当前位置: 仪器信息网 > 行业主题 > >

风车叶片

仪器信息网风车叶片专题为您提供2024年最新风车叶片价格报价、厂家品牌的相关信息, 包括风车叶片参数、型号等,不管是国产,还是进口品牌的风车叶片您都可以在这里找到。 除此之外,仪器信息网还免费为您整合风车叶片相关的耗材配件、试剂标物,还有风车叶片相关的最新资讯、资料,以及风车叶片相关的解决方案。

风车叶片相关的资讯

  • 前沿应用丨TESCAN Micro-CT 应用于风机叶片的结构缺陷研究
    TESCANUniTOM是一款配置灵活的多分辨率3DX射线CT显微镜,可以对大尺寸的风机叶片(长约40cm)整体3D成像,这是一种非破坏性的技术,可以在不破坏材料的前提下,快速方便地获取风机叶片材料的内部结构,从而进一步研究和分析结构缺陷对叶片材料结构完整性的影响。毫无疑问,风是一种潜能巨大的新能源,在数秒钟内就能发出一千万马力(750万千瓦)的功率。风很早就被人类利用,比如用风车来抽水、磨面等,而现在风能主要被用作风力发电,通过风力带动风机叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。由于风力发电非常环保,无需使用任何燃料,也不会产生辐射或空气污染,因此得到广泛的应用。(图片来源于网络)但风机叶片作为风力发电机的核心部件之一,因积年累月的运转在自然环境中,长期受日照、风雪、雷电,沙尘,甚至大气污染等环境的侵蚀,叶片材料容易老化和损坏,这不但会导致昂贵的维修费用和停机成本,不良的叶片性能还会影响整个叶片的完整性,造成发电量的严重损失,甚至引发事故。风机叶片材料的损坏和老化(图片来源于网络)为了有效避免事故,减少风险,我们首先需要探究一个问题:风机材料的老化和损坏到底是如何影响叶片结构完整性的呢?我们知道风机叶片对材料的要求很高,不仅需要具有较轻的重量,还需要较高的强度、抗腐蚀、耐疲劳性能,因此复合材料在风机叶片的制造中被广泛应用,它占整个风机叶片的比重高达90%。但复合材料是由多种非均质材料组成的,在宏观和微观尺度上的结构都非常复杂,需要利用多尺度三维成像方法才来获得其完整的内部结构。那有没有一种方便快捷的多尺度成像方法能帮助我们快速获得叶片材料的完整内部结构呢?TESCANUniTOM是一款配置灵活的多分辨率3DX射线CT显微镜,可以对大尺寸的风机叶片(长约40cm)整体3D成像,这是一种非破坏性的技术,可以在不破坏材料的前提下,快速方便地获取风机叶片材料的内部结构,从而进一步研究和分析结构缺陷对叶片材料结构完整性的影响。(一)全局扫描,无损获取材料内部宏观结构首先,使用TESCANUniTOM对叶片材料样品进行了整体扫描成像,获得了复合材料的内部宏观结构。如下图中的横向切片所示,我们可以看到风机叶片是由多层玻璃纤维组成,在层之间的树脂中还存在许多孔隙,并且在复合材料的表面覆盖有涂层。对叶片材料整体成像,观测内部结构从风机叶片材料的概览图像和横截面中,可以观察到叶片材料中存在不同大小的孔隙,对这些孔隙进行进一步分析,发现检测到的大多数孔隙可能与存留在材料不同玻璃纤维层之间的气泡有关。孔隙度三维成像分析(蓝色代表较小的孔隙,红色代表最大的孔隙)孔隙度直方图统计分析(二)对概览图实时缩放分析,洞悉更多细节利用TESCANUniTOM系统,可以非常方便地在获得的概览图上选择感兴趣区域,进行实时缩放扫描,来对特征区域进行更加细节的观测。在对感兴趣区域的高分辨观察中,我们发现原本观测不到的存在于玻璃纤维层内和涂层内的孔变得清晰可见(不用对样品做任何处理,分辨度可增加5~10倍,达到12μm),并且借助于高分辨率的细节图像,也可以区分穿过涂层并在涂层下方的树脂内延伸的微小裂缝。局部扫描成像,洞悉更多结构细节然后,从较大叶片的垂直层中,选择一块具有代表性的区域,提取直径为5mm的样品。通过对样品的高分辨率扫描分析,可以得到材料内部不同层的详细信息,甚至可以区分出单根的玻璃纤维。此外,根据样品的横截面剖析,也可以观察到材料内部存在有不同类型的孔隙。对样品进行高分辨扫描,获取更多复杂信息材料内部不同层的特性分析分析表明,在这种叶片的复合材料中确实存在较大的孔隙,而这主要与材料内部玻璃纤维层中的起伏和这些层之间的空气泡有关。(三)涂层分析在叶片复合材料结构的顶部,通常会采用覆盖涂层的方式来增强材料的性能。但这种涂层非常的薄而且涂覆面积非常大,分析时既要求很高的分辨率,又需要分析很大的面积,采用传统的表征方法是不可行的。但TESCANUniTOM具有亚微米级的高分辨率(真实空间分辨率可以达到500nm),并能够分析大尺寸的样品(容纳样品直径可达40cm,高度可达50cm),非常适合叶片复合材料中覆盖涂层的分析。我们利用UniTOM系统对复合材料的内部结构进行局部扫描和放大分析,并借助软件将涂层与材料其他结构分离,对涂层的内部成像,可以发现在整个涂层中也存在大量的小气泡。对涂层结构成像分析,分类筛选出涂层中的小气泡可见,TESCANUniTOM是一款灵活的、模块化的多分辨率X射线CT显微镜,能够对完整的叶片材料样品整体成像来评估材料宏观尺度上的内部结构,还可以在获得的概览图像上选择感兴趣的区域,实时缩放进行更高分辨率的变焦扫描,最大化图像质量、分辨率和分析速度,是一种非常高效和实用的多尺度分析工具。风机叶片材料结构缺陷的多尺度高分辨研究
  • ASD | 基于叶片光谱的玉米冠层叶绿素和叶片叶绿素的时空变化分析
    冠层叶绿素含量(CCC)可以反映一个种群的总光合生产力,是判断植物个体生长和营养状况的重要依据。通过遥感准确监测冠层和叶片尺度的叶绿素含量是确定作物生长状态和预测产量的关键。玉米是一种高秆作物,叶面积大,冠层深。它具有不均匀的叶片叶绿素含量(LCC)垂直分布,这限制了遥感的叶绿素含量评估。因此,了解LCC和叶片反射光谱的垂直异质性对提高CCC监测的准确性至关重要。 基于此,在本研究中,来自中国农业科学院作物科学研究所和宁夏大学农学院的研究团队以玉米为研究对象,于2019年和2020年在位于中国东部河南省黄淮海玉米生态区的中国农业科学院新乡实验站通过5个氮处理梯度(0、100、200、300和400 kg/hm2(记为N0–N400))建立各种冠层结构,采集不同生长季节作物冠层叶片,并测量了其LCC和叶片光谱反射率(ASD FieldSpec 4光谱仪+植物探头+叶片夹,光谱范围为350-2500 nm)。主要目标为:(1)理解施氮量对玉米冠层叶绿素垂直分布的影响以及生长季节叶绿素分布的动态变化;(2)在不同时空条件下探索冠层叶片光谱反射率特征差异以及验证基于叶片光谱反射率的VI模型是否可以准确反演LCC;(3)确定敏感叶位(可用于表征LCC和CCC之间的关系)以及评估基于叶片光谱的VI模型的鲁棒性和准确性,以评估冠层叶绿素状态。2020年9月2日研究区俯视图 (a)。高光谱反射率测量系统(b)。台式叶绿素分光光度计 (c) 。2020年8月8日五次氮处理(N)下的冠层状况(d)。【结果】2020年生长季节玉米冠层LCC的垂直剖面。(a、c、e)不同位置叶片的光谱反射曲线。(b、d、f)不同叶片位置波段与LCC的相关系数曲线。6种LCC-VI模型的rRMSE(%):(a)mRER、(b)VOG2、(c)CIred-edge、(d)NDRE、(e)MTCI 和(f) DD。rRMSE用于评估模型反演精度。rRMSE的值较低对应于预测值和观察值更接近。中期模型(a)、后期模型(b)和生殖模型(c)CCC预测值和2019年实测值对比。【结论】 5个施氮水平用于构建不同的玉米冠层结构,揭示玉米冠层叶片叶绿素含量(LCC)的垂直异质性以及叶片光谱反射率特征。基于冠层LCC的垂直分布,建立多元逐步回归(MSR)模型以准确监测冠层叶绿素含量(CCC);LCC表现出不对称的垂直分布,呈现出底层较低,中层上升,上层下降的趋势。氮处理显著改变了LCC,且不同处理之间LCC的垂直剖面分布基本一致。分析了不同时空条件下叶片光谱反射率特征。绿色波段(531-567 nm)和红边波段(712-731 nm)是监测LCC的敏感波段。6个经典的VIs用于构建VI-叶绿素模型,其中修正的红边比值植被指数(mRER,R2=0.87)构建的模型最优。VI模型可以准确预测生长中期的LCC(rRMSE=10.9%),但是,上、下叶层VI和LCC的相关性在营养生长早期和成熟阶段发生变化(rRMSE=36%-87%)。通过结合反演精度和多元逐步回归,结果发现在CCC估算中,营养阶段叶位L6以及生殖阶段L11+L14(L12是穗叶)最敏感。这样,基于叶片光谱反射率构建了VI-LCC-CCC模型以估算冠层叶绿素状态。利用2019年和2020年田间试验数据评估了模型性能,结果表明该模型具有良好的鲁棒性和准确性(rRMSE=8.97%)。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650312959&idx=1&sn=579c2cd2862e8037f3fe0a32dda8e2ee&chksm=bee1bc00899635161ff79ab90bcff29bc9a96537973b3be2cb439a88caa8d8e36c29108f32eb&token=1852366781&lang=zh_CN#rd
  • 英斯特朗材料试验机对叶片进行力学测试
    我想您可能会有兴趣?  在本周内即将闭幕的哥本哈根全球气候会议上,我们的大客户,丹麦的LM Glasfiber(艾尔姆玻璃纤维制品有限公司)展示了世界上最大的风力发电机叶片。  实验室工作人员正在使用英斯特朗万能材料试验机3384、8802和3台8801对叶片进行力学性能测试。  通往COP15!  “一、两周前,世界上最大的风电叶片从丹麦小城Lunderskov,经过跋山涉水到达了丹麦首都哥本哈根。这里,在有关全球气候变化讨论最至关重要的那几天,它将吸引几百万人的注意。在12月份,61.5米长的叶片将会恭候世界各国领导人的到到来。  风电工作了!这是本次气候会议来自风电产业最有力的证据之一,世界上最长的叶片,来自LM Glasfiber的61.5米长叶片的连续生产,象征着风电产业的崛起。  叶片充分而清楚地证明了风电产业的集约发展。25年前,最长的风力发电机叶片轮子直径是16米,只能发电50KW.今天,大规模生产的风电发电机叶片旋转直径是126m,扫过几乎两个足球场,额定输出5MW电量-足够为5000户欧洲家庭提供电力。  星期五的早些时候,叶片还在LM Glasfiber的Lunderskov工厂内准备运送到哥本哈根。现在,它被安放在Bella Center的主入口处,作为与丹麦风电业协会(GWEC)协作的风电运动的一部分。  叶片介绍  LM 61.5P叶片的发展原型早在2004年就已产生,经过了几年的在材料、设计和生产过程方面广泛的研发。今天,18.8吨重的叶片,已经在LM Glasfiber的Lunderskov工厂大规模生产了,工厂靠近丹麦小城科灵。在叶片的研发过程中,它们必须接受测试。通过全年的测试试验,叶片必须经受住极端载荷和弯曲,以确定它们,在恶劣和有风的环境下,可以承受20年中等强度的磨损和撕裂。  叶片主要是为海面项目研发的,并且被安装在德国、苏格兰和比利时的海边风场。在20年的使用寿命中,一台5MW额定发电量的风力发电机可以帮助减少18万吨CO2的排放。   61.5米长的叶片!   在实验室测试
  • 中国科大实现对多种植物叶片代谢物空间成像
    记者14日从中国科学技术大学获悉,该校科研团队在植物叶片代谢物质谱成像取得新进展,实现对多种植物叶片中代谢物的空间成像。  这一成果由该校国家同步辐射实验室潘洋教授团队利用自行研发的质谱成像平台,实现对多种植物叶片中代谢物的“拍照”。  研究成果近日发表于国际分析化学领域著名期刊 Analytical Chemistry杂志。  在已知植物种群中,有约200,000个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。  质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像。  课题组通过印迹方法,将叶片中的植物代谢物转移至多孔聚四氟乙烯材料上,并对印迹后的材料进行成像,可实现对叶片植物代谢物的间接成像。由于使用DESI/PI技术,相比于传统DESI方法,正离子模式下可新检出多达百种萜类、黄酮类、氨基酸和苷类等次生代谢产物 负离子模式下整体代谢物信号强度可增强一个数量级。  课题组进一步利用该技术对茶叶进行研究,发现咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力的证据。  实验还检测到茶叶中儿茶素生物合成网络中重要的黄酮类代谢物并以质谱成像的形式展示出空间分布,表明印迹DESI/PI成像技术在探索植物代谢转化位点和途径方面有巨大的潜力。
  • LI-2100 | 叶片水氢氧同位素的控制因素
    太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77° E)收集了土壤和植物(枝条和叶片)样品,同时获取了温度、相对湿度和降水量等相关气象参数。利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和植物中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水稳定同位素组成。并测定其他水体的稳定同位素组成。通过对土壤水、枝条水和叶片水的δ18O和δ2H测量值与叶片水的δ18O和δ2H C-G模型预测值进行综合分析,确定δ18OLeaf和δ2HLeaf值的控制因素,以增进我们对与叶片水相关的植物有机生物标志物中提取的δ18O和δ2H中所保存的环境信号的理解。【结果】叶片水δ18O和δ2H值与潜在源水δ18O和δ2H值(枝条水、土壤水和降水δ18O和δ2H)以及气象参数(例如、MAP、MMP、MAT、MMT、MARH、MMRH)相关性(r)热图。叶片水同位素测量值与C-G模型预测值比较。叶片水δ18O和δ2H值的结构方程模型(SEM)。【结论】沿黄土高原高程样带,对降水、土壤水、枝条水和叶片水进行重复采样,探索δ18OLeaf和δ2HLeaf值与气象参数和源水的控制关系。气象参数和源水对δ18OLeaf和δ2HLeaf值的影响不同,δ18OLeaf和δ2HLeaf双图生成同位素线。作者发现δ2HLeaf值与源水同位素的相关性比δ18OLeaf更密切,而高程样带沿线δ18OLeaf和δ2HLeaf值与气象参数具有相似的相关性。观测结果表明,源自δ18OLeaf和δ2HLeaf值的植物有机同位素(例如叶蜡和纤维素)可以提供中国黄土高原相对的气候信息。此外,双同位素分析表明δ18OLeaf和δ2HLeaf值由于相似的海拔和季节响应而密切相关。源水(即降水)主导δ18OLeaf和δ2HLeaf值,气象参数对δ18OLeaf和δ2HLeaf值的影响相当,且随黄土高原样带海拔和季节的变化而变化。未来,作者将研究交叉角与水文气候和生化因素的关系。
  • 全球唯一!这个海上风电叶片检测中心取得新突破!
    近日,中国中车旗下时代新材海上风电叶片检测中心完成验收,正式投入使用。该检测中心是目前全球唯一可开展160米叶片全尺寸结构试验的检测实验室,可支撑百米级叶片的研究和检测,验证大尺寸叶片的可靠性。该检测中心位于江苏省盐城市射阳港经济开发区,2022年7月启动建设,占地面积约6.7万㎡,规划建设4个试验承载平台,已建成2个平台,可测试叶片最大功率级别20MW、最大叶片静力极限弯矩载荷200000kNm、最大疲劳弯矩载荷100000kNm、最长叶片长度160m、最大叶根节圆直径7.2m。检测中心采用先进的设计与施工工艺,8m*8m整体面板的凹凸程度不高于0.5mm,平整度超LED显示屏。最大载荷是现有10MW机组载荷的5倍,与2万吨吊车起吊能力相当。静力试验单点加载载荷达50吨,基于神经网络控制技术实现了16点协同精准加载,加载精度误差≤0.5%。叶片疲劳试验依据目标载荷自动扫频启动,试验全程闭环控制,已实现无人值守。中车时代新材海上风电叶片检测中心拥有风电仿真计算平台、频率、静力、疲劳等各类检测系统,加速了中车
  • 虹科案例 | 风力涡轮转子叶片的加速度测量解决方案
    在对风力涡轮机的转子叶片进行加速度测量的任务中,往往存在一个主要困难:必须记录发生的振动并将其传输到系统进行评估。然而,由于现有的高电压和电流,电换能器无法提供可靠的数据。我们将向您展示此问题的虹科加速度测量解决方案,然后向您介绍适用于转子叶片加速度测量的产品。Part.01 风力涡轮机转子叶片加速度测量的问题在发电方面,风力涡轮机想要在激烈的竞争中脱颖而出,最大的挑战是尽可能减少风力发电带来的能源损失。克服这个问题的主要作用是转子叶片的设计。因此,目标是确保形成尽可能少地产生涡流的设计(因为这些会产生制动效果)。转子叶片在涡旋形成过程中开始振动,而这种涡流的形成可以通过转子叶片上的加速度测量来检测。使用测量数据,可以减少进一步的损耗。Part.02 虹科Micronor加速度系统解决方案光纤测量系统是可靠且不受破坏性因素影响对转子叶片进行加速度测量的理想选择。使用这样的测量系统,测量头粘在转子叶片上,而光纤电缆沿着它延伸到轮毂。 然后,带有激光源的控制器和相关评估电子设备位于集线器上。 通过对转子叶片进行这些加速度测量,可以确定可用于优化叶片形状的数据。 此外,您可以根据不同的风况调整转子叶片的位置。测量的核心是具有反射表面的MEMS。 入射光束通过棱镜引导到反射表面上,使反射光束以尽可能大的强度耦合到返回光纤中。 如果发生外部加速度,镜子会改变其轴。 这会偏转反射光束。 因此,在评估电子设备中测量的光强度会降低。 光强度的降低与外部加速度成正比。Part.03 所用产品在MICRONOR,我们提供的系统可以可靠地对转子叶片进行加速度测量。随着我们的单轴或多轴光纤加速度计系统,您可以测量风力涡轮机等高压环境中的振动和运动。您可以在产品类别中找到各种控制器和传感器。我们的虹科MR660控制器有单轴、双轴或三轴的不同版本。它们在电子或机电传感器失效的地方工作。为此,我们提供合适的传感器:圆形 1 轴传感器 HK-MR661 和单轴方形传感器 HK-MR662,以及两轴 HK-MR663 和三轴 HK-MR664。
  • ASD | 利用高光谱反射率预测温带落叶阔叶树木的叶片性状
    ASD | 利用高光谱反射率预测温带落叶阔叶树木的叶片性状:通用模型可适用于整个生长季节吗?追踪生长季和地理区域中叶片性状的变化是理解陆地生态系统功能的关键。野外光谱法是原位监测叶片功能性状的有力工具,在农业、林业和生态学中都有许多应用,例如,叶片光谱已用于表征许多叶片理化特性,预测倍体水平,估计叶龄,甚至可以预测入侵植物对凋落物分解的影响。但目前尚不清楚是否可以开发通用统计模型来根据光谱信息预测性状,或是否需要根据条件变化进行重新校准。特别是,生长季多个叶片性状同时变化,是否可以从高光谱数据成功预测这些时间变化是一个悬而未决的问题。基于此,为了填补研究空白,在本研究中,一组国际研究团队利用标准实验室方法(包括光捕获和生长:N(%),δ15N(‰),δ13C(‰),叶绿素,可溶性C(%)和叶片含水量(LWC);防御和结构:每单位面积的叶片质量(LMA g m-2)、总C(%)、半纤维素(%)、纤维素(%)、木质素(%)、总酚类(mg g-1)和单宁(mg g-1);岩石衍生营养素:P(%)、K(%)、Ca(%)、Mg(%)、Fe(μg g-1)、Mn(μg g-1)、Zn(μg g-1)和B(μg g-1))和叶片光谱(利用光谱范围为350-2500 nm的ASD FieldSpec 3进行测量,在350-1000 nm,采样间隔为1.4 nm,在1000-2500 nm,采样间隔为2 nm)追踪了整个生长季的变化,研究了温带落叶树木多种叶片性状和光谱特性之间的联系。旨在回答以下问题:(1)常见物种叶片的理化性状在生长季如何变化?(2)叶片反射率在生长季如何变化?(3)生长季叶片理化性状和光谱之间是否存在可预测的关系,从而使叶片光谱能够不受时间限制地远程追踪森林生态系统功能的变化?然后评估叶片光谱是否可以在季节效应的影响下稳定地捕获叶片性状,为通过机载和星载传感器的高光谱成像进行大尺度叶片性状调查奠定基础。【结果】理化性状和光谱在整个生长季变化很大,虽然6月和9月之间收获的成熟叶片变化较小。重要的是,叶片光谱可以准确预测大多数叶片性状的季节性变化,成熟叶片的预测精度通常较高。然而,对于一些性状,PLSR估算模型因物种而异,单一PLSR模型不能用于物种水平的准确预测。8个落叶树种叶片光谱及其变异性(平均反射率(a)和变异系数(b))的季节模式。2017 年 5 -10 月,不同季节对英国剑桥Madingley林地21种叶片性状全/特定光谱数据最佳PLSR性能的影响。2017 年 5-10 月,不同物种对英国剑桥Madingley林地21种叶片性状全/特定光谱数据最佳PLSR性能的影响。【结论】叶片光谱可成功预测整个生长季多种功能性叶片性状,为机载和星载成像光谱技术监测和绘制温带森林植物功能多样性奠定了一定基础。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650309890&idx=1&sn=9bddcb74cbb31a26c18ad6aee87f4344&chksm=bee1a9fd899620ebd02f200799a9370626a1d8b6fee07375ad2580b562fa8ad686a495393775&token=1524960455&lang=zh_CN#rd
  • 风电叶片检测有奇招!全自动NDT检测系统
    中国的风电市场,在“双碳”目标明确提出后,风电一直是我国环保事业中重要的一部分。风电领域中,风机的叶片是重要的组成部分,直接关系着风机的运转效率及状态。Evident NDT大系统部门,针对风电叶片行业开发了全自动叶片检测系统WBIS(Wind Blade Inspection System)。 该检测系统通过集成AGV(自动导航小车),机械手,电池组,水循环系统,控制系统,并结合Evident自主开发的Focus PX及软件组成高效的全自动化检测系统。,时长03:01检测区域:翼梁和腹板粘结的完整性检查左右滑动查更多全自动的NDT检测系统,扫描过程中无需操作员。得益于这些定位点,WBIS能够自动连续检测叶片两侧。检测动线左右滑动查更多探头在腹板区域移动,AGV和机械手将它们的轴组合起来,以创建X&Y光栅扫描。绿色箭头:AGV移动 红色箭头:机械手移动两个方向上的扫描分辨率由用户选择,以获得数据分辨率及检测效率。以下检测效率作为示例:腹板长度: 60 米长分辨率: 翼弦方向: 1mm, 翼展方向: 3mm, 0.1mm A扫 并沿弦线进行500mm的扫描。检测时间: 2m / min数据大小: 10,3 GB上传速率: 100 MB/s轻松高效的数据分析区别于现有NDT检测设备的数据分析模式,WBIS检测数据被划分为700 MB的文件,一旦可用,就可以进行动态实时传输。因此,数据分析可以更早地开始,并在收到前两个文件后立即开始,而非等到整个检测过程完成之后再分析。WBIS数据可以轻松上传到远程位置(或者云服务器上)进行远程集中分析。WBIS优势:全自动检测,检测过程无需人员操作,实现远端控制高检测效率,扫查分辨率可根据需求调整自带安全传感器及定位点,实现较高安全性独立系统,所需装置均安装于机上,无外界电缆,水管占地面积小,小于2平方米针对不同叶形,检测设置快速切换,无任何机械调整机械手传感器及水楔自由角度,实现叶片曲率变化的仿形检测水循环系统实现供水,回水动态循环,实现稳定耦合
  • 浙江大学研制出水稻叶片氮素测定仪
    今后,广大农户可以直接在农作物施肥的过程中,准确、快速、实时地检测作物氮素状况和长势动态,及时地获取作物对肥料的需求,因需施肥,从而节约肥料成本,实现用肥精细化。  最近,由浙江大学生物系统工程与食品科学院聂鹏程博士、何勇教授率领的团队,成功地开发出基于光谱技术的水稻叶片氮素测定仪。该仪器可以直接地测量出水稻叶片的氮含量,检测精度高,在农业精细化施肥的过程中,不仅有助于节约肥料成本,也可以降低因使用过量化肥而导致的土壤环境恶化和水资源污染,具有极高的应用价值。  氮素是水稻必需的营养元素之一,但施氮过多,容易造成地下水污染,如何在保证作物高产优质的同时,又防止作物生产带来的环境污染,是各国政府、农学家和生产者所面临的共同难题。解决这一难题的关键是攻克对作物氮素含量的实时在线检测技术,实时获取作物生长过程中氮素含量,以实现按需精确施肥。国外虽然有成熟的技术,也推出了一些成果,但是国外仪器成本高,推广难,不适合田间或不能直接快速地测量出植物氮素含量。  浙江大学水稻叶片氮素测定仪的研制成功,在很大程度上解决了这一难题。目前该仪器已成功进入市场,成为了一款可测量植物叶绿素含量、氮素含量的植物养分速测仪。
  • 航空叶片三坐标自动测量研究现状和发展趋势
    p  航空发动机叶片几何形状复杂、尺寸跨度大、加工精度要求高等特点决定其成为了航空发动机中加工制造的难点,同时也对航空发动机叶片加工质量检测精度和检测效率提出了更高要求。航空发动机叶片检测技术已逐步从定性检测到定量检测,从接触式检测到非接触式检测,从传统手工检测到自动数字化检测,从二维比对检测到多自由度组合检测,从单一规格大批量检测到多规格小批量检测。航空发动机叶片质量检测方法众多,如标准样板法、自动绘图测量法、光学投影测量、电感测量法、坐标测量法、激光测量法、机器视觉测量法等,其中,三坐标检测凭借通用性强、重复性好、稳定性强、检测精度高等优势在航空叶片制造企业中被广泛应用,但此种方法要求测量时处于恒温环境下且采样效率较低。本文将介绍和评析航空叶片三坐标自动测量研究现状和发展趋势,并基于三坐标测量机(Coordinate Measuring Machine,CMM)提出一种改进型航空叶片自动测量与控制系统。/pp style="text-align: left "strong  1 叶片三坐标自动测量研究现状/strong/pp  (1)基于CAD数模的自动测量/pp  基于CAD数模的三坐标测量是产品设计、加工、测量一体化进程中的重大突破。CMM的测量能力和可操作性在很大程度上取决于测量软件的功能,测量软件决定了CMM可采用的测量方式以及应用范围。目前很多叶片测量软件都具备基于CAD模型脱机编程功能,比如海克斯康PC-DMIS、蔡司Calypso等,并能读入多种文件格式,如IGES、DXF、STL及VDA等格式,也可以兼容UG、Pro/E或CATIA等CAD格式文件。/pp  CMM可实现基于CAD数模的叶片自动测量,待测点的分布和采集、测量路径优化及测量程序生成是自动测量中的关键问题。杨雪荣等结合ARCO CAD测量软件,实现了对基于CAD数模零件进行自动测量 周保珍等基于UG CAD提出了沿待测点矢量方向测量的方法,并给出了自动生成DMIS测量程序的方法步骤 刘勇等在前人的成果上基于UG CAD数模给出了叶片自动测量路径规划系统的操作流程 S.G.Zhang等基于CAD数模特征,在CMM平台上设计了一套检测过程规划原型系统,能极大减少判断探针方向的时间 Hui-Chin Chang等基于汽轮机叶片CAD数据库,系统通过简单三角函数计算在短时间内能自动生成无碰撞检测路径,并输出DMIS格式文件。/pp  在对三坐标测量系统进行研究总结后,测量程序生成方法主要有以下几种:/pp  ①脱机编程。此方法根据待测件的几何特征和公差要求,用DMIS语言手动编写测量程序,以指导CMM自动测量。但此方法对操作人员专业水平要求较高,编程所需时间长。/pp  ②自学习编程。此方法适合没有CAD数模和设计图纸的情形下,操作较为简单便捷,适合产品大批量测量。在手动测量一次后,三坐标测量软件系统会自动记录测头运动和操作并保存为测量程序,对相同批次的产品可实现自动重复测量。但此时测量软件需要与CMM联机才能完成程序的编制,CMM其他任务将会被占用。/pp  ③自动编程。此方法将CAD数模导入到CMM测量软件中,将工件坐标系(即测量坐标系)与理论坐标系进行对齐后,检测员基于CAD模型进行测量路径规划,测量软件系统按照GD& T设计要求,自动生成DMIS程序,动态虚拟模拟路径无误后自动保存。也可利用三维软件二次开发功能、C#编程语言或VB编程语言等工具,根据三维软件生成的测量前置文件(包含测量点信息和测头信息)开发格式转换程序,直接生成DMIS格式文件,大幅提高测量效率。/pp  在无图纸的情况下实现叶片的批量测量,可基于光学扫描仪完成叶片初始点云数据的采集,然后利用Geomagic Design Direct设计软件进行逆向建模,获取初始CAD模型,并导入PC-DMIS测量软件中,以引导CMM进行测量路径自动规划。基于CAD数模的交互自动编程较手工编程而言,效率更快、更清晰直观、方便验证,而且也便于对测量点进行采集和编辑。目前,基于CAD数模自动测量已被国内外先进的CMM测量软件普遍采用。/pp  (2)自动定位夹具/pp  目前,由于航空叶片形状复杂且规格繁多,检测时并没有与之兼容的通用定位夹具。国内很多航空叶片制造企业基于三坐标检测普遍都采用简单支撑固定的方式,以降低制造成本,而且每次只能对单个叶片进行测量,每次都需要对待测叶片进行装夹和粗定位,导致叶片检测效率极低。/pp  针对以上难点,不断开展叶片专用夹具研究,叶建友等提出了柔性相变材料夹具为叶片自动化测量提供保障。定位件和夹紧体位置灵活可调,一套柔性相变材料夹具能装夹一定尺寸范围内任意形状的零件。但该夹具存在准备周期长、刚性不足、手工操作繁琐等问题,同时,仍只能对单一叶片实现定位夹紧,在提升检测效率方面效果并不显著。容器里相变材料反复进行固液态两相变换,膨胀和收缩不可避免,势必影响到夹具的装夹精密度和稳定性。/pp  陈林等设计了一套叶片测量气动专用夹具,利用榫根底面、侧面及内径相面进行6点定位并对底平面实现磁力夹紧,有利于实现叶片测量自动化。该套夹具具有刚性强、定位精准、操作简单等特点,但对于具有轴颈型榫根或枞树型榫根的叶片无法实现固定支撑,且仍只能对单一叶片进行测量。/pp  通过研析现有文献和对叶片企业的实地调研,针对航空叶片夹具设计提出参考规则:①夹具在对工件进行装夹时,能保证工件位置的正确性 ②基于某一特征,夹具可对同一规格叶片进行多片装夹定位 ③夹紧操作不能损伤叶片 定位要可靠 夹具系统稳定性强,操作简便快速 ④使用三坐标测量机进行测量时,夹具必须保证探针对于待测叶片的空间可达性且不发生碰撞 ⑤夹具应避免使用吸铁等带有磁性的材料,避免工件或探针收到磁性作用而影响测量结果。/pp  (3)自动测量系统/pp  当前,国内很多叶片加工企业在检测环节没有实现模块化和系统化,特别是在信息共享和自动控制方面能力不足。具体表现在:①测量数据过度离散化,可追溯性较差 ②测量过程人机交互多,自动化程度低 ③工序质量控制能力弱,产品报废率高。/pp  在工业4.0智能制造的大背景下,海克斯康集团推出了自动化、智能化的测量系统。整个自动化测量系统分为几个物理单元:三坐标测量机、自动控制系统及管理软件、料架系统、零件识别系统、机器人系统、机器人外围系统及安全防护系统。通过信息系统把各单元串联起来,形成有效的集成单元,对测量信息高效管理,并对工序过程进行有效的数据反馈,明显提升生产效率。/pp  智能化作为自动化的高级应用,智能测量系统在工业4.0中扮演重要角色,雷尼绍公司推出搭载第二代REVO多传感器五轴测量系统的大型龙门式三坐标测量机有如下特点:①分辨率提高近20倍 ②可加载不同的测量模块 ③不仅可以测量大工件大尺寸,也可以测量大工件小尺寸 ④采用螺旋扫描,采集点的效率高。/pp  (4)叶片三坐标自动测量发展趋势/pp  三坐标测量技术的不断发展促进了测量行业的进步和变革,也对三坐标测量技术提出了更高要求。在航天航空领域,面向智能制造的高精度动态实时测量技术和飞机大尺寸数字化测量关键技术不断被讨论和研究,其中航空叶片三坐标测量技术的研究方向主要是:①自动化、智能化 ②实时监控、可视化 ③高速、高精度、高稳定性。/ppstrong  2 叶片自动测量夹具设计/strong/pp  (1)叶片检测现状/pp  以叶片的叶型测量过程为例,无锡某航空叶片企业的检测过程需要的人机交互操作较多,如待检叶片信息的输入,待检叶片的装夹及粗定位、抽调对应的测量程序、PDF文件名及保存路径的输入等,该企业现有检测流程如图1所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/212bc28d-9c34-4158-a4cf-746818aaacd4.jpg" title="1.jpg" style="width: 420px height: 298px " width="420" vspace="0" hspace="0" height="298" border="0"//pp style="text-align: center "  图1 现有叶型检测流程/pp  在检测过程中,若没有及时的人机交互,CMM就会停机等待操作指令。由于该检测流程仅面向单个叶片,检测效率极其低下,根本无法满足正常的叶片检测需求。/pp  针对上述实际问题有以下解决方案:①增加三坐标测量机以及检测人员数量 ②增强企业叶片数控加工系统的可靠性 ③引进全过程自动化在线控制检测系统 ④优化叶片现有三坐标测量机夹具。/pp  方案①中通过增加检测设备和人力投入显然不符合企业低成本的要求,在设备维护和人员管理上也会耗费巨大 方案②虽然可以改善叶片加工稳定性和精度,减少了叶片检测的任务量,但对于中小型企业来说,短期内很难突破关键技术瓶颈,对企业资金能力、技术能力、检测环境等都提出了更高要求,实施难度大 方案③为目前先进的自动化检测技术,可以实现100%检测并实现零废品率,一定程度上可以降低生产成本,但中小型企业生产规模小,一次性投入太大 方案④是建立在现有设备和人力不变的情况下,通过优化叶片检测夹具来实现叶片测量效率的提升,显然这个方案更加适用于中小型企业。通过对该企业CMM检测过程的实地调研,来找到最合适的解决方案。具体改进后的叶片叶型检测流程见图2。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/c306372c-5a40-443d-bdcd-097232cca3b8.jpg" title="2.jpg" style="width: 500px height: 467px " width="500" vspace="0" hspace="0" height="467" border="0"//pp style="text-align: center "  图2 改进后叶型检测流程/pp  通过电子扫描槍对该待检测叶片工序流转卡进行扫描获取叶片ID号,系统自动在产品工艺数据库中根据叶片ID号检索相关加工工序信息。选择检测对应工序名后,系统自动从该数据库中检索对应工序的测量程序文件地址,从FTP服务器下载测量程序到Calypso测量软件指定文件夹,并保留待检测叶片相关信息至指定文本文件作为该叶片自动保存地址。运行Calypso软件并调取对应测量程序,叶型测量完成后调取Blade Pro分析软件的同时运行自动保存应用程序,该应用程序捕捉到系统保存窗体的弹出并获取文本文件中保存地址和名称,实现测量报告的自动命名和保存。生成的PDF文件自动上传到FTP服务器,作为该企业的工艺资料储备。生成的TXT文件经过自动转换后导入MySQL工艺数据库,可实现测量数据的精确查询和SPC分析。对于在可控范围内的测量数据,在逆向工程中进行特征数据提取实现叶片三维建模,以指导无图纸工件进行CMM测量路径规划,并生成测量程序完成自动化测量。/pp  (2)自动测量夹具方案/pp  由于该企业三坐标测量机叶片专用夹具一次只能对单一叶片进行装夹定位,针对燕尾型榫根叶片叶型测量,提出一种多片自动测量专用夹具,该装置主要由夹具体、气缸、气缸座、基座、定位销钉、夹紧块、带有9个楔形块结构的矩形轴组成,单元结构如图3所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/fc8a2889-a955-437c-b2af-0bea51b52c36.jpg" title="3.jpg" style="width: 300px height: 180px " width="300" vspace="0" hspace="0" height="180" border="0"//pp style="text-align: center "  图3 夹具单元结构/pp  该夹具能实现9片叶片联装联测,由原本单个支撑工位线性地扩展成9个联测装夹工位。该工装夹具利用蔡司Calypso和PDFFactory配合连续测量,并最多保存9份检测报告,缓解企业CMM检测能力不足和效率低下的问题。/pp  采用两个定位销钉和一个紧固螺钉连接夹具体与基座 9个夹具体线性分布在基座上,保证间隔不干涉叶片装夹 矩形轴两端均采用滑动副,并带有9个楔形块,楔形块和夹紧块配合形成滑动副。/pp  夹具装夹方式是:夹具体楔形面和燕尾型榫根楔形面配合,模拟叶片装配状态,限制了榫根5个自由度 用定位销钉对榫根侧面进行定位,限制了榫根1个自由度 通过启动气缸推动矩形轴移动,从而使楔形块推动夹紧销钉向上移动,实现对9片叶片同步进行装夹。单个榫根装夹图如图4所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/4b836cd9-4fe9-4d79-92e2-9ea4889a0a04.jpg" title="4.png" style="width: 300px height: 213px " width="300" vspace="0" hspace="0" height="213" border="0"//pp style="text-align: center "  图4 单个榫根装夹/pp  以榫根楔形面的中分面(即通过发动机轮毂盘轴线的径向面)工件测量坐标系的XOZ平面,以给定值来确定XOY平面和YOZ平面,以此建立工件测量坐标系(见图5),且该坐标系与建立CAD数模的理论坐标系保持一致。/pp  在对9片叶片进行检测路径规划时,只需要在DMIS文件中在第一片叶片工件坐标系基础上连续偏置一个固定值即可得到其他叶片的工件坐标系。/pp  该夹具具有以下特点:①定位装置尺寸链短,对测量精度影响较小 ②多叶片可同步装夹和拆卸,实现批量测量 ③采用气动夹紧,实现自动夹紧测量。/pp  /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201803/insimg/bacf711e-9ee3-41e0-843f-949e80d69dc4.jpg" title="5.png" style="width: 310px height: 167px " width="310" vspace="0" hspace="0" height="167" border="0"//pp style="text-align: center "  图5 建立叶片工件坐标系/ppstrong  小结/strong/pp  本文对航空叶片自动化测量技术研究现状和发展趋势展开论述,总结了基于CAD数模的检测路径规划方法和DMIS文件生成方法和自动测量夹具设计基本准则,结合相应实例对叶片自动检测系统未来趋势做了总结阐述,并针对某航空叶片企业实际情况给出了相应解决方案,提出了改进型叶型测量夹具,极大提高了检测效率。/ppbr//p
  • ASD | 应用PROSPECT模型提取叶片生化性状的适用性研究
    PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性叶片生化性状为理解植物光合功能、动态生长、养分循环和初级生产提供了有价值的信息。叶片叶绿素含量(Cab)、类胡萝卜素含量(Cxc)、含水量(Cw)和干物质含量(Cm)是四个重要的叶片生化性状,与植物光合作用、氮素、胁迫和衰老等健康和生长状态密切相关。能够对这些叶片生化性状进行高通量测量的方法对于表征植物生理状态和关键功能过程至关重要。PROSPECT模型是目前更常用的叶片辐射传输模型之一,可从叶片定向半球反射因子(DHRF)光谱来提取叶片生化性状,然而,在应用于叶片双向反射因子(BRF)光谱提取叶片生化性状方面尚待探索。叶片表面反射率和各向异性性状的存在可能是限制PROSPECT从叶片BRF光谱评估叶片生化性状的主要问题。基于此,在本研究中,研究者们提出了一个方法,整合了PROSPECT模型、光谱导数和相似性度量(SDM),称为PROSDM,去除了叶片BRF和DHRF光谱的差异,并从叶片BRF光谱提取了叶片生化性状。具体目标是:(1)通过PROSPECT反演调查叶片BRF和DHRF光谱差异随波长的变化以及对Cab、Cxc、Cw和Cm提取的影响,(2)开发PROSDM消除BRF和DHRF光谱差异,从叶片BRF光谱与PROSPECT和PROCOSINE以及PROCWT的比较来提取Cab、Cxc、Cw和Cm以及(3)评估PROSPECT、光谱子域、光谱噪音和模型参数范围对PROSDM性能的影响。为了获得各种叶片生化性状和反射率,作者收集了具有不同生长阶段、营养状况和种植区域的植物物种的10个数据集,包括1个测量数据集和9个公开获取数据集。从油菜(Brassica napus L.)、水稻(Oryza sativa L.)和柑橘(Citrus aurantium L.)随机采集2279个植物叶片,利用ASD FieldSpec 4测量叶片反射率,获得数据集#1。从EcoSIS光谱库中获得具有各种叶片光谱和生化性状的9个公开的数据集。其中,7个数据集的BRF光谱由ASD地物光谱仪(Analytical Spectral Devices, Inc., Boulder, CO, USA)搭配ASD叶片夹测量。 表1 数据集描述。Dataset#1是本研究中测得的,Dataset#2-#10是在线https://ecosis.org获取的。BRF和DHRF光谱的光谱区域是400-2500 nm。【结果】 平均BRF和DHRF光谱差异(a)以及这些差异对平均BRF光谱的贡献(b)。油菜(红线)在Dataset#1中获得,其他植物物种在Dataset#5中获得。 通过考虑非波长依赖性f(a,d)和波长依赖性f(b,c,e,f)两种情况,利用一阶(a-c)和二阶(d-f)导数的叶片BRF(绿线)和DHRF(橙线)光谱之间的差异。 利用PROSPECT反演(a–d),PROCOSINE反演(e–h),PROCWT-S4( i–l)和基于全光谱域PROSPECT-PRO 的PROSDM(m–p)的所有数据集(Dataset#1-#10)中Cab (a,e,i,m) ,Cxc (b,f,j,n), Cw (c,g,k,o) 和Cm (d,h,l,p)测量值和估算值比较。 【结论】 本研究中,作者提出了PROSDM这种新方法用来从叶片BRF光谱来提取叶片生化性状。结果发现光谱导数可以消除BRF和DHRF光谱的非波长依赖性差异。当BRF和DHRF光谱的差异随波长变化时,光谱导数仅能去除部分差异,而曼哈顿距离(MD)补偿了光谱导数的限制,进一步减少了差异。结果,PROSDM从叶片BRF光谱准确提取了不同植物物种的Cab、Cxc、Cw和Cm。与标准的PROSPECT反演需要利用带有积分球的光谱仪测量叶片DHRF光谱不同,PROSDM扩展了PROSPECT到叶片BRF光谱的应用,以提取叶片生化性状。它可利用不同手持式光谱仪和叶片夹原位提取叶片生化性状。 在全光谱域,PROSDM-SED实现了Cab和Cxc的更优提取,RMSE分别为7.64 μg/cm2 and 2.77 μg/cm2,PROSDM-FMD产生了Cw(RMSE = 0.0041 g/cm2)和Cm(RMSE = 0.0024 g/cm2)的更好估计。与PROSPECT相比,PROSDM提取的Cab、Cxc、Cw和Cm RMSE分别降低了20.33%,29.34%,25.45%和44.19%。结果表明,PROSPECT和PROCOSINE以及PROCWT的Cab、Cxc、Cw和Cm提取精度受到光谱饱和度、PROSPECT反演、光谱子域以及模型参数范围的影响很大。适当的光谱子域和模型参数范围可以改善不同反演方法的提取结果。这需要从实地测量和报告的研究中了解叶片生化和结构性状的先验信息。与这些反演方法相比,所提出的PROSDM在减轻Cab、Cxc、Cw和Cm提取的负面影响上具有很大潜力。对于不同的PROSPECT版本,建议利用PROSPECT-PRO从叶片BRF光谱提取叶片生化性状。 未来研究需要基于叶片BRDF模型测量叶片BRF光谱的光谱和方向变化,将BRDF模型与所提出的PROSDM耦合可以改善对BRF和DHRF光谱变化的表征。此外,由于植物物种BRF和DHRF光谱的差异变化,在不同的数据集中PROSDM不能获得一致性提取结果。预计更多的工作将集中在理解不同视角和照明角度下植物叶片光学特性的变化。期望PROSDM可以应用在不同的尺度上,提高其在遥感、生态和环境研究中的适用性。点击如下链接,下载原文:PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性
  • 有人问:GE那么长的风机叶片都是怎么运输的?本期为大家揭秘!
    上次在文章中写到,GE的Haliade-X巨人风机一个叶片就有107米。(风机的叶片那么长,工程师都是怎么制造出来的?)有人好奇,这么长的叶片是怎么运输到现场的?那GE都是如何让这样的大包裹送到现场的?本期我们来为大家揭秘!运输风机叶片GE位于西班牙的LM风电工厂制造出了在当地最长的风机叶片,这些叶片将运输到港口装载在船上运到德国,最终安装在德国北部的默克尔风电场捕获风的力量。制造这个叶片并不容易,但运输一个比电杆还要长近7倍的东西也是个艰难的任务。LM工厂的主管和他的团队花费了13个月的时间,与州政府、地方政府及港务局合作,研究如何把这个庞然大物从工厂运输到46公里外的港口。2017年10月,巨型叶片终于出发了。经过的个别路段拆除了路灯、路标,在环形的道路上也铺设了道路,终于抵达了港口。原以为车技好就够了,看来还是得有些“硬手段”啊。那这样大费周折有必要吗?当然有!叶片越长,风机发电量就越大。LM工厂制造的叶片比上世纪80年代制造的普通叶片要大4倍,而发电量则提升了100倍。让风场以更少的风机产生更多的电自然是大势所趋。现在。风能占欧洲能源的11%以上,预计到了2030年,占比可能达到25%。运输风机机舱说完叶片,接着来说风机的机舱。叶片大,那么机舱也小不了。由GE可再生能源制造的6兆瓦风机的机舱重400吨,每一个都和一辆校车差不多大小,里面装载着风机的发电部件。2016年,5个机舱被装运到法国圣纳泽尔港口特制的“勇气号”上,他们将随着“勇气号”穿越五千多公里寒冷的北大西洋水域,抵达目的地——洛克岛风电场。“勇气号”可不是一般的渡轮,它长约132米,宽约39米,是一艘专门的风机安装船,一到目的地,它就可以像变形金刚一样从船变成海上施工平台,将机舱悬挂并固定在风机的塔架上。2017年5月,布洛克岛风电场开始正式并网发电,发电量约为12.5万兆瓦时,足以为布洛克岛提供90%的能源。在大风机的助力下,布洛克岛的一家柴油电厂也顺利关闭。运输心脏今年4月份,马里兰大学和GE航空集团旗下的AiRXOS公司成功将一个人类肾脏从巴尔的摩圣艾格尼丝医院运送到4.3公里外的马里兰大学医学中心。整个飞行从当天凌晨0点30分开始,历时大约10分钟。44岁的Trina Glispy在凌晨五点接受了肾脏移植。过去的八年中,她始终依靠肾透析维持生命。这是人类历史上首次用无人机运输用于移植的人体器官。美国每年大约有3.5万例器官移植。除了找到配型成功的器官外,及时将器官从捐助者送达接受者也是一个关键环节。运输上一旦延误,很可能对患者造成生命威胁。这些器官要么没有到达目的地,要么延误太久,以至于无法移植。无人机所处的120米以下空域还没有被充分利用,其承运能力还处在未饱和的状态。这为农村和城市地区的器官和药物输送等应用场景创造了机会。AiRXOS也在与美国国家航空航天局(NASA)和联邦航空局开展合作,通过制定标准、测试技术、构建无人交通管理系统和执行飞行操作等方式,定义未来的无人机行业。
  • 恒美-植物光合作用测定仪检测植物的活体叶片光合作用-新品
    点击了解更多产品详情→植物光合作用测定仪 植物光合作用测定仪是一种用于测量植物光合作用效率和光合速率的设备。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态。 植物通过光合作用将光能转化为化学能,产生氧气和养分。光合作用测定仪通过测量植物叶片的光合速率和光能利用效率,可以评估植物的光合作用强度和效果。 使用植物光合作用测定仪非常简单。首先,将测定仪的探头或传感器放置在植物叶片表面。然后,仪器会通过测量叶片表面的光反射和吸收情况,计算出植物的光合速率和光能利用效率,通过测量植物的光合速率和光能利用效率,可以评估植物的健康状况。如果植物的光合作用效率较高,说明植物能够有效利用光能进行光合作用,代表植物健康良好。相反,如果植物的光合速率较低或光能利用效率较低,可能意味着植物存在养分缺乏、叶片受伤或其他生理问题。 植物光合作用测定仪可以监测植物的生长状态。通过定期测量植物的光合速率和光能利用效率,可以了解植物的生长过程中光合 作用的变化和适应能力。根据测量结果,可以调整光照、水分和养分等环境因素,以促进植物的健康生长。 优植物光合作用测定仪可以帮助研究人员和植物园艺师优化光合作用条件。通过测量不同光照、温度和其他环境因素对植物光合速率和光能利用效率的影响,可以确定最佳的光合作用条件,提高植物的生长效率和产量。 植物光合作用测定仪对于植物检测具有重要的作用。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态,优化光合作用条件,为植物的种植和研究提供科学依据。
  • 重磅!我国科学家实现植物叶片代谢物质谱成像新方法!
    近日,中国科学技术大学国家同步辐射实验室的研究团利用之前自行研发的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。研究成果发表于国际分析化学领域著名期刊Analytical Chemistry。代谢活动是生命体的本质特征和物质基础。随着生物分析技术的发展,代谢组学逐渐成为生物学研究的重要领域,并在植物研究中受到广泛关注。目前已知的植物有30万-35万种,其产生的代谢产物预计有20万-100万种,其中鉴定出化学结构的植物代谢物约有20万个。植物代谢物的成分分析和空间成像对于研究植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。质谱成像技术(MSI)是基于质谱发展起来的一种分子成像新技术。通过直接扫描生物样本,可以同时获得多种分子的空间分布特征,具有免荧光标记、不需要复杂样品前处理等优点。但常规的MALDI和DESI等软电离技术难以穿透植物叶片表层的角质层和表皮蜡作用于叶肉组织,因此无法对叶片中的代谢物进行直接成像。为解决这一问题,研究团队通过印迹方法,将叶片中的植物代谢物转移至多孔聚四氟乙烯材料上,并对印迹后的材料进行成像,以这种间接成像方式实现了叶片植物代谢物的质谱成像。研究团队在成像种使用的技术是2019年团队自行研发的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像技术。该技术的关键是在DESI喷雾装置后引入一套光电离系统和高效离子传输管道,可通过开、关光电离源,实现对多种极性和非极性组分的高灵敏度空间成像。相比于传统DESI方法,正离子模式下可新检出多达百种萜类、黄酮类、氨基酸和苷类等次生代谢产物;负离子模式下整体代谢物信号强度可增强一个数量级。研究团队以茶叶为实验对象对该印迹DESI/PI成像技术进行了验证,在咖啡因、茶氨酸和儿茶素等茶叶代谢物研究中取得了重要成果,表明印迹DESI/PI成像技术在探索植物代谢转化位点和途径方面有巨大的潜力。作为一门新兴的学科,植物代谢组学还处于发展的初级阶段,印迹DESI/PI成像技术为植物代谢组学研究提供了一种新的方法,推动了植物代谢组学的发展。
  • 莱恩德新品|便携式叶绿素测量仪:随时随地测量植物叶片的叶绿素
    点击此处可了解更多产品详情:便携式叶绿素测量仪  在自然界中,植物是生命之源,通过光合作用将太阳能转化为化学能,为人类提供氧气和食物。在光合作用中,叶绿素是植物体内最重要的色素之一,它可以吸收太阳光能并转化为化学能,进而促进植物的生长和发育。因此,叶绿素含量的测量对于了解植物的生长状况和环境变化具有重要意义。    为了方便快捷地测量叶绿素含量,人们发明了便携式叶绿素测量仪。该仪器采用光谱仪测量植物叶片的光谱反射率和透射率,并利用叶绿素在光谱中的特征吸收峰来计算叶绿素含量。通过该仪器,人们可以在短时间内获取大量植物叶片的叶绿素含量数据,从而对植物的生长状况进行评估和分析。    便携式叶绿素测量仪具有多种优点。首先,它具有便携性,方便携带和操作,可以随时随地测量叶绿素含量。其次,它具有高精度和高可靠性,可以快速准确地测量叶绿素含量,并避免人为误差和环境因素的干扰。此外,该仪器还具有用户友好的操作界面和强大的数据处理能力,可以快速处理和分析测量数据,为科研和生产提供有力的支持。    在应用方面,便携式叶绿素测量仪被广泛应用于农业、林业、生态学和环境科学等领域。在农业生产中,通过测量叶绿素含量可以评估作物的生长状况和营养状况,进而指导施肥和灌溉等管理措施。在林业研究中,叶绿素测量可以帮助人们了解森林生态系统的结构和功能,为森林保护和管理提供科学依据。在生态学领域,叶绿素含量可以反映植物对环境的适应能力和竞争能力,进而研究植物生态系统和全球气候变化等课题。    总之,便携式叶绿素测量仪是一种非常有用的工具,可以帮助人们快速准确地获取植物叶片的叶绿素含量数据,从而对植物的生长状况和环境变化进行评估和分析。随着科学技术的不断发展,该仪器将会得到越来越广泛的应用和推广。莱恩德新品|便携式叶绿素测量仪:随时随地测量植物叶片的叶绿素
  • 全方位植物叶片光学监测和评估系统在黑龙江农垦科学院投入运行
    “万物生长靠太阳”。作物产量的高低归根结底取决于叶片对太阳辐射,特别是光合有效辐射的利用。全面监测和评估高等植物对光的吸收、利用、反射和传播,既能从整体上了解植物对光合有效辐射的吸收情况和光合作用的,又能具体分析叶绿体对光能的转化途径及电子传递状况,并且能够衡量作物冠层的结构变化。 由北京易科泰生态技术有限公司提供的全方位植物叶片光学监测和评估系统目前在黑龙江农垦科学院正式安装并组织了培训学习。该系统由开放式叶绿素荧光成像系统FC800-O、手持式叶绿素荧光仪FP100、全自动便携式光合仪LCPro-SD、植物冠层分析系统SunScan、AM350便携式叶面积仪组成,能够对黑龙江农垦科学院的主要研究作物水稻、玉米、大豆的形态及光合生理特性做全方位、多角度的监测和评估。 设备的安装、演示、培训和上手操作在6月末连阴雨天气下的哈尔滨进行。北京易科泰生态技术有限公司的技术工程师为参加培训的师生进行了详细的讲解和演示。理论铺垫和口头讲解仪器的使用&应用开放式叶绿素荧光成像系统FC800-O演示Rfd叶绿素荧光衰减率成像 PAR吸收率成像手持式叶绿素荧光仪FP100讲解FluorPen应用案例:番茄的臭氧处理在不同时期的OJIP快速荧光动力学曲线变化(Thwe and Kasemsap, 2014)全自动便携式光合仪LCPro-SD操作演示应用案例:调亏灌溉对柑橘叶片光合速率、气孔导度及叶绿素荧光强度的影响(Zarco-Tejada et al., 2016;LCPro-SD &FP100测定)ET:100%满足水分需求;RDI 1 :调亏灌溉,水分供给降低到37%;RDI 2:调亏灌溉,水分供给降低到50%。箭头指向水分胁迫开始施加的日期。AM350便携式叶面积仪操作演示植物冠层分析系统SunScan演示讲解Soilbox-343土壤碳通量观测系统讲解
  • 清洁能源来袭,风车的“医生”您找对了吗?
    风力发电是一种清洁能源,近几年得到了广泛的应用。外出郊游的时候我们常常能看见一些不断旋转的大风车。风车的体积不小,这么一个庞然大物,里边这么多的齿轮,没日没夜地转,那么安全怎么保证呢?为了能够让它们的更好的服务我们,需要高效且准确的检测工具,这是必不可少的!那么这个靠谱的“医生”,您找对了吗?齿轮箱和轴承的检测离不开高清晰度的内窥镜,尤其是对内窥镜的防油性能和便携性能有非常高的要求。奥林巴斯的GL系列内窥镜,整体重量仅1.1kg左右,无论想爬多高,带多远,都好像是你的一个手机一样,可以直接跨在腰间就走。G Lite系列虽然非常便携,但是性能却完全不打折扣。高清晰的图片显示,自动调节亮度的功能,自动录制的黑匣子视频,甚至还有独一无二的排油设计。最大程度让风电齿轮箱及轴承检测事半功倍。齿轮的表面覆盖油膜,齿轮箱内部也是多油的重灾区,一般内窥镜很难看清楚,刚进入齿轮箱镜头就会变得不清晰,但是奥林巴斯的独特镜头排油设计,让油渍及时排除,不用清理就能得到清晰图像,可以说大大提高了内窥镜在现场的实用性。其次,轴承反光也是异常强烈,奥林巴斯使用WIDER技术,让图像的曝光更加均匀,避免了反光和暗区,显示了更多细节,压痕,裂纹等缺陷一览无遗。G Lite内窥镜在风电检测中具有的独特优势:1,超便携式设计,轻松携带;2,排油镜头设计,无需人为擦拭镜头,即可轻松观察;3,WIDER技术,让图像显示更多细节,抑制反光与暗区;4,黑匣子30min的自动记录,防止检测人员疏忽缺陷未录像;5,立体测量技术,随时了解缺陷的真实尺寸。
  • 利润增469%!这家仪器公司搭上两大新兴行业顺风车
    p style="text-align: justify text-indent: 2em "日前,重庆阿泰可科技股份有限公司(以下简称:ATEC)发布2019半年度报告,公司实现营业收入31,934,717.24元,较上年同期增长21.57%,归属于母公司的净利润4,528,178.12元,较上年同期上升469.25%,产品毛利率为43.13%,较上年同期增加12.60%。br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/37c0295b-b7ba-4522-97f8-a86f0b784ac1.jpg" title="财报.PNG" alt="财报.PNG"//pp style="text-align: justify text-indent: 2em "strong公司营业收入增长原因在于/strongstrong:/strong随着中国制造业的产业升级,各大厂商越来越重视质量,市场需求逐步释放,同时公司自身不断提升品牌美誉度、深挖市场潜力,获取了大量的市场订单。/pp style="text-align: justify text-indent: 2em "strong公司毛利率上升的主要原因为:/strong一是公司2018年同期为了鼓励和扶持2017年新组建的销售服务商、加强市场基本面建设和品牌建设,大幅让利给市场所致2018年毛利率低,而2019年该因素逐步弱化。二是公司销售航天科工防御技术研究试验中心的产品于2018年安装完成并通过验收,该台产品毛利润较低,属于偶发因素,影响了2018年同期毛利率。/pp style="text-align: center text-indent: 2em "span style="color: rgb(255, 0, 0) "strong财报对环试行业进行了市场分析/strong/span/pp style="text-align: justify text-indent: 2em "strong得到政策扶持的新兴行业成为环试行业新的增长级。/strong新能源汽车、智能制造等新兴领域发展迅猛,对环境模拟试验设备需求量日益增大。光伏产品、机器人、无人机等领域行业发展态势良好,相应测试体系不断完善,环境模拟试验作为其中重要一环,搭上上述行业高速发展的顺风车。/pp style="text-align: justify text-indent: 2em "strong环试设备需求整体增长态势快。/strong随着国家层面政策和各部门文件的不断推进落实,国家相关管理部门对下游行业终端产品环境与可靠性要求的提升和监管,促使下游企业在产品的研发与制造的过程中,对气候环境试验设备的需求不断增加,行业整体增长迎来相对较长时期的发展机会。/pp style="text-align: justify text-indent: 2em "strong环试产品民用需求增长大。/strong主要体现在汽车及电子等重点应用行业,汽车行业的高速发展,行业对汽车的性能和安全性提出了更高的标准,要求汽车行业环境试验设备向综合的环境试验室发展,电子设备需要气候环境试验设备同时朝着精确化、智能化发展,准确模拟出电子专用设备可能面临的各种复杂多变的气候环境,气候环境试验设备作用越来越不可忽略。/pp style="text-align: justify text-indent: 2em "strong汽车行业是市场重点板块。/strong新能源汽车的飞跃发展是重点,电池/电池包/整车新能源这几个项目板块已经成为环试设备应用主流。汽车行业的发展在未来10年都应该是使用环试设备的主力军,而且,汽车行业有庞大的产业延伸链和配套厂,市场潜力巨大。/pp style="text-align: center text-indent: 0em "strongspan style="color: rgb(255, 0, 0) "关于重庆阿泰可科技股份有限公司/span/strong/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 188px " src="https://img1.17img.cn/17img/images/201909/uepic/a6b30a53-d787-4c01-843f-f3f341e33bd9.jpg" title="ATEC.png" alt="ATEC.png" width="450" height="188" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "ATEC系一家致力于可靠性试验技术研究和气候环境模拟设备研发、制造、销售及系统整合于一体的创新型国家级高科技企业,是国内专业从事气候环境试验设备的首家新三板挂牌公司。/pp style="text-align: justify text-indent: 2em "公司不仅研发、设计、制造全系列的气候环境试验设备,并为各类气候环境模拟试验工程提供解决方案,主要产品涵盖高低温湿热试验箱、温度冲击试验箱,低气压试验箱,温度/湿度/振动三综合试验箱,单、多轴旋转温度试验箱,淋雨、砂尘、光照、盐雾环境模拟系统、整车气候环境模拟及检测系统、多因素环境模拟系统以及各种非标试验系统等。/p
  • 搭“核辐射”顺风车 电磁辐射检测仪热销国内市场
    北京市环保局首次公布京城辐射环境信息引起市民对于生活环境中辐射指数的关注,部分市民还自购仪器自行测量电磁辐射。23日记者调查发现,目前市场上的测试仪器技术标价不一且规格混乱,还有人借“核辐射好帮手”推销。相关专业人士表示,市民自测辐射行为并不可取。  检测仪称能测“核辐射”  热销辐射测试仪、钻石信誉电磁辐射检测笔、台湾原产电磁辐射测试仪……在淘宝网输入“辐射”二字,各种广告语扑面而来。日本地震后,平日无人问津的辐射检测仪搭上了“核辐射”的顺风车,销路大开。仅以电磁辐射测试仪为例,这种仪器价格从八九元到上百元、上万元不等,一款声称从德国进口的标价36000元。而一款198元的家用测试仪一个月内竟卖出182件,还有一款来自香港的电磁辐射检测仪称是“核辐射好帮手”。而据专家介绍,电磁辐射是由空间共同移送的电能量和磁能量所组成,与核辐射无关。  再仔细观察发现,这些产品的各种技术指标也不尽相同。有的仪器测量频宽是50赫兹到3000兆赫兹,也有仪器的频宽为50赫兹到5000兆赫兹,有些厂家自行规定了低频和高频,低频为5赫兹到40万赫兹,高频则为30兆赫兹到2000兆赫兹。不仅如此,仪器误差也不同,有的是3%,有的是5%。  而专业人士指出,应该根据辐射源的频率来选择测试仪的频宽。而对于低频和高频的区分,厂家的划分也不科学。一般来说,超低频有不同限值,用的较多的是50赫兹或者100赫兹。高频则是10万赫兹到30兆赫兹,30兆到300兆为超高频,300兆到30万兆属于微波频率。  专业机构1500元起测  目前,北京市环保局并无附属的对外测试电磁辐射的单位,市场上活跃的一般是第三方检测机构。  “主要是测‘房’测‘站’。”一家检测机构工作人员告诉记者,他们测的数据大多是用来打官司用的,有测小区附近的高压线电磁场的,有测机房和设备的,还有居住在变电站或者手机基站附近的居民也要求测试辐射环境。他们一般会根据客户所处的地段和要求,测量出电场或者磁场强度、功率密度,并出具一份报告。  这名工作人员也告诉记者,因为个人测试的数据并未经过CMA国家计量认证,不具有法律效力,居民打官司时还得请专业公司来测。  由于是专业测试,这些机构的开价也不低。北京室内环境污染检测技术中心工作人员透露,他们测试一般3个点起测,一个点500元,一次至少1500元。另一家检测机构谱天测试中心同样是3个点1500元起测。工作人员还“关照”记者:“如果个人测,我们能优惠点。如果是开发商或者物业委托,就走对公价格,自然要贵点。”据了解,该机构给小区做一个环境评价,平均价格是3万元到4万元。  电磁辐射环境有国标  对于自测电磁辐射行为,专业人士指出这种做法并不可取。  北京室内环境污染检测技术中心的一位金姓工程师告诉记者,检测设备购买后得先拿到中国计量科学研究院做检定,之后才会使用,使用过程中也会按固定周期拿去检定,以保证仪器的灵敏度。市民个人购买仪器检测,在准度上就无法保证。  那么,什么样的辐射环境才算正常?环保部颁布的《电磁辐射防护规定》指出,在30兆赫兹到3000兆赫兹这一公众最敏感范围内,电磁场功率密度的标准限值为0.4瓦每平方米,低于这一数值才比较安全。关于超高压选变电设置的工频电场、磁场强度限值,我国推荐0.1毫特斯拉作为磁感应强度的评价标准。  金工程师还建议,市面上的各种电磁辐射测试仪器良莠不齐,不同厂家生产的设备,性能差别很大。且电磁辐射受环境影响因素很大,即使误差较大也难以识别,测出来的数据并没有说服力。如果真有这方面需要,建议市民邀请具有资质的专业机构去测试。  相关链接:  受日本核危机影响 核辐射检测仪器需求大增  韩国没有可批量检测商品的大型核辐射检测设备  日本强震 韩国“哄抢”核辐射测量仪
  • “清洁能源和技术“前景光明,广州国际水处理技术与设备展览会邀您搭乘行业发展顺风车
    p  2016年3月31日—4月2日 广州?保利世贸博览馆/pp  25,000平米规模 650+家优质展商 30,000+专业观众/pp strong 特此声明:近期广东市场出现部分展会,以类似名称冒名宣传。请务必认准展会时间2016年3月31日-4月2日的广州国际水处理技术与设备展览会(简称:广东水展)地点“广州保利世贸博览馆”(广州市海珠区新港东路1000号)/strong/pp  “水十条”、大气污染防治法修订草案、新电改方案今年上半年的密集出台,使清洁能源板块迎来了新一轮发展高峰,同时吸引了VC/PE的大力追捧。“我们预 计2015年清洁能源和技术行业整体前景光明。搭乘行业快速发展的顺风车,VC/PE将积极扩大在清洁能源与技术领域的投资,中国清洁能源将进入大资本时 代。”普华永道中国能源主管合伙人崔志义在接受采访时说。/pp  为响应联合国2030年全球可持续发展议程和第21届联合国巴黎气候变化大会所达成的国际减排目标,切实推动我国转变能源粗放利用方式,全面实现煤炭清洁高效利用,推广清洁能源利用和普及,推动全国林汇和碳交易市场体系建立,推进我国能源结构优化创新和环境污染的治理。在中国经济社会理事会(全国政协)的指导下,在澳门特区政府的大力支持下,国际清洁能源论坛(澳门)将携手广州国际水处理技术与设备展览会(简称:GD Water广东水展)于2015年12月15日至17日在澳门金沙城中心,举办“煤炭清洁高效利用,节能减排低碳发展”为主题的论坛活动。(关注微信公众号“广东水展“,获悉更多会议信息)/pp  2016广州国际水处理技术与设备展览会(简称:广东水展GD Water)作为全球第一大专业水展——上海国际水展之华南地区姐妹展,将于2016年3月31日至4月2日在广州保利世贸博览馆举办。展览面积将达25,000平方米,净水设备、膜、污水处理、泵阀流体四大主题的设立,预计将迎来650多家展商及30,000余名专业观众的踊跃参与!/pp  截止目前,80%展位已售尽。博天环境、住友、星汉-阿卡索、同臣环保、威固、长隆、佑利、科瑞达、威海翔宇、君睿、金泰环保、攻碧克、凯发、东丽、碧水源、东玺科、立昇、中环膜、海清源、海德能、A.O.史密斯、BWT、百诺肯、3M、浩泽、森乐、四季沐歌等行业巨头已预定大面积展位,抢占先机。/pp  除此以外,主办方将运用十余年成功办展经验及40余万国内外精准买家数据库,耗时半年,以专人小组展进行观众邀请。同时通过多渠道过滤筛选,为1000名核心决策人提供VIP专享服务,以最大程度实现买卖无缝对接,构建水处理高效商务平台。/pp  2016广州国际水处理技术与设备展览会(简称:广东水展)邀请一起为水处理、环保事业献一份力!/pp  广东水展微信公众平台开通啦!关注官方微信公众号“广东水展”或手机扫描二维码,就可获得最新、最全行业资讯。此外,介绍水业同行关注“广东水展”更可参与赢取Iphone6抽奖活动!/pp style="text-align: center "img title="121212.jpg" src="http://img1.17img.cn/17img/images/201512/insimg/7148e8fe-da52-457c-8322-f1b57c79820c.jpg" width="228" height="226"//pp  参展咨询:/pp  TEL:021-33231355 FAX: 021-33231366 E-Mail: kevin@chcbiz.com/pp  新闻联系人:/pp  倪仁伟Vincent TEL:021-33231300 E-mail: vincentni@chcbiz.com/pp  更多展会信息请登录:www.gdwater.cn/pp/p
  • 9部科学仪器随“朱诺”接近木星
    北京时间7月5日11时53分,“朱诺”号探测器成功进入木星轨道,其绕木星轨道距离木星云层顶端最近处约4100千米,成为迄今人类距离木星最近的航天器。在接下来20个月的时间里,它将围绕木星运行37圈,对木星起源、内部结构、大气及磁场等相关数据进行探测。  为什么叫“朱诺”?  朱诺是罗马神话中万神之王朱庇特的妻子,朱庇特施展法力用云雾遮住自己,但是朱诺却能够穿透云雾,洞察真相。科学家们希望,“朱诺”号探测器也能够像朱诺一样看穿木星厚实的云层,洞悉其内部结构,了解这颗气态巨行星的秘密。  “朱诺”号长什么样?  “朱诺”号主体像一个六边形的盒子,前端有一个重达180公斤的钛制穹顶结构,用于保护敏感的电子设备免受辐射损伤。该装置与一辆SUV的后备箱相当,能将电子设备遭受的辐射强度减弱800倍。升空后,“朱诺”号的3根太阳能帆板会从其六边形的主体伸出,每块帆板长8.8米,宽2.8米,伸展开后就像风车的叶片一样。  “朱诺”号任务有何背景?  “朱诺”号木星探测器是美国国家航空航天局“新疆界”计划的一部分,这一计划在位于阿拉巴马州亨茨维尔的马歇尔航天飞行中心操作实施。“朱诺”号探测器由美国洛克希德马丁公司建造,美国国家航空航天局喷气推进实验室负责整个探测任务的运行。“朱诺”项目总投资大约11亿美元,包括探测器研发、科学载荷、发射服务、运行经费、科学数据处理与测控支持等相关服务费用。探测器2011年8月5日从美国佛罗里达州卡纳维拉尔角空军基地发射升空。  “朱诺”号上有哪些“乘客”?  “朱诺”号探测器上装有9部科学仪器,它们分别是重力科学载荷(Gravity Science)、磁强计(Magnetometer)、微波辐射计(MWR)、木星高能粒子探测器(JEDI)、木星极光分布实验装置(JADE)、等离子体电波装置(WAVES)、木星红外极光绘图仪(JIRAM)、紫外成像光谱仪(UVS)和朱诺相机(JunoCam)。  除此之外,还有3位只有4厘米高的特殊乘客。它们是乐高公司为NASA特制的3个乐高小人,分别是意大利天文学家伽利略、罗马神话人物朱庇特(与木星同名)还有他的妻子朱诺(与朱诺探测器同名)。  “朱诺”号为什么转着走?  “朱诺”号是一艘采用自旋稳定的太阳能飞船,自旋能增强飞船指向的稳定性并方便地面控制。项目执行期间,“朱诺”号的自转速率会不断变化:巡航阶段每分钟1圈 科学考察阶段每分钟2圈 主引擎调整姿态阶段每分钟5圈。除此之外,自转的好处还包括简化设计、减少质量,所有设备在旋转过程中都会扫过木星一次。  “朱诺”号的“硬件配置”如何?  “朱诺”号上安装有一台主发动机、一台双推进发动机,还有12台推力较小的调姿发动机。前者位于探测器的后部,主要用于较大轨道调整和减速制动,后者主要用于在飞行中精确调整姿态。  “朱诺”号的大脑采用了一颗RAD750型抗辐射处理器,可应对100万倍足以致死的辐射剂量,与“好奇号”火星车同款,自带256M闪存和128M的本地存储空间。  “朱诺”号飞了多远?  直到今天飞抵木星轨道,“朱诺”号共飞行了大约27亿公里。信号以光速从木星传回地球单程大约需要48分钟。  “朱诺”号的意义何在?  “朱诺”号将帮助我们弄清木星的组成及其内部结构 揭秘木星强大磁场的来源和神秘的极光现象 确定木星是否具备岩核和水。此外,增进人们对地球、太阳系乃至恒星形成的认识。  还有哪些探测器造访过木星?  据报道,至今已有8个探测器造访过木星及其卫星,包括“旅行者”号、以及后来的“先驱者”号、“伽利略”号、“尤利西斯”号等,最近的是2007年发射的“新视野”号木星探测器。“朱诺”号是造访木星的第9位地球来客,也是第2位“常驻”木星轨道的人造航天器。  任务何时结束,“朱诺”何去何从?  按照计划,探测任务将于2018年2月20日结束,届时“朱诺”号将受控冲入木星外层大气焚毁,以免有毒燃料污染可能存在原始生命的木星的卫星。
  • 热烈庆祝山东省高青县安澜湾景区盛大开园
    黄河——中国的母亲河,悠悠五千年,她孕育了中华文明。如今,在中国经济腾飞的今天,黄河安澜湾景区应运而生。安澜湾景区位于黄河高青县的臂弯之处,拐过了九道湾。千年黄河,高青安澜。  2018年5月1日,聚光科技(杭州)股份有限公司(以下简称“聚光科技”)首个落地建成PPP项目——山东高青安澜湾景区(片区)盛大开园。开园当天,首届高青风车节隆重举办,现场人流涌动,盛况空前。山东高青安澜湾景区首届高青风车节  安澜湾景区作为山东淄博地区唯一一家黄河类综合景区,景区占地300亩,全长1.5公里,区块位置显要,作用巨大,成为艾李湖湿地公园、大芦湖湿地公园的重要连接载体,通过安澜湾滨河景观区连接,将整个区域形成统一整体,显著提升片区价值。景区分为儿童游乐区、自助餐饮区、游客服务区、花田观赏区、沿河观光区、风车主题区、文化雕塑区、沿河林荫休闲区等各功能区块,极大提升了当地百姓的生活水平。 风车主题区  该项目设计时间短、工期紧、自然条件不利,经过近9个月的建设,聚光科技和各方通力协作,克服设计、施工、融资周期中遇到的重重困难,工期紧张之时200多号人24小时不间断工作,最终按照高青县旅游局的要求于规定时间顺利开园。该景区的开园从根本上解决高青黄河旅游基础设施和旅游要素欠缺的实际,通过有序开发,实现黄河自然景观与旅游开发的完美结合,共同打造黄河水利风景区旅游开发的典范和样板。
  • 海克斯康Leitz PMM登上央视记录片《超级工程》
    SL5000是风力发电机中的巨无霸。它的机舱上可以起降直升机,它的风轮高度超过40层楼。在工作的时候它不需要消耗任何燃料,也不会对环境造成任何污染。在20年的设计寿命里,它将从空气中获取4亿千瓦时的电能,按照上海市政府2011年的报告,这个数字相当于上海这个超级大都市一天的用电总量。&hellip &hellip 为了制造他,必须使用世界上最先进的设备。海克斯康计量旗下Leitz PMM-G测量机有幸成为纪录片重点宣讲的两台设备中的一台。近期,央视推出的《超级工程》(China&rsquo s Mega Projects)记录片,在中华大地刮起一阵高科技的旋风潮。全球领先、国内顶级的高科技不但牵动了中国亿万观众强烈的自豪心,还引起全世界对中国高科技制造业的瞩目。在今年春季的戛纳电视节上,这部中国原创纪录片备受海外片商瞩目,它的英文版预告片展示在戛纳电视节官网上,点击率居高不下,超过了同时参展的央视另一部纪录片《舌尖上的中国》。其中,备受推崇的第4集《超级工程-海上巨型风机》一集,为观众展现了一个巨大宏伟的风机:SL5000!该型号风机拥有全世界最长的叶片,对切割和焊接工艺的要求达到了变态的地步,为了达到20年的设计寿命,光模型测试就花了四个月,从材料研发、加工工艺设计,到精密质量检测和控制,再到后期安装,这些任务环环相扣无比艰巨。该集不到50分钟的纪录片用深入浅出的镜头语言为普通&ldquo 外行人&rdquo 拆解了全球最大的风机SL5000的设计、制造到后期安装的全过程。就是在这样一个短短不到50分钟的时间里,海克斯康计量旗下的Leitz PMM大型超精密齿轮测量机兼精密测量中心占有近3分钟的镜头和讲解,而且,Leitz PMM是该片中风机制造过程中出现的仅有两台设备中的一员。记录片中这样描述Leitz PMM在SL5000最重要的部件轴承的制造过程中的作用&mdash &mdash &ldquo &hellip &hellip 如果在运行的过程中出现需要更换像轴承这种主要部件的情况,获利的希望就会落空,轴承因为既要受力又要运动而成为最易损坏的部分,SL5000所需要的轴承将挑战轴承制造的最高难度,到目前为止,全世界只有3家工厂有能力接受这种挑战,中国地图上,瓦房店是一座刚刚能被称为城市的县级市,这里有两台神秘的设备,他们是目前人类制造出来的最强大最精确的机器怪兽,他们的存在,给人们足够的信心,面对SL5000的制造困难。通俗来说,轴承就是一个封闭的圆形高速轨道,它的每一个细节都必须平滑和均匀。精密轴承对平滑度和均匀度有非常苛刻的标准。随着尺寸的变大,保证轴承达到精密标准的难度也随之成倍增加。SL5000这种巨型发电机需要巨大的轴承来支撑,而实际上,这个轴承是有史以来尺寸最大的精密轴承。为了制造他,必须动用目前最先进的加工设备,首先由这台大型铣床出场&hellip &rdquo &ldquo 在轴承高速运转的过程中,任何一点细小的瑕疵都有可能被急剧放大,导致轴承严重损坏。传统的检测方式已经难于满足高标准的质量要求了,&hellip ..是时候请另外一个机械怪兽出场了!这是世界上最大的三维精密检测仪,为了保证精密检测头有足够的硬度,并且达到微米级的检测标准,它的所有测头,都采用了昂贵的红宝石;这台检测仪的检测范围超过3米,而检测精度达到了0.8微米,用一个形象的比喻来说,就是在一个直径3公里的完全平整的地面上,如果某一个地方有一个沙粒一样的凸起都会被它发现。&rdquo SL5000使用的主要轴承尺寸超过3米,但是这么大的轴承的加工的误差不能超过6微米。&ldquo 这个6微米的概念是什么呢?它相当于人的头发丝(直径)的20分之一&hellip &hellip &rdquo 瓦房店轴承公司的三坐标检测员周发明先生说。&ldquo 有了如此强大的设备,SL5000所需要的轴承全部生产出来了,其中最大的一个轴承有两层楼的高度,它将安装在发电机机舱的底部,有了它,海上巨无霸SL5000就可以随心所欲的转动,寻找风的方向!&rdquo 是的,只有随心所欲的转动才能获取最强劲的风能。在SL5000这个宏伟的杰作里,任何人都能感觉到高科技令人振奋的力量,而任何参与的人和组织都为之深感荣幸,这是属于全人类的超越国界的里程碑,标志着人类在风能利用领域的一个崭新突破!Leitz ,精密计量的品牌大腕海克斯康计量旗下的Leitz超高精密计量系统,一直承接全球最核心的质量确认任务,不但包括超高精密零部件检测,包括各类叶片、齿轮、涡轮蜗杆等复杂几何形状零部件质量分析,还兼具小型量具量仪的校正,堪称计量业界的权威、计量品牌的大腕。Leitz 研究中心和制造工厂位于德国的韦茨拉尔,也是世界最高精度三坐标测量机的出产地&mdash &mdash 其Leitz Infinity型号测量机,拥有0.3微米的顶级测量精度。Leitz已经拥有超过30年的精密计量经验。风靡风电行业的Leitz PMM-G是一款龙门结构的大型精密测量机,其全新的龙门式设计理念,为大型工件的输送提供便利。采用稳固的一体式U 型地基,可以最大限度的降低运动部件的质量,从而保证了极高的精度水准。 其主要的技术优势体现在以下几个方面:1.高精度、超大尺寸通用型测量机,采用龙门式结构设计。2.专门为测量机和地基设计的一体式减震系统,包括动态气浮系统和电子水平调节装置。3.设计移动龙门式高架结构设计,具有最小的移动质量。在X向和Y向采用稳固的花岗岩导轨,采用两点支撑方式安装固定。4.陶瓷Z轴,机器地基采用U型设计,并用混凝土浇筑加固。5.各轴预载荷空气轴承每个轴采用精密气浮轴承X向采用双重驱动。具有推力控制的高性能伺服电机驱动。6.滚珠循环式精密丝杠传动系统7.高分辨率金属光栅尺,增量式光电传感器,X向采用双光栅尺。8.采用Leitz 高分辨率三维测头系统LSP-S2,支持动态单点触测,自定中心测量和高速扫描可达750 点/ 秒。支持 800 mm超长加长杆。9.采用业界顶级测量软件Quidos,能够测量和评价所有规范和不规范的多维几何特征,例如各种形状的齿轮、叶片、蜗杆、刀具等,且提供DIN、ISO、JIS、AGMA、ANSI、CNOMO或CAT标准等全球各类标准评价方法。10.既是通用型的三坐标测量机,兼具齿轮测量中心功能,可以精确检测各种中、大型齿轮,无需转台。欢迎登陆克斯康官方网站http://www.hexagonmetrology.com.cn 了解更多详情!相关视频http://www.hexagonmetrology.com.cn/mchannel/Video.aspx
  • 安徽农业大学侯如燕团队在茶叶产地溯源研究领域连续发表多篇高水平论文
    安徽农业大学侯如燕团队围绕茶叶产地溯源领域开展了一系列研究,其结果发表在《Food chemistry》(中科院一区,IF=8.8),《Food Research International》(中科院一区,IF=8.1),《Food Control》(中科院一区,IF=6.0), 《LWT-Food Science and Technology》(中科院一区,IF=6.0),《Journal of the Science of Food and Agriculture》(中科院二区,IF=4.1)等期刊上。茶是世界上最受欢迎的饮料之一,其价格和需求与其地理来源密切相关。具有中国地理标志(GI)的产品,如祁门红茶,太平猴魁,安吉白茶,通常代表了独特的质量特性和风味特征,价格要高于非GI产区,容易受到食品欺诈的影响。团队主要运用稳定同位素与多元素分析技术,气相色谱-质谱联用技术,液相色谱质谱联用技术,核磁共振氢谱,拉曼、近红外光谱技术等,结合化学计量学深度挖掘,阐明产地环境与产品特征识别的内在机理,对茶叶,西洋参,花椒等特色农产品产地溯源进行鉴别,为农产品质量产业发展、安全监管和原产地保护提供技术支撑。一、红茶产地溯源1. 采用稳定同位素特征来划定祁门红茶的地理产地2019年2月,团队在国际期刊Journal of the Science of Food and Agriculture发表题为“Using stable isotope signatures to delineate the geographic point-of-origin of Keemun black tea”的研究论文。彭传燚副教授为论文第一作者,蔡荟梅教授、侯如燕教授为共同通讯作者。该研究探究了使用同位素比值质谱技术用于祁门红茶产地判别的可行性,并考虑了品种类型、叶片成熟度和制造工艺对同位素比值影响。结果表明,品种类型和叶成熟度对茶叶的δ15N值有显著影响。此外,品种对茶叶的δ13C值有显著影响,制造工艺对同位素比值没有影响。根据δ15N特征,祁门县东至和贵池区域比较容易区分。交叉验证k-NN模型的准确率为91.6%。种植区域的环境因素和品种可能是造成祁门红茶δ15N差异的主要原因。图1:品种对同位素特征的影响。(a)δ13C(b)δ15N图2:叶片成熟度对同位素特征的影响(a)δ13C(b)δ15N原文链接:https://doi.org/10.1002/jsfa.94752. 采用顶空气相色谱/质谱结合化学计量分析对红茶的地理产地进行鉴定2021年5月,团队在国际期刊《Food chemistry》发表题为“Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea”的研究论文。硕士研究生运晶为论文第一作者,侯如燕教授为通讯作者。祁门红茶是中国高香红茶的代表。该文章探究了使用静态顶空气相色谱-质谱技术结合机器学习在红茶产地识别的可行性。对306份来自中国(古溪、历口、金字牌、贵池、东至、常宁、武夷山、邵武),印度(大吉岭)和斯里兰卡(康堤)的红茶样品的香气进行了表征。结果表明,红茶香气主要由醇类、醛类、酮类和酯类等化合物组成。在不同产地红茶中发现了22种共有挥发性化合物,包括红茶中花香和果香的代表性香气物质芳樟醇和香叶醇。探究了使用全谱、共有化合物和特征化合物(芳樟醇和香叶醇)三种数据集建立的机器学习(k-近邻算法和随机森林)模型的性能。基于全谱和22种共有化合物的k-近邻算法和随机森林测试集判别率均为100%和95%。基于芳樟醇和香叶醇的k-近邻算法和随机森林测试集判别率为100%和97%。这些结果表明,使用不同的数据集均能有效区分红茶产地,芳樟醇和香叶醇的比例可能是不同红茶区域风味差异的主要原因。图3:10个产地共有的22个GC-MS特征代谢指纹图谱原文链接:https://doi.org/10.1016/j.foodchem.2021.1300333. 采用电感耦合等离子体质谱(ICP-MS)结合化学计量学技术对红茶的地理产地进行鉴定2022年3月,团队在国际期刊《Food Control》发表题为“Keemun black tea: Tracing its narrow-geographic origins using comprehensive elemental fingerprinting and chemometrics”的研究论文。硕士研究生任印锋为论文第一作者,Daniel Granato教授、蔡荟梅教授、彭传燚教授为通讯作者。本研究采用电感耦合等离子体质谱(ICP-MS)绘制了来自其核心产区(祁门)和传统产区(贵池和东至)产区的104个祁门红茶样品的27种矿物元素的元素指纹图谱。将其化学指纹与机器学习算法结合用于祁门红茶的产地识别。结果表明,线性判别算法和支持向量机模型表现出最佳的判别性能,预测能力为100%。图3 核心产区(祁门)和传统产区(东至和贵池)祁门红茶中矿物质元素指纹图谱原文链接:https://doi.org/10.1016/j.foodcont.2021.1086144. 采用基于UHPLC-Q/TOF-MS的代谢组学方法与机器学习算法相结合区分祁门红茶地理来源2022年6月,团队在国际期刊《Food Research International》发表题为“A comparative UHPLC-Q/TOF-MS-based metabolomics approach coupled with machine learning algorithms to differentiate Keemun black teas from narrow-geographic origins”的研究论文。彭传燚副教授和硕士研究生任印锋为论文共同第一作者,Daniel Granato教授和蔡荟梅教授为共同通讯作者。本研究采用UHPLC-Q/TOF-MS结合化学计量学技术判别五个产区祁门红茶样品。筛选出39种筛选VIP大于1差异化合物。进一步靶向定量八种差异代谢物quercetin-3-O-galactoside, quercetin-galactose-rhamnose-glucoside, quercetin-glucose-rhamnose-glucoside, quinic acid, kaempferol-3-O-rutinoside, kaempferol-glucose-rhamnose-glucoside, kaempferol-3-O-glucoside and rutin及使用其建立产地识别模型,结果表明,基于UHPLC-Q/TOF-MS检测的代谢物指纹结合机器学习模型分类准确率前馈神经网络 (100%) 支持向量机(94.44%) 线性判别算法 (91.7%)随机森林 (87.50%).图形摘要原文链接:https://doi.org/10.1016/j.foodres.2022.1115125. 采用核磁氢谱化学指纹结合机器学习识别红茶的地理来源、品种和加工2023年2月,团队在国际期刊《Food Control》发表题为“Machine learning applications for identify the geographical origin, variety and processing of black tea using 1H NMR chemical fingerprinting”的研究论文。博士研究生崔传坚和徐一帆为论文共同第一作者, 侯如燕教授为通讯作者。该研究采用核磁共振氢谱对来自中国(安徽、云南、福建、广东)、印度(大吉岭和阿萨姆)和斯里兰卡(康提)七个红茶产区的219份红茶样品进行化学指纹分析。结果表明,咖啡碱和丙氨酸被鉴定为区分中国种和阿萨姆种的主要差异代谢产物,茶黄素和琥珀酸被鉴定为区分工夫红茶的主要差异代谢产物。采用核磁共振氢谱数据结合随机森林算法,对于红茶产地的判别准确率达到92.7%。基于随机森林模型的重要变量筛选的咖啡因、苹果酸、赖氨酸和β-葡萄糖等代谢物被认为是红茶地理来源的潜在标志物,基于这些标志绘制的化学轮廓展现了不同区域红茶的化学组成特色。图3:红茶品种和加工方式的特征代谢产物图图6:蜘蛛图指纹图谱,根本模式识别可以鉴定将未知的标签分配到地理来源原文链接:https://doi.org/10.1016/j.foodcont.2023.1096866. 采用表面增强拉曼光谱(SERS)的代谢组学方法结合化学计量学来鉴别祁门红茶的地理起源2023年4月,团队在国际期刊《LWT-Food Science and Technology》发表题为“Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics”的研究论文。硕士研究生任印锋和叶志豪为论文共同第一作者,Daniel Granato教授和彭传燚教授为共同通讯作者。本研究采用表面增强拉曼光谱(SERS)的代谢组学方法结合化学计量学来确定祁门红茶的地理起源。选取Δv = 555、644、731、955、1240、1321和1539 cm处Ag纳米粒子增强的SERS峰,计算强度进行化学计量学分析。对于红茶产地判别模型的性能表现为:RF (93.5%) = FNN (93.5%) KNN(87.1%),优于LDA算法(86.3%)。原文链接:https://doi.org/10.1016/j.lwt.2023.114742二、绿茶产地溯源1.采用近红外光谱结合化学计量分析对太平猴魁绿茶的地理产地进行判别2022年4月,团队在国际期刊《Journal of the Science of Food and Agriculture》发表题为“Rapid identification of the geographic origin of Taiping Houkui green tea using near-infrared spectroscopy combined with a variable selection method”的研究论文。博士研究生金戈为论文第一作者,侯如燕教授为通讯作者。该文章利用近红外光谱技术区分了114份来自核心产区(猴坑,猴岗,颜家)和其他产区(新明镇,三口镇和龙门镇)的太平猴魁绿茶样品。采用合成过采样技术(SMOTE)平衡样本数据集。使用三种不同的预处理和筛选特征波长算法优化ELM模型性能。优化后的SNV-GA-ELM模型在测试集获得了95.35%的分类准确率。原文链接:https://doi.org/10.1002/jsfa.119642.采用多技术联用对太平猴魁绿茶的地理产地进行判别2023年6月,团队在国际期刊《Food chemistry》(中科院一区,IF=8.8)发表题为“Tracing the origin of Taiping Houkui green tea using 1H NMR and HS-SPME-GC–MS chemical fingerprints, data fusion and chemometrics”的研究论文。博士研究生金戈为论文第一作者, 侯如燕教授为通讯作者。该文章利用HS-SPME-GC-MS结合1H NMR双相萃取技术用于区分72个太平猴魁绿茶样品的地理来源。测试了Common dimension多板块数据融合,低级数据融合和中级数据融合方法。结果表明,数据融合提供了比基于单一技术数据的模型更优的区分性能。基于中级数据融合的RBF-SVM模型对太平猴魁的产地识别的准确率达到了93.33%。图1:实验流程图原文链接:https://doi.org/10.1016/j.foodchem.2023.1365383.采用便携式光谱辐射计对安吉白茶的地理产地进行判别2023年7月,团队在国际期刊《Food Control》(中科院一区,IF=6.0)发表题为“Rapid discrimination of Anji Baicha origin using field-portable spectroradiometer”的研究论文。博士研究生金戈和安徽省地勘局第二水文工程地质勘查院桂翔为论文第一作者, 侯如燕教授为通讯作者。该研究将便携式光谱辐射计与化学计量学应用于安吉白茶样品地理来源的快速筛选。在光谱预处理和模型选择方面进行了模型优化。将优化模型应用于样品的地理区分和化学驱动波长的解释。对于区分核心产区和非核心产区安吉白茶准确率可达98.9%。进一步区分核心区域的小产区和安吉县外的产区发现分类结果高度依赖于地理距离。此外,研究还发现地理来源对光谱数据的影响大于收获年份。图形摘要原文链接:https://doi.org/10.1016/j.foodcont.2023.109968————————————————————————————————“植物源性食品质量安全检测技术及应用新进展”主题网络研讨会全日程公布:https://www.instrument.com.cn/webinar/meetings/zhiwy230921/点击图片直达会议报名页面
  • 新品首发|叶面积测定仪采用微电脑技术,LCD大液晶显示技术
    叶面积测定仪是一种用于测量植物叶片面积的仪器,它能够快速、准确地测定叶片的面积,帮助科学家和研究人员了解植物的生长状况和光合作用能力。 叶面积测定仪通常由传感器和显示器等组成,可以测量不同形状和大小的叶片面积。使用时,将叶片放在传感器上,传感器会感应到叶片的形状和大小,并将数据传输到显示器上,从而得到叶片的面积。 产品链接→https://www.instrument.com.cn/netshow/SH104275/C523091.htm叶面积测定仪的作用主要有以下几点: 了解植物生长状况:通过测量叶片面积,可以了解植物的生长状况和发育情况,帮助科学家和研究人员判断植物的健康状况和生长环境。 评估光合作用能力:叶片是植物进行光合作用的主要器官,通过测量叶片面积可以评估植物的光合作用能力,进而了解植物的生长情况和产量。 优化作物管理:通过测量不同品种、不同生长阶段的叶片面积,可以帮助科学家和研究人员优化作物管理,提高作物的产量和品质。 总之,叶面积测定仪是一种重要的植物生理生化分析仪器,广泛应用于植物科学、农学、林学等领域的研究与生产。
  • “针叶气孔导度低,不好测?”这都不是事!LI-COR发布了LI-600N针叶/狭叶荧光-气孔测量仪
    2020年,LI-COR公司开发出LI-600荧光-气孔测量仪,凭借其准确的数据,高效的测量能力,迅速得到了学术界的广泛认可。然而,LI-600并不适用于针叶测量。为此LI-COR潜心钻研,于今年正式发布了LI-600N针叶/狭叶荧光-气孔测量仪。下面,咱们就一起来了解一下吧!LI-600N 针叶/狭叶荧光-气孔测量仪“嗖的一下,测量完毕”5-15s测量针叶或狭叶的气孔导度和叶绿素荧光参数。最适合大样本调查,不改变环境条件:如光照、气温、CO2浓度、VPD等。“Perfect method results to accurate data ”开路差分式测量原理(详见下文)。“你设标准,我采数据”仪器会根据用户预先设置的稳定性标准智能Log数据。“单手持握,一键采集”全机仅重1.46斤,仅需点击一个按键,就可以完成对叶片蒸腾速率、气孔导度、叶绿素荧光参数的同步测量。开路差分式测量针叶/狭叶气孔导度首先,LI-600N测量进出样品腔室的空气流速和水汽浓度来量化叶片蒸腾速率E。之后,根据蒸腾速率E和叶片内外的水汽浓度梯度,计算叶片对水汽的总导度gtw。最后,将总导度 gtw中的叶片边界层导度gbw扣除,得到叶片的气孔导度gsw。“针叶气孔导度低,不好测?” 直接上数据!图1. 温室生长的4株不同落叶松(Pinus taeda)苗木;光合有效辐射150-200 µ mol m-2 s-1 ;两种水分处理:充分灌溉(WW)和水分胁迫(WS);n=4。图2. 使用LI-600N,在晴天测得的Pinus mugo针叶的气孔导度(gsw)和PSII的量子产率(PhiPS2),n=3。图3. 在光强为670 µ mol m-2 s-1时,对温室生长的Buffalograss(Bouteloua dactyloides)单叶进行的 Multiphase Flash&trade (MPF) 测量。LI-600N,让我们有能力更准确、快速的评估针叶/狭叶的气孔导度!
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。  看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。  在扫描和成像领域应用潜力大  把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。  该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。  为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。  新研究克服了诸多技术限制  事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。  科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 方科新品|叶绿素仪测量精度高
    一.叶绿素仪用途叶绿素测定仪根据叶绿素光谱吸收规律,采用两种不同的发光管照射叶片,通过测量透过叶片的光的强度计算出叶片内的叶绿素相对含量或者绿色程度,从而为合理、适当、及时施肥提供可靠的科学依据,广泛应用于农业、林业、植物等科学研究和生产指导。【方科】叶绿素仪价格参考→https://www.instrument.com.cn/show/C374124.html二.叶绿素仪技术指标1.测量范围:0.0-99.99SPAD2.测量面积:2mm*3mm3.测量精度:±1.0 SPAD单位以内 (室温下,SPAD值介于0-50)4.重复性:±0.3 SPAD单位以内 (SPAD值介于0-50)5.叶绿素测定仪测量时间间隔:小于0.8秒6.数据存储:16GB 可根据用户需求进行分组存储7.电源:4.2V可充电锂电池8.电池容量:3000mah9.重量:230g10.工作及存储环境:-10℃~50℃ ≤85%相对湿度三.叶绿素仪功能特点1.快速无损植物活体检测,测量时只需将叶片插入即可,不需要采摘叶片,不影响作物正常生长,可以在作物生长过程中全程对叶片进行监测,从而得到更科学的分析结果。2.测量精度高(精度:± 1.0 SPAD,重复性:±0.3 SPAD)。3.16GB大存储空间,数据可进行分组存储、查看、导出。4.多功能USB接口,可实现数据导出与充电功能,可将仪器与电脑直接联机,数据导出无需上位机软件,还可选择使用内存卡直接导出数据,操作简单方便。5.数据浏览:可在仪器上随时浏览测量的数据以及可任意删除异常数据。6.叶绿素测定仪高对比度LCD显示屏,强光下也可清晰显示数据。7.低功耗模式设计,内置大容量锂离子充电电池,具有防过充功能,节能环保并方便进行户外操作。8.内置中英文双语显示,一键切换,无缝对接。9.标准配置: 主机、充电器、USB数据线、内存卡、读卡器、便携铝箱,合格证、说明书等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制