当前位置: 仪器信息网 > 行业主题 > >

缓冲液标定计

仪器信息网缓冲液标定计专题为您提供2024年最新缓冲液标定计价格报价、厂家品牌的相关信息, 包括缓冲液标定计参数、型号等,不管是国产,还是进口品牌的缓冲液标定计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合缓冲液标定计相关的耗材配件、试剂标物,还有缓冲液标定计相关的最新资讯、资料,以及缓冲液标定计相关的解决方案。

缓冲液标定计相关的资讯

  • IEC缓冲液的类型
    在离子交换过程中保持pH的恒定是十分重要的,正如前面讨论过的,pH的改变会造成蛋白质带电荷数量和分布状况发生变化,从而直接影响到蛋白质是否能结合在交换剂上以及结合力的强弱。因此,在离子交换色谱中流动相必须使用缓冲液。缓冲液的种类很多,能够起缓冲作用的物质可分为两类:第yi类是由弱酸(或弱碱)及相应的盐构成的系统;第二类是兼性离子化合物。对于第yi类缓冲物质,在进行离子交换时,如果缓冲离子所带的电荷与离子交换剂上的功能基团相反,将参与离子交换过程,并可能对局部pH产生影响,因此应尽可能采用与功能基团带同种电荷的缓冲离子,即:使用阴离子交换剂时选择带正电荷的缓冲离子;使用阳离子交换剂时选择带负电荷的缓冲离子。当然这也并不是jue对的,比如磷酸盐缓冲液也经常在阴离子交换过程中被采用,但在这种情况下应特别注意在上样前充分平衡,确保色谱系统的pH和离子强度与起始缓冲液一致。第二类缓冲物质在阴、阳离子交换中均能采用。表1和表2分别列出了阳离子交换色谱和阴离子交换色谱时常用的缓冲液。在离子交换过程中虽然可以除去很多杂蛋白,起到纯化效果,但目的蛋白的洗脱峰中必然含有大量缓冲物质和盐的成分,这些成分的引入对于目的蛋白来说本身也是一种杂质。特别在色谱后需对洗脱峰进行冷冻干燥,以得到纯蛋白样品时,在冻干后的粉末中往往绝大部分是缓冲物质和盐。如果在冻干前进行脱盐或透析操作,虽然可以基本除去这些杂质,但也有可能造成蛋白活性的回收率下降。此时应优先考虑采用挥发性的缓冲物质,这样在冻干阶段可以将这部分杂质除去,常见的挥发性缓冲物质列于表3。◌ Q /SP/DEAE/CM Tanrose FF快流速琼脂糖基架离子交换介质◌ Q/SP Tanrose HP 高分辨率琼脂糖基架离子交换介质◌ Q/SP Tanrose XL 高载量琼脂糖基架离子交换介质◌ Q/SP Tanrose BB 大颗粒琼脂糖基架离子交换介质◌ DEAE/CM Tandex 葡聚糖基架离子交换介质
  • 玩转这5种缓冲液赋形剂让您的实验得心应手!
    话题介绍什么是赋形剂?对于寻找能够稳定早期开发生物制品的缓冲液的预配方研究人员来说,缓冲液的优化不能仅局限于缓冲液的pH值和盐浓度的变化。赋形剂作为缓冲液的添加剂,即使在缓冲液优化的早期预制剂阶段,赋形剂的添加对长期稳定候选生物制剂有很大帮助,因此是制剂评估的关键因素。但每一类赋形剂都以不同的方式协助稳定生物制剂——无论是单克隆抗体还是疫苗抗原。下面跟随小编,一起来了解一些最重要的生物制剂辅料,以及它们如何提高制剂的稳定性。1. 辅助剂辅助剂能够产生更强的免疫反应,对疫苗尤其重要。他们通常是可以增强免疫反应的单独的小分子生物制剂。2. 表面活性剂表面活性剂有助于降低溶液的表面张力,使疏水分子更容易保持溶解状态。聚山梨醇酯80或聚山梨醇酯20是常见的表面活性剂。3. 氨基酸氨基酸是一种特殊的赋形剂,用于帮助稳定蛋白质分子上的自由电荷。它们是一种有助于降低带电分子之间跨蛋白质吸引力的方法,而不会使盐浓度过高。通常用于这项工作的氨基酸有精氨酸、脯氨酸、甘氨酸、组氨酸和蛋氨酸。精氨酸、脯氨酸和甘氨酸也有助于调节最终制剂的粘度。4. 糖类糖类作为是非常实用的构象稳定剂,对抗体尤其有效。它们为冻干产品提供冻干保护,并对生物分子的溶剂化具有有益的作用。蔗糖是添加到缓冲液中最常见的糖之一,但也会使用甘露醇、山梨醇和海藻糖。5. 多元醇多元醇与糖类似,是增强生物制品热稳定性的稳定分子。它们还充当“膨胀剂”以保持蛋白质的整体三维结构,这在冻干过程中尤为重要。甘油是用于增强稳定性的非常常见的多元醇,除此之外也会使用甘露醇和山梨醇。总结如何快速精准的筛选赋形剂? 如您所见,有许多不同类型的赋形剂有助于提高生物制剂的长期稳定性,从而提高其进入临床的机会。需要特别注意的是,您构建的每种治疗药物都会有不同的表现,所以针对每种候选药物,进行多种赋形剂筛选以确定哪种赋形剂能够为您的治疗药物带来最大的稳定性是至关重要的。 那么问题来了,我们到底应该如何精准且快速高效的完成海量的赋形剂筛选呢?作为实验室里必不可少的王牌仪器,拥有PR Panta蛋白稳定性分析仪无疑是非常有助于预配方领域的上游研究人员评估缓冲剂成分,以及研究如何提高其疗法稳定性的核心设备。它可以提供低检测限的多种稳定性参数、高分辨率数据均有助于加快缓冲液优化的过程。PR Panta蛋白稳定性分析仪(点击图片 查看更多)如需了解PR Panta蛋白稳定性分析仪如何协助您的候选生物制剂获得成功,欢迎联系我们获得更多信息。
  • hplc液相色谱系统准备缓冲液的技巧
    液相色谱是世界各地实验室使用的流行纯化技术。如果系统设置和操作正确,它可以立即从混合物中分离出所需的化合物。学习如何使用和制备缓冲液和溶剂是能提高系统性能的重要技巧之一。准确制备和正确选择缓冲液对于在液相色谱中获得可重复的结果至关重要。 一、了解您的化合物 如果您正在寻找混合物中的特定化合物,您应该使用最能将您的分析物与其他分析物分开的缓冲液/溶剂组合。例如,了解极性和溶解度(极性或非极性)、电离、您正在寻找的紫外吸光度将有助于指导您使用特定的色谱柱和溶剂组。 二、纯度 使用较低等级且成本较低的试剂来制作缓冲液以节省一些钱是很诱人的,但从长远来看,它最终会变得更加昂贵。与含有稀少或不含杂质的 HPLC 级试剂相比,纯度较低的试剂会导致不需要的峰和嘈杂的基线。它们还会对您的系统造成严重破坏,造成阻塞,从而导致系统故障和更昂贵的维护费用。所有试剂和溶剂,包括您使用的水,都应该是高质量的 HPLC 级,以减少缓冲液中不需要的微粒。高级试剂的成本可能比低级试剂略高,但纯度的差异是值得的。HPLC 级试剂还有助于获得更一致的结果并保持系统平稳运行。 即使是使用高纯度实验级别的溶剂,也需要在进入色谱系统前进行过滤,采用恒谱生溶剂过滤器可以有效过滤化学污染等杂质进入系统,通用于流动相或输液泵,配套用于外径1/8英寸或1/16英寸的管子,放置于流动相溶剂瓶中,过滤杂质。过滤后,溶剂应储存在有盖的容器中,以防止被灰尘或其他不需要的材料污染。 四、避免气泡 在与您的系统一起使用之前对缓冲液进行脱气或真空过滤可以大限度地减少流动相中的空气和微粒。如果液相色谱系统中发生流动相脱气,主要会影响泵和检测器。为了解决这个问题,在将新制备的流动相泵入 HPLC 系统之前进行脱气,连同在线脱气器,应彻底脱气以去除所有溶解的气体。最有效的脱气形式是用氦气或其他低溶解度气体鼓泡。如果该方法可用,建议在整个分析过程中以非常低的水平持续对流动相进行脱气。 五、定期检查 细菌几乎可以在任何溶液中适应和生长,甚至是有机溶剂,具体取决于浓度。为防止细菌生长堵塞色谱柱筛板,每次制备新的缓冲液批次时更换缓冲液容器,检查缓冲液瓶/袋是否有细菌生长迹象。摇晃或搅拌时出现浑浊的溶液应丢弃。使用抑菌剂(例如 0.02% 叠氮化钠)处理会延长溶液的储存时间,尽管这些试剂可能会影响您的色谱图。 六、新鲜配置 恒谱生建议稀释缓冲液的有效期为一周。这种做法可确保缓冲液的 pH 值不受长期储存的影响,并且不会出现微生物生长。pH 值变化和微生物生长都会影响您的色谱运行并导致运行之间的不一致。虽然您可以添加稳定剂,例如焦亚硫酸钠,但这些试剂会影响光学和色谱结果。 液相色谱法可能是一项具有挑战性的技术。遵循上述关于如何准备和使用缓冲液进行纯化的提示,将有助于使每次运行的一致性和可重复性。
  • 新品发布 | Welbuffer生物缓冲液-1分钟完成试剂配制
    缓冲溶液是指当加入少量强酸、强碱或稍加稀释时,能保持其pH值基本不变的溶液,它对强酸、强碱或稀释有一定的抵抗作用。由于缓冲溶液中同时含有较大量的弱酸(抗碱成分)和共轭碱(抗酸成分),它们通过弱酸解离平衡的移动以达到消耗掉外来的少量强酸、强碱,或对抗稍加稀释的作用,使溶液的H+离子或OH-离子浓度没有明显的变化,因此具有缓冲作用。用传统方法配制时需要计算、称量、混合并使用强酸碱调节pH,操作繁琐费时。月旭科技特推出Welbuffer缓冲速溶颗粒或片剂,能够解放您的双手,无需搅拌,一步加水溶解完全即可完成试剂配制,晃动混匀即可,无需磁力搅拌。即取即用,使用简单、快速。我们本次新品提供免费试用,如果您感兴趣,可以浏览至文末申请试用哦~产品优势1. 运输及存储便捷大多数试剂都是对温度有要求、重量较重、体积较大的,因此在存储、配送方面的费用占比是很大一部分的成本,而颗粒剂与片剂可以有效减缓这些问题。2. 使用方便,提高效率一步加水快速溶解完全即可完成试剂配制。即取即用,使用简单、快速、无需计算、称量及混合,无需使用强酸碱调节pH。3. 稳定可靠高纯度、生物级生产原料,进行广泛测试,包含多项技术指标(重量、pH值、pKa值、电导率以及杂质含量等)。采用制药工艺生产,将大容量试剂配制完成后经过滤纯化,再使用喷雾干燥技术获得均匀颗粒。4. 批次重复性好少量试剂的人工配制往往造成批间差异大的问题。通过大批量的颗粒剂配制,分装成大量三年有效期的小包装。每次一包颗粒剂即加水即用的特点可有效避免批间差的问题。5. 可定制根据用户的需求,可定制不同配方、不同包装及不同剂型的产品。6. 有效期长在室温(2-30℃)避光干燥密封保存及运输的条件下,有效期长达3年。产品用途分类1. 科研诊断用缓冲液(PBS及Tris缓冲液试剂速溶颗粒剂及片剂)2. 蛋白分析检测用缓冲液(PAGE蛋白电泳缓冲液速溶颗粒及片剂)3. 分子生物学实验用缓冲液(DNA/RNA电泳缓冲液速溶颗粒及片剂)产品信息试用申请今天的新品为大家提供了四款产品,可以申请免费试用,分别是:TBST缓冲液速溶颗粒;PBS缓冲液速溶颗粒(pH7.4);TBS缓冲液速溶颗粒;PBST缓冲液速溶颗粒。如果您有需要,可以识别上方二维码,选择您想试用的产品。
  • 同行客户通过仪器信息网成功订购远慕缓冲液
    上海远慕生物科技公司是国内elisa试剂盒优质供应商,代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品。欢迎来电咨询。 同行客户通过仪器信息网成功订购远慕缓冲液,下面是客户跟我们的聊天记录: 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当时就下了订单。 常用缓冲溶液的配制: 乙醇-醋酸铵缓冲液(pH3.7) 取5mol/L醋酸溶液15.0ml,加乙醇60ml和水20ml,用10mol/L氢氧化铵溶液调节pH值至3.7,用水稀释至1000ml,即得。 三羟甲基氨基甲烷缓冲液(pH8.0) 取三羟甲基氨基甲烷12.14g,加水800ml,搅拌溶解,并稀释至1000ml,用6mol/L盐酸溶液调节pH值至8.0,即得。 三羟甲基氨基甲烷缓冲液(pH8.1) 取氯化钙0.294g,加0.2mol/L三羟甲基氨基甲烷溶液40ml使溶解,用1mol/L盐酸溶液调节pH值至8.1,加水稀释至100ml,即得。 三羟甲基氨基甲烷缓冲液(pH9.0) 取三羟甲基氨基甲烷6.06g,加盐酸赖氨酸3.65g、氯化钠5.8g、乙二胺四醋酸二钠0.37g,再加水溶解使成1000ml,调节pH值至9.0,即得。 乌洛托品缓冲液 取乌洛托品75g,加水溶解后,加浓氨溶液4.2ml,再用水稀释至250ml,即得。 巴比妥缓冲液(pH7.4) 取巴比妥钠4.42g,加水使溶解并稀释至400ml,用2mol/L盐酸溶液调节pH值至7.4,滤过,即得。 巴比妥缓冲液(pH8.6) 取巴比妥5.52g与巴比妥钠30.9g,加水使溶解成2000ml,即得。 巴比妥-氯化钠缓冲液(pH7.8) 取巴比妥钠5.05g,加氯化钠3.7g及水适量使溶解,另取明胶0.5g加水适量,加热溶解后并入上述溶液中。然后用0.2mol/L盐酸溶液调节pH值至7.8,再用水稀释至500ml,即得。 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 上新 | 实验人必看,逗点生物新品磷酸盐缓冲液清新面世~
    PBS新品上市,欢迎关注!在生物实验中,磷酸盐缓冲液(Phosphate-Buffered Sline,PBS)的主要用途是漂洗、稀释或作为基础溶液配置其他溶液,用途非常广泛,属于生物实验室必不可少的一种试剂。逗点生物最 新研发推出新品PBS,产品经0.1μm 过滤除菌,可直接使用,且质量稳定、规格多样、货源充足,有效应对各种细胞培养需求,帮助提供相对稳定的离子环境和pH缓冲能力,为您实验保驾护航。新品上市,实验必购PBS核心优势,持续加固!厂家直销逗点生物具备厂家直销优势,货源稳定,供应充足,配送及时,想要囤货的老师们可放心购买~多种规格新品推出,有1X(即用型)、5X、10X、20等多种规格可供选择,随需定制,满足您多种实验需求~透亮无沉淀通过ISO13485:2016医疗器械质量管理体系认证,无菌车间生产,批次间稳定,液体透亮不含沉淀~PBS数据亮眼,品质保障!表1:无菌情况逗点生物产品无菌情况与某国际知名品牌效果相当 表2:pH、渗透压逗点生物产品数值稳定,与某国际知名品牌效果相当表3:内毒素逗点生物产品内毒素<0.1EU/mL,符合行业水平表4:微粒检测逗点生物产品的不溶性微粒数低于某国际知名品牌作为生物实验室的常用试剂,PBS磷酸盐缓冲液的品质必须有保障。为此,我们选取了国际国内四家知名品牌的同类产品,分别从四个维度进行数据比对。结果显示,逗点生物所研发生产的PBS在无菌情况、pH/渗透压、内毒素、微粒检测等重要指标上均有亮眼表现。PBS认准货号,购买无忧!想要了解更多产品信息请拨打逗点生物客服热线咨询订购电话:400-860-5168转3309
  • 标签印刷错误 赛默飞苏州工厂主动召回缓冲液
    p  据江苏省食品药品监督管理局官网7月2日消息,赛默飞世尔(苏州)仪器有限公司报告,由于缓冲液标签印刷错误等原因,赛默飞世尔(苏州)仪器有限公司对其生产的缓冲液(备案号:苏苏械备20160782号)进行主动召回,召回级别为三级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/e68fd095-4c6a-4d9a-9f90-bbf9d441ceb4.jpg" title="IMG4ccc6aa7fc9a4490485195.jpg"//ppbr//p
  • 安捷伦科技推出 IQFISH FFPE 缓冲液实现 FFPE 组织样品一小时杂交
    安捷伦科技推出 IQFISH FFPE 缓冲液实现 FFPE 组织样品一小时杂交 2013 年 11 月 13 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布推出 IQFISH FFPE 杂交缓冲液,可以实现福尔马林固定石蜡包埋 (FFPE) 组织样品 FISH 处理的一小时杂交。 IQ 技术最早由 Dako 公司开发,以前仅用于解剖病理实验室。而现在,IQFISH FFPE 杂交缓冲液可作为单独产品供应,因此细胞遗传学实验室也可受益于 IQ 技术,从而更快地获得结果。 安捷伦诊断和基因组学业务部门副总裁兼总经理 Jacob Thaysen 说道:“IQFISH FFPE 杂交缓冲液将极大缩短 FFPE 样品的 FISH 处理时间。通过将杂交处理步骤从行业标准的两天减少到仅仅一小时,使我们的客户可以更快地获得结果,且不会影响信号强度。” 有关 Dako IQFISH 杂交缓冲液的更多信息,请访问 www.dako.com。关于 Dako — 安捷伦科技公司旗下子公司 总部位于丹麦的 Dako 公司是组织类癌症诊断的全球领导者。全球的医院和研究实验室都在使用 Dako 的试剂、仪器、软件和专业知识,为癌症病人提供准确的诊断,确定最有效的治疗方案。Dako 公司拥有 1200 名员工,在全球 100 多个国家开展业务。Dako 于 2012 年 6 月归入安捷伦科技旗下。要了解 Dako 的信息,请访问 www.dako.com。关于安捷伦科技公司 安捷伦科技(NYSE 代码:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 缓冲盐的这些“陷阱”你中招了吗?
    在色谱分析过程中常常需要使用缓冲盐来调节流动相的pH值,缓冲盐的不当使用对色谱柱可能造成柱压升高、柱效下降以及使化合物的保留时间发生变化等影响。“柱压升高原因:缓冲盐使用不当导致缓冲盐析出,堵塞塞板和键合相颗粒之间的孔隙,阻碍流动相传质,引起柱压升高;“相同化合物的保留时间发生变化原因:如果没有冲洗干净就进行进样,色谱柱内含有的盐会使化合物的保留时间发生变化;“柱效下降原因:1)有些缓冲盐会渗入到键合相的深处,损害硅胶基体,导致色谱柱键合相流失,柱床变松,柱效下降;2)凝结在键合相表面,使C18碳链难以舒展,对物质的保留能力下降,导致柱效下降。因此用过缓冲盐后需要对色谱柱进行冲洗,水中缓冲盐浓度较大时应特别引起注意。那么如何正确使用缓冲盐呢?使用前的处理:在使用缓冲盐作流动相之前需要用不含缓冲盐的流动相冲洗色谱柱,直至基线平稳。原则上,用于冲洗的流动相与分析时所用的流动相含水的比例相同(或含水更多),不同的只是用于冲洗用的流动相中不含缓冲盐。缓冲盐通常易溶于水,难溶于有机溶剂。用含缓冲盐的(特别是做流动相的水为饱和的缓冲盐溶液时)流动相进行分析时,如果分析前色谱柱中用于保存色谱柱的流动相中含水的比例相对较小,不先冲洗掉,接下来做样品的时候所用的流动相中如果有机溶剂含量大,而其比例中所含的水又不足以溶解该缓冲盐时,缓冲盐将会在色谱柱柱体上析出,沉积下来,这将可能导致上述对色谱柱的损害。使用后的处理:用与分析时含水比例相同的流动相(与分析用流动相唯一的区别是,用于冲洗的流动相不含缓冲盐)进行冲洗约30min,直至基线平稳。如果该色谱柱在接下来很长的一段时间内不使用,要长期保存,则需再加上一步,即用纯的有机溶剂冲洗一遍,直至基线平稳。使用缓冲液要注意几点01避免使用盐酸盐,盐酸盐对钢质有腐蚀作用。02缓冲液是良好的菌类培养液,缓冲液最好要现配现用。03实验后不可用有机溶剂直接过度,有机溶剂会处使盐类析出,造成液路或色谱柱堵塞。04使用缓冲液要及时掌握pH范围,做到胸中有数。05清洗液路和柱子时,有温控可加热到30摄氏度易于冲洗。06长时间用缓冲溶液要注意观察接头处有无析出,若有白色盐类析出,可考虑一定周期用10%硝酸冲洗一下液路(拆下柱子,走30mL,再用5倍水冲洗)可以避免液路的堵塞。07选择缓冲液要用可靠的试剂,避免不纯的盐类造成不必要的麻烦。如果流动相中有机溶剂的比例很高是不能用来冲洗缓冲盐的,是洗不出来的。通常C18柱先用5%~10%的甲醇冲洗,是可以把缓冲盐冲洗出来的,然后用纯的有机溶剂来保护柱子。最好的方法是使用与流动相相同浓度不含盐的流动相进行清洗。但就是速度慢一些。用水是为了快速替换,一般在15分钟以内最好,且用0.8的流速较好。如果用纯水冲,容易造成键合的碳链的流失,最好用5%~10%甲醇水溶液冲。可以用纯水代替流动相中的缓冲液,有机相不变。这样冲洗柱子比较稳妥。小结正确使用缓冲盐很有必要,既可以防止缓冲盐析出,也可以达到提高色谱柱使用寿命的目的。我们不妨用一句话来总结它的使用方法:用前要过滤,用后需冲洗。
  • 缓冲盐使用不当对色谱柱影响很大!该注意什么?如何解决?
    p style="text-indent: 2em "柱压升高/pp style="text-indent: 2em "原因:缓冲盐使用不当导致缓冲盐析出,堵塞塞板和键合相颗粒之间的孔隙,阻碍流动相传质,引起柱压升高;/pp/pp style="text-indent: 2em " /pp style="text-indent: 2em "相同化合物的保留时间发生变化/pp style="text-indent: 2em "原因:如果没有冲洗干净就进行进样,色谱柱内含有的盐会使化合物的保留时间发生变化;/pp/pp style="text-indent: 2em " /pp style="text-indent: 2em "柱效下降/pp style="text-indent: 2em "原因:/pp style="text-indent: 2em "i)有些缓冲盐会渗入到键合相的深处,损害硅胶基体,导致色谱柱键合相流失,柱床变松,柱效下降 /pp style="text-indent: 2em " /pp style="text-indent: 2em "ii)凝结在键合相表面,使C18碳链难以舒展,对物质的保留能力下降,导致柱效下降。因此用过缓冲盐后需要对色谱柱进行冲洗,水中缓冲盐浓度较大时应特别引起注意。/pp style="text-indent: 2em " /pp style="text-indent: 2em "流动相中缓冲盐的正确使用方法:/pp style="text-indent: 2em "1. 使用前的处理: 在使用缓冲盐作流动相之前需要用不含缓冲盐的流动相冲洗色谱柱,直至基线平稳。原则上,用于冲洗的流动相与分析时所用的流动相含水的比例相同(或含水更多),不同的只是用于冲洗用的流动相中不含缓冲盐。理由:缓冲盐通常易溶于水,难溶于有机溶剂。用含缓冲盐的(特别是做流动相的水为饱和的缓冲盐溶液时)流动相进行分析时,如果分析前色谱柱中用于保存色谱柱的流动相中含水的比例相对较小,不先冲洗掉,接下来做样品的时候所用的流动相中如果有机溶剂含量大,而其比例中所含的水又不足以溶解该缓冲盐时,缓冲盐将会在色谱柱柱体上析出,沉积下来,这将可能导致上述对色谱柱的损害。/pp style="text-indent: 2em " /pp style="text-indent: 2em "2. 使用后的处理:用与分析时含水比例相同的流动相(与分析用流动相唯一的区别是,用于冲洗的流动相不含缓冲盐)进行冲洗约30min,直至基线平稳。如果该色谱柱在接下来很长的一段时间内不使用,要长期保存,则需再加上一步,即用纯的有机溶剂冲洗一遍,直至基线平稳。/pp style="text-indent: 2em " /pp style="text-indent: 2em "使用缓冲液要注意几点:/pp style="text-indent: 2em "1:避免使用盐酸盐,盐酸盐对钢质有腐蚀作用。br//pp style="text-indent: 2em " /pp style="text-indent: 2em "2:缓冲液最好要现配现用,往往缓冲液是良好的菌类培养液,隔天或放置长时间实验时会有很多怪现象发生。/pp style="text-indent: 2em " /pp style="text-indent: 2em "3:实验后不可用有机溶剂直接过度,有机溶剂会处使盐类析出,造成液路或色谱柱堵塞,可用95:5的水甲醇冲洗。/pp style="text-indent: 2em " /pp style="text-indent: 2em "4:使用缓冲液要及时掌握ph范围,做到胸中有数。/pp style="text-indent: 2em " /pp style="text-indent: 2em "5:清洗液路和柱子时,有温控可加热到30摄氏度易于冲洗。/pp style="text-indent: 2em " /pp style="text-indent: 2em "6:长时间用缓冲溶液要注意观察接头处有无析出,若有白色盐类析出,可考虑一定周期用10%硝酸冲洗一下液路(拆下柱子,走30ml,再用5倍水冲洗)可以避免液路的堵塞。/pp style="text-indent: 2em " /pp style="text-indent: 2em "7:选择缓冲液要用可靠的试剂,避免不纯的盐类造成不必要的麻烦。/pp style="text-indent: 2em " /pp style="text-indent: 2em "如果流动相中有机溶剂的比例很高是不能用来冲洗缓冲盐的,是洗不出来的。通常C18柱先用5%~10%的甲醇冲洗,是可以把缓冲盐冲洗出来的,然后用纯的有机溶剂来保护柱子。最好的方法是使用与流动相相同浓度不含盐的流动相进行清洗。但就是速度慢一些。用水是为了快速替换,一般在15分钟以内最好,且用0.8的流速较好. 如果用纯水冲,容易造成键合的碳链的流失,最好用5%~10%甲醇水溶液冲。可以用纯水代替流动相中的缓冲液,有机相不变。这样冲洗柱子比较稳妥。/pp style="text-indent: 2em " /pp style="text-indent: 2em "色谱柱异常及解决办法/pp style="text-indent: 2em "柱压与硅胶基质的形态(如无定形或球形硅胶)、颗粒大小、填料合成条件、装柱条件、所用流动相和分析时的温度有关。不同厂家的色谱柱柱压会有所差别,相同流动相和温度的条件下,不同厂家的新色谱柱有的柱压可能相差4、5个MPa,特别是低端和高端色谱柱之间,这一区别比较明显。这是由色谱柱厂家所选用的硅胶基质及其生产条件决定的,这种差异的存在是正常的。同时需要说明的一点是,柱压与柱效有一定的关系,通常柱效高的色谱柱柱压相对而言会高一点,但柱压高的色谱柱并不一定就具有高柱效。/pp style="text-indent: 2em " /pp style="text-indent: 2em "在色谱柱的使用过程中柱压通常会出现两种升高的形式:/pp style="text-indent: 2em " /pp style="text-indent: 2em "第一种是,随着使用时间的延长色谱柱柱压慢慢上升,这是正常的;/pp style="text-indent: 2em " /pp style="text-indent: 2em "第二种是,使用过程中(流动相和温度没有改变的条件下)色谱柱压力突然升高很多。这种压力突然升高的现象,通常是由工作人员操作不当引起的。/pp style="text-indent: 2em " /pp style="text-indent: 2em "原因:/pp style="text-indent: 2em "1)样品太脏,使用前没有过滤,导致柱筛板堵塞;/pp style="text-indent: 2em "2)样品含有的杂质在流动相中的溶解性不是很好,与流动相混合后析出,导致柱塞板堵塞; /pp style="text-indent: 2em "3)使用缓冲盐,处理错误,缓冲盐在色谱柱中析出,堵塞塞板和键合相颗粒之间的孔隙。/pp style="text-indent: 2em " /pp style="text-indent: 2em "解决办法对于第二种,即柱压突然升高的情况,通常有以下几种解决办法:/pp style="text-indent: 2em " /pp style="text-indent: 2em "1)将色谱柱反接,用含水比例较大的流动相进行冲洗。/pp style="text-indent: 2em "2)色谱柱进样一端的筛板取下,分别放在水中和甲醇中超声或更换新的柱筛板。如果柱效没变,但柱压仍然较高,则应考虑进样端填料受污染的问题,因此除了取下进样端筛板超声外,还需要挖掉进样端的部分填料,挖去填料之前先检查一下填料的颜色,如果填料的颜色发生了变化,则应该挖掉直到见到白色的填料为止。/pp style="text-indent: 2em " /pp style="text-indent: 2em "挖掉后色谱柱将出现一个缺口,填补缺口的填料可以从另一支相同品牌、相同型号的报废色谱柱的出口端获得,填料用有机溶剂如甲醇等调成糊状装入缺口处,压紧刮平,再装上筛板。/pp style="text-indent: 2em " /pp style="text-indent: 2em "柱子使用经验谈:/pp style="text-indent: 2em "色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。br//pp style="text-indent: 2em " /pp style="text-indent: 2em "1、样品的前处理:/pp style="text-indent: 2em "a、最好使用流动相溶解样品。/pp style="text-indent: 2em "b、使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。 /pp style="text-indent: 2em "c、使用0.45µ m的过滤膜过滤除去微粒杂质。/pp style="text-indent: 2em " /pp style="text-indent: 2em "2、流动相的配制:/pp style="text-indent: 2em "液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点:/pp style="text-indent: 2em "a、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。/pp style="text-indent: 2em "b、流动相具有一定惰性,与样品不产生化学反应(特殊情况除外)。/pp style="text-indent: 2em "c、流动相的黏度要尽量小,以便在使用较长的分析柱时能得到好的分离效果;同时降低柱压降,延长液体泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。/pp style="text-indent: 2em "d、流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最好使用对紫外吸收较低的溶剂配制。/pp style="text-indent: 2em "e、流动相沸点不要太低,否则容易产生气泡,导致实验无法进行。/pp style="text-indent: 2em "f、在流动相配制好后,一定要进行脱气。除去溶解在流动相中的微量气体既有利于检测,还可以防止流动相中的微量氧与样品发生作用。/pp style="text-indent: 2em " /pp style="text-indent: 2em "3、流动相流速的选择:/pp style="text-indent: 2em "因柱效是柱中流动相线性流速的函数,使用不同的流速可得到不同的柱效。对于一根特定的色谱柱,要追求最佳柱效,最好使用最佳流速。对内径为4.6mm的色谱柱,流速一般选择1ml/min,对于内径为4.0mm柱,流速0.8ml/min为佳。当选用最佳流速时,分析时间可能延长。可采用改变流动相的洗涤强度的方法以缩短分析时间(如使用反相柱时,可适当增加甲醇或乙腈的含量)。/pp style="text-indent: 2em " /pp style="text-indent: 2em "注意:/pp style="text-indent: 2em "a.由于甲醇廉价,对于反相柱推荐使用甲醇体系(必须使用乙腈的场合除外)。 /pp style="text-indent: 2em "b.对于正相柱推荐使用沸程为30-60℃的石油醚或提纯后的己烷作流动相,没有提纯的己烷不得使用。用水最好使用超纯水(电阻率大于18兆欧),去离子水及双蒸水中含有酚类杂质,有可能影响分析结果。/pp style="text-indent: 2em "c.含水流动相最*在实验前配制,尤其是夏天使用缓冲溶液作为流动相不要过夜。最好加入叠氮化钠,防止细菌生长。/pp style="text-indent: 2em "d.流动相要求使用0.45 µ m滤膜过滤,除去微粒杂质。/pp style="text-indent: 2em "e.使用HPLC级溶剂配制流动相,使用合适的流动相可延长色谱柱的使用寿命,提高柱性能。/pp style="text-indent: 2em " /pp style="text-indent: 2em "冲柱子的目的:/pp style="text-indent: 2em "只要是有机溶剂就行,不过黏度不要太大,因为有机溶剂能够防止细菌生长,冲柱子的目的就是为了防止细菌生长堵塞仪器系统和柱子。一般甲醇和乙腈相互冲洗是没有问题的,但乙腈要比甲醇价格贵的 。/pp/pp style="text-indent: 2em " /pp style="text-indent: 2em "保留时间变化的原因:/pp style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/2cd56489-c062-4aa1-be75-7281c5c04309.jpg" title="16-47-25-88-510998.png" alt="16-47-25-88-510998.png"/br/ 柱头塌陷/pp/pp style="text-indent: 2em "在使用过程中,填料下沉,在柱子进口处出现一个小空间,使得分离效果不良。br//pp style="text-indent: 2em " /pp style="text-indent: 2em "补救方法:卸开柱头螺丝,找一点同类填料,用甲醇湿润后,添在柱子上,反复几次。然后装上螺丝,用溶剂冲洗1-2小时,使之平衡。/pp style="text-indent: 2em " /pp style="text-indent: 2em "小结/pp/pp style="text-indent: 2em "正确使用缓冲盐很有必要,既可以防止缓冲盐析出,也可以达到提高色谱柱使用寿命的目的。我们不妨用一句话来总结它的使用方法:用前要过滤,用后需冲洗。/ppbr//p
  • 北京大学周欢萍团队:淀粉聚离子超分子缓冲层提高钙钛矿太阳能电池疲劳抗性
    【重点摘要:】(1)周欢萍教授团队利用淀粉-聚碘超分子作为缓冲层,显著改善了钙钛矿太阳能电池的疲劳行为和循环稳定性。(2)经修改的钙钛矿太阳能电池在连续42个日夜循环后,发电效率可保持在98%。(3)该研究为如何利用超分子化学调控软晶格材料的元稳定动力学提供了重要见解。【研究背景】由于钙钛矿太阳能电池具有软体和离子晶格结构,它们极易受外部刺激的影响。在循环载荷的实际环境中,电池很容易出现明显的疲劳。由于缺乏对材料降解的基本理解,目前还没有有效的方法来减轻这种循环照明下的电池疲劳。【研究结果】研究人员在钙钛矿材料的界面引入了淀粉-聚碘超分子作为双功能缓冲层,它既可以抑制离子迁移,也可以促进缺陷的自我修复。经修改的钙钛矿太阳能电池在连续42个日夜循环后,原始的光电转换效率可保持在98%。这种电池也达到了24.3%的光电转换效率(认证值为23.9%),并且具有强烈的电致发光,外量子效率高达12%以上。【研究方法】研究人员首先合成了淀粉-聚碘超分子材料,并将其作为缓冲层插入钙钛矿太阳能电池的载流子输运层与光吸收层之间。他们从多个角度分析了缓冲层的影响,包括电化学测量、光致发光谱、小角入射X射线衍射、热重分析等,以确认其双功能机制。然后,他们制备了采用该缓冲层的钙钛矿太阳能电池,并通过42个日夜循环的加速老化试验考察其循环稳定性和发电效能。结果证实,缓冲层明显提高了电池在循环载荷下的稳定性。【结论】本研究通过在钙钛矿太阳能电池的界面引入淀粉-聚碘超分子缓冲层,显著改善了电池的循环稳定性和疲劳行为,为实现钙钛矿太阳能电池的实际应用提供了有效途径。该超分子缓冲层的双功能机制也可应用于其他软晶格材料的界面设计。研究结果对利用超分子化学手段调控软晶格材料的元稳定性具有重要启发意义。a,含不同浓度淀粉-碘Starch-I的w/ Starch-I装置的J-V曲线。b,开路电压和填充因子随Starch-I浓度的依赖性。c,作为LED操作时装置的EL的EQE。d,EQEEL和开路电压随Starch-I浓度的依赖性。含Starch-I的w/ Starch-I装置(a)和参考装置(b)的J-V曲线。外量子效率(EQE)谱及合并的JSC为24.5 mA cm-2 457 的含Starch-I装置。
  • 中科院大连化物所利用“缓冲”策略开发光稳定荧光探针揭示活细胞内脂滴动态过程
    近日,大连化物所分子探针与荧光成像研究组(1818组)徐兆超研究员团队利用“缓冲”策略,发展了细胞内脂滴动态识别荧光探针LD-FG,该探针具有优异的光稳定性,可在空间超分辨成像的基础上实现高时间分辨率和长时间稳定成像,从而发现了多种新的脂滴动态过程。  脂滴是维持脂质和能量稳态的关键细胞器,由中性脂组成的内核及包裹其外的单层磷脂组成。脂滴表面分布着多种蛋白,以调控脂类的储存、代谢及脂滴运动。越来越多的研究揭示,脂滴具有更多的生理功能,例如抗菌免疫能力、促进药物积累和激活能力、内核膜代谢能力、与其他细胞器相互作用以交换营养分子、作为癌症和衰老大脑神经认知功能障碍的标志物等。尽管对脂滴功能的机制缺乏研究,但已证实这些功能与脂滴生命周期的动态密切相关。揭示脂滴的动态有助于研究脂滴的功能机制和发现新的功能。然而,脂滴的数量、位置、大小和组成在细胞之间甚至在同一细胞内可能会有很大差异,脂滴的生命周期、时间和位置上也通常不可预测且难以观察。此外,这些事件在脂滴生命周期中的发生率仍然未知。这种细胞异质性和不可预测性要求用于探测脂滴动态的成像技术不仅具有对脂滴的识别能力,更需要具有较好的空间和时间分辨率,以及长时间的的稳定成像能力。  超分辨荧光成像可突破衍射极限实现最高可达单分子的空间分辨,但荧光团易光漂白而迅速淬灭的问题使得超分辨荧光成像一直面临着时间分辨率低和成像时间长的挑战。因此提高荧光团的光稳定性是超分辨荧光成像面临的前沿问题。  本工作中,徐兆超团队提出了“缓冲荧光探针”(buffering fluorogenic probe,BFP)的策略来解决脂滴动态成像中光稳定性的问题。“缓冲”策略(buffer strategy)是指在成像过程中,脂滴内部光漂白的荧光探针被外部周围新的和完整的荧光探针有效取代,即荧光探针交换速率大于漂白速率时,即可确保脂滴成像的光稳定性。该策略要求探针在脂滴外部时处于荧光淬灭的状态,并且在脂滴外具有较高的浓度以保证足够的缓冲能力。LD-FG有适中的脂溶性保证了既有足够的分子对脂滴进行荧光染色,同时又有足够比例的分子在脂滴外作为缓冲池。缓冲池不仅可以快速补充脂滴中的光漂白探针,保证了长时间荧光成像的光稳定性,还可以及时染色细胞中的新生脂滴,并接收脂滴减小或消亡中释放到外部的探针。  基于LD-FG优异的光稳定性,团队借助结构光照明显微镜对脂滴的多种动态过程进行了高时空分辨率的成像,首次发现了两种新的脂滴融合模式,包括多个脂滴的同时融合和线粒体介导的融合;揭示了细胞不同区域和不同细胞之间的异质性;提出脂肪细胞分化过程中脂滴成熟的新模型,即首先进行快速脂滴融合,接着是缓慢成熟步骤;首次在细胞中观察到融合过程中的哑铃形中间形态,证明聚结(coalescence)并不像以前知道的那样罕见,而是在细胞中无处不在的。  作为最小的生命单元,细胞是含有细胞器、分子复合物和功能单分子的多体系、跨尺度的复杂系统,不同尺度单元又根据其位置、结构、运动、浓度以及与其他功能单元的动态相互作用,精确、有序和协调地执行复杂多样的细胞功能,这使得细胞具有个体与系统性相统一、异质性、高度动态、不确定性等多种特征。团队期望“缓冲荧光探针(BFP)”的策略可以在未来用于开发针对更多不同细胞内生物靶点的光稳定探针,最终实现细胞内生物分子全景超时空分辨动态成像。  相关成果以“Stable Super-resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen-bond Sensitive Fluorogenic Probe”为题,于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所1818组博士研究生陈婕和博士后王超。该工作得到国家自然科学基金、大连化物所创新基金等项目的资助。
  • NCC:天然卤素在气候变化中缓冲对流层臭氧
    本篇论文解读由方雪坤研究团队的杜千娜同学撰写。杜千娜同学:浙江大学环境与资源学院2022级硕士研究生,主要研究方向温室气体HFCs排放反演与清单。第一作者:Fernando Iglesias-Suarez通讯作者:Alfonso Saiz-Lopez通讯单位:1Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain. 文章链接:https://doi.org/10.1038/s41558-019-0675-6论文发表时间:2020年1月研究亮点1.全球综合的、由卤素驱动的对流层O3柱损失在整个21世纪是恒定的(~13%)。2.卤素造成的对流层臭氧损失在目前和本世纪末都显示出明显的半球不对称性。3.预计卤素介导的臭氧损失最大(高达70%)发生在北半球污染地区(美国东部、欧洲和东亚)的地表附近。(注:以上为这位同学的论文解读,非论文原作者意思)研究不足(或未来研究)1.未来经济发展情况预测仍然有多种,目前对未来臭氧损失的估计仍旧依赖于未来经济预测,可能与事实有所偏离。2.未来天然卤素通量和分布的变化将由气候敏感性、未来人为排放和大气化学等因素综合决定。3.未来研究仍需对卤素化学加深了解。(注:以上为这位同学的论文解读,非论文原作者意思)全文概要反应性大气卤素破坏对流层臭氧(O3)。天然卤素的主要来源是海洋浮游植物和藻类的排放,以及海洋和对流层化学的非生物来源,但其通量在气候变暖下将如何变化,以及由此对O3产生的影响目前尚不清楚。本研究使用一个地球系统模型(共同体地球系统模型(CESM))估计发现在当今气候中,天然卤素消耗了大约13%的对流层O3。尽管21世纪天然卤素的含量有所增加,但由于对流层O3损失的半球、区域和垂直异质性的补偿,这一比例保持稳定。这种卤素驱动的O3缓冲预计在污染和人口稠密的地区最大,对空气质量有重要影响。背景介绍对流层臭氧(O3)丰度受原位光化学、平流层内流和地表干沉积之间的平衡控制。O3的光化学破坏发生在整个对流层,主要是通过其光解和随后与水蒸气的反应以及与自由基的反应直接损失。对流层O3也会通过催化循环与活性卤素(Cl, Br, I)发生反应而被破坏,只有将对流层卤素化学考虑在内才能更准确地了解其变化。目前,卤素被估计将使全球对流层臭氧减少约10-20%,对地表臭氧有很大影响。生物源性短寿命卤代烃(VSL),包括CHBr3、CH2Br2、CH3I和CH2ICl,是通过海洋生物如浮游植物、微藻和大型藻类的代谢自然排放出来的。这些卤素化合物的寿命不到6个月,是对流层中活性氯、溴和碘的重要来源。此外由于O3沉积到海洋中,随后海水碘化物氧化为次碘酸(HOI)和分子碘(I2),并释放到大气中,海洋也是无机碘的非生物来源。在对流层中,活性溴和氯实际上是由VSL卤化碳的光氧化产生的。气候变化和社会经济发展已经改变了VSL卤化碳的自然通量(1979-2013增加约7%)和无机碘(1950-2010增加两倍),并可能在21世纪持续。然而,天然卤素变化将如何影响臭氧和对流层化学以及气候仍然未知。结果讨论21世纪的天然卤素排放:在考虑的每种情况下,与目前相比VSL卤代烃排放量在21世纪末都要更大;全球海洋无机碘排放量在RCP 8.5之后增加了约20%,而在RCP 6.0和RCP 2.6期间分别减少了约10%和20%;到2100年,活性卤素浓度将增加约4-10%,在RCP 6.0下,溴驱动了这些变化,但由于碘碳(增加)和无机碘(减少)通量之间的相互作用,碘没有出现显著变化,溴和碘对RCP 8.5反应性卤素负荷变化的贡献相同。在RCP 2.6情景下,活性卤素浓度降低(~5%)。2000-2100年全球天然卤素的年度变化。a)短寿命卤代烃通量,b)无机碘排放,c)对流层天然反应性卤素浓度天然卤素对21世纪对流层臭氧的影响:图2显示了2000-2100年间全球对流层臭氧柱浓度的变化,上面和中间的图分别显示了对流层臭氧柱的绝对变化及其与活性卤素相关的损失。与目前相比,到本世纪中叶,卤素驱动的对流层O3柱损失增加,与RCP 6.0和RCP 8.5期间VSL卤碳排放量不断增加相一致。到2100年,在RCP 8.5条件下,活性卤素对对流层O3的影响保持相对不变,而在RCP 6.0条件下,预计会有较小的消耗。无论排放情景如何(下面的图),预计全球卤素驱动的对流层O3柱损失在整个世纪几乎保持不变(~12.8±0.8%)。2000-2100年全球年度对流层臭氧柱时间序列与卤素化学有关的纬向平均对流层O3损失如图3a、b所示。O3质量的纬向平均损失约为~0.3DU(全球综合为3.9DU),其中溴和碘分别贡献了约16%和80%。卤素介导的臭氧损失显示出明显的半球不对称性(目前在南半球更大)。在南半球温带地区,通过非均相激活进一步增强了平流层O3的消耗。O3相对损失呈现显著梯度,从对流层上层到下层,从北向南增加。RCP 6.0和RCP 8.5由天然卤素驱动的纬向平均对流层O3损失趋势如图3c,d所示。其模式是不均匀的,具有明显的半球和垂直梯度,尽管两种排放情景一致(仅强度不同)。反应性卤素造成的纬向平均对流层O3损失在本世纪,由反应性卤素驱动的臭氧相对损失在对流层中高层减弱(在250hPa时为10-20% 图4a),这一特征在本世纪上半叶和下半叶的南半球高纬度地区被放大。此外,在300至850 hPa之间的热带自由对流层,到本世纪末,卤素造成的未来臭氧损失将减少,这表明该地区臭氧的命运将主要由其他驱动因素控制,包括光解作用以及与水蒸气和羟基自由基的反应(图3c、d和4b)。此外,臭氧损失呈现明显的半球不对称,与“更清洁”的南半球相比,污染更严重的北半球臭氧损失趋势更大。与目前相比,未来卤素介导的O3损失预计将增加10-35%(图4),其中边界层内损失最大。从现在(1990-2009年)到本世纪末(2080-2099年),由活性卤素引起的部分O3柱损失的垂直分辨变化图5显示了从现在到21世纪末近地表臭氧损失变化。在全球范围内,在RCP 6.0情景下,天然卤素引起的2000 - 2100年近地表O3损失变化(15.0±1.1%)大于RCP 8.5情景(3.1±0.7%),但两者共同显示了臭氧损失的增加主要局限于温带地区,在中纬度地区(30°-60°N和30°-60°S)达到峰值(图5b、d)。现在(1990-2009年)到本世纪末(2080-2099年)卤素驱动的近地表臭氧损失变化预计到本世纪末,最大的臭氧损失将发生在受污染的大陆地区,而不是在遥远的海洋环境中,并具有明显的半球不对称性。特别是,在美国东部、欧洲和东亚地区,预计卤素驱动的O3损失大,分别为71.5±12.9%、30.8±4.2%和6.9±10.1%,RCP 6.0和RCP 8.5分别为48.2±12.6%、18.3±3.2%和23.2±10.9%。2000-2100年卤素驱动的近地表O3损失时间序列ReferenceIglesias-Suarez, F. et al. Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change 10, 147-154 (2020).
  • NanoTemper应用案例分享: 了解勃林格殷格翰如何为其单克隆抗体寻找最佳缓冲条件
    1用户背景介绍勃林格殷格翰(Boehringer-Ingelheim)是一家致力于人类生物制药化学和动物健康产品的医药公司,也是世界上最大的私有制药企业。名列全球前20位,高度研发驱动的领先医药公司,核心业务是包括处方药、 动物保健和生物制药,业务范围遍及全国各主要省市和地区。主要的研究领域包括:免疫及呼吸疾病、心血管及代谢疾病、中枢神经疾病、肿瘤。勃林格殷格翰成为第一家跨国公司在中国建立生物药物的制造企业。2014年,与百济神州签署战略合作协议,为其临床试验提供生物制药的生产。同年底,生物制药中试生产车间在上海张江工厂落成。2020年6月,勃林格殷格翰日前启动跨国药企在华首个外部创新合作中心。该中心采用了跨国药企中首个“三合一”业务模式,即集学术合作、业务拓展及许可、风险投资于一体。此举将整合公司的创新经验和合作伙伴在各自相关领域的独特技术和专业技能,共同开发创新药物和疗法,进而惠及更多患者。2为什么早期发现对蛋白质科研人员至关重要?单克隆抗体(mAb)是当今治疗性生物制剂的主要成分。由于其高度特异性和效力,它们被用于治疗多种疾病-从不同的癌症类型到自身免疫缺陷。新的蛋白质工程方法导致越来越多的治疗性mAb,它们还可以被修饰为双特异性、与其他生物制剂结合或用小分子药物修饰。而单克隆抗体(mAb)等生物药物的数量不断增加,以及mAb 变体之间的丰富异质性,需要一个彻底的开发过程,以最大限度地提高mAb的法规遵从性。因此,在开发过程的早期阶段就需要生物物理分析方法,以指导和简化进一步的抗体处理,并预测抗体的开发能力。抗体的构象和胶体稳定性是预测其稳定性和可开发性的关键参数,因为它们影响长期储存稳定性。开发管道中mAb和mAb变体的数量不断增加,需要使用能够快速评估这些参数的生物物理方法。在开发的早期阶段筛选条件和抗体构建体旨在确定最有希望的候选物,以满足药物批准的监管要求。在本案例中,勃林格殷格翰使用治疗性单克隆IgG1抗体的小规模配方筛选,以验证PR NT.48在确定关键稳定性参数方面的优异能力。通过PR NT.48搭载的nanoDSF技术跟踪色氨酸荧光发射的变化来评估热梯度中mAb构象稳定性。同时,PR NT.48可以检测胶体稳定性的变化和温度引起的聚集,是通过检测两次通过样品的光束的背反射强度实现的(图1)。图1:检测蛋白质聚集的背反射原理示意图(左) 光通过毛细管,被反向反射到检测器,光强度被量化。(右) 粒子散射光,导致入射光的消光和背反射光的反射--蛋白质聚集的直接测量。使用PR NT.48同时进行背向反射和荧光分析提供了几个重要信息:可直接关联热稳定性和胶体稳定性,这意味着可以识别引起聚集的展开事件,更重要的是,可以确定聚集起始温度。可确定抗体的未折叠状态的总体聚集程度,这在不同的配方和抗体类型之间可能有显著差异。应用案例分享: 了解勃林格殷格翰如何为其单克隆抗体寻找最佳缓冲条件_诺坦普科技(北京)有限公司 (instrument.com.cn)
  • 学完这个!“门外汉”也可以使用PH计了
    PH计是测量和反应溶液酸碱度的重要工具,PH计的型号和产品多种多样,显示方式也有指针显示和数字显示两种可选,但是无论PH计的类型如何变化,它的工作原理都是相同的,其主体是一个精密的电位计。1.一个参比电极;2.一个玻璃电极,其电位取决于周围溶液的pH;3.一个电流计,该电流计能在电阻极大的电路中测量出微小的电位差。以下是分别说明各部件的主要功能:参比电极的基本功能是维持一个恒定的电位,作为测量各种偏离电位的对照。银-氧化银电极是目前pH中最常用的参比电极。玻璃电极的功能是建立一个对所测量溶液的氢离子活度发生变化作出反应的电位差。把对pH敏感的电极和参比电极放在同一溶液中,就组成一个原电池,该电池的电位是玻璃电极和参比电极电位的代数和。E电池=E参比+E玻璃,如果温度恒定,这个电池的电位随待测溶液的pH变化而变化,而测量pH计中的电池产生的电位是困难的,因其电动势非常小,且电路的阻抗又非常大1-100MΩ;因此,必须把信号放大,使其足以推动标准毫伏表或毫安表。电流计的功能就是将原电池的电位放大若干倍,放大了的信号通过电表显示出,电表指针偏转的程度表示其推动的信号的强度,为了使用上的需要,pH电流表的表盘刻有相应的pH数值;而数字式pH计则直接以数字显出pH值。ph计的工作原理PH计是以电位测定法来测量溶液PH值的,因此PH计的工作方式,除了能测量溶液的PH值以外,还可以测量电池的电动势。PH在拉丁文中,是Pondus hydrogenii的缩写,是物质中氢离子的活度,PH值则是氢离子浓度的对数的负数。PH计的主要测量部件是玻璃电极和参比电极,玻璃电极对PH敏感,而参比电极的电位稳定。将PH计的这两个电极一起放入同一溶液中,就构成了一个原电池,而这个原电池的电位,就是这玻璃电极和参比电极电位的代数和。PH计的参比电极电位稳定,那么在温度保持稳定的情况下,溶液和电极所组成的原电池的电位变化,只和玻璃电极的电位有关,而玻璃电极的电位取决于待测溶液的PH值,因此通过对电位的变化测量,就可以得出PH溶液的PH值。误差校正理论上,0~7~14pH的发生电位差在25℃时为+414mV~0~-414mV左右。在能斯特方程式中,电位差大约会变化-59mV,但实际上1pH的变化大约会变化-58mV,此外对于强酸性与强碱性由于玻璃膜的材质以及液体的种类不同,会产生误差。pH计的电位差pH计的校正使用符合JIS标准的pH标准液。pH标准液包括草酸盐(1.68pH)、酞酸盐(4.01pH)、中性磷酸盐(6.86pH)、磷酸盐(7.41pH)、硼酸盐(9.18pH)、碳酸盐(10.01pH)。ph计的使用方法(步骤)ph计使用前的准备工作1.使用PH计之前先用三蒸水清洗电极,注意玻璃电极不要碰碎。2.准备在平台PH计的旁边放至调节用的NAOH液和HCL液。3.在冰箱中拿出定PH液(PH=7.0),放与平台上。4.打开PH计,调定PH值,按︿﹀键选择PH和CAL选项,选择其中的CAL项,调节插入到PH液(PH=7.0)中,按《》键选择数据值到7.0处,出现小八叉即可。5.将玻璃电极插入到待测的溶液中,再放入另一电极,适当的搅动液面(注意:不要碰碎玻璃电极)。6.PH计的电子单元使用必须注意电路的保护,在不进行PH值测量时,要将PH计的输入短路,以避免PH计的损坏。7.PH计的玻璃电极插座必须保持干净、清洁和干燥,不能接触盐雾和酸雾等有害气体,同时严禁玻璃电极插座上沾有任何的水溶液,以避免PH计高输入阻抗。8.未到你需要的PH值时要小心的加如NAOH液和HCL液,(据调节范围不同可以选择不同浓度的调节液,浓度小时可以快加,浓度大时要加慢)。9.加液时小心不要超过所需的定容量。ph计怎么使用步骤1.后盖打开,装入电池一块。2.装上复合玻璃电极注意:(1)复合电极下端是易碎玻璃泡,使用和存放时千万要注意,防止与其它物品相碰。(2)复合电极内有KCl饱和溶液作为传导介质,如干涸结果测定不准必须随时观察有无液体,发现剩余很少量时到化验室灌注。(3)复合电极仪器接口决不允许有污染,包括有水珠。(4)复合电极连线不能强制性拉动,防止线路接头断裂。3.打开电源开关后,再打到PH测量档。4.用温度计测量PH6.86标准液的温度,然后将PH计温度补偿旋钮调到所测的温度值下。5.将复合电极用去离子水冲洗干净,并用滤纸擦干。6.将PH6.86标准溶液2~5ml倒入已用水洗净并擦干的塑料烧杯中,洗涤烧杯和复合电极后倒掉,再加入20mlPH6.86标准溶液于塑料烧杯中,将复合电极插入于溶液中,用仪器定位旋钮,调至读数6.86,直到稳定。 应该注意以下两点:(1)必须用PH6.86标准调定位。(2)调完后,决不能再动定位旋钮。7.将复合电极用去离子水洗净,用滤纸擦干,用温度计测量PH4.00溶液的温度,并将仪器温度补偿旋钮调到所测的温度值下。8.将PH4.00标准溶液2~5ml倒入另一个塑料烧杯中,洗涤烧杯和复合电极后倒掉,再加入20mlPH4.00标准溶液,将复合电极插入溶液中,读数稳定后,用斜率旋钮调至PH4.00。应该注意斜率钮调完后,决不能再动。9.用温度计测定待测液温度,并将仪器温度补偿调至所测温度。10.将复合电极插入待测溶液中,读取PH值,即为待测液PH值。 应该注意以下两点:(1)测定时温度不能过高,如超过40℃测定结果不准,需用烧杯取出稍冷。(2)复合电极避免和有机物接触,一旦接触或沾污要用无水乙醇清洗干净。11.注意事项: 仪器在使用前必须进行校准,即以上4~8款操作。如果仪器不关机,可以连续测定,一旦关机就要校准。但12小时即使不关机也必须校准一次。ph计使用注意事项1.一般情况下,ph计仪器在连续使用时,每天要标定一次;一般在24小时内仪器不需再标定。2.使用前要拉下ph计电极上端的橡皮套使其露出上端小孔。3.标定的缓冲溶液一般第一次用pH=6.86的溶液,第二次用接近被测溶液pH值的缓冲液,如被测溶液为酸性时,缓冲液应选pH=4.00;如被测溶液为碱性时则选pH=9.18的缓冲液。4.测量时,电极的引入导线应保持静止,否则会引起测量不稳定。5.电极切忌浸泡在蒸馏水中。PH计所使用的电极如为新电极或长期未使用过的电极,则在使用前必须用蒸馏水进行数小时的浸泡,这样PH计电极的不对称电位可以被降低到稳定水平,从而降低电极的内阻。6.PH计在进行PH值测量时,要保证电极的球泡完全进入到被测量介质内,这样才能获得更加准确的测量结果。7.PH计使用时,要去除参比电极点解液加液口的橡皮塞,这样参比电解液就能够在重力的。pH计的保养1.pH计玻璃电极的贮存pH计短期内不用时,可充分浸泡在饱和氯化钾溶液中。但若长期不用,应将其干放,切忌用洗涤液或其他吸水性试剂浸洗。2.pH玻璃电极的清洗玻璃电极球泡受污染可能使电极响应时间加长。可用CCl4或皂液揩去污物,然后浸入蒸馏水一昼夜后继续使用。污染严重时,可用5%HF溶液浸10~20分钟,立即用水冲洗干净,然后,浸入0.1N HCl溶液一昼夜后继续使用。3.玻璃电极老化的处理玻璃电极的老化与胶层结构渐进变化有关。旧电极响应迟缓,膜电阻高,斜率低。用氢氟酸浸蚀掉外层胶层,经常能改善电极性能。若能用此法定期清除内外层胶层,则电极的寿命几乎是无限的。4.参比电极的贮存银-氯化银电极最好的贮存液是饱和氯化钾溶液,高浓度氯化钾溶液可以防止氯化银在液接界处沉淀,并维持液接界处于工作状态。此方法也适用于复合电极的贮存。常见问题及解决方案1.同一样品,两次测量的 pH值不一样?温度变化或样品本身发生了化学反应,都会引起 pH值的变化。所以,应尽量保持温度一致,并且避免化学反应。2.同一样品,同时在两台 pH计上测量,读数不一致?由于两台 pH计的校正条件不一样(如,不同时间做的校正),造成测量值有差异。所以要用同一缓冲液在同一时间里对 pH计进行校正,然后再同时测定。3.为什么缓冲液在有效期内已经变质不能使用了?缓冲液的有效期是指未开封使用状态下的保存期。一旦开封使用后,由于空气中各种霉菌的作用,缓冲液较易变质。注意:已使用过的缓冲液,千万不能倒回原装瓶中! 4.电极需多久校准一次?电极的校准频率取决于电极的使用、保养、样品性质以及测量精度等具体情况。建议每天校准一次,最长不要超过每周一次校准。 更换电极以及长时间不使用,在使用前必须先校准。5.如何保养 pH电极?电极使用一段时间后,若发现斜率变低、响应速度变慢等情况,可尝试下列方法:①若测量样品中含有蛋白质,可用胃蛋白酶 /盐酸洗液清洗电极膜。②若测量样品为油性/有机液体,可用丙酮或乙醇冲洗。③若发现电极液络部变脏变黑,可用硫醇清洗液清洗液络部。④活化电极膜,活化方法:电极再生液浸泡 30秒,再用 3mol/LKCl溶液浸泡 5小时。6.样品温度为 10℃,此时仪表显示的是 10℃还是25℃下的 pH值?酸度计显示的是溶液在当前温度下的 pH值,若在 10℃测量,仪表显示的是溶液 10℃的值,如果需要得到 25℃的 pH,必须把溶液温度升/降温至 25℃,再进行测量。酸度计的温度补偿指的是补偿温度对 pH电极的影响,但不能将任何温度下的 pH值补偿到 25℃。7.为什么电极放在 pH7.00的缓冲液中校正后,显示为 7.02?此时缓冲液温度在 20℃左右。由于缓冲液的 pH值会随温度变化有小量变化,7.00只是缓冲液在25℃下的值,而缓冲液在 20℃时的值应为 7.02。pH计能自动补偿温度对缓冲液的影响以保证测量精度。  8.pH电极寿命有多长?pH电极的寿命与测量样品的性质、样品温度及使用的频率、保养情况有关。在正常使用、正确保养的情况下,pH电极寿命为 1至 2年。9.检测pH计准不准?测pH计准不准?唯一可靠和最简单的方法就是以pH标准缓冲溶液来进行检定。取三个pH标准缓冲溶液:pH6.86、pH4.00、pH9.18(最好是新鲜配制并且温度相同),以pH6.86进行定位校准,以pH4.00进行斜率校准,然后测试pH9.18看pH计是否准确,是否合格立见分晓。如果精度不合格,还可以进一步判断是pH计有问题还是pH电极有问题。10.pH计数字不稳定现象原因总结:①检查电极是否已损坏;②应该是电极使用的时间太长了,先校准看一下是否有效;③可试下用2.5mmoL/L的KCL溶液浸泡探头;④清洗一下玻璃球,是不是时间长了,上面附着了一些有机物,导致反应不灵敏;⑤在水中存在着一个化学平CO2+H2O→H++HCO3-,由于一般的纯水或地表水都显弱碱性导致该平衡向正反应方向移动故pH会一直上升;⑥在被测水样中加入中性盐(如,KCl)作为离子强度调节剂,改变溶液中的离子总强度,增加导电性,使测量快速稳定。此方法国家标准GB/T6P04.3-93中规定:“测量水样时为了减少液接电位的影响和快速达到稳定,每50mL水样中加入一滴中性0.1moL/L KCl溶液。”虽然此方法改变了水样中的离子强度,在一定程度上引起了其pH值得变化,但经实验证明此变化在数值上只改变了0.01pH左右,是完全可以接受的。但采用这种方法时,一定要注意所加的KCL溶液不应含任何碱性或酸性的杂质。因此,KCl试剂要采用高纯度的,所配溶液的水质也要高纯度的中性水质。
  • 酸度计(pH计)测试常见问题
    pH计,主要用来精密测量液体介质的酸碱度值,作为普及率高、易上手、操作简单的一种实验室仪器,在使用中也常常出现很多问题,比如,读数有波动,校准有问题,缓冲溶液有问题等等,到底什么原因呢?1同一样品,两次测量的pH值不一样温度变化或样品本身发生了化学反应,都会引起pH值的变化。所以,应尽量保持温度一致,并且避免化学反应。2同一样品,同时在两台pH计上测量,读数不一致由于两台pH计的校正条件不一样(如不同时间做的校正),造成测量值有差异。所以要用同一缓冲液在同一时间里对pH计进行校正,然后再同时测定。3测量不稳定,时间长因为电极老化。可以测试电极在缓冲液中的响应时间,若大于1分钟,需要对电极进行活化处理或更换新电极。若测量缓冲液响应时间很短,但测量样品不稳定,说明电极不适合测量该被测样品,请根据电极选型指导选择合适的电极。4为什么缓冲液在有效期内已经变质不能使用了缓冲液的有效期是指未开封使用状态下的保存期。一旦开封使用后,由于空气中各种霉菌的作用,缓冲液较易变质。 注意:已使用过的缓冲液,千万不能倒回原装瓶中!5电极需多久校准一次电极的校准频率取决于电极的使用、保养、样品性质以及测量精度等具体情况。 建议每天校准一次;最长不要超过每周一次校准。 更换电极以及长时间不使用,在使用前必须先校准。6如何保养 pH计电极电极使用一段时间后,若发现斜率变低、响应速度变慢等情况,可尝试下列方法: 1) 若测量样品中含有蛋白质,可用胃蛋白酶 /盐酸洗液清洗电极膜。 2)若测量样品为油性/有机液体,可用丙酮或乙醇冲洗。 3)若发现电极液络部变脏变黑,可用硫醇清洗液清洗液络部。 4)活化电极膜。活化方法:电极再生液浸泡30秒,再用3mol/L KCl溶液浸泡5小时。7样品温度为10℃,此时仪表显示的是10℃还是25℃下的pH值酸度计显示的是溶液在当前温度下的pH值;若在10℃测量,仪表显示的是溶液10℃的值;如果需要得到25℃的pH,必须把溶液温度升/降温至25℃,再进行测量。酸度计的温度补偿指的是补偿温度对pH电极的影响,但不能将任何温度下的pH值补偿到25℃。8不管电极在何样品中,显示不变因为电极没有真正连接到仪表上。处理方法是首先关机,然后将电极和仪表重新连接。 因为电极是坏的,要及时更换新的电极。9为什么电极放在pH 7.00的缓冲液中校正后,显示为7.02此时缓冲液温度在20℃左右。由于缓冲液的pH值会随温度变化有小量变化,7.00只是缓冲液在25℃下的值,而缓冲液在20℃时的值应为7.02。pH计能自动补偿温度对缓冲液的影响以保证测量精度。10校正斜率大于105%时该如何处理检查缓冲液是否已经过期。如过期,要更换新的缓冲液。11pH缓冲溶液有何用途1)pH测量前标定校准pH计。2)用以检定pH计的准确性,例如用pH 6.86和pH 4.00标定pH计后,将pH电极插入pH 9.18溶液中,检查仪器显示值和标准溶液的pHs值是否一致。3)在一般精度测量时检查pH计是否需要重新标定。pH计标定并使用后也许会产生漂移或变化,因此在测试前将电极插入与被测溶液比较接近的标准缓冲液中,根据误差大小确定是否需要重新标定。4)检测pH电极的性能。12如何正确保存和使用缓冲溶液缓冲溶液配制后,应装在玻璃瓶或聚乙烯瓶中(碱性的pH缓冲液如pH9.18、pH 10.01、pH 12.46等,应装在聚乙烯瓶中)瓶盖严密盖紧,在冰箱中低温(5~10℃)保存,一般可使用二个月左右,如发现有混浊、发霉或沉淀等现象,不能继续使用。使用时,应准备几个50mL的聚乙烯小瓶,将大瓶中的缓冲溶液倒入小瓶中,并在环境温度下放置1~2小时,等温度平衡后再使用。使用后不得再倒回大瓶中,以免污染,小瓶中的缓冲溶液在 10°C的环境条件下可以使用2~3天,一般pH 7.00、pH 6.86及pH 4.00三种溶液使用时间可以长一些,pH 9.18和pH 10.01溶液由于吸收空气中的CO2,其pH值比较容易变化。13pH电极应如何存放电极不用是请保存在3mol/L氯化钾溶液中(3M KCl);短时间可以保存在pH7.00缓冲液中; 将pH电极长时间干放或浸泡在蒸馏水中会缩短电极的使用寿命。
  • 应用指南丨pH电极的日常维护与保养
    发酵培养基的pH值,对微生物生长具有非常明显的影响,也是影响发酵过程中各种酶活的重要因素。因此,pH的监测与调节,于发酵过程而言十分重要。 发酵过程中通常是采用复合pH电极直接插入罐内发酵液的方式对pH进行实时监测。而高压高温的灭菌操作和发酵液的理化性质会对pH电极测量造成影响,所以正确的使用方法和日常的维护保养尤其关键。 1. 安装使用前的准备① 打开包装时,要仔细检查电极的pH敏感膜玻璃、隔膜(素烧陶瓷芯)和玻璃体是否存在机械损伤。② 取下盛液套并用纯水清洗电极顶部,然后用湿纸巾或者吸水纸轻轻擦干。注意不要摩擦pH敏感膜,以防增加响应时间。③ 将pH电极平缓移至垂直位置以防pH敏感膜玻璃球泡内存有气泡。如没有充满液体或存有气泡,应轻轻甩动电极使球泡内充满液体,直至没有气泡。④ 电极使用前可先在酸性缓冲液(pH4.01)中浸泡数分钟,用纯水冲洗玻璃球泡部分,再用吸水纸轻轻将玻璃球泡部分的水吸干,再在中性缓冲液(pH6.86或7.00等)中浸泡数分钟以活化电极,然后再开始校准。 2. pH电极两点校准操作将pH电极在标准缓冲液中浸泡10min,待测定数值稳定1min左右后,再依次进行pH电极的第1点标定和第二点标定。以HOLVES发酵罐为例:① 进行校准前,根据缓冲液类型进行参数选择:[GB]指使用的是符合GB/T27501-2011标准的缓冲液,一般使用的几种缓冲液pH值为4.00、6.86和9.18,其相对应的“稳定度”即“缓冲液的不确定度”通常选择±0.02pH。霍尔斯通常使用的是METTLER TOLEDO InPro3030系列pH电极,参数[MT_9]即对应其品牌的缓冲液,一般使用的缓冲液pH值为4.01、7.00和9.21,其“稳定度”需根据所使用的缓冲液型号进行选择。 ② 连接电极,并用纯水冲洗电极,冲洗后再用吸水纸轻轻吸干探头上的水。③ 将玻璃球泡部分浸没在第1种缓冲液(例pH=4.01)内(隔膜应完全浸没在缓冲液中),待标准值稳定后(30秒至60秒)点击第1点确认,第1点标定结束。 ④ 将电极从第1种缓冲液中取出,并用纯水冲洗电极,冲洗后再用吸水纸轻轻吸干探头上的水。⑤ 将玻璃球泡部分浸没在第二种缓冲液(例pH=9.18)内(隔膜应完全浸没在缓冲液中),待标准值稳定后(30秒至60秒)点击第二点确认,第二点标定结束,等待使用(建议时间不要太长)。 3. 电极校准时的注意事项① 校准时请注意采用新鲜的缓冲液;② 电极在缓冲液中放置1min后再进行后续操作;③ 冲洗电极后只能用柔软的吸水纸吸干水分,切勿摩擦pH敏感膜;④ 电极的校准周期根据不同的使用环境和精度要求而定,请在保证精度的前提下确定适当的校准周期;⑤ 由于pH电极探头及其易碎,所以在使用过程中切勿磕碰。 4. pH电极性能测试pH电极测定酸碱度法是依据能斯特(Nernst)方程原理来进行的,电极的电动势与pH值呈线性关系,一般用两种不同pH值的缓冲液进行标定,用来确定曲线的斜率。而通常所说的pH电极响应斜率,是指pH电极用来把电极的毫伏(mV)信号转换为pH值,它是通过不同缓冲液测得的电压差值,除以缓冲液差值得到的。这个斜率是判定电极寿命是否耗尽的一个重要指标。 (Nernst能斯特方程) 需要注意的是,由于斜率与温度呈正比关系,当溶液温度发生变化,根据能斯特方程,溶液的ΔE将随温度T呈线性变化,而电极是根据检测到的溶液电动势能换算成pH值的,所以必须进行温度补偿以抵消温度对测量结果的影响。 (斜率与温度呈正比关系)所谓温度补偿,是将电极在标定温度下(一般为25℃)得到的斜率按能斯特公式换算到当前温度下的斜率,从而得到当前温度下正确的pH值。主要用来修正由于标准缓冲液等标样在标定时的温度与实际样品溶液温度不同引起的偏差。HOLVES系列产品可以通过设备的温度电极测量到当前液体温度,然后通过自身软件计算后,显示经温度补偿后的pH值。所以,无论是校准还是性能测试,都需要确保设备的温度电极是工作状态。 斜率测试具体操作方法:① 把进行两点校准后的电极用纯水清洗,并用柔软的吸水纸吸干水分。② 按照上文校准时使用的方法调整参数与稳定度,下文以MT标准为例。③ 首先使用pH=7.00的缓冲液测定零点,并在显示屏上读出mV值。HOLVES标配的pH电极零点在6.5~7.5范围内,表示电极正常。④ 将电极清洗后,再插入pH=4.01(记作pH1)的标准缓冲溶液中,在显示屏上读出mV值(记作mV1)⑤ 将电极清洗后,再插入pH=9.21(记作pH2)的标准缓冲溶液中,在显示屏上读出mV值(记作mV2)⑥ 计算电极的斜率,即(mV1-mV2)/(pH1-pH2)⑦ 根据能斯特方程理想状态下(25℃)时,理想斜率为59mV/pH,即溶液每变化一个pH值,电极就产生59mv的电位变化。那么理想校正下,斜率应在59mV/pH左右。当斜率的值小于53mV/pH或者大于63mV/pH时,需要更换新的pH电极,所以当校正斜率在53~63mV/pH范围时,结果是可信的。 HOLVES系列发酵罐可直接读出电极所测液体的电压信号,并且如果电极出现问题或者安装、使用错误,pH校准界面下方会弹出电极不可用红色提示字样,方便客户了解电极的使用状态。 5. 电极的清洗① 一般性污染用水、0.1mol/L NaOH或0.1mol/L HCl清洗电极数分钟。② 油脂或有机物污染用丙酮或乙醇清洗电极数秒钟。③ 硫化物污染(隔膜发黑)用硫脲/HCl处理,将玻璃球泡部分浸泡在溶液中(隔膜应没入溶液中),直到隔膜无色(至少1小时),然后浸泡在3mol/L的KCl中至少12小时,完全冲洗并重新校准后可使用。④ 蛋白质污染(隔膜发黄)用胃液素/HCl处理,将玻璃球泡部分放入溶液中,确保隔膜浸没在溶液中(至少1小时),然后用蒸馏水冲洗、重新校准。 6. 电极的保存① 每个生产周期结束后,使用去离子水认真冲洗电极头与隔膜,绝不可使这些零件上的测量溶液变干。② 电极不可放在蒸馏水中保存,较长时间不用时,应当将其连同电极头与隔膜充分浸泡在3mol/L的KCI或9816/ViscolytTM电解液内。③ 电极不能长期干放,不能在表面附有干燥介质时贮存电极。如果因错误导致电极被干燥存放数日,应在使用之前将其浸泡在正常存储电解液内若干小时。④ 应时常检查连接器是否出现受潮迹象。如有必要,用去离子水或酒精彻底清洗,然后小心擦干。希望以上的内容能对您的发酵提供一点帮助,如有问题可与我们联系,HOLVES将竭诚为您服务!注:本篇文章内容及图片均为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。
  • 关于pH计使用中的基本知识14问
    1. 什么是pH标准缓冲溶液?它有哪些特点?pH缓冲溶液是一种能使pH值保持稳定的溶液。如果向这种溶液中加入少量的酸或碱,或者在溶液中的化学反应产生少量的酸或碱,以及将溶液适当稀释,这个溶液的pH值基本上稳定不变,这种能对抗少量酸碱或大或小稀释,而使pH值不变化的溶液就称为缓冲溶液。pH标准缓冲液有以下特点:1.1 标准溶液的pH值是已知的,并达到规定的准确度。1.2 标准溶液的pH值有良好的复现性和稳定性,具有较大的缓冲容量,较小的稀释值和较小的温度系数。1.3 溶液的制备方法简单。2. 如何配制pH标准缓冲溶液?对于一般pH测量,可使用成套的pH缓冲试剂(可配制250mL),配制溶液时,应使用去离子水,并预先煮沸15-30分钟,以除去溶解的二氧化碳。剪开塑料袋将试剂倒入烧杯中,用适量去离子水使之溶解,并冲洗包装袋,再倒入250mL容量瓶中,稀释至刻度,充分摇匀即可。3. 如何正确保存和使用pH缓冲溶液?缓冲溶液配制后,应装在玻璃瓶或聚乙烯瓶中(碱性pH缓冲液如pH 9.18、pH 10.01、pH 12.46等,应装在聚乙烯瓶中)瓶盖严密盖紧,在冰箱中低温(5-10℃)保存,一般可使用六个月左右,如发现有混浊,发霉或沉淀现象,不能继续使用。使用时,应准备几个50mL的聚乙烯小瓶,将大瓶中的组冲溶液倒入小瓶中,并在环境温度下放置1-2个小时,等温度平衡后再使用。使用后不得再倒入大瓶中,以免污染,瓶中的缓冲溶液在>10℃的环境条件下可以使用2-3天,一般pH 7.00、pH 6.86、pH 14.00三种溶液使用时间可以长一些,pH 9.18和pH 10.01溶液由于吸收空气中的二氧化碳,其pH值比较容易变化。4. pH缓冲溶液有何用途?4.1 pH测量前标定校准pH计。4.2 用以检定pH计的准确性,例如用pH 6.86和pH 14.00标定PH计后,将PH电极插入pH 9.18溶液中,检查仪器显示值和标准溶液的pH值是否一致。4.3 在一般精度测量时检pH计是否需要重新标定。pH计标定并使用后也许会产生漂移或变化,因此在测试前将电极插入与被测溶液比较接近的标准缓冲液中,根据误差大小确定是否需要重新标定。4.4 检测pH电极的性能。5. pH电极为何要浸泡?如何正确浸泡pH复合电极?pH电极使用前必须浸泡,因为pH球泡是一种特殊的玻璃膜,在玻璃膜表有一很薄的凝胶层,它只有在充分湿润的条件下才能与溶液中的氢离子有良好的影响。同时,玻璃电极经过浸泡,可以使不对称电势大大下降并趋向稳定。pH玻璃电极一般可以用蒸馏水或pH 4.00缓冲溶液浸泡。通常用pH 4.00缓冲溶液浸泡更好上些,浸泡时间至24小时或更长,根据球泡玻璃膜厚度、电极老化程度而不同。同时,参比电极的液接界也需要浸泡。因为如果液接界干涸会使液接界电势增大或不稳定,参比电极的浸泡液必须和参比电极的外参比溶液一致,即3.3mol/L KCL溶液或饱和KCL溶液,浸泡时间一般几小时即可。 因此,对pH复合电极而言,就必须浸泡在含KCL的pH 4.00缓冲液中,这样才能对玻璃球泡和液接界同时起作用。这里要特别提醒注意,因为过去人们使用单支的PH玻璃电极已习惯于用去离子水或pH4缓冲液浸泡,后来使用pH复合电极时依然采用这样的浸泡方法,甚至在一些不正确的pH复合电极的使用说明书中也会进行这种错误的指导。这种错误的浸泡方法引起的直接后果就是使一支性能良好的pH复合电极就成一支响应慢、精度差的电极,而且浸泡时间越长性能越差,因为经过长时间的浸泡,液接界内部(例如砂芯内部)的KCL浓度已大大降低了,使液接界电势增大和不稳定。当然,只要在正确的浸泡溶液中重新浸泡数小时,电极还是会复原的。 另外,pH电极也不能浸泡在中性或碱性缓冲溶液中,长期浸泡在此类溶液中会使pH玻璃膜响应迟钝。正确的pH电极浸泡液的配制:取pH 4.00缓冲剂(250mL)一包,溶于250mL纯水中,再加入56克分析纯KCL,适当加热,搅拌至完全溶解即成。6. 可充式和非可充式pH复合电极有何区别?pH复合电极外壳有塑料和玻璃的区分。可充式pH复合电极即在电极外壳上有一加液孔,当电极的外参比溶液流失后,可将加液孔打开,重新补充KCL溶液。而非可充式pH复合电极内装凝胶状KCL,不易流失也无加液孔。可充式pH复合电极的特点是参比溶液有较高的渗透速度率,液接界电位稳定重现,测量精度较高。而且当参比电极减少或受污染后可以补充或更换KCL溶液,但缺点是使用较麻烦。可充式pH复合电极使用时应将加液孔打开,以增加液体压力,加速电极响应,当电解液液面低于加液孔2厘米时,应及时补充新的电解液。非可充pH复合电极的特点是维护简单使用方便,因此也得到广泛的应用。但作为实验室PH电极极使用时,在长期和边续的使用条件下,液接界处的KCL浓度会减少,影响测试精度。因此非可充式pH复合电极不用时,应浸在电极浸泡液中,这样下次测试时电极性能会很好,而部分实验室pH电极都不是长期和边续的测试,因此这种结构对精度的影响是比较小的。而工业的PH复合电极由于对测试精度的要求比较低,所以使用方便就成为主要的选择。7. 如何正确使用pH复合电极?7.1 球泡前端不应有气泡,如有气泡应用力甩去。7.2 电极从浸泡瓶中取出后,应在去离子水中晃动并甩干,不要用纸巾擦拭球泡,否则由于静电感应电荷转移到玻膜上,会延长电势稳定的时间,更好的方法是使用被测溶液冲洗电极。7.3 pH复合电极插入被测溶液后,要搅拌晃动几下再静止放置,这样会加快电极的响应。尤其使用塑壳PH复合电极时,搅拌晃动要厉害一些,因为球泡和塑壳之间会有一个小小的空腔,电极浸入溶液后有时空腔中的气体来不及排除会产生气泡,使球泡或液接界与溶液接角不良,因此必须用力搅拌晃动以排除气泡。7.4 在粘稠性试样中测试之后,电极必须用去离子水反复冲洗多次,以除去粘附在玻璃膜上的试样。有时还需先用其它试剂洗去试样,再用水洗去溶剂,浸入浸泡液中活化。7.5 避免接触强酸强碱或腐蚀性溶液,如果测试此类溶液,应尽量减少浸入时间,用后仔细清洗干净。7.6 避免在无水乙醇、浓硫酸等脱水性介质中使用,它们会损坏球泡表面的水合凝胶层。7.7 塑壳pH复合电极的外壳材料是聚碳酸酯塑料(PC)PC塑料在有些溶剂中会溶解,如四氯化碳、三氯乙烯、四氢呋喃等,如果测试中含有以上溶剂,就会电极外壳,此时应改用玻璃外壳的pH复合电极。8.pH电极如何清洗?球泡和液接界污染后先用以下溶剂清洗,再用去离子水洗去溶剂,将电极浸入浸泡液中活化。 污 染 物 清 洗 剂 无机金属氧化物 低于1 mol/L稀酸有机油脂类物质 稀洗涤剂(弱酸性)树脂高分子物质 稀酒精、丙酮、乙醚蛋白质血球沉淀物 酸性酶溶液(食母生片) 颜料类物质 稀漂白液、过氧化氢9. 如何修复pH电极?pH复合电极的“损坏”,其现象是敏感梯度降低、响应慢、读数重复性差,可能由以下三种因素引起,一般客户可以采用适当的方法予以修复。9.1 电极球泡和液接界受污染,可以用细的毛刷、棉花或牙签等,仔细去除污物。有些塑壳电极头部的保护罩可以旋下,清洗就方便了,如污染严重,可按第8条的方法用清洁剂清洗。9.2 外参比溶液受污染,有些电极的结构是可添加溶液的,此时,可用针筒将电极的外参比溶液抽净,配制新的3.3mol/L或饱和KCL溶液,再加进去,注意第一、二次加进去时再要抽出来,以便将电极内腔清洗净。9.3 玻璃敏感膜老化:将电极球泡用0.1mol/L稀盐酸(9mL盐酸用纯水稀释至100mL)浸泡24小时用纯水洗净,再用电极浸泡溶液浸泡24小时。如果钝化比较严重,也可以将电极下端浸泡在45的氢氟酸溶液中3-5秒钟(溶液配制:4 mL氢氟酸用纯水稀释至100mL),用纯水洗净,然后在电极浸泡溶液中浸泡24小时,使其恢复性能。10. 什么是pH计的一点校准?任何一种pH计都必须经过pH标准溶液的校准后才可测量样品的pH值,对于测量精度在0.1pH以下的样品,可以采一点校准方法调整仪器,一般选用pH 6.86或pH 7.00标准缓冲溶液。有些仪器本身只0.2pH或0.1pH,因此仪器只设有一个定位调节旋扭,具体操作步聚如下:10.1 测量标准缓冲液温度,查表确定该温度下的pH值,将温度补尝旋钮调节至该温度下。10.2 用纯水冲洗电极并甩干。10.3 将电极浸入缓冲溶液晃动后静止放置.待读数稳定后,调节定位旋钮使仪器显示该标准溶液的pH值。10.4 取出电极冲洗并甩干。10.5 测量样品温度,并将pH计温度补偿旋钮调节至该温度值。10.6 将电极浸入样品溶液,晃动后静止放置,显示稳定后读数。11. 什么是pH计的二点校准?对于精密级的pH计,除了设有“定位”和“温度补偿”调节外,还设电极“斜率”调节,它就需要用二种标准缓冲液进行校准。一般先以pH 6.86或pH 7.00进行“定位”校准,然后根据测试溶液的酸碱情况,选用pH 4.00(酸性)或pH 9.18或pH 10.01(碱性)缓冲溶液进行“斜率校正。具体操作步聚为:11.1 电极极洗净并甩干,浸入pH 6.86或pH 7.00标准溶液中,温度补偿旋钮置于溶液温度处。待示值稳定后,调节定位旋钮使仪器示值为标准溶液的pH值。11.2 取出电极洗净并甩干,浸入第二种标准溶液。待示值稳定后,调节仪器斜率旋钮,使仪器的示值为第二种标准溶液的PH值。11.3 电极极洗净并甩干,再浸入pH 6.86或pH 7.00标准溶液中,如果误差超过0.02pH,则重复第(1),(2)步聚。直至在二种标准溶液中不需要调节旋钮都能显示正确的PH值。11.4 取出电极洗净并甩干,将pH温度补偿旋钮调节至样品温度,将电极浸入样品溶液,晃动后静止放置,显示稳定后读数。12. 温度对pH精度测量有多大影响?对pH电极,温度影响每一个pH为0.003pH/℃,例如一个0.2级的pH计,在30℃pH缓冲液中进行校准,然后测试60℃的溶液(假定溶液的pH范围在pH6-8之间与pH 7.00相差一个pH单位),则温度影响的最大误差就是30×0.003=0.09pH。如果是3个pH单位(在pH4-10范围内),最大误差就是0.27pH,从中可以看出温度对pH的影响是很大的。当然,我们也可以从中得出结论,为了减少温度对pH测量的误差,我们该注意以下三点:12.1 尽量选择接近被测溶液pH值的缓冲溶液校准pH计。12.2 尽量使校准溶液的温度与被测溶液的温度一致或接近。12.3 应该选择有温度补偿的pH计。精度高于0.1pH的pH计都有温度补偿调节,而0.2级的pH计就不带有温度补偿。有些0.2级的pH计也号称有0.1级的精度,其实这是不可能的,有人是将分辨率0.1pH和精度0.1pH这二个概念进行了混淆。即使以一个pH单位来说,相隔60℃的pH误差就是0.003×60=0.18pH,因此,没有温度补偿的pH计,最高的精度也只有0.2pH。13. 温度补偿能消除所有温度引起的误差吗?必须特别指出的是,pH计上设置的温度补偿,只是补偿电极的斜率项(2.303RT/F)。受温度影响的还有玻璃电极的标准电势,液接界电势等,它们与温度并非成严格的线性关系。同时PH电极也需要一定的时间才能达到新温度下的平衡。因此,不管是手动温度补偿还是自动温度补偿,都不是很充分的。根据pH测量的操作定义,要想得到精密的测量结果,样品溶液与标准溶液应在相同和恒定的温度下测量,这就是等温测量原理。对于一般精度要求的pH测量,样品溶液与标准溶液的温度不同时,可使用温度补偿。14.如何判断你的pH计是否准确?有不少用户在使用pH计时都心存疑惑,这个pH计到底准不准?有人以工作经验来判断,有人以pH试纸来判断,也有人以过去使用的pH计来判断,这些都是不可靠的。其实,唯一可靠和最简单的方法就是以pH标准缓冲溶液来来进行检定。这是唯一的检测标准。取三个标准缓冲溶液:pH 6.86、pH 4.00、pH 9.18(最好是新鲜配制并且温度相同),以pH 6.86进行定位校准,以pH 4.00进行斜率校准,然后测试pH 9.18,pH计是否准确,是否合格立见分晓。
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果结果:分离度,峰型都满足要求,完美。当然还是需要重现方法的。三根新色谱柱重现结果:zui终色谱条件:色谱柱:月旭Xtimate C18(4.6*250mm,5μm)。流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20检测波长:220nm;柱温:30℃;流速:1mL/min;进样体积:10μL。搞定交差!04 实验小结在液相应用方法开发过程中,首先需结合需要分离的目的,确定思路,一个方法zui初的思路,是决定这个方法开发的效果,效率的zui根本因素;其次是细节,任何细节都有可能导致你实验的成功与否;zui后是运气,牛顿发现万有引力还有运气成分呢,说不定你是下一个。同时,在一个方法确定好之后,一定需要使用一根新的色谱柱来验证,因为在方法开发过程中,我们会使用到各种流动相条件,会对色谱柱一个改性,特别是使用离子对试剂的方法,否则后续的重现性问题会是一个非常头痛的事情。
  • pH计如何维护保养?常见问题怎么解决?盛奥华为您支招!
    pH计是化验室中常见的一种小型检测设备。对于ph计的使用和维护,一般人都会说很简单、很容易。但实际上你对ph计的使用、维护、保养真的清楚了解吗?是否要打一个小小的“?” 盛奥华专注环保水质检测仪行业已有20余年,为广大新老客户、朋友提供了很多优质的水质监测解决方案。客户的满意,是我们最大的回报,也是我们一直以来的追求。盛奥华研发生产的水质检测仪器种类繁多,包含台式、便携式、手持式、按键式、触屏式等等。 首先为大家简单科普一下盛奥华自主研发的两款pH计:台式 PHS-300型、手持式 PHB-9型。如下图: 图1:台式pH计:PHS-300型◇全触屏式台式酸度计,个性化触摸按键◇自动识别标准缓冲液功能,三点校准 ◇自动识别温度补偿功能 图2:手持式pH计:PHB-9型◇背光LCD液晶显示(可关掉)◇同时显示pH、温度或mV(ORP)、温度 ◇具有手动温度补偿功能,支持二点标定,三点校正 ◇外形新颖,携带方便,操作简便下面重点来喽!本文主要从三方面出发:ph计的原理、保养、常见问题及解决方案,为大家详细阐述pH计的方方面面。 一.pH计的原理通过测定电极与参比电极组成的工作电池在溶液中测得的电位差,并利用待测溶液的pH值与工作电池的电势大小之间的线性关系,再通过电流计转换成pH单位数值来实现测定。 二.pH计的保养1.pH计玻璃电极的贮存pH计短期内不用时,可充分浸泡在饱和氯化钾溶液中。但若长期不用,应将其干放,切忌用洗涤液或其他吸水性试剂浸洗。2.pH玻璃电极的清洗玻璃电极球泡受污染可能使电极响应时间加长。可用CCl4或皂液揩去污物,然后浸入蒸馏水一昼夜后继续使用。污染严重时,可用5%HF溶液浸10~20分钟,立即用水冲洗干净,然后浸入0.1N HCl溶液一昼夜后继续使用。3.玻璃电极老化的处理玻璃电极的老化与胶层结构渐进变化有关。旧电极响应迟缓,膜电阻高,斜率低。用氢氟酸浸蚀掉外层胶层,经常能改善电极性能。若能用此法定期清除内外层胶层,则电极的寿命几乎是无限的。4.参比电极的贮存银-氯化银电极最好的贮存液是饱和氯化钾溶液,高浓度氯化钾溶液可以防止氯化银在液接界处沉淀,并维持液接界处于工作状态。此方法也适用于复合电极的贮存。 三.常见问题及解决方案1.同一样品,两次测量的 pH值不一样?温度变化或样品本身发生了化学反应,都会引起 pH值的变化。所以,应尽量保持温度一致,并且避免化学反应。2.同一样品,同时在两台 pH计上测量,读数不一致?由于两台 pH计的校正条件不一样(如,不同时间做的校正),造成测量值有差异。所以要用同一缓冲液在同一时间里对 pH计进行校正,然后再同时测定。3.为什么缓冲液在有效期内已经变质不能使用了?缓冲液的有效期是指未开封使用状态下的保存期。一旦开封使用后,由于空气中各种霉菌的作用,缓冲液较易变质。 注意:已使用过的缓冲液,千万不能倒回原装瓶中!4.电极需多久校准一次?电极的校准频率取决于电极的使用、保养、样品性质以及测量精度等具体情况。 建议每天校准一次,最长不要超过每周一次校准。 更换电极以及长时间不使用,在使用前必须先校准。5.如何保养pH电极?电极使用一段时间后,若发现斜率变低、响应速度变慢等情况,可尝试下列方法:①若测量样品中含有蛋白质,可用胃蛋白酶 /盐酸洗液清洗电极膜。 ②若测量样品为油性/有机液体,可用丙酮或乙醇冲洗。③若发现电极液络部变脏变黑,可用硫醇清洗液清洗液络部。④活化电极膜,活化方法:电极再生液浸泡30秒,再用3mol/LKCl溶液浸泡5小时。6.样品温度为10℃,此时仪表显示的是10℃还是25℃下的pH值?酸度计显示的是溶液在当前温度下的pH值,若在10℃测量,仪表显示的是溶液 10℃的值,如果需要得到25℃的pH,必须把溶液温度升/降温至25℃,再进行测量。酸度计的温度补偿指的是补偿温度对pH电极的影响,但不能将任何温度下的pH值补偿到25℃。7.为什么电极放在 pH7.00的缓冲液中校正后,显示为 7.02?此时缓冲液温度在20℃左右。由于缓冲液的pH值会随温度变化有小量变化,7.00只是缓冲液在25℃下的值,而缓冲液在20℃时的值应为7.02。pH计能自动补偿温度对缓冲液的影响以保证测量精度。8.pH电极寿命有多长?pH电极的寿命与测量样品的性质、样品温度及使用的频率、保养情况有关。 在正常使用、正确保养的情况下,pH电极寿命为1至2年。9.检测pH计准不准?测pH计准不准?唯一可靠和最简单的方法就是以pH标准缓冲溶液来进行检定。取三个pH标准缓冲溶液:pH6.86、pH4.00、pH9.18(最好是新鲜配制并且温度相同),以pH6.86进行定位校准,以pH4.00进行斜率校准,然后测试pH9.18看pH计是否准确,是否合格立见分晓。如果精度不合格,还可以进一步判断是pH计有问题还是pH电极有问题。 10.pH计数字不稳定现象原因总结:①检查电极是否已损坏;②应该是电极使用的时间太长了,先校准看一下是否有效;③可试下用2.5mmoL/L的KCL溶液浸泡探头;④清洗一下玻璃球,是不是时间长了,上面附着了一些有机物,导致反应不灵敏;⑤在水中存在着一个化学平CO2+H2O→H++HCO3-,由于一般的纯水或地表水都显弱碱性导致该平衡向正反应方向移动故pH会一直上升;⑥在被测水样中加入中性盐(如,KCl)作为离子强度调节剂,改变溶液中的离子总强度,增加导电性,使测量快速稳定。此方法国家标准GB/T6P04.3-93中规定:“测量水样时为了减少液接电位的影响和快速达到稳定,每50mL水样中加入一滴中性0.1moL/L KCl溶液。”虽然此方法改变了水样中的离子强度,在一定程度上引起了其pH值得变化,但经实验证明此变化在数值上只改变了0.01pH左右,是完全可以接受的。但采用这种方法时,一定要注意所加的KCL溶液不应含任何碱性或酸性的杂质。因此,KCl试剂要采用高纯度的,所配溶液的水质也要高纯度的中性水质。
  • FIDA分子互作仪:带你复现Nature青睐蛋白质与核酸互作50分顶级发文思路,还不快学起来!
    研究背景Nature:清北团队合作发现CRISPR免疫增效子,建立Cas9核酸酶生长进化模型CRISPR-Cas系统是一种强大的基因编辑工具,但Cas9核酸酶活性仍需提高。现有的方法存在着种种局限性,例如优化序列可能破坏结构、改变表达方式可能导致副作用、使用辅助蛋白会增加复杂性等。因此,开发新的方法来增强Cas9核酸酶的活性仍是CRISPR-Cas系统研究中的一个重要课题。2024年5月29日,来自清华大学和北京大学的研究团队在Nature上合作发表了题为:Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity的研究论文研究团队通过生物信息学分析、结构生长轨迹分析、生化实验、冷冻电镜解析和大肠杆菌抗噬菌体实验等手段,发现了一类新型CRISPR免疫增效子PcrIIC1,可以显著增强Cas9核酸酶的活性。研究团队还建立了Cas9核酸酶生长进化模型,揭示了Cas9蛋白结构和功能的演变规律,并阐明了PcrIIC1增强Cas9活性的分子机制。这项研究为我们进一步理解CRISPR系统的进化历程,以及开发基于CRISPR免疫增效子的高效基因编辑工具奠定了基础。研究思路通过生物信息学分析,研究团队观察到一类新型关联基因(Novel-associated genes, NAGs),显著富集存在于较大蛋白体积的II-C型Cas9的基因簇中,并推测这些NAGs可能参与到Cas9介导的细菌免疫过程。图1. 结构生长轨迹分析方法(左)和II-C型Cas9的生长轨迹图(右)通过生化实验和冷冻电镜解析复合体结构表明,来自金黄色细菌属(Chryseobacterium sp.)的CbCas9生长出了一个全新的增强Cas9活性的β-REC2结构域,以及一个全新的能够与其关联基因PcrIIC1互作的CTH结构域。通过蛋白间相互作用,2个CbCas9蛋白和2个PcrIIC1蛋白能够形成异源四聚体复合物。图2. 冷冻电镜分析CbCas9和PcrIIC1结合的三个阶段蛋白质与核酸的分子互作实验表明,与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。研究利用溶液中标记的分子互作方式获得亲和力,得出与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合(图3a)进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。图3. PcrIIC1增强CbCas9的DNA结合(a)、切割(b)、PAM兼容性(c)、DNA解旋 (d) 和错配容忍 (e) 能力最后,为了检验CRISPR免疫增效子PcrIIC1对CbCas9抗噬菌体免疫能力的影响,研究人员在大肠杆菌中进行了抗噬菌体实验。以上结果说明CbCas9-PcrIIC1复合体的形成对整个CRISPR-Cas系统的免疫增强至关重要。图4. PcrIIC1显著增强了CbCas9系统的细菌免疫活性FIDA如何更好复现Nature蛋白与核酸互作发文思路流体动力分散技术(FIDA)通过第一性物理原理直接获取分子的绝对流体动力学半径(Rh),通过追踪分子微妙的变化来表征生物分子的行为、特征以及功能。Fida Neo分子互作仪涵盖亲和力表征、亲和动力学表征、分子质量表征三大功能,一次实验即可获得互作与分子质控的数据,让互作的数据有“法”可依。FIDA技术无需固定、无需加热,甚至无需标记,可兼容所有缓冲液,是对现有分子互作技术是一次不一样的升级。FIDA技术可用于CbCas9-PcrIIC1复合物冷冻电镜前样品质控,CbCas9-PcrIC1复合物与DNA的亲和力实验以及动力学实验,以及CRISPR- cas以及核酸复合物的大小和定量表征等方面,具体如下:FIDA多维蛋白复合体表征,快速无稀释优化冷冻电镜样品,丰富您的蛋白质表征数据。FIDA所获得的Rh为绝对的粒径大小,可以直接与后期的电镜数据做比较。此外FIDA内置的 PDB 关联程序,可以将实际获得的 Rh 与数据库中的结构信息进行比较,有助于结构的精细解析。FIDA技术单次运行只需要40 nL 蛋白质在 4 分钟内获得的完整蛋白质 QC 图,包括冷冻电镜样品QC的关键参数表征,例如多分散性指数(PDI),聚集(Agg),粘度(Viscosity),粘附性(Stickiness),完整性(Rh)等指标,FIDA是一种非常有效的支持所有生物物理学和结构生物学的基本工具。图5. FIDA单次测试的得到8个蛋白表征数据冷冻电镜应用:FIDA:4分钟给您无稀释的冷冻电镜样品优化解决方案FIDA和本篇研究中应用的分子互作技术都是一种在溶液状态下通过荧光分子标记表征分子互作的技术。对于蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现蛋白与蛋白或蛋白与核酸互作的真实情况。FIDA 可以使用含盐和洗涤剂的缓冲液条件,具有不同环境中(类体内环境)进行测试的灵活性。这使得研究者能够分析不受缓冲液成分限制的核苷酸,以确保其数据的准确性和可靠性。FIDA 这种在溶液内检测分子互作技术,是理想的结合能力检测,因为它不依赖于潜在的阻碍性表面固定,不受结合域空间方向影响的表征。图6. FIDA实验原理示意图FIDA不仅可以表征互作亲和力,也同时无标记检测CRISPR核酸酶与gDNA相互作用的热力学、亲和力、和结合动力学,全面表征蛋白与核酸互作。FIDA不仅可以完成本研究中得到的CbCas9-PcrIC1复合物表现出增强的DNA结合亲和力,还可在无标记下表征蛋白与核酸的热力学参数与结合动力学,甚至表征结合时蛋白构象变化与获得有关基因编辑过程的分子细节的定量表征。FIDA技术可以处理带负电荷分析物和带正电荷配体,使利用FIDA能够深入了解CRISPR- cas组分之间的结合相互作用,并以更高的准确性和效率表征和优化CRISPR系统。FIDA是一种序列无关的技术-不需要事先了解序列。FIDA的序列独立性质可对未知或未表征的基因组区域进行研究,同时简化工作流程。图7.(A) FIDA实验示意图。ReporterRNA用于识别RNP的大小和饱和点(上),用其报告RNP结构作为竞争分析的起点(下) (B)正向结合(上)和反向滴定(下)期间获得的原始FIDA数据 本研究在分子层面直观的揭示了免疫增效子PcrIIC1的作用。首次发现了一类新型的CRISPR免疫增效子可以通过二聚化Cas9效应器提升Cas9活性,这些结果不仅有助于我们进一步理解CRISPR系统的进化历程,还为未来基于CRISPR免疫增效子的高效基因编辑工具的开发奠定了基础。FIDA对于蛋白质复合体的多维表征和对蛋白与核酸互作亲和力与动力学的的检测,不依赖于分子量变化,样本用量少(仅需40nL),是一种在溶液状态下且不受缓冲液成分影响的多维表征技术。对于在本研究中相似的蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现互作的真实情况。
  • LC故障排查-USP方法调整
    p  若要针对一个不同尺寸的柱调整一种美国药典(USP)方法或满足未能满足的系统适应性标准,在没有重新确认方法的情况下可进行何种程度的修改?br//pp  一位同事最近要我为“LC故障排查”写一篇最新报道,论述美国药典公约现行方法液相色谱法(LC)专业人员谈话时,这都是一个关于研究范围的热门话题。当前所讨论的指导准则源自美国药典第621章(由美国药典[USP]进行简化,此处为 621 )(1)。美国药典至少每两年更新一次,因此最好查阅最新版本查看是否有任何变化。我在此处使用的是2017年5月1日生效的“美国药典40-国家处方集35”(USP 40-NF 35)(1)。!--621--!--621--/pp  首先我要指出一种我经常遇到的错误观念。由于USP 621 已经成为色谱法调整规则的事实标准,许多使用者认为这意味着所有方法。事实上, 621 仅适用于美国药典中公布的专著所述方法。这意味着其不适用于实验室中开发和验证的方法、科学文献中获取的方法或从其他来源得到的方法。综上所述,大多数指导准则都可作为其他许多类型的方法的调整依据。例如,您可以将其用作自有实验室方法调整标准操作规程(SOP)的依据,但在此种情况下,它们只是您自己的指导准则,而非美国药典公约指导准则。最后,当前论述中的指导准则解释完全基于我自己的观点,而非美国药典公约或他方的官方意见。!--621--!--621--!--621--!--621--/pp  strong系统适用性/strong/pp  良好的系统适用性测试是任何液相色谱法可靠运行的关键。此项测试有助于验证整套方法的效果是否好到足以产生精度和准确度均满足要求的分析结果。系统适用性测试通常要对保留时间、柱效率、分辨率、峰拖尾、检测器响应值、精确度和准确度等特征进行一定程度的评估。因此,美国药典对系统适用性的密切关注也就不足为奇(1):/pp  i指定色谱系统可能需要进行调整,以满足系统适用性要求。为满足系统适用性要求而对色谱系统进行的调整不是为了弥补柱故障或系统运行失常。只有当调整或换柱所得色谱符合官方程序规定的所有系统适用性要求时,调整才能得到认可。/i/pp  我对这句话的理解是:若调整未超出推荐范围,且经调整后通过了系统适用性测试,则调整将获得认可。若要继续使用该方法,我只需对调整进行文件记录(并满足我公司所有内部要求),无需进行重新验证。若超出调整限值,调整将被视作方法修改或更高,因此需要进行一定水平的重新验证。/pp  接下来让我们探讨一下USP 621 所列各种调整情形。部分调整可适用于等度或梯度方法,而其他调整则不具普适性。我将各种调整情形总结于表1中。表1最好连同下列论述一同解读,因为下列论述考虑了调整的细微差别。我对此无法找出具体陈述,但表1所列各种变化适用于反相分离,因此我假设这就是意图。!--621--!--621--/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/49e12fb5-0fcf-4d96-9a17-17aed7b5f760.jpg" title="表1.jpg"//pp  strongpH/strong/pp  如表1所示,流动相缓冲液pH容许调整范围为± 0.2单位。乍一看,这就像是一个合理容限。但实际上,大多数实验室在使用pH计时都会考虑± 0.05-0.1pH单位的标准实验室变化。因此应将标准变化量乘以二。例如,标称pH为2.5的方法可在“2.3≤pH≤2.7”范围内进行调整。应用这些指导准则时必须特别仔细-我收集的一副色谱中一个分辨率较高的峰对退化成了pH变化仅为0.1单位的两个几乎没有任何区别的凸起。其他有关pH调整的注意事项参见最新出版的“LC故障排查”pH部分(2)。/pp  strong缓冲液浓度/strong/pp  USP指导允许缓冲液浓度存在± 10%的变化幅度。我对此没有异议,但我怀疑您可能无法观察到反相法中如此微小的变化,除非该方法此时缓冲液不足或者位于饱和点附近。回想上月刊(3)表1相关正交影响的论述,缓冲液浓度的双倍变化在反相条件下不会改变选择性。我认为缓冲液浓度为25mM的方法在色谱不发生明显变化的情况下无法在10-50mM范围内进行调整。就反相液相色谱而言,± 10%的限值范围对我没有任何意义。尽管如此,离子相互作用较为重要时(例如离子交换色谱法或亲水作用色谱法(HILIC)),缓冲液浓度能够发挥重要作 因此,我们不能说缓冲液浓度永远不会改变色谱分离。/pp  strong流动相的组成/strong/pp  表1所列流动相组成相关说明似乎有些令人困惑:流动相微量组分± 30%相对变化,但不超过± 10%。几个实例便可将其解释清楚。首先考虑50:50A-B的流动相,其中“A”表示液体部分(缓冲液或水),“B”表示有机物(通常为乙腈或甲醇)-50%的30%是15%,由于15%大于10%,溶剂浓度辩护不能超过10%。因此,我们可以从40:60 A-B转变为60:40 A-B。这是一项简单的计算,但变化对我而言有些极端-您什么时候见过流动相乙腈变化达± 10%时仍能正常运行?要谨记最近关于保留的论述中所提出的“三倍法则”(4),流动相有机部分变化10%可使保留系数(或良好保留峰的保留时间)变化三倍左右。因此,在使用美国药典流动相调整指导准则时务必小心仔细。/pp  A和B的浓度存在显著差异会出现何种情况(例如:5%的缓冲液和95%的已经)?此种情况下,缓冲液浓度的30%等于1.5%,远低于± 10%的限值。此时的容许范围为3.5:96.5~6.5:93.5 A-B 看起来是一个合理的容许范围。/pp  三元流动相的计算稍微复杂一些:例如,有35:5:60 A-B-C组成的流动相,其中C是指第二种有机溶剂。该例中,30%的30%等于10.5%,因此A的变化限值为10%。我们可使用上文针对B计算得出的1.5%调整率。容许调整可以是A的35± 10%与B的5± 1.5%以及C剩余部分的任意组合。您会发现这里允许存在相当明显的变化-再次提醒大家注意这些变化。/pp  strong紫外检测器波长/strong/pp  检测器波长指导准则有点儿领人费解。检测器波长不容改变,但如果第二个检测器超出校准值3mm以内,则可投入使用。那么,如果我不想使用当前的波长,我会使用一个无法正常运行的检测器吗?当然不会!调整说明就像来自检测器标定还是一种常见问题的时代的“古董”。如今使用的大部分紫外(UV)检测器在启动后都可自动校准检查,并在过程中进行自校准。我已经20年没有见到过紫外探测器校准问题了,估计只有掉落或其他误用情形才会导致检测器出现校准问题。/pp  strong柱长和颗粒尺寸/strong/pp  经允许的柱相关修改是美国药典做出最大改变以改善应用灵活性的领域之一。直到2012年(USP 35-NF 30),允许发生的变化还十分有限。例如,柱长L可改变+70%,这看起来幅度相当大。您可以将150mm柱换成250mm柱(250/150=± 67%)或将柱长从150mm调整为100mm(-33%)或50mm(-67%),似乎都不会有什么问题。您还可以将颗粒尺寸dp减小50%,但不能增加。因此,5subμ/subm(-40%),但不要改的过小。上述推荐做法存在一个明显缺陷,就是:其忽略了柱长和颗粒尺寸对色谱柱塔板数以及分辨率的影响。此外,这些推荐做法无法将5subμ/subm颗粒柱调整为≤2subμ/subm颗粒的超高压LC(UHPLC)柱,或将UHPLC方法调整为更强大的日常作业用5subμ/subm颗粒。因此,尽管这些容限已使用多年并可实现极具实用性的变化(例如:从旧式250mm 105subμ/subm柱转换为目前广泛使用的更标准的150mm 5subμ/subm柱),但它们并不适合如今的实验室环境。/pp  但现在有一种更加灵活的容限,其采用更加严密的科学依据,核心内容是确保色谱柱塔板数和相应的分辨率具备相当高的稳定性。由于板数是柱长度与粒径之商的函数,L/dp比在这里是一项关键因素。只要L/dp保持恒定,便可改变柱长和粒径 该结果中的容许变化范围为-25%~+50%,其具有一定的意义,用为市售产品的离散柱长和粒径数量有限。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/1a7648b5-dbe1-4770-afa2-b252c2f642d8.jpg" title="表2.jpg"//pp  表2内容摘自美国药典现行版本(1),包含部分可实现更改的实例。美国药典许多专著方法已相当落后,规定的柱规格为250mm× 4.6mm,10-μmdp(L/dp=25000)。您可以将该方法轻松升级为150mm× 4.6mm,5subμ/submdp(L/dp=30000) 如此一来,L/dp可增加20%,未超出限值范围。若倾向于使用较小的颗粒,则可使用100mm× 4.6mm,3subμ/submdp(L/dp=33000) 注意,我在这里为方便陈述而对数值进行了四舍五入。您甚至可以使用UHPLC以及装满1.7subμ/subm颗粒的50mm管柱(L/dp=29400),且仍不超出限值范围。上述所有管柱均提供大致相同的板数,因此可实现相同的分离效果。此种情况的假设条件是所有管柱都具备相同的化学性质(具有相同的键合相 来自相同制造商 采用相同包装品牌)。然而,我们不需要过于担心化学变化,因为:若要满足要求,方法还须通过系统适用性测试,任何无法接受的化学变化都会导致系统适用性试验失败。/pp  若使用相同类型颗粒(最常见的颗粒类型是完全多孔颗粒TPP),L/dp方法效果极佳。尽管如此,从TPP转换为应用日益广泛的表面多孔颗粒(SPP)时,此项技术会出现分化。SPP所提供的板数通常对应尺寸更小的颗粒,因此,采用L/dp方法时粒径可能会产生误导。例如,2.7subμ/subm dp SPP柱具有~3subμ/subm dp SPP柱的背压,但板数却更接近~1.8subμ/subm dp SPP柱。因此,上例中50mm,2.7subμ/subm SPP柱的L/dp=18500:若从250mm,10subμ/subm柱攥起,则剧减26%,但与150mm,5subμ/subm柱相比降低近40%。根据L/dp结果放弃SPP柱并无科学意义 相反,在存在一种可选容限,规定板数N应在相同的-25℃~+50℃范围内保持恒定。此种情况下,SPP柱将是一种可接受的替代技术(假设已经通过系统适用性测试)。/pp  strong柱径和流量/strong/pp  只要流量F调整时确保流动相线速度保持恒定,柱径dc便可更改。理论上讲,最大柱效对应线速度随着粒径的改变出现反向增加。针对粒径而调整线速度时最好参照降低的速度。我们当中大多数人都不会担心这种额外的调整,但其包含于方程1(1)中,使所需调整简单明了。除基于方程1而允许进行的更改之外,流量最大调整幅度为± 50%。/pp  img src="http://img1.17img.cn/17img/images/201802/noimg/58875b88-b77f-4ce3-9e31-9a9a616735ee.jpg" title="1.jpg"//pp  其中,下标标识原柱1和新柱2的变量。/pp  表2所列实例描述了250mm× 4.6mm,10subμ/subm柱以150mm柱一半的流量运行。假设初始流量为1.0mL/min,我们会将流量减小至0.5mL/min,以获得相同的较低速度。尽管如此,较低流量与较大柱长的组合会导致运行时间过长 因此,我们大多数人都会保持1mL/min的流量(容许附加调整范围为± 50%),以实现更短的运行时间和合理的压力。表2还列示了新柱相对于原柱的压力和运行时间的估算值。/pp  美国药典论述对粒径变化进行了附加详细说明:若板数减少量不超过20%,则传统LC条件(≥3subμ/subm dp)转变为UHPLC( 3subμ/subm dp)(反之亦然)时允许对流量作进一步调整。只要通过系统适用性测试,此种方法可实现一定的灵活性(可能会受到其他限制)。/pp  最后要注意的是,柱尺寸、粒径和流量调整仅适用于梯度方法。虽然可针对此类变化适当调整梯度方法,它们并未含入现行版美国药典 因此,在决定调整梯度方法时必须进行一定的再验证。/pp  strong进样量和柱温/strong/pp  只要作用方法正常运行,进样量便可增加或减少。若要大幅增加进样量,一定要注意谱带增宽过度和保留时间变化的情况。减少进样量时一定要确保有足够的信号提供可接受的精确度和准确度。高于和低于拟用新进样量进行的多次进样有助于验证(并记录)变化的鲁棒性和适用性。/pp  柱温变化幅度为± 10℃,但要记住,温度没变化1℃,等度保留时间就会缩短约2%。选择性随温度变化而改变,特别是样本中存在可电离化合物时。改变柱温时务必保证样本临界峰的分离不受影响。/pp  strong结论/strong/pp  正如我们所见,美国药典为LC方法调整提供了合理的指导准则。这些容许范围适用于等度方法,但对于梯度方法,其可能会被禁止或不推荐使用,我会再次回到我最开始提出的问题。美国药典指导准则仅适用于美国药典所包含的专著方法的调整。我们认为指导准则不使用于非美国药典规定方法,因此在违反相应规范的情况下不允许更改其他方法。最后,许多公司对美国药典和其他规范性文件都有自己的解释 因此,在决定调整LC方法时必须查阅内部标准操作规程和其他规范性指导。切记:“调整和更改应以文件记录为依据”,因此必须适当保存相应记录。/pp style="text-align: right "【本文由LC/GC杂志供稿,作者:John W.Dolan,LC故障排查编辑】/p
  • 如何用离心机进行两虫的检测?
    茂默科学以客户为本、合作共赢的理念,致力于帮忙客户提供整体实验方案。力求解决行业内客户对科学仪器选型难、维护难的处境。通过不断优化公司运作和提升服务质量,目前已赢得业内人士和广大客户广泛认可,拥有广泛而稳固的合作伙伴和客户群体。现介绍如何用离心机进行两虫检测,欲购买高性价进口离心机,或者快速两虫检测系统,欢迎咨询~贾第鞭毛虫与隐孢子虫(简称“两虫”)是两种严重危害饮用水水质安全的病原微生物。“两虫”具有个体微小,致病量低、感染途径和方式简单,流行分布广泛的特点。2006年我国《生活饮用水卫生标准》增加了“两虫”检测,规定每10L小于1个孢囊或卵囊。今天小编为大家介绍如何用蜀科两虫检测专用离心机来进行两虫的检测。首先要进行接种和样品的淘洗和浓缩,然后开始离心。a. 蜀科两虫检测专用离心机应放在牢固的工作台或地板上,尽量减少晃动。 b. 平衡对称的离心管,和适配器、离心桶一起平衡,重量差别不超过0.5g, 尽量减少摆动。注意:如果离心管不被平衡则会产生额外的震动,影响到目标物的沉淀。 c. 设置离心机参数2000g,15min。样品在离心机中自然惯性停止,不可使用刹车系统急停。 d.用真空泵或蠕动泵吸取离心管中的上清液,在进口处装一个移液器以减少进口的真空力度。终留取5-8ml(可预先在管上做好标记)。流速控制在200±20ml/min。注意把移液管放到液面中心,接近液面处上吸取上清液,以减少沉淀的损失。 e. 将离心管中的剩余的浓缩液在涡旋混合器上混匀20秒。 f. 用缓冲液润洗移液器将所有液体转移至L型试管中。(注意:移液器需要用缓冲液润洗下,是为了避免移液管壁因干燥而将两虫挂壁。) g. 使用纯水清洗两次移液管(如剩余体积为7ml,则每次1.5ml),并将清洗 液移入同一个L型试管中,每次冲洗后都要停留20秒再移出液体。两虫检测专用离心机离心和移液结束后,再进行两虫的捕获和染色,后分析免疫荧光检验的结果就可以判断两虫的情况了。
  • 液相色谱,你问我答(十五)
    反相填料的水解稳定性问有的厂家说他们的柱子的使用pH可以到9或10,而另外的则建议不要大于8。我zui近有根反相柱要用到pH9,因为只有这个条件下我的样品才能完全分离。这超出厂家所说的适用范围,但是柱子的寿命还可以接受。现在我想知道我们应该怎样看待厂家所推荐的pH适用范围。实验已经做出了zui好的回答:如果柱子寿命可以接受那么就可以在推荐的pH范围之外使用。但是我想知道用不同品牌的柱子做的结果是否一样。如果确实一样的话,那么这样用就没什么问题了。填料的pH稳定性是一个比较复杂的问题,很难用一个简单的规则来说明。为了更好的理解我从一些细节上来解释一下。碱性pH中,OH-会攻击并分解硅胶。分解的速度与流动相中的OH-浓度,OH-到填料表面的通道及分解后的硅胶在流动相中的溶解性有关。如你所见,流动相中的pH浓度只是其中一个因素。另外上面所有的过程都与温度有关。在室温下可能工作良好,但是到60℃柱子寿命可能就会明显降低。OH-到填料的通道在填料的稳定性中扮演着重要的角色,填料表面覆盖了致密的C18或C8可以很好的改善稳定性。另外末端封尾也是很重要的。填料表面覆盖的疏水基团可以保护填料免受OH-攻击,其密度是衡量保护能力的尺标。所以我们可以说表面覆盖率高的填料比表面覆盖率低的填料稳定,另外末端封尾的质量也非常重要。在酸性pH中,硅胶自己会分解。因此,键合物的特性只起次要的作用。在相同的键合水平下,单功能结合的硅烷与三功能键合的硅烷其稳定性是没有差别的。但是OH-到填料的通道是zui重要的,因此单功能键合的大的异丙基侧链其稳定性是弱于标准键合相的,因为其zui大覆盖率低。如果柱子一直是使用同一种流动相而没有用有机溶剂冲洗,那么键合相的去吸附和分解是非常缓慢的,因此保留时间也没什么改变。但是硅胶在慢慢的分解。导致的结果就是,柱子可能会毫无征兆的突然坍塌。当然,这种情况下填料密度也是很重要的。孔隙体积大的硅胶没有孔隙体积小的硅胶稳定,因为它的骨架更脆弱。硅胶的孔隙一般在40%-70%,但是它的强度是呈10倍变化的。所以可以根据填料密度来推测键合相的差别。另外,随着填料孔径变大,表面积会减少。所以其他条件一致的话,孔径大的填料要比孔径小的稳定。流动相组分的特性对填料的稳定性也是很重要的。pH相同时,有机缓冲液如氨丁三醇缓冲液【Tris:(HOCH2)3CNH2】,柠檬酸缓冲液和羟乙基呱嗪乙硫磺酸(HEPES)缓冲液的攻击性比通常用的磷酸缓冲液要弱。另外硼酸和甘氨酸即使在pH10也是很温和的。要指出的是在已知的关于填料稳定性的理论研究中都是在等度条件下进行的。当你换到有机溶剂去清洗柱子的污染物的时候,那些吸附在填料上没有键合的基团也可能被洗脱掉。所以,清洗过程也会对柱子的稳定性产生影响。上面的都是针对C18和C8柱的研究。很多极性柱如CN基柱即使在正常的操作过程中其稳定性都要小很多。在pH7时,CN基填料的水解速度是C18和C8填料的1000倍。这样,只要合理操作,即使超过推荐的pH范围,柱子的寿命也还是可以的。zui稳定的柱子是使用高密度硅胶的基质,键合了高密度的C18或C8,加末端封尾。流动相组分的性质对柱子的寿命影响很大,要小心选择。但是,如果分析需要,然后柱子寿命也可以接受,那么大胆的挑战柱子的极限吧!
  • 浅谈离子对色谱法
    小伙伴们在做日常检测,会发现有些项目,测试标准上使用的流动相中加入了像庚烷磺酸钠、四丁基氢氧化铵、四丁基溴化铵等试剂,这类试剂我们称为离子对试剂,它可以用来改善分离和峰形、缩窄样品的保留范围等。离子对试剂可以看成是在高效液相色谱法中引入了离子色谱方法的一种表现。今天小编和小伙伴们聊聊离子对色谱法的保留基本原理和一些特殊问题。离子对色谱法(IPC)可被看做是以分离离子样品为目标的反相色谱法的改良形式。IPC和RPC唯yi不同的条件是IPC在流动相中添加了离子对试剂R+或R-,这些试剂能在平衡过程中,与酸性化合物的A-或碱性化合物的BH+发生相互作用: 离子化溶质 离子对(酸)A-+R+ ⇔ A-R+(碱)BH++R- ⇔ BH+R- 亲水性溶质 疏水性离子对(在RPC保留较少) (在RPC保留较多)使用IPC可令样品的保留行为产生类似于改变流动相pH的变化,但是IPC能更好地控制酸性溶质或碱性溶质的保留行为,而且无需使用极端的pH(如pH2.5或pH8)。典型的离子对试剂包括烷基磺酸盐R-SO3-(R-)和四烷基铵盐R4N+(R+),以及强羧酸(通常是离子化的)(四氟乙酸、TFA;七氟丁酸酐、HFBA(R-)),还有所谓的离液剂(BF4-、ClO4-、PF6-)。有关IPC的保留机理目前有两种说法。一种说法是离子对在溶液中形成,然后被保留在色谱柱上,溶质保留平衡过程如下(以离子化的酸性溶质A-和四烷基铵盐R+形成离子对为例):A-R+(流动相) ⇔ A-R+(固定相)根据这个说法,溶质保留由以下因素决定:① 溶质分子A在流动相中已电离的部分(取决于流动相pH和溶质的pKa);② IPC试剂的浓度和它形成离子对的趋势;③ 离子对复合物A-R+的k值。另一种说法则认为,IPC试剂先被固定相保留,然后溶质的保留是离子交换的过程,例如,离子化的酸性流动相A-和IPC试剂R+X-:A-(流动相)+ R+X-(固定相) ⇕ A-R+(固定相)+ X-(流动相) 即是,离子对试剂 R+X-先吸附到固定相上,然后样品离子A-代替固定相上的反离子X-。这两种IPC的保留过程都可能在任一个给定的分离中占优势,但是哪一种机制起着更为重要的作用既不容易确定,对实际操作也不重要。在IPC中,可以用于控制选择性的分离条件包括:➩ pH;➩ IPC试剂的类型(磺酸盐、季铵盐、离液剂);➩ IPC试剂的浓度;➩ 溶剂强度(B%);➩ 溶剂类型(甲醇、乙腈等);➩ 温度;➩ 色谱柱类型;➩ 缓冲溶液的类型和浓度。无机试剂(或“离液剂”)如ClO4-、BF4-和PF6-可用于代替常用的烷基磺酸盐作为IPC试剂。无机试剂在固定相上的保留较少,它的保留机理更接近上述的di一种说法,在流动相中形成离子对。离液剂能更好地用于梯度洗脱(有较小的基线噪音和漂移),且当B%较高时也能较好的溶解在流动相中。但是使用离子对试剂也有一些特殊问题,在某些情况下需要严格控制流动相pH;温度控制的重现性必须较高(比RPC更需要),此外,IPC中的某些问题不会在RPC分离中出现或与其他RPC有所不同。还有就是出现伪峰、改变流动相周柱平衡缓慢、有不明原因造成的糟糕的色谱峰型等。首先是伪峰。当把样品溶剂(不含样品)注入到IPC中(即空白实验),我们有时会观察到正峰和负峰同时出现的情况。导致伪峰的原因通常是由流动相和样品溶剂的组成之间存在差异引起的。而使用不纯的IPC试剂、缓冲液或其他的流动相添加剂都会使伪峰的问题更为严重。其次是缓慢的柱平衡。当使用新的流动相时,必须用足够体积的流动相冲洗色谱柱以使色谱柱达到平衡。在IPC中,IPC试剂在色谱柱上的吸附和解吸附在某些情况下非常缓慢,这会造成色谱柱不能被新的流动相完全平衡。所以,无论是旧的流动相还是新的流动相含有IPC试剂时,我们必须确定改变流动相后样品的保留具有重现性(需要以新的流动相进行几小时的冲洗色谱柱才能达到完全平衡)。更换IPC试剂时,先用特殊的洗脱剂把先前吸附在色谱柱上的IPC试剂洗脱下来,再用新的流动相对色谱柱进行平衡。阴离子试剂(如烷基磺酸盐)能用组成为50%~80%甲醇-水的洗脱剂洗脱下来;季铵盐需要使用50%甲醇-缓冲液(如,pH为4~5的100mmol/L的磷酸氢二钾溶液,加入磷酸氢二钾是为了减少季铵基团与固定相上离子化的硅醇基间的相互作用)。任一情况下,首先应使用至少等于20倍柱体积的洗脱剂来冲洗色谱柱,然后再使用新的流动相进行柱平衡。另外,像较弱的离子对缓冲液三氟乙酸(TFA)以及离液剂,不会减缓柱平衡的过程,通常用10~20倍的含TFA或离液剂的流动相冲洗色谱柱足以达到柱平衡。用含IPC试剂的流动相进行色谱柱的初始平衡,则平衡过程可能会非常缓慢。为了避免在开展常规实验的每个新系列之前都要进行12h的平衡,我们建议在完成每个系列的实验后把色谱柱浸泡在流动相(含IPC试剂)里储存。这个权宜的方法使得以IPC做含量测定时能更快的达到柱平衡;假如需要每天或每两天重复一次,我们也建议使用这个办法,然而,当以这种方式储存时,其使用寿命可能会缩短。由于IPC试剂与色谱柱的缓慢的平衡过程,即使用较剧烈的洗脱程序,也不可能把IPC试剂完全从色谱柱上洗脱下来。基于这个原因,我们建议已用IPC分离的色谱柱不要再用于开展不含IPC试剂的RPC分离(TFA和离液剂例外)。假如在IPC中观察到糟糕的峰型和(或)柱塔板数的N值较低时,可以考虑改变柱温。以上就是离子对色谱法的保留原理,和一些特殊问题的解决方法,希望对小伙伴们以后用离子对色谱法能有所帮助。
  • 解决方案丨猪肉中四环素类、磺胺类和喹诺酮类药物多残留量的测定
    猪肉中四环素类、磺胺类和喹诺酮类药物多残留量的测定四环素类药物 (TCs)、磺胺类药物 (SAs)和喹诺酮类药物 (QNs)是畜牧养殖中常用到的三类药物,常用来治疗或预防鸡的细菌、支原体和球虫感染,但若使用不当会导致其在动物源性食品中的残留超标, 影响人类健康, 并且会使细菌的耐药性增强。2022年2月1日,GB 31658.17-2021《食品安全国家标准 动物性食品中四环素类、磺胺类和喹诺酮类多残留量的测定 液相色谱-串联质谱法》正式实施,本文参考上述标准,试样中残留的四环素类、磺胺类和喹诺酮类药物,用Mcllvaine-Na2EDTA缓冲液提取,使用HLB柱经睿科Fotector Plus全自动固相萃取仪净化,洗脱液经睿科 EVA 80全自动氮吹仪浓缩,液相色谱-串联质谱法测定,外标法定量。✦1仪器和耗材● 仪器Fotector Plus全自动固相萃取仪EVA 80 高通量全自动平行浓缩仪Agilent 1290Ⅱ/6470高效液相色谱-串联质谱仪Fotector Plus全自动固相萃取仪EVA 80 高通量全自动平行浓缩仪● 耗材HLB固相萃取柱(RayCure,200 mg/6 mL)● 试剂甲醇(优级纯)乙腈(优级纯)正己烷(优级纯)超纯水0.05 mol/L 磷酸二氢钠溶液:取磷酸二氢钠7.8 g,用水溶解并稀释至1000 mL。0.05 mol/L 磷酸氢二钠溶液:取磷酸氢二钠17.9 g,用水溶解并稀释至1000 mL。磷酸盐缓冲液:取0.05 mol/L磷酸二氢钠溶液190 mL,用0.05 mol/L磷酸氢二钠溶液稀释至1000 mL。1 mol/L氢氧化钠溶液:取氢氧化钠4 g,用水溶解并稀释至100 mL。0.03 mol/L氢氧化钠溶液:取1 mol/L氢氧化钠溶液3 mL,用水稀释至100 mL。Mcllvaine-Na2EDTA缓冲液:取柠檬酸12.9 g、磷酸氢二钠10.9 g、乙二胺四乙酸二钠39.2 g,加水900 mL,用1 mol/L的氢氧化钠溶液调pH值至5.0±0.2,用水稀释至1000 mL。洗脱液:取甲醇150 mL,加乙酸乙酯150 mL、浓氨水6 mL,混匀。复溶液:取水40 mL,加甲醇5 mL、乙腈5 mL、甲酸0.05 mL,混匀。2样品制备取试样1 g(准确至±0.01 g)于50 mL离心管,加入Mcllvaine-Na2EDTA缓冲液8 mL,涡旋1 min,超声20 min,高速冷冻离心5 min,收集上清液。下层残渣中加磷酸盐缓冲液8 mL,重复提取一次,合并两次提取液,混匀,备用。● 净化将HLB固相萃取柱安装在Fotector Plus全自动固相萃取仪上,依次用甲醇5 mL、水5 mL活化,取备用液过柱,依次用5 mL水和20%甲醇水溶液5 mL淋洗,吹干,用洗脱液10 mL洗脱。收集洗脱液于EVA-80全自动平行浓缩仪中45 ℃水浴氮气吹干。加入复溶液1.0 mL,涡旋1 min溶解残余物,微孔滤膜过滤,液相色谱-串联质谱测定。具体的固相萃取方法见图3。●固相萃取净化条件Fotector Plus固相萃取方法3液质检测条件● 液相条件● 液相梯度洗脱条件● 质朴仪器参数● MRM参数● 色谱图四环素类、磺胺类和喹诺酮类药物标准溶液总离子流图(20μg/L)4结果与讨论为了验证该方法的回收率,本实验在空白猪肉样品中加入四环素类、喹诺酮类和磺胺类标准品进行加标回收验证(n=3),并采用基质标准曲线定量,数据结果如表-2所示。加标回收率在62.4%~105.6%之间,RSD值控制在15%以内,满足标准要求,说明该方法能够很好地运用于动物性食品中四环素类、喹诺酮类和磺胺类多残留量的检测。表-2.猪肉样品加标回收率及RSD值5总结● 在超声提取步骤时使用冰水浴来进行20 min的超声,可减少由于长时间超声引起的温度升高,而造成目标物的损失。● 应避免样品在浓缩过程中长时间氮吹、过分浓缩干燥,否则可能会造成回收率损失。● 本方法使用睿科Fotector Plus高通量全自动固相萃取仪可实现净化过程的自动化,从活化到上样、洗脱一步到位;最多一天能够处理180个样品,高效便捷地完成固相萃取过程。同时搭配睿科Auto EVA 80高通量全自动平行浓缩仪进行浓缩,二者的样品架可兼容使用,无需进行样品转移,操作连贯简便,避免样品的损失。
  • 液相色谱仪器使用小贴士
    贮液瓶的日常维护  清洁是保持流动相贮液瓶正常使用的关键,使用LCMS级的溶剂和试剂。陈旧的流动相和用久了的试剂应定期废弃,防止生长微生物和组分改变。贮液瓶内壁定期清洗,流动相滤头定期清洗或更换。  液相泵的日常维护  泵的密封圈是最易磨损的部件,密封圈的损坏可能引发漏液或剧烈压力波动 单向阀的正常工作至关重要,它若发生故障,将直接影响流速的稳定性。  日常维护应注意以下几点:  ①使用LCMS级的溶剂和试剂   ②确保系统压力在正常范围   ③使用完缓冲液体系后用纯水冲洗干净,防止盐沉积,系统不运行时应存储在无缓冲液的溶液或有机溶剂中   ④密封圈按照各个生产厂商的建议定期更换。  进样器的日常维护  样品预处理对于防止进样针和进样阀堵塞至关重要。  预处理常用方法:  ①超滤   ②溶剂萃取/去盐   ③固相萃取   ④灌注净化/去盐   ⑤色谱分离   ⑥甲醇或乙腈沉淀蛋白   ⑦酸水解,酶解   ⑧衍生化。  色谱柱的维护和保存  ①每次工作结束,用高比例强溶剂冲洗色谱柱,冲去留在柱上的强吸附组分   ②净化样品,样品中的微粒会进入色谱柱,在柱头上沉积下来,造成柱压升高,柱效降低   ③避免撞击色谱柱,如掉落或超声震荡   ④柱压避免急剧变化   ⑤反相柱C18应保存在纯有机相或50%有机相中,一周不用要卸下,两端用堵头密封,避免干枯。  流动相的选择  LCMS常用的流动相为甲醇、乙腈、水和它们不同比例的混合物以及一些易挥发盐的缓冲液,如甲酸铵、乙酸铵等,还可以加入易挥发酸碱如甲酸、乙酸或氨水等调节pH值 LCMS体系要避免使用含磷或氯的缓冲液,含钠和钾的成分必须1mmol/l。(盐分太高会抑制离子源的信号和堵塞喷雾针及污染接口)含甲酸(或乙酸)2%,含三氟乙酸0.5%,含三乙胺1%,含醋酸铵10&mdash 5 mmol/l。  样品的预处理  从保护仪器角度出发,防止固体小颗粒堵塞进样管道和喷雾针,防止污染MS,降低分析背景,排除对分析结果的干扰 从ESI电离得过程分析看,电荷聚集在液滴的表面,样品和杂质在液滴表面相互竞争,不挥发物(如磷酸盐等)妨碍带电液滴挥发,大量杂质妨碍带电样品离子气化,增加电荷中和的可能。
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 东南科仪将于中山大学大学城药学院举办产品展示,欢迎参观
    进口分析仪器现场展示会 东南科仪是专业提供从基础型到专业化的原装进口实验室和工业检测仪器。国内极具实力的实验室基础仪器集成供应商。总部设立在广州,分别在北京、上海、杭州、成都、西安、深圳设有分公司及办事处。 二十年来坚持服务于国内分析领域,产品资源丰富,种类齐全。目前拥有十多个欧、美、日顶级品牌的总代理及一级代理权。我们将在贵校现场展示授权代理的多个国际知名品牌检测仪器,欢迎观摩、使用,现场将提供详细产品技术资料。。 地点:中山大学东校区(大学城)药学院大楼门口时间:2012年3月13日 星期二 10:30-16:30 产品展示仪器品牌产品简介溶氧仪美国YSI金泉经典品牌经典产品,包括便携式及台式机熔点仪美国Optimelt全自动测量,内置数码相机可实时观测样品熔融情况,可使用触摸屏系统独立操作或连接电脑操作,符号药典及GLP标准,可连接打印机打印输出粘度计美国Brookfield博勒飞DV-II+P,全球最畅销产品,可连接电脑软件使用电子天平德国Sartorius赛多利斯高精度及普及型产品全自动pH/mV计德国Sartorius赛多利斯标准型PH计,自动识别3组16种缓冲液,同步显示PH、温度和缓冲液旋转蒸发仪德国IKA仪科通过RS 232数据接口连接电脑使用实验室软件 labworldsoft 实现自动控制。还可以实现以容积为基础的完全自动蒸馏磁力搅拌器德国IKA仪科新一代最为畅销实验室产品。强力马达,转速范围广移液器日本Nichiryo立洋数字可调微量移液器,可自行校准、整支消毒、抗化学腐蚀性隔膜泵德国WELCH ILMVAC伊尔姆抗化学腐蚀隔膜泵,适用于需要抗化学腐蚀或需要长时间不间断运行的场合欢 迎 参 观 咨 询 !如需具体了解请联系东南科仪 400-113-3003 www.sinoinstrument.com
  • Biametrics发布b-screen高通量分子间相互作用分析仪新品
    Biametrics公司介绍 位于德国的一家高科技公司,专注于无标记分子间相互作用检测技术及仪器的研发和生产。基于专利的SCORE(Single Colour Reflectometry)技术,研发出真正适合于工业高通量无标记分子间相互作检测分析仪b-screen,及适合一般科研实验室的灵活桌面型分子间相互作用分析仪b-screen。b-screen:新一代高通量分子间相互作用分析仪b-screen高通量分子间相互作用分析仪基于专利的SCORE技术(利用反射光干涉原理),整合生物芯片高通量的优势,一次实验可检测20000+样品反应,在极大提升检测效率的同时,将检测成本成倍降低,真正意义上满足高通量筛选实验室分子间相互作用检测分析和筛选。仪器参数技术原理:专利SCORE(Single Colour Reflectometry)技术,反射光干涉原理检测灵敏度:1 pg/mm2动力学:结合速率常数Ka :103-107 M-1S-1解离速率常数Kd :10-6-0.5 S-1样品类型:蛋白质,抗体、肽段、DNA/RNA、多糖、脂类、小分子、细胞、病毒和纳米颗粒样品基质:各种基质,如含DMSO缓冲液、细胞培养基、尿液,血浆,血清,全血等进样方式:自动化流动式进样检测通量:20000+ 样品点/次检测耗材:高通量生物芯片(>20000个样品点) 应用领域:1、蛋白/蛋白相互作用2、动力学3、免标定浓度分析4、基于细胞的分析5、诊断研究创新点:基于专利的SCORE技术(利用反射光干涉原理),整合生物芯片高通量的优势,一次实验可检测20000+样品反应,在极大提升检测效率的同时,将检测成本成倍降低,真正意义上满足高通量筛选实验室分子间相互作用检测分析和筛选。b-screen高通量分子间相互作用分析仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制