当前位置: 仪器信息网 > 行业主题 > >

摄像头探测器

仪器信息网摄像头探测器专题为您提供2024年最新摄像头探测器价格报价、厂家品牌的相关信息, 包括摄像头探测器参数、型号等,不管是国产,还是进口品牌的摄像头探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合摄像头探测器相关的耗材配件、试剂标物,还有摄像头探测器相关的最新资讯、资料,以及摄像头探测器相关的解决方案。

摄像头探测器相关的资讯

  • Withings Home:是摄像头,也是环境监测器
    法国公司Withings从 2009 年开始,一直就在做和健康相关的软硬件产品。从可以测体重、脂肪含量、心率、空气质量的智能体重秤,到与 iPhone 连接的血压计,从可以开启视频模式的婴儿监视仪[监测用户睡眠质量的Aura,到号称迄今最为典雅的健康类智能手表,这些与&ldquo 健康量化&rdquo 相关的硬件,都出自Withings之手。  不过,显然,作为一个曾经拿到3000万美元融资的公司,Withings的野心远不止这些。据venturebeat消息,Withings今天宣布即将发布一款售价为219美元的新产品Withings Home智能摄像头。与Dropcam不同,这款产品除了具有常见的WiFi智能摄像头外,还内置了多种传感器,红外线传感器、扩音器、扬声器、夜灯,可以兼容适配苹果HomeKit。  这款摄像头具有135度的视角,拥有白天和夜晚模式,能探测到哭声,有人出现在摄像范围时也能检测到。而且可以测量温度、湿度、空气中的挥发性有机化合物等,当空气中的VOC超过一定限值后还会报警。  Withings之前的产品,主题都是为人体健康服务,Withings Home的初衷就有点这样的感觉&mdash &mdash 确保人们可以生活在一个既安全又健康的环境中,像是在&ldquo 健康量化&rdquo 的基础上新增&ldquo 环境量化&rdquo 元素。其实,之前像Nest都已经开始在&ldquo 环境量化&rdquo 这个方向努力了,而像Jibo这样的产品这在人与环境的优化互动方面做了扩展。
  • 机器视觉|产品合集:选对摄像头,才能拍摄高清图像
    上次介绍完新伙伴Machine Vision 之后很多菲粉们都对它表示好奇经过留言筛选今天小菲就来说说它的主要产品分类~No.1精致小巧的Firefly SFLIR Firefly S以超紧凑的机身提供您所需的基本机器视觉功能。它体积小,功耗低,重量轻,非常适合嵌入便携式设备。Firefly S通过将强大的相机功能与CMOS传感器相结合,提供非凡的价值。No.2高性能的Blackfly S 板级FLIR Blackfly 板级变体属于高性能机器视觉区域扫描摄像头,设计用于嵌入狭小空间。与许多其他板级摄像头不同,它具有丰富的功能组,适合新的CMOS传感器,与箱式版本功能组相同。以其可靠的兼容性,随时可集成至主流SBC和SOM。Blackfly S 板级型号采用嵌入式系统连接,具有丰富的功能,能够使OEM开发更小、更轻且成本更低的解决方案。No.3高质量成像的Grasshopper3 USB3Grasshopper3 相机系列将新的 CCD 和 CMOS 技术与 Point Grey 的专门技术相结合,实现了高性能、高质量的成像。No.4高速传输的Oryx 10GigE屡获殊荣Oryx 10GigE相机系列支持高达10Gbit/s 的传输速度,并能够以超过60FPS的帧率拍摄4K 分辨率的12位图像,从而允许系统设计员充分利用新传感器。Oryx的10GBASE-T接口是经过证明且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。相机内部功能(包括 IEEE1588 时钟同步以及与支持 GigE Vision 的热门第三方软件完全兼容)为系统设计员提供了相关工具,以便快速开发创新型解决方案。No.5应用程序——Spinnaker SDKSpinnaker SDK是FLIR的下一代GenICam3 API 库,专为机器视觉开发人员而构建。它拥有称为SpinView的直观GUI、丰富的代码示例及全面的文档,可助您更快速地创建应用程序。Spinnaker SDK支持FLIR USB3、10GigE和大多数GigE区域扫描相机。支持平台:Windows 7(32和64-bit)/Windows 10 (32和64-bit)/Desktop Ubuntu 18.04 (64-bit)/Desktop Ubuntu 16.04(32-bit)/Ubuntu 18.04(ARM64)/Ubuntu(16.04 ARMHF & ARM64)/MacOS(Mojave & High Sierra)。以上五款产品: 机器视觉摄像头还有相机深度学习——Firefly DL、冰块外形传感器——BlackflyS USB3/Blackfly S GigE、高性价比——Chameleon3 USB3、多功能结合——Blackfly USB3/Blackfly GigE等产品.
  • 英国发布黑科技:手机摄像头监测心率 或代替传统医疗仪器
    英国Oxehealth 公司开发了一项新型技术,能够让普通摄像头或数码相机集成生物体征监测功能,包括心率、皮肤状况、呼吸率等,具有广泛的应用场景。  我记得在《少数派报告》上映时,人们很担心电影里的一个场景会变成真的:城市里无处不在的监控摄像头会扫描人们的视网膜,读取身份信息。  显然,如果这个技术实现,公共安全可能会更好,但人类几乎没有隐私。不过现实中,首先有可能率先到来的不是身份识别、而是体征监测。  日前,英国Oxehealth 公司发布了一项新技术,只需通过软件技术,即可让普通摄像头、数码相机具有生命体征监测功能,不需要任何特殊硬件。  简单来说,就是将该软件集成到数码相机、摄像头的处理芯片中,便可监测人类心率指数、皮肤状况、呼吸频率等,有望代替传统的医疗仪器。在牛津大学的临床研究中,该技术的精准率几乎与传统医疗仪器一致,令人印象深刻。 有趣的是,该技术并不仅限医疗机构,还可以应用在监狱、家庭、汽车领域,比如集成在汽车仪表盘中,来判断司机是否适合驾驶 或是用于远程照料老人、婴儿等等。虽然并未透露技术细节,但Oxehealth 公司表示,几乎在任何光线下,都能过精准地测量数据。  Oxehealth的CEO Hugh Lloyd-Jukes表示,目前正在积极寻求商业部署,虽然暂时没有登陆医疗市场,但由于其合作伙伴是大名鼎鼎的牛津大学,预计该技术的前景还是非常光明的。也许很快,我们就会看到具有心率监测功能的安全摄像头上市。
  • 检测超低浓度葡萄糖 仿生离子通道布满“摄像头”
    记者28日从杭州医学院获悉,该校许秋然研究员团队联合华中科技大学科研人员,研发出一种基于亚微米通道异质膜的固态纳米通道生物传感器,实现了对不同pH值和线性范围为1皮摩/升—0.1微摩/升的超低浓度葡萄糖的无酶检测。相关研究论文近期发表于国际期刊《化学工程杂志》。活体细胞进行新陈代谢,会与周围环境进行物质交换,细胞膜上由特殊蛋白质组成的离子通道,就是这种物质交换的重要途径。在免疫反应、病原体感染等人体生理、病理变化活动中,细胞膜对糖类的识别起到重要作用。通过离子通道对糖类的分析检测,可以深入了解细胞间糖的选择性跨膜吸收和转运,作为生命科学、临床医学等领域研究的关键参数。此前,糖类检测技术均是基于100纳米孔径以下的纳米通道有可识别的电化学信号,但纳米通道空间有限,电阻较高,目标分子响应信号弱。科研人员持续追求高灵敏度、低检测限的糖类检测技术。本次研究中,该团队设计了一种仿生离子通道,选择具有耐高温、良好吸附性和透水性等特性的阳极氧化铝多孔通道膜AAO,作为这一通道的基底;通过聚多巴胺—金纳米颗粒多层组装的方法,在AAO通道内壁上原位生成并固定了大量可调节大小和密度的金纳米颗粒;通过将大量的糖分子探针修饰在金纳米颗粒的表面,制得了具有ICR特性,并对糖类响应良好的亚微米通道孔径的异质膜。“通俗地讲,修饰探针分子,相当于在仿生离子通道墙壁上安装了摄像头。AAO孔径269纳米,具有更大的修饰空间和流体运输通道,可输出更强的目标分子响应信号。”许秋然解释道,具有ICR特性,相当于给摄像头输入识别程序,更易识别细胞中糖类的电化学信号特征。许秋然表示,这一方法具有通用性,可据此研发出检测仪器,糖类检测仅是抛砖引玉,提供一个具体的检测案例。异质膜作为基底具有普适性,可拓展检测范围,通过修饰分子探针,对氨基酸、蛋白质、DNA等物质进行检测,好比给摄像头输入不同的程序,让它识别不同的对象。
  • 国内首条!车载红外摄像头自动化生产线在光谷建成量产
    近日,高德红外旗下武汉轩辕智驾公司全新车载红外产品生产线建成投用,产品整体性能和生产效率大幅提升,年产能从十五万台提升到百万台。这是国内首条车载红外摄像头AA(主动对焦技术)自动化生产线,可实现全自动、高精度、双6轴光学系统的组装生产、AA调焦、以及视场角、光轴偏差、MTF等多项功能的自动化检测。在传统车载可见光摄像头的生产过程中,AA调焦工艺和自动化线体生产非常常见。AA技术是一种用于确定零部件装配过程中相对位置的技术,可以保证图像传感器和镜头的平行度以及光轴与像面的交点位置。“像车载摄像头这种比较精密的产品,人工装配很容易导致产品性能不一致,纳入AA自动化线体生产后,可以有效提高产品良率。”相关负责人介绍。由于红外摄像头与传统可见光摄像头在成像原理上有很大差异,目前,国内没有专业生产红外摄像头的AA线体厂商。轩辕智驾对标国际先进制造技术,自主设计了自动化线体所需的光学环境,以及相关的调焦、检测算法,联合厂商共同研发出国内首条车载红外摄像头AA自动化生产线。“镜头的全自动化调焦和组装,极大提升了产品的解析力和组装效率。可以实现光轴中心偏差精度在3个像素点内。在清晰度上,除视场角中心,同时也能兼顾视场角边缘的清晰度。”公司负责人表示。自主可控的核心技术,保证了产品的产能、效率和品质,满足了一线车企对先进制造的要求,可加速实现车载红外的规模化量产及应用。在夜晚光线不足、雾霭、雨天等复杂场景下,大部分车辆的智能驾驶功能面临“失能”的尴尬。但红外传感器依然不受影响,由于红外的波长长于可见光,穿透力更强,在雾霾、暴雨等恶劣天气下依然保持敏锐。由于可以看得到“温度”,识别出人和动物等生命体。当前,国内众多车企都在推进红外传感器上车,包括广汽、东风、比亚迪、吉利等车企,以及百度Apollo、Waymo、滴滴等自动驾驶巨头。轩辕智驾作为率先实现量产的车载红外厂商,将为智能驾驶打造经得住市场考验的“安全人摄”。
  • 显微镜连接电脑 摄像头连接到显微镜的安装操作
    显微镜连接电脑 摄像头连接到显微镜的安装操作显微镜可通过USB接口连接电脑和摄像头,用户可以在电脑进行拍照和录像等操作。显微镜摄像头通过高分辨率的CMOS/CCD传感器捕捉显微镜下的图像,然后通过控制器将图像传输到电脑或其他存储设备中。显微镜摄像系统可以用于观察、记录和分析细胞、组织、微生物等样本的结构和特征。它也可以用于医学、生物学、农业等领域的研究和实验中。MHS900显微镜摄像头显微镜摄像头连接到电脑的安装操作如下:1. 准备显微镜、摄像头和电脑,确保它们都是关闭状态。2. 使用相应的接口将数码显微镜与电脑连接起来,通常情况下会使用USB线或HDMI线,显微镜的USB2.0/3.0接口直接插入电脑对应的USB2.0/3.0接口即可,操作比较简单,插好后打开视频软件就可以使用了。3. 打开显微镜的电源,调整显微镜的焦距,使其清晰。(可以先放一张白色的纸张,调节好距焦。)4. 打开电脑,找到对应的驱动程序并安装,通常可以在显微镜摄像头的说明书上找到。5. 安装完成后,打开显微镜摄像头的软件,通常会在电脑的右下角或任务栏中显示。6. 在软件中选择“连接”或“导入”选项,然后选择要连接的数码显微镜品牌/型号。7. 等待软件与显微镜建立连接,连接成功后,可以在软件中看到显微镜中的图像。8. 可以使用软件进行拍照、录像、测量等操作,同时也可以将图像导出到电脑中进行进一步处理和分析。显微镜摄像系统界面显微镜摄像系统:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm显微镜摄像头:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm如果您的显微镜需要升级拍照功能和安装,请与我们联系。
  • 新型探测器可快速获取二维图像
    由新型材料制造的探测器可以立刻扫描出整个物体,并生成二维图像。图片来源:http://phys.org  近日,美国杜克大学的研究团队利用一种性能独特的材料,成功研制出部件更少、获取图像效率更高的探测器。相关研究成果日前在线发表于《科学》。  据介绍,这种新型材料名为“超级材料”,其微观结构是由一个个方形孔隙组成,每个方形孔隙都经过调谐,可以通过特定频率的光波。将这种材料蚀刻在铜片上后,即可收集图像,起到传统探测器摄像头的作用。  “利用这种材料,我们无需借助传统探测器摄像头中的透镜以及相关机械传动装置,即可获得被检测物体的微波图像。”该研究团队成员、杜克大学普拉特学院电气工程和计算机系研究生约翰亨特说。  他告诉记者,这种材料在被蚀刻于铜片之后,具备了很强的可塑性,并且坚固耐用。在使用时,可以被挂在安保场所的墙上,甚至像地毯一样被铺在地上。由于该材料上每个孔隙都可以单独接收某一频率光波所形成的图像,因此,将不同频率光波形成的图像合成后,即可获得被检测物体的全景图像。  亨特表示,机场中的安检设备等传统探测仪器,需要用透镜以及配套的机械传动装置对物体进行扫描。“在得到图像之前,你必须等待扫描过程的完成。而‘超级材料’中的每个孔隙,都相当于一个单独的‘摄像头’,因此,由这种材料制造的探测器可以立刻扫描出整个物体,并生成二维图像。其效率要比传统仪器高出许多,并使得我们可以在获取图像的同时,对图像进行压缩、处理。”他说。  此外,“用这种材料作为‘摄像头’的探测器也不再需要透镜、机械传动装置以及配套的信息存储与传送系统了。”该研究团队另一成员、美国加州大学博士后汤姆得利斯科尔说。  目前,研究者正对这一新型探测器进行改进,以使其能够获取三维图像。  据悉,该研究获得了美国空军科学研究办公室的资助。
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 聚焦视觉技术!岛津参加第三届国际摄像头技术应用大会
    2021年7月23日,第三届国际摄像头技术应用大会在深圳隆重开幕。会议聚焦垂直腔面发射激光器技术、光学镜头、摄像头、无人驾驶&感知技术。 岛津企业管理(中国)有限公司分析计测事业部市场部刘舟先生在“光学镜头技术应用”会场发表了《镜头的光学力学及异物表征评价》,他介绍了岛津仪器在光学镜头领域的整体解决方案,包括超小光学透镜,滤光片的透过反射率,镜头模组透过率,光学玻璃的力学性能评价,镜头异物及电路版的失效分析,异物分析。岛津分析计测事业部市场部刘舟先生 岛津自1875年创立以来始终坚持“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。岛津拥有丰富多样的分析检测设备,及完善的售后服务体系,可多方位应对光学镜头测试需求。
  • 鑫图实时图像拼接和实时景深融合功能将免费为MIchrome显微摄像头用户开放
    搭载MIchrome 5 Pro相机的显微镜在移动载物台的数秒钟时间,如同手机全景摄影一样,完成了显微视频图像到全景拼接的整个过程。 不论4倍、10倍,还是40倍,横轴、纵轴,还是任意角度,MIchrome 5 Pro都能快速准确拼接。 轻快、顺畅、省心! 这样的体验来源于鑫图全新计算成像软件——Mosaic 2.0,不仅提供实时自动拼接功能,还同时提供实时景深融合(EDF)。 得益于鑫图自研的智能拼接算法模型结构,以及大量的显微图像训练和应用测试,Mosaic 2.0 不仅不会出现传统进口软件错拼的尴尬局面,而且和动辄数千美元的定价不同, Mosaic2.0完全向MIchrome 5 Pro用户免费开放。 技术发展到如今高度整合的程度,显微摄像头,尤其是旗舰级别的显微摄像头远不是简单的CMOS芯片、传输控制单片机、成像软件等硬件组合到一起再固定到显微镜接口上那么简单。以鑫图MIchrome 5 Pro为例,鑫图就做了这一技术的原型机,但直到2018年8月,带着智能算法的MIchrome 5 Pro才最终与用户见面。MIchrome 5 Pro的整个方案分为四层,算法、应用、软件层和硬件层。 “鑫图光电的核心竞争力其实是在最上两层,视觉的应用层以及核心的算法能力层。” 鑫图光电高级研发经理赵泽宇博士在发布会上提到,上文提到的实时图像拼接正是集中于这两个层面。 在MIchrome 5 Pro的这套显微成像解决方案中,实际上也涵盖了硬件和软件方面,承担核心图像处理功能的“ISP”就是其中创新意义的典型。 ISP也叫“图像处理引擎”,是目前苹果、华为、谷歌等手机行业一众大佬的竞争天王山所在,谁拿下品质更高的ISP,谁就能向消费者展示一个更精彩的世界。显微成像应用中,这个结合了自动白平衡、自动曝光、高动态范围等复杂算法的处理引擎拥有同样的重要性。 然而日益巨大的ISP算法处理量会让CPU不堪重负,传统方案往往不得不对图像质量进行让步或者导致传输速率急剧下降。 如何开发出更高质量的显微成像ISP,成为各个厂家面临的关键问题。 针对这一问题,作为科学成像领导者的鑫图光电,日前提出了全新的FPGA芯片端全ISP解决方案,创新地将显微行业首个自研ISP集成到28纳米工艺的FPGA芯片中,利用FPGA芯片巨大的并行处理能力完成图像的高速处理,并发布了基于该技术的MIchrome 5 Pro——这款姗姗来迟的显微相机。 可以预见的是,在信息量成十倍百倍增加的显微成像中,计算成像带来的优势将被更多的用户感受到。实时拼接和实时景深融合只是智能显微成像新模式的冰山一角,而鑫图此次发布的MIchrome 5 Pro,针对显微成像从硬件到ISP和算法的一揽子解决方案,作为先锋将居功至伟。产品型号 MIchrome 5 Pro MIchrome 20 MIchrome 6芯片型号 IMX264LQR-C IMX183CQJ-J IMX178LQJ-C芯片尺寸 2/3" 1" 1/1.8"快门方式 Global Rolling Rolling分辨率5MP20MP6.3MP 帧率 35fps@ 15fps@ 40fps
  • FLIR红外热像仪模块Lepton用于EOC早期火灾探测摄像机
    FLIR Lepton可为建筑环境和电动汽车充电站提供超灵敏的24/7早期火灾探测功能。近期,Teledyne Technologies旗下的Teledyne FLIR宣布,韩国视频安全和热成像IP摄像机公司Eye on Cloud(EOC)将在其早期火灾探测(EFD)系列IP摄像机中采用Teledyne FLIR红外热成像仪模块Lepton。EOC推出的早期火灾探测系列产品,是“Thermal by FLIR”合作的一部分。Teledyne FLIR红外热像仪模块Lepton在美国制造,并且不受《国际武器贸易条例》(ITAR)约束,是世界上产量甚高的长波红外(8 µm至14 µm)热成像模块。Lepton结构紧凑、经济高效,实现了各种热成像创新应用,已被数百万客户采用。Lepton提供多种分辨率和视场(FoV)选项,并且特定型号还提供绝对温度输出。Lepton的低功耗、卓越的图像质量和集成支持,可助力客户实现移动、小型电子产品和无人值守传感器的创新性产品开发,适用于智能建筑、火灾探测、占用跟踪、设备状态监控等。红外热像仪模块Lepton技术参数为了降低开发成本并缩短上市时间,Teledyne FLIR不断改进Lepton的在线集成工具箱。应用说明、集成视频、快速入门指南,以及用于在Windows、Linux、Raspberry Pi和BeagleBone上进行测试的补充源代码可确保高效的集成。对于高级、大规模计划,Teledyne FLIR技术服务团队可对MyFLIR®应用软件和图像增强MSX®,以及Vivid-IR™的许可提供支持。EOC开发的HI1612-OH和HI1612-MW系列早期火灾探测摄像机提供多种分辨率选项,可用于持续监控电动汽车(EV)充电站和其它关键的基础设施、安全设施等。通过非接触式温度测量,FLIR Lepton可以在火灾前识别升高的热量,然后触发警报系统。EOC符合ONVIF标准的早期火灾探测摄像机有助于提高安全性,同时使消防人员能够比依靠传统的烟雾报警器更快地扑灭潜在火灾。EOC部分产品展示,其中第二个为早期火灾探测摄像机Teledyne FLIR产品开发副总裁Mike Walters表示:“我们开展了‘Thermal by FLIR’计划,以支持客户针对新的和正在开发的应用进行创新。EOC及其在电动汽车充电站和其它建筑环境中的早期火灾检测工作是FLIR Lepton和‘Thermal by FLIR’计划的自然合作基础。”“Thermal by FLIR”计划是一项合作产品开发和营销计划,支持原始设备制造商(OEM)将Teledyne FLIR红外热像仪模块集成到产品中,并为后续产品创新提供上市支持。EOC首席执行官(CEO)Dong Gyun Shin表示:“变电站、建筑和电动汽车停车设施的管理人员(包括购物中心和办公楼)需要能够帮助他们更好地检测可能威胁生命和财产的火灾的解决方案。我们的早期火灾探测系列摄像机采用‘热成像+可见光’双成像,提供了一种成本相对较低但有效的方法,可以在潜在火灾发生之前就识别出来。”关于Teledyne FLIRTeledyne FLIR专注于设计、开发、生产用于增强态势感知力的专业技术。通过热成像、可见光成像、视频分析、测量和诊断以及先进的威胁检测系统,Teledyne FLIR将创新的传感解决方案带入日常生活中。Teledyne FLIR提供多样化的产品组合,服务于政府与国防、工业和商业市场中的众多应用。Teledyne FLIR产品帮助救援和军事人员保护和挽救生命,提高行业效率,并创新面向消费者的技术。Teledyne FLIR致力于加强公共安全与人们的生活福祉,提高能源和时间效率,为健康和智能的社区做出贡献。
  • 电镜那么多探测器,拍摄时我到底该如何选择?
    “TESCAN电镜学堂”终于又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。那我们该如何根据样品类型以及所关注的问题选择合适的电镜条件呢?这里是TESCAN电镜学堂第12期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第五章 电镜操作与工作参数优化第三节 常规拍摄需要注意的问题电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。前几期我们已经介绍过加速电压、束斑束流、工作距离该如何根据实际应用需求选择。本期将为大家继续介绍明暗对比度、不同探测器对扫描电镜拍摄的影响。§4. 明暗对比度的影响一张清晰的电镜照片需要有适中的明暗对比度,可以利用电镜软件中的直方图工具来进行明暗对比度的判断,如图5-30。直方图的横坐标表示亮度,左为暗部,右为亮部,纵坐标表示各种灰度所占的比例。图5-30 直方图工具一张明亮对比适中的图片,需要暗处、亮处、中间灰度均有分布,直方图从中间到两边类似正态分布,如图5-31。图5-31 亮度与直方图当图像亮度过亮、过暗都会导致另一端没有灰度信息,导致图像信息损失。对比度的调节希望整个灰度分布恰好覆盖大部分区域,如图5-32,对比度太小则灰度仅覆盖中间很少区域,而对比度太大,会造成亮处、暗处有信息损失。在开始扫描的时候尽量将明暗对比度调节至最合适的条件,如果一开始明暗对比不适合,利用软件自带的处理工具可以对图像进行优化,如图5-33。调整完的可以清楚的判别出其中至少五种灰度衬度,而调整前只能勉强分辨四种衬度。图5-32 对比度与直方图图5-33 明暗对比度的影响及对应的直方图§5. 探测器的选择TESCAN的场发射扫描电镜如果配置齐全包括SE、InBeam-SE、BSE、InBeam-BSE、STEM-BF、STEM-DF六个独立的探测器,前面已经在电镜结构中简单介绍了各个探测器的原理和特点。在平时拍摄时,选择不同的探测器也会获得不同的效果。图5-34 TESCAN电镜所有的电子探测器① SE和BSE探测器的对比SE和BSE分别是旁置式电子探测器和极靴下探测器,前者接收二次电子和部分低角背散射电子,后者接收大部分低角背散射电子探测器。所以从图像效果来说,SE探测器的图像以形貌衬度为主,立体感强,兼有少量的成分衬度;BSE探测器的图像以成分衬度为主,兼有一定的形貌衬度,如图5-35。图5-35 SE(左)和BSE(右)探测器的衬度对比② SE与InBeam-SE探测器的对比SE和InBeam-SE探测器相比,前者在侧方,具有阴影效应,可以形成强烈的立体感,而后者位于正上方,不会受任何形貌的遮挡,立体感较差,如图5-36。图5-36 SE(左)和InBeam-SE(右)探测器的立体感对比SE探测器接收SE1、SE2、SE3和部分BSE信号,分辨率相比只收集SE1的InBeam SE探测器要低,如图5-37。图5-37 SE(左)和InBeam-SE(右)探测器的分辨率对比对于一些凹坑处的观察,由于InBeam-SE探测器在上方没有遮挡,所以会比SE探测器有更多的信号量,InBeam-SE探测器更适合做凹陷区域的观察,如图5-38。图5-38 SE(左)和InBeam-SE(右)探测器对凹陷处观察对比③ BSE与InBeam-BSE探测器的对比BSE探测器主要采集低角背散射电子,InBeam-BSE探测器采集高角背散射电子,前者兼有成分和形貌衬度,后者相对来说成分衬度占主要部分,形貌衬度相对较弱。不过后者接收的电子信号量小于前者,所以信噪比也不如前者,如图5-39。图5-39 BSE(左)和InBeam-BSE(右)探测器受形貌影响的对比对于能观察到通道衬度的平整样品来说,BSE探测器显然有更好的通道衬度,更有利于晶粒的区分,如图5-40。图5-40 BSE(左)和InBeam-BSE(右)探测器通道衬度的对比④ STEM探测器的应用电子束轰击到试样上形成水滴状的散射,但当试样足够薄时,电子束的散射面积还没有扩大就已经透射样品,所以此时各种信号的分辨率较常规样品更高,STEM探测器也有更好的分辨率。STEM探测器由于需要样品经过特殊的制样,虽然在扫描电镜中不常用,但是却有着所有探测器中最高的分辨率。当二次电子和背散射电子探测器分辨率都达不到要求时,可以尝试STEM探测器。如图5-41,二次电子探测器在20万倍下已经分辨率不够,而STEM放大至50万倍也能很好的区分。图5-41 SE(左)和STEM(右)探测器分辨率的对比此外,对于一些纳米级的小颗粒,因为团聚厉害,二次电子即使在低电压下也难以将其区分,且分辨率也不好,而STEM探测器通过透射电子来进行成像,对小颗粒的区分能力要强于其它探测器。如图5-42,STEM探测器可以区分团聚在一起的更小的单个纳米颗粒,而二次电子探测器则观察到团聚在一起的颗粒。图5-42 STEM(左)和InBeam-SE(右)探测器对团聚纳米颗粒的分辨对比扫描电镜中的STEM探测器虽然分辨率是最高的,但是和透射电镜的分辨率相比还是相形见绌。不过扫描电镜的电压要远小于透射电镜,所以扫描电镜的STEM相比TEM有着更好的质厚衬度。所以对一些不是非常注重横向分辨率,但特别注重质厚衬度的样品,如一些生物样品、石墨烯等,扫描电镜的STEM探测器可以表现出更大的优势。如图5-43,为10kV下观察到的石墨烯试样,图5-44为生物样品在扫描STEM和TEM下的对比。图5-43 STEM探测器在10kV下拍摄的石墨烯试样图5-44 生物试样在SEM STEM探测器和TEM的对比⑤ 多探测器同时成像TESCAN的电镜具有四个独立的通道放大器,可以进行四个探测器的同时成像。如果分辨不清楚用何种探测器时,可以选择多种探测器同时成像。然后在软件中将需要的图像进行通道分离,如图5-45。 图5-45 四探测器同时成像
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 跟踪污染、监测气变 声波驱动的无线水下摄像机面世
    科学家估计,超过95%的地球海洋从未被观测到过,而为水下摄像机长时间供电成本太高,阻碍了对海底的广泛探索。美国麻省理工学院(MIT)研究人员开发出一种声波驱动的无电池无线水下相机,为解决这一问题迈出了重要一步。该相机的能效比其他海底相机高出约10万倍,即使在黑暗的水下环境中,也能拍摄彩色照片,并通过水无线传输图像数据。研究论文发表在最近的《自然通讯》上。  该相机的自主摄像头由声波驱动。它能将穿过水的声波的机械能转化为电能,为其成像和通信设备提供动力。在捕获和编码图像数据后,相机还使用声波将数据传输到重建图像的接收器。因为它不需要电源,所以相机可在探索海洋之前连续运行数周,使科学家能够在海洋的偏远地区寻找新物种。它还可通过拍摄监测海洋污染情况或水产养殖场鱼类的健康和生长。  团队成员称,这款相机最令人兴奋的应用之一是气候监测。科学家正在建立气候模型,但缺少来自95%以上海洋的数据。这项技术可以帮助他们建立更准确的气候模型,更好地了解气候变化如何影响海底世界。  为制造可长时间自主运行的相机,研究人员需要一种可在水下单独收集能量而自身功耗很少的设备。相机使用由压电材料制成的传感器获取能量以及超低功耗成像传感器,即使图像看起来黑白相间,红色、绿色和蓝色的光也会反射在每张照片的白色部分。图像数据在后处理中合并时,就可重建彩色图像。  研究人员在几种水下环境中测试了相机。在其中一次,他们捕捉了漂浮在新罕布什尔州池塘中的塑料瓶的彩色图像。他们还能拍摄出高质量的非洲海星照片,照片中甚至连沿着海星手臂的微小结节清晰可见。该设备还有效地在一周的黑暗环境中反复对水下植物进行成像,以监测其生长情况。
  • 美“深度撞击”探测器近距离拍摄哈特利2号彗星(图)
    2010年11月4日,美国宇航局“深度撞击”探测器对“哈特利2”号彗星进行了近距离拍摄。当时探测器距彗星的距离约为700公里。“哈特利2”号彗星是一个短周期彗星,1986年由天文学家马尔科姆哈特利发现,其直径约为1.2千米至1.6千米,每6.47年绕太阳一周。专家认为,这颗彗星之前的轨道可能靠近木星,后来可能是受到撞击等原因,其运行轨道逐渐靠近太阳。
  • 蓝菲光学助力火星生命探测计划
    从人类第一次抬头仰望星空时,对宇宙的好奇心便永远种在了我们心底。浩瀚宇宙,除了人类还有其他智慧文明的存在吗?火星2020任务NASA火星漫游者毅力号于2020年7月从佛罗里达州卡纳维拉尔角空军基地发射升空,2021年2月在杰泽罗陨石坑登陆火星。这次任务预计将持续至少一个火星年(687个地球日)。该任务是火星探测计划的一部分,计划内容是对这颗红色星球进行长期的机器人探测。此次科学任务优先的目标,涉及包括火星是否存在生命等关键问题。这次任务还试图收集证据,展示未来人类探索火星所需的技术。其中包括测试从火星大气中产生氧气的方法,确定其他资源(如地下水),改进着陆技术,描述天气、灰尘和其他可能影响未来在火星生活和工作的宇航员的潜在环境条件。2021年2月18日,火星漫游者毅力号在一个巨大陨石坑的表面完美着陆。全副武装的漫游者毅力号装载了29个摄像头作为眼睛,这些摄像机分别负责帮助它寻找着陆点、检查降落伞的,或是帮助它安全地在火星地面行进...其中,承担研究火星地形任务的桅杆安装式摄像机系统“ Mastcam-Z”双摄像头系统,负责对火星上的近处和远处的物体进行详细检查。“ Mastcam-Z”可以放大(因此称为“ Z”)、对焦并以各种比例拍摄3D图片和全景图,能有效提升火星生命探索的效率与准确性。通过观察整个景观并识别出其他仪器值得仔细观察的岩石和土壤(杂岩),“ Mastcam-Z”协助漫游者号进行其他实验。他们还将为漫游者号发现重要的岩石,以便在火星表面进行采样和储存,从而将来把样品带回地球。作为火星2020任务的“两只眼睛”,研究人员在早期就发现由于处在火星的低光照度环境下(约为地球光照度的44%),摄像系统的成像品质将大打折扣。为解决这一问题,英国豪迈旗下的蓝菲光学联合亚利桑那州立大学研究出一套光源校准方案。蓝菲光学为Mastcam-Z提供了积分球光源,用于完美校准每个摄像机。Mastcam-Z团队通过蓝菲光学的积分球均匀光源准确地校准摄像机灵敏度,并将亮度设置为火星上典型的太阳光照射场景的相同水平。这一方案大幅提升了Mastcam-Z的成像品质,向基地输送了超高清晰度的影像数据。图 |Mastcam-Z摄像机正在对着蓝菲光学(Labsphere)积分球光源拍摄。 ASU地球与太空探索学院的Mastcam-Z首席研究员Jim Bell在对飞行相机进行测试后说:“Mastcam-Z将是首台可变焦的火星彩色相机,能有以超高的分辨率拍摄3D图像。在测试和校准过程中,我们发现这款摄像机的性能非常好-达到或超过了所有性能要求。”深耕光学领域,蓝菲光学对技术的探索和创新从不间断。如你想了解更多关于蓝菲光学的资讯,可前往蓝菲光学官网查阅详情。
  • 美探测器十年火星照片:壮观陨坑宽20公里(多图)
    北京时间12月21日消息,据美国国家地理网站报道,美国宇航局的“火星奥德赛”探测器自2001年进入这颗红色行星的轨道以来,已经对其进行了近10年的观测,下面是该探测器拍摄的部分火星图片。  1.宏伟壮观的火星陨石坑  宏伟壮观的火星陨石坑(图片提供:NASA/JPL-Caltech/ASU)  一颗陨石猛烈撞击火星,在地表形成巴库洛尔(Bacolor)陨石坑,碰撞产生的能量使地表远古物质向四面八方飞溅。巴库洛尔陨石坑是这颗红色行星表面的一个直径12英里(20公里)的深坑。这张“宏伟壮观的”火星陨石坑图片,是利用“火星奥德赛”探测器上的热辐射成像系统(THEMIS)在2002年到2005年间拍摄的照片合成的。据美国宇航局说,这周“火星奥德赛”探测器成为火星史上工作时间最长的飞船。  该飞船在2001年10月24日进入火星轨道,到今年12月15日,它已经在这颗红色行星周围工作了3340天(近10年)。“火星奥德赛”打破了“火星全球探勘者”号之前创下的记录,后者在1997年9月11日进入火星轨道,2006年11月2日停止运行。据加利福尼亚州帕萨迪纳美国宇航局喷气推进实验室“火星奥德赛”项目科学家杰弗里普朗特说,迄今为止“火星奥德赛”获得的最有名的发现,也是它的第一项发现——找到有大量水冰埋藏在干燥的火星地表下的证据。他说:“这一发现非常令人兴奋,因为这是该任务的一个重要目标。”  2.崎岖不平的火星地形   崎岖不平的火星地形(图片提供:NASA/JPL-Caltech/ASU)  从这张合成图上可以看到夜迷宫(Noctis Labyrinthus)裸露区的高原和山谷,这是利用“火星奥德赛”在2003年到2005年收集的数据合成的。这种崎岖不平的地形是由火星外壳拉伸和碎裂形成的。当断层分开时,地下冰和水会从裂缝涌出,导致地表坍塌。普朗特表示,“火星奥德赛”的最初任务有两个:确定火星表面的组成成分和测量这颗红色行星的放射性,为未来可能进行的人类火星探索任务做准备。  3.火星峡谷合成图  火星峡谷合成图(图片提供:NASA/JPL-Caltech/ASU)  这张迷宫(Noctis Labyrinthus)的峡谷伪彩色合成图,是用“火星奥德赛”在2003年4月到2005年9月间收集的图片合成的。该图着重强调了一个峡谷交汇处形成1.3万英尺(4000米)深的洼地。  按照最初计划,“火星奥德赛”还有一个飞船同伴,即已知的“2001火星观测者”登陆器,但是1999年火星气候轨道器和火星极地登陆者”号探测器失灵后,美国宇航局取消了该任务。  然而,为被取消的这项登陆器任务设计的仪器,又用在了美国宇航局的其他火星登陆器——“凤凰”号上,这颗探测器于2008年到达火星表面,现在已经停止运行。美国宇航局的普朗特表示,“火星奥德赛”的飞船同伴以这种方式“最终到达火星”。“这也是该探测器取名‘凤凰’号的原因——凤凰燃为灰烬后,再从灰烬里得到重生。”  4.泪滴状台地  .泪滴状台地(图片提供:NASA/JPL-Caltech/ASU)  从这张由“火星奥德赛”探测器拍摄的照片可以看到,位于火星战神谷(Ares Vallis)地区附近的泪滴形状的台地向外延伸开来。科学家认为,凸起的岩石结构曾转变了火星表面的洪水流向。这个探测器长期围绕该行星运行,使科学家可以监控火星上每年的季节变化,其中包括冬季极区上空大气里的二氧化碳是如何凝结的。  5.被穿透的陨石坑  被穿透的陨石坑(图片提供:NASA/JPL-Caltech/ASU)  火星上的这个重叠陨石坑看起来就像是一个被箭穿透的苹果。这张图片是美国宇航局的“火星奥德赛”探测器在2005年5月拍摄的。每个陨石坑的直径都有几英里,这是由一颗陨石在落地前的很短时间内分裂成两个后,在地面撞击出来的两个碗状陨坑。普朗特表示,“火星奥德赛”一生比较幸运,没有遇到过真正的困难。但在2003年的万圣节期间发生过“最大危机”,一个“超级太阳暴”释放出大量带电粒子,对火星表面的所有电子设备都造成了巨大破坏。“火星奥德赛”上的辐射测量仪失灵,不过稍后它又恢复了正常。  6.火星沙海  火星沙海(图片提供:NASA/JPL-Caltech/ASU)  在这张合成图上看到的这些由风塑造的黑色沙丘海洋,是利用“火星奥德赛”在2002年12月到2004年11月间拍摄到的照片合成的。这片沙丘位于火星北极极冠上,面积相当于德克萨斯州那么大,它拥有更冷区域(蓝色)和更温暖的区域(黄色和橙色)。普朗特表示,对于一艘在轨道里运行了将近10年的飞船来说,“火星奥德赛”目前的状况非常好。  它的大部分仪器仍在继续运行,“火星奥德赛”的备用系统还从没用过。也许这艘飞船面临的主要限制因素,是它在轨道里运行一周所需的少量燃料。据科研组成员估计,如果这艘飞船的轨道没有太大调整,“火星奥德赛”剩下的燃料最少还可供它运行10到15年。  7.沙丘艺术  沙丘艺术(图片提供: NASA/JPL-Caltech/ASU)  在2006年“火星奥德赛”拍摄的这张照片上,由众多风塑沙丘构成的图案,看起来很像一幅抽象画。按照最初计划,该飞船是去执行一项持续时间仅为3年的任务,但是到今年的10月,美国宇航局已经把它的工作寿命延长了3倍。现在该飞船打算运行到2012年底,这项任务可能还会被延长,用来帮助美国宇航局的火星科学实验室——“好奇”号,该计划预计将于2012年8月发射升空,前往火星。  美国宇航局的普朗特表示,目前“火星奥德赛”担任该局的火星车“勇气”号和“机遇”号的通讯中转站,它或许也能为“好奇”号提供相同服务。他说,“如果2012年后这艘飞船依旧很‘健壮’,我们将会继续让它再运行几年。”
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008 年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 更多宇宙的声音可以被新探测器听见
    欧洲爱因斯坦望远镜艺术图 图片来源:ET概念设计团队 5年前,当物理学家首次探测到引力波时,他们为宇宙打开了一扇新的窗户。引力波是大质量黑洞或中子星碰撞时产生的涟漪。现在,研究人员已经在计划更大、更灵敏的探测器。而且,美欧之间的竞争已经初露端倪,美国科学家提出建造更大的探测器,而欧洲研究人员则在追求更激进的设计。  “目前,我们只捕捉到最罕见、最响亮的事件,但在宇宙中还有更多的声音。”美国加州州立大学天体物理学家Jocelyn Read说。加州理工学院物理学家David Reitze也表示,物理学家希望新的探测器能在21世纪30年代运行,这意味着他们必须现在就开始计划。“引力波的发现已经吸引了全世界的目光,所以现在是思考接下来会发生什么的好时机。”  目前的探测器都是L形的仪器,叫做干涉仪。激光在悬挂在每条臂的两端的镜子之间反射,有些光线会漏出来,在L形臂的弯处会合。在那里,光的干涉方式取决于臂的相对长度。通过监测这种干扰,物理学家可以发现通过的引力波,这种引力波会使臂的相关数值产生不同程度的变化。  因此,为了探测空间的微小拉伸,干涉仪的臂必须很长。发现了第一个引力波的位于路易斯安那州和华盛顿州的激光干涉仪引力波天文台(LIGO),臂长达4公里。位于意大利的Virgo探测器有3公里长的臂。  现在,研究人员现在想要一种灵敏度比现有设备高10倍的探测器。它能发现可观测宇宙中所有的黑洞合并,甚至可以追溯到第一批恒星出现之前,从而寻找大爆炸中形成的原始黑洞。它还应该能发现数百个“千新星”,揭示中子星超密度物质的本质。  美国科学家对新探测器的愿景很简单。“我们只想把它做得非常非常大。”Read说。Read正在帮助设计“宇宙探索者”—— 一个臂长40公里的干涉仪,本质上是一个放大了10倍的LIGO。  指导了LIGO建设的加州理工学院物理学家Barry Barish说,这种批量设计可能使美国能够负担得起多个分离的探测器,这将有助于新设备像现在的LIGO和Virgo一样精确定位天空中的事件源。  但安置这样巨大仪器可能很棘手。40公里的臂必须是直的,但地球是圆的。如果L形的弯道位于地面上,那么干涉仪的末端可能必须放在30米高的护堤上。因此,美国研究人员希望找到一个碗状区域,以便容纳这种结构。  相比之下,欧洲物理学家设想了一个地下引力波天文台,称为爱因斯坦望远镜(ET)。意大利国家核物理研究所物理学家、ET指导委员会联合主席Michele Punturo说:“我们想要实现一个能够在50年内承载(探测器)所有进化的基础设施。”  ET将由多个V形干涉仪组成,臂长10公里,排列在一个深埋地下的等边三角形中,以帮助屏蔽振动。借助指向三个方向的干涉仪,ET可以确定引力波的偏振度,帮助科学家在天空中定位引力波的来源,并探测引力波的基本性质。  Punturo表示,ET预计耗资17亿欧元,包括用于隧道和基础设施的9亿欧元。研究人员正在考虑两个地点,一个靠近比利时、德国和荷兰的交汇处,另一个在撒丁岛。相关计划正在等待审议。  美国的提议则不那么成熟。研究人员希望美国国家科学基金会提供6500万美元用于设计工作,这样就可以在本世纪20年代中期对这台价值10亿美元的机器做出决定。但物理学家们都希望这两台新设备能在2030年代中期启动。
  • 嫦娥三号探测器大揭秘:携带多种激光仪器
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年12月份择机发射,它将实现中国航天器首次在地外天体的软着陆,从嫦娥三号着陆器中释放的月球车还将完成中国首次在月表的巡视探测。  昨日,探月与航天工程中心启动为中国第一辆月球车全球征名的活动,要求名称体现探月理念和月球车特点。参与者除了要选好名称,还要提交一份不多于300字的创意说明和背景阐述,每人最多允许提交5个方案。从昨日开始到10月25日,参与者可以提交方案,11月上旬,将确定最终入选名称。部分获奖者将有机会免费亲临西昌发射中心现场观摩嫦娥三号发射。  目前,包括月球车,以及嫦娥三号着陆器等组件,都已经被运抵西昌卫星发射基地。嫦娥三号已经进入到了发射前在前方发射场的调试、测试、准备阶段。  一、嫦娥三号探测器揭秘  看着像辆车 实为机器人  正在向全球征名的月球车将跟随年底择机发射的嫦娥三号&ldquo 着陆探测器&rdquo 展开对月球表面的探测。探月工程总设计师吴伟仁说,这不仅是我国第一辆月球车,且全部为中国制造,国产率达到100%。  嫦娥三号探测器  二、长相:身背太阳翼 脚踩&ldquo 风火轮&rdquo   月球车的专用名称叫做&ldquo 月面巡视探测器&rdquo ,设计质量是140公斤,由移动、结构与机构、导航控制、综合电子、电源、热控、测控数传和有效载荷等分系统组成。  在活动现场,记者看到了月球车1:2的模型,从模型上看,它的大脑袋上有一个定向天线和几个太阳敏感器,两侧为太阳翼,尾巴上很多天线,右后侧是导航相机和全景相机。它脚踩六个&ldquo 风火轮&rdquo 似的移动装置。腹部的&ldquo 秘器&rdquo 最多:包括红外成像光谱仪、避障相机、机械臂、激光点阵器等。  中国航天科技集团公司宇航部部长赵小津说,从严格意义上来说,月球车并不是一辆车,而是一个长着轮子,能够适应恶劣空间环境并开展空间科学探测的航天器,是一个小型化、低功耗、高集成、高智能的机器人。  据了解,月球车驶下着陆探测器后,可通过地面遥操作控制和自主规划路径,自主导航等开展长期的科学探测。  三、落月靠"3只眼"  嫦娥三号任务是我国探月工程&ldquo 绕、落、回&rdquo 三步走中的第二步,是承前启后的关键一步。在&ldquo 绕月&rdquo 阶段,中科院上海技术物理所、上海光学精密机械所为嫦娥卫星研制了&ldquo 激光眼&rdquo &mdash &mdash 激光高度计,为我国首幅全月面三维图提供了高程,相当于地球上的海拔高度。即使在无可见光的月面环境下,激光计也能&ldquo 拍摄&rdquo 自如。  但比起距离月面一两百公里外的绕月,零距离接触的落月对激光测距精度和速度提出了极高要求。在我国探月初期,嫦娥卫星对月发射一束激光,在月面形成的&ldquo 激光足印&rdquo 约有120米方圆范围,而嫦娥三号激光测距的&ldquo 足印&rdquo 将小到米级,测量精度进一步提高,可实时监测嫦娥三号着陆器距离月面的高度。  除了这束&ldquo 大激光&rdquo ,&ldquo 嫦娥&rdquo 还有一道灵敏度极高的&ldquo 小激光&rdquo 。当&ldquo 嫦娥&rdquo 向月面释放着陆器,着陆器将在接近月面时,通过激光三维成像,进一步&ldquo 观察地形&rdquo ,获取正下方图像。如下方不适合降落,它就马上换一块地方,确保着陆点相对更为平坦。这种接近&ldquo 现场直播&rdquo 的实时成像需在数秒内完成,为此中科院上海技物所研制的三维成像系统采用了多源激光并扫、实时成像方法,这种实测方式是在着陆月球时首次应用。  两只&ldquo 激光眼&rdquo 之外,&ldquo 嫦娥&rdquo 另有一只&ldquo 红外眼&rdquo &mdash &mdash 红外成像光谱仪。这台仪器置于俗称&ldquo 月球车&rdquo 的月面巡视器上,当巡视器从着陆器中驶出,便开启这一关键探测设备。这只&ldquo 眼睛&rdquo 不但能在可见光范围获得上百个光学波段的图像,还能用来探索可见光之外的&ldquo 光&rdquo ,捕捉月球物质资源放出的红外线光谱。因为每种物质都有其独特的&ldquo 红外图谱&rdquo ,红外成像光谱仪以极高的光谱分辨率&ldquo 拍摄&rdquo 月表物质,并能通过计算机直接将物质分门别类。  对于登月任务以及其后实施的返回任务,卫星发射重量越轻越好,因此&ldquo 嫦娥&rdquo 严格控制体重。相关项目负责人上海技物所研究员王建宇透露,此次星载的红外成像光谱仪只有5公斤多,是&ldquo 嫦娥&rdquo 3只眼中最轻的,而机载的同类光谱仪重量可达百公斤。今后,这种超轻型成像光谱仪器还能用于火星、小行星等更遥远的深空探测任务。  四、性能:耐极限温度 能爬坡越障  月球车以太阳能为能源,能够耐受月球表面真空、强辐射,以及从正150摄氏度到负180摄氏度,温差超过300摄氏度的极限温度和环境。工作时的舱内温度可以控制在零下20摄氏度至零上50摄氏度之间。  月球车凭借六个轮子可实现前进、后退、原地转向、行进间转向、20度爬坡、20厘米越障。  &ldquo 月面松软、崎岖不平、障碍物很多。月球车能够对月面环境和障碍进行感知和识别,然后对巡视的路径进行规划。月球车在月面巡视时采取自主导航和地面遥控的组合模式。&rdquo 探月工程副总指挥、探月与航天工程中心主任李本正说。  五、作息:大干3个月 一觉14天  月球上的一天相当于地球上的27天多,月球昼夜间隔相当于地球上14天。李本正说,月球车具备月球表面环境的生存能力,该休息的时候自动进入休眠状态,然后又能自动唤醒重新工作。据新华视点消息,月球车在月球上是连续工作14天,然后&ldquo 睡&rdquo 14天再重新工作。  在月球表面巡视的3个月中,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析,开展月壤厚度和结构的科学探测,对月表物质主要元素进行现场分析。它传回来的数据,将帮助人们更直接、更准确地了解神秘的月亮。  六、月球车探月过程:  1、动身  今年12月,中国将在西昌卫星中心用长征-3B增强型火箭发射&ldquo 嫦娥三号&rdquo 。  2、着陆  当&ldquo 嫦娥三号&rdquo 完成发射、飞行到达月球时,着陆探测器采取不同制导方式,从距月面15公里处开始动力下降,经过主动减速、调整接近、悬停避障等飞行阶段,实现路径优、燃料省、误差小的安全着陆。  &ldquo 到达月球轨道后,月球车将由着陆器背负,由变推力液体火箭发射器控制,通过各种光学、微波等敏感器测量,在月球表面百米高度上进行悬停和平移,以规避岩石和深坑等障碍,选择最佳着陆点缓慢降落月球表面。&rdquo 中国航天科技集团公司宇航部部长赵小津说。  3、准备  着陆器为月球车充电,对月球车进行初始化 之后月球车与地面建立通信链路,控制连接解锁机构解锁,走上转移机构 着陆探测器将控制转移机构运动到月面,月球车驶离转移机构,开始勘查。  4、勘查  为期3个月,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析 开展月壤厚度和结构的科学探测 对月表物质主要元素进行现场分析。
  • 麻省理工研制光速摄像机:每秒一万亿帧(图)
    麻省理工研制光速摄像机:每秒一万亿帧  北京时间12月14日早间消息,美国麻省理工学院(MIT)媒体实验室最新开发出了一种光速摄像机系统,每秒捕捉1万亿帧画面,可观察光子的运动轨迹。   为了制作捕捉光子移动的视频,科学家使用了一台超高速扫描摄影机,该摄影机一般用于测定光强和光持续时间。不过这台摄影机会因为质子在电场中的偏转将画面分割成多个单维图像,所以制作出的视频实际上是上万亿个分离图像的组合。  据悉该摄像机系统拥有500个摄像头传感器,每个传感器被编程以万亿分之一秒的延迟拍摄画面。在传感器被触发的同时,科学家通过旋转两面镜子将分离的图像拼成完整画面。  场景本身是一个脉冲光源,科学家使用的是一种钛蓝宝石激光器,所以它可以有规律的发出脉冲光源,因此所有曝光看起来都一样,因为可以被组合到一起,形成一段极慢的动态视频。  在现实应用中,它可以被用作“光速摄像机”。科学家称它可以用于医疗成像,比如光学超声波应用。在摄像机不能记录重复活动的应用中,它可以用于捕捉光如何散射在物体上,分析其物理结构。另外,该摄像机系统未来还可能用于消费者的相机上,人为创造出柔光箱等其它昂贵演播室照明设备所产生的光照效果。
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 综述:锑化物超晶格红外探测器研究进展与发展趋势
    锑化物超晶格红外探测器具有均匀性好、暗电流低和量子效率较高等优点,其探测波长灵活可调,可以覆盖短波至甚长波整个红外谱段,是实现高均匀大面阵、长波、甚长波及双色红外探测器的优选技术,得到了国内外相关研究机构的关注和重视,近年来取得了突破性的进展。中国科学院上海技术物理研究所科研团队介绍了InAs/GaSb超晶格红外探测器的技术特点和发展历程,并对后续发展趋势作了初步的展望和探讨。相关研究内容以“锑化物超晶格红外探测器研究进展与发展趋势”为题发表在《红外与激光工程》期刊上。InAs/GaSb超晶格红外探测器的技术原理和特点超晶格是由两种晶格匹配良好的半导体材料交替重复生长而形成的周期性结构,每一层的厚度通常在纳米尺度。根据组成材料相互间能带排列特点,超晶格一般分为I类超晶格和II类超晶格。在III-V族化合物半导体中,InAs、GaSb、AlSb之间可组成不同类别的能带排列,GaSb/AlSb组成I类能带排列,InAs/GaSb、InAs/AlSb组成II类能带排列。特别的,InAs导带底能量比GaSb价带顶能量低约150 meV,当InAs和GaSb结合时,两者形成“破隙型”II类能带排列,电子被限制在InAs层中,而空穴被限制在GaSb层中。当两者组成超晶格时,相邻InAs和GaSb层中电子和空穴会由于相互作用分别形成电子微带和空穴微带,如图1所示。图1 InAs/GaSb超晶格能带简图电子微带与空穴微带的能量差即为超晶格的有效禁带宽度,随着InAs层和GaSb层厚度的改变而改变。对InAs/GaSb II类超晶格的能带结构进行计算和模拟,可以获得超晶格材料光电特性等信息。图2是InAs/GaSb超晶格的截止波长随InAs厚度变化关系,通过改变InAs层的厚度,可以调节超晶格的截止波长,实现短波红外、中波红外和长波红外等不同谱段的红外探测。图2 InAs/GaSb II类超晶格截止波长随InAs厚度变化关系(GaSb厚度为2.1 nm)总体来说,InAs/GaSb超晶格红外探测技术具有如下特点:1)改变周期厚度可以调节InAs/GaSb超晶格的禁带宽带(响应截止波长),因此,可以通过结构设计来灵活调节超晶格探测器的光电响应特性,响应波段可以覆盖短波至甚长波的整个红外谱段,并实现多色探测。2)InAs/GaSb超晶格结构可以吸收垂直入射光。理论计算表明,InAs/GaSb超晶格可达到与HgCdTe材料相当的吸收系数,因此具有较高的量子效率。3)在InAs/GaSb超晶格结构中,由于轻、重空穴带的分离,抑制了Auger复合速率。在理论上,InAs/GaSb超晶格比HgCdTe具有更高的探测率。4)相比HgCdTe材料,InAs/GaSb超晶格有更大的有效质量,有助于抑制长波探测器的隧穿暗电流。5)现代材料生长技术,如分子束外延技术,可以在单原子层精度上控制材料的生长,十分有利于材料性能的可控性、稳定性和可重复性。6)InAs/GaSb超晶格是III-V族化合物半导体材料,材料生长与器件工艺较为成熟,有利于实现大规格、高均匀性焦平面器件。锑化物超晶格焦平面探测器发展历程技术孕育阶段(20世纪80年代—21世纪初)该阶段主要是超晶格红外探测技术概念的提出、超晶格探测器性能的理论计算分析、超晶格材料外延生长和基本光电特性研究,初步证实了超晶格材料具有优良的红外探测性能。超晶格概念是20世纪70年代美国国际商用机器(IBM)公司的江琦、朱兆详等人提出的,指出电子在沿超晶格材料生长方向运动将受到超晶格周期势的影响,形成与自然界材料性能迥异的特性,分子束外延技术的发展又允许人们生长出高质量的超晶格材料。1977年,江琦、朱兆祥等人又提出了锑化物(InAs/GaSb)II类超晶格的概念。技术突破阶段(21世纪初—2010年)该阶段主要聚焦于突破高性能焦平面器件制备的关键技术。采用先进的异质结构抑制超晶格长波探测器的暗电流;研究超晶格材料的刻蚀和侧壁钝化技术,制备出超晶格面阵器件。长波探测是超晶格技术发展的一个重要方向,而降低暗电流是长波红外探测器研究工作的一个重要内容。对于锑化物超晶格探测器,利用其灵活的能带结构调节能力以及分子束外延低维材料生长能力,国外各研究机构设计、制备出了多种宽禁带势垒的探测器结构来抑制暗电流,如pπMn结构、CBIRD结构、nBn结构等。上述不同结构的基本思想是利用宽禁带势垒层与吸收区形成异质结,从而达到抑制产生-复合电流的效果。像元台面刻蚀与侧壁钝化是超晶格焦平面制备研究的一个重要内容。在台面侧壁,由于半导体周期性晶格结构的突然中断,会引起能带在表面的弯曲,从而使得接近表面的半导体层内形成电荷累积,甚至引起表面反型,这会导致在表面形成导电通道。另外,在刻蚀等工艺过程中产生的损伤、沾污或者氧化物等也可能引起表面势能的变化,在带隙内形成载流子陷阱,增加隧穿电流。随着超晶格探测器结构的不断优化,器件制备工艺水平的提升,基于高质量分子束外延超晶格材料,结合前期建立的红外焦平面技术(如读出电路、铟柱混成互联等),相关研究机构相继研制出了320×256、640×512、1024×1024等不同规格的超晶格红外焦平面。双色或多色探测器具备多谱段探测能力,可显著提升识别距离、抗红外干扰与抗伪装能力,是新一代焦平面探测器重点发展方向之一。锑化物超晶格材料能带灵活可调及宽谱响应的特性,使得其成为制备双色、多色探测领域的优选技术。各研究机构先后报道了基于该材料体系的中/中波、中/长波、长/长波双色焦平面探测器。技术发展阶段(2010年—至今)超晶格焦平面制备能力的提升在相关政府机构的支持下,西方技术先进国家突破了超晶格结构设计、材料生长、芯片制备工艺等关键技术,多家研发机构先后获得高性能的超晶格长波大面阵器件和双色焦平面器件。这些成果的取得也使人们充分认识到超晶格技术在红外探测领域的意义和价值。在此基础上,2011年,美国启动了“重要红外传感器技术加速计划(VISTA)”,这是一个由政府主导的,包括JPL、MIT林肯实验室、Sandia国家实验室、海军实验室等研究结构,以及休斯实验室、洛克-马丁公司、L3辛辛那提电子公司等行业领先公司的联合体,技术链涵盖了衬底制备、超晶格材料外延生长、焦平面芯片制备工艺、读出电路设计、超晶格组件集成等。在5年时间内,VISTA计划在高性能长波、中长波双色、超大面阵焦平面、高温工作(HOT)焦平面器件等多方面获得了进一步的发展。图3 (a)超晶格5 μm像元尺寸的SEM照片,(b)超晶格中波红外焦平面在160 K和170 K工作温度下成像示意图,(c)超晶格中长波双色野外成像图超晶格焦平面的工程应用随着制备能力和探测器性能的不断提高,超晶格红外焦平面开始了应用试验。2005年,德国IAF和AIM公司研制的中/中波超晶格双色焦平面探测器应用于欧洲大型运输机Airbus A400 M的多色红外预警系统(MIRAS)。图4 非洲某地区的可见(来源谷歌地图)和CTI红外成像图片(来自美国NASA国际空间站拍摄),Band 1为中波红外图像,Band 2为长波红外图像锑化物超晶格探测器的展望与思考碲镉汞是当前最成功的红外探测材料,其响应波段可以覆盖短波至甚长波的整个红外谱段,具有高的吸收系数和量子效率。由于碲镉汞非常低的肖特基-里德-霍尔(SRH)复合速率,少子寿命长,暗电流低,可以实现高性能红外探测器。碲镉汞的挑战主要来自于材料生长、芯片制备工艺等方面难度大及由此而带来的成品率和制备成本等问题。InAs/GaSb超晶格在谱段覆盖性方面和碲镉汞一样可以在短波至甚长波整个红外谱段内调节。与碲镉汞相比,超晶格红外探测器在量子效率和少子寿命还需要进一步的提升。但另一方面,InAs/GaSb超晶格属于III-V族化合物半导体,其物理化学性质较为稳定,超晶格焦平面在空间均匀性、时间稳定性等方面具有优势,同时,超晶格在材料、芯片的制备技术方面也具备更好的可控性。近年来,InAs/GaSb超晶格红外探测器取得了飞速的发展。在国外,超大规格、高像元密度、高温工作中波焦平面、高性能长波红外焦平面及双色焦平面等已先后获得突破,超晶格探测器也已初步获得航天应用。国内自“十二五”布局开展锑化物超晶格红外探测技术研究,相关研究单位先后在超晶格长波焦平面技术、双色焦平面技术等方面取得突破,初步形成了超晶格材料外延生长、芯片制备等技术能力和平台。后续,超晶格红外探测技术将在进一步提升材料基本性能(量子效率、少子寿命)的基础上,发展大规格和超大规格红外焦平面,高像元密度焦平面,甚长波和双色、多色探测器,高工作温度红外焦平面等。提升超晶格材料基本性能在少子寿命方面,在超晶格中,轻、重空穴带的分离抑制了俄歇复合过程,因此,理论上超晶格的少子寿命可以比碲镉汞更长。但目前InAs/GaSb超晶格的少子寿命一般小于100 ns,与碲镉汞相比有很大的差距,这主要是由于超晶格材料存在较强的SRH复合。InAs/InAsSb超晶格因表现出了更长的载流子寿命而颇受关注,但对于相同的探测波长,InAs/InAsSb超晶格的吸收系数较小;同时,InAs/InAsSb超晶格的空穴迁移率和扩散长度也较小。另一种新型超晶格材料——晶格匹配 InAs/GaAsSb超晶格展现出了优良的光电性能,计算表明,对于相同的探测波长,InAs/GaAsSb超晶格具有与InAs/GaSb超晶格相似的吸收系数。在量子效率方面,由于在超晶格中电子和空穴分别位于InAs和GaSb层中,吸收系数的大小与电子波函数和空穴波函数的交叠积分相关,从而导致器件的量子效率随波长增大而下降。目前中波红外超晶格探测器的量子效率可以实现70%~80%,长波器件的量子效率约30%~40%。提升长波、甚长波超晶格焦平面器件的量子效率是一个重要的研究课题。近年来,采用超表面微纳光子结构提升器件量子效率成为一个有效途径。与探测器集成的微纳光子结构主要包括一维、二维光子晶体、光栅、汇聚透镜、微腔结构等。近年来,美国麻省理工学院、空军实验室、JPL等在该方面开展研究并取得了较好的成果。超晶格红外焦平面发展趋势展望在焦平面器件发展趋势方面,将充分利用超晶格自身技术优势,发展高像元密度大面阵探测器、甚长波探测器、双色和多色探测器、高工作温度探测器及新型雪崩探测器等。在高像元密度大面阵器件发展方面,国际上超晶格外延材料尺寸已经达到6 in(1 in=2.54 cm),正向更大晶圆发展;像元尺寸已缩小至5 μm,最大规格达到6 K×4 K。国内已具备4~6 in超晶格外延材料生长和锑化物半导体探测器芯片制备能力,在小像元尺寸的台面芯片制备方面也具有技术基础。在甚长波红外探测器方面,关键在于降低器件暗电流,红外探测器的暗电流与少子寿命密切相关。因此,提升超晶格材料的少子寿命是一个重要的研究课题。晶格匹配InAs/GaAsSb新型超晶格材料有助于降低材料的深能级缺陷,从而提升少子寿命。降低器件暗电流的另一途径是运用InAs、GaSb、AlSb等材料间多样的能带排列方式,灵活设计出先进的抑制暗电流器件结构。最近,国外报道了14 μm超晶格甚长波焦平面探测器,采用先进势垒设计结构,大大地抑制了器件的暗电流。在实现高温工作超晶格红外探测器的研究方面,主要集中在设计和制备各种具有暗电流抑制功能的异质势垒结构器件。国外研究机构采用nBn等异质势垒结构,很好地将超晶格中波红外探测器的工作温度提升至150 K以上。在国外,高温工作的超晶格中波红外焦平面已经显示出了替代传统InSb器件的趋势。实现双色或多色探测是超晶格发展的一个重要发展方向。超晶格主要采用改变材料周期厚度来调节响应波长,采用分子束外延技术,只要改变InAs、GaSb单层的生长时间(改变层厚)就可以获得不同响应波长的超晶格材料,因此非常容易在一次外延生长过程中集成两个甚至多个响应不同波长的探测器材料结构。近期研究结果也表明,超晶格是实现双色或多色探测的优先技术。在新型探测器方面,锑化物超晶格雪崩探测器(APD)近年来也备受关注。美国伊利诺斯大学研究发现,InAs/GaSb超晶格的空穴/电子碰撞电离系数比可以近似为零,研制的电子雪崩型器件的增益为300时,过剩噪声因子小于1.2。该团队与美国雷神公司合作研制的电子雪崩型超晶格APD,在增益为500时,过剩噪声因子仍旧保持在接近于1的水平,表现出了极低的雪崩噪声特性。结论这项研究简要介绍了锑化物超晶格红外探测技术的技术特点、发展历程及其发展趋势。自InAs/GaSb超晶格红外探测器的设想被提出后,30多年来,通过结构设计优化和制备技术提升,国内外研究结构先后获得了一系列的大面阵、高温工作、长波、多色红外探测器,超晶格红外焦平面也表现出了高均匀性、高稳定性、高制备可控性等优势,并且在红外遥感成像等航空航天领域得到应用。今后,超晶格红外焦平面将向着更高的像素密度、更大的规格、更高的工作温度、甚长波、双色(多色)、雪崩器件等方向发展。
  • 青岛造"小黄人"能下潜150米 搜寻探测样样都行
    "飞鱼"号水下机器人在水中进行调试。  随着青岛城机器人产业的发展,产品不仅涉及了拾取、包装、机械加工、码垛等工业领域的应用,更覆盖了康复、水下、清洁等服务领域。日前,记者从市科技局获悉,由青岛一家科技公司研发的微型观察级水下机器人产品,填补了国内水下机器人应用的多项空白,在海洋生态调查、海洋工程、渔业养殖、科研教学、污染监测等领域应用广泛。12月16日,记者进行了探访,揭开这个水下机器人的神秘面纱。  体重7.5千克小巧灵敏  海底的世界充满未知,许多情况下人类无法自己下海进行探索,所以水下机器人就应运而生。不过要想在上百米深的海底一探究竟,可不是每个机器人都能做到的。&ldquo 以前需要用到水下机器人的时候,基本上都是从国外买,不仅价格贵,而且售后很难保障,所以我们就研发了咱们自己的水下机器人。&rdquo 该公司总经理马秀芬告诉记者。  然而当记者看到这个本领高强的水下机器人时,发现它并没有想象中复杂,一个圆滚滚的身子,前后两个摄像头,四个螺旋桨加上两个探照灯,看上去倒是有点像&ldquo 小黄人&rdquo ,甚至有几分可爱。公司的一位研发人员说,平时大家也开玩笑称它为&ldquo 小黄人&rdquo ,不过这个&ldquo 小黄人&rdquo 本领可大着呢。&ldquo 别看外表看起来没什么复杂的,其实核心的技术都在它&lsquo 体内&rsquo 。&rdquo 该公司的技术总监范平博士介绍,这个机器人身上有3项发明专利,6项实用新型专利,其技术在国内外都是领先的。不过,这个机器人的售价只有20万元左右,这也是它广受欢迎的原因。  记者了解到,这个&ldquo 小黄人&rdquo 名叫&ldquo 飞鱼&rdquo 号水下机器人,下潜深度可达到150米深,也就是说可以承受150米海底深处的压力,但是它自身的重量却只有7.5千克,这主要就得益于它外壳所使用的特殊强化高分子材料,使得它体轻却能抗压。而且这个&ldquo 飞鱼&rdquo 号水下机器人,身长不足50厘米,的确可以称得上是小巧灵敏。  自带摄像头即拍即存  范平博士介绍,这个机器人配备了四个大功率无刷推进器,在水下活动非常灵活,能够在水下环境复杂的海域进行探寻和检测,并通过配备的1080P高清摄像头,将图像传至控制箱。&ldquo 其实你刚刚看到的只是&lsquo 飞鱼&rsquo 号的一部分,叫做潜器,加上控制箱和脐带缆才是一个完整的水下机器人。&rdquo 范平博士表示,那个所谓的&ldquo 小黄人&rdquo 是整个机器人的主体,下潜到海底进行工作,然后通过脐带缆将拍摄到的视频信号传回控制箱,并实现即时存储,而&ldquo 小黄人&rdquo 在水下的所有行动,也都由这个控制箱进行操控。  &ldquo 国外的很多水下机器人并没有存储图像的功能,都是随拍随看,但是很多客户,尤其是水产养殖业的客户都非常希望能够将图像存储下来,以便进行比较。&rdquo 范平博士说,为此他们专门在控制箱上进行了技术攻关,达到了即拍即存的效果。此外,&ldquo 飞鱼&rdquo 号的双摄像头设计也是一个特色,可以360度无死角进行观测,将水下的情况全景式地呈现在控制箱的显示器上。而且,&ldquo 飞鱼&rdquo 号还通过独特的物联网技术,将获取的信息上传至网络数据库进行分析。  由于是海底作业,所以&ldquo 飞鱼&rdquo 号的表面也进行了专门的处理,浑身的黄色涂料不仅可以防止海水腐蚀,而且还能防止海底生物的附着。此外,&ldquo 飞鱼&rdquo 号的续航能力也很强,内置了高性能电池,可以维持自身工作4小时以上。范平博士表示,&ldquo 飞鱼&rdquo 号除去自身的功能以外,还可以根据客户的要求,搭载声呐、USBL(水声定位系统)及机械手,并可扩展多种微型在线检测水质传感器,如PH计、盐度计等。而在软件方面,&ldquo 飞鱼&rdquo 号具有自动定深和自动定航等功能,也方便客户进行操作。  初试身手成功找到沉船  对于&ldquo 飞鱼&rdquo 号的应用领域,范平博士说:&ldquo 目前主要用于海洋生态调查、海洋工程探测、渔业养殖监测和科研教学等方面,青岛的&lsquo 科学号&rsquo 进港维护就是它进行水下检查的,此外也有人专门请我们去进行沉船打捞。&rdquo   范平博士介绍,&ldquo 飞鱼&rdquo 号第一次实战应用是进行沉船打捞。今年9月份,湖南某地发生了沉船事故,当地有关部门调集国内外几家大公司最先进的机器人前往水下搜救,但是都搜寻无果。之后,经过同行的介绍,刚刚研制成功只是经过几次试验的&ldquo 飞鱼&rdquo 号临危受命,远赴湖南进行搜救。范平博士回忆说,当时到了之后才发现是要在一个淡水湖里搜救沉船和遇难者。然而,水下的情况并不乐观,湖底全是交错的大树枝,地形也高低不平,而且还有很多深渊和暗洞。但是&ldquo 飞鱼&rdquo 号凭借自身小巧灵活的特点,经过三天搜寻,终于找到了沉船船体和遇难者的尸体,而且水下环境及船体残骸位置也被精确记录和定位,为随后的打捞工作提供了有力的数据支撑。范平博士说,&ldquo 飞鱼&rdquo 号的&ldquo 处女航&rdquo 成功后,也有很多渔业养殖的客户来订购,主要用于海底养殖物情况的实时监测。
  • 揭秘“大连光源”:人类探测微观世界的利器
    1月15日,辽宁省大连市,中国科学院研制的“大连光源”发出了世界上最强的极紫外自由电子激光脉冲。视觉中国供图  冬日的辽东半岛,海风凛冽刺骨。位于大连这座滨海城市西侧的长兴岛,因四面环海,人口稀少,更显得肃杀、冷清。但就在这里,一项新的世界纪录刚刚诞生。  1月15日,我国最新一代光源“极紫外自由电子激光装置”,即“大连光源”,发出了世界最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中国科学院副院长王恩哥评价这一成果时说,这是该院乃至我国又一项具有极高显示度的重大科技成果。“大连光源”中90%的仪器设备由我国自主研发,标志着我国在这一领域占据了世界领先地位。  更值得一提的是,该装置由中科院大连化学物理研究所和中科院上海应用物理研究所联合研制,开创了我国科学研究专家与大科学装置研制专家成功合作的先例。近日,中国青年报中青在线记者走进“大连光源”,采访有关专家进行揭秘。  看不见的“光”:人类探测微观世界的利器  在大连长兴岛,“大连光源”躺在一个长达100多米的隧道里。在这里,最常见的就是各种灯光闪烁的实验仪器,以及各类如同爬山虎般顺着架子连接着仪器的线缆,当然,还有各种看不见的“光”。  现实中,人们接触最多的“光”,怕是手机屏幕、电脑电视屏幕发出的光,还有白炽灯、霓虹灯的光,白天的太阳光,夜里的月光,以及大自然中水母、萤火虫发出的光,等等。那么,光的本质究竟是什么?  电磁波。  ——近代物理已经证明了这一点,并且发现光这种“电磁波”,还是人类认识和感知物质世界,探测原子和分子等微观世界的最重要工具。  比如,对于声音和图像,人类可以通过麦克风和摄像头转换成“电”信号,然后进行处理和传输。同样地,对于物质世界中的原子和分子,如果要“看到”它们,也只需要将其转换成易于识别和处理的“电”信号。  一个最直接的方法,就是将原子或分子中的电子“打”出来,让原子、分子变成带有正电荷的离子,带正电的离子击打在探测器上,就会形成“电”信号。如此,科学家就可以灵敏地探测即“看到”微观世界。  这其中的关键点,即将原子或分子中的电子“打”出来。不过,并非所有的“光”都能实现这一点。“极紫外光”是其中一种。  根据中科院大连化物所研究员戴东旭的说法,光(电磁波)本身带有能量,其波长越短,能量就越高。也因此,它分为可见光和不可见光,后者包括紫外光、红外光、X光,即人们通常所说的紫外线、红外线、X射线。  可见光的能量算是小的。其波长大致处于400~700纳米之间,可以刺激人的视觉细胞产生信号。  波长小于可见光的紫外光,因为能量高,会对人体产生危害,比如320~400纳米和270~320纳米之间的紫外光。  不过,当波长短到100纳米附近时,光所具备的能量,足以电离一个原子或分子而又不会把分子打碎,这个波段的光,被科学家称为“极紫外光”。  “大连光源”就是要造出这种“光”。一旦造出,就是人类探测微观世界的一把利器。  最新一代光源是“拍电影”,上一代是“拍照片”  “大连光源”总负责人、中科院大连化物所副所长杨学明院士讲了一个故事:19世纪末有人问,马在奔跑时,究竟有没有四蹄同时离地的瞬间?一时间众说纷纭,因为仅靠人眼观察,实在无法判断。直到有人设计出一套连续拍照的装置,将马连续奔跑的过程“分解”为一帧帧照片,才得出了结论。  杨学明说,要研究物质是如何变化、运动的,最好的方式就是将过程“记录”下来,能够让人们清楚地“看到”。如今,随着人类对自然界的认识不断深入,科学家已经知道,与人类生活息息相关的很多物理和化学过程,在本质上都是原子和分子过程。  而要控制或利用这些物理和化学过程,在杨学明看来,就需要在实验室里,研究这些过程所涉及的原子和分子的反应机制,因此,就需要精确并且高灵敏度地“探测”所涉及的原子和分子。  事实上,为了“看到”微观世界,人类制造出了各种各样的工具,这类工具统称为“光源”,其中一类在科学上广泛使用的光源,利用了粒子加速器获得高能粒子,高能粒子在磁铁阵列中震荡产生的高亮度的光被称为同步辐射光。  物理学家斯蒂芬霍金曾经说过,粒子加速器,是人类拥有的最接近时间机器的设备。而人类所能达到的最高温度记录,也是在粒子加速器中创造的。  从上世纪40年代,美国在加州大学伯克利分校发展了第一代高能电子束同步加速器之后,高亮度的同步辐射光源,已经成为当代科学研究最为重要的实验工具之一。世界各国先后建立了几十台第三代光源,我国也有北京正负电子对撞机、合肥光源、广东散裂中子源、兰州重离子装置、上海光源等。其中合肥光源和上海光源属于第三代光源。  如今建成的“大连光源”,则是第四代,也是最新一代的光源,即自由电子激光装置。中科院上海应用物理研究所所长赵振堂研究员说,这是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  那么,第三代同步辐射光源和第四代自由电子激光装置究竟有何区别?  赵振堂打了一个比方,上一代是“拍照片”的,而最新一代光源是“拍电影”的,进一步说,即第三代光源只能“看到”微观世界物质的结构,而第四代光源则能记录下微观世界物质的动态过程。  杨学明以雾霾为例,从现有的研究来看,霾是一个从分子结构聚集起来的团簇,包括水、污染物等,那么在研究雾霾时,不仅要知道它是什么结构,即由什么组成,还要搞清楚这些组成部分,是如何聚集在一起的,这就需要科学家不仅要看到静态的结构,还要看到动态的过程。  比如,在空气潮湿的时候,空气中霾的成分通常会有一个明显的增长,为什么会这样,这就需要对其发展过程进行研究。也因此,杨学明将“大连光源”这个第四代光源,称为观察原子、分子反应过程的摄像机,在原子、分子层次上探索物质世界的奥秘。  科学研究专家与大科学装置研制专家首次携手  第四代光源还有一个特点:足够亮。  赵振堂给出一组对比:比起一般家用的白炽灯,太阳的亮度是其1万倍 比起太阳,第三代光源则要亮100亿倍 那么,比起第三代光源,第四代光源还要再亮100亿倍。这里的亮度,是一个科学的概念,也称为峰值亮度,定义是单位时间内、单位立体角内、单位面积上、单位波长范围内所发射的光子数量。  在这般光源的照射下,几乎所有的原子和分子都“无处遁形”。戴东旭说,如今建成的“大连光源”,就是当今世界上在极紫外波段最强的自由电子激光,因此是研究与原子分子过程相关的物理和化学科学问题的强有力的利器。  事实上,在越来越强调协同创新,而非“单打独斗”的大科学时代,像“大连光源”这样的大科学工程,越来越为科学界所重视。  如今,“大连光源”的建成出光,在王恩哥看来,也将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国的科技事业注入新的活力。  杨学明也告诉记者,新的仪器发展,是学术研究发展最为重要的基础,没有新的科学仪器,在物理化学领域可以说是寸步难行。他还记得,当初之所以提出建设“大连光源”,正是因为科研工作多年受困于反应中间体的探测难题。  当时,他找到赵振堂,双方一拍即合:这是我国打造新一代光源的绝佳契机。更为重要的是,双方都意识到,这一项目将是科学研究专家与大科学装置研制专家的首次携手,而这,对于未来加快推动大科学装置在科学研究中的应用,具有重要的现实意义。  很快,“大连光源”得到国家自然科学基金委国家重大仪器专项的资助,于2012年年初正式启动,2014年10月正式在大连长兴岛开工建设。仅两年时间,就完成了基建工程以及主体光源装置研制。  去年9月24日22时50分,超过300兆伏的电子束流,依次通过自由电子激光放大器的各个元件。终于,总长18米的波荡器阵列,发出了第一束极紫外光。  如今,经过调试后的“大连光源”,早已能发出更为强大的光束。但科学家并不会止步于此,中科院大连化物所研究员张未卿透露,国内未来很有可能进军X射线波段的第四代光源。
  • 硅单光子探测器取得重要进展
    p style="text-align: justify text-indent: 2em " 由无锡中微晶园电子有限公司牵头承担的国家重点研发计划“重大科学仪器设备开发”重点专项“高灵敏硅基雪崩探测器研发及其产业化技术研究”项目经过近两年的努力,突破了低抖动、大光敏面硅单光子探测芯片设计、界面电场调控的离子注入和氧化层制备、低噪声芯片封装等关键技术,开发出硅单光子探测器样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "硅单光子探测器具有超高灵敏度,是300-1100nm波段超高灵敏探测不可替代的关键芯片,且器件性能稳定可靠、易形成面阵,是实现远距离精密测量、激光雷达等重大科学仪器的关键核心部件之一。目前国内硅单光子探测芯片主要依赖进口,且阵列芯片禁运。开展硅单光子探测器的自主化研究,对独立自主研制精密测量、激光雷达等装备具有重要意义。项目提出了雪崩过程随机性电场抑制方法,基于国产硅片和研发平台,研制出大光敏面、低时间抖动的硅雪崩探测器芯片,开发了一系列可工程化应用的制备关键技术,并在“北斗系统”开展了激光测距示范应用;同时还面向智能交通的市场需求,研制出线性模式硅雪崩探测器。/pp style="text-align: justify text-indent: 2em "该项目下一步将加快产品化开发,提高产品技术成熟度,加快产品应用示范及推广。 /p
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • 美开发出新型量子点红外探测器
    美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。  由美国空军科研局资助的这一项目,通过在传统量子点红外探测器元件上增加金纳米薄膜和小孔结构的方式,可将现有量子点红外探测器的灵敏度提高两倍。  研究人员称,红外探测器的灵敏程度从根本上取决于在去除干扰后所能接收到的光线的多寡。目前大多数红外探测器都以碲镉汞技术(MCT)为基础。该元件对红外辐射极为敏感,可获得较强信号,但同时也面临着无法长时间使用的缺憾(信号强度会逐步降低)。  在这项新研究中,研究人员使用了一个厚度为50纳米、具有延展性的金薄膜,在其上设置了大量直径1.6微米、深1微米的小孔,并在孔内填充了具有独特光学性能的半导体材料以形成量子点。纳米尺度上的金薄膜可将光线“挤进”小孔并聚焦到嵌入的量子点上。这种结构强化了探测器捕获光线的能力,同时也提高了量子点的光电转换效率。实验结果表明,在不增加重量和干扰的情况下,通过该设备所获得的信号强度比传统量子点红外探测器增强了两倍。下一步,他们计划通过扩大表面小孔直径和改良量子点透镜方法对设备加以改进。研究人员预计,该设备在灵敏度上至少还有20倍的提升空间。  负责此项研究的伦斯勒理工学院物理学教授林善瑜(音译)称,这一实验为新型量子点红外光电探测器的发展树立了一个新路标。这是近10年来首次在不增加干扰信号的情况下成功使红外探测器的灵敏度得到提升,极有可能推动红外探测技术进入新的发展阶段。  红外传感及探测设备在卫星遥感、气象及环境监测、医学成像以及夜视仪器研发上均有着广泛的应用价值。林善瑜在2008年时曾开发出一种纳米涂层,将其覆盖在太阳能电池板上,可使后者的阳光吸收率提高到96%以上。
  • 英国商人向中国等国售假“炸弹探测器”获罪
    英国ATSC公司的主管麦考克被判处欺诈罪名成立,将面临最高8年监禁资料图:这名机场安全人员手持的就是所谓ADE-651“炸弹探测器”资料图片“摩尔探测器”  据英国广播公司报道,56岁的英国商人麦考米克因向包括伊拉克、中国在内的多国出售假冒“炸弹探测器”,于当地时间4月23日被英国法庭裁定犯有欺诈罪。法庭认为他此举“太缺德”。  报道称,身为退休警官的麦考米克在英格兰肯特郡成立了一家公司,向全球20多个国家兜售一款名为ADE-651型的炸弹探测器。麦考米克声称,该探测器有一张“能探测出爆炸物的特殊电子卡”。但英国剑桥大学的科学家在检测后发现,这种电子卡不过是商店用来防小偷的一种电子标签,根本不能探测出爆炸物。  英国《泰晤士报》24日称,调查发现,麦考米克在2005年到2006年间以每个13英镑的价格购买了一批高尔夫球寻找器。之后,他将这些寻找器改头换面,以2.7万英镑的单价向20多个国家销售,包括伊拉克、格鲁吉亚、沙特、尼日尔和中国等,销售额高达5500万英镑。  令麦考米克的欺骗行为曝光的是他的探测器在伊拉克探测武装分子炸弹时完全不起作用。据英国《独立报》报道,伊拉克政府花费8000多万美元购买这种探测器,但之后不久,伊拉克在2009年遭遇多起针对英美军队的自杀式攻击,造成数百人死亡。当局发现,使用这种无用的炸弹探测设备,可能是导致自杀式炸弹攻击者能够顺利通过安全检查、进行攻击的原因。伊拉克总理马利基已下令全面调查政府为安全部队采购的ADE-651探测器,伊拉克议员要求英国政府召回全部产品。  《泰晤士报》引述原告律师维特姆的话说,一般的炸弹探测器要求可以检测到地下0.6英里、高空3英里以内的可疑物,但麦考米克的产品根本达不到这个标准。英国广播公司称,像麦考米克这样的假货商人在英国还有。2010年,英国警方曾搜查与三家向国外销售假炸弹探测器公司有关的办公室和住宅,缴获大量现金及数百台炸弹探测器。美国联邦调查局也曾对一种名为“QuadroTracker”的假探测器发出警告,要求各政府机构不得使用。(驻英国特约记者 纪双城)
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制