当前位置: 仪器信息网 > 行业主题 > >

增强软管

仪器信息网增强软管专题为您提供2024年最新增强软管价格报价、厂家品牌的相关信息, 包括增强软管参数、型号等,不管是国产,还是进口品牌的增强软管您都可以在这里找到。 除此之外,仪器信息网还免费为您整合增强软管相关的耗材配件、试剂标物,还有增强软管相关的最新资讯、资料,以及增强软管相关的解决方案。

增强软管相关的资讯

  • 名优发布MRU 增强型烟气分析仪 VARIO plus-new新品
    增强型烟气分析仪VARIOplus-new适用于工业燃烧、大型锅炉、汽轮机、内燃机和加热炉等燃烧器能效和污染排放的长期连续测试。复合了红外和可电化学测量原理,测量参数选择灵活多样特别适合用于各种污染源的低浓度排放测量可选择各种重要的接口,比如ethernet(互联网)、WLAN(无线局域网)、蓝牙、USB、RS485和8通道4-20mA模拟输出可通过互联网、无线网查看和传输测量结果、实现远程故障诊断。VARIOplus-new烟气分析仪复合了红外和电化学气体测量原理,在测量参数选择上具有极大地选择灵活性。仪器采用Linux操作系统,大彩色显示屏操作模式像智能手机一样,显示界面直观、灵活,可触摸、滑屏操作;同时仪器可选择不同的数据通讯接口。可通过安装有MRU4uAPP的智能终端远程控制仪器和传输测量结果,主机类似一台计算机,可通过互联网远程查看和传输测量结果,可浏览网站,可上载用户开发的APP等。特点和功能:采用Linux操作系统,7 " (800X840像素)彩色显示屏,直观的触摸和滑屏操作技术氧气测量采用长寿命电化学传感器或顺磁氧传感器高效集成帕尔贴制冷器,蠕动泵自动排放冷凝水自动检测仪器的硬件和软件功能长期连续测量时,可按用户设定的时间间隔,自动进行零点校准自动测量程序,可按设定的时间间隔自动存储测量结果图表化的数据,借助USB或互联网,可将CSV或PDF格式的文件发送到PC机8路4-20mA模拟输出;4路4-20mA模拟信号输入;通用AUX扩展口,可连接“k”型热电偶和带0-10V、4-20mA和RS485输出的外部仪器标准燃烧和排放参数计算齐全的燃料列表,包含用户自定义燃料烟气温度和环境温度测量,差压测量专用样气排放口,可连接软管将废气远排48Wh锂离子电池待机创新点:增强型烟气分析仪VARIOplus-new适用于工业燃烧、大型锅炉、汽轮机、内燃机和加热炉等燃烧器能效和污染排放的长期连续测试。复合了红外和可电化学测量原理,测量参数选择灵活多样特别适合用于各种污染源的低浓度排放测量可选择各种重要的接口,比如ethernet(互联网)、WLAN(无线局域网)、蓝牙、USB、RS485和8通道4-20mA模拟输出可通过互联网、无线网查看和传输测量结果、实现远程故障诊断MRU 增强型烟气分析仪 VARIO plus-new
  • 来亨公司 质优价廉 Tygon系列软管
    北京来亨公司强力推出实验室高品质耗材--Tygon系列软管详情请登陆我公司网站:www.laiheng.com 联系方式:010-63847795/ 63843373/ 63815585法国圣戈班高功能塑料公司生产的,Tygon系列软管,广泛适用于制药、医疗、实验室、食品及饮料等行业。能够满足各种对软管在工作温度、耐磨性、抗化学腐蚀性、气密性等多方面的要求。只要用户需要购买软管,就一定能从品种齐全的Tygon系列软管中选择出最符合用户需要的产品。 产品分类简介(每种均有各种不同直径): 理化分析仪器用软管:Tygon R-363 可耐几乎所有的实验室中常用的无机化学品;柔软、透明、不易老化及脆裂,气密性比橡胶管好;耐低温性出色,在-43℃使用仍可保持柔韧。可作为冷凝器、培养箱、气管、排水管等实验室用软管,以及蠕动泵管。 真空泵管:Tygon R-363 Vacuum 具有质密超厚管壁,真空度可达759mm Hg/23℃至686 mm Hg/60℃;可耐真空泵油及大部分无机化合物,不易老化。其蒸汽压低,允许最小真空度为3×10-2 mm Hg/74℃,适用于气体、蒸汽的分析测试。 耐强腐蚀用软管:Fluran F-5500-A 可耐绝大部分强酸、强碱、燃油,有机溶剂等;可在最高204℃环境下长期使用;具有很强的耐臭氧几耐侯性;弹性、柔韧性出色,是输送强腐蚀介质用的理想的蠕动泵管。 特氟隆软管:Chemfluor PTFE/PFA/FEP 是专为半导体、实验室、化工等行业提供的;纯度高、内表面光滑、抗各类强腐蚀性化学品尤其出众、可耐高温、无毒无味;有PTFE、FEP、PFA可供选择。 卫生级硅胶管:Tygon 3350 白金硫化的卫生级硅胶管;疏水性内表面,提高流动性;内壁极其光滑、吸附性低,析出物极低,生物相容性可达ISO10993标准符合美国USP Class VI,FDA及NSF相关标准。 卫生级耐压硅胶管:Tygon 3370 I.B. 白金硫化的卫生级耐压硅胶管;生物相容性极好、内表面极其光滑,专为压力下输送敏感性介质而设计;符合USP Class VI,FDA及NSF相关标准;与TygopureTM卫生级接头配合使用,广泛应用于CIP、SIP系统及制药、生物技术、化妆品制造等行业。 生物配料、细胞研究用蠕动泵管:PharMed 可在蠕动泵上长时间使用,寿命比硅胶管长30倍。可重复高温高压灭菌消毒;符合美国USP Class VI,FDA及NSF相关标准;起生物相溶性可达ISO10993标准;气密性比硅胶管强60倍。 长寿命、透明蠕动泵管:Tygon LFL 耐磨性是所有Tygon透明软管中最好的,寿命最长的蠕动泵管。符合美国USP Class VI及FDA相关标准;极低的颗粒离度,耐老化、耐腐蚀、安全、无毒,可广泛用于制药、化妆品、食品及饮料制造行业。 食品、饮料、乳制品用软管:Tygon B-4-4X 符合美国FDA,3-A及NSF相关标准,透明无味,光滑内表面,清洗容易,可抑制细菌生长;可耐强碱性清洗剂和消毒液;亦适用于输送含油量高的食品;最大内径可达6”(152mm)。 食品级耐压管:Tygon B-4-4X I.B. 耐压能力是同类非增强型软管的4倍,内表面光滑、无孔、容易清洗,可抑制细菌生长;可耐碱性清洗液;无毒、无味,符合美国FDA,3-A及NSF相关标准。 食品极耐高温软管:Norprene A-60-F 可耐温-51℃至135℃;可重复高温高压消毒;耐大部分通用型清洗剂和消毒剂。比普通橡胶管耐老化,不易脆裂,可用蒸汽消毒;无毒、无味,符合美国FDA,3-A及NSF相关标准;耐磨性出众,亦适用于蠕动泵管。 食品极耐高温、耐压软管:Norprene A-60-F I.B. 耐压、耐高温(-51℃至135℃),耐臭氧及紫外线,使用寿命长;无毒、无味,符合美国FDA,3-A及NSF相关标准;适用于CIP和SIP等清洗、消毒系统。 燃油、润滑油用软管:Tygon F-4040-A 可耐绝大多数石油化工品,不脆裂、不溶胀;抗臭氧及紫外线,不易老化;适用于输送汽油、柴油、加热油,切屑复合油及乙二醇类制冷剂。 绿色环保型软管:Tygon 2275 无增塑剂,纯净度高,符合USP Class VI、FDA及NSF标准及ISO10993生物相溶性标准,焚烧后对环境无污染。 绿色环保型软管:Tygon 2075 能耐腐蚀性强的酸、碱、酮、盐、醇类化学品;无增塑剂,符合USP Class VI标准。
  • 拉曼增强依然“炙手可热”
    仪器信息网讯 无论是国际拉曼大会、第十八届全国分子光谱学学术会议,还是第三届国际拉曼前沿技术高端论坛,拉曼增强(SERS&TERS)都是“炙手可热”的话题。  从第三届国际拉曼前沿技术高端论坛(HORIBA科学仪器事业部与厦门大学固体表面物理化学国家重点实验室共同主办)中获悉,从1974年,有关拉曼增强的第一篇文章开始,SERS基底和方法的研究经历了四十多年的发展历程,目前已经成为拉曼光谱最热门的研究领域。去年8月份,以“SERS”或者“surface enhanced Raman”为关键词搜索,每年的文章达2000多篇,特别是2000年以后,增长速度明显加快。  但就本次会议来说,第一天的会议主题就聚焦SERS&TERS的技术进展。其中,田中群院士在报告中介绍到,现在拉曼在基础研究方面取得了很大的进展,比如单分子成像、亚纳米空间分辨率、飞秒时间分辨等,但是在实际应用中还有不少短板,如复杂体系中的超痕量物质分析、分子之间弱的相互作用等。当然,SERS的引入和方法的开发解决了部分问题,但是目前,如何将SERS用于实际研究并推向市场也面临着一些问题,如基底和材料形貌的普遍性等。  此外,厦门大学任斌教授、关西学院大学(Kwansei Gakuin University) Yukihiro Ozaki教授、韩国化学研究所(Korea Research Institute of Chemical Technology ,KRICT) Yung Doug Suh博士、华东理工大学龙亿涛教授、吉林大学徐抒平教授、北京大学黄岩谊教授、中国科学技术大学董振超教授也分别介绍了各自课题组在拉曼增强研究领域中的最新进展及面临的挑战等。  相关内容见资讯:第三届国际拉曼前沿技术高端论坛在厦门召开。  此外,在海报展区我们也可以发现,30个展板中有一半以上都涉及到了拉曼增强的研究。而且最后评出的三个“优秀海报奖”的论文内容也全部是有关SERS体系的研究。颁奖现场  获奖名单  第一名  姓名:梁丽佳  单位:吉林大学超分子结构与材料国家重点实验室  题目:In situ SERS spectroscopy explored molecular changes of intranuclear.  第二名  姓名:龙婧  单位:上海交通大学密西根学院  题目:Reproducible 1010 electromagnetic SERS enhancement in gold nanosphere-plane junctions under radially polarized laser focusing excitation.  第三名  姓名:单洁洁  单位:厦门大学化学化工学院化学系  题目:Mushroom array with sub-10nm gaps:A Novel SERS Substrate.  关于第三届国际拉曼前沿技术高端论坛(RamanFest)  每年一届的RamanFest由HORIBA科学仪器事业部主办,旨在为拉曼领域的广大学者与研究者提供一个共同探讨新技术及应用的交流平台。前两届分别在法国里尔科技大学、美国哈佛大学举办,2015年,第三届RamanFest来到了厦门大学,主题为SERS/TERS新技术及拉曼光谱在生命科学、材料科学中的热点应用等。
  • 中国科大揭示针尖增强拉曼光谱中的化学增强效应新机制
    近日,中国科学技术大学董振超研究小组在探究针尖增强单分子拉曼光谱的化学增强与猝灭机制方面取得新进展。相关成果以“Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy”为题作为热点文章发表在Angew. Chem. Int. Ed.上。   表面增强拉曼光谱(surface-enhanced Ramanspectroscopy, SERS)具有显著的信号增强特性,能够在单分子尺度提供目标材料丰富的化学指纹信息,因此被广泛应用于物理、化学、材料、生物等领域的物种识别与结构研究。SERS增强机制通常分为两种:局域等离激元场激发产生的物理增强以及分子–金属之间电荷转移诱导的化学增强。物理增强在SERS信号增强中起主导作用,对其电磁场物理增强图像的理解已经比较透彻。化学增强不仅能在物理增强的基础上进一步增强分子拉曼信号,而且往往会对谱型产生影响。然而,尽管经过近半个世纪的大量SERS研究,化学效应对拉曼信号的具体影响机制仍然不够清晰。这主要是因为化学机制比较复杂,跟单个分子与金属表面之间的局域相互作用密切相关,而且其贡献相对较小,并常常与物理增强效应共存,难以分割和评估。存在这些困难在一定程度上是因为SERS技术难以对这种局域相互作用进行精准表征和控制。因此,迫切需要开展局域环境清晰明确的单分子拉曼实验,以便精确调控单个分子的局域化学环境,深入研究化学效应对拉曼信号的影响。   2013年,董振超研究小组首次在超高真空和液氮温度下展示了亚纳米分辨的单分子拉曼成像技术[Nature 498, 82 (2013)],通过针尖局域电磁场调控将具有化学识别能力的光学成像空间分辨率提高到了一个纳米以下(~0.5nm)。这一结果在一定程度上颠覆了当时人们对于光学成像分辨率和光场限域性的固有认知,极大推动了针尖增强技术和相关纳米光子学领域的发展。在此基础上,2019年,该研究小组通过发展液氦条件下工作的低温超高真空针尖增强拉曼光谱(tip-enhanced Ramanspectroscopy, TERS)系统,进一步对针尖尖端高度局域的等离激元场进行精细调控,将空间分辨率提高到了1.5 Å的单个化学键识别水平,并基于这项技术提出了一种重构分子化学结构的新方法¾埃级分辨的扫描拉曼显微术[National Science Review 6, 1169−1175 (2019)]。   最近,为了深入探究化学效应对拉曼信号的影响机制,该研究小组利用所发展的高分辨TERS技术,通过精心设计和构建四种不同的清晰明确的单分子局域接触环境(图1),探究了单个ZnPc酞菁分子在不同接触环境下的拉曼响应,并结合理论计算揭示了基态电荷转移引起的TERS增强以及界面动态电荷转移诱导的拉曼猝灭的新机制(图2)。图1.单分子TERS实验示意图和四种不同的分子局域接触环境。图2.基态电荷转移引起的TERS增强与界面动态电荷转移诱导猝灭效应。他们发现,当针尖与氯化钠表面单个平面型ZnPc分子进行“弱”的点接触时,TERS信号会被显著增强,与此同时,针尖增强光致荧光(tip-enhanced photoluminescence, TEPL)信号迅速猝灭。TERS和TEPL信号演化表明针尖与分子之间的接触产生了化学相互作用。他们对此提出一种新的物理化学联合作用机制,即针尖与分子的点接触会产生基态电荷转移过程,在与表面垂直的方向上诱导出可观的拉曼极化率,而且该垂直极化偶极还会进一步与纳腔等离激元的垂直电场耦合产生增强的拉曼信号。这种新的增强机制不仅超越了传统的纯化学效应机制,而且也不同于之前普遍认为的在化学增强过程中占主导地位的共振电荷转移机制。另一方面,当分子与金属衬底进行“强”的面接触后,TERS信号严重猝灭,特别是对于分子的面内振动信号。结合DFT理论计算表明,这是由于分子与金属衬底之间的轨道杂化引起的动态界面电荷转移以及表面电磁场屏蔽效应所导致的拉曼极化率的减弱,并且前者起主导作用。但是,通过进一步与针尖产生“弱”的点接触,猝灭的拉曼信号能够被有效“拯救”,这同样是因为上面所提及的基态电荷转移诱导的物理化学机制的联合作用所致。需要强调的是,如果分子与金属衬底的相互作用很弱(例如物理吸附的情况),或者分子垂直吸附在金属表面,这时由于动态界面电荷转移诱导的拉曼极化率的减弱效应会变得很小,预计将不会出现拉曼猝灭现象。   该研究小组还进一步开展了偏压和波长依赖的TERS光谱演化研究,证明了基于基态电荷转移的物理化学联合作用机制的正确性。值得注意的是,对于非共振情况下的针尖−分子点接触构型,体系的拉曼信号在纳腔等离激元场增强的基础上,还将获得超过300倍的极大电荷转移化学增强。   该工作不仅为理解化学效应诱导的TERS/SERS增强与猝灭现象提供了新的视角,澄清和深化了人们对化学增强机制的认识,而且展示了一种通过针尖−分子原子级点接触增强拉曼信号的方法,将对本征拉曼信号微弱的分子(例如生物分子)的化学探测和识别具有重要意义。   文章的第一作者是中国科学技术大学博士后杨犇和特任副研究员陈功。该研究工作得到了基金委、科技部、中科院、教育部、安徽省等单位的支持。
  • 美国为何只给65岁以上老人打增强针?
    欧美很多发达国家都开始制订甚至实施普通人群的新冠疫苗增强针接种计划。但对于今年年初才开始上市的新冠疫苗而言,短短几个月后就要再打一针 “增强”,这里面的科学性与必要性到底如何,仍然是个争议很大的话题。 9月17日的美国食品药品管理局(FDA)关于辉瑞/BioNTech疫苗增强针的外部专家会,可能是第一次公开透明地辩论增强针的意义与相关政策的科学性。 在超过八小时的分析讨论中,美国疾病控制与预防中心(CDC),FDA与辉瑞/BioNTech都各自列举资料,甚至连最早施打增强针的以色列,也派出卫生部门官员与研究人员提供了本国最新数据。最后,该专家会议以绝对多数否决了辉瑞/BioNTech的全民增强针提议,转而推荐向65岁以上老年与其他高危人群提供增强针。 这一方案现在也获得了FDA的正式批准与CDC推荐。该会议与9月22-23日CDC推荐增强针的会议,提供了大量关于增强针的现有数据与决策依据探讨,不仅能让很多关注增强针的公众了解增强针的现状,也值得所有制定增强针政策甚至是普遍防疫政策的管理部门借鉴。 原理:是增强针还是第三针? 在各种报道中,关于增强针经常提到的一个好处是可大幅增加抗体,这也是像辉瑞/BioNTech等药企用于申请增强针上市的关键数据。接种增强针后检测到抗体大幅增加,反映的是增强针激发的免疫反应。但免疫反应远不止抗体这一部分,增强针的科学原理也不仅限于抗体增加这一环。 9月17日,美国FDA专家会议以及CDC关于增强针的多次讨论会议,都提到了从原理考虑,如果让新冠mRNA疫苗接种者接种第三针,到底是属于把初次接种程序由两针变成三针,还是在初次接种外的增强针? 都是第三针,算不算在初次接种程序内有区别吗? 实际上,不同疫苗的接种针数本身就有不同。比如带状疱疹疫苗是两针,而乙肝疫苗是三针。这种针数的不同就是基于免疫反应的完善性。 对于疫苗来说,第一针会刺激初始的免疫反应,这种免疫反应包括B细胞被激活,产生针对疫苗引入的抗原的特异性抗体,同时形成一些记忆B细胞。这些记忆细胞并不产生抗体,但却保留着对抗原的记忆,当再度遇到同一个抗原时可以迅速复制分化成大量可以制造抗体的B细胞。 一般而言,第一针疫苗刺激的免疫反应强度并不大,表现为产生的抗体不多,记忆细胞的形成也有限。当第一针疫苗接种后过一段时间——至少等到第一针诱发的免疫反应下降之后,通过接种第二针疫苗,人体的免疫系统可以产生更强的免疫反应,即所谓的增强,在这一过程中,会有大量的抗体产生,并且会出现结合能力更强或识别更多样化的抗体,同时记忆细胞等也会进一步完善,部分B细胞还可以分化为浆细胞。浆细胞非常长寿,会迁移至骨髓并长期产生抗体,让人体获得长久的免疫保护。 由于这种接种疫苗时免疫反应的规律,大部分疫苗都需要两针,同时两针之间还必须有一定间隔。但不是所有的疫苗在两针后就能获得最完善的免疫保护,这也是为什么乙肝疫苗等不少疫苗还要打第三针才算完成接种。 回到新冠疫苗,作为一种新研发的疫苗,例如辉瑞/BioNTech的mRNA疫苗,现在已知的是接种两针后可以获得非常好的免疫保护。但两针诱发的免疫反应是不是人体免疫系统的极限呢? 这是未知的。 如果前两针诱发的免疫反应已经是此类疫苗能激发的人体免疫反应极限了,那么第三针就只是激发了免疫记忆,再度产生大量抗体,但包括记忆细胞、抗体的多样化程度等等都不会再有改进。人体不会不断大量生产用不上的抗体,所以第三针激发的高抗体也会随时间流逝而降低。也就是说,这种增强针起到的效果只是短暂提升体内的抗体滴度。 如果前两针mRNA疫苗的接种结果并非人体的免疫反应极限,那么引入第三针或许如同乙肝疫苗的第三针,能进一步完善免疫保护。这可能有多种表现,比如刺激形成更多的记忆细胞,这样下次遇到病毒会有更快速更强烈的免疫反应,起更好的保护;又比如产生更“成熟”的抗体,它们与病毒的结合能力更强或识别更多元化,增强对突变的防护力;亦或者是形成更多长效浆细胞,使得抗体下降的曲线放缓,让人体在更长的时间段内受到保护。 如果第三针mRNA疫苗确实可以起到进一步完善免疫反应的作用,甚至推断新冠疫苗的初次接种流程本来就该是三针,那么疫苗就应该设计成三针型疫苗而非两针型。 比较遗憾的是,现在没有足够的数据指向增强针到底只是暂时增加抗体滴度还是可以完善整个免疫反应。辉瑞/BioNTech在FDA专家会上只是提供了第三针接种后一个月的抗体滴度。虽然这个滴度是第二针后高峰的三倍,但无法据此区分第三针是完善了接种人的整体免疫反应还是短期拉升抗体。 最近一些关于mRNA疫苗的研究显示,在第二针后包括抗体多样性、记忆细胞、细胞免疫等方面似乎都到了一个极限[1,2]。如果这些研究具有普遍性,那么增强针的意义将会局限于短期增加抗体。不过这些研究尚属早期,不同人群的结果也可能有差异,如老年人可能存在免疫反应较弱的情况,即便普通人群前两针能达到免疫反应的极限,对于老年人或有基础疾病的人却未必。 但无论如何,增强针仍需要更多完善的研究,不仅局限于一个时间截点的抗体滴度,来明确增强针的作用。 时机:现在是否需要增强针? 增强针的科学原理也会影响到另一个重要问题:什么时候需要增强针,或者现在需不需要增强针? 如果增强针只会短暂增加抗体,那么使用的时机将取决于何时需要增加抗体。 现在很多增强针计划以6个月为界限,该划分最主要的依据是在一些疫苗的抗体滴度跟踪时发现接种6个月后,体内抗体比高峰时已经下降很多,比如Moderna最近在《科学》上就发表了6个月的中和抗体跟踪数据 [3],发现半年后接种者的血清仍能中和包括Delta在内的多个突变株,但中和抗体的滴度比刚接种完时已经大幅下降,即实验里中和同样多的病毒需要使用更多血清。Moderna接种6个月后体内仍有中和抗体但滴度比高峰时显著下降 | 图源[3] 陆续有研究显示,更高的中和抗体滴度对应更好的新冠疫苗有效性。单纯从增加体内抗体的角度,说半年后因体内抗体下降而通过打增强针提高抗体滴度似乎没什么问题。但这种做法缺乏最根本的一个基础,那就是现在科学家尚未明确一个疫苗保护作用必需的抗体下限。也就是说虽然半年后抗体滴度确实大幅下降了(这也在预期中,因为在未遇到病毒的情况下,人体不必大量生产一个用不上的抗体),但并不能说此时疫苗的保护作用已经大幅下滑。 还是来自Moderna的分析,根据它的三期临床试验,发现即便接种完疫苗后检测不到中和抗体的人群,在之后三个月的疫苗有效性仍有50%,而中和抗体滴度100与中和抗体滴度1000的人群,有效性分别为90%与96% [4]。所以不仅是看到中和抗体滴度下滑尚不能明确疫苗是否失效需要增强,即便是增强针大幅提高抗体,能对应多少疫苗保护作用的增加也是需要审视的,毕竟10倍的中和抗体差异对于Moderna的前两针疫苗只带来了6%的有效性差异,像辉瑞/BioNTech的增强针提高抗体滴度到第二针后高峰3倍,在疫苗有效性上的改变仍是未知的,很可能不会如抗体滴度变化那么大。 此外,若以增加抗体为标杆,打过增强针后抗体在高峰后也会下降,一个自然的问题是以后是否会要经常打增强针来维持抗体在高水平。在FDA的专家会上,也有美国方面的专家问以色列的卫生官员,如果增加有效性只是靠暂时的抗体提升,是否打算过段时间再打增强针。之前以色列有官员称需要准备第四针 [5],但在专家会上以色列的卫生官员表示并无此打算。 如果第三针是完善免疫反应,那么问题应该是间隔多久打第三针可以完善免疫反应。这个时间是多久,是不是6个月?现在并不明确,理论上来说间隔越久,这种完善免疫保护的增强效果越好。但如果证明隔得短一些也能做到,那么完全可以以更短的间隔完成三针接种,尽快完善接种效果。 也有科学家提出了另一种思路,即是否可以通过改动前两针疫苗的间隔来完善疫苗的免疫保护。FDA的专家会上有人提出,现在新冠疫苗的接种程序都很激进,如辉瑞/BioNTech是两针间隔三周,是否是因为这样短的间隔导致免疫反应的完善性不足,导致疫苗有效性维持时间不够?如果延长两针的间隔,是否可以让免疫保护更长效,避免今后需要增强针。 不过延长两针间隔会让接种者在更长时间内处于半接种状态,没有足够的保护,在风险收益上未必更佳,对于已经接种了疫苗的人来说更无实际意义,因为已经接种疫苗的人也改不了之前两针的间隔了。 总之,在科学原理上,现在第三针或增强针主要的证据在于可以大幅增加抗体。但除了抗体外,整体免疫反应是否有完善、间隔多久打第三针更好、能转化为多少实际有效性以及可以维持多久,这些都是未知的。 在这种情况下,另一个探讨增强针必要性的思路,则是基于疫苗有效性,特别是对重症防护的有效性在现实中的变化。绝对的防止感染本身是个非常高的要求,特别是如今疫苗要应对的是传播力非常强的Delta突变株,欧美很多国家的感染率又非常高,相当于疫苗接种者长期处在一个病毒量很高的环境中,疫苗接种率因各种原因在不少国家也并不理想,这些因素叠加在一起,指望疫苗来彻底阻断感染或传播并不现实。因此,维持疫苗对重症的保护力才是更合理也是更关键的目标。 而已有的各种研究显示,如今mRNA疫苗防护感染或轻症的作用有一定下降,但对重症的保护仍然维持在较高的水平。其中对轻症的保护力下降可能既有接种时间的影响,也有Delta的作用。不过即便是这方面,下滑幅度可能也是有限的。辉瑞在FDA的要求下比较了三期临床试验中接种中位时间9.8个月与4.7个月的人群感染率的区别。接种时间短的人确实感染风险更低,但换算到有效性,差异其实比较有限——如果接种4.7月的人有效性是86%,那么接种9.8个月的人对应有效性为80% [6]。 重症方面的防护很多研究都显示没有明显下降,比如辉瑞与Kaiser合作的一项研究发现在接种4个月后,疫苗防护感染有效性下降到60%左右,但重症防护在任何年龄段都没有变化 [6]。9月22日,Moderna在《新英格兰医学杂志》上发表了三期临床试验的最终分析,发现在平均跟踪时间5.3个月的试验中,防重症有效性为98% [7]。这些研究都在指向mRNA疫苗对重症的防护维系时间可能是非常长久的,显然无法佐证增强针存在急切的必要性。 支持增强针最有力的证据是来自以色列。在FDA专家会前发表在《新英格兰医学杂志》上的以色列研究,显示接种增强针12天后,60岁以上人群的感染风险下降了10倍,重症风险也有类似下降 [8]。但要注意的是,这项研究在接种增强针12天后跟踪的时间不到两周。这就带来了有效性维持时间能有多久的问题。同时,以色列的卫生官员表示在该国60%的重症病人是接种完两针疫苗的人,对他们来说,需要为接种完疫苗的人提高防护重症的有效性。但在美国,重症与住院仍然绝大多数为未接种疫苗的人[9],这让以色列的情况有多少普遍性与可推广性成了问题。 另一方面,美国CDC统计到现在的所有突破性感染导致住院或死亡的病例中,分别有70%与87%的人是65岁以上的老年人 [9]。可以说老年人或有基础疾病的人如果发生突破性感染,导致严重后果的风险更大。另外,CDC收集的一些研究显示养老院等老年人聚集的地方,疫苗有效性本身就较低,也有下降趋势。从风险收益角度看,在老年人中施行增强针有更强的支持。 反观一般人群,增强针的不仅必要性缺乏支持,也很难做出收益大于风险的判断。对于mRNA疫苗,已知在年轻男性中存在心肌炎的风险,虽然发生率很低,但第二针的风险高于第一针。接种第三针的风险如何是未知的。从收益考虑,对于年轻人群,接种完两针对重症的防护非常好,未看到有下降趋势,第三针在这之上能带来多少进一步的收益,是值得怀疑的。 也是综合这些风险收益评估,FDA的专家会拒绝了辉瑞在16岁以上人群全面施打增强针的申请,转而把人群限制在65岁以上与其它高风险人群。而9月22-23日,CDC负责推荐疫苗使用的专家会议,在基本遵循FDA批准范围的基础上,进一步限制为65岁以上或居住在长期看护中心的人,以及18-64岁有导致重症风险增加的基础疾病患者,否决了FDA批准范围内的工作中高感染风险人员。但在CDC的正式推荐中,CDC主任Walensky博士再次将工作中高风险人群纳入。 这种差异涉及到风险评估上出发点的不同,纳入因职业或环境有高风险的人群,一个比较常见的理由是如医务人员,即便是轻症也无法继续工作,会影响到整个医疗系统的运作。但在CDC的外部专家看来,增强针的风险收益标准应该以接种人为中心出发。对于一个年轻的一线工作人员,打增强针对他个人的最重要收益——防止重症,是很低的,而风险,如罕见的心肌炎却是存在的,不能说他感染了没法上班对社会有影响,就推荐他在个人层面去做一个风险可能大于收益的事情,更何况增强针在年轻人群中防感染一类的收益现在纯属揣测。 这里推荐与不推荐都有一定依据,但更多都是基于推测,反应了增强针在具体收益上因数据有限导致的诸多不确定性。 效果展望:增强针能改变疫情吗? 虽然欧美多国已经或将要为高年龄与高危人群施打增强针,在这些人群里的风险收益评估上或许也是大概率收益大于风险,但增强针对整体疫情控制的帮助却未必乐观。 在FDA的增强针专家会上,CDC的流行病学家承认在美国主要的传播发生未接种疫苗的人群,因此增强针对整体疫情的遏制可能会有限。这个观点也被大多数与会专家们认同。 甚至在直接收益可能最大的老年人中,单独的增强针效果也未必最佳。在9月22日到23日讨论增强针使用推荐的CDC会议上,CDC的科学家提供了养老院中增强针效果的模拟。如果输入风险高(所在地区传染率高)并且设施内工作人员疫苗接种率低,即便增强针效果很好,养老院中的感染病例仍然不少。美国CDC关于养老院中增强针的效果模拟 | 图源[10] 增强针要起到好作用,必须伴随着控制背景感染率与提高工作人员接种率。其中作用最大的是增加工作人接种率。这也是整个欧美疫情的一个缩影。提高疫苗接种率,让更多没接种过疫苗的人打上第一针,所带来的效果会远大于增强针的作用。 根据CDC的估计,在半年的时间段内防止一例新冠住院,在65岁以上的人群中,只需要50人次的初次接种,但增强针需要481人次接种,差距将近10倍 [10]。若把年龄下调到18-29岁,这一差距进一步扩大到22倍,在这一年龄段,连基本的收益大于风险,对于增强针也已不太确定。而CDC的一项民调还显示未接种新冠疫苗的人群中有三分之一表达了增强针的消息会让他们更不愿意接种 [10]。孤立的一项增强针政策或许看着坏处有限,但放到所有防疫政策之中会如何,是有不确定性的。在半年内防止一例新冠住院需要的初次接种或增强针接种人次 | 图源[10] 如果跳出欧美发达国家的小圈子,那么不难发现增强针无疑是为全球疫苗分配不均问题投下了更大的阴影。在已接种的新冠疫苗中,81%是在中高收入国家,低收入国家只分到了0.4%,而致力于为低收入国家提供疫苗的COVAX最近将今年能提供的新冠疫苗数量下调了四分之一 [11]。 如果疫情在接种率极低的低收入国家不断蔓延,很难保证今后不出现一个比Delta更危险的突变株。欧美国家在提出增强针计划时都强调不影响全球疫苗供应,但现今全球疫苗需求远大于供给,很难想象发达国家的大规模增强针计划不会对全球接种造成负面影响。 增强针需要怎么做? 虽然增强针在科学原理、实际有效性上还有很多疑问,但面对短期之内难以控制的全球疫情,增强针仍是一个需要认真考虑的选择。甚至在某些人群中,即便增强针存在不确定性,现在仍会有切实需要。面对这样的现实,增强针的研究与决策都需要往更科学、更理性的方向发展。 首先,对于现在或近期要执行的增强针,必须要把实际需求与潜在的收益风险统一考虑。已有的增强针证据能明确的是接种后可以在短期内大幅增加抗体,对应的实际效果是什么,如果有效果,持续时间多久,都是未知的。这使得增强针能带来的收益存在很大的不确定性。在这种情况下,如果一个人由于年龄、基础疾病或职业,处于高危或高风险状态,那么可能是值得推荐增强针的。但如果推广到普通人群,那么无论是从接种个人的收益风险,还是从整体防疫考虑,增强针都可能是得不偿失。 其次,增强针的研究亟需完善。已公布的增强针中,辉瑞/BioNTech的数据是最多的。可即便如此,这个疫苗增强针的临床试验数据只有300多人,无法评估已知的mRNA疫苗罕见不良反应如心肌炎。在有效性方面,免疫数据只有接种后一个月的抗体滴度。以色列的真实世界数据也只有非常短的跟踪时间。 更详细的增强针免疫反应数据,特别是记忆细胞、细胞免疫等方面的变化,以及抗体增加的维持时间,这些能有助于我们明确,到底是该推荐增强针,还是更改接种程序为三针。 不同疫苗也可能有不同。国药疫苗的一篇预印版论文显示,半年后打第三针后抗体有不错的提升,而且三个月内都维持得不错,记忆细胞与细胞免疫方面也有增加 [12]。这或许意味着,灭活疫苗前两针接种带来的免疫保护可以通过后续接种来继续完善。不过这项试验的人数只有50人,对于明确增强针的安全性来说是显然不足的,需要后续研究来补充。而且从完善免疫保护的角度来说,要考虑到增强针的受众是本身已经通过初次接种获得一定免疫保护的群体,灭活疫苗的免疫原性较低,随着一些有效性更高的疫苗如重组蛋白疫苗上市,应该考虑通过混打的研究来确定一个更高效的增强针。 不仅是欧美开始施行增强针,国内高风险人员也开始推荐在接种灭活疫苗的半年后追加增强针。面对一个我们认识不到两年的病毒以及迅速变化的疫情,很多时候我们的决策不得不建立在相对不完整的信息之上,增强针也是如此。这促进我们去尽快完善相关的研究,补充相关数据的完整度,同时也要提醒自己,在有欠缺的信息上做决策需要有一定的谨慎性。
  • 改性石墨烯增强有机硅涂层及其性能研究
    HS-DSC-101差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。改性石墨烯增强有机硅涂层及其性能研究【齐鲁工业大学 姚凯 】改性石墨烯增强有机硅涂层及其性能研究上海和晟 HS-DSC-101 差示扫描量热仪
  • Accucore 色谱柱[ 增强核技术]
    Accucore 色谱柱[ 增强核技术]  为了满足色谱柱的卓越表现不受所用仪器的限制这一需求,我们应用全新的"表面多孔增强核技术“,研发出创新的AccucoreTM HPLC 色谱柱。该技术的四大重要特点:  1.2.6µ m颗粒包含实心核和表面多孔层,在常规反压下实现高速高效的分析。  2.改进的颗粒筛选流程使粒径分布范围最小,从而提到柱效。  3.先进的自动装填过程确保所有色谱柱都有最高的装填质量和优异的批次重现性。  4.提供6种键合相,满足不同的选择性需求。优化的固定相键合技术使固定相更加致密和耐用。  详细情况见:http://www.thermo.com.cn/Product5787.html
  • 增强基元的研究推动拉曼光谱向更深层次发展
    仪器信息网讯 2014年7月28日,由HORIBA Scientific(Jobin Yvon光谱技术)主办的2014年第一届拉曼学院在上海大学开课,来自全国各科研院所、高校的老师、学生及HORIBA拉曼产品的代理商200多位代表参加。  在第二天的课程中,&ldquo 拉曼增强&rdquo 是提到的最多的一个词:为什么要增强、增强的手段和机理、增强的应用等。  大家都知道,自1974年Fleischmann 等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼散射(SERS)信号以来,SERS的研究得到了快速的发展。由于SERS克服了传统拉曼光谱与生俱来的信号微弱的缺点, 可以使得拉曼强度增大几个数量级。  基底的制备在拉曼增强的研究中起到至关重要的作用,在今天的报告中,厦门大学的任斌教授从基本的原理出发详细介绍了增强基元(增强基底或者针尖)的制备方法,可以说增强基元制备方法的每一次进步和革新对拉曼增强的研究来说都起到极大的推动作用。据介绍,从最初的电化学粗糙/沉淀、真空沉淀方法,到纳米粒子的合成(单分子SERS),SERS的研究取得了突破性的进展;之后,壳层隔绝纳米粒子增强拉曼光谱(SHINERS)的研究又进一步扩大了SERS的应用对象;此外,针尖增强拉曼光谱(TERS)技术提出后也引起了大家的关注,并在基础研究领域和工业应用领域得到了广泛的应用。  为了拓展SERS在表面科学中的应用,需要从没有或者只具弱SERS效应的非金、银、铜材料表面以及光滑甚至原子级平整的单晶模型体系获得拉曼信号。为了解决该问题,就需要借助金或银强的电磁场增强效应来增强非(弱)SERS活性材料表面物中的信号,这是一种&ldquo 借力&rdquo 的思维。厦门大学李剑峰教授课题组从&ldquo 借力&rdquo 的思维出发,发展了壳层隔绝纳米粒子增强拉曼光谱(SHINERS)技术。据介绍,该项技术具有很高的灵敏度,甚至只要将合成的具有超薄二氧化硅壳的金纳米粒子直接洒在待测样品的表面就可以达到预期的实验效果。任斌 教授报告:表面增强拉曼光谱和针尖增强拉曼光谱-从原理,实验方法到应用李剑锋 教授报告:表面增强拉曼光谱:从&ldquo 借力&rdquo 思维到壳层隔绝纳米粒子增强拉曼光谱  作为一种强大的表面表征技术,TERS可以达到10nm的空间分辨率和检测灵敏度,而且可以同时得到表面的形貌信息和化学指纹信息。厦门大学的王翔博士在报告中详细介绍了针尖增强拉曼光谱的发展以及在材料、物理、化学和生命科学等领域的应用概况。  此外,国立台湾大学的王俊凯博士还介绍了基于二维表面等离基元基底的拉曼增强效应以及基于拉曼增强的快速临床微生物检测平台等相关的研究成果。(撰稿:叶建)王翔 博士报告:针尖增强拉曼光谱的发展和应用王俊凯 博士报告:(1)基于二维表面等离基元基底的拉曼增强效应(2)基于拉曼增强的快速临床微生物检测平台
  • 中国科大实现量子增强的微波测距
    中国科学技术大学郭光灿院士团队在实用化量子传感研究中取得重要进展。孙方稳教授研究组利用微纳量子传感与电磁场在深亚波长的局域增强,研究微波信号的探测与无线电测距,实现10-4波长精度的定位。该成果于3月9日发表在国际知名期刊《自然通讯》上。   基于微波信号测量的雷达定位技术在自动驾驶、智能生产、健康检测、地质勘探等活动中得到广泛应用。尤其在当前智能化、信息化发展大趋势下,发展高性能雷达测距技术对国防安全和经济发展都方面有重要意义。   量子信息技术的发展为发展雷达技术提供了新的解决方案。量子传感和精密测量利用量子相干、关联等特性提升系统对物理量的测量灵敏度,有望超越传统测量手段的精度。孙方稳研究组面向量子信息技术实用化,长期研究固态自旋体系的量子传感技术。发展了电荷态耗尽纳米成像方法,实现基于金刚石氮-空位色心的超衍射极限分辨力电磁场矢量传感与成像(Phys. Rev. Applied 12, 044039(2019)),并利用超分辨量子传感探索了电磁场在10-6波长空间内局域增强的现象(Nat. Commun. 12, 6389(2021))。   在本研究中,研究组结合微纳米分辨力的固态体系量子传感与电磁场的深亚波长局域,发展高灵敏度微波探测和高精度微波定位技术。研究组设计了金刚石自旋量子传感器与金属纳米结构组成的复合微波天线,将自由空间传播的微波信号收集并汇聚到纳米空间,从而通过探测局域的固态量子探针状态对微波信号进行测量。该方法将自由空间弱信号的探测转换为对纳米尺度下电磁场与固态自旋相互作用的探测,提高了固态量子传感器的微波信号测量灵敏度3-4个量级。为了进一步利用高灵敏度的微波探测实现高精度微波定位,研究组搭建了基于金刚石量子传感器的微波干涉测量装置,通过固态自旋探测物体反射微波信号与参考信号的干涉结果,得到物体反射微波信号的相位以及物体的位置信息。同时,研究组利用固态自旋量子探针与微波光子多次相干相互作用,实现了量子增强的位置测量精度,达到10微米水平(约波长的万分之一)。审稿人认为该工作是金刚石量子传感器在量子测距中的首次应用(…To my knowledge, this is a first demonstration of quantum ranging platform, based on NV center…)。   与传统雷达系统相比,该量子测量方法无需检测端的放大器等有源器件,降低了电子噪声等因素对测量极限的影响。通过后续的研究,将可以进一步提高基于固态自旋量子传感的无线电定位精度、采样率等指标,发展实用化固态量子雷达定位技术,超过现有雷达的性能水平。   文章第一作者为中科院量子信息重点实验室陈向东副研究员,通讯作者为孙方稳教授。该工作得到了科技部、基金委、中国科学院和安徽省的资助。
  • 分子光谱学学术会议:表面增强拉曼四十年
    仪器信息网讯 2014年10月31日-11月3日,第十八届全国分子光谱学学术会议在苏州召开。本次会议中,拉曼,特别是拉曼增强的研究依然是大家看好的领域。在大会报告中就有很多专家及老师介绍了拉曼光谱及表面增强拉曼光谱的技术以及应用进展。田中群院士 厦门大学 表面增强拉曼四十年:从基础到应用  其中田中群院士作了以《表面增强拉曼四十年:从基础到应用》为题的报告。在报告中,田中群介绍到,由于对复杂体系痕量分析的需求越来越多,科学研究亟待发展基于新原理和新方法的科学仪器,这也是分析化学发展的主要驱动力。而拉曼光谱具有高识别性,特别是拉曼增强效应能够使拉曼光谱的灵敏度提高百万倍甚至更好,具有很好的发展和应用前景。  从1974年,有关拉曼增强的第一篇文章发表到现在整整40年,在这40年中,前半段时间发展的相对缓慢,后半段比较迅速,原因在于表面增强拉曼光谱的发展是基于纳米科技的发展才得以快速的发展,而我国的纳米科技是在1990年之后才发展起来的。  由于有了纳米技术的发展,我们才可以看到并调控纳米粒子,进而达到拉曼增强的效果。我们应该清晰的认识到,表面增强拉曼散射效应就是一种基于纳米结构而发展起来的技术。所以,要发展拉曼技术,就要抓住关键点,研究怎样的纳米结构才可以最大限度的增强拉曼光谱的信号。  田中群介绍到,目前拉曼增强方面的研究有两个“短板”:一个是可以达到增强效果的材料比较少 二是表面形貌,目前只能在纳米结构或者粗糙的表面上来得到增强的效果。  “纳米科学的发展使得我们有越来越多的技术和能力可以设计和制造各种纳米结构。”田中群说,“不要再用一些简单的纳米粒子来做研究,这已经用了几十年了,老一辈用是合理的,年轻人应该更大胆的去创新,去思考有没有更好的纳米结构可以进一步增加灵敏度。”  在大会报告中,来自国内外的多位专家也介绍了拉曼增强方面的研究工作。蒋朝阳 University of South DakotaImprovement of SERS Activity of Silver Nanowires via Surface Modification and Nanoscale Self-Assembly龙亿涛华 东理工大学印刷SERS基底在生物和环境分析中的应用Yukihiro Ozaki Kwansei Gakuin UniversityTip-enhanced Raman Scattering Spectroscopy  除此之外,第二天拉曼光谱分会场的报告也非常精彩,湖南大学的胡家文教授、厦门大学的吴德印教授、上海师范大学的杨海峰教授等30位老师在拉曼增强光谱的理论、技术及应用方面给出报告并展开讨论。拉曼光谱分会场
  • 苏州医工所高灵敏增强拉曼传感技术研究取得进展
    高灵敏微量气体传感在环境污染研究、人体挥发性有机物(VOCs)检测中具有重要的现实意义。迄今为止,已有多种分析技术用于气体检测,但多存在成本高、操作复杂、分析过程耗时等缺点。表面增强拉曼散射(SERS)作为有力的痕量分子检测工具,可利用基底的表面等离子体共振和电荷转移效应大幅增强目标分子的拉曼散射信号,具有高灵敏、简单、快捷、无损和特异指纹识别的特点,在气体传感领域具有优势。   近日,中国科学院苏州生物医学工程技术研究所研究员张志强与博士研究生孙姣姣,开发出一种具有超高灵敏性的三维玫瑰花枝状SERS基底(BigAuNP/Au/ZnO/P)。本研究中,科研人员以化学生长与微纳加工相结合的方式,在聚偏二氟乙烯(PVDF)膜上制备了纳米氧化锌(ZnO)-金(Au)三维异质结构,其增强原理在于相邻纳米棒表面的金纳米颗粒(AuNPs)、同一纳米棒表面的相邻AuNPs、金层与AuNPs的结合点三处“热点”区域共同提高了电磁增强效应,Au和ZnO之间的电荷转移产生高密度电荷,形成内部电场,激发了ZnO纳米棒的化学增强效应。   该SERS基底对对巯基苯甲酸(p-MBA)分子的检测限为10-13 M,其增强因子高达2.27×107,并具有良好的均一性和可重复性(RSD 4%)。此外,PVDF膜具有多孔特性,可采用过滤式检测程序提高目标分析物与SERS“热点”的碰撞效率,有利于气体分子的高效富集。   科研人员以腐胺和尸胺两种挥发性有机气体为例,验证了该三维柔性SERS基底在气体传感中的检测性能。通过在SERS基底上修饰p-MBA传感单分子层,利用酰胺反应选择性地捕获腐胺和尸胺,实现了低浓度气体分子的高灵敏定量检测(腐胺检测限:1.26×10-9 M,尸胺检测限:2.5×10-9 M),比同类研究报道的检出限高出2-3个数量级,证明了该SERS传感器在实际气体传感中的应用潜力。   鉴于该三维柔性SERS基底的多孔特性和优异的增强性能,将其与微流体装置和便携式拉曼光谱仪集成,搭建SERS快速检测系统,有望实现气溶胶中细菌、病毒和污染物的高效捕获与富集,发挥该三维基底在气溶胶的高灵敏检测领域的技术优势。   相关研究成果以Ultrasensitive SERS analysis of liquid and gaseous putrescine and cadaverine by a 3D-rosettelike nanostructure-decorated flexible porous substrate为题,发表在Analytical Chemistry上。研究工作得到国家自然科学基金、江苏省重点研发产业前瞻项目、中科院科研仪器装备研制项目等的支持。
  • 商用表面增强拉曼光谱传感器面世
    据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。  表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。  新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。  研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。  由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。
  • 金索坤隆重推出新一代镉信号增强剂
    为满足用户在使用原子荧光测镉时信号较弱的问题,我公司科研人员在郭晓伟教授的带领下,研发了信号增强剂。2015年我们又对产品进行了升级,新一代的镉信号增强剂可显著改善氢化物反应体系中镉的生成效率,大幅度提高原子荧光仪器对镉的灵敏度,可使信号增强1-2个数量级,满足各种样品在氢化法测定时的检测要求。
  • 针尖增强拉曼光谱(TERS)为何总是如此“耀眼”
    在成功实现针尖增强拉曼光谱(TERS)技术的15年后,HORIBA Scientific 和 AIST-NT 合作完成了 TERS 的整套解决方案,将其推向了一个全新的层面。TERS 技术不只是进行所谓的单点测量,更能够完成一个 TERS 扫描成像,收集到成千上万个像素点的拉曼光谱,而且一个完整成像采集时间一般小于10分钟。文中我们采用了HORIBA & AIST 的 Nano Raman 团队在2015年获得的结果,来展示TERS在纳米尺度上的化学成像,并由HORIBA Scientific的全球产品经理Marc Chaigneau 博士进行了讲解。图1采用XploRA Nano系统和镀金的TERS针尖,对单根碳纳米管进行纳米级的化学成像,其空间分辨率达到了8nm。扫描发现在绿色区域D峰(缺陷峰)产生明显的增强,该位置的空间分辨已经接近晶格缺陷尺寸(扫描步长为1.3nm)。“TERS的空间分辨率获得如此惊人的进步主要归功于NanoRaman系统光学耦合部件的稳定性和SmartSPM型号AFM的高频扫描器,能够远离噪声的干扰。”图1:单个碳纳米管的TERS成像,空间分辨率小至8nm, 1.3nm步长(75×75点,每点采集时间为100ms)从氧化石墨烯的TERS成像中发现,其褶皱位置与镀银的AFM-TERS针尖具有很强的相互作用,见图2(绿色:G峰强度分布,红色:有机物残留的C-H振动峰强度分布)。与普通远场拉曼信号相比,针尖将信号增强了大概2×106倍。并且通过进一步计算D/G的强度分布,可以表征样品上缺陷的局部变化。“这么好的拉曼增强效果要归功于Ag针尖的强等离子体共振;而且好消息是,由于保护层的加入,Ag针尖的寿命已经延长到了数周。”图2 左:氧化石墨烯D峰的TERS成像 右:褶皱位置(红色和蓝色)、平坦位置(绿色)和薄片外的单点TERS谱图 脉冲力刻蚀技术” (NanoRaman系统的一种纳米刻蚀模式)可以利用单晶金刚石针尖在单层氧化石墨烯上点压出所需的图案。我们在氧化石墨烯表面压印出了15nm尺寸大小的“TERS”字母,并发现在刻划位置的TERS信号显著增强。“得益于SmartSPM针尖调谐和准直的全自动化,使得我们即使在进行纳米刻蚀后更换为TERS针尖,也能够找到原来的测试区域。”图3:金膜上单层氧化石墨烯刻蚀字图的D峰强度TERS成像,尺度15nm为了将TERS应用于其他2D材料,应用团队对机械剥离的MoS2样品进行了TERS成像。从中发现,使用AFM-TERS针尖,MoS2的A1g和A2u振动模式强度有明显的提升(图4),而且采用DualSpec模式,能够采集到近场信号和远场信号并进行差谱处理。 “同样,由于AFM-TERS针尖的不断发展,尤其是镀银针尖,为新一代2D材料的TERS表征打开了一扇门。高增强因子使之前难以观察到的纳米尺度的拉曼振动模式变得清晰可见,同时DualSpec模式可以帮助我们完成每一个点的远场信号扣除。”图4 左:MoS2 408cm-1拉曼峰(A1g模式)的TERS成像 右:边缘及刚脱离边缘位置的TERS图谱图5展示了沉积在金基底上C60和C70富勒烯的TERS成像,并清晰地表现出某些位置具有单一的C60或C70的拉曼谱图。与单层的C70富勒烯区域的TERS成像对比,我们能够进一步确认在大气环境中完成了AFM模式下的单分子测试。“单分子灵敏度是每一个光谱学家的终目标!之前单分子的TERS检测已经在超高真空超低温的STM设备上实现了,但是如果TERS要成为一种大众化的检测技术,整套设备的安装和操作必须简单,成本也必须降低。由此来看,我们的应用团队在大气环境中得到了清晰地单分子测试结果,意义是非常大的。”图5:左:沉淀在金膜上的氧化石墨烯以及C60、C70富勒烯的TERS成像(每行128点,采集时间:每点80毫秒)。右: C60和C70混合位置谱图(绿色)以及单一成分的谱图(蓝色-C60,红色-C70)
  • 昊诺斯送五福增强符 祝您春节快乐!
    昊诺斯送五福增强符 祝您春节快乐! 猴奋已教千户乐, 鸡鸣又报万家春! 在这辞旧迎新之际, 昊诺斯祝愿所有用户朋友们: 春节快乐! 同时,感谢大家对昊诺斯一年以来的 信任和支持, 我们会在新的一年中, 不忘初心、继续前进, 尽我们最大的努力, 为实验室提供: 更加先进的产品、更加可信的服务, 与科技研发的实验室一起共创美好的明天! 温馨提示:昊诺斯春节放假时间:1月27日——2月2日,节后2月3日开始正常上班。 纳尼?!有宝宝伐开心?那你是不是遇到了下面的这种情形? 看完之后是不是有一种人生“四大悲剧”的赶脚?你又经历了几种“悲剧”呢?不过这都是传统的“四大悲剧”,现在估计更多的人在下面这条“悲剧”的路上,越走越远。。。远。。。远。。。 临近春节,支付宝又来“套路”我们了,而我们也是习惯被套路了。辛辛苦苦工作一年,咋就连个敬业福都不给???还要饱受人生“四大悲剧”的折磨!你看马大老板那开心的样子,作为拿到敬业福(偷笑.gif)的昊诺斯小编实在看不下去了,决定用实际行动来安慰一下我们昊诺斯的用户朋友们,小编愿做革命的一块砖,哪里需要哪里搬!尽点绵薄之力,送大家个五福增强符,据说支付宝扫描增强符有高概率得到支付宝五福。祝各位早日“修成正果”,集齐五福! 昊诺斯小编就只能帮您到这了,剩下的路就自己摸索前进吧!愿君春节快乐! 扫码关注昊诺斯微信公众号
  • 科学岛团队单颗粒纳米腔中最终近场增强极限探测研究取得新进展
    近日,中科院合肥物质院健康所杨良保研究员课题组在单颗粒纳米腔中最终近场增强极限的探测方面取得进展,相关成果发表在国际顶级期刊Nano Letters上,并且被选为当期正封面(图1)。   杨良保研究员团队一直从事表面增强拉曼光谱(SERS)检测方法的研究,取得了一系列研究成果。由于SERS检测技术强烈依赖于等离子体场强,在不断创新和发展SERS检测技术过程中,发现纳米尺度下的近场强度分布不均 (Siyu Chen, Liangbao Yang et. al., J. Am. Chem. Soc., 2022, 144,29,13174-13183)。在此研究基础上,团队一直在追求追求使用相邻金属纳米间隙来实现更大的电磁增强,以促进光与物质的相互作用。但纳米间隙的减小会造成量子隧穿效应的出现,这对于 SERS 检测来说是很不利的。因此,对主动控制电子隧穿量子效应的研究非常必要的。   鉴于此,杨良保课题组利用单层h-BN形成的高隧穿势垒主动阻断电子隧穿效应,通过探测单颗粒纳米腔中h-BN本征SERS强度定量探测经典框架内最终的近场增强极限(图2左)。该研究通过热电子隧穿量子计算以及层数依赖的散射光谱实验等,均证明了单层h-BN阻挡了电子隧穿。研究通过SEM-SERS同区域成像获得的最大SERS增强因子,将这些实验结果与经典电磁模型与量子校正模型获得的计算结果进行比较,发现了经典电磁模型确实较好地符合实验数据,实现了经典框架内最终的近场增强极限的探测(图2右)。该工作有助于进一步剖析等离子体增强中的量子力学效应等,为量子等离子体学和纳米隙光动力学提供了重要指导。   该工作的第一作者为健康所2019级博士生陈思雨。该项研究受到中国科学院科研仪器装备开发项目、国家自然科学基金、安徽省自然科学研究项目等资助。图1 Nano letters的正封面图2 (左) 设计了一个独特的纳米腔,用单层 h-BN 作为电子隧穿屏障和 SERS 探针,在埃级尺寸的间隙内,通过 h-BN 本征 SERS 强度探测纳米腔中最终近场增强极限 (右) 实验测量和模拟的体平均 SERS增强因子随间隙大小 (h-BN层数)的变化。
  • 钙钛矿量子点超晶格中的稳定蓝光腔增强超荧光研究取得进展
    近期,中国科学院上海光学精密机械研究所红外光学材料研究中心董红星研究员和张龙研究员团队在溴氯掺杂量子点自组装超晶格结构中实现稳定蓝光腔增强超荧光,并解析了量子点超晶格结构通过降低电声耦合进而抑制光致相偏析的机制。相关研究成果以“Stable and ultrafast blue cavity-enhanced superflourescence in mixed halide perovskites”为题发表于Advanced Science。   高质量蓝光光源受限于低的量子效率,相比于红、绿光源仍处于落后的阶段。而钙钛矿量子点体系中的腔增强超荧光是由量子耦合效应和腔光场放大的双重调制产生的超快相干光爆发,可为实现高质量蓝光相干光源提供新思路,解决传统蓝光光源效率低下的局限性。卤素掺杂是在钙钛矿量子点体系中实现蓝光发射最直接的策略。然而,由于光致卤化物相偏析引起的光谱不稳定以及量子点与光腔之间的低耦合效率,使得在这种掺杂卤化物的量子点系统中实现稳定的蓝光腔增强超荧光具有挑战性。   针对上述问题,研究人员通过可控自组装制备得到形貌规则、长程有序、密集排列的CsPbBr2Cl量子点超晶格微腔。在量子点超晶格中,激子离域效应可以有效地减少激子声子耦合,从而缓解光致卤化物相偏析。同时,量子点自组装超晶格微腔具有高的堆积密度、光滑表面和规则几何结构,既可以作为增益介质,也可以作为高光反馈的回音壁腔,可提高量子点与光腔之间的耦合效率。因此,这两个核心问题将在量子点自组装超晶格结构中得到解决。基于这样的卤素掺杂量子点超晶格,研究人员最终实现了具有优异光学性能的稳定蓝光腔增强超荧光。   该工作得到国家自然科学基金,上海市青年拔尖人才计划等项目的支持。图1(a)量子点超晶格通过减弱激子-声子耦合来缓解光致相偏析的示意图;(b)CsPbBr2Cl量子点自组装超晶格微腔在激光泵浦在产生腔增强超荧光(CESF)的示意图;(c)77K下超晶格中随功率变化的蓝光腔增强超荧光发射图,左上角为1.8Pth激发功率下的蓝光腔增强超荧光的条纹相机图像。
  • 表面增强拉曼光谱监测肿瘤的光动力治疗
    导读 细胞中的氧化还原平衡,是指氧化性物种和还原性物种之间的动态平衡,在大多数生理过程中发挥着至关重要的作用,尤其是细胞凋亡(名词解释)过程。通过提高肿瘤微环境 (名词解释)中活性氧(ROS)的浓度,打破氧化还原稳态,是介导癌细胞死亡,进而达到肿瘤治疗目的的有效手段。目前,基于纳米酶(名词解释)催化的一些新型化学动力治疗、光动力治疗方法被用于肿瘤治疗领域,旨在达到肿瘤细胞中原位催化产生ROS的效果。但是,大多数对于上述治疗的机理研究仍然只停留于纳米酶级联催化反应的结果,无法做到对整个治疗过程的监测。表面增强拉曼光谱(SERS)(名词解释)作为一种快速、无损的测试技术,其灵敏度甚至可以达到单分子级,在监测细胞内相关生化反应方面具有巨大潜力。将SERS技术应用于上述肿瘤的光动力治疗过程的监测,不仅能帮助进一步理解纳米酶催化过程的具体机制,更能得到肿瘤微环境中氧化还原状态的具体信息。研究亮点 近日,吉林大学宋薇教授、刘卓副教授和赵冰教授团队将一种金/碳量子点(Au@CDs)复合材料级联纳米酶用于对肿瘤细胞的光动力治疗,并且采用SERS技术监测了整个光动力治疗过程中肿瘤微环境内氧化还原平衡的打破与再修复过程。该成果以“SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy”为题发表在Light: Science & Applications,吉林大学博士研究生李林甲为第一作者,宋薇教授、刘卓副教授和赵冰教授为论文共同通讯作者。该研究工作得到了国家自然科学基金,吉林省教育厅科技研究计划等项目的支持。研究人员首先以CDs作为模板剂和封端剂设计构筑了一种具有级联模拟酶活性的核壳结构Au@CDs材料,相比于单独的金纳米粒子,CDs外壳避免了Au核的聚集,并提供了致密且均匀的SERS热点。在808 nm近红外光激发下,Au@CDs表现出近红外光致增强的类过氧化物(POD)酶和近红外光诱导的类谷胱甘肽氧化酶(GSHOx)活性:即在近红外光照射下,表面等离子体共振(SPR)激发的大量热载流子可以有效地参与反应,金纳米粒子典型的等离子体光热效应可以增强POD活性;另外Au@CDs介导谷胱甘肽(GSH)参与反应,加速ROS的生成,呈现出光热增强的光动力治疗效果。这种级联纳米酶催化过程将迅速打破肿瘤细胞内的氧化还原稳态,产生大量ROS,最终导致癌细胞凋亡。图1 Au@CDs的级联纳米酶催化机制及其光热增强的光动力治疗肿瘤过程。为了监控这一催化过程,研究人员利用SERS技术,通过对四甲基联苯胺(TMB)底物分子的氧化产物的识别,实现了对光动力治疗肿瘤过程中,肿瘤微环境内活性氧动态变化过程的监控。即在近红外激光的辐照下,肿瘤细胞内活性氧水平会随着Au@CDs催化反应的开始而迅速上升,在很短的时间内(3min)即达到拉曼信号的峰值,实现氧化应激损伤效果;而激光辐照结束后,肿瘤微环境则会在一个相对较长的时间(33 min)进行自修复,即过表达的GSH等还原性物质消耗过量ROS的抗氧化过程,最终肿瘤微环境回到氧化还原平衡态。图2 (a-c)光动力治疗肿瘤过程中拉曼信号的变化及(d-e)对应的肿瘤微环境内氧化还原平衡的打破和再修复过程。总结与展望 Au@CDs级联纳米酶与传统的纳米药物和免疫治疗剂相比,具有通过级联反应中的光热性质促进光动力治疗效果的优点,能快速提高肿瘤内ROS的浓度,打破氧化还原稳态,进而达到肿瘤治疗目的,由于过表达的GSH等还原性物质消耗过量ROS,抑制了ROS向细胞外扩散。通过SERS策略,获得了光动力治疗过程中完整的氧化应激过程,对基于肿瘤微环境氧化应激损伤的光疗机制进行了深入的研究,为肿瘤光动力治疗的实时监测提供了最有价值的机制和数据支持。论文信息 Li, L., Yang, J., Wei, J. et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl 11, 286 (2022).https://doi.org/10.1038/s41377-022-00968-5
  • 新材料领域:便携式增强拉曼检测设备
    现场快速检测在环境污染物检测、农残检测、安检、疾病早期诊断等领域具有广泛应用。基于增强拉曼光谱的检测技术,具有灵敏度高、检测速度快、指纹识别等优点,倍受关注。近十年来,中国科学院合肥物质科学研究院在这方面取得丰富的技术积累。主要技术指标(或参数):   1、检测下限:多数有机物0.01-1ppm;部分有机物1ppb;离子0.01ppm;   2、具有指纹识别能力、现场快速检测;   3、可测量液体、固体中的目标物,也可分析固体表面及浅表层物质,例如菜叶上农残和物品表面纳克级别的粉末。   应用领域:   微量/痕量有机物、离子等的快速灵敏检测:   1、 农药残留等有机物检测;   2、 环境污染物检测;   3、 金属离子、酸根离子的检测。   市场前景:   具有良好的社会经济价值及应用前景。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。   相关图片:便携式增强拉曼检测设备
  • 手性印迹表面增强拉曼散射检测技术获进展
    a) SERS-CIP检测策略示意图;b)含SERS标记物的SERS-CIP玻璃毛细管照片,识别区域用红色圆圈表示;c)在SERS-CIP上实现手性氨基酸识别检测原理 课题组供图近日,中国科学院烟台海岸带研究所研究员陈令新团队在手性印迹表面增强拉曼散射(SERS)检测技术领域取得重要进展,研究成果“基于手性分子印迹的表面增强拉曼散射检测策略用于绝对对映体区分”发表在最新一期的《自然—通讯》。手性是自然界中普遍存在的现象。手性分子是与其镜像不能重合的分子,对映异构体间很多理化性质相同,但生理活性往往有很大的差别,因而,对单个对映体的选择性识别与检测在生命科学、环境监测和食品安全等领域至关重要。然而,单个对映体的识别存在很多挑战。首先,理想的手性区分策略需要外消旋体中的绝对对映体识别方法和高灵敏度的传感器件,并且保证对多种手性分子广泛适用,如何抑制对映体在手性区分传感器上的非特异性结合是关键。其次,对映体间具有相同的分子大小和官能团,仅结构呈现镜像对称,因此,不能根据一般传感器上的主-客体相互作用结果一概而论。此外,大多数手性识别策略高度依赖手性分子的细微结构特征,无法适用于复杂多样的手性化合物。海岸带是关乎人类社会发展的地球关键带。人类活动通过多种途径影响海岸带生态,使其被开发利用的同时,也造成了生态脆弱、灾害较多等问题,发展海洋生态固碳、保护生态环境是海岸带可持续发展的关键之一。氨基酸是海洋有机碳和有机氮的重要组成部分,氨基酸的手性转化是海洋微生物固碳的重要过程,了解手性氨基酸的结构和功能对于海洋固碳机制研究非常重要。然而,海岸带区域环境中的手性氨基酸含量很低、赋存介质复杂,因此亟需发展能够进行分离富集、降低和消除基质干扰的高灵敏手性分子检测技术。基于上述挑战,陈令新团队创新性发展了基于手性分子印迹的表面增强拉曼散射(SERS-CIP)检测策略,成功实现了对海水中精氨酸、组氨酸、天冬氨酸等8种氨基酸手性对映体的高选择性和高灵敏分析检测。手性分子印迹聚合物(CIP)具有在形状、大小和官能团三方面与目标氨基酸分子互补的空腔,能够高特异性结合目标手性分子,在手性氨基酸识别方面表现出了独特的优势。由于聚合物框架和手性分子的官能团之间的相互作用,不可避免的非特异性结合参与手性识别问题一直是挑战。研究发现,可以通过发展先进的CIP识别机制并通过抑制非特异性结合提高CIP对映体识别特异性。在利用SERS对CIP非特异性结合来源进行详细研究后,团队开发了一种检测识别机制来探索CIP的空间状态,并借此区分特异性结合和非特异性结合的氨基酸对映体分子。通过对映选择性测试、外消旋混合物分析以及在复杂实际样品中的手性识别表明,这种机制能够满足理想的手性识别策略的要求,并具有良好的实用性。该研究成果得到了国家自然科学基金和中科院国际博士后项目等项目的支持。文章的第一作者为助理研究员Maryam Arabi,文章通讯作者为研究员王运庆和陈令新。
  • 表面增强拉曼(SERS)距离临床应用还有多远?
    目前,对很多应用来说,拉曼光谱已发展成为一种强大的表征技术。但如果要使其在临床分析中更有效,还需要做更多的工作。  随着激光的发现,以及后续激光器和探测器技术的进步,以前发展缓慢的拉曼光谱进入了一个高速的发展阶段。目前,已经证明了拉曼光谱在生物大分子分析方面的应用价值,包括蛋白质、DNA、活细胞、组织和微生物的检测和诊断。  然而,拉曼散射是一个很弱的过程,只有一百万分之一的光子才会发生弹性散射现象。另外一个问题,自体荧光也阻碍了拉曼技术在生物学中的应用。幸运的是,70年代早期,一个新颖的现象被发现,分子接触(或非常接近)贵金属表面,如银和金,拉曼散射信号就会增加了1011倍,由此表面增强拉曼散射(SERS)也就发展起来了。除了散射增强之外,SERS还可以有效淬灭自体荧光。  尽管现在SERS在生物结构的分析方面已经有很多研究,但在我看来,在科学研究和临床应用之间还有一定的距离。此外,如果没弄明白临床应用的需求和流程,这种技术也不可能转化为真正的应用。  例如,对于从一个生物SERS实验中收集的数据,还有几个问题需要仔细考虑,以得到清晰的解释。首先,对于感兴趣的样品的SERS衬底类型需要仔细的选择。它应该是一个纳米结构的表面或胶体纳米颗粒,如金纳米颗粒(AuNP)或银纳米颗粒(AgNP)。如果样品是活细胞,AuNPs或AgNPs是很好的选择。如果样品是微生物,表面或胶体纳米颗粒衬底是最好的。  选择最合适的衬底之后,再现性和适用性的测试也是很重要的。评估获得的光谱信息时应该考虑官能团和贵金属表面的选择性相互作用,如SH、NH2,因为这些交互作用定义了环境。  十年来,我们对这项技术是否可以应用到临床决策中进行了评估。我们利用实验室中发展起来的样品制备方法和检测技术分析了活细胞和死细胞、组织和微生物样本。我们认为还有很多工作需要去做来探索该技术的潜力,因为生物样品不仅非常复杂,而且不同样本之间也存在产异性。  临床中,快速识别传染性微生物在疾病干预方面至关重要。虽然有许多研究证明了利用SERS可以快速识别微生物,但是从临床样本中识别它们的能力尚不清楚。  生物样品的复杂性,如血液和尿液,是减少了解样品状态所需时间的一个主要的障碍。例如,尿液样本中可能有许多化学物质,包括尿素和肌酸酐、溶解的离子、白色和红色的血细胞、蛋白质连同传染性病原体。如果没有完全的清洗或分离,这些成分可能会干扰或阻碍SERS的检测,同时也势必增加分析时间。当然,其中还有几个问题需要解决以确定尿样的感染状况。第一个问题很简单:样品是否感染? 1毫升尿样中细菌的数量决定了答案,尿液样本包含细菌数大于105cfu /ml被认为感染。然后,我们必须问哪种病原体存在?然后再问是否有一个SERS可以识别的标识物来显示尿液是否感染?这项技术是否可以用于细菌样本的定量分析?这项技术能识别病原体吗?  我们已经知道, SERS可以识别细菌,但从复杂样品中识别细菌仍需进一步的努力以加快这一进程。在我看来,对于以上的部分问题得到积极的答案并不是很远的事情,而且也将缩短SERS进入提高临床决策这个位置所需的时间。  作者:Mustafa Culha  Mustafa Culha的实验室在叶迪特佩大学遗传和生物工程系,该实验室持续进行光谱技术的实用研究,如表面增强拉曼散射(SERS)揭示活细胞、死细胞相互作用,发展用于医学和生物医学的新颖的检测和诊断工具。他在同行评议的国际期刊和几本书的章节中撰写了70多篇论文,拥有若干生物分析化学和纳米技术方面的专利。他是Nanotechnology杂志的SERS研究和Nanoparticle Research纳米生物的特刊编辑,同时他也是应用光谱学编委员会的成员。
  • 智能“手套”可增强虚拟现实触觉
    据英国《新科学家》杂志网站14日报道,美国科学家发明出一款智能“手套”,可通过向佩戴者手掌中的神经发送电信号,让佩戴者感觉自己在虚拟现实(VR)中抓住物体。  为配合在VR中拿东西的视觉体验,人们经常会佩戴手套,手套会向手掌提供反馈,比如振动或电信号。但手套也会使佩戴者的手指感觉迟钝,使用户在佩戴VR耳机时更难执行灵巧的任务。  芝加哥大学田中雄大团队开发出了一种设备,使用手背和手指上佩戴的电极网来模拟或增强触觉,使手掌和手指不受阻碍地活动。神经刺激会使单个手指感觉好像在触摸什么东西,因为人类的手掌比手背有更多触摸感受器来接收电极发送的电信号。  研究团队在几种VR体验中测试该设备,比如在虚拟攀爬体验中,该设备可让人们在VR中攀爬时能更敏锐地感觉到手掌中的绳索。  团队认为,这种手套在现实的学习任务中也很有用。他们尝试将其用于打碟,在该场景下,这款智能“手套”可提供反馈,指导某人何时将特定的音乐曲目淡入或淡出。  研究人员指出,因为这款手套不会覆盖整个手,所以可一直佩戴,在VR内外使用。他们在2023年计算机系统人为因素会议上介绍了这一最新研究。
  • 中红外光学反馈腔增强OH自由基探测技术取得新进展
    近日,中科院合肥研究院安光所张为俊研究员团队在腔增强吸收光谱OH自由基探测技术方面取得新突破,相关研究成果以《基于中红外分布反馈二极管激光器的光学反馈腔增强吸收光谱技术应用于OH自由基探测》为题发表于美国光学学会(OSA)学术期刊Optics Express。   OH自由基是大气中最重要的氧化剂,其快速循环反应决定着大气中主要污染物的生成和去除。由于反应活性高,寿命短,在大气中浓度低,准确测量十分困难,是当今大气化学领域非常重要和挑战性的研究内容。   团队赵卫雄研究员和杨娜娜博士等人发展了2.8微米中红外光学反馈腔增强技术,为OH自由基探测提供了一种新的直接探测手段。该技术利用谐振腔的共振光反馈回激光器,可以有效压窄激光器线宽,实现光学自锁定,提高激光入射谐振腔的耦合效率,实现高灵敏度探测。   团队采用波长调制的方法,以腔模的一次谐波为误差信号反馈给压电陶瓷控制器,精确控制距离,从而达到相位实时锁定,在800 米有效光程下获得1.7×10-9 厘米-1探测灵敏度,对应OH自由基探测极限为~2×108 个/立方厘米。该技术进一步与磁旋转吸收光谱(FRS)和频率调制光谱(FMS)等技术相结合,将为大气OH自由基直接探测提供新的途径。   本研究得到国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金优秀青年科学基金项目、第二次青藏高原综合科学考察研究项目、中国科学院青年创新促进会、中国科学院合肥物质科学研究院院长基金资助。
  • 结合高光谱和增强暗场的拉曼光谱仪要来了!
    p style="text-indent: 2em text-align: justify "span style="text-align: justify text-indent: 2em "近日,拉曼光谱领域的领先企业HORIBA(堀场)与思拓唯沃(CytoViva Inc. )宣布联合开发产品,通过将HORIBA的拉曼显微成像模块与CytoViva的高光谱成像(HSI)显微模块和增强暗场 (EDF) 照明模块相结合,让拉曼分析变得更快、更强大。/span/pp style="text-indent: 2em text-align: justify "span style="text-align: justify text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9b3f0fc2-024e-4361-8631-49650eb7cf06.jpg" title="7008_horibacytoviva3245325.jpg.jpg" alt="7008_horibacytoviva3245325.jpg.jpg"//pp style="text-align: justify text-indent: 2em "据介绍,高光谱成像显微镜可以实现样品的高灵敏度快速成像,用户可通过光谱检测生成的彩色图像更轻松的定位纳米粒子或特定位置。这种创新的结合对纳米材料研制、药物运输、纳米毒理学研究和SERS纳米粒子的表征等应用具有重大的意义。/pp style="text-align: justify text-indent: 2em "CytoViva的专利增强暗场照明模块相比于普通的暗场显微镜信噪比提升了近10倍,可以检测更小的尺寸,可以实现10nm纳米粒子的可视化。/pp style="text-align: justify text-indent: 2em "将拉曼、高光谱成像和增强暗场联用,可以使用户快速将样品或目标区域可视化,同时通过相同区域的拉曼检测,获取纳米粒子或其他样品元素的化学信息。/pp style="text-align: justify text-indent: 2em "strong关于HORIBA科学仪器事业部/strong/pp style="text-align: justify text-indent: 2em "1997年,HORIBA集团收购了光谱制造商Jobin Yvon,2009年,HORIBA Jobin Yvon与HORIBA旗下分析仪器产线正式合并成立HORIBA Scientific(HORIBA科学仪器事业部),并启用新标识,自此HORIBA Scientific为用户提供从真空紫外到近红外范围测量的解决方案。/pp style="text-align: justify text-indent: 2em "strong关于思拓唯沃(CytoViva Inc. )/strong/pp style="text-align: justify text-indent: 2em "CytoViva是由美国Auburn大学与Aetos技术有限公司合作成立,具有高校和军事公司背景,配合强力的技术支撑,2005年面市, 2006和2007连续两年获得著名的R&D 100奖的获奖荣誉,2007年同年获得Nano50TM奖,在2009年获得了两项美国专利,并迅速得到各个国家重点实验室的认可。/p
  • 安捷伦科技公司推出功能增强的顶尖生命科学软件
    安捷伦科技公司推出功能增强的顶尖生命科学软件 全新 GeneSpring 平台可更快发现多组学数据之间的复杂关系 2014 年 10 月 29 日,北京 — 安捷伦科技公司(纽约证交所:A)今日推出了一款经过全新优化的 GeneSpring 软件包,适用于专注于基因组学、蛋白质组学、代谢组学、转录组学或其他任何生命科学学科组合的研究人员。 安捷伦生命科学研究分部营销总监 Steve Fischer 说道:“GeneSpring 的增强功能使得最终用户能够更快地发现数据间的关系并得出结论。” 新软件包包括: GeneSpring GX 和 Mass Profiler Professional,现在利用它们的相关分析功能可帮助用户研究样品间或基因、蛋白质和代谢物之间的关联强度和关联方向。计算相关系数并以热图的形式显示。用户也可以形象化显示样品属性,如肿瘤大小、实验时间点或实验膳食。所测组学数据中的变化信息能够按相对应的样品属性变化信息进行排列,以便快速发现关联信息。 Pathway Architect,目前支持《京都基因与基因组百科全书》(KEGG) 通路。KEGG 是首要的通路内容来源。持有 KEGG 授权的客户能够使用安捷伦 Pathway Architect 来搜索、评价、保存和共享其硬盘上的结果数据。这些均是安捷伦软件特有的功能。 安捷伦为所有组学应用提供硬件支持、软件支持、消耗品和辅助设备。公司的软件能帮助研究人员轻松访问跨越多种学科的数据,以显示其他方法所不能提供的关联信息。 西澳大利亚大学澳大利亚研究委员会植物能源生物学卓越中心的 Ricarda Fenske 研究员举出了一个贴切的例子: “我们对研究代谢物之间的相关性很感兴趣,”Fenske 说道。“Mass Profiler Professional 的相关分析功能使我们能够及时实现这一目标。该功能可帮助我们发现代谢物之间的关系,从而快速确定通路上治疗效果。” “研究人员正在构建跨越所有组学学科的不断壮大的数据集,其中包含更多实体对象,如基因、蛋白质和代谢物,这为他们的数据处理资源带来更大压力”,Steve Fischer补充说, “安捷伦设计了可云部署的 GeneSpring GX、Mass Profiler Professional 和 Pathway Architect,以此提高研究人员的处理能力,同时还可增强他们与远程同事的协作能力”。 关于安捷伦科技公司 安捷伦科技公司 (NYSE:A) 是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 前瞻性陈述 此新闻内容包括 1934 年《证券交易法》中规定的前瞻性陈述,并受由此创建的安全港规则约束。此处的前瞻性陈述包括但不限于:安捷伦的电子测量业务分离的相关信息、未来收入、利润和盈利能力,未来对公司产品和服务的需求,以及客户预期。这些前瞻性陈述包括可能导致安捷伦的业绩与管理层当前预期产生巨大差异的风险和不确定因素。这些风险和不确定因素包括但不限于:客户业务实力不可预见的变化;对当前以及新产品、技术和服务的需求不可预见的变化;客户的购买决策和时机,以及我们不能实现由于整合和重组活动所带来的预期节省的风险。 此外,安捷伦面临的其他风险包括安捷伦向证监会提交的文件中详细说明的风险,包括我们最近提交的 Form 10-K 和 Form 10-Q。前瞻性陈述是以对安捷伦管理层的信念和假设以及现有的信息为基础。安捷伦概不承担向公众更新或修改前瞻性陈述的义务。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com/go/news。
  • 通过微波增强的多肽固相合成自动合成首尾相连的环肽
    摘要使用 Liberty Blue&trade 和 Liberty PRIME&trade 多肽合成仪可以快速、高纯度进行头尾环化肽的全自动合成。微波增强的多肽固相合成(SPPS)不仅有利于线性组装,而且有利于随后的环化步骤,在各种困难的生物学重要肽上实现了极高的纯度合成。Liberty PRIME 上使用的一锅法 Fmoc SPPS 循环进一步改善合成时间、减少浪费。表1 :全自动合成首尾相连的环化肽表2:Liberty Blue 和 Liberty PRIME 合成 Cyclorasin A1引言环肽能够桥接小分子和抗体之间的化学空间间隙,允许设计具有高结合亲和力、显着选择性、低毒性和进入细胞内靶点的能力的分子2。因此,大环肽作为靶向传统上无法成药的生物靶点的治疗剂具有相当大的前景3。截至 2017 年,超过 40 种环肽用于临床4。环肽作为候选药物开发的这一令人鼓舞的趋势,为发展更稳健的制备方法提供了动力。SPPS 可以通过使用 Fmoc-Glu-ODmab 作为 C 端氨基酸 (图 1) 制备首尾相连环化肽。在合成线性肽骨架后,可以使用稀肼溶液选择性地去保护 Dmab 基团。之后,可以使用微波增强偶联实现首尾环化。将微波能量应用于首尾环化肽的合成可以实现更有效的偶联,从而加快合成时间和提高纯度 (CarboMAX&trade )5。 图 1:Fmoc-Glu-ODmab ( 左 ) Fmoc-Glu(Wang resin LL)- ODmab (右)材料与方法试剂以下含有指定的侧链保护基团 Fmoc 氨基酸购自 CEM Corporation (Matthews, NC) 并:Ala、Arg (Pbf)、Gly、His (Boc)、Ile、Leu、Lys (Boc)、Thr (tBu) )、Trp (Boc)、Tyr (tBu) 和 Val。Rink Amide ProTideTM LL 树脂也购自 CEM Corporation。Fmoc-Glu-ODmab、Fmoc-Glu(Wang)-ODmab LL 树脂、FmocD-Ala- OH 和 Fmoc-4-氟-L-苯丙氨酸购自 EMD Millipore (Burlington, MA)。Fmoc-D-2-Nal-OH、FmocD-Nle-OH 和 Fmoc-N-甲基-L-苯丙 氨酸购自 Bachem (T orrance, CA)。Fmoc-N-甲基-异亮氨酸-OH 购自 Advanced ChemTech (Louisville, KY)。FmocN-甲基-亮氨酸-OH 购自 Alfa Aesar (Haverhill, MA)。水合肼、N,N-二异丙基乙胺(DIEA)、Fmoc-N-甲基-甘氨酸-OH、N,N' -二异丙基碳二亚胺 (DIC)、哌啶、吡咯烷、三氟乙酸 (TFA)、3,6-dioxa-1、 8 辛二硫醇(DODT) 和三异丙基硅烷 (TIS) 购自 Sigma-Aldrich (St. Louis, MO)。N,N-二甲基甲酰胺 (DMF)、无水乙醚 (Et2O) 和乙酸购自 VWR (Radnor, PA)。LC-MS 级水 (H2O) 和 LC-MS 级乙腈 (MeCN) 购自 Fisher Scientific (Hampton, NH) 。多肽合成:CEM 7-mer, cyclo-[GVYLHIE] 使用 CEM Liberty Blue 自动微波多肽合成仪,在 Fmoc- Glu(Wang)- ODmab 树脂(离子交换容量:0.025 meq/g)上,以 0.10 mmol 的规模合成(Dmab 脱保护以0.05 mmol 规模进行,首尾环化以 0.025 mmol的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍量的Fmoc氨基酸,DIC和Oxyma Pure(CarboMAX)5 中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后无水乙醚沉淀肽并过夜冻干。图2:CEM 7-mer多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q] (Liberty Blue)使 用 CEM Liberty Blue 自 动 微 波 多 肽 合 成 仪 , 在 Rink Amide ProTide LL 树脂 (离子交换容量:0.19 meq/g )上,以 0.05 mmol 的规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍Fmoc氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并过夜冻干。多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q](Liberty PRIME)使用 CEM Liberty PRIME 自动微波多肽合成仪,在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g)上,以 0.05 mmol 规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/ DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图3:Cyclorasin A多肽合成:N-MethylCyclorasinAnalog, cyclo-[WTaR-NMeGly- NMePhe-nal-NMeGly-Fpa-nle-E]使用 CEM Liberty PRIME 自动微波肽合成仪在 Fmoc-Glu (Wang ) -ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.05 mmol 的 规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在CEM RazorTM高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽 并冻干过夜。图4:N-Methyl Cyclorain Analog多肽合成:Poly N-Methyl Peptide, cyclo-[KA-NMeIle-NMeGly-NMeLeu-A-NMeGly-NMeGly-E]使 用 CEM Liberty PRIME 自 动 微 波 肽 合 成 仪 在 Fmoc-Glu (Wang )-ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.1 mmol 的规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护 。偶 联 反 应 在 5 倍 Fmoc 氨 基 酸 、 DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图5: Poly N-Methyl Peptide多肽分析在配备有 PDA 检测器的 Waters Acquity UPLC 系统上分析肽, 该 检 测 器 配 备 Acquity UPLC BEH C8 柱 (1.7 mm 和 2.1 x 100 mm)。UPLC 系统连接到 Waters 3100 Single Quad MS 用于结构测定。在 Waters MassLynx 软件上进行峰分析。使用 (i) H2O 和 (ii) MeCN 中的 0.05% TFA 梯度洗脱进行分离。 结果在 Liberty Blue 自动微波肽合成仪上 CEM 7-mer 的微波增强固相合成产生了纯度为 78% 的目标肽(图 6)。图6:CEM 7-mer 的UPLC色谱图在 LibertyBlue 自动微波肽合成仪上的 Cyclorasin A的微波增强。图7:Cyclorasin A (Liberty Blue)的UPLC的色谱图Liberty PRIME 自动微波肽合成仪上的 Cyclorasin A 微波增强。图8:Cyclorasin A (Liberty PRIME)的UPLC色谱图Liberty PRIME 自动微波肽合成仪上的 Poly N-Methyl Peptide。图9:多聚N-甲基Peptide 的UPLC色谱图Liberty PRIME 自 动 微 波 肽 合 成 仪 上 的 N-Methyl Cyclorasin Analog 的微波增强固相合成产生了纯度为 66% 的目标肽(图10)。图10:N-甲基 CyclorasinAnalog的UPLC色谱图 结论使用自动微波增 SPPS 可以快速有效地合成首尾环肽。此外,易于使用的 Liberty Blue 和 Liberty PRIME 软件允许对肽序列进行快速直接的编程。使用 Liberty Blue 肽合成仪在 2 小时 13 分钟内合成了纯度为 78% 的 7 聚体环肽。在 Liberty Blue 上在 3 小时 1 分钟内以高纯度 (75%) 合成了 Cyclorasin A 环肽。在 Liberty PRIME 上仅用了 2 小时就合成了相同的肽,纯度很高 (75%),浪费大约 100 mL。在 Liberty PRIME 上,微波增强的 SPPS 可在 2 小时 5 分钟内以 66% 的纯度合成了具有综合挑战性的 N-methyl cyclorasin analog 环肽。最后,在 Liberty PRIME 上以 73% 的纯度在 2 小时 12 分钟内制备出多聚 N-甲 基化 11 聚体肽。 参考文献[1] Upadhyaya, P. Qian, Z. Selner, N. G. Clippinger, S. R. Wu, Z. Briesewitz, R. Pei, D. Angew. Chem. Int. Ed. Engl. 2015, 54 (26), 7602&ndash 7606. [2] White, A. M. Craik, D. J. Expert Opin. Drug Discov. 2016, 11 (12), 1151&ndash 1163.[3] Hurtley, S. M. Science. 2018, 361 (6407), 1084.4-1085. (4) Zorzi, A. Deyle, K. Heinis, C. Curr. Opin. Chem. Biol. 2017, 38, 24&ndash 29. (5) CEM Application Note (AP0124) - &ldquo CarboMAX - Enhanced Peptide Coupling at Elevated Temperature.&rdquo
  • YSI公司推出了新型的pH和pH/ORP 增强型传感器
    YSI公司推出了新型的pH和pH/ORP 增强型传感器:新型pH和pH/ORP传感器具有内部电池供电的前置放大器,这两款新型传感器均可与YSI 556和YSI ProPlus主机适配。新型增强型传感器所具有的优势:在高静电环境下消除潜在的读数漂移应用于寒冷水域和使用长电缆的情况下,具有高灵敏度、高稳定性可长期应用于潮湿的野外环境中传感器寿命长,大于两年 与ProPlus适配的增强型传感器类型型号传感器种类Pro1001A605323pH增强型传感器Pro1001A 套件605216pH增强型传感器和扩展适配器Pro1003A605324pH、pH/ORP增强型传感器Pro1003A套件605050pH、pH/ORP增强型传感器和扩展适配器 与556适配的增强型传感器类型型号传感器种类5564A655564pH增强型传感器5564A套件655561pH增强型传感器和扩展适配器5565A655565pH、pH/ORP增强型传感器5565A套件655562pH、pH/ORP增强型传感器和扩展适配器 用于YSI ProPlus仪器的Pro1001A套件 用于YSI 556仪器的5564A套件
  • 安光所在FTIR红外光谱分辨率增强研究方面取得新突破
    近日,中国科学院合肥物质院安光所高闽光研究员团队在傅里叶(FTIR)红外光谱分辨率增强研究方面取得新进展,相关研究成果分别以《基于线性预测理论的太阳遥感光谱高分辨率增强方法》和《基于线性预测理论的傅立叶光谱分辨率增强算法》为题发表于SCI期刊MEASUREMENT(SCI二区TOP,IF=5.6)和INFRARED PHYSICS & TECHNOLOGY(SCI二区,IF=3.3)。FTIR技术以测量速度快、精度高和波段宽的优势,在大气污染监测、食品药品安全检测等诸多领域得到了广泛的应用。然而,由于光谱分辨率的限制,该技术在多组分超痕量物质检测领域面临着挑战,如何在不改变光谱仪结构、不增加仪器重量和体积的前提下有效提高光谱分辨率,成为制约FTIR技术更广泛应用的关键技术难题。课题组李相贤副研究员和秦玉胜博士生等通过对FTIR光谱仪干涉特性进行深入研究,开发了一种基于线性预测理论的FTIR光谱分辨率增强算法。通过建立前后项线性预测总体最小二乘法估计模型参数并实现噪声抑制,利用滑动窗口技术减小预测误差并实现干涉信号高精度外推,显著提升了FTIR光谱分辨率增强模型的性能,在不改变干涉仪采样基础上,有效增强了FTIR光谱分辨率。《基于多步线性预测的太阳遥感光谱高分辨率改进》提出了一种基于滑动窗口的干扰信号多步线性预测方法,该方法将滑动窗口与线性预测相结合,实现了光谱分辨率的高质量提升。该方法的主要思想是首先得到干扰信号的自回归(AR)模型,将预测长度划分为多个大小相等的预测窗口,利用自回归模型逐级预测每个窗口的干扰数据。然后,利用预测的干涉数据重新建模,更新 AR 模型参数,再根据新的 AR 模型预测下一个窗口,形成基于滑动窗口的 MSLP 方法,直到完成最后一个窗口的预测,得到所需的干涉信号。经过傅立叶变换后,可获得分辨率更高的光谱信号。通过模拟和实验,MSLP 方法可用于分离低分辨率的气体光谱,实现交叉吸收分离。此外,该方法还可用于重建低浓度气体光谱的吸收特性。《基于线性预测的傅里叶光谱分辨率增强算法》提出了一种基于线性预测理论的傅里叶光谱分辨率增强算法。该算法由两个主要部分组成。第一步,建立干扰信号的自回归模型(AR)。利用前后向线性预测总最小二乘法和奇异值分解(SVD)估计 AR 模型中的参数,有助于减少奇异值反演造成的假峰值,抑制噪声干扰,并提出干扰信号最小预测误差准则来确定 AR 模型的阶数。第二步,利用 AR 模型进行线性预测。提出了一种基于滑动窗口的干扰信号多步线性预测方法,以提高预测精度。此外,还通过模拟研究了信噪比(SNR)、增强因子和傅里叶变换红外光谱的初始分辨率对算法精度的影响。为了验证该算法的实用性,我们将其用于增强 NH3 的光谱分辨率。然后使用增强光谱进行定量分析,以更好地评估该算法在增强光谱分辨率方面的效果。通过理论、模拟和实际应用,证明了所提出的算法能有效提高光谱分辨率和定量分析的准确性。基于线性预测理论的FTIR光谱分辨率增强模型多组分交叉吸收仿真增强示意图不同分辨率下的实际干涉信号外推比较FTIR光谱分辨率增强模型识别实际NO和H2O吸收特征该成果有望进一步拓展FTIR技术在多组分超低浓度痕量物质检测等领域的应用前景。该研究成果得到了国家重点研发计划、国家自然科学基金等项目的资助。文章链接:https://doi.org/10.1016/j.measurement.2024.114220https://doi.org/10.1016/j.infrared.2023.104764
  • HORIBA前沿用户报道 | 复旦巧用增强拉曼“识”雾霾
    供稿| 张立武编辑 | Qian霾污染一直广受公众和媒体的注意,2013年“雾霾”更成为年度关键词。其实,从全世界范围来说,雾霾是已经困扰了人们两个多世纪的全球性难题,可以说雾霾之痛,全球之痛。当下,人们已经意识到研究大气雾霾不仅要研究它的危害,还要终落实到控制和预防,这就牵涉到雾霾的核心物质——大气气溶胶。“识别”大气中气溶胶颗粒物的形成机理、污染物组分成为当务之急。那么有哪些方法可以快速“识”雾霾呢?复旦大学环境科学与工程系张立武研究员课题组,利用表面增强技术结合拉曼光谱实现了对实验室模拟气溶胶和大气气溶胶成分的快速检测,相比传统拉曼技术,这种方法更灵敏、更快速,很好地克服了在拉曼研究大气颗粒物中增强效果差和稳定性差的难点,颇具潜力。相关研究成果以《Surface Enhanced Raman Spectroscopy: a Facile and Rapid Method for the Chemical Components Study of Individual Atmospheric Aerosol》 为题发表在ACS的Environmental Science & Technology杂志。下面,让我们一起来看看复旦大学是如何巧用增强拉曼“识”雾霾的。“倒金字塔”基底承载雾霾颗粒&增强拉曼信号大气气溶胶中的颗粒物成分复杂,有些污染物含量低、毒性大,并且很少能够直接检测出来。例如用传统拉曼技术检测大气气溶胶,就具有峰强弱、重复性差等劣势。令人兴奋的是,复旦大学张立武研究员课题组巧妙地利用表面增强技术结合拉曼光谱突破了难点,实现了对实验室模拟气溶胶和大气气溶胶的快速检测。研究人员利用“倒金字塔”型的表面增强基底Klarite,通过沉积法采集单颗粒气溶胶,如下图。因为其倒金字塔型的碗状结构非常适合承载~1 μm的单颗粒,因此拉曼增强因子平均可以达到6倍。表面增强拉曼检测雾霾颗粒示意图从模拟大气检测到真实大气检测探明“倒金字塔”状Klarite表面增强基底的拉曼增强效果后,研究人员分别对气溶胶在实验室模拟状态下、大气中实际状态进行了对比检测。与传统拉曼检测法相比,这项研究表明,表面增强拉曼表现出了出色的增强效应和稳定性。而在此次拉曼测试过程中,研究人员使用的是 XploRA Plus激光拉曼光谱仪,进行拉曼分析。接下来,我们就来分别看看两种条件下的测试结果。首先,我们来看一下实验模拟状态下的结果。 张老师团队分别对模拟硫酸铵气溶胶以及含萘气溶胶进行拉曼检测,如下图。相比于使用金、银纳米溶胶,Klarite增强基底表现出增强因子高和重复性好的特点。这样,研究人员对利用表面增强拉曼技术检测大气中单颗粒气溶胶充满信心! 实验室模拟的硫酸铵气溶胶在不同基底上的增强效果接下来,在真实大气气溶胶的研究中,研究人员分别采用了拉曼点扫描和拉曼面扫描。点扫描采用785 nm激光、600线每毫米的光栅和1024 × 256像素的CCD,得到3 cm-1的光谱分辨率。利用Mapping扫描时间快的特点(1 μm作为步径),研究人员快速地在采集到的颗粒物的面上识别化学组分,可以识别出如 1000~1700 cm-1的不定型碳、~1000 cm-1的NO3-和SO42-无机盐组分以及一些PAHs。以上研究表明,表面增强拉曼有出色的增强效应和稳定性,对于研究雾霾以及相关问题具有十分重要的作用。参考文献:Environ. Sci. Technol. 2017, 51, 6260?6267值得一提的是,张老师课题组积累了丰富的增强拉曼检测雾霾颗粒物的测试经验,不仅有拉曼光谱数据,还进行了拉曼光谱成像表征。团队介绍张立武课题组 博士/研究员 (青年千人)理学博士,入选国家青年千人计划,上海市“东方学者”特聘教授。2009年毕业于清华大学化学系,同年获德国“洪堡学者”基金资助在汉诺威大学从事研究工作。于2012年获玛丽居里欧盟内研究基金资助前往剑桥大学卡文迪许实验室从事研究工作。主要研究兴趣为大气化学,CO2资源化利用及环境污染物的检测。2014年加入复旦大学环境科学与工程系。实验室课题组主要研究方向1. 大气光化学过程2. 环境气固界面化学3. 环境污染物检测及控制 点击标题,查看往期精华文章上交大新拉曼探针有望精准定位肿瘤君,助力攻克医学难题只有发丝直径十万分之一的量子点,如何解析它的“光”拉曼光谱技术测定二硫化钼层数的两种方法免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 【赛纳斯】表面增强拉曼/红外光谱技术的进展与突破
    01导读拉曼光谱和红外光谱是 最 重 要 的分析化学方法之一,可提供待测体系的化学键等关键结构信息。然而,它们应用于材料和生物体系的表面化学分析时,常面临着灵敏度偏低的瓶颈。四十余年来,人们持续致力于突破该瓶颈,推动相关技术的应用和产业化。近日,厦门大学田中群教授课题组回顾了拉曼和红外光谱技术的发展历程,系统性论述了表面增强拉曼散射光谱和表面增强红外吸收光谱的三种物理机制:等离激元效应、避雷针效应和耦合效应。从拉曼和红外光谱的基本原理和实际案例出发,提出了进一步提高拉曼和红外光谱的表面检测灵敏度的策略,即宏观光学系统与微纳光学衬底之间多尺度耦合,最 后讨论了将宏观光学-微纳衬底间的高效耦合拓展到亚纳米分子尺度的可能性,展望了更多种形式的多尺度光耦合策略。图1 SERS和SEIRA光谱灵敏度提高的策略与实践:从微纳结构衬底设计到光学设计。02研究背景拉曼光谱和红外光谱技术的里程碑式进展如图2所示,时间轴上、下分别为拉曼光谱和红外光谱技术。从发展历程可见:(1)1800-1974年主要集中在基本测试仪器和方法,从无到有地建立拉曼和红外及其衍生光谱技术;(2)1974-2010年则在已有测量仪器基础上,从无到有建立起表面增强拉曼和表面增强红外光谱方法;(3)1997年至今的表面增强拉曼和表面增强红外光谱逐渐提升为单分子水平。由此可见拉曼和红外光谱技术的灵敏度在不断提升,而其蕴含的发展驱动力是由痕量甚至是单分子水平待测样品的实际需求所诱发的。如何提升拉曼和红外光谱的检测灵敏度,是具有 重 大 挑战性的科学问题和技术难题。图2 拉曼光谱、红外光谱、及其衍生技术的的里程碑式进展节点,时间轴上、下部分别为拉曼和红外光谱技术。2.1 SERS和SEIRA的增强机理表面增强拉曼光谱(SERS)和表面增强红外吸收光谱(SEIRA)主要基于电磁场增强机制。SERS和SEIRA电磁场理论的核心在于借助光和金、银等纳米结构的相互作用,增强纳米结构表面狭小区域内的光电场(也称近场)。该狭小区域也称为“热点”。处于热点中的待测分子的光散射和光吸收截面都被增强,如图3所示。图3 SERS和SEIRA的电磁场增强原理。a是分子的Raman散射及拉曼光谱。b是吸附于金属纳米球表面分子的SERS的两步增强机理。c是SERS光谱的数据处理。d是分子的红外吸收及红外光谱。e是吸附于金属纳米棒表面分子的SEIRA的一步增强机理。f是SEIRA谱的数据处理。热点内的局域电场的强度与分子的光吸收/散射效率直接相关。提高SERS和SEIRA增强衬底表面热点内局域电场强度是SERS和SEIRA技术发展的关键难题。SERS和SEIRA增强衬底可划分为非耦合型增强衬底和耦合型增强衬底两大类。非耦合型增强衬底,如单个纳米粒子、金属膜以及非金属表面的金属探针等,通常只支持局域表面等离激元、传播表面等离激元和避雷针效应中的一种机制。非耦合增强衬底的局域场增强因子较小,通常小于5个数量级,是研究局域场耦合的模型结构。耦合型增强衬底,特别是具有纳米间隙或者纳米尖端结构的增强衬底,分子拉曼散射和红外吸收信号会得到显著增强,检测灵敏度可达单分子水平。典型的耦合型增强衬底结构有纳米颗粒-纳米颗粒二聚体(dimer)、寡聚体结构(oligomer)、阵列结构(array)、蝴蝶结(bow-tie)结构,和金(或银)扫描探针-金(或银)衬底耦合结构等,如图4所示。图4 SERS和SEIRA典型结构。a-f为SERS衬底结构,g-i为SEIRA衬底结构。其中a和g为局域表面等离激元纳米结构,c和i为传播型表面等离激元纳米结构,e为支持避雷针效应的针尖纳米结构。b、d、f、h和i为不同形式的等离激元耦合纳米结构衬底。除了提高衬底的局域电场强度,SERS衬底在应用中还存在衬底普适性低和信号重现性不足的难题。壳层隔绝纳米颗粒增强拉曼光谱(SHINERS)是克服这一难题的强有力的创新方法,在材料表面化学分析中已发挥出独特的技术优势和巨大的实际应用效能。SHINERS技术的关键是制备超薄介质壳层包覆的金(或银)核的核壳结构纳米颗粒,其中壳层材质如SiO2、Al2O3等具有绝缘性和化学惰性,既避免了分子吸附于金(或银)核表面产生干扰信号,又减小了纳米颗粒和待测衬底发生烧融的概率,提升了体系稳定性。借助SHINERS中金(或银)核与待测金属材料衬底的耦合作用,金属衬底上吸附分子的拉曼信号得到显著放大,例如,实现了对不同晶面Au、Pt等金属单晶上痕量电催化中间产物的识别,为揭示相关电催化反应的路径和机制提供了关键证据(图5)。图5 用于表面分析的SHINERS技术。a 衬底表面的SHINERS粒子示意图。b 吸附在Au(111)、Au(100)和Au(110)表面的吡啶分子的SHINERS光谱。c SHINERS实验示意图。电磁场强度由颜色代表,红色(强)和蓝色(弱)。d SHINERS粒子的TEM成像和Pt衬底表面的3D-FDTD模拟。e 在氧气饱和的0.1 M HClO4中的ORR过程三个旋转环盘Pt单晶电极上的极化曲线。转速为1600转/分,扫描速率50 mV/s。坐标轴j和E分别代表电流密度和电极势。f 变电位条件下Pt(111)电极表面的ORR测试的EC-SHINERS光谱。类似壳层隔绝技术的核-壳结构构筑策略也适用于SEIRA技术。由金壳层和介质内核构筑的阵列SEIRA增强衬底不仅在近红外区有等离激元响应,在中红外区也显示出宽光谱共振响应。如图6所示,位于近红外区域的等离激元响应源自于单个纳米壳结构的多极等离激元共振,而位于中红外区域的宽谱响应带则源自多粒子结构的偶极共振耦合。耦合纳米结构是提高SERS和SEIRA衬底表面增强性能的有效方式,通过耦合效应可将衬底拓展为SERS和SEIRA同时响应的衬底。图6 多个纳米粒子耦合同时用于SERS和SEIRA虽然基于上述耦合纳米结构的SERS和SEIRA增强衬底可有效提高拉曼和红外光谱的检测灵敏度,要实现超高灵敏的SERS和SEIRA测量尚有一定难度。成功的研究报道往往集中于拉曼散射或红外吸收截面较大的少数分子体系,其增强衬底结构在实际应用中尚面临一些困难。特别是如何使应用面最广的SERS或SEIRA衬底,如单个SHINERS粒子、TERS探针、单根SEIRA棒和nanoIR探针,也具备超高检测灵敏度,即使面对散射或吸收截面较小的分子仍可获得有效的检测信号。这一问题仍充满挑战。因此,进一步针对特定的微纳衬底而优化设计的宏观光学系统的研究成为迈上更高灵敏度这一新台阶的关键。2.2 基于维纳结构衬底的宏观光学设计SERS信号与多重因素有关,其强度具体可用下式表示:我们可以参考SERS的强度公式将SEIRA的强度表示如下:GSERS和GSEIRA分别表示衬底通过等离激元和避雷针效应造成的局域场增强。上述公式清楚表明,SERS和SEIRA的强度不仅与微纳衬底的增强因子有关,也与仪器的参数,如光耦合效率Ω、检测器效率Q、色散系统的通量Tm和光学系统的透过率T0直接相关。虽然在Raman和IR发展的历程中,针对光学系统的研究从未停止,但聚焦在光学系统和微纳衬底之间的耦合效率的研究还很少。耦合效率Ω可进一步展开为其中Ωe表示激发光的空间角集中程度、Sexci表示微纳衬底的定向激发性质、Me-e则表示激发光和衬底之间的匹配程度。Ωc表示收集系统的定向收集能力、Sscat表示微纳衬底的定向辐射属性、Mc-s则表示Ωc和Sscat之间的匹配程度。上述三个公式清晰地描述了宏观光学系统和微纳衬底之间匹配程度对获得超灵敏SERS和SEIRA光谱的重要意义。图7为SERS和SEIRA中传统的耦合光学设计,和考虑衬底与光学系统匹配后的耦合光学设计。与传统方式相比,后者可在微纳衬底表面激发出更强的热点,获得更灵敏的SERS和SEIRA检测效果。图7 SERS和SEIRA中的光学设计。a 传统的激发和收集光锥。b 抛物面反射式聚焦镜。c 折射式物镜。d 反射式物镜。e SERS和SEIRA中精细设计的激发和收集空心光锥。f 基于棱镜和波导结构的激发光学。g 基于棱镜的折射式空心光锥透镜。h 基于棱镜的反射式空心光锥物镜。角度激发。通过ATR棱镜定向激发SERS和SEIRA衬底获得更高检测灵敏度是最常见的设计宏观光学增强微纳光学衬底的例子。如图8中所示,在二氧化硅半球柱面镜上蒸镀一层Ag膜,扫描激发光角度,在很窄的角度范围内可观察到表面等离激元效应。在该角度下收集纳米粒子构成的SERS衬底的拉曼散射信号,其光谱增强性能与金属膜表面相比可提高2-3个数量级。而在SEIRA中, ZnSe半球柱面镜表面的金岛状膜衬底的SEIRA增强性能也强烈依赖激发光的入射角度。70°下激发获得的SEIRA强度比20°时高6倍。更多的基于波导结构激发SERS和SEIRA的研究也证明了将激发光能量集中在某一窄角度范围内,可进一步提高衬底的SERS和SEIRA性能。图8 基于ATR棱镜结构定向激发SERS和SEIRA。a-c 在SERS中通过半球柱面镜激发金属膜表面SPR,进而激发单粒子SERS。d-f 在SEIRA中通过半球柱面镜激发金岛膜SEIRA。定向辐射收集。定向辐射收集主要体现在SERS衬底表面。SERS衬底作为天线,它接收远场光并在近场区域产生电磁场“热点”,从而激发“热点”内的分子。分子辐射的拉曼信号再次激发SERS衬底并辐射至远场。研究表明远场辐射的SERS信号表现出强烈的定向辐射属性。如图9所示,二聚体和三聚体的SERS远场辐射信号集中在很窄的空间角度范围内,而该空间角度甚至超过了显微物镜的收集角度范围,导致大量信号无法被测量。该实验结果证明宏观光学系统设计在提高SERS信号收集效率方面是非常必要的。图9 二聚体和三聚体表面SERS信号的远场辐射特征兼顾角度激发和定向辐射收集的光学设计。角度激发可提高SERS与SEIRA的激发效率,定向辐射收集可提高SERS的收集效率。2017年报道的一种消色差的固体浸没透镜结构做到了两者兼顾。如图10所示,通过该物镜结构,激发光能量可集中在很窄的角度范围内,有效提高激发光与SPR效应之间的能量耦合效率,因此在SPR角度附近SERS信号才最强。同时该物镜的数值孔径高达1.65,可有效收集远场辐射的SERS信号。该物镜不仅支持Kretschmann结构,也支持Otto结构,数值分析结果表明在不同衬底材料表面散射的SERS信号均具有定向辐射特征,与一般的线性偏振相比,热点的局域场增强更高。图10 基于消色差固体浸没透镜光学设计兼顾角度激发和定向辐射。a-d KR-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。e-j Otto-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。光纤高效激发和收集耦合TERS。另一种兼顾激发和收集效率的设计是光纤耦合结构的TERS装置。在该装置结构中,银纳米线TERS探针组装在锥状光纤表面。线偏振激发光在光纤中传播的波导模式会在不同的空间位置与银纳米线探针的两个SPP模式TM0和HE1耦合。通过光纤角度和长度的优化设计,提高远场光与TM0模式的能量耦合效率,优化后的远、近场的耦合效率可达70%。考虑到TERS的两步耦合过程,总体的远、近场光耦合效率可达50%,即使在最简单的TERS装置上也可实现碳纳米管表面1 nm空间分辨率的化学光谱采集。图11 a 波导模式LP01和银纳米线探针的TM0和HE1模式之间的耦合示意图。b 通过TM0模式的近场和远场耦合。c TERS探针和光纤的SEM图。d 碳纳米管样品的形貌。e 沿着d中白色虚线的TERS强度分布。f d中虚线上A、B和C位置处的TERS光谱。光学设计拓展nanoIR和TERS的适用环境。近几年先后报道的液体环境纳米红外光谱技术均通过底部ATR光学结构激发实现。电化学TERS技术的一大难题是TERS的激发和收集光路路径上光传播介质发生了变化,造成常规TERS测量技术的不直接适用。如何在有限的空间内实现TERS光路与电化学池的有效光学耦合是一个关键的技术问题。如图12所示,在该设计中,电化学池被改造成由透明窗片、倾斜样品区以及电化学功能模块构成的结构。这一结构有效抑制了光路畸变对TERS测量的影响,由此成功获得了电化学反应前后的少量反应物和产物的TERS光谱。图12 电化学TERS技术。a 在电化学池中增加光学窗片,并减小与激发和收集物镜的距离实现的电化学TERS装置结构。b-c 溶液中TERS探针的局域电场分布。d 电化学反应过程中不同位置的TERS光谱。e 反应物和产物的空间分布。f 不同样品偏压下的产物。03总结与展望SERS和SEIRA分别显著提升了拉曼光谱和红外光谱的检测灵敏度,近二十年来,随着微纳光学技术的逐步发展,高性能的增强衬底不断问世。尽管目前对宏观光学系统与微纳衬底之间多尺度耦合效率的研究还较少,在可预见的将来,该问题终将被解决,这将使得应用面最广的球形纳米颗粒的光谱增强性能也有机会进一步实现数量级的提升。除了兼顾宏观和微纳光学的耦合设计,近年来基于原子尺度的避雷针效应与等离激元结合也实现了一系列的突破,如利用TERS技术实现了单分子、甚至单个化学键的成像。然而,可检测的分子体系仍限制于少量的分子种类。这就要求在提高宏观光学到微纳光学的耦合效率的同时,也要提高从微纳光学到原子尺度光学的能量耦合效率。这一问题的解决将不仅对TERS,对Nano IR的发展也不至关重要。在实际应用中,SERS和SEIRA的环境普适性也是一个重要的指标。特别是在TERS和NanoIR技术中,发展适配如能源化学中的多相界面体系或生命科学中的液相环境体系等具体应用场景的光学结构设计将具有重大应用意义。文章信息:该研究成果以"Advances of surface-enhanced Raman and IR spectroscopies: from nano/micro-structures to macro-optical design"为题在线发表在Light: Science & Applications。本文 第 一 作者为厦门大学的王海龙博士,共同通讯作者为田中群教授和王海龙博士。合作者包括尤恩铭博士、丁松园教授和印度SRM University- AP的Rajapandiyan Panneerselvam博士。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制