的真实应变低于仪器设定的应变.此时,准确校正夹具和传感器的扭转柔量对于样品的测试是非常重要的.一般的校正过程中考虑夹具和传感器的柔量(或者刚度)为常数.然而,真实测试中,该柔量也会随着测试条件(如温度)和仪器状态的变化而变化.因此,从实验操作上来讲,更可行的方法就是选择合适的夹具来增加施加在样品上的应变和因仪器柔量消耗的应变之比.(2)当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.因此,在瞬态和动态等具有加速过程的测试中,当样品反馈的实际扭矩较小时,源于仪器和夹具加速度过程中的惯量贡献会影响到测试结果.对于单头的旋转流变仪来说,马达和传感器集成在一边,仪器惯量的影响更大.虽然双头的旋转流变仪具有力反向平衡功能的传感器,可以很大程度上抑制仪器惯量的影响,但是也无法完全消除该影响.由于仪器的惯量影响与夹具和仪器的状态相关,需要对仪器进行定期的惯量校正.(3)在高速振荡测试过程中,样品在往复运动过程中会产生剪切波,当(夹具)板间距与该剪切波波长相当时,样品自身的惯量影响会使得施加样品内部的流场偏离纯粹的剪切流场,造成相位角的变化和相应的测试模量的变化;在高剪切速率时(如稳态或瞬态测试时),流动的不稳定性使剪切流场产生失稳,造成二次流的出现,二次流叠加在剪切流场上会增加仪器测量的扭矩,导致测试中出现“剪切增稠”的假象.因此,给定的频率范围内选取合理的板间距h是减少样品惯量影响和抑制二次流的关键.(4)对于低黏度的牛顿流体,表面张力对实验结果的影响往往会被忽略.表面张力产生的扭矩大小与样品的各项对称性、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系.因此,在低黏度样品测试过程中,建议结合显微工具在线地观测测试过程中样品形状的变化.(5)上述四个方面是在样品模量足够高、黏度足够低或者剪切强度足够大的极端情况下,测试中3个基本假设失效的情形.其实,在实际流变测试中即使仪器完全满足测试需求和基本假设的情况下,流变测试者如果没有养成良好的测试习惯,也会得不到准确的数据.因此,我们总结了一些常见容易忽略的问题,例如样品干燥和挥发、样品自身热稳定性,样品是否达到平衡态,夹具和样品热膨胀、夹具的不平行不同轴等问题.我们针对上述容易忽略的问题进行了阐述,希望有助于流变测试的初学者养成良好的测试习惯,了解这些知识对于维护仪器、保护样品以及获取准确的测试数据都是十分重要的.虽然流变仪器测试过程中会存在上述因素的干扰,但是读者在熟悉流变仪的原理和养成良好的测试习惯的前提下,是很容易判断出实验数据出现问题的“症结”所在,使得流变仪不再成为科研工作中的“黑箱”.最后需要指出,本文关注的测试手段仅限于剪切流场.由于拉伸流场较剪切流场难实现,高分子流变学的实验研究多数在剪切流场下进行.对于加工过程中同等重要的拉伸流场下测试的仪器和研究还在快速的发展之中[15,55~57].笔者计划在后续的综述中探讨拉伸测试的仪器原理和测试技巧.参考文献[1]TadmorZ,GogosCG.PrinciplesofPolymerProcessing.2nded.Hoboken,NewJersey:JohnWiley&Sons,2013[2]PtaszekP.LargeAmplitudeOscillatoryShear(LAOS)measurementandfourier-transformrheology:applicationtofood.In:AhmedJ,PtaszekP,BasuS,eds.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2017.87−123[3]KanedaI.RheologyControlAgentsforCosmetics.RheologyofBiologicalSoftMatter.Tokyo:Springer,2017,295−321[4]EleyRR.JCoatTechnolRes,2019,16(2):263−305doi:10.1007/s11998-019-00187-5[5]AhmedJ,PtaszekP,BasuS.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2016[6]ZhangZ,LiuC,CaoX,GaoL,ChenQ.Macromolecules,2016,49(23):9192−9202doi:10.1021/acs.macromol.6b02017[7]ChenQ,TudrynGJ,ColbyRH.JRheol,2013,57(5):1441−1462doi:10.1122/1.4818868[8]LiuS,WuS,ChenQ.ACSMacroLett,2020,9:917−923doi:10.1021/acsmacrolett.0c00256[9]LarsonRG.TheStructureandRheologyofComplexFluids.NewYork:OxfordUniversityPress,1999[10]MihaiM,HuneaultMA,FavisBD.PolymEngSci,2010,50(3):629−642doi:10.1002/pen.21561[11]AriawanAB,HatzikiriakosSG,GoyalSK,HayH.AdvPolymTechnol:JPolymProcessInst,2001,20(1):1−13[12]LundahlMJ,BertaM,AgoM,StadingM,RojasOJ.EurPolymJ,2018,109:367−378doi:10.1016/j.eurpolymj.2018.10.006[13]LiB,YuW,CaoX,ChenQ.JRheol,2020,64(1):177−190doi:10.1122/1.5134532[14]WatanabeH,MatsumiyaY,ChenQ,YuW.Rheologicalcharacterizationofpolymericliquids.In:MatyjaszewskiK,MöllerM,eds.PolymerScience:AComprehensiveReference.Amsterdam:Elsevier,2012.683−722[15]MarínJMR,HuusomJK,AlvarezNJ,HuangQ,RasmussenHK,BachA,SkovAL,HassagerO.JNon-NewtonFluid,2013,194:14−22doi:10.1016/j.jnnfm.2012.10.007[16]WatanabeH,MatsumiyaY,InoueT.Macromolecules,2002,35(6):2339−2357doi:10.1021/ma011782z[17]YoshidaH,AdachiK,WatanabeH,KotakaT.PolymJ,1989,21(11):863−872doi:10.1295/polymj.21.863[18]TroutonFT.ProcRSocLondon,SerA,1906,77(519):426−440doi:10.1098/rspa.1906.0038[19]LiuC,ZhangJ,ZhangZ,HuangS,ChenQ,ColbyRH.Macromolecules,2020,53(8):3071−3081doi:10.1021/acs.macromol.9b02431[20]ZhangJ,LiuC,ZhaoX,ZhangZ,ChenQ.SoftMatter,2020,16(21):4955−4960doi:10.1039/D0SM00572J[21]BuscallR,McGowanJI,Morton-JonesAJ.JRheol,1993,37(4):621−641doi:10.1122/1.550387[22]BuscallR.JRheol,2010,54(6):1177−1183doi:10.1122/1.3495981[23]BallestaP,PetekidisG,IsaL,PoonW,BesselingR.JRheol,2012,56(5):1005−1037doi:10.1122/1.4719775[24]MagdaJ,LarsonR.JNon-NewtonFluid,1988,30(1):1−19doi:10.1016/0377-0257(88)80014-4[25]CostanzoS,HuangQ,IannirubertoG,MarrucciG,HassagerO,VlassopoulosD.Macromolecules,2016,49(10):3925−3935doi:10.1021/acs.macromol.6b00409[26]LiuCY,YaoM,GarritanoRG,FranckAJ,BaillyC.RheolActa,2011,50(5−6):537doi:10.1007/s00397-011-0560-3[27]PogodinaN,NowakM,LäugerJ,KleinC,WilhelmM,FriedrichC.JRheol,2011,55(2):241−256doi:10.1122/1.3528651[28]GottliebM,MacoskoC.RheolActa,1982,21(1):90−94doi:10.1007/BF01520709[29]HutchesonS,McKennaG.JChemPhys,2008,129(7):074502doi:10.1063/1.2965528[30]KriegerIM.JRheol,1990,34(4):471−483doi:10.1122/1.550138[31]LäugerJ,StettinH.JRheol,2016,60(3):393−406doi:10.1122/1.4944512[32]EwoldtRH,JohnstonMT,CarettaLM.Experimentalchallengesofshearrheology:howtoavoidbaddata.ComplexFluidsInBiologicalSystems.In:SpagnolieSE,ed.ComplexFluidsinBiologicalSystems.NewYork:Springer,2015.207−241[33]YosickJA,GiacominJA,StewartWE,DingF.RheolActa,1998,37(4):365−373doi:10.1007/s003970050123[34]SchragJL.TransactionsoftheSocietyofRheology,1977,21(3):399−413doi:10.1122/1.549445[35]ShaqfehES.AnnuRevFluidMech,1996,28(1):129−185doi:10.1146/annurev.fl.28.010196.001021[36]McKinleyGH,PakdelP,ÖztekinA.JNon-NewtonFluid,1996,67:19−47doi:10.1016/S0377-0257(96)01453-X[37]PakdelP,McKinleyGH.PhysRevLett,1996,77(12):2459doi:10.1103/PhysRevLett.77.2459[38]ChandrasekharS.HydromagnetsandHydrodynamicsStability.NewYork:DoverPublishing,1981[39]LarsonRG.RheolActa,1992,31(3):213−263doi:10.1007/BF00366504[40]TaylorGI.PhilosTransRSocLondon,SerA,1923,223(605-615):289−343doi:10.1098/rsta.1923.0008[41]TurianRM.IndEngChemFundam,1972,11(3):361−368doi:10.1021/i160043a014[42]Andablo-ReyesE,VicenteJd,Hidalgo-AlvarezR.JRheol,2011,55(5):981−986doi:10.1122/1.3606633[43]GriffithsD,WaltersK.JFluidMech,1970,42(2):379−399doi:10.1017/S0022112070001337[44]JohnstonMT,EwoldtRH.JRheol,2013,57(6):1515−1532doi:10.1122/1.4819914[45]ShipmanRW,DennMM,KeuningsR.IndEngChemRes,1991,30(5):918−922doi:10.1021/ie00053a014[46]SharmaV,JaishankarA,WangYC,McKinleyGH.SoftMatter,2011,7(11):5150−5160doi:10.1039/c0sm01312a[47]CastellanosMM,PathakJA,ColbyRH.SoftMatter,2014,10(1):122−131doi:10.1039/C3SM51994E[48]WolffF,MünstedtH.RheolActa,2013,52(4):287−289doi:10.1007/s00397-013-0687-5[49]ShabbirA,HuangQ,BaezaGP,VlassopoulosD,ChenQ,ColbyRH,AlvarezNJ,HassagerO.JRheol,2017,61(6):1279−1289doi:10.1122/1.4998158[50]StadlerFJ.Korea-AustRheolJ,2014,26(3):277−291doi:10.1007/s13367-014-0032-2[51]HawkeLGD,RomanoD,RastogiS.Macromolecules,2019,52(22):8849−8866doi:10.1021/acs.macromol.9b01152[52]WangX,TaoF,SunP,ZhouD,WangZ,GuQ,HuJ,XueG.Macromolecules,2007,40(14):4736−4739doi:10.1021/ma0700025[53]TengC,GaoY,WangX,JiangW,ZhangC,WangR,ZhouD,XueG.Macromolecules,2012,45(16):6648−6651doi:10.1021/ma300885w[54]LippitsDR,RastogiS,TalebiS,BaillyC.Macromolecules,2006,39(26):8882−8885doi:10.1021/ma062284z[55]StadlerFJ,StillT,FytasG,BaillyC.Macromolecules,2010,43(18):7771−7778doi:10.1021/ma101028b[56]LingGH,WangY,WeissR.Macromolecules,2012,45(1):481−490doi:10.1021/ma201854w[57]ScherzLF,CostanzoS,HuangQ,SchlüterAD,VlassopoulosD.Macromolecules,2017,50(13):5176−5187doi:10.1021/acs.macromol.7b00747
  • 中国第一台界面剪切流变仪ISR400在中石油落户
    2008年3月24日,中国第一台界面剪切流变仪ISR400在中国石油天然气股份有限公司&中国科学院 廊坊分院渗流流体力学研究所正式落户。制造商芬兰KSV公司专门派遣工程师来华进行培训。
  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。2.简单明了的数据解释和物理原理。3.使用波动量来量化粉体的粘结力。4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。6.理想的设计保证了稳定性和长使用寿命。7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。粉体剪切性能分析仪 Granudrum
  • 自然资源部发布 《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等多项行业标准报批稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等10项行业标准,并于2024年1月18日予以公示。其中4项标准涉及在线监测设备、便携设备等。一、《海洋饱和软黏土强度的测定 微型十字板剪切仪法》(报批稿)规定了微型十字板剪切仪测定饱和软黏土不排水抗剪强度的仪器及组件要求、仪器标定方法、试验步骤与要求和试验数据采集与处理方法等,适用于海洋原状或重塑饱和软黏土的不排水抗剪强度和灵敏度的室内或野外现场测定。二、《海上油气生产设施水文气象观测系统建设规范规范》(报批稿)规定了海上油气生产设施水文气象观测系统的选址、观测要素、系统组成、仪器安装、试运行管理、接收岸站的要求,适用于在海上油气生产设施上新建或升级改造的水文气象观测系统。海上油气生产设施水文气象观测系统的观测要素主要包括以下内容:a)水文要素应包括但不限于:流向、流速、水位、水温、波向、波高、波周期、潮高等;b)气象要素应包括但不限于:风向、风速、气温、气压、相对湿度、能见度等。海上油气生产设施水文气象观测系统主要包括:数据采集器、定位装置、方位传感器、风速风向传感器、气温和湿度传感器、气压传感器、波潮仪、能见度传感器、流速流向传感器、水温和盐度传感器、卫星通信系统、供电系统、防雷系统等。三、《海洋岸(岛)基水质自动监测站在线运行维护技术要求》(报批稿)规定了海洋岸(岛)基水质自动监测站在线运行维护管理基本要求、检查维护、质量保证与质量控制及运行维护记录等内容,适用于海洋岸(岛)基水质自动监测站在线运行维护管理工作。海洋岸(岛)基水质自动监测站用于海岸(岛)边海洋水质监测,通过系统集成技术、数据采集与传输技术及通讯网络集成的综合性监测系统。主要由站房、分析单元、采配水单元、控制单元、通讯单元和辅助设备等组成,其核心设备为在线分析仪器,可以定期或长期、在线、自动、连续地进行采集、处理、存储和传输监测数据。四、《走航式温盐深剖面测量仪》(报批稿)本文件规定了走航式温盐深剖面测量仪的要求、检验方法、检验规则以及标注、包装、运输和贮存。本文件适用于走航式温盐深剖面测量仪的设计、生产、试验和检验。走航式温盐深剖面测量仪以海上移动载体为使用平台,在规定航速范围内,利用可回收的测量探头进行海水温度、电导率和压力剖面测量的仪器。
  • 中国城市污泥污染严重 污泥处理成第二污染
    “京城环保第一大案”让污泥处置再次进入人们的视线。“中国城市污泥已造成二次污染”,北京大学环境科学与工程学院教授刘阳生和中国科学院地理科学与资源研究所环境修复中心主任陈同斌等专家都表达了相同的忧虑。  污泥如何才能减量化、无害化和资源化妥善处理?中国的污泥处理有何特殊之处?  近日,在由北京大学环境科学与工程学院主办的中韩活性污泥处理共同技术开发研讨会上,中韩专家各抒己见。专家认为,从城市污泥中提取氨基酸微肥可以实现污泥中部分组分的资源化,是污泥资源化方面的一项重要尝试。但是从固废的减量化方面来看效果不理想,从污泥中提取的氨基酸毕竟仅占污泥的一小部分,处理后还会遗留大量固体废物,需要进一步处置……  “本周聚焦”关注“污泥的中国式处理”。  中国城市污泥已造成二次污染  10月22日,“京城环保第一大案”终于尘埃落定。北京市门头沟法院作出一审判决,承包北京市清河、酒仙桥污水处理厂污泥无害化处置的北京环兴园环保科技有限公司法人何涛等人均被法院认定犯重大环境污染罪,何涛被判有期徒刑3年6个月,罚金3万元,刘永祥和蒋小兵被处以缓刑,吴建华和刘书力则被免予刑事处罚。  此前,何涛等人将北京市清河、酒仙桥污水处理厂6500吨含有多种重金属和大量细菌的污泥,倒进北京地下水水源保护区的永定河旧河床沙坑内,造成重大污染事故,损失高达上亿元。  污泥处置再一次进入人们的视线——鼎沸京城的“京城环保第一大案”是偶然还是必然?至少30多个城市先后爆发过污泥污染事件,广州《万吨污泥埋进林场》、《深圳污泥坑管涌威胁自然生态》等报道一再见诸媒体。由此引发出的我国污泥处理处置面临哪些问题?  污泥的破解之道又是什么?!  污水处理厂遭遇污泥尴尬  上世纪90年代,中国40个城市有78个污水处理厂。  1995年,污水处理厂增加到122个。  2000年,超过400个污水处理厂如雨后春笋般冒出来。  今年6月,这个数字变成惊人的2389个。  污水处理量增加后,随之而来的是产生的大量污泥。中韩活性污泥处理共同技术开发研讨会上,北京大学环境科学与工程学院教授、北京市固体废物重点实验室常务副主任刘阳生说:“之前韩国环境产业技术部全炯律介绍韩国2008年一年产湿污泥28.2万吨,而中国目前一年就产干污泥900万吨,我很羡慕他们。”中国干污泥占总垃圾量的0.3%,而且每年以10%以上的速度递增。  湿污泥含水量高达80% 而且有机质含量高,很容易发臭。本来城市污泥是很好的农业肥料,氮、磷、钾含量远高于农家肥,可惜污泥含有寄生虫、病菌等,而且臭味问题很突出,并不太适合直接做肥料。  这让污泥处置陷入进退两难的困境。  垃圾填埋场不接受污泥  “垃圾填埋场一般很不喜欢污泥。”中国科学院地理科学与资源研究所环境修复中心主任陈同斌给《科学时报》记者一口气列举了好几条理由:首先,脱水后的污泥黏稠得就像稀汤一样,不能堆积,而且影响垃圾填埋场的机械作业,缩短垃圾填埋场的使用寿命。  2007年建设部出台的《城镇污水处理厂污泥处置—混合填埋泥质》标准和2008年环境保护部出台的《生活垃圾填埋污染控制标准(GB16889—2008)》中都明确规定,污泥混合填埋含水率应小于60%。尽管如此,污水处理厂的脱水污泥含水率仍普遍达80%左右。  其次,污泥很容易堵塞垃圾填埋场的渗沥管道,影响其排水系统的正常运行。  再次,有机物含量高的污泥散发恶臭,还会产生甲烷等温室气体,影响垃圾填埋场的稳定性,延长封场的时间。污泥引发的恶臭招致居民抗议,影响社会安定。  “深圳黄涌的垃圾填埋场、广州垃圾填埋场,这些接受污泥的垃圾填埋场,很快就废了,而且还出现过垃圾填埋场垮塌事件。”陈同斌展示了很多调查图片,蚊蝇成堆,臭不堪言。  近年三峡库区的“污泥填埋危机”就是突出反映。成千上万吨没有处置的污泥成为影响三峡库区水环境安全的最大污染源,数额庞大的污泥处理处置费用成为污水厂正常运行的沉重负担,直接影响三峡库区污水的有效治理。有人耸人听闻夸张,如果资金再不到位,或者技术上处理不当,三峡水库将成为一个“活性污泥储存库”。  刘阳生也展示了他到某污水处理厂调查的图片,黑漆漆的污泥堆得像小山一样,等待着雨水的冲刷。“一到夏天,庞各庄这个污泥堆肥厂蚊虫苍蝇铺天盖地,每年光灭蚊就需要农药三四吨。”也就是说,没有及时处理的污泥可能对环境造成二次污染。  曾在湖南省益阳市农药厂工作过三年的刘阳生甚至为这个堆肥厂出谋划策,要杀死这些蚊虫苍蝇,可能要三四种农药联合发力,才能奏效。  刘阳生的调查还显示,北京某污水处理厂的污泥汞超标。但北京没有排放含汞废物企业,究其原因,可能是生活源的含汞废物进入了污水系统。他拍摄的照片显示了全国污泥乱倒乱放的可怕现状,北京市的污泥已流入河北廊坊等地。  中国“重水轻泥”  “中国做污水处理的专家不计其数,但做污泥处置的屈指可数,更何况,做污泥处置的队伍中,专业的又有几人呢?”陈同斌毫不客气地指出,中国的现状就是典型的“重水轻泥”。  主要还是由于政府投资偏颇造成的。“处理1万吨城市污水,大约产生8~10吨污泥,污泥与污水的产生比例是万分之一。但是‘十一五’期间,污泥处理设施的投资很少,少了一大截”。  在国外,污水处理厂污泥处理设施的投资一般占污水处理设施投资的40%~60%。  陈同斌介绍说,现有污水厂很少有符合国家标准的污泥处置设施。污泥的安全处置率小于10%,未经无害化处理的污泥随意乱丢现象严重。过去由于不重视污泥无害化处理问题,加之存在缺少投资和技术不过关等多方面原因,东部某市、河北等省市的堆肥设备闲置,厂区空无一人。甚至投资巨大的中部某省污泥堆肥厂被关闭。污泥问题已成为制约污水行业发展的瓶颈。  当然,这也有历史原因。“需求决定技术。因为中国近年才加快城市化进程,兴起冲水马桶等,之前一直以旱厕为主,所以这方面的技术没有跟上。而欧美发达国家不一样,他们使用冲水马桶的时间较长,对污水和处理污泥的问题重视得更早一些。”陈同斌表示。  “污泥和污水处理同等重要,如果污泥不妥善处置,就像污水不经处理直接排放一样。解决不好污泥的问题就不可能从根本上实现水环境的改善!”陈同斌呼吁政府部门、更多的专家、污水处理厂都来关注污泥的处置。中国水协排水专业委员会理事长杨向平、中国人民大学环境学院副院长王洪臣教授等人认为,“治水不治泥,等于未治水”。  韩国镜鉴:治污不可忽视畜禽养殖业  人们对环境污染问题的关注,常常聚焦于能够直观感受到的大气污染、水污染、噪声污染、光污染和固体废弃物污染等,而土地污染则因其隐蔽性而被称作“看不见的污染”。  与此同时,从污染源的角度来看,人们习惯于紧盯高排污的工矿企业、建筑垃圾及城市等,而畜禽养殖业则似乎被忽略。  而现实情况却是,最易被人忽视的土地污染与想象中“田园牧歌”式的畜禽养殖业以难以忽视的方式联系在一起,成为污染的一大重灾区。  畜禽粪便藏隐患  近日,中科院南京土壤所教授骆永明在参加“污染场地修复:政策、技术与融资机制”国际研讨会时介绍说,蔬菜、畜禽养殖基地的土壤受到污染,其出处是动物粪便,“由于现在很多畜禽饲料中含有重金属,例如铜、镉等,这些粪便被用于菜地上,蔬菜基地的土壤同时也会被污染”。  值得注意的是,据《扬子晚报》报道,南京土壤所一项持续2年的调查显示,畜禽的粪便还含有抗生素,而且抗生素种类多达十几种。  据介绍,江苏污染土壤调查只是全国污染土壤调查的一部分。畜禽养殖业带来的污染问题,之前已经引起了国家的重视。  今年年初,农业部在介绍第一次全国污染源普查的基本情况和普查成果时曾指出,在农业源污染中,比较突出的是畜禽养殖业污染问题,畜禽养殖业的化学需氧量、总氮和总磷分别占农业源的96%、38%和56%。  畜禽粪便与污泥如出一辙  11月21日,“中—韩活性污泥处理共同技术开发研讨会”在北京大学举行,来自韩国环境产业技术部水质政策处的全炯律介绍了韩国畜禽养殖业污染物排放及治理现状。  污泥处理技术的会议,为何讲起了畜禽粪便?  参加研讨会的北京大学环境科学与工程学院教授刘阳生介绍了污泥的“三高”特点,一是含水率达80%之高,二是有机物含量非常高,很容易发臭,三是重金属含量较高。  而据全炯律介绍,由于在畜禽饲料中添加了大量钙、磷等矿物元素以及铜、锌、锰等微量元素,同时含有浓度极高的有机物质,使得畜禽粪便具有与污泥几乎相同的组成特征。  这些特征,恰是畜禽粪便和污泥同样难以治理的根本原因。全炯律说,畜禽粪便所含的氨、磷浓度非常高,污染负荷量很大,铜、锌、锰等微量元素随畜禽粪便排出后若未经处理,就会引发重金属污染。  同时,畜禽粪便若不经处理就直接用于堆肥,进入土壤的酸性化畜禽粪便会分解成氨乙烯醇、甲基硫醚、二甲胺等恶臭气体。这与污泥露天堆放带来的恶臭如出一辙。  韩国绝大部分畜禽粪便被资源化利用  高速增长的集约化、规模化、专业化畜禽养殖业所带来的环境风险,似乎已经超过了人们的预期和想象。  研讨会上,全炯律给出了一份韩国国立环境科学院发布的2007年度全国水质污染调查结果,韩国畜禽粪便产量占全国污水、废水总量的比例仅为0.8%,可是其污染物负荷量则高达23.6%,超过了来自生活污水和产业废水的污染负荷。  对于畜禽养殖业污染排放的治理,由韩国环境部、农林水产食品部、农振厅、国土部等中央部委协作承担起畜禽粪便管理、肥料管理、治理技术和海洋排放等细分职责。并按照养殖规模,采取主体不同的自行处理、公共处理和个别处理等层级化处理方式。  从处理技术手段来看,主要有资源化、净化、海洋排出等处理办法。据介绍,2008年韩国85%的畜禽粪便得到了资源化利用,其中,用作堆肥的占79.8%,另有6.3%用于产生沼液。除此,还可利用较为复杂的工艺流程和设施产生生物燃气用于发电。  地方政府修建的公共处理设施,则采用厌氧、缺氧、好氧组合工艺流程,以达到更高的排放标准。“据我所知,目前韩国为公共处理设施设定的排放标准是最为严格的。”全炯律说。同时,他也指出公共处理存在运转率低,处理效率低等问题。  全炯律介绍说,为了应对当前畜禽污染物排放的现状,韩国将从扩大修建并强化管理公共处理设施、改善畜禽粪便管理制度、加强净化处理设施管理等方面入手,进行一系列的管理政策调整。值得一提的是,《家畜粪尿法》于2009年2月提交韩国国会。  我国已将畜禽养殖业污染防治提上日程。2010年6月,农业部办公厅发布《关于进一步加强重点流域农业面源污染防治工作的意见》。意见强调,“在第一次全国污染源普查农业源普查结果的基础上,摸清农业源污染的组成、发生特征和影响因素,全面掌握农业面源污染状况,提出农业面源污染防治对策。”  污泥的中国式处理  污泥产生量的与日俱增与污泥处理能力的严重不足、处理手段的严重落后形成尖锐的矛盾,大量的湿污泥随意外运、简单填埋或堆放,致使许多城市“污泥围城”。  污泥处理问题已经成为我们无法回避的城市环境问题。  困境:污泥填埋、堆肥、焚烧还是脱水?  污泥处置无非是填埋、堆肥、焚烧几种。刘阳生一一介绍了各种处置方式的利弊。  城市污泥填埋优点是投资少、容量大、见效快、处置成本低。对前期的污泥处理技术要求较低,一般进行消化减容或让其自然干化即可。但是原生污泥不能直接与垃圾混合填埋 虽然国家新的填埋标准允许在污泥含水率低于60%的情况下与生活垃圾混合填埋,但是将导致填埋场渗滤液收集系统的堵塞,以及渗滤液中重金属的进一步升高。因此,填埋场一般不愿意接受城市污泥。  堆肥方式呢?堆肥可以利用污泥中的有机质改善土壤物理结构,增加土壤氮磷含量,实现资源利用。但是氨、硫化氢等恶臭难以控制,重金属含量一般超标,肥效较低,受销售半径和季节的影响。因此,城市污泥堆肥一般适合于重金属含量满足要求、且具备应用市场的区域。“堆肥方式要慎重,污泥里也有病菌、寄生虫、毒性有机物,一定要经过严格的无害化处理才能利用,否则存在环境污染风险。”刘阳生建议说,堆肥处置的规模应该由其应用市场的规模来决定,而不是由污泥的实际产生量来决定。  相对而言,刘阳生比较肯定城市污泥焚烧,认为是“彻底的无害化、最大程度的减量化”。该技术在德国应用很广,但中国污泥焚烧的成本达到六七百元1吨,关键问题是会产生二 英,“前不久全国形成反对大浪潮,我也被拉去到处讲课,包括给市长们科普”,他坦陈目前这种方式在我国现阶段很难推广。  还有一种选择是脱水。污泥脱水是污泥处理处置的前提。无论是板框压滤机、带式脱水机还是离心脱水机,处理后的污泥含水率仍有百分之七八十。1吨80%含水率的污泥其固体含量为20%,要脱出200公斤的水分才能成为75%含水率的污泥。刘阳生算了一笔账,如果采用热能蒸发的方法需要消耗25公斤煤或者18.3立方米的天然气,能耗很高,不太可取。  曙光:从城市污泥中提取氨基酸微肥  天然气干化、高温蒸汽干化、尾气余热干化、太阳能干化、石灰干化,刘阳生介绍了这5种城市污泥干化技术。“这5种干化技术各有所长,也有所短,我都曾参与过技术评审”e。  每吨湿污泥利用天然气干化的成本至少为412元,经过天然气干化后的污泥可以进行焚烧处理,或者进入水泥窑处置。  高温蒸汽干化可以将污泥脱水到含水率40%~50%,但在污泥高温蒸汽处理过程中产生的大量废水中溶解了原始污泥中的有机污染物,如果这部分污染物又回到污水处理系统,是否意味着一种无休止的污染物循环处理?脱水后的污泥其热值是否适合于焚烧处理?其有机质含量是否适合于堆肥处理?残余污泥该如何处置呢?  刘阳生也透露说,他们独立开发了制备氨基酸微肥技术,这或许能给污水处理厂提供一条生财之道,能够自己养活自己,而不再是摆设,不再需要向政府要钱。  具体而言,就是将剩余污泥经酸化、水解以及离子交换等工艺过程,得到氨基酸含量为90%的氨基酸盐。氨基酸盐既有农药杀虫作用,又有肥料作用。10吨干污泥能得到1吨氨基酸微肥。再从氨基酸微肥衍生出氨基酸铜等多种氨基酸药肥产品。实验表明,污水处理效果较好。  “从城市污泥中提取氨基酸微肥,污泥中的重金属能提供植物所需要的微量元素,细菌蛋白质正好是植物所需要的氨基酸,残余污泥制作成了污水处理需要的生物陶粒,一举多得,能实现污泥的减量化、无害化和资源化。”刘阳生表示。  主流:生物处理应主导城市污泥处理  “北大的老师也来关注污泥的处理,这很好,但我认为从城市污泥中提取氨基酸微肥可以实现污泥的资源化利用,10吨干污泥能得到1吨氨基酸微肥,但是从固废的减量化方面来看效果不理想,从污泥中提取的氨基酸毕竟仅占污泥的一小部分,处理后还会遗留大量固体废物,需要进一步处置。生物处理应主导城市污泥处理,这也是当下的国际主流。”陈同斌向《科学时报》记者重点介绍了基于实时在线监测的智能控制工艺(CTB)及其工程应用。  “恶臭控制是污泥处理的关键”。污泥堆肥的臭气问题可以借助从工艺角度控制出其产生的源头,并辅以末端的生物除臭方法来解决。  例如在秦皇岛的工程中,通过在国际上率先采用温度—氧气的实时在线监测系统,及时反馈调控发酵过程中的温度和氧气,促进嗜高温微生物的快速生长和繁殖,并保证发酵过程的氧气供应,从而抑制硫化氢等臭气的产生 此外,还使用了生物除臭装置作为控制臭气排放的辅助手段不但很好地解决了臭气问题,还做到了显著节能和降低除臭成本的效果。该技术先后被科技部、国家发改委、工信部等6个部委和北京市评选为“国家重点新产品”、“国家鼓励发展的重大环保技术装备”、“北京市自主创新产品”、“北京市2010年节能节水减排技术推荐目录”等。  陈同斌说:“臭气污染问题之所以突出,是因为没有考虑除臭问题,或缺乏低成本的臭气控制手段。我们与北京中科博联环境工程有限公司合作研发出一种新的智能控制工艺(CTB),通过合理曝气来抑制臭气的产生。不能等臭气产生了再去除臭,应该在源头控制臭气的产生。我们先将污泥预破碎,把秸秆、锯末和腐熟料充分混匀到污泥里面,让它静态发酵,通过自动曝气系统调控氧气,防止堆体厌氧,调理堆体结构,便于及时补充氧气,匀翻后熟,鼓风曝气,智能控制引风生物除臭,废气完全可以达标排放。”  臭气的主要成分是硫化氢,而硫化氢的释放主要集中在堆肥前期。必须要掌握好硫化氢和氧气的关系。在工程上,还专门设置了混料车间,避免污泥长时间储存。另外,装置了在线监测和智能控制系统,通过智能监控实现高效、低耗的生物除臭。  一整套工艺下来,秦皇岛项目的车间臭气严格控制在0.08ppm,一般是0.2ppm。“这都是第三方监测,天津环科院恶臭物质监测重点实验室现场取样监测的结果。”陈同斌对监测结果很满意,“既不影响操作人员的健康,除臭成本和能耗降低80%以上,不招蚊蝇,降低对设备的腐蚀性,延长使用寿命,不靠翻抛供氧,避免翻抛导致大量产生粉尘。而且发酵时间20天,缩短67%,在-25℃的低温下也能稳定运行。”陈同斌列举了CTB智能控制工艺的诸多优点。“就像酿酒一样,虽然大家都认为是一项很传统的古老技术,但是如果一批酒出来是52度,另一批酒出来是48度,说明控制工艺还不到位。我们就是要让每批污泥发酵时间都严格控制在20天,否则就占地,现在城市用地多紧张啊,而且耽误时间。”陈同斌说。  CTB智能控制工艺的第一个工程应用是2002年的漯河污水处理厂(2万吨),从源头控制臭气产生,没有除臭设施。“一个工艺,既要具备技术可行性,也要经济合理性,才有生存空间!”陈同斌说。他最为得意的是去年4月刚竣工的秦皇岛市污泥生物堆肥工程,技术上从堆肥进而升级为制肥,规模为日处理量200吨,运行成本80元/吨,政府投资4950万元。  “毫不夸张地说,秦皇岛市绿港污泥处理厂已成为中国污泥处理人的朝拜圣地!我也陪同国际水协会(IWA)污泥管理专业委员会原主任李笃忠博士专程去参观过。”采访时,陈同斌的电话响起,这个区号为0335的电话是秦皇岛污泥处理厂的马达厂长打来的。他半是抱怨,半是骄傲,“又有美国的团队前来参观、学习。我们的污泥工程建成后,接待任务很大,接待费超支很多,你们应该补偿一下”。  陈同斌也介绍了上海松江污泥生物处理工程,“上海水务局立志把这个工程做成最严格控制臭气的污泥发酵处理工程,一楼处理污泥,二楼喝咖啡,这该多好!”  陈同斌乐观地估计,国家会在“十二五”期间加大对污泥行业的扶持力度,通过政策出台、技术标准制定、资金支持等多途径促进污泥处理处置整个产业链的发展。  跨国技术合作促污泥脱水走向低碳  中国目前每年产生的干污泥达900万吨,而其含水率则普遍高达80%。  在“中—韩活性污泥处理共同技术开发研讨会”上,北京大学环境科学与工程学院教授刘阳生介绍了中国污泥处理的现状。污泥的最终处置,基本采用填埋、堆肥、焚化等几种方式,以力图实现污泥的减量化、无害化和资源化。  俗话说“拖泥带水”,不论采取何种方式,脱水都是污泥处理处置的必要前提。然而想办法从污泥中尽可能“榨出水分”却也并非易事。  刘阳生举例说,1吨80%含水率的污泥,要脱出200千克水分才能成为75%含水率的污泥,而采用热能蒸发的方法,就需要消耗25千克煤,或者18.3立方米天然气。  除了采用天然气干化、蒸汽干化、石灰干化等主要干化技术,以使得污泥最终能够用于填埋或焚烧,另一种常用的脱水方式,便是利用脱水机进行处理。主要的污泥脱水设施有:板框压滤机、带式脱水机和离心脱水机。因需要与浓缩池配合使用,这些设施常常固定建设在污泥处理场,且多有耗能量高、噪声大、占用空间大等弊端。  而通过微生物高温发酵蒸发水分的生物干化,主要是利用微生物分解有机质的过程中释放的生物能来完成蒸发脱水的过程,是一条前景看好的污泥深度脱水途径。这一过程不需要消耗化石燃料,因此能耗和处理成本较低,而且可以显著减少碳排放,如将污泥发酵产品用于草皮种植,不仅不会产生碳排放,而且每吨污泥固定650 公斤的碳。秦皇岛污泥生物干化工程就是一个运行效果的大型示范工程。  2008年,北京大学环境科学与工程学院与韩国ARK(株)股份有限公司展开合作,共同开发利用螺旋压榨技术的“移动式污泥脱水机”。两年内,分别在河北保定污水处理厂、深圳观澜污水处理厂和南山污水处理厂进行试验测试。在保定的测试结果显示,脱水滤饼含水率可达70%至65%。  据ARK公司员工朴允成介绍,他们采用了污泥处理方式发展的一种新变化,就是将污泥通过水与高分子聚合体冲淡形成的凝聚剂,加工为易于机器处理的絮状物。  除此,据ARK公司介绍,这种新型的脱水机除了具有安装所需空间小,脱水效率高等优势,更重要的在于消耗更少的电量、降低二氧化碳排放。  朴允成认为,使用脱水设备使得污泥饼含水率降低以增加最终处理效率、资源化利用、防止污泥二次污染、发展污泥低排放系统,这些都是未来污泥处理的主流方向。  因此在ARK公司看来,随着中国环境标准的强化、相关法律法规的出台,中国必然需要配备更多的污泥处理装置。  中韩合作项目的中方负责人、北京大学环境科学与工程学院教授栾胜基希望,双方的合作项目能够在快速城市化发展过程中的农村和城郊地区得到应用,进行分散式生活污水的处理,并提高污泥脱水率。
  • 新款SmartPave 92动态剪切流变仪——安东帕为您沥青检测铺平道路
    安东帕为沥青、柏油行业及应用量身定制高质量的解决方案。安东帕提供多种产品线的综合解决方案,ProveTec系列产品在石油石化分析领域有多年经验,拥有软化点测试仪、弗拉斯脆点测试仪、数字延度仪等产品,结合密度计、旋转流变仪等多达9种仪器,为您提供测量21种参数的可能并符合36项标准,测量柏油组成和成分的粘度、形变和流动特性、后续跟踪分析的消解柏油样品、软化点、渗透力、延展性、拉伸性能、脆点等。 2017年,安东帕隆重推出全新的SmartPave 92动态剪切流变仪。SmartPave 92可以满足实验室对于沥青结合料以及混合料的检测和质控的需要。如同SmartPave 102,这一新产品基于安东帕成功的模块化智能流变仪技术,确保您获得最精确和最稳定的测量结果。 SmartPave 92采用帕尔贴温控系统对沥青样品进行精确的温度控制,从而可以按照各种行业标准进行结合料和混合料的测试,符合的标准包括AASHTO T315, AASHTO T350, AASHTO TP101, ASTM D7175, ASTM D7405, DIN EN16659,和DIN EN14770。 同时,SmartPave92流变仪可以使用同心圆筒帕尔帖温控测量系统,替代旋转粘度计,进行符合AASHTO T316, ASTM D4402 和 DIN EN13302标准的黏度测试。 SmartPave 92 的优势1.RheoCompass软件提供功能强大,又易于上手的测试模板,手把手协助您展开对于沥青的测试2. 独特的环形TruRay光源让您更清楚的观测样品和测量区域,确保正确的样品填充量3. 使用快速连接器,单手即可方便快捷地安装或更换测试夹具,无需使用额外的工具4. ToolmasterTM自动识别功能,快速自动识别测量夹具和温控系统的型号并设置参数
  • 实现精准的基因剪切 中国科研人员开发出新型“基因剪刀”载体
    p  新华社华盛顿4月6日电(记者 周舟)来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。/pp  被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。/pp  论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。/pp  据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于strong这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切/strong。研究显示,strong这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。/strong/pp  宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。/p
  • 重庆渝水环保科技有限公司2.93亿元采购COD测定仪,污泥检测仪,COD消解仪
    基本信息 关键内容: COD测定仪,污泥检测仪,COD消解仪 开标时间: null 采购金额: 2.93亿元 采购单位: 重庆渝水环保科技有限公司 采购联系人: 雷老师 采购联系方式: 立即查看 招标代理机构: 重庆水务集团公用工程咨询有限公司 代理联系人: 崔畅 代理联系方式: 立即查看 详细信息 重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次)项目公告 重庆市-江北区 状态:公告 更新时间: 2022-04-15 重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次)项目公告 发布日期:2022-04-15 重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次) 比选公告 1、比选条件 本招标项目重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次)(项目名称),招标人为重庆渝水环保科技有限公司。招标项目资金自筹(资金来源),出资比例为100%。项目已具备招标条件。现对该项目进行公开比选,诚邀有兴趣的潜在投标人参与投标。2、项目概况与比选范围 2.1 项目概况 昆明主城污泥处理处置厂,项目位于富民工业园区昆明环保科技产业园,占地63.5亩,项目沿用原环湖东路项目设备、设计规模及工艺,主体工艺采用“高负荷厌氧消化+脱水+热干化”,污泥处理干化产品达到75%DS以上,设计日处理湿污泥500吨(含水率80%),总概算投资2.93亿元。干污泥产品外运作为矿坑回填料、垃圾焚烧厂掺烧原料、建材利用或作为绿化介质土使用。 昆明市污水处理厂污泥处理处置项目配套水处理一期项目(以下简称污水处理项目)位于云南省昆明市富民县环保科技园永定街道办北规划工业附属设施用地内,占地面积约30亩,主要用于处理昆明主城污水处理厂污泥处理处置项目搬迁项目与昆明主城及环湖截污污水处理厂污泥处理与资源化利用项目产生的废水。 2.2 比选服务范围: (1)对昆明主城污泥处理处置厂化验室进行运营管理、人员管理、技术支持、薪酬管理、培训管理、业务管理。旨在提供实时、科学、准确的检测结果,为污泥处置各个阶段检验结果,作为工艺调整的指令性参数。有效控制处理厂各个处理环节质量达到要求,保证处置生产可以有序进行。对工艺过程中的各节点产物进行分析测试,提供准确、科学的依据,满足处理厂对城市污泥进行持续有效处置。 ①样品采集:根据发包人要求,按照《地表水和污水监测技术规范HJ/91-2002》进行样品采集工作,每日09:00前完成水样点位的样品采集工作。按照《排污单位自行监测技术指南HJ 848-2017》、《城镇污水处理厂污泥处理处置项目环保验收技术指南 BD 5301/T45-2020》等技术规范相关标准进行污泥采样工作。 ②化验室分析:废水中总氮、总磷、氨氮、悬浮物、pH值、化学需氧量、五日生化需氧量、污泥浓度、色度、大肠杆菌、电导率、总碱度、总硬度等指标,正常生产每天需要检测10-20个样品,污泥中检测含水率、有机物、pH值、总氮、氨氮、总碱度、脂肪酸等指标,每天需要测定5-8个样品。每日16:00前出具当天水样检测有效数据,并对检测数据进行整理分析,分析结果报送招标人。 ③化验室管理:根据标准化实验室建设要求和目前化验室需要开展的分析项目,对化验室进行整改规划;根据化验室工作需要,及时进行药品试剂、试验耗材采购;及时检查化验室设备情况并进行设备维护,及时提出设备维修或设备更换需求,保证化验室正常运行。 (2)对昆明主城污泥处理处置厂,进行无组织环境监测、有组织排放口监测、工业废水水质检测、污水水质检测、污泥检测等工作。按发包方提供的监测方案及时开展检测监测工作,并分别提交 真实、合法、有效、准确的检测监测报告。 备注:本项目是基于比选人所运行的污泥厂采购的项目,实际服务过程中若因比选人不再运行该污泥厂,本合同随之终止,以上风险因素视为参与投标的投标人已考虑,比选人无需做任何赔偿。 (3)采购清单: ①化验室药品试剂、耗材: 序号 产品名称 规格型号 数量 单位 产地 备注 厂家 1 变色硅胶 500g 10 瓶 青岛胜海 2 氢氧化钠 GR500g 5 瓶 科密欧 3 抗坏血酸 AR200g 10 瓶 西陇 4 过硫酸钾 AR500g 15 瓶 西陇 5 钼酸铵 AR500g 10 瓶 天津四厂 6 酒石酸锑钾(1/2水分子) AR500g 5 瓶 西陇 7 总磷标样 100g/ml,50ml 15 支 标样所 8 总磷质控样 80.4μg/L/ 0.457mg/L 1.72mg/L 0.381mg/L 0.722mg/L 0.199mg/L,20ml 12 支 标样所 9 纳氏试剂 碘化汞法100ml 60 瓶 世纪奥科 10 酒石酸钾钠(四水) AR500g 15 瓶 西陇 11 硫酸锌(七水) AR500g 15 瓶 西陇 12 氨氮质控样 13.1mg/L 5.23mg/L 2.59mg/L 1.21mg/L 7.58mg/L,20ml 30 支 标样所 13 氨氮标样 500mg/L 5 支 标样所 14 过硫酸钾 GR100g 10 瓶 分析 15 总氮标样 86mg/L,20ml 10 支 标样所 16 COD消解液 高浓度 18 盒/150支 哈希 17 COD消解液 低浓度 10 盒/150支 哈希 18 丙烯基硫脲 CT100g 2 瓶 西陇 19 五日生化需氧量质控样 86.0mg/L 62.6mg/L,20ml 20 支 标样所 20 软水胶囊 70粒/瓶 25 瓶 国产 21 比色管 50ml 200 支 北玻 22 比色管 25ml 150 支 北玻 23 锥形瓶 250ml 100 个 北玻 24 玻璃砂芯抽滤装置 2000ml 2 套 国产 25 大肚移液管 10ml 30 根 天玻 26 大肚移液管 20ml 30 根 天玻 27 大肚移液管 25ml 20 根 天玻 28 多标移液管 5ml 20 根 天玻 29 多标移液管 10ml 30 根 天玻 30 白色容量瓶 100ml 30 个 天玻 31 白色容量瓶 200ml 20 个 天玻 32 白色容量瓶 250ml 30 个 天玻 33 白色容量瓶 500ml 20 个 天玻 34 白色容量瓶 1000ml 5 个 天玻 35 称量纸 15cm 3 袋 上海 36 移液枪头 5ml 3 袋 比克曼 37 移液枪头 1ml 2 袋 比克曼 38 洗耳球 / 10 个 国产 39 CA-CN滤膜 60*0.45mm 100张/盒 60 盒 国产 40 实验室封口膜 4*125 1 个 美国 41 定性滤纸 15cm 30 盒 上海 42 一次性塑料吸管 5ml 10 袋 国产 胶头玻璃吸管单根4元(带刻度) 43 pH广泛试纸 1~14 5 盒 国产 盒/20本 44 玻璃烧杯 1000ml 20 个 北玻 45 玻璃烧杯 500ml 20 个 北玻 46 玻璃烧杯 250ml 20 个 北玻 47 玻璃烧杯 150ml 10 个 北玻 48 带柄塑料量杯 1000ml 5 个 国产 49 量筒 1000ml 20 个 天玻 50 量筒 500ml 10 个 天玻 51 量筒 250ml 5 个 天玻 52 量筒 100ml 10 个 天玻 53 洗瓶 500ml 10 个 国产 54 BOD5培养瓶 250ml 30 个 国产 55 PP高分子滤芯 10寸 10 支 四川优普 56 AC活性炭滤芯 10寸 6 支 四川优普 57 软化滤芯 10寸 6 支 四川优普 58 RO反渗透膜(注塑) 75G 1 套 四川优普 储存条件冷藏 59 超纯化柱 UPZX-T(10L用) 1 套 四川优普 60 RO反渗透膜 100G 1 套 四川优普 61 超纯化柱 UPZX-H(20L用) 1 套 四川优普 ②环境污水污泥检测清单: 检测项目 次数/年 数量 频率 检测指标 备注 污水检测 12 2 1 化学需氧量(CODcr)、五日生化需氧量(BOD5)、悬浮物、石油类、阴离子表面活性剂、粪大肠菌群、总氮、氨氮、总磷、色度、PH值、总余氯、动植物油 每月检测一次 污水重金属检测 12 2 1 总铅、总砷、总铬、总镉、六价铬、总汞、总硬度、烷基汞 每月检测一次 雨水检测 12 1 1 化学需氧量(CODcr)、悬浮物、 每月检测一次 污泥检测 4 1 1 pH、含水率、有机质、总氮、总磷、总钾、总镉、总汞、总铅、总铬、总砷、总镍、总锌、总铜、总氰化物、苯并(a)芘、粪大肠菌群值、蛔虫卵死亡率、种子发芽指数、杂物和粒径、矿物油、多环芳烃、总硼、多氯联苯、可吸附有机卤化物、挥发酚、EC值 每季度检测一次 污泥检测 12 4 1 pH、含水率、有机质、总氮、总磷、总钾、总镉、总汞、总铅、总铬、总砷、总镍、总锌、总铜、总氰化物、粪大肠菌群值、蛔虫卵死亡率、挥发酚 每月检测一次 无组织废气 2 3 3 氨、硫化氢、甲硫醇、三甲胺、臭气浓度、总悬浮颗粒物 半年检测一次 无组织废气 2 1 3 氨、硫化氢、甲硫醇、三甲胺 每季度检测一次 有组织废气监测① 2 2 3 氨、硫化氢 每半年度检测一次 有组织废气监测① 2 1 3 氨、硫化氢、甲硫醇、三甲胺、臭气浓度、颗粒物 每半年度检测一次 有组织废气监测② 1 3 3 颗粒物、二氧化硫、氮氧化物、烟气黑度 每年检测一次 噪声监测 4 12 3 噪声 每季度检测一次 锅炉检测 11 3 3 氮氧化物 每月检测一次 余气燃烧塔 1 1 3 二氧化硫、氮氧化物、颗粒物 每年检测一次 备注:监测费用根据监测样品检测项目的数量按样品个数/点位及乙方提供的监测报告据实结算。 2.4、 服务周期:暂定一年,以实际签订合同约定日期为准。 2.5、服务地点:昆明主城污泥处理处置厂内、配套污水处理厂及50吨资源化堆肥项目 3、投标人资格要求 3.1 投标人必须是按照国家法律法规设立的,并在中国注册的,具有一般纳税人资格的法人地位的企业。(提供投标人的营业执照、组织机构代码证、税务登记证,复印件并加盖鲜章;如已进行“三证合一”则只需提供营业执照复印件,加盖鲜章) 3.2 投标人必须在云南省昆明市具有办事机构,能够在云南省昆明市出具报告,且投标人需具备质量技术监督局颁发的CMA《计量认证合格证书》或《检验检测机构资质认定证书》资质认定(有效期内)。(须提供房屋租赁合同或者自有房屋的产权证明复印件,以及《计量认证合格证书》或《检验检测机构资质认定证书》复印件) 3.3业绩要求:投标人提供近三年(2019-2021年度)参与政府或国企的监测检测工作且单个合同金额超过40万元的业绩一个。(提供合同复印件,加盖公章,且第六章中“近年完成的类似项目情况表”应附合同、用户评价证明复印件,且合同与用户评价须一一对应,具体时间要求见投标人须知前附表。每张表格只填写一个项目,并标明序号。) 3.4信誉要求(提供承诺书,格式自拟,加盖鲜章) ①承诺资格审查申请材料中提供的资料必须真实可靠 ②承诺本项目在实施过程中严格按照招标文件专用合同条款执行 3.5本项目投标人及其主要管理人员,不得与其他投标人存在关联关系,否则均按废标处理;投标人应自行登录“国家企业信用信息公示系统(http://www.gsxt.gov.cn/)”,查询“发起人及出资信息”及“主要人员信息”,提供查询结果截图。 3.6本次招标不接受联合体投标,以任何联合体名义或形式的所有投标将被拒绝。 注:投标人须提供以上要求证明材料复印件,原件备查。4. 招标文件的获取 投标人于2022年 4月 15 日起可自行在重庆水务集团电子商务平台(https://www.cqswjt.cn)上下载招标文件电子版,以及答疑、补遗等投标截止时间前公布的所有相关资料,不管投标人下载与否,招标人和招标代理机构都视为投标人收到以上资料并全部知晓有关招标过程和事宜,如因投标人自身原因未能下载相关资料由此产生的一切后果由投标人自行负责。各投标单位应随时关注网上(https://www.cqswjt.cn)发布的招标文件及相关修改内容。 投标人须在重庆水务集团电子商务平台(https://www.cqswjt.cn)进行供应商注册,填写相关信息,审批过后成为平台供应商。 此项目将在重庆水务集团电子商务平台系统上进行电子开、评标。投标人需提前在重庆水务集团电子商务平台(https://www.cqswjt.cn)上注册、报名,下载标书,上传投标文件电子档并报价。在投标截止时间前未按时报名、报价并上传投标文件电子档者,视为废标。 投标人在递交投标文件时向招标代理机构扫码支付 800 元/份标书费,否则将拒绝接收投标文件。5. 投标文件的递交 5.1投标文件递交时间:2022年 4 月 19 日 9 时 30 分至 10 时 00 分,地点:重庆市渝北区龙塔街道紫园路256号重庆水务招标采购中心。 5.2 投标截止时间:2022年 4 月 19 日 10 时 00 分(北京时间)。 5.3 逾期送达的或者未送达指定地点的投标文件,招标人不予受理。6. 发布公告的媒介 本次比选公告在重庆水务集团电子商务平台(https://www.cqswjt.cn/ebidding/login)上发布。7. 联系方式 比选人:重庆渝水环保科技有限公司 地 址:重庆市江北区华新村350号。 联系人:雷老师 电 话:13594353596 代理机构:重庆水务集团公用工程咨询有限公司 地 址:重庆市渝北区龙塔街道紫园路288号 联系人:崔畅 电 话:13896264537 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:COD测定仪,污泥检测仪,COD消解仪 开标时间:null 预算金额:2.93亿元 采购单位:重庆渝水环保科技有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆水务集团公用工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次)项目公告 重庆市-江北区 状态:公告 更新时间: 2022-04-15 重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次)项目公告 发布日期:2022-04-15 重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次) 比选公告 1、比选条件 本招标项目重庆渝水环保科技有限公司昆明分公司2022年化验室技术服务及检测监测服务项目(第三次)(项目名称),招标人为重庆渝水环保科技有限公司。招标项目资金自筹(资金来源),出资比例为100%。项目已具备招标条件。现对该项目进行公开比选,诚邀有兴趣的潜在投标人参与投标。2、项目概况与比选范围 2.1 项目概况 昆明主城污泥处理处置厂,项目位于富民工业园区昆明环保科技产业园,占地63.5亩,项目沿用原环湖东路项目设备、设计规模及工艺,主体工艺采用“高负荷厌氧消化+脱水+热干化”,污泥处理干化产品达到75%DS以上,设计日处理湿污泥500吨(含水率80%),总概算投资2.93亿元。干污泥产品外运作为矿坑回填料、垃圾焚烧厂掺烧原料、建材利用或作为绿化介质土使用。 昆明市污水处理厂污泥处理处置项目配套水处理一期项目(以下简称污水处理项目)位于云南省昆明市富民县环保科技园永定街道办北规划工业附属设施用地内,占地面积约30亩,主要用于处理昆明主城污水处理厂污泥处理处置项目搬迁项目与昆明主城及环湖截污污水处理厂污泥处理与资源化利用项目产生的废水。 2.2 比选服务范围: (1)对昆明主城污泥处理处置厂化验室进行运营管理、人员管理、技术支持、薪酬管理、培训管理、业务管理。旨在提供实时、科学、准确的检测结果,为污泥处置各个阶段检验结果,作为工艺调整的指令性参数。有效控制处理厂各个处理环节质量达到要求,保证处置生产可以有序进行。对工艺过程中的各节点产物进行分析测试,提供准确、科学的依据,满足处理厂对城市污泥进行持续有效处置。 ①样品采集:根据发包人要求,按照《地表水和污水监测技术规范HJ/91-2002》进行样品采集工作,每日09:00前完成水样点位的样品采集工作。按照《排污单位自行监测技术指南HJ 848-2017》、《城镇污水处理厂污泥处理处置项目环保验收技术指南 BD 5301/T45-2020》等技术规范相关标准进行污泥采样工作。 ②化验室分析:废水中总氮、总磷、氨氮、悬浮物、pH值、化学需氧量、五日生化需氧量、污泥浓度、色度、大肠杆菌、电导率、总碱度、总硬度等指标,正常生产每天需要检测10-20个样品,污泥中检测含水率、有机物、pH值、总氮、氨氮、总碱度、脂肪酸等指标,每天需要测定5-8个样品。每日16:00前出具当天水样检测有效数据,并对检测数据进行整理分析,分析结果报送招标人。 ③化验室管理:根据标准化实验室建设要求和目前化验室需要开展的分析项目,对化验室进行整改规划;根据化验室工作需要,及时进行药品试剂、试验耗材采购;及时检查化验室设备情况并进行设备维护,及时提出设备维修或设备更换需求,保证化验室正常运行。 (2)对昆明主城污泥处理处置厂,进行无组织环境监测、有组织排放口监测、工业废水水质检测、污水水质检测、污泥检测等工作。按发包方提供的监测方案及时开展检测监测工作,并分别提交 真实、合法、有效、准确的检测监测报告。 备注:本项目是基于比选人所运行的污泥厂采购的项目,实际服务过程中若因比选人不再运行该污泥厂,本合同随之终止,以上风险因素视为参与投标的投标人已考虑,比选人无需做任何赔偿。 (3)采购清单: ①化验室药品试剂、耗材: 序号 产品名称 规格型号 数量 单位 产地 备注 厂家 1 变色硅胶 500g 10 瓶 青岛胜海 2 氢氧化钠 GR500g 5 瓶 科密欧 3 抗坏血酸 AR200g 10 瓶 西陇 4 过硫酸钾 AR500g 15 瓶 西陇 5 钼酸铵 AR500g 10 瓶 天津四厂 6 酒石酸锑钾(1/2水分子) AR500g 5 瓶 西陇 7 总磷标样 100g/ml,50ml 15 支 标样所 8 总磷质控样 80.4μg/L/ 0.457mg/L 1.72mg/L 0.381mg/L 0.722mg/L 0.199mg/L,20ml 12 支 标样所 9 纳氏试剂 碘化汞法100ml 60 瓶 世纪奥科 10 酒石酸钾钠(四水) AR500g 15 瓶 西陇 11 硫酸锌(七水) AR500g 15 瓶 西陇 12 氨氮质控样 13.1mg/L 5.23mg/L 2.59mg/L 1.21mg/L 7.58mg/L,20ml 30 支 标样所 13 氨氮标样 500mg/L 5 支 标样所 14 过硫酸钾 GR100g 10 瓶 分析 15 总氮标样 86mg/L,20ml 10 支 标样所 16 COD消解液 高浓度 18 盒/150支 哈希 17 COD消解液 低浓度 10 盒/150支 哈希 18 丙烯基硫脲 CT100g 2 瓶 西陇 19 五日生化需氧量质控样 86.0mg/L 62.6mg/L,20ml 20 支 标样所 20 软水胶囊 70粒/瓶 25 瓶 国产 21 比色管 50ml 200 支 北玻 22 比色管 25ml 150 支 北玻 23 锥形瓶 250ml 100 个 北玻 24 玻璃砂芯抽滤装置 2000ml 2 套 国产 25 大肚移液管 10ml 30 根 天玻 26 大肚移液管 20ml 30 根 天玻 27 大肚移液管 25ml 20 根 天玻 28 多标移液管 5ml 20 根 天玻 29 多标移液管 10ml 30 根 天玻 30 白色容量瓶 100ml 30 个 天玻 31 白色容量瓶 200ml 20 个 天玻 32 白色容量瓶 250ml 30 个 天玻 33 白色容量瓶 500ml 20 个 天玻 34 白色容量瓶 1000ml 5 个 天玻 35 称量纸 15cm 3 袋 上海 36 移液枪头 5ml 3 袋 比克曼 37 移液枪头 1ml 2 袋 比克曼 38 洗耳球 / 10 个 国产 39 CA-CN滤膜 60*0.45mm 100张/盒 60 盒 国产 40 实验室封口膜 4*125 1 个 美国 41 定性滤纸 15cm 30 盒 上海 42 一次性塑料吸管 5ml 10 袋 国产 胶头玻璃吸管单根4元(带刻度) 43 pH广泛试纸 1~14 5 盒 国产 盒/20本 44 玻璃烧杯 1000ml 20 个 北玻 45 玻璃烧杯 500ml 20 个 北玻 46 玻璃烧杯 250ml 20 个 北玻 47 玻璃烧杯 150ml 10 个 北玻 48 带柄塑料量杯 1000ml 5 个 国产 49 量筒 1000ml 20 个 天玻 50 量筒 500ml 10 个 天玻 51 量筒 250ml 5 个 天玻 52 量筒 100ml 10 个 天玻 53 洗瓶 500ml 10 个 国产 54 BOD5培养瓶 250ml 30 个 国产 55 PP高分子滤芯 10寸 10 支 四川优普 56 AC活性炭滤芯 10寸 6 支 四川优普 57 软化滤芯 10寸 6 支 四川优普 58 RO反渗透膜(注塑) 75G 1 套 四川优普 储存条件冷藏 59 超纯化柱 UPZX-T(10L用) 1 套 四川优普 60 RO反渗透膜 100G 1 套 四川优普 61 超纯化柱 UPZX-H(20L用) 1 套 四川优普 ②环境污水污泥检测清单: 检测项目 次数/年 数量 频率 检测指标 备注 污水检测 12 2 1 化学需氧量(CODcr)、五日生化需氧量(BOD5)、悬浮物、石油类、阴离子表面活性剂、粪大肠菌群、总氮、氨氮、总磷、色度、PH值、总余氯、动植物油 每月检测一次 污水重金属检测 12 2 1 总铅、总砷、总铬、总镉、六价铬、总汞、总硬度、烷基汞 每月检测一次 雨水检测 12 1 1 化学需氧量(CODcr)、悬浮物、 每月检测一次 污泥检测 4 1 1 pH、含水率、有机质、总氮、总磷、总钾、总镉、总汞、总铅、总铬、总砷、总镍、总锌、总铜、总氰化物、苯并(a)芘、粪大肠菌群值、蛔虫卵死亡率、种子发芽指数、杂物和粒径、矿物油、多环芳烃、总硼、多氯联苯、可吸附有机卤化物、挥发酚、EC值 每季度检测一次 污泥检测 12 4 1 pH、含水率、有机质、总氮、总磷、总钾、总镉、总汞、总铅、总铬、总砷、总镍、总锌、总铜、总氰化物、粪大肠菌群值、蛔虫卵死亡率、挥发酚 每月检测一次 无组织废气 2 3 3 氨、硫化氢、甲硫醇、三甲胺、臭气浓度、总悬浮颗粒物 半年检测一次 无组织废气 2 1 3 氨、硫化氢、甲硫醇、三甲胺 每季度检测一次 有组织废气监测① 2 2 3 氨、硫化氢 每半年度检测一次 有组织废气监测① 2 1 3 氨、硫化氢、甲硫醇、三甲胺、臭气浓度、颗粒物 每半年度检测一次 有组织废气监测② 1 3 3 颗粒物、二氧化硫、氮氧化物、烟气黑度 每年检测一次 噪声监测 4 12 3 噪声 每季度检测一次 锅炉检测 11 3 3 氮氧化物 每月检测一次 余气燃烧塔 1 1 3 二氧化硫、氮氧化物、颗粒物 每年检测一次 备注:监测费用根据监测样品检测项目的数量按样品个数/点位及乙方提供的监测报告据实结算。 2.4、 服务周期:暂定一年,以实际签订合同约定日期为准。 2.5、服务地点:昆明主城污泥处理处置厂内、配套污水处理厂及50吨资源化堆肥项目 3、投标人资格要求 3.1 投标人必须是按照国家法律法规设立的,并在中国注册的,具有一般纳税人资格的法人地位的企业。(提供投标人的营业执照、组织机构代码证、税务登记证,复印件并加盖鲜章;如已进行“三证合一”则只需提供营业执照复印件,加盖鲜章) 3.2 投标人必须在云南省昆明市具有办事机构,能够在云南省昆明市出具报告,且投标人需具备质量技术监督局颁发的CMA《计量认证合格证书》或《检验检测机构资质认定证书》资质认定(有效期内)。(须提供房屋租赁合同或者自有房屋的产权证明复印件,以及《计量认证合格证书》或《检验检测机构资质认定证书》复印件) 3.3业绩要求:投标人提供近三年(2019-2021年度)参与政府或国企的监测检测工作且单个合同金额超过40万元的业绩一个。(提供合同复印件,加盖公章,且第六章中“近年完成的类似项目情况表”应附合同、用户评价证明复印件,且合同与用户评价须一一对应,具体时间要求见投标人须知前附表。每张表格只填写一个项目,并标明序号。) 3.4信誉要求(提供承诺书,格式自拟,加盖鲜章) ①承诺资格审查申请材料中提供的资料必须真实可靠 ②承诺本项目在实施过程中严格按照招标文件专用合同条款执行 3.5本项目投标人及其主要管理人员,不得与其他投标人存在关联关系,否则均按废标处理;投标人应自行登录“国家企业信用信息公示系统(http://www.gsxt.gov.cn/)”,查询“发起人及出资信息”及“主要人员信息”,提供查询结果截图。 3.6本次招标不接受联合体投标,以任何联合体名义或形式的所有投标将被拒绝。 注:投标人须提供以上要求证明材料复印件,原件备查。4. 招标文件的获取 投标人于2022年 4月 15 日起可自行在重庆水务集团电子商务平台(https://www.cqswjt.cn)上下载招标文件电子版,以及答疑、补遗等投标截止时间前公布的所有相关资料,不管投标人下载与否,招标人和招标代理机构都视为投标人收到以上资料并全部知晓有关招标过程和事宜,如因投标人自身原因未能下载相关资料由此产生的一切后果由投标人自行负责。各投标单位应随时关注网上(https://www.cqswjt.cn)发布的招标文件及相关修改内容。 投标人须在重庆水务集团电子商务平台(https://www.cqswjt.cn)进行供应商注册,填写相关信息,审批过后成为平台供应商。 此项目将在重庆水务集团电子商务平台系统上进行电子开、评标。投标人需提前在重庆水务集团电子商务平台(https://www.cqswjt.cn)上注册、报名,下载标书,上传投标文件电子档并报价。在投标截止时间前未按时报名、报价并上传投标文件电子档者,视为废标。 投标人在递交投标文件时向招标代理机构扫码支付 800 元/份标书费,否则将拒绝接收投标文件。5. 投标文件的递交 5.1投标文件递交时间:2022年 4 月 19 日 9 时 30 分至 10 时 00 分,地点:重庆市渝北区龙塔街道紫园路256号重庆水务招标采购中心。 5.2 投标截止时间:2022年 4 月 19 日 10 时 00 分(北京时间)。 5.3 逾期送达的或者未送达指定地点的投标文件,招标人不予受理。6. 发布公告的媒介 本次比选公告在重庆水务集团电子商务平台(https://www.cqswjt.cn/ebidding/login)上发布。7. 联系方式 比选人:重庆渝水环保科技有限公司 地 址:重庆市江北区华新村350号。 联系人:雷老师 电 话:13594353596 代理机构:重庆水务集团公用工程咨询有限公司 地 址:重庆市渝北区龙塔街道紫园路288号 联系人:崔畅 电 话:13896264537
  • 贺莒南县污水处理厂选购冠亚污泥含水率测定仪
    莒南县污水处理厂污泥处置中心采购冠亚牌污泥含水率测定仪。 冠亚水分测定仪因检测速度快、结果准确,得到了污水处理厂相关领导及技术人员的一致认同! ●自主研发生产、核心技术产品,SFY商标8931081●可广泛应用于环保、污泥加工企业●测试准确度符合污泥行业标准●质量过硬、仪器零耗材●操作简单,无需辅助设备●CMC计量许可证00000018号(生产许可证)●污泥行业快速水分检测仪●SFY系列红外线/卤素快速水分测定仪器(专利号:2005301013706)●是目前行业中通过ISO 9001:2008质量管理体系认证的产品。 ●“GY"商标证书,商标证书编号7927649号。●“SFY"商标证书,商标证书编号8931081号。《冠亚牌》SFY-50污泥快速水分测定仪是由深圳市冠亚公司研发并生产,该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代卤素快速水分测定仪器。引进进口自动称重显示系统,人性化系统操作, 无需特殊培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。客户可根据所测样品状态不同而调整测试空间,片状、颗粒、粉末一机操作,且检测效率、测试准确度远远高于**标准方法。计算机、打印机连接功能可即时打印或者记录、储存终点自动判定模式锁定的终水分值。 《冠亚牌》污泥快速水分测定仪是生产和科研中理想的水分测定仪器,目前已被广泛引用于各个行业水分监控及院校科研等领域,如各种生物污泥、化学污泥、化学混合污泥、脱水污泥等各种样品的水份检测。冠亚污泥含水率测定仪技术指标 1、称重范围:0-150g 2、水分测定范围:0.01-** ★★JK称重系统传感器 3、样品质量:0.1-150g ★★可调试测试空间为3cm 4、加热温度范围:起始-250℃ ★★加热方式:应变式混合气体加热器 ★★微调自动补偿温度15℃ 5、水分含量可读性:0.01% 6、显示7种参数: ★★ 水分值,样品初值,样品终值,测定时间,温度初值,终值,恒重值 ★★红色数码管独立显示模式 7、双重通讯接口:RS 232 8、外型尺寸:380×205×325(mm) 9、电源:220V±10% 10、频率:50Hz±1Hz 11、净重:3.7Kg 2004年冠亚在深圳成立 2005年上海分公司成立 2009年长春分公司成立 2012年沈阳分公司成立 2014年哈尔滨公司成立 仪器自购之日起,保修一年,终身维护。我司目前在深圳、上海、长春、沈阳、哈尔滨均有公司,可就近发货和售后。 部分用户西环保局 (27台)南京环保局通辽污水处理厂陕西中电投太阳能电池废水污泥合肥王小郢污水处理有限公司深圳深南电环保有限公司温州污水处理厂温州水务集团深圳市水务集团上海绿嘉环保科技有限公司南海发电一厂有限公司深圳深南电环保有限公司上海南市污水厂 深圳市水务技术有限公司 天津城市建设学院巴斯夫造纸化学品(江苏)有限公司新乡污水处理厂山东潍坊污水处理厂宁德师范大学无锡污水厂东南大学深圳东江环保股份有限公司
  • 污泥检验国标 新增14个分析项目填补国内空白
    4月29日日,记者从青岛水务集团获悉,为提高我国污泥检验水平,填补国内检测空白,日前住建部将《城镇污水处理厂污泥检验方法》修订编撰工作交与青岛水务集团,修订工作目前已经启动,将于今年12月完成送审稿,2017年2月报批。  据介绍,2003年至2005年,青岛水务集团科技中心排水监测站起草组织编写了原国标,并主导实验验证,包括25个污泥检测项目和54个检测方法,填补了当时国内污泥检测方法的空白。该标准实施10年来,全国城镇污水处理及污泥处置技术不断提升发展,污水处理厂的运行管理和污泥处置也出台了一系列标准及规范,尤其是检测技术及检测设备日益提升及发展,对污泥检测指标提出了新的要求。  为提高我国污泥检验水平,进一步填补国内检测空白,日前,国标修订工作已在排水监测站启动,并组建了由住房和城乡建设部、山东省、青岛市主管部门,以及北京、上海等13个城市具有国家级计量认证资质的排水监测站专家成员组。“新增项目都是国内污泥检测领域以前开展少或没有开展过的检测项目,缺少相应的原理、前处理方法和检测步骤,同时需要采用目前最先进的等离子发射光谱质谱联合测定法、量热仪和元素测定等仪器,对污泥样品前处理要求很高,实验难度很大。 ”水监测站站长高燚告诉记者,修订工作还确定了污泥低位热值测定方法研究、标准样品制备研究和多环芳烃测定方法研究3个大的研究专题,都是国内检测领域的空白。
  • 国际先进的含油污泥处理技术
    实现减量化、资源化、无害化处理近日,从中国石油石油化工研究院传出消息,含油污泥热解—高温热氧化协同处理技术与工业应用项目通过了由中国石油科技管理部组织的科技成果鉴定。鉴定委员会专家一致认为科技成果达到国际先进水平,建议加快技术推广应用。鉴定委员会由中国石油大学徐春明院士、中国环境科学研究院周岳溪副总工程师等7位专家组成。该项技术成果由石油化工研究院、安全环保技术研究院和西安石油大学合作完成。目前,我国石油生产及加工行业每年产生的含油污泥量达800多万吨,产出过程包括油基泥浆、大罐沉降污泥、落地油泥及含油污水处理过程产生的污泥。不同类型污泥性质复杂、处理难度大,若不加处理就地填埋或堆放,不仅浪费了有限的石油资源,还会造成严重的环境污染。含油污泥已被我国列入危险废物名录,需要对其进行减量化、资源化和无害化处理。研究团队从含油污泥减量化、资源化、无害化三方面综合考虑,以生物质为添加剂,通过界面调控、颗粒级配调整技术,实现了高含水污泥、老化油的高效固液分离;以改性黏土为催化剂,开发了含油污泥低温催化热解技术,实现了原油资源的回收利用;为了消除对环境的影响,在含油污泥热解的基础上,开发了颗粒化燃料制备及高温热氧化处理技术,实现含油污泥的无害化处理。通过装备开发,该项目实现了处理技术的工业应用。此外,该成果对石油生产与加工行业生产、生活环境的改善和经济效益的提高、油田的可持续发展具有深远的现实意义。据介绍,该项目已于2016年建成了处理规模为300吨/日的工业装置,并开展油田污泥处理等相关业务。2017~2020年,项目累积处理污泥量为37.04万立方米。截至目前,该项目获得发明专利授权9项,出版专著1部,发表论文25篇。鉴定委员会听取了项目组对该科技成果的总体思路、形成的关键技术、创新点、取得的重要成果、成果应用情况以及经济社会效益分析等方面的详细汇报,经过质询和讨论,最终认定该项成果达到国际先进水平,同时对该技术成果推广工作提出了建议。技术项目组就下一步工作进行研究部署,明确了责任分工、确定了时间节点,以确保该技术后期工业推广工作的顺利进行。更多石油化工分析技术与应用,锁定仪器信息网6月29-30日举办“石油化工分析技术与应用”主题网络研讨会(2021),点击即可报名。
  • 悬浮物污泥浓度计是如何测量悬浮物浓度的
    悬浮物污泥浓度计是为测量市政污水或工业废水处理过程中悬浮物浓度而设计的在线分析仪表。无论是评估活性污泥和整个生物处理过程、分析净化处理后排放的废水还是检测不同阶段的污泥浓度,悬浮物污泥浓度计都能给出连续、准确的测量结果。   悬浮物污泥浓度计由变送器和传感器组成。传感器可以方便地安装在池内、排水管、压力管道或自然水体中,光电式污泥浓度计能自动补偿因污染而引起的干扰。传感器带有空气清洗功能,能根据预先设置的时间自动定时清洗,从而大大降低了仪器维护的工作量。   传感器上发射器发送的红外光在传输过程中经过被测物的吸收、反射和散射后仅有一小部分光线能照射到检测器上,透射光的透射率与被测污水的浓度有一定的关系,因此通过测量透射光的透射率就可以计算出污水的浓度。   四光束技术利用两个发射器和两个检测器,每个发射器发送的光线经过透射后照射到两个检测器上,这样就产生一系列的光路,得到一个数据矩阵,然后通过分析这些数据信号,即可得到介质中悬浮物的准确浓度,并能有效消除干扰,补偿因污染产生的偏差,使仪器能在较恶劣的环境中工作。   传感器的校准:   悬浮物(污泥浓度)传感器在出厂前已经经过校准,若需要自行校准可以按照如下步骤进行。悬浮物(污泥浓度)校准要求使用标准液,通过校正菜单,可以进行二点或者四点校正。以两点为例,具体步骤如下:   1)将传感器连接至变送器。   2)设置好相关参数(进入“校正”菜单,然后选择“校准方式”中选择“因子”   模式,将因子设为1),并擦净传感器。   3)将探头放入头一点标液中(一般将纯水作为头一点),待数据稳定后,读取   测量的实际值并记录数据。
  • 全国首个“污泥衍生清洁燃料”地方标准获批公布
    近日,由珠海市标准编码所和珠海市伟力高生物科技有限公司共同负责起草的省地方标准《再生环保燃料 污泥衍生清洁燃料》经广东省质监局批准发布,成为全国首个“污泥衍生清洁燃料”地方标准,将于今年5月1日正式实施。  该标准通过对污泥特性的实验研究,根据污泥来源,对不同地域和不同行业排放的污泥成分进行分析,研究其对应的处理和利用方式,对污泥衍生清洁燃料的各项成分指标进行具体规定,并提出一套完整的实验方法和检验规则。  该标准的发布实施,对规范全省城镇污水处理厂污泥转化为清洁燃料,提高污泥能源化利用效率,建设节约环保型社会具有重要意义。
  • “水十条”促污泥处理发热 环保发展迎行业大考
    随着“水十条”的下达,污泥处理处置被业内认为是下一轮环保发展的热点。按目前的建设速度,污泥处理率在“十三五”期间会有大幅提高,但是要达到“十二五”规划提出的目标还需作出很大努力。 “水十条”对我国污泥处理处置的设施建设和处置率都提出明确要求,这对污泥处理处置行业将是“大考”。 据统计,我国市政污泥产生量2010—2014年保持较高增幅,预计到2015年产生量达到3509万吨。中国科学院地理科学与资源研究所副研究员郑国砥表示,2010年,我国只有不到10%的污泥进行了卫生填埋、土地利用、焚烧或建材利用等方面的处理处置,其余大部分未进行规范化处理处置。近5年来,污泥处理处置率不超过20%。无害化是污泥处理处置前提 城市污泥必须在稳定和无害的条件下,才能进一步考虑其资源化利用问题“水十条”规定,禁止处理处置不达标的污泥进入耕地。主要疑虑包括病原菌传播、化学物质、烧苗、病虫害、杂草控制和恶臭。污泥堆肥过去是经济的资源利用方式,通过微生物的发酵作用,将有机废弃物中的有机物分解、腐熟转变为肥料。在发酵过程中,可被生物降解的有机物转化为相对稳定的腐殖质物质。 有业内人士表示,随着环境污染的加剧和重金属的沉积,城市污泥直接堆肥显然是不可取的。在目前条件下,城市污泥必须在无害化处理或者确保环境安全前提下,即在稳定和无害的条件下,才能进一步考虑其资源化利用问题。城市污泥的处理处置可以追求资源化和经济效益,但要以无害化为首要目的。 同济大学环境科学与工程学院院长戴晓虎认为,污水中约30%~50%的COD转入到了污泥中,转入污泥的氮约30%~45%,磷约90%。如果污泥不及时进行处理处置,从节能减排的角度上,污水处理设施只做了一半或者2/3的工作,所以污泥处理处置是污水处理或节能减排当中很重要的一个环节。随着“水十条”的颁布,污泥处理处置会成为下一轮环保发展的热点。污泥处置路线不同会存在不同的工艺组合,但各种技术路线最终要经受环境、经济和市场的检验。建材和土地利用是趋势 我国污泥的含砂量很高、有机质也很多,需要进一步研发相关适用技术,污泥干化焚烧减量化效果明显,但运行费用最高国际上的污泥处理处置技术工艺,主要围绕稳定化、减量化、无害化、资源化进行处理处置。我国在污泥减量化方面做了大量工作,但离真正的减量化还有一定距离。从技术层面上说,我国污泥处理处置主要考虑的是稳定化,而资源化利用方面则没有太多考虑。 有专家表示,由于责任主体不明确,各地在进行污泥处置时,费用问题并没有落实,导致存在很多问题。撇开技术路线,从整个污泥处置的角度来考虑,国内外的趋势都是建材和土地利用。针对我国现状,这些技术还需要进一步提升。第一,很多国外技术在中国并不适用。我国污泥的含砂量很高、有机质也很多,需要进一步研发相关适用技术。第二,我国的环境问题和国外的环境问题不同。我国的环境容量和负荷的污染之间的矛盾相当激烈。 国家污泥资源化处理处置工程技术中心高级工程师申维真认为,在我国,污泥处理主要技术有4种:污泥干化焚烧技术、污泥厌氧消化技术、污泥好氧堆肥技术、污泥高干脱水技术。其中,污泥干化焚烧减量化效果明显,但运行费用最高。上海市竹园污泥处理项目是国内目前最大的污泥干化焚烧项目之一。其通过世界银行贷款,EPC工程总承包项目采用半干化焚烧处理工艺,建设规模800t/d,已进入试运行阶段。 珠海市德莱环保董事长周宗南认为,“水十条”对污泥处理处置的进度提出了具体要求。当前,市政污泥处理处置的技术和工艺方式方法很多,但如何经济、高效地实现市政污泥的减量化、无害化、稳定化和资源化成为业内急需解决的问题。据了解,珠海市德莱环保工程有限公司通过对市政污泥进行改性,再经过专业装备及蒸馏装置处理后,分别得到成品燃料油、碳酸铵以及高级建材原料等产品,为资源化利用寻找出路。污泥处理后的资源化产品,如燃料油、碳酸铵和高级建材有一定的市场前景。离“十二五”目标还有多远? 按目前的建设速度,污泥处理率在“十三五”期间会有大幅提高,但是要达到“十二五”规划提出的目标还需作出很大努力,中国市政工程华北设计研究总院总工程师李成江针对污泥处理滞缓现象提出,污泥处理处置项目大多与污水处理厂建设脱节,污泥处理处置没能同污水处理一样严格执行量化考核,是导致污泥处理处置建设滞后的主要原因。 他认为,按照国务院办公厅印发的《“十二五”全国城镇污水处理及再生利用设施建设规划》,到2015年,直辖市、省会城市和计划单列市的污泥无害化处理处置率达到80%,其他设市城市达到70%,县城及重点镇达到30%。按目前的建设速度,污泥处理率在“十三五”期间会有大幅提高,但是要达到“十二五”规划提出的目标还需作出很大努力,所以“十三五”是污泥处理处置建设高峰期。 在国内,各种污泥处理主流工艺几乎都有应用案例,总体看,形式单一,稳定化、减量化程度不高。大部分城市污泥处理主流工艺仍为浓缩脱水外运,脱水污泥含水率为50%~80%左右,减量化效果不明显。应用较多的深度脱水不能解决稳定化问题,仅为过渡方案,后续运输处置问题多。 我国城镇污水处理厂污泥VSS含量基本为40%~60%,干基热值为2200~2900kcal/kgDS,随着经济转型和城市生态环境的改善,市政污泥的有机物含量、VSS含量、热值不断提高,重金属含量不断降低,污泥利用价值也随之提高。 业内人士表示,当前业内需要解决的问题是污泥处理处置关键技术与设备如何满足工程的需要;污泥深度脱水技术与设备的开发(降低药耗减少二次污染);各种堆肥技术与设备的开发;污泥热干化、焚烧技术与设备的集成开发;污泥堆肥后土地利用的潜在环境风险跟踪研究。来源:中国环保在线
  • 新品研发|污泥毛细吸水时间测定仪采用易于操作的翻盖式测试座
    污泥毛细吸水时间测定仪还可以用于研究不同因素对污泥吸水性能的影响。例如,可以通过改变测试温度、压力、样品量等条件,研究这些因素对污泥吸水性能的影响规律。这些研究成果可以为优化污泥处理工艺和设备设计提供理论支持。 产品链接https://www.instrument.com.cn/netshow/SH104275/C549344.htm 污泥毛细吸水时间测定仪还可以用于评估不同污泥处理工艺的效果。在污泥处理过程中,不同的工艺方法会对污泥的性质产生不同的影响。通过使用该仪器,可以评估不同工艺方法对污泥吸水性能的影响,从而为工艺选择和优化提供参考依据。 污泥毛细吸水时间测定仪在污泥处理和资源化利用领域具有广泛的应用价值。通过使用该仪器,可以了解污泥的性质和特点,为工艺选择和优化提供科学依据。同时,该仪器还可以为新工艺的研究和开发提供技术支持,推动污泥处理和资源化利用技术的进步和发展。 污泥毛细吸水时间测定仪可以用于检测污泥的亲水性和吸湿性。在污泥处理过程中,这些性能对于污泥的脱水性能和浓缩效果有着重要影响。通过使用该仪器,可以了解污泥在不同条件下的吸水速度和吸水量,从而评估其亲水性和吸湿性。
  • 河北省住房和城乡建设厅发布《河北省城市市政污水污泥处理设施运行监督管理办法》
    近日,河北省住房和城乡建设厅发布《河北省城市市政污水污泥处理设施运行监督管理办法》,旨进一步加强城市市政污水处理与污泥处理处置设施运行监督管理,充分发挥设施污染防治效能,保护和改善生态环境。河北省城市市政污水污泥处理设施运行监督管理办法第一章 总 则第一条 为进一步加强城市市政污水处理与污泥处理处置设施运行监督管理,充分发挥设施污染防治效能,保护和改善生态环境,根据《中华人民共和国水污染防治法》《中华人民共和国固体废物污染环境防治法》《城镇排水与污水处理条例》《河北省城镇排水与污水处理管理办法》等,结合河北省实际,制定本办法。第二条 本办法所称城市市政污水处理与污泥处理处置设施,是指以处理城市(含县城及以生活为主的开发区,不含工业聚集区)生活污水为主的设施(原则上以环评批复类型为准),以及对其产生的污泥进行处理处置的设施。全省城市污水处理厂名单定期由省住房城乡建设厅确认并向社会公布。第三条 本办法适用于本省行政区域内城市市政污水处理与污泥处理处置设施运行的监督管理工作。第四条 城市市政污水处理与污泥处理处置设施运行监督管理实行分级负责制。省住房城乡建设厅指导监督全省城市市政污水处理与污泥处理处置设施运行工作,负责调查处理设施运行重大事件等。各市(含定州、辛集市)、雄安新区城市排水主管部门(以下简称“市级主管部门”)监督管理本级城市市政污水处理与污泥处理处置设施运行工作,指导监督所辖县(市、区)工作,负责调查处理设施运行较大事件等。各县(市、区)城市排水主管部门(以下简称“县级主管部门”)监督管理本行政区域内城市市政污水处理与污泥处理处置设施运行工作,负责调查处理设施运行一般事件等。第五条 城市市政污水处理与污泥处理处置设施运营单位(以下简称“运营单位”)应当履行运营管理、安全生产和环境保护等工作的主体责任,接受城市排水主管部门的监督管理。同时按照法律、法规和有关规定,接受相关部门和社会公众的监督。第二章 监督管理第六条 省住房城乡建设厅对城市市政污水处理和污泥处理处置工作实施监督管理,可以采取以下措施:(一)完善工作制度。完善省级监管工作制度和考核评价标准,规范监管工作。(二)组织培训交流。对市、县级主管部门和运营单位开展业务交流培训,并提供日常技术咨询和指导。(三)开展监督检查。对市、县级主管部门监管责任落实情况、政策标准贯彻情况、重点工作任务完成情况等进行监督检查。对运营单位设施运行重要环节和参数进行监测。(四)实施考核评价。自2024年起,每年组织对城市市政污水处理与污泥处理处置设施运行情况进行考核评价。(五)开展事件调查。负责对城市市政污水处理与污泥处理处置重大事件或者跨市域的较大事件开展调查,移交属地依法依规进行查处。对省委、省政府或者住房和城乡建设部交办的事件进行调查。(六)督促问题整改。指导市、县级主管部门对检查、考核等发现的问题进行整改。对问题较多或者不能按期完成整改的采取通报、约谈等方式督办;对问题严重且不落实整改的,建议当地政府依法依规追究责任。第七条 市、县级主管部门应当认真落实相关法律法规和政策要求,对市政污水处理与污泥处理处置实施全过程监督管理。第八条 市、县级主管部门可以采取以下措施,对运营单位进行监管:(一)现场检查。可以采取定期或者不定期检查、专项检查等方式组织检查。检查内容包括:企业管理制度、应急预案、运行台账、监测数据和现场情况等。(二)现场检测。结合工作需要,对相关环节进行现场检测,检测结果作为判定设施运行效果的重要依据。(三)在线分析。利用信息化管理系统数据信息进行分析,诊断设施运行状况。(四)绩效考核。定期对运营单位进行绩效考核。鼓励将考核结果与城市污水处理服务费挂钩,促进管理水平提升。鼓励建立激励机制,引导运营单位提高节能降耗水平。(五)事件调查。市级主管部门对较大事件或者跨县域的一般事件进行调查,依法依规进行查处。县级主管部门对一般事件进行调查,依法依规进行查处。(六)督促整改。对检查中发现有违反相关法律法规政策、标准规范及本办法要求的,向运营单位下发督办函,并督促整改;对需要行政处罚或涉嫌违法犯罪的,按程序及时处罚或移交相关部门处理。(七)法律、法规、规章等规定的其他监管措施。第九条 市、县级排水主管部门应当通过法定程序选择运营单位,并依法签定经营协议或者服务合同。相关协议或者服务合同应依法依规确定双方权利义务,结合各地实际明确奖惩条件,并认真执行。污水处理设施运营单位直接委托他人运输、利用、处置污泥的,应当对受委托方主体资格和技术能力进行核实,依法签订协议、合同,报本级排水主管部门存档。第十条 市、县级主管部门应当与同级生态环境等有关部门对接,建立信息共享机制,提高行业管理能力和水平。第十一条 市、县级主管部门应当会同有关部门健全污水处理费征收机制。鼓励市、县级主管部门按照覆盖污水处理和污泥处理处置成本的原则,积极配合发展改革部门推动污水处理费收费标准调整工作。第十二条 各级城市排水主管部门应当安排具备业务能力的专门人员负责设施运行监督管理工作。人员力量不足或者达不到要求的地区,鼓励引入第三方专业机构协助开展工作。第三章 设施运行要求第十三条 运营单位应当在设施试运行或试生产前向市、县级主管部门报告。市、县级主管部门接到报告后,正式启动对市政污水处理与污泥处理处置设施运行的监督管理。第十四条 运营单位应当加强应急管理,制定安全管理制度和各类突发事件应急预案,保障应急物资储备,定期组织应急演练。遇突发情况应及时启动应急预案,并按程序上报。污水处理应急预案应当包括进出水水质异常、水量超负荷、有限空间作业、关键设备应急抢修、药品泄漏、污泥暂存等方面内容。污泥处理处置应急预案应当包括泥质异常、关键设备应急抢修、重污染天气应急响应等方面内容。第十五条 污泥运输、处置等应当执行污泥转运联单制度,城市市政污水处理设施运营单位将记录的联单于每季度末上报当地主管部门。鼓励对污泥的产生、运输和处置等环节实施在线监控。第十六条 跨地级市(含定州、辛集市,雄安新区)转移污泥的运营单位要提前向本地排水主管部门报告,报送污泥跨市转移计划(包括转移时间、运输路线、接收单位基本情况、污泥处理处置方案等),污泥产生地与接收地排水主管部门及时做好信息共享。污泥接收单位应当每季度末向当地排水主管部门报送污泥转运联单。污泥产生地和接收地排水主管部门应当以污泥泥质及转出、转入情况为重点,共同做好监督管理工作。第一节 城市市政污水处理设施运行要求第十七条 污水处理设施运营单位应当推行智慧化运行管理系统建设,结合实际情况与城市排水主管部门监管平台联网。第十八条 污水处理设施运营单位不得擅自停运污水处理设施,要对收集到的污水全部进行处理,严禁对设计处理能力范围内的污水未经处理直接排放。因构筑物、建筑物和设备老化需检修、维护的,应当合理安排检修。第十九条 污水处理设施运营单位应当加强传染性疾病疫情防控,认真执行厂区内消毒、杀菌要求,保障从业人员安全。结合实际情况加大进厂水、出厂水有关指标检测频次,做好出厂水消毒杀菌工作。第二节 污泥处理处置设施运行要求第二十条 污泥处理处置设施运营单位应当依法取得环境影响评价批复,具备污泥处理处置能力和污染防治能力,并经环保验收合格。第二十一条 污泥处理处置设施运营单位应当建立完备的检测、记录、存档和报告制度,对处理处置后的污泥及其副产物的去向、用途、用量等进行跟踪记录,相关资料至少保存五年。任何单位不得擅自倾倒、堆放、丢弃、遗撒污泥。污水处理设施运营单位(污泥产生单位)应当定期掌握污泥处理处置情况,发现存在违规处置污泥等问题及时向当地排水主管部门、生态环境部门报告。污泥处置设施运营单位应当安全处置污泥,并每月向当地排水主管部门、生态环境部门报告污泥处置量。第二十二条 运营单位应当按照“一车一计量”的原则对转运污泥逐车计量,按约定时间、线路、地点运输污泥。第四章 考核评价第二十三条 各级城市排水主管部门负责依据我省《城镇污水处理厂运行评价标准》和《城市市政污水处理厂污泥处理处置评价标准》(以下简称“两个标准”),对本辖区内已投运的城市市政污水处理运营单位和承担污泥处理处置任务的污泥处理处置设施运营单位进行考核评价。第二十四条 考核评价工作实行分级负责制,每年组织开展一次,采用审阅材料、现场检查等方式进行。县级排水主管部门每年1月底前,按照两个标准相关内容对辖区内考核对象进行全覆盖考核评价。市级排水主管部门结合“双随机、一公开”工作,每年4月底前对辖区内考核对象进行抽查考核评价,抽查比例不低于40%,重点考核运营单位资格能力、设施设备、制度建设、学习培训、档案管理、安全管理(应急管理)、达标情况等底线内容。省住房城乡建设厅结合“双随机、一公开”工作,每年8月底前对辖区内考核对象进行抽查考核评价,抽查比例不低于20%,重点考核运营单位工艺设计、运行水平、应急管理等导向内容。第二十五条 省住房城乡建设厅依据市、县级排水主管部门考核评价结果和现场抽查情况,确定运营单位星级,全省通报。对未达到星级评定标准的,责令限期整改,整改后依旧未达到星级评定标准的,认定为不达标。不达标的污泥处置设施运营单位在问题整改完成前原则上不能再接收处置污泥。运营单位考核评价结果与省级园林城市(县城)、节水型城市创建挂钩。第五章 附 则第二十六条 本办法中污泥处理设施运营单位,是指对污泥采取浓缩、调理均质、污泥脱水及稳定等工艺进行处理,使污泥达到减量化、稳定化的单位。污泥处置设施运营单位,是指对污泥采取焚烧、堆肥、建材利用等方式进行处置,使污泥达到无害化、资源化的单位。第二十七条 本办法中重大事件,是指市本级10万立方米/日及以上规模的城市污水处理厂长时间连续直排污水,或相应的污泥随意倾倒造成严重污染,或造成10人以上死亡,或50人以上中毒(重伤),或5000万元以上直接经济损失的。较大事件是指,市本级污水处理厂直排污水,或县级5万立方米/日及以上规模的城市污水处理厂长时间连续直排污水,或相应的污泥随意倾倒造成污染,或造成3人以上10人以下死亡,或10人以上50人以下中毒(重伤),或1000万元以上5000万元以下直接经济损失的。一般事件是指县级污水处理厂直排污水,或相应的污泥随意倾倒,或造成3人以下死亡,或10人以下中毒(重伤),或1000万元以下直接经济损失的。第二十八条 本办法自印发之日起施行,有效期5年。附:原文链接http://zfcxjst.hebei.gov.cn/hbzjt/ztzl/jj/zjmsgc/zcwj/101690615917983.html
  • 【案例】innoLev 400超声波污泥界面仪现场安装案例-田集发电厂
    安装时间:2020年1月安装地点:淮沪煤电有限公司田集发电厂仪表品牌:Jensprima(杰普)仪表类型:innoLev 400超声波污泥界面仪 田集电厂是国家电力投资集团公司上海电力股份有限公司和淮南矿业(集团)有限责任公司双方均股投资建设,采用“煤电一体化”模式经营的坑口电站,是“皖电东送”的首选项目,也是我国第一个建成投产的两淮亿吨级大型煤电基地的主力电厂,4台机组所发电量全部通过淮南至上海1000千伏特高压交流输电线路送往华东地区。规划容量4×600MW燃煤机组并预留扩建场地,配套建设一对设计年产500万吨的丁集煤矿。田集一期建设容量2×630 MW国产超临界燃煤发电机组,分别于2007年7月26日和10月15日投产。一期工程自投产以来,先后荣膺“中国建筑工程鲁班奖”,“改革开放35周年百项经典暨精品工程”。1号、2号机组多次荣获“全国发电机组供电煤耗标杆先进值”机组,“全国600MW火力发电机组可靠性金牌机组”称号等荣誉。 田集二期建设容量2×660 MW国产超超临界燃煤发电机组,于2012年8月18日开工建设,3号、4号机组分别于2013年12月22日、2014年4月28日投产。二期工程定位是创“国优金奖”。采用先进的27MPa/600℃/620℃的装机方案,是目前国内乃至世界首次采用再热蒸汽温度达到623摄氏度的60万千瓦级超超临界π型燃煤锅炉,代表了当前世界上60万千瓦等级火电机组的最高参数技术水平。 innoLev 400超声波泥位计用于各种沉淀池的泥位测量,通过超声波回波处理和先进的算法来锁定真正的污泥界面水平,并忽略漂浮的固体颗粒和碎布层的影响。超声波传感器安装在水面下方,直接指向水池底部。 使用一个简单的3键键盘来输入探头至池底的高度,innoLev 400会自动完成其余部分的高级回波处理和信号增益调整。标配4-20mA信号和继电器输出,可选配自动清洗装置。 应用:用于监控和控制沉降池中的泥位,广泛用于工业废水/污水处理厂沉淀池。 此案例由杰普公司售后服务技术部提供,在此感谢用户现场技术人员及代理商的支持和配合。杰普公司(上海)有限公司是一家专注水测量领域的,集专业为客户提供在线水质测仪器研发、组装、销售和服务一体的创新型公司,专业为客户提供在线水质测量解决方案,亦可为客户提供量身定制的解决方案量解决方案,亦可为客户提供量身定制的解决方案。 售后服务部:陈工、曹工 2020年02月20日
  • 10万美元赏金!好氧颗粒污泥还能治微塑料污染?
    上个月,美国水研究基金会(WRF)公布了其2022年度Paul L. Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的Belinda Sturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席Paul Busch命名,以纪念他对水处理的卓越贡献,获奖者多为正值当年的水业研究学者。获奖之余,Sturm教授还获得了10万美元的研究奖金。她将用这笔经费评估好氧颗粒污泥如何影响污水中的病原体和微塑料的去除效果。最近几年,欧美水圈出现了越来越多污水厂用低成本完成主流好氧颗粒污泥工艺(AGS)的升级改造。例如小编此前在专栏里介绍的瑞士Glarnerland污水厂的案例,又或者是2020年美国水环境联盟(WEF)的杰出项目奖(Project Excellence Award)的得主科罗拉多的Pueblo城的污水处理厂,该厂据称用不到200万美元打造了一套在传统活性污泥工艺中养出AGS的自控系统。这些案例的产出,是相关研究进展的成果,其中的代表文章是今年1月,著名学术期刊《Science》刊登的题为《Intensifying existing urban wastewater》的文章。作者是大家熟知的TU Delft的Mark van Loosdrecht教授以及西雅图华盛顿大学的Mari Winkler(2015年的PLB奖得主),他们介绍了AGS技术优势、应用现状以及未来对连续流AGS技术的研发设想。其中传达的一个重要信息就是——现有的活性污泥法污水厂无需扩建,或许只需要增设一个选择分离器,就能完成好氧颗粒污泥的原位改造,不仅能提高污水厂的处理能力,还为日后打造水资源回收工厂奠定基础。Belinda Sturm教授则认为,如果能进一步加深对AGS原理的认识,也许我们还能发觉出它在去除病原体和微塑料方面的应用潜力。关于重力的研究Belinda Sturm目前是美国堪萨斯大学土木、环境与建筑工程系的教授,曾担任各种创新研究项目的首席研究员,包括一些 WRF 项目。在她攻读博士学位的时候,就开始研究好氧活性污泥(AGS)。从那以后,她逐渐成为AGS研究的领先者之一。在此,小编强烈推荐大家阅读一下她在2020年做过的报告:她在报告中指出,好氧颗粒污泥工艺的应用进展是五十多年来污水处理研究人员对活性污泥的沉降性能的持续研究的成果。她也在报告中用大字标题指出——活性污泥的致密化是提高污水厂处理能力的关键所在(Densifying Activated Sludge Is Key to Increasing Capacity at WRRFs)。更大的潜力Sturm教授表示:“水质研究的最大成就,是将知识用于实践,并为社会创造更安全的水环境。我很荣幸获得Paul L. Busch奖,这将使我能够与公用事业合作伙伴合作探索新的研究应用。我相信创新需要通过这些合作得以实现,我感谢水研究基金会提供这个平台。”Sturm教授将利用PLB奖的10万美元奖金,开展题为“设计好氧颗粒系统的反应表面以去除污染物和病原体(Engineering the Reactive Surface of Aerobic Granular Systems for Contaminant and Pathogen Removal)”的研究项目,进一步了解 AGS 生物膜的基础特性,从而如何优化病原体和微塑料的去除。她正在与堪萨斯州劳伦斯城和科罗拉多州丹佛市的污水处理厂合作,考察好氧颗粒污泥生物膜中的原生动物(protozoa)对除病原体的效果,以及微塑料在好氧颗粒污泥颗粒的吸附情况。Sturm教授认为,这项研究将有助于进一步加深我们对活性污泥生物膜的基础特性的认识,最终促进污水处理厂的出水水质。正如上边提到的,Sturm教授除了这个研究项目,她还参与着一个更大的项目,就是和美国两家污水处理咨询公司Brown & Caldwell和Black & Veatch,一起研究低溶解氧的生物脱氮除磷系统。这个项目的参与者之一,Black & Veatch的首席工艺工程师Leon Downing最近也在行业某杂志上发表题为《When Density is Desirable》的文章,总结了活性污泥致密化的关键因素。这个研究团队将继续探索低溶解氧条件下的生物脱氮除磷的管理方法,阐明工艺机制,协助水务公司制定决策树,编写设计/运行/建模指南。该项目预计在2024年完成,届时小编会为读者带来项目的最新进展。
  • 广东佛山数百人戴口罩"巡游" 反对污泥焚烧
    核心提示  备受关注的南海区江南发电厂欲建污泥焚烧项目遭“邻居”高明区市民反对一事,再度掀起波澜。昨日,高明区网友、市民,以及南海区西樵镇市民等自发聚集在一起,以建议当地政府加强西江规划协调、保护并改善西江高明段两岸环境为目的,开展了“戴口罩巡游活动”。此次活动人数达400多人,巡游时,市民高呼 “保卫家园、反对污染”等口号,以表达对西江沿岸环境问题的关注和期望。  此前高明区区长潘志文透露,已经就江南发电厂污泥焚烧项目致函南海区政府,希望南海区政府尊重高明意见,“如果该项目环评不合格,高明区将坚决反对该项目的上马。”  昨日记者获悉,南海区已经发函回应,承诺“审批时将会依法依程序与高明区进行协商,若协商未能达成共识,将报市政府或上级主管部门审定。”  南海江南发电厂欲上马污泥焚烧项目,此事引起高明市民以及关注环境保护的市民的反对,连日来,在佛山本地的各大论坛上,有网民发出号召,计划在昨日采取“散步”形式,表达对高明城区周边“电厂围城”形势的担忧。  发出数百个口罩  队伍最长时超百米  昨日下午1时许,空中不时飘洒着细雨,高明市民刘先生冒雨走在人群中。“我看到有组织者说24日将举行这个活动,于是我便报了名。”有网友在论坛上透露,通过论坛信件等各种方式报名的市民已经达到数百人的规模。  1时10分,在约定的集合点——高明区物业广场前,已经开始聚集起了一批人群。其中几名戴着蓝色口罩、貌似组织者的市民还搬来桌子,在街边人行道上负责分发传单、口罩以及自制的标语牌。  1时30分左右,巡游正式开始。由于沿途不断有人加入、汇合,参加人数也在不断扩大。记者在现场看到,巡游队伍最长时超过百米,粗略估计有数百人。活动组织者表示,带来的几百个口罩已经分发得所剩无几。  巡游队伍组织有序  警方出动维持秩序  尽管人群庞大,但巡游队伍组织有序,仅仅占据了一个方向的车道,进入文昌路,前往世纪广场。一路上,全副武装的警员在巡游队伍两侧维持秩序,但由于现场组织得当,更多时候警方只是在疏导队伍前方的车流。为保证巡游人员的安全,交警部门临时封闭了巡游队伍需要经过的部分路段。  巡游队伍高呼“保卫家园、反对污染!”“反对垃圾焚烧!”等口号前进,约半小时后,队伍聚集在世纪广场,展示了此前征集的市民签名等材料,随后向西江对岸的南海发电一厂进发。巡游队伍走上高明大桥,来到南海发电一厂大门前,再次呼喊口号,而此时工厂内高高耸立的烟囱正喷出白烟。此时,不少南海西樵的市民也加入了队伍。  下午4时30分左右,活动按照计划结束,人群开始散去。刘先生在离去时显得心情愉快,“我们只是希望通过这样一个渠道,表达自己的想法,如今这个目的达到了,我们希望政府能马上有实质性的动作。”  网民制作flash  给参加巡游者“打气”  记者了解到,此次巡游活动的发起者来自网络论坛以及部分民间人士。江南发电厂欲上马污泥焚烧项目事件经媒体报道后,立即在本地各大论坛上产生了极大的影响。此次巡游,网络论坛也是重要的推动力量。  前日晚,记者看到高明某论坛上已经有网民制作了flash,“目的是给参加活动的高明人打气”,制作者在flash中历数了高明城区周围数座电厂的种种危害,并鼓励参加者勇敢表达自己的诉求,此外,也有不少网友特别制作了视频短片等,表达了自己对活动的支持。  昨日下午,在巡游结束后,关于该活动的帖子一度占据了高明各大论坛的首要位置,网民们也纷纷顶贴,表达自己的看法。不少市民因没有参加而感到遗憾,网友 “让梦飞翔”称在看到巡游照片后,“都好振奋,各位辛苦了,可惜我今天要上班,如果唔系,我都会参加!”理性的市民则已经在分析巡游带来的反思,网友 dilly称,“在维护自己生存权益的同时,也请履行自己保护环境的义务!”  网友“愿者上钩”的看法也得到了大家的一致赞同,“今天的行动只是想有表达大众心声的效果……希望大家都要有理性和恒久之心。”  事件经过:  网络披露:  项目未征集高明区意见  今年1月,南海区江南发电厂欲建污泥焚烧项目一事经媒体及网络披露后,引起了南海区西樵镇和高明区两地市民的强烈反对。  期间,不少市民通过各种方式,向有关部门和单位反映意见、提出质疑,同时要求该项目停止申报。而在媒体调查中,因为该项目环评报告未征集高明区意见,也遭到了该区的质疑。  高明放话:  环评不合格  坚决反对其上马  对此,高明区政府高度重视,并致函南海区政府。在1月19日召开的高明区委十届七次全会上,高明区区长潘志文表示,高明区在致函中提出,“希望南海区政府尊重高明意见,慎重审批这个项目,同时高明区也会加大与南海区的沟通与协调。如果该项目环评不合格,高明区坚决反对其上马。”  市环保局:  两区意见不统一  项目审批将由市局进行  1月20日下午,佛山市环保局也就该项目情况召开新闻通气会,向媒体就有关问题做出了情况说明,并表示在项目审批过程中,若高明区环保部门持不同意见,将把该项目审批提请至市环保部门进行审批,市环保局将依据环境影响评价结论,并综合考虑各方意见,依法依规审批。  南海回复:  将依法与高明区协商  1月22日晚,高明区政府网络发言人在“致广大市民、网民的一封信”中,称南海区已经发函回应高明区政府,承诺该项目“审批时将会依法依程序与高明区进行协商,若协商未能达成共识,将报市政府或上级主管部门审定。”  发言人还强调,对污染项目,高明区政府态度向来是坚决反对的,绝不会以高明的未来和广大市民的健康作为代价。
  • 涡动相关法测量农田污泥施肥后氨气挥发扩散动态变化
    Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north ItalyRossana Monica Ferraraa, Marco Carozzib,*, Paul Di Tommasic, David D. Nelsond, Gerardo Fratinie, Teresa Bertolinif, Vincenzo Magliuloc, Marco Acutisg, Gianfranco Ranaaa Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani 5, 70125 Bari, Italy b INRA, INRA-AgroParisTech, UMR 1402 ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, 78850 Thiverval-Grignon, Francec National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems (CNR-ISAFoM), 80056 Ercolano, Italy d Aerodyne Research Inc., Billerica, MA 01821, United States e LI-COR Biosciences GmbH, Siemens Str. 25a, 61352 Bad Homburg, Germany f Euro-Mediterranean Center on Climate Change (CMCC), Via Augusto Imperatore 16, 73100 Lecce, Italy g University of Milan, Department of Agricultural and Environmental Sciences, via G. Celoria 2, 20133 Milan, Italy摘要2009和2011年春在意大利北部农田两次测量污泥施肥后氨气排放扩散试验,从施肥、耕地作业至排放现象结束用窝动相关法EC测量氨气通量变化。涡动相关法系统配备Aerodyne氨气快速测量仪能持续监测施肥后氨气挥发情况,分别在24h和30h后耕地作业监测到氨气挥发量突然降低。其中两次试验最大氨气排放为138.3和243.5ugm-2s-1,施肥7天后NH4-N总损失为19.4%和28.5%。试验发现涡动相关法和反向拉格朗日随机模型在动态排放量化结果一致,同时由于排放扩散和气象条件关系因素造成两次试验氨损失不同。结果表明为了提高施肥后氮效率耕地作业最好接近24h内进行,气候条件限制氨气排放(如多云、低温)。概述氨气在气候化学和许多与之相关排放和沉降环境问题扮演重要角色。在欧盟27个成员国中90%氨气来源农业肥料的储存和扩散,畜牧业和合成肥料使用。评估施肥作业中氨气损失与田野和农场氮平衡关系提高农业氮效率合适技术。试验地点试验地点时间为2009(SI-09)3.9ha和2011(SI-11)4.3位于意大利北部Po Valley,两块试验田相邻且农业管理相近。SI-09试验时间为2009.3.26-4.3污泥施肥为87m3/ha,8:00am开始,24h后耕地作业深25cm,持续时间分别为7和1.5h,氨态氮总量为95kg/ha NH4-N。SI-11试验时间为2011.4.6-4.13污泥施肥为75m3/ha,8:30am开始,30h后耕地作业深25cm,持续时间分别为5和2h,氨态氮总量为109kg/ha NH4-N。测量方法01两种氨气浓度测量方法ALPHA被动式扩散采样器位于逆风向距离试验田2.3km测量氨气环境背景值,柠檬酸滤纸捕获氨气比色法测量,。Aerodyne QC-TILDAS氨气快速分析仪监测分子在967cm-1处对辐射的吸收测量每摩尔湿空气摩尔氨气,为了保证数据可靠性每6h用标准化氨气罐进行自动校正。02涡动相关法(EC)测量氨气通量把垂直方向的瞬时风速和氨气浓度的协方差定义为氨气垂直方向通量,采样间隔为30分钟,并考虑到空气密度改变WPL对其结果的影响,WPL作用通常取决于气体背景浓度和通量的等级。EC系统放置在试验田中间,离边界SI-09为78m和SI-11为93m,配备Gill-R2 Sonic Anemometer三维声波风速仪和Aerodyne QC-TILDAS氨气浓度测量仪, 模拟信号从QC-TILDAS传导至Sonic Anemometer,通过EddySoft 软件同时将模拟信号和风速数据进行整合,使用EddyPro软件线下计算每半小时氨气通量。在湍流通量计算失效后系统对试验数据自动进行筛选,同时由于EC系统光谱衰减不可避免性使用频率响应修正系数法对通量损失进行校准。03分散模型反向拉格朗日随机模型(bLS)推测氨气的扩散,使用三维声波风速仪的湍流参数u*,L和Aerodyne QC-TILDAS测量的氨气浓度,ALPHA背景浓度值结合GPS记录排放源区进行建模。数据分析01气象数据对SI-09和SI-11气象数据和微气候数据进行整理(雨量、温度、湿度、风速、太阳辐射、摩擦速度u*和稳定参数z/L)对比,总体SI-09比SI-11气候条件更稳定不利于氨气扩散。02通量源区SI-09试验中白天和晚上89和87%通量来源于试验田中,在SI-11试验中白天和晚上96和94%通量来源于试验田中。SI-09白天(40m比61m)和晚上(76m比164m)的通量源区最大峰值都小于SI-11,主要归结于SI-11更高的大气稳定性。03氨气浓度和氨气通量氨气浓度分析:如图Fig.6由ALPHA被动式采样器和Aerodyne QC-TILDAS测量氨气浓度对比结果看出两种测量结果趋势相似,证实了采集数据的有效性,SI-09和SI-11的RMSE为114.3和102.5ugNH3m-3,R2为0.89和0.9,斜率为1.21和0.95,CRM为-0.04和-0.06。在SI-09中ALPHA和QC-TILDAS浓度有明显差别,周围环境条件是实质因素如高湿度97.7%、低温11.7℃和低风速0.88m/s。氨气通量分析:如图Fig7a-d显示两次试验氨气浓度值和通量表以及空气土表温度湿度总辐射和降雨量。两次试验氨气通量巨大差异主要由于天气条件,特别是SI-11空气温度比SI-09高有利于挥发,同时SI-09降雨和空气温度降低减少了氨气挥发;虽然两次试验耕地作业时间不同,但从标准化氨气累计损失看时间动态非常相似,天气条件是影响氨气浓度和通量主要因素。下图Fig.9显示EC系统和bLS对两次试验通量对比,bLS对于SI-09通量数值稍有高估,对于SI-11有些低估。但显出两种试验方法在两次试验的一致性。结论Aerodyne QC-TILDAS气体监测仪在测量粘性气体NH3优势原理:Aerodyne痕量温室气体&同位素气体监测仪使用可调谐红外激光直接吸收光谱(TILDAS),在中红红外波长段,来探测分子最显著的指纹跃迁频率。直接吸收光谱法,可以实现痕量气体浓度的快速测量(1s);采用像散型多光程吸收池技术实现激光可控通道数大于200个,有效测量光程可达76m甚至更长,有效的提高氨气分子的测量精度。NH3、HONO等粘性分子测量优势:粘性气体NH3化学性质活跃,粘性非常大,易于附着在器壁或固体颗粒上,且其易于在气相和颗粒相之间相互转化,这些特性造成了其测量的困难性。★测量精度为ppt级 1S 100SNH3 50ppt 10pptHONO 210 ppt 75 ppt★活性钝化系统(Aerodyne Active Passivation system),提高粘性分子的响应时间,且对高频10HZ测量有着很小的损失量(如图)采用活性钝化系统后,NH3测量的时间常数和高频通量变化(时间常数更快,高频通量损失修正更少)★惰性颗粒分离装置(Aerodyne Inertial Inlet),有效减小颗粒对粘性分子的影响,保证进样口及内部镜片的整洁★特殊渗透管路(permeation tube),减小管路壁的黏着,并有效减小管路中的水凝结及压力★针对全自动动态箱测量,采用特殊telflon材料,具备critical orifice装置,多通路同时进气,并采取气压式控制方式,降低能耗。★采用全新中红外光谱范围,可以测量更多分子,并保证精度,如NH3、O3和CO2;HONO、N2O可在一个激光下测得,如果采用双激光,可测量更多的气体分子。★与普通气体分子具备一致的快速响应时间(10HZ)★适配于涡度协方差测量和全自动箱自动测量,并可通过独特采样系统实现自由切换。活性钝化系统 Aerodyne 双激光直接吸收法分析仪在N2O、NH3、HONO、COS等痕量温室气体及含N同位素气体δ15Nα /δ15Nβ /δ18O;含C同位素气体δ13C/δ18O、H16OH/H18OH/H16O;12C17O16O/13C18O16O 及δ13C/δD/CH4 的应用文献和观测方案,请来电垂询。
  • naica®微滴芯片数字PCR系统应用于废水处理污泥中新冠病毒SARS-CoV-2载量监测
    导读自2019年底新冠肺炎疫情爆发以来,已经在人类粪便和城市废水中广泛检测到SARS-CoV-2。新冠病人的粪便可以重复检测到SARS-CoV-2 RNA(有时甚至在呼吸道样本已经检测不到的情况下),并且与疾病的临床严重程度无关。在多个国家的城市废水中也广泛检测到SARS-CoV2 RNA,但检测到的浓度比人的粪便低几个数量级。未经处理的废水中SARS-CoV-2 RNA的存在导致了基于废水的流行病学(WBE)的发展,以早期检测社区新型冠状病毒肺炎的传播,这也引起了人们对废水处理(WWT)过程尤其是在其终产物WWT污泥中SARS-CoV-2的命运以及相关风险的关注。法国巴黎地区跨省废水处理工会(SIAAP)和巴黎萨克莱大学的科学家在Environmental Research发表了题为Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion的文章。文中应用naica®微滴芯片数字PCR系统对WWT污泥中SARS-CoV-2进行绝对定量,为持续监测WWT污泥中的新冠病毒载量提供了具有应用价值的检测方法。应用亮点:▶ 使用naica®微滴芯片数字PCR系统开发了一种快速、直观、简便的WWT污泥中SARS-CoV-2绝对定量的方法。▶ naica®微滴芯片数字PCR系统可以实时监测高热厌氧消化后WWT污泥中SARS-CoV-2载量,不受抑制剂影响,特别适合低浓度,低丰度样本。实验方法:作者采集了不同的废水处理厂的新鲜污泥,研究WWT污泥在储存 (4℃、室温) 或高热厌氧(AD)消化 (50℃)后SARS-CoV-2稳定性。部分污泥中掺入了新型冠状病毒肺炎患者中分离出的SARS-CoV-2颗粒和/或BCoV(牛冠状病毒)作为加标对照。作者通过RT-qPCR测定了新鲜WWT污泥在4℃和室温条件下SARS-CoV-2颗粒RNA的载量。为了降低可能含有的PCR抑制剂对样品中SARS-CoV-2检测的影响,作者使用灵敏度更高的naica®微滴芯片数字PCR系统,持续监测高热厌氧消化5天过程中SARS-CoV-2颗粒的RNA水平。实验结果:新鲜WWT污泥在4℃ 55天和20℃左右环境温度25天储存条件下SARS-CoV-2颗粒的RNA的载量维持在一个相对稳定的水平。但在高热厌氧消化过程中,SARS-CoV-2和BCoV RNA水平迅速下降,持续5天处理后最终水平接近检测极限。▲图1 部分污泥中掺入了新型冠状病毒肺炎患者中分离出的SARS-CoV-2颗粒和/或BCoV(牛冠状病毒)作为加标对照。该图展示了加标或未加标的新鲜 WWT 污泥在高热厌氧消化过程中SARS-CoV-2和BCoV RNA 水平的动态变化。为了降低可能含有的PCR抑制剂对样品中SARS-CoV-2检测的影响,作者使用抑制剂耐受能力更佳的naica®微滴芯片数字PCR系统来检测高热厌氧消化过程中的SARS-CoV-2水平。GU/g:厌氧消化反应器样品中每克含有的基因组单位。期刊介绍:Environmental Research创刊于1967年,隶属于爱思唯尔出版集团。该杂志的主要发表评估化学品和微生物污染对人类健康影响的文章,2022年影响因子8.431,JCR分区为Q1。参考文献:1.Adelodun B, Kumar P, Odey G, et al. A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geosci, 2022, 101373.2.Ahmed W, Bertsch P M, Bibby K, et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ, 2020a, 191, 110092.
  • 弗尔德参加2013第四届高难度工业污水处理及污泥处置技术研讨会
    继成功举办三届高难度工业污水处理及污泥处置技术研讨会后,在中国环保产业协会的支持下,11月28日-29日谷腾环保网继续倾情打造 “2013’第四届高难度工业污水处理及污泥处置技术研讨会”。此次会议在北京金辉国际商务会议大酒店三层报告厅举办,分析重点行业污水处理难题,发掘先进、实用技术,促进工业污水及污泥处理处置技术创新。 大会现场论坛重点邀请了环保工程公司、设备供应商、材料供应商,水处理化学制品生产企业,环保科研院所,制药、制革、电镀、蓄电池、再生铅、纺织印染、造纸等产生难处理废水的工业企业,相关行业协会的行业代表,相关部门领导和专家学者,国内外最优秀的水处理及污泥处理处置工程技术人员探讨交流,通过现场演讲和圆桌讨论的方式,探讨行业难题,解决实际问题,推动环保技术的创新。 弗尔德技术工程师黄云明先生就弗尔德容积式泵做精彩报告弗尔德公司技术工程师黄云明先生就高浓度污水污泥的处理方法做了大会报告,简单介绍了Verder(弗尔德)公司的历史及发展,Verder(弗尔德)泵品牌创立于1959年,隶属于Liquids Division(流体事业部门),是欧洲最大的容积式泵生产厂家和配套供应商,主要产品为Verderair气动隔膜泵、Verderair Pure 新一代电子级气动隔膜泵、Verderflex软管泵、蠕动泵、Verdergear齿轮泵等,在环保、水处理、电子、半导体、食品、冶金、造纸、化工、制药行业享有很高的知名度。弗尔德携部分样机展示并交流接着对VERDERAIR气动隔膜泵的应用以及VERDERAIR PURE电子级气动隔膜泵的推广做了介绍,从不同的角度做出了细致比较,让在场的专家及老师们感受到弗尔德泵的特点和优势。最后做关于VERDERFLEX软管泵的应用与推广介绍,软管泵这几年在中国的成功运用,使得许多客户真实感受到了软管泵这一新兴泵送技术是解决传统泵送难题的有效方法。相比较于传统的离心泵、螺杆泵,VERDERFLEX软管泵可以泵送高含固量、高密度、高腐蚀性介质,软管更换方便,后期维护费用低。详细资料可浏览Verder(弗尔德)中文网站www.verder.cn 如您对上述各产品有兴趣,可联系我们:弗尔德莱驰(上海)贸易有限公司上海张江高科技园区毕升路299弄富海商务苑(一期)8栋邮编:201204电话:+86 21 33932950传真:+86 21 33932955邮箱:info@verder-group.cn 弗尔德莱驰北京办事处北京海淀区苏州街29号院18号楼维亚大厦608室邮编:100080电话:+86 10 82608745传真:+86 10 82608766 弗尔德莱驰广州办事处广州市天河区华庭路4号富力天河商务大厦905室邮编:510610电话:+86 20 85507317传真:+86 20 85507503
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制