无机复合材料

仪器信息网无机复合材料专题为您提供2024年最新无机复合材料价格报价、厂家品牌的相关信息, 包括无机复合材料参数、型号等,不管是国产,还是进口品牌的无机复合材料您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无机复合材料相关的耗材配件、试剂标物,还有无机复合材料相关的最新资讯、资料,以及无机复合材料相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

无机复合材料相关的厂商

  • 常州普威复合材料旨在帮助您,方便快捷地获得先进的高性能工程塑料解决方案。作为国内领先的工程塑料解决方案供应商,我们的聚合物材料和工程塑料产品范围广,应用经验丰富,通过协作代工厂,能针对功能复合材料改性造粒以及配色,挤出板棒管等各种型材,成品CNC机加工、模具注塑成型、及成品零件等,提供完美解决方案。我们时刻准备着为您提供在线和面对面的服务,  我们的塑料种类齐全,从通用工程塑料如:改性聚苯醚(m-PPO/PPE),到特种工程塑料如:聚苯并咪唑(PBI)、聚酰亚胺(PI)、聚酰胺-酰亚胺(PAI)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚醚酰亚胺(PEI)、聚苯砜(PPSU)、液晶聚合物(LCP)、聚醚砜(PES)、聚砜(PSU)、高温尼龙(PPA)、氟塑料(PFA)等,  主要产品等级有耐高温,耐磨耗、低摩擦、自润滑,导电、抗静电、高刚性、高强度、低收缩、低蠕变,耐疲劳,低翘曲,高韧性、耐冲击等。塑料产品涵盖广泛。同时,也生产复合材料和注塑件等塑料产品。特种工程塑料与复合材料,在性能上,优于金属和其它材料,因此,广泛应用于机械设备,医疗器械、办公设备,电子设备及半导体器件、传感器和连接器,光伏及新能源和可再生能源、汽车、食品与饮料加工等各行业,并在不断扩大和发展应用领域
    留言咨询
  • 南京诚力复合材料有限公司是一家专业生产玻璃钢复合材料制品的公司。公司拥有自己的专业团队,集生产,设计,研发,销售为一体,有雄厚的技术研发实力,为客户提供完善的项目解决方案。 公司位于南京市滨江开发区,拥有自营进出口权和完整的产品质量保证体系,并通过了ISO9001-2008质量体系认证。公司自成立以来本着"质量第一,顾客之上"的原则。 产品现已远销欧洲,美洲,中东, 南美等四十多个国家和地区。 我们的产品包括玻璃钢拉挤型材,拉缠,模压,手糊等,广泛应用于电力,园林绿化,污水处理,冷却塔,农业,水产养殖,海洋,基础工程建设等领域。 诚实合作,品质上乘是我们的服务目标。我们以客户需求为导向,持续创新,快速响应,根据客户要求和市场需求不断开发新产品,以建立技术和市场方面的战略同盟,来取得新的产品,进入新的市场。在全球范围内,为客户提供更佳的产品方案。
    留言咨询
  • 留言咨询

无机复合材料相关的仪器

  • 复合材料拉伸变形测试仪在当今工业生产中,各种材料的性能测试对于产品的质量和安全性至关重要。从食品包装到防水材料,再到电池隔膜和软包装,这些材料的拉伸性能是评估其质量和性能的重要参数。拉力试验机作为一种检测设备,能够准确地测试各种材料的拉伸性能,为产品的质量和安全性提供有力保障。 拉力试验机主要通过拉伸材料并测量其变形和断裂时的力和位移,来评估材料的拉伸性能。该仪器通常由测力系统、位移系统和数据处理系统组成。在测试过程中,将材料固定在测试机上,然后通过位移系统对材料进行拉伸操作,同时测力系统会实时测量和记录材料断裂所需的力和位移。 在食品包装领域,拉力试验机可以用于检测自封袋、海绵、果冻杯、复合膜等材料的拉伸性能。这些材料需要具备良好的密封性和耐久性,以确保食品在储存和运输过程中的质量和安全性。通过使用拉力试验机,生产厂家可以准确地评估这些材料的性能表现,为其在实际应用中的可靠性提供有力保障。 防水材料和电池隔膜也是拉力试验机的重要应用领域。这些材料需要具备出色的耐腐蚀性和耐久性,以确保其在长时间的使用过程中仍能保持良好的性能表现。通过使用拉力试验机,生产厂家可以准确地检测这些材料的拉伸性能,为其在实际应用中的性能表现提供有力保障。 软包装和编织袋也是拉力试验机的应用领域之一。这些材料需要具备良好的柔韧性和耐用性,以确保其在运输和储存过程中的性能表现。通过使用拉力试验机,生产厂家可以准确地评估这些材料的拉伸性能,为其在实际应用中的可靠性提供有力保障。 技术参数规 格 500N 50N 精 度 0.5级 试验速度 1-500mm/min(无极变速) 位移精度 ±0.5% 试验宽度 30 mm(其他夹具可定制) 行 程 1000mm 外形尺寸 450mm(L)×450mm(B)×1510mm(H) 重 量 70kg 工作温度 23±2℃ 相对湿度 80%,无凝露 工作电源 220V 50Hz 复合材料拉伸变形测试仪此为广告
    留言咨询
  • 复合材料拉力试验机 400-860-5168转3947
    复合材料拉力试验机材料力学性能的检测是工业生产、质量控制以及科学研究等领域中非常重要的环节。复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法结合而成的具有新性能的材料。对于复合材料的拉伸和拉力检测,主要关注的是各层材料之间的结合强度、韧性以及耐久性等。通过拉伸试验,可以了解材料在承受拉伸载荷时的性能表现,最大拉伸强度以及断裂伸长率等。 纸张作为常见的包装和印刷材料,其拉伸和拉力检测也十分重要。纸张的拉伸性能取决于其纤维的种类、含量以及纤维的交织情况等。通过拉伸试验,可以了解纸张在受到拉伸作用时的变形情况、断裂强度以及弹性等。 口罩弹力带是口罩的重要组成部分,其拉伸和拉力检测对于口罩的质量和安全性具有重要意义。在佩戴口罩时,弹力带能够提供足够的压力,保证口罩紧密贴合在脸部,防止外界空气进入口罩。因此,对口罩弹力带进行拉伸和拉力检测,可以评估其在拉伸状态下的弹性和持久性。 防水材料广泛应用于建筑、交通工具、户外用品等领域。防水材料的拉伸和拉力检测对于评估其耐久性和可靠性具有重要意义。在受到拉伸作用时,防水材料应具有良好的变形适应性,同时保持防水性能。载带封合强度是指包装带在单位宽度上的拉力,是包装过程中包装带对被包装物的吸附能力。 易拉罐拉环开启力是指拉开易拉罐拉环所需的力度。对于易拉罐来说,良好的开启力可以保证消费者轻松地打开罐子,而不会产生危险。手机保护膜主要是为了保护手机屏幕不受损伤。手机保护膜的剥离力检测可以评估保护膜的粘附性能和使用寿命。 缠绕膜是一种广泛应用于物品包装和固定的塑料膜。缠绕膜的粘性检测可以评估其在包装和固定过程中的适用性和可靠性。缠绕膜应具有适度的粘性,能够牢固地粘附在物品表面,同时也要易于撕开和重新使用。 通过进行合理的检测和控制,可以有效地提高产品质量和可靠性,确保消费者的使用安全和满意度。 技术参数规 格 500N 50N 精 度 0.5级 试验速度 1-500mm/min(无极变速) 位移精度 ±0.5% 试验宽度 30 mm(其他夹具可定制) 行 程 1000mm 外形尺寸 450mm(L)×450mm(B)×1510mm(H) 重 量 70kg 工作温度 23±2℃ 相对湿度 80%,无凝露 工作电源 220V 50Hz 复合材料拉力试验机此为广告
    留言咨询
  • 碳纤维作为一种高比轻度,高比模量的增强纤维在先进的复合材料中得到了广泛的应用。碳纤维复合材料作为一种超高温耐烧蚀的先进复合材料之一,被广泛运用在航空航天,军工等领域上,为了防止碳纤维复合材料在高温工作环境中被氧化,通常需要对碳纤维材料表面进行涂覆,可以在不损失其机械性能的前提下,改变其物理性能。碳纤维表面的涂层可以是金属涂覆层,无机非金属陶瓷涂层以及有机高分子涂层。碳纤维复合材料表面涂层厚度不达标,将会影响其性能,导致构件失效甚至会酿成安全事故,因此精确测量表面涂层厚度非常重要。为了更好测厚碳纤维表面涂层厚度,瑞士涂魔师研发了一种高精度的无损非接触式复合材料涂层测厚仪。涂魔师复合材料涂层测厚仪 VS传统碳纤维涂层测厚仪与电磁感应测厚设备相比,涂魔师复合材料涂层测厚仪能精准测量碳纤维复合材料上的涂层厚度。与其他基于光热法、激光和超声波原理的设备相比,它具有安全可靠、使用方便、精度高和重复性好、校准简便并无需严格控制测试距离和角度等测量优势。涂魔师复合材料涂层测厚仪目前,涂魔师复合材料涂层测厚仪主要有4种型号:Flex手持式,Inline在线式,Atline实验型、3D整体膜厚成像。常用的是Flex 手持式和Lnline在线式。Flex手持式复合材料涂层测厚仪技术参数如下:烘干前湿漆测量范围:1-400 微米固化前的粉末涂料测量范围:1-400 微米固化后粉末涂料/烘干后干漆 测量范围:1-1000 微米测量时间:0.3 秒允许测量距离:2 – 15 厘米允许倾斜角度:±45°能否测量运动工件:允许相对标准偏差: 1%(取决于涂层/基材类型)访问测试数据方式:通过ERP和浏览器实时访问数据IP防护等级:IP20Inline在线式复合材料涂层测厚仪技术参数如下:固化前的粉末涂料测量范围:1-2000 微米测量时间:0.5秒允许测量距离:10 – 120 厘米(取决于涂层/基材材料 )允许倾斜角度:±45°(取决于涂层/基材材料)相对标准偏差: 2% (测量距离为5厘米,测量铝底材上60微米的未固化粉末涂料(包括白色的所有颜色) )被测物体移动速度:120米/分钟适合涂层颜色:所有颜色(包括白色等浅色)测量数据导出方式:自动导出涂魔师复合材料涂层测厚仪优势?测湿膜直接显示干膜厚度在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等,及时调整工艺偏差,有效降低次品率和返工率?非接触无损测厚技术涂魔师采用先进的热光学专利技术,不同型号最长能达到100厘米距离内轻松进行非接触式涂层厚度测量?无需严格控制测量条件允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域)?适合生产车间现场使用便携灵活的手持式设计,能够连续实时测量生产线上的移动工件,对于摇摆晃动的工件都能精确测量膜厚?数据自动记录及生产全过程100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况?测量时间短,一键即可完成膜厚测试涂魔师Flex测量精度高且操作简单,测试时间仅需0.5秒翁开尔是涂魔师中国总代理,欢迎致电【400-6808-138】咨询
    留言咨询

无机复合材料相关的资讯

  • 有机无机复合材料国家重点实验室成立
    有机无机复合材料国家重点实验室揭牌仪式近日在京举行。本实验室依托四大实验室进行组建。它们分别是纳米材料先进制备技术与应用科学教育部重点实验室、北京市新型高分子材料制备与加工重点实验室、北京市生物加工过程重点实验室和教育部超重力工程研究中心等实验室。  本实验室充分利用了北京化工大学在材料、化工和机械三个一级学科专业方向完整、研究实力雄厚的优势,通过材料、化工、机械、生物等学科间的交叉、渗透和整合以及多年的良性发展,针对有机无机复合材料领域中的重大主题,确立了五个特色研究方向:基础相材料及复合材料模拟与设计 无机相/有机相材料制备基础 树脂基功能纳米复合材料 弹性体基纳米复合材料 碳纤维复合材料。  实验室现有面积6919平方米,5万元以上仪器设备238台件,固定资产原值8270万元,仪器装备水平在材料科学与工程领域属国内一流,并拥有一支学术水平较高、创新能力强的研究队伍,基本满足了国家重点实验室的建设要求。来源科技网
  • 上海硅酸盐所在柔性有机/无机热电复合材料研究中取得进展
    p style="text-align: justify text-indent: 2em "柔性热电能量转换技术可将环境或人体温差转化成电能实现电子设备的自供电,在可穿戴等领域具有广阔的应用前景。传统无机热电材料具有优异的热电性能,但不具备柔性功能;而有机热电材料虽具有良好的柔性和弯曲性能,但热电性能极低。/pp style="text-align: justify text-indent: 2em "有机/无机复合热电材料可综合无机材料的热电高性能和有机材料的良好弯曲性能,成为近年来的研究热点。具有一维结构的碳纳米管或金属纳米线可以与有机材料的一维分子链形成紧密连接的导电网络,并沿链网络提供高导电通道,因此常被用于有机/无机复合热电材料的研究。但碳纳米管或金属纳米线极低的泽贝克系数导致复合材料的泽贝克系数难以提高。而无机热电材料虽然具有高泽贝克系数,但是其形状通常为片状或颗粒状,导致复合材料低的电输运性能。因此,如何选择匹配的有机/无机材料从而获得良好的电输运成为有机/无机复合热电材料研究的关键科学问题。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "最近,中国科学院上海硅酸盐研究所研究员史迅、陈立东、副研究员仇鹏飞、瞿三寅等与美国克莱姆森大学教授贺健合作,提出了一种维度匹配的热电复合材料设计新策略,即使用同样具有一维结构的无机半导体材料制备高性能PVDF/Ta4SiTe4有机/无机柔性热电复合薄膜,其原型器件在35.5K温差下归一化最大功率密度为目前已报道的柔性热电器件中的最高值。相关研究成果以Conformal organic–inorganic semiconductor composites for flexible thermoelectrics 为题 ,发表于Energy & Environmental Science上。/span/pp style="text-align: justify text-indent: 2em "有机材料聚偏氟乙烯(PVDF)具有一维链状结构,是一种具有优良柔性的绝缘体。基于维度匹配的设计思路,该团队选择了同样具有一维结构的Tasub4/subSiTesub4/sub无机材料与PVDF进行复合制备有机/无机柔性复合薄膜。通过化学气相输运反应,得到Ta位掺杂0.5% Mo的Tasub4/subSiTesub4/sub一维晶须。然后以N,N-二甲基甲酰胺(DMF)作为分散剂,通过滴涂的方法得到PVDF/Tasub4/subSiTesub4/sub复合薄膜。扫描电镜发现Tasub4/subSiTesub4/sub晶须均匀分散于PVDF基体之中构成网络状结构。透射电镜表明Tasub4/subSiTesub4/sub晶须与PVDF形成紧密结合的两相界面。热电性能表征发现PVDF/50 wt% Tasub4/subSiTesub4/sub具有优良电输运性能,在220 K功率因子高达1060 μWmsup-1/supKsup-2/sup。特别是,在相同的电导率下,PVDF/50 wt% Tasub4/subSiTesub4/sub薄膜的泽贝克系数远高于基于碳纳米管或金属纳米线的有机/无机复合薄膜。Tasub4/subSiTesub4/sub自身的半导体输运特性和一维结构共同产生了上述的优良电输运性能。/pp style="text-align: justify text-indent: 2em "在实现优良电输运性能的同时,维度匹配的PVDF和Tasub4/subSiTesub4/sub所形成的有机/无机复合薄膜也具有良好的柔性。在直径9 mm的曲面上反复弯曲5000次,PVDF/50 wt% Tasub4/subSiTesub4/sub薄膜电阻没有明显变化。研究团队初步制备了包含4个PVDF/50 wt% Tasub4/subSiTesub4/sub热电单偶的原型热电器件,在温差35.5K时,器件归一化最大功率密度达到0.13 Wmsup-1/sup,是现有报道的柔性热电器件的最大值。/pp style="text-align: justify text-indent: 2em "研究工作得到国家重点研发专项、国家自然科学基金、中科院青年创新促进会、上海市青年科技启明星项目等的资助和支持。/pp style="text-align: justify text-indent: 2em "a href="https://pubs.rsc.org/en/content/articlelanding/2020/EE/C9EE03776D#!divAbstract" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong文章链接/strong/span/a/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/pic/6b411bc8-07d4-4c5e-b683-14cb4ba70432.jpg"//pp style="text-align: justify text-indent: 2em "图a) PVDF/Ta4SiTe4柔性复合薄膜示意图。b) PVDF/Ta4SiTe4复合薄膜与已报道的一维有机-无机复合薄膜热电性能对比。c)PVDF/Ta4SiTe4基原型热电器件与已报道的柔性热电器件的归一化最大功率密度对比。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/webinar/17b432cd-d148-45fa-bf58-e391bf686e5a.jpg!w1920x420.jpg"//pp style="text-align: justify text-indent: 2em "为促进全国各地高校、科研院所、企业等相关从业人员进行复合材料性能表征与检测技术交流,strong仪器信息网将于2020年6月15日举办“复合材料性能表征与评价”主题网络研讨会/strong,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。/pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/pic/50354d2d-5cea-442b-80b6-44b14d98eaf9.jpg"//pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/pic/9432a056-9d8f-4709-aa7c-c26f5e53f32b.jpg"//pp style="text-align: center text-indent: 0em "strongspan style="text-indent: 2em "参会方式(手机电脑均可参会)/span/strongbr//pp style="text-align: justify text-indent: 2em "1、a href="https://www.instrument.com.cn/webinar/meetings/FHCL/" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "官网报名/span/a,通过审核后您将收到通知;态度敷衍乱填将不予审核。/pp style="text-align: justify text-indent: 2em "2、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。/p
  • Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
    Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应布鲁克纳米表面事业部 魏琳琳 博士英文题目:Nature Communications: Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites摘要以聚合物为基体,无机纳米粒子为填料的聚合物纳米复合材料具有优异的力学、电学和热学性能。纳米颗粒和聚合物之间的界面效应通常被认为是实现这些性能增强的关键因素。然而,如何理解界面效应以及界面微区的结构与性能是聚合物纳米复合材料领域长期面临的基础性难题。近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。研究发现无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构,包括10纳米厚的内层和大于100纳米的外层界面。分子动力学及相场模拟结果表明纳米颗粒表面电势以及颗粒间距的协同作用是形成界面极性构型的关键作用机制。这项研究的结果有助于阐明界面处的相互作用机制,并为制备纳米复合材料以获得最佳性能提供有价值的见解。利用无机纳米粒子/聚合物复合材料的高极性“双界面层”行为,科学家们在具有超低无机填料含量的纳米复合材料中获得了显著增强的介电及压电性能。相关研究成果以Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites为题,发表在Nature Communications上。实验内容实验选择典型的铁电聚合物PVDF作为基体,填充TiO2纳米颗粒。其中PVDF膜层的厚度低于纳米颗粒的直径,使TiO2能够暴露在膜层表面(图1 a)。图1b,c 样品表面和横截面的SEM图像显示颗粒表面存在约10nm的包裹层。HADDF和碳成像图(图1d,f)进一步表明10nm的结合层富含碳元素,为有机碳链键合在纳米颗粒表面。采用布鲁克nanoIR3纳米红外系统进一步研究了界面区域的化学结构(图1 e f)。采用PVDF极性构象的波数(866cm-1)和非极性构象的吸收波数(766cm-1)进行红外成像,分别对应图1f中图和右图。红外成像图显示纳米颗粒周围存在100nm以上强极性构象区域。压电力显微镜(PFM)采集平行于膜平面和垂直于膜平面的L-PFM图像及面外V-PFM图像,结果显示颗粒的L-PFM呈现一半亮一半暗的结构,V-PFM呈现全亮的结构。表明纳米颗粒/聚合物的内层界面区域内偶极子的极化方向垂直于纳米颗粒表面。综合以上的观测结果,作者揭示了无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构, 由10nm的极性偶极子内层界面的和100nm强极性构象的外层界面组成。 图1 直接观测无机纳米颗粒与聚合物基体的“双界面层”结构作者采用nanoIR3纳米红外系统进一步研究了纳米颗粒的间距对界面效应的影响(图2)。距离较远的纳米颗粒会形成强极性构象结构界面(图2 b左图);距离相对较近的纳米颗粒,其界面区域相互重叠,将抑制极性构象的形成(图2 b中图);纳米颗粒相互连接时,界面区域也倾向于相互合并(图2 b右图)。FTIR检测不同TiO2纳米颗粒含量的宏观材料中极性构象的比例(840 cm&minus 1/766 cm&minus 1及 1279 cm&minus 1/766 cm&minus 1峰强比),TiO2纳米颗粒含量0.35%时极性构象最多,继续增加纳米颗粒含量,由于纳米颗粒间距变小,界面区域相互重叠使极性构象含量降低。分子动力学及相场模拟表明极性构象界面的形成取决于纳米颗粒表面电势以及颗粒间距的协同作用。图2 纳米颗粒/聚合物复合材料界面极性区域采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。图3 内层界面层增强复合材料介电性能 总结借助于布鲁克纳米红外系统,直接观测到纳米颗粒-聚合物复合材料的极性界面构象,并研究了颗粒间距对极性构象的影响。结合其他科学工具的结果,本文的工作促进了对聚合物纳米复合材料中界面基础科学问题的理解,可为高性能极性聚合物复合材料的设计与开发提供指导,并推动介电储能、电卡制冷、柔性压电传感等高新前沿技术领域的发展。 本文相关链接:Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites [J] Nature Communications volume 14, Article number: 5707 (2023)https://www.nature.com/articles/s41467-023-41479-0

无机复合材料相关的方案

无机复合材料相关的资料

无机复合材料相关的论坛

  • 请问 无机粒子/热固性树脂复合材料,如何制样做红外?

    做无机粒子/热固性树脂复合材料,现在想知道无机粒子和树脂之间的键合方式,欲做红外分析。由于我用的树脂粘度很大,复合前是有色或无色透明的,复合后是不透明的。而且在热处理之后,材料硬且有点脆,请问如何制样做红外分析 ?谢谢各位关注 ![em23]

  • 新手!上传一个有机无机复合材料的DSC-TG图,几个问题求教!迷茫中..

    新手!上传一个有机无机复合材料的DSC-TG图,几个问题求教!迷茫中..

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=10496]无机/有机复合材料的DSC-TG 图,虚心求教![/url]这个图是改性的环氧树脂体系中加入无机粒子前后的DSC-TG图(前后两次都在相同的固化处理温度下固化),红色的为加了3% 无机粒子后测得的。几个问题求教: 1、从图中怎么判断Tg值?是不是在加了无机粒子后Tg值提高了? 2、DSC线上的峰对应什么物理或化学过程? 3、从图中还能得到关于体系的哪些信息?比如结晶度,相变潜热等。 真心求教!谢谢大家的支持![img]http://ng1.17img.cn/bbsfiles/images/2005/11/200511212137_10500_1672988_3.jpg[/img]

无机复合材料相关的耗材

  • Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料
    Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料?保证* 干燥器板不易打破,与瓷制品相比,具有更强的耐热冲击性。火抛光、耐腐蚀、惰性、不粘任何东西的玻璃表面与金属黏合。该板标有编号的象限,可以更容易的确定坩锅和其它容器的位置。每板有24 个孔,中心为7/8 in.,建议与5309-0250、5310-0250 和5311-0250 一起使用。可高温高压灭菌订货信息:Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料目录编号 5312-0230外径,mm230外径,in.9-1/16每盒数量1每箱数量6
  • 高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备
    高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备 碳纳米管是一维的纳米材料,在工程材料域,碳管以其优异的物理机械性能成为聚合材料理想的填料。具有优异的力学性能、导电、导热性能,因而被认为是聚合物基复合材料理想的力学强化和功能改性材料,采用碳纳米管制成的复合材料表现出良好强度、弹性和抗疲劳性,碳纳米管也逐渐用于橡胶制品、轮胎、塑料等工业中。 但是,碳纳米管的呈纳米纤维状,自身易团聚和缠结,且碳纳米管表面为规整的石墨晶片结构,表面惰性大,与聚合物基体亲和性差,导致碳纳米管在橡胶基质中的分散性差,而且成本也高,这些限制了碳纳米管在橡胶中的规模化应用。 在橡胶工业中,将碳纳米管填充到各种橡胶基体以提高橡胶基体的性能成为研究高端橡胶产品的理想共混复合材料之一,但碳纳米管自身有着很高的表面自由能,易发生团聚现象,碳纳米管与基体间的相互作用是另一个难题,碳管表面没有任何反应官能图,碳管的惰性使其与聚合物基体间化学界面作用弱,碳纳米管对聚合物基体的改善效果难达到预期,因此制备出尺寸均匀,分散好,性能稳定的碳纳米管及其复合材料是拓展其应用域的需要。 目,在碳管的分散性及其复合材料研究中已经取得许多进展。常用的方法中是将采用表面活性剂对碳管表面改性,将其悬浮液与胶乳复合制得复合母胶,该技术在一定程度解决了碳纳米管的分散,但由于表面活性剂中其它基团的加入会降低复合母胶的性能;因此需要提供一种避免活性剂的加入影响碳纳米管与聚合物间结合的技术方案。 针对现阶段技术中存在的问题,在碳纳米管分散均匀的基础上在其表面引入羧基、羟基等官能团,避免偶联剂的加入影响碳纳米管与胶乳之间的结合。一种高分散碳纳米复合母胶的制备方法,包括以下步骤:1、将碳纳米管在分散液中剪切,制得短切碳纳米管悬浮液;2、通入氧化气体对短切碳管悬浮液氧化,制得短切碳纳米管氧化液;3、将补强材料加入短切碳纳米管氧化液,制得碳纳米管浆液;4、在碳纳米管浆液中加入偶联剂,制得复合浆液;5、将天然橡胶胶乳分散于复合浆液中,制得碳纳米管-天然橡胶复合材料;6、将碳纳米管-天然橡胶复合材料凝固、干燥制得高分散碳纳米复合母胶。 上海依肯根据市场技术需求结合多年来积累的成功案例经验特别推出ERS2000系列高剪切乳化机(混合机),ERS2000在线式高速高剪切乳化机,主要用于微乳液及超细悬浮液的生产。由于工作腔体内三组乳化分散头(定子+转子)同时工作,乳液经过高剪切后,液滴更细腻,粒径分布更窄,因而生成的混合液稳定性更好。三组乳化分散头均易于更换,适合不同的工艺应用。该系列中不同型号的机器都有相同的线速度和剪切率,非常易于扩大规模化生产。 上海依肯ERS2000系列高剪切乳化机(混合机)设备参数选型表:型号 标准流量L/H输出转速rpm标准线速度m/s马达功率KW进口尺寸出口尺寸ERS 2000/4300-100014000442.2DN25DN15ERS 2000/5300010500447.5DN40DN32ERS 2000/10800073004415DN50DN50ERS 2000/202000049004437DN80DN65ERS 2000/304000028504455DN150DN125ERS 2000/407000020004490DN150DN125高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备。。。需要了解更多详情请致电上海依肯机械设备有限公司 销售工程师 徐蒙蒙 182-0189-1183,公司有样机可以免费为客户进行测试验证实验。
  • 无机材料拉曼光谱库 6.6071.619
    无机材料拉曼光谱库订货号: 6.6071.619无机材料拉曼光谱库( 960 种光谱;取自光谱库 6.6071.617)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制