当前位置: 仪器信息网 > 行业主题 > >

物理特性仪器

仪器信息网物理特性仪器专题为您提供2024年最新物理特性仪器价格报价、厂家品牌的相关信息, 包括物理特性仪器参数、型号等,不管是国产,还是进口品牌的物理特性仪器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合物理特性仪器相关的耗材配件、试剂标物,还有物理特性仪器相关的最新资讯、资料,以及物理特性仪器相关的解决方案。

物理特性仪器相关的论坛

  • 关于尼龙6的物理特性?

    大家好 哪位知道PA6(GF+MD)30的物理特性 有资历吗?或者那里可以查到啊?因做CAE现主要急需其弹性模量 泊松比 密度 谢谢有知道的 可以发微信 rosejiang67890

  • 【资料】测量仪器的计量特性

    测量仪器的计量特性 测量仪器的计量特性是指其影响测量结果的一些明显特征,其中包括测量范围、偏移、重复性、稳定性、分辨力、鉴别力和示值误差等。为了达到测量的预定要求,测量仪器必须具有符合规范要求的计量学特性。 确定测量仪器的特性,并签发关于其法定地位的官方文件,称为测量仪器控制。这种控制可包括对测量仪器的下列运作中的一项、两项或三项: ——型式批准; ——检定; ——检验。 这些工作的目的是要确定测量仪器的特性是否符合相关技术法规中规定的要求。型式批准是由政府计量行政部门做出的承认测量仪器的型式符合法定要求的决定。所谓型式,是指某一种测量仪器的样机及(或)它的技术文件(例如:图纸、设计资料等),实质上就是该种测量仪器的结构、技术条件和所表现出来的性能。 检定是查明和确认测量仪器是否符合法定要求的程序,它包括检查、加标记和(或)出具检定证书。检验是对使用中测量仪器进行监督的重要手段,其内容包括检查测量仪器的检定标记或检定证书是否有效、保护标记是否损坏、检定后测量仪器是否遭到明显改动,以及其误差是否超过使用中最大允许误差等。

  • 【分享】【申请精华】拟建矿物特性分析实验室的仪器配置与建设情况

    1、实验室简介矿物特性分析测试。主要进行矿物的微观、表面特性、成分检测、结构分析和元素分析。我们在筹建中,预计年底即可投入使用。请各位高手指点仪器配置。2、仪器配置透射电子显微镜及辅助设备Tecnai G2 20 微观结构高效液相色谱仪Agilent 1200 煤炭有机成分[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液相色谱质谱联用仪[/color][/url]Agilent 630000 LC/MS 煤炭有机成分[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪Agilent 6890N/5975I 燃烧气体成分[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]AAS ZEEnit 700 元素分析元素分析仪EA2000 测定固体C、S、Cl紫外分光光度计SPECORD S 600 X射线衍射仪D8 矿物物相粉末的定性分析X射线荧光光谱仪S4 矿物物相定量分析热分析系统DSC131/Setsys18 矿物材料热特性分析高性能全自动比表面和孔隙度分析仪Autosorb-1-C/TCD 矿物材料表面空隙分布、物理吸附纳米粒度及Zate电位分析仪Zetasizer Nano ZS 超细颗粒粒度及电性测定3、实验室的配套建设需要配一个样品处理的房间、气站、废弃物处理。

  • 土壤物理特性的检测,只做表层土还是下层土壤也要做?

    求教各位大佬: 土壤物理特性的检测,只做表层土还是下层土壤也要做? 例如饱和导水率之类的参数,这些下层土壤如何采样啊? 关于物理特性,何时要做,何时不做,以及做那些点,有无指南或者其他文献依据? 请各位前辈指点迷津,万谢。

  • 【资料】第九讲 测量仪器的特性

    第九讲 测量仪器的特性[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=50518]第九讲 测量仪器的特性[/url]

  • CCD具有与光谱仪器密切相关的特性

    传统的光谱检测系统为单色仪家光电倍增管(PMT)。SPDA不仅能获得某一波段范围内的检测信息,还具有灵活的积分能力,但是它的灵敏度和动态范围不及PMT,而且噪声较大,线性范围窄,暗电流也大,而CCD却弥补了这些缺点。今天[url=http://www.huaketiancheng.com/][b]光谱发射仪[/b][/url]的小编给大家普及一下CCD具有与光谱仪器密切相关的一些特性: 一、灵敏度高,噪声低。CCD器件具有很高的量子效率,至少为10%,最高可达90%以上。它的电荷转移率几乎达100%,它在低温下工作时几乎无暗电流,噪声几乎接近于零,最新的CCD器件,已经实现了在常温下具有很高的信噪比,极低的暗电流,完全满足了仪器在常温及微量分析上的要求,上述优点使CCD器件的灵敏度超过其他探测器(如PMT何SPDA),检测下限达pg级甚至fg级。 二、光谱范围宽(200~1050nm)。在可见光区(400~500nm)量子效率可高达90%,在远紫外区(200nm)和近红外(100nm)间,量子效率至少为10%,在100~1100nm宽的光谱区域,CCD都有很高的量子效率,而大多数的发射、吸收和散射的光谱仪器都在这区域工作,因此CCD成为各类光谱仪器的理想探测器。 三、动态线性响应范围宽,达10个数量级。CCD具有很宽的响应范围和理想的响应线性,达10个数量级(10?-106),而且在整个动态响应范围内,都能保持线性响应,这对光谱定量分析具有特别意义。 四、几何尺寸稳定,耐过度曝光。CCD经长时间运转,其几何性能、热性能和电性能均很稳定,不怕过度曝光,因此比PMT结实耐用。 五、可以同时多道采样,得到波长-强度-时间的三维谱线图,与光电阴极器件联用,可观察X射线图像。 [url=http://www.huaketiancheng.com/][b]光谱发射仪[/b][/url]小编整理的CCD上述特性,使其成为光谱仪的理想探测器。预计在几年内CCD会成为各种光谱仪器检测器,从而替代光电倍增管。

  • 高铁物理检测仪器的霸王条款

    买了高铁物理检测仪器,紫外线耐黄变测试仪器。两台有一台坏了,是震流器的问题,结果换了一个震流器,型号不一样。结果原来的灯管换上去立马就烧了。但是用他们日本产的灯管,就不会。可是用我们的灯管插到原来另外一台,就没问题。后面他们硬说是灯管的问题可是又不能解释为什么灯管在另一台为什么能用。后面就叫我们一定要买他们的灯管。其实很多物理测试仪器结构都很简单,要是懂的人,可以自己到外面订做。便宜多了。因为一些物性测试的仪器,没有什么技术含量。也没有精密度可言。不像分析仪器。进口的比国内的好

  • 纺织物理类仪器设备厂家咨询

    对于“山东莱州-元茂”仪器厂家生产的强力机、汗渍色牢度仪、水洗机、单纱强力机、八篮烘箱等物理检测设备的精确度、稳定性、质量及售后服务怎么样,有用过的亲分享下经验嘛!

  • CCD具有与光谱仪器密切相关的特性

    传统的光谱检测系统为单色仪家光电倍增管(PMT)。SPDA不仅能获得某一波段范围内的检测信息,还具有灵活的积分能力,但是它的灵敏度和动态范围不及PMT,而且噪声较大,线性范围窄,暗电流也大,而CCD却弥补了这些缺点。今天[url=http://www.huaketiancheng.com/][b]光谱发射仪[/b][/url]的小编给大家普及一下CCD具有与光谱仪器密切相关的一些特性: 一、灵敏度高,噪声低。CCD器件具有很高的量子效率,至少为10%,最高可达90%以上。它的电荷转移率几乎达100%,它在低温下工作时几乎无暗电流,噪声几乎接近于零,最新的CCD器件,已经实现了在常温下具有很高的信噪比,极低的暗电流,完全满足了仪器在常温及微量分析上的要求,上述优点使CCD器件的灵敏度超过其他探测器(如PMT何SPDA),检测下限达pg级甚至fg级。 二、光谱范围宽(200~1050nm)。在可见光区(400~500nm)量子效率可高达90%,在远紫外区(200nm)和近红外(100nm)间,量子效率至少为10%,在100~1100nm宽的光谱区域,CCD都有很高的量子效率,而大多数的发射、吸收和散射的光谱仪器都在这区域工作,因此CCD成为各类光谱仪器的理想探测器。 三、动态线性响应范围宽,达10个数量级。CCD具有很宽的响应范围和理想的响应线性,达10个数量级(10?-106),而且在整个动态响应范围内,都能保持线性响应,这对光谱定量分析具有特别意义。 四、几何尺寸稳定,耐过度曝光。CCD经长时间运转,其几何性能、热性能和电性能均很稳定,不怕过度曝光,因此比PMT结实耐用。 五、可以同时多道采样,得到波长-强度-时间的三维谱线图,与光电阴极器件联用,可观察X射线图像。

  • 法美两科学家获2012年诺贝尔物理学奖[图] 他们测量和操控单个粒子并保持其量子特性

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def81206.jpg戴维·瓦恩兰http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def8220e.jpg赛尔日·阿罗什http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/011349804739421_change_hzp2a20_b.jpg 10月9日,在瑞典首都斯德哥尔摩,瑞典皇家科学院专家解读2012年诺贝尔物理学奖得主研究成果。新华社记者 刘一楠摄 中国科技网讯 据诺贝尔奖委员会官方网站报道,北京时间9日17时45分,2012年诺贝尔物理学奖在瑞典斯德哥尔摩揭晓,法国物理学家塞尔日·阿罗什和美国物理学家戴维·瓦恩兰因“提出了突破性的实验方法,使测量和操控单个量子体系成为可能”获此殊荣。 塞尔日·阿罗什和戴维·瓦恩兰各自独立发明和发展了测量及操控单个粒子的方法,并能在实验过程中保有粒子的量子力学特质,而这种方式在此之前被认为是不可企及的。两位科学家的工作领域均属于量子光学,事实上,他们所采用的方法还有很多共通之处:戴维·瓦恩兰使用光子来控制和测量被囚禁的带电离子,塞尔日·阿罗什则采用了相反的途径,他控制并测量了被囚禁的光子,具体需要原子穿越陷阱来实现。 塞尔日·阿罗什1944年9月11日出生于摩洛哥卡萨布兰卡,目前居住于巴黎。1971年在法国皮埃尔与玛丽·居里大学,即巴黎第六大学取得博士学位。现任法国巴黎高等师范学院教授和法兰西学院教授,兼任量子物理系主任。他还是法国物理学会、欧洲物理学会和美国物理学会的会员,被认为是腔量子电动力学的实验奠基者。曾获洪堡奖、阿尔伯特·迈克尔逊勋章、查尔斯·哈德·汤斯奖、法国国家科学研究中心金奖等诸多奖项。其主要研究领域为通过实验观测量子脱散(又称量子退相干),即量子系统状态间相互干涉的性质会随时间逐步丧失。脱散现象可对量子信息科学形成两方面的影响:一是涉及量子计算领域,另一方面则与量子通信相关。 戴维·瓦恩兰1944年2月24日出生于美国威斯康星州密尔沃基。1970年在美国哈佛大学取得博士学位。现任美国国家标准技术研究所研究员和组长,美国科罗拉多大学波德分校教授。他还是美国物理学会、美国光学学会会员,并于1992年入选美国国家科学院。曾获得阿瑟·肖洛奖(激光科学)、美国国家科学奖章(物理学)、赫伯特·沃尔特奖、本杰明·富兰克林奖章(物理学)等。他的主要工作包括离子阱的激光冷却,以及利用囚禁的离子进行量子计算等,因此被认为是离子阱量子计算的实验奠基者。(记者 张巍巍) 《科技日报》(2012-10-10 一版) 他们是量子物理实验派双杰 ——记2012年诺贝尔物理学奖获得者 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121010/00241d8fef0e11def85615.jpg 10月9日下午,2012年诺贝尔物理学奖揭晓。瑞典皇家科学院诺贝尔奖评审委员会将奖项授予给了量子光学领域的两位科学家——法国物理学家塞尔日·阿罗什与美国物理学家戴维·瓦恩兰,以奖励他们“提出了突破性的实验方法,使测量和操控单个量子系统成为可能”。 诺奖官方网站称,塞尔日·阿罗什与戴维·瓦恩兰两人分别发明并发展出的方法,让科学界得以在不影响粒子量子力学性质的情况下,对非常脆弱的单个粒子进行测量与操控。他们的方式,在此前一度被认为是不可能做到的。 而这就是诺贝尔物理学奖此次垂青于两位实验派物理学家的原因。 进入量子光学的神秘之门 本届物理奖的两位得主戴维·瓦恩兰与塞尔日·阿罗什是同年生人。 塞尔日·阿罗什,1944年出生在摩洛哥卡萨布兰卡,1971年于法国巴黎的皮埃尔与玛丽·居里大学取得博士学位,目前在法兰西学院和法国巴黎高等师范学院任教授。在拿到本届诺贝尔物理学奖前,他已被业内誉为腔量子电动力学的实验奠基人。 戴维·瓦恩兰,1944年出生于美国威斯康星州密尔沃基,1970年于哈佛大学取得博士学位,目前作为研究团队带头人和研究员,就职于美国国家标准与技术研究院(NIST)与科罗拉多大学波德分校。瓦恩兰亦一直有着“离子阱量子计算实验奠基者”的头衔。 他们两人是量子物理实验派双杰。两人研究的范畴都属于量子光学,这一领域在上世纪80年代中期以后经历了长足发展,而他们的学术生涯一直在与单光子与离子打交道,研究光与物质在最基本层面上的相互作用。 曾经很长时间以来,实验派物理学家们想在一个微观层面上研究光与物质的相互作用,这完全是难以想象的事。因为,对于光或者其他物质的单个粒子而言,经典物理学已不适用,量子力学的法则在此时取而代之。但是单个粒子却很难从周围环境中被分离出来,并且,它一旦和周遭环境发生相互作用,便会立即丧失其神秘的量子特征。 如此让人束手无措的局面,使得很多量子力学理论所预言的怪异现象无法被科学家们直接观察到。于是长期以来,研究人员只能依靠那些法则已证明可能会影响到量子奇异特性的实验来进行观察研究。而这或许让实验派物理学家们感觉一直跟在理论的后边亦步亦趋。 真正改变实验物理学的人 扭转这一窘状的正是阿罗什与瓦恩兰,他们两人带领各自的研究小组,分别发展出理想的方法,用于测量并操控非常脆弱的量子态。 具体而言,两人所采用的方法既有共通特点亦各有精妙之处:瓦恩兰捕获带电原子(离子),随后使用光(光子)对其进行操控和测量,这些离子被放置在超低温中,防止被外界“打扰”。该方法关键在于巧妙的使用激光束以及激光脉冲抑制了离子的热运动,离子因此进入特定的量子叠加态中——叠加态正是量子世界最神秘的特性——从而保持住了单个粒子的量子特征。 而阿罗什虽然同样使实验处于真空和超低温环境,却采用的是完全相反的手段:利用原子对光子进行操控和测量。他将两面特制的、反射能力极强的镜子组成空腔,捕获住光子并让其在空腔中停留0.1秒——这点儿时间已足够光子在消失前绕地球一圈——这时他再让里德伯原子(比一般原子大1000倍的巨大原子)穿过空腔,每次通过一个里德伯原子,原子离开时,会“告诉”他空腔里还有没有光子。 试着分别去操纵一个光子与离子,借以深入洞察一个微观的世界——原本仅仅是理论学派的领域,正是塞尔日·阿罗什与戴维·瓦恩兰的研究“打开了新时代量子物理学实验领域的大门”。现在,借助他们的新方式,实验物理学家们得以操控粒子或对粒子进行计数。 实验、应用、改变人们的生活 但阿罗什与瓦恩兰的成就并不止于此。 在公布本届物理奖获得者后,诺奖组委会还介绍了两人的成果在应用层面上的意义。据组委会称,阿罗什与瓦恩兰在他们的研究领域采取了突破性的方法,产生其中一个应用是将建立起一种新型的、基于量子物理学的超快计算机,这或将导致极其先进的通信和计算模式。换句话说,这是向着研制具有惊人运算速度的量子计算机迈出了第一个脚步。科学家预想,或许,就在本世纪,量子计算机会彻底改变我们每个人的日常生活——正如经典计算机在上个世纪曾彻底颠覆每个人的生活方式一样。 而阿罗什与瓦恩兰的研究产生的另一个应用是:“会带来一种非比寻常的精准时钟,并在未来成为一个新的计时标准。”这种超高精度钟表的精确度将比今天所使用的铯原子钟高出数百倍。此前,世界最精确的时钟曾经就是瓦恩兰就职的科罗拉多州国家标准与技术研究所制造的量子逻辑钟,它的误差约为每37亿年1秒。 阿罗什与瓦恩兰展示了如何在不破坏单个粒子的情况下对其进行直接观察的方法,但他们做到的却不只是在量子世界控制住粒子,其带给人们生活的改变,将远超今天目力所能够看得到的。 那么,荣摘诺奖桂冠又是否改变了科学家本人的生活呢?据英国广播公司(BBC)在线版消息称,塞尔日·阿罗什本人仅仅提前了20分钟被组委会告知自己获奖的消息。 “我很幸运,”塞尔日·阿罗什说,但他指的并不是自己得奖这回事,“(接到来电时)我正在一条街上,旁边就有个长椅,所以我第一时间就坐了下来。”他形容那一刻的心情,“当我看到是

  • 【分享】仪器仪表常用术语性能特性名词解释

    仪器仪表常用术语性能特性 performance characteristic 确定仪器仪表功能和能力的有关参数及其定量的表述。 参比性能特性 reference performance characteristic 在参比工作条件下达到的性能特性。 范围 range 由上、下限所限定的一个量的区间。 注:"范围"通常加修饰语。例如:测量范围,标度范围。它可适用于被测量或工作条件等。 测量范围 measuring range 按规定准(精)确度进行测量的被测量的范围。 测量范围下限值 measuring range lower limit 按规定准(精)确度进行测量的被测量的最小值。 测量范围上限值 measuring range higher limit 按规定准(精)确度进行测量的被测量的最大值。 量程 span 范围上限值与下限值的代数差。例如:范围为-20℃至100℃时,量程为120℃。 标度 scale 构成指示装置一部分的一组有序的标度标记以及所有有关的数字。 标度范围 scale range 由标度始点值和终点值所限度的范围。 标度标记 scale mark 指示装置上对应于一个或多个确定的被测量值的标度线或其它标记。 注:对于数字示值,数字本身等效于标度标记。 零标记 zero scale mark 同义词:零标度线。 标度盘(板)上标有"零"数字的标度标记或标度线。 标度分格 scale division 任何两个相邻标度标记之间的标度部分。 标度分格值 value of scale division 又称格值。 标度中对应两相邻标度标记的被测量值之差。 标度分格间距 scale spacing length of a scale division 沿着表示标度长度的同一线段上所测得的任何两个相邻标度标记中心线之间的距离。 标度长度 scale length 在给定的标度上,通过所有最短标记中点的线段在始末标度标记之间的长度。 注:此线段可以是实在的或假想的曲线或直线。 标度始点值 minimum scale value 标度始点标记所对应的被测量值。 标度终点值 maximum scale value 标度终点标记所对应的被测量值。 标度数字 scale numbering 标在标度上的整组数字,它对应于标度标记所确定的被测量值,或只表示标度标记的数字顺序。 线性标度 linear scale 标度中各分格间距与对应的分格值呈常数比例关系的标度。 注:标度分格间距为常数的线性标度称为规则标度。 非线性标度 nonlinear scale 标度中各标度分格间距与对应的分格值呈非常数比例关系的标度。 注:某些非线性标度有专门的名称,例如对数标度、平方律标度。 抑零标度 suppressed-zero scale 标度范围内不包含与被测量零值相对应的标度值的标度。例如:医用温度计的标度。 扩展标度 expanded scale 标度范围内,不成比例的扩展部分占了大部分标度长度的标度。

  • 【原创】<闲聊原子吸收和质谱仪器的数学物理基础>

    [b][size=5]<闲聊[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]和质谱仪器的数学物理基础>(1)[/size][/b][size=5][b] zhangxuanzhong & grace_leung [/b] [size=3] [/size][email=l_ying621@msn.com][size=3]l_ying621@msn.com[/size][/email][/size][size=4][b]第一章   仪器设计和数学物理[/b][/size] [size=4] (1)[/size]科学仪器的设计是一门非常重要的学问,设计思想的背后是包含一些很基础的数学物理思想。这些思想可能会影响仪器最终的性能和指标,而这个学科到目前还是散乱到报章杂志,或者研究人员内心深处,没有被系统的阐释出来。我们在这里闲聊一下[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器和质谱仪器,毫无章法,也不求系统性,总之是要管窥这背后的一些数学物理模型。至于是否对各位看客有益,则是不能保证的,尽量做到不对各位读者有害。总之 ,本文不是探讨如何使用某一款仪器,也许是在讨论如何了解仪器的工作原理和设计上的困难。为了方便阐释,我们以[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器和质谱仪器这2类仪器作为代表,从而避免过分空洞的议论。仪器的设计,很明显,需要涉及到机械,电路,光学,软件等等部门,这是众所周知的事实。但是,理论和防真模拟也是不可缺乏的支持,否则,设计仪器可能有点盲目,因为很多东西是肉眼看不到的,比如质谱仪器中电场的分布,比如原子化仪器中喷雾的颗粒的大小,这都基本上很严重地影响了仪器的总体性能,这些东西,只能通过一定的计算或者防真模拟和测量,才可以给设计者留下直观的印象。在比如说,虽然从机械结构上来说,一台仪器的外观是可以千奇百怪的,而内部的运动的机械结构却往往受到刚体运动规律的制约。因此,搞清楚刚体的运动规律,比如学点机器人的数学基础,那么对机械设计的理解可能会达到更深的理解。工程师的工作是非常依赖于经验,而科学家则做一定的理论计算,能够把这两方面融会贯通的人,可能会成为有用的人才。所以,钱学森这种具有科学家素质的工程师,做出很重要的贡献。 在物理学上,也有一个偶像极的人物,叫为费米,他的理论功力很强,做实验也一流,所以被誉为空前绝后的人物-----最典型的例子是他估计了旧金山市大约需要多少个钢琴的调音师,他也在空气中撒了一把沙子,估计出了原子弹爆炸的当量大约有多少。[size=4] (2)[/size]话已经说到这里,这一节我们就来谈点数学物理。实际上,这个论坛上的大多数人似乎是搞分析应用的,所以大家一般研究的是如何使用仪器,而不是如何设计和制造仪器,这也是这两伙人道路以目很难沟通的原因。而应用仪器的人数,显然要多于设计仪器的人员,正如开汽车的人要比设计汽车的人多很多。为了符合大多数应用人员的口味和品位,我们谈点化学的东西,然后迂回到数学物理。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的仪器,顾名思义,是和原子相关的。原子要吸收什么? 这个问题很简单,自然是光。 但为什么原子会吸收光呢?因为原子好象一个饥饿的人要吃饭,原子总是要吸收和补充能量,而光是带能量的,所以原子要吸收光(说复杂一点,就是这个世界基本上所有的物理量都存在一个最小的数值,叫做下限,原子的能量存在下限,叫做基态,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了光的能量,会从低能量跑到高能量,至于怎么跑上去的,花了多少时间,则是说不清楚的)。这背后的物理叫做量子力学,是1926年就已经基本建立了相当模糊的理论体系,建立这个理论的人是一帮很年轻的小伙子,其中最高深莫测的是海森堡。海森堡之所以高深莫测,是因为他的脑子很乱,当时他也看见原子发的一系列光谱,有一些峰出现在特定的波长。但是,海森堡很迷惑,到底是什么样的动力学理论可以来描述这些光谱的行为?海森堡当时的脑子是很乱的,他企图建立一个描述光谱行为的动力学理论,在犹豫中徘徊,他当时在24岁左右,博士期间是研究流体力学的湍流问题,基本上就是研究[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器的那个喷嘴喷出来的高速气流的原理性的东西,很是困难,同时他也研究光谱的行为,也很糊涂,换句话说,他要研究为什么铜灯的光谱在324纳米的地方会出现一个峰。而不是在333纳米的地方有一个峰。海森堡同时研究湍流和光谱,有点走火入魔,但他还是懂一点数学的,当时他很是喜欢傅里叶分析,于是,打算铤而走险。海森堡那些年来,人与花皆不好,不好的原因在于,他的博士论文和课题做得很糟糕,他搞的那个湍流是一个世纪性的难题,一直到今天都不可解,所以,海森堡差点拿不到博士学位。勉强毕业以后,他逃之夭夭,从慕尼黑跑到了哥廷根,跟当时的一个物理学家叫波恩的混日子。这个时候,我们在以前已经讲过,海森堡做学问的态度已经有了微妙的变化,也许是湍流对他的打击实在是太大了,他的脑子变得糊涂,写得文章很多人都看不懂了。但他内心深处还是有一个问题,那就是为什么铜灯在324纳米处会出现一个峰?这个问题在现在看来,相当于是要解量子力学的方程,把铜原子的能量谱给解出来。但当时还没有量子力学,海森堡对已经存在的学问,都莫衷一是,他手里有的数学也比较有限,玩得滚瓜烂熟的一套招数,就是傅里叶分析。傅里叶分析是很有效的数学工具,对于仪器应用的分析人士来说,这个数学工具大致可以通过紫外分光光度计(UV)里的光栅来实现。换句直白的话说,海森堡当时已经很明白光栅背后的数学。光栅的一个重要的特点就是把复合光按照波长分解成为各种颜色的光,傅里叶分析也是同样的道理:把一个函数分解成为各种“颜色”的周期函数之和。其实,更广义一点来说,人的耳朵也是对声波做了分解,所以我们可以听到这个世界上不同频率的声音。海森堡早已经深谙此道,他到了哥廷根大学做博士后期间,已经做到了手上无光栅心中有光栅的境界,他内心深处暗暗地想: 一切都是傅里叶分析!

  • 【讨论】物质的物理性质和实际应用--大家一起来找茬

    举个例子:在碱金属中锂具有最高的熔点和沸点(为什么)以及最长的液程范围(什么是液程范围啊),具有超高的比热容(真不想问什么是比热容了)...由于这些特性使其在热交换中成为优异的制冷剂(为什么)。另外,锂的腐蚀性比其他液态金属(什么是液态金属,常见有汞,还有吗)要强,它常被用作还原、脱硫、铜以及铜合金的除气剂(同样为什么)。活动规则:1. 当然得回答上述问题了--限定首次回答对者--大家可以指出问题2. 自己提出一物质的物理性质以及其带来的相应应用(注意,所谓找茬,别人就会来问你为什么,答不出者拖出去“毙”了--呵呵,不给奖赏)奖励办法:1. 首次回答对主题贴问题,且大家没异议,给予积分20分作为奖励;2. 对于支持活动者(提出一物质的物理性质以及其带来的相应应用),并顺利通过答辩--即正确回答找茬者的问题,给予积分10分作为奖励;对于没有找茬者以及没有通过答辩的一律不给予奖励;3. 所有找茬者--提出合理问题一律给予积分5分作为奖励。规则初拟,欢迎大家参加,多多支持,十分感谢,悬赏积分为浮动积分。

  • 【转帖】分析仪器介绍

    分析仪器是用来测定物质的组成、结构和某些物理特性的仪器。物质分析包括定性分析、定量分析、结构分析和某些物理特性的分析。 不同物质在各种物理和化学性质上都存在质的和量的差异,颜色、气味、导热系数、吸收光能的波长和磁性的不同等,分析仪器正是利用这些特点来完成定性分析和结构分析的。 不过,大多数物质在各种物理和化学特性上往往没有质的不同,只有量的差异,而且这种差异往往并不十分显著。因此,利用分析仪器来进行定性分析,首先必须充分地认识待分析物质,以及与其共存的其他物质的各种物理和化学特性,以它们质的不同或量的显著差异,作为选用或制造分析仪器的依据。 用分析仪器进行定量分析,是以物质存在量与转换成的某种物理量(如电量、热量等)之间具有一定的函数关系为依据的。例如红外分光光度计是根据待测物吸收特定波长的辐射能的不同,将所吸收的辐射能转换成热能,或进一步转换成电量,通过对电量的测量就可以确定待测物质的存在量。 分析仪器的应用领域十分广泛,有的用于生产过程分析,有的用于环境监测,还有许多用于各个学科和企业部门的实验室。为了适应不同的需要,分析仪器的结构比较庞杂。现代许多分析仪器已配有微处理器或微型计算机,其功能更为完备,尤其是仪器本身的自动化程度大为提高。 分析仪器一般由取样系统、样品调节系统、分离系统、检测系统、信号处理和显示系统、条件补偿系统、电源等几部分组成。 取样系统的任务是将一定量的、能真实代表待分析对象的样品取出,并送入各个测量环节。取样系统可包括:能耐各种介质腐蚀、高温、高压、低温和低压等各种条件的取样管、取样器;抽吸或增压、减压装置;以及除去有害或对分析有干扰的杂质的一系列过滤器和反应器等。 样品调节系统对取得的样品流进行适当的处理,使其压力、温度和流量等参数符合分离系统和检测系统的要求。因此,它可能包括压力、温度和流量等参数的比较简易的调节装置。 在大型分析仪器或各种谱仪中,为了实现多组分分析或样品的全分析,往往都采取先分离后检测的办法,即利用物理或化学主法分离,分析样品中的各种组分。例如,色谱仪中的色谱柱、质谱仪中的质量分析器等就是最典型的分离系统。 检测系统是分析仪器的核心,它将各种成分量、结构量和物性量转换成易于测量的各种电量(如电阻、电容、电流、电压和频率等)。在分析仪器中,上述各种量往往不能直接转换成易于测量的电量,一般须经过中间转换,如先转换成温度、压力或光通量等,而后再转换为电量。由成分量或结构量的变化所引起的转换量的变化十分微小,如转换为温度时可低达十万分之一摄氏度的变化量,并精确定量。因此,分析仪器的检测器结构往往比较复杂,对工艺、材料的要求也较高。 信号处理和显示系统的任务是将检测器的输出信号加以处理、显示。分析仪器往往对被测对象的介质条件和环境条件,如环境气氛、温度、压力和电源参数等十分敏感。为了保证精确度,对这些条件都有较高的要求。为了降低这些要求,在仪器内部往往设计有对各种条件波动进行补偿的装置,以消除或降低条件波动对测量造成的影响。 分析仪器广泛应用于工业生产过程监控、环境保护、生物化学和医疗、空间探索和军事等各个领域,是现代科学研究中一种重要的技术手段。 分析仪器主要有两种分类方法:根据所应用的物理和化学原理分类,可以分为电化学式、热学式等十类;根据所施加的能量形式分类,有光能式热能式和电磁场式等

  • 在线油品分析仪从对油品特性指标的检测方便分几类

    在线油品分析仪类型很多,从对油品特性指标的检测上分,基本可以分为以下几类:1)油品的热挥发性分析仪:这类分析仪包括馏程、初馏点、干点、饱和蒸气压等。这种分析仪常用在蒸馏塔的馏出口,或应用于轻质油品调合过程中,用于监测油品的轻重组分的分布情况。2)油品的燃烧性能分析仪:如汽油的辛烷值分析仪、柴油的十六烷值分析仪等。这类分析仪一般是应用于油品调合过程,也可以应用于特定的油品加工过程,如催化重整装置的重整生成油的辛烷值监测。3)油品低温流动性分析仪:这类分析仪是用来评价油品在低温下的流动性能,主要应用于比汽油重的油品,如航空燃料油、柴油及润滑油。这些低温性能指标包括倾点、浊点、凝固点、冷滤堵塞点等。4)油品安全性能分析仪:这是对油品的输送和储存的安全性进行测试的试验,能够实现在线分析的这类指标主要是闭口闪点分析仪。5)油品中杂质组分分析仪:油品中的一些杂质会对油品的使用、输送、储存带来一些不利影响,这些杂质组分zui重要的就是原油及石油产品中的硫含量,硫不仅影响石油产品的品质,也会对石油加工过程产生多种影响。另外石油中的盐含量、酸值、氮含量、金属含量也是影响石油产品品质和加工过程的主要杂质检测指标。6)油品的其他物理性质分析仪:一些石油产品的固有物理特性,也都有相应的在线分析仪器,如密度、粘度、色度等,这些指标可以通过一些通用的在线分析仪进行检测

  • 石油的物理性质-石油的燃烧特性

    [font=&][size=18px]石油的燃烧特性 石油和成品油可燃程度随温度而异,表现在闪点、燃点和自燃点的差异。“闪点”指石油在容器内受热,容器口遇火则发生闪火但随之又熄灭时的温度。“燃点”指受热继续升高,遇火不但出现闪火而且引起了燃烧的温度。“自燃点”指原油在受热已达到相当高的温度,即便不接触火种也出现自燃现象的温度。石油是由具不同沸点的烃化合物组成的混合物,与水(沸点为100℃)不同,没有固定的沸点。其闪点随具不同沸点化合物的含量比例不同而各有差异。沸点越高,闪点也高。如石油产品中煤油闪点在40℃以上,柴油在50~65℃之间,重油在80~120℃,润滑油要达到300℃左右。自燃点却相反,沸点高的成品油,自燃点降低,如汽油自燃点为415~530℃,裂化残渣油自燃点约270℃,石油沥青则降至230~240℃。石油作为一种混合物,其闪点在-20~100℃之间,而自燃点则为380~530℃之间[/size][/font]

  • 求助ASTM F963-17这个标准需要哪些物理仪器设备

    求助ASTM F963-17这个标准需要哪些物理仪器设备

    求助ASTM F963-17这个标准需要哪些物理仪器设备,哪些品牌的会比较好,有没有遗漏的测试[img=已经做了作业指导书的,347,487]https://ng1.17img.cn/bbsfiles/images/2019/12/201912201742077013_4949_1827694_3.jpg!w347x487.jpg[/img]

  • 纺织品物理检验和化学检验的定义你知道多少?

    纺织品物理检验:指运用各种仪器、仪表、设备、量具等检测手段,测量或比较各种纺织产品的物理性质或物理量的数据,并进行系统整理、分析,以确定纺织品物理性质和品质优劣的一种检验方法。纺织品化学检验:指运用化学检验技术和仪器设备,通过对抽取的纺织品样品进行分析、测试,以确定纺织品的化学特性、化学组成及其含量的一种检验方法。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制