当前位置: 仪器信息网 > 行业主题 > >

动态法弹定仪

仪器信息网动态法弹定仪专题为您提供2024年最新动态法弹定仪价格报价、厂家品牌的相关信息, 包括动态法弹定仪参数、型号等,不管是国产,还是进口品牌的动态法弹定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态法弹定仪相关的耗材配件、试剂标物,还有动态法弹定仪相关的最新资讯、资料,以及动态法弹定仪相关的解决方案。

动态法弹定仪相关的资讯

  • 发布国检集团 DST-V动态弹性性能测试仪新品
    仪器名称:固体材料弹性性能测试仪(触摸屏)型号:DST-V仪器用途:用于测试固体材料的弹性性能,包括玻璃、陶瓷、石墨、金属和合金、塑料和高分子制品、岩石、木材和复合材料等多种类型的材料,通过简单的敲击,即可得到杨氏弹性模量、剪切弹性模量、泊松比等信息,具有测量范围广,精确度高和操作简单方便的特点。仪器采用触摸屏一体设计,开机即用,无需预热、校准或调整,测试速度快。测试样品的尺寸要求较少,不需要特别制样。非接触式检测,测试样品无污染、无破坏。仪器方便升级在不同温度环境下进行测试,非常适合科研和质检领域。仪器原理: 测试时将样品放置在不影响样品自由振动的支撑体上,敲击样品,以激发振动。利用振动传感设备收集振动信号,得到振动频率,结合样品重量、长度、宽度、厚度等样品尺寸信息,软件即可计算出杨氏弹性模量、剪切弹性模量、泊松比等数据。符合标准:JC∕T 2172-2013 精细陶瓷弹性模量、剪切模量和泊松比试验方法 脉冲激励法GB/T 22315-2008 金属材料 弹性模量和泊松比试验方法GB 3074.2-2008 石墨电极弹性模量测定方法GB/T 30758-2014 耐火材料 动态杨氏模量试验方法(脉冲激振法)JC/T 678-1997 玻璃材料弹性模量、剪切模量和泊松比试验方法ISO 12680-1耐火材料动态杨氏模量试验方法—脉冲激振法ASTM E1876-01(2009)固体材料杨氏模量、剪切模量和泊松比试验方法(脉冲激振法)技术参数:频率范围:20~20000Hz频率分辨率:0.1Hz测量项目:杨氏模量:2~300GPa 误差:±0.5% 剪切模量:2~200GPa 误差:±0.5% 泊松比: 0~0.5 误差:±5% 阻尼比: 0~1试样形状:长条状 或 圆棒状试样尺寸:长条状样品的长度/厚度3圆棒状样品的长度/直径4可测样品类型:所有具有弹性性能的固体材料 创新点:1.仪器采用触摸屏一体设计,稳定可靠,人机交互界面友好。2.开机即用,无需预热、校准或调整,具有测量范围广、测试速度快、精确度高和操作简单方便的特点。3.非接触式检测,测试样品无污染、无破坏。4.零耗材,使用成本低。国检集团 DST-V动态弹性性能测试仪
  • 动态弹性模量测试仪研制
    table width="600" border="1" align="center" cellpadding="0" cellspacing="0"tbodytrtd width="115"p style="text-indent: 0em " dir="ltr"成果名称/p/tdtd width="499" colspan="3"动态弹性模量测试仪br//td/trtrtd width="115"p单位名称/p/tdtd width="499" colspan="3"p中国建材检验认证集团股份有限公司/p/td/trtrtd width="115" valign="top"p联系人/p/tdtd width="185" valign="top"p艾福强/p/tdtd width="161"p联系邮箱/p/tdtd width="153"pafq@ctc.ac.cn/p/td/trtrtd width="115"p成果成熟度/p/tdtd width="499" colspan="3"p□正在研发 □已有样机 □通过小试 □通过中试 √ 可以量产/p/td/trtrtd width="115"p合作方式/p/tdtd width="499" colspan="3"p□技术转让□技术入股□合作开发 √其他/p/td/trtrtd width="614" colspan="4"p style="line-height: 1.75em "strong成果简介:/strong/pp style="line-height: 1.75em "strong /strong/pp style="text-align: center line-height: 1.75em "img src="http://img1.17img.cn/17img/images/201603/insimg/2951acd4-0cb9-42bb-ba31-1bc4d37da508.jpg" style="width: 300px height: 226px " title="弹性模量检测仪1.jpg" width="300" height="226" border="0" hspace="0" vspace="0"//pp style="text-align: center line-height: 1.75em "img src="http://img1.17img.cn/17img/images/201603/insimg/ba13ec0a-c570-4f8f-b857-abc41b0a226e.jpg" style="width: 300px height: 256px " title="弹性模量检测仪2.jpg" width="300" height="256" border="0" hspace="0" vspace="0"//pbr/p style="line-height: 1.75em " 本方法利用脉冲激励器来激励矩形截面的梁试样,测量样品的弯曲或扭转频率。作用在试样上的瞬时激励是通过自动激发装置或手动小锤的敲击来实现的。激励引起样品的自由振动,通过试样上方的信号接收器得到振动信号,进而通过快速傅立叶变换得到自由振动的前几阶频率,首先利用弯曲振动的基频算出试样的弹性模量,进而利用扭振主频率计算出剪切模量。由于梁试样自由振动的基频是由样品尺寸、弹性模量和样品质量所唯一确定,因此当基频已经测到后并且试样的质量和尺寸已知的情况下可以计算出弹性模量。弹性模量取决于弯曲响应频率,剪切模量取决于扭曲响应频率。泊松比由材料的杨氏模量和剪切模量决定,三者只有两项是独立的。 br/ 该仪器测试精度高、操作方便,通过一次敲击(激励)能够快速而准确地同时得到材料的共振频率、弹性模量、剪切模量和泊松比以及内耗等基本弹性参数。测试结果重复性好,对样品完全没有破坏,也可连接高温炉进行高温弹性性能测试(高温炉为选购件)。 br/ 该仪器高度集成,使用USB接口进行数据通讯、实现了热拨插和即插即用,采用全新工艺,实现硬件的高可靠性、强抗干扰能力和高信燥比,机型外观美观、性能稳定、能方便扩展高低温测试模块。 br/ 性能指标 br/ 最高采样频率:2MHzbr/ 增益设置:1-128(1、2、4、8、16、32、64、128) br/ 频响范围:20-20kHzbr/ 灵敏度: 50 mv/pabr/ 输入阻抗: 1Ω与27pF并联 br/ 时基范围: 10ns至1 sec/div br/ 时基精确度: 50ppmbr//p/td/trtrtd width="614" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 本产品适用于航空航天、汽车工业、工矿企业、科研部门、大专院校、技术监督、工程监测等,对各种陶瓷、玻璃以及各种陶瓷基复合材料的弹性模量,采用脉冲激励法可以实现对样品的无损检测,在准确测量样品的弹性模量的同时又不会对样品其他力学性能造成影响,应用前景广泛。/p/td/trtrtd width="614" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 实用新型专利两项: br/ 一种用于测量材料弹性性能的固定装置。 br/ 专利号:ZL 2015 2 0392701.4br/ 一种样品激发装置及材料弹性性能测试系统 br/ 专利号:201520860414.1br/ 行业标准一项 br/ JC/T 678-1997 玻璃材料弹性模量、剪切模量和泊松比试验方法。/p/td/tr/tbody/table
  • 中科院大连化物所利用“缓冲”策略开发光稳定荧光探针揭示活细胞内脂滴动态过程
    近日,大连化物所分子探针与荧光成像研究组(1818组)徐兆超研究员团队利用“缓冲”策略,发展了细胞内脂滴动态识别荧光探针LD-FG,该探针具有优异的光稳定性,可在空间超分辨成像的基础上实现高时间分辨率和长时间稳定成像,从而发现了多种新的脂滴动态过程。  脂滴是维持脂质和能量稳态的关键细胞器,由中性脂组成的内核及包裹其外的单层磷脂组成。脂滴表面分布着多种蛋白,以调控脂类的储存、代谢及脂滴运动。越来越多的研究揭示,脂滴具有更多的生理功能,例如抗菌免疫能力、促进药物积累和激活能力、内核膜代谢能力、与其他细胞器相互作用以交换营养分子、作为癌症和衰老大脑神经认知功能障碍的标志物等。尽管对脂滴功能的机制缺乏研究,但已证实这些功能与脂滴生命周期的动态密切相关。揭示脂滴的动态有助于研究脂滴的功能机制和发现新的功能。然而,脂滴的数量、位置、大小和组成在细胞之间甚至在同一细胞内可能会有很大差异,脂滴的生命周期、时间和位置上也通常不可预测且难以观察。此外,这些事件在脂滴生命周期中的发生率仍然未知。这种细胞异质性和不可预测性要求用于探测脂滴动态的成像技术不仅具有对脂滴的识别能力,更需要具有较好的空间和时间分辨率,以及长时间的的稳定成像能力。  超分辨荧光成像可突破衍射极限实现最高可达单分子的空间分辨,但荧光团易光漂白而迅速淬灭的问题使得超分辨荧光成像一直面临着时间分辨率低和成像时间长的挑战。因此提高荧光团的光稳定性是超分辨荧光成像面临的前沿问题。  本工作中,徐兆超团队提出了“缓冲荧光探针”(buffering fluorogenic probe,BFP)的策略来解决脂滴动态成像中光稳定性的问题。“缓冲”策略(buffer strategy)是指在成像过程中,脂滴内部光漂白的荧光探针被外部周围新的和完整的荧光探针有效取代,即荧光探针交换速率大于漂白速率时,即可确保脂滴成像的光稳定性。该策略要求探针在脂滴外部时处于荧光淬灭的状态,并且在脂滴外具有较高的浓度以保证足够的缓冲能力。LD-FG有适中的脂溶性保证了既有足够的分子对脂滴进行荧光染色,同时又有足够比例的分子在脂滴外作为缓冲池。缓冲池不仅可以快速补充脂滴中的光漂白探针,保证了长时间荧光成像的光稳定性,还可以及时染色细胞中的新生脂滴,并接收脂滴减小或消亡中释放到外部的探针。  基于LD-FG优异的光稳定性,团队借助结构光照明显微镜对脂滴的多种动态过程进行了高时空分辨率的成像,首次发现了两种新的脂滴融合模式,包括多个脂滴的同时融合和线粒体介导的融合;揭示了细胞不同区域和不同细胞之间的异质性;提出脂肪细胞分化过程中脂滴成熟的新模型,即首先进行快速脂滴融合,接着是缓慢成熟步骤;首次在细胞中观察到融合过程中的哑铃形中间形态,证明聚结(coalescence)并不像以前知道的那样罕见,而是在细胞中无处不在的。  作为最小的生命单元,细胞是含有细胞器、分子复合物和功能单分子的多体系、跨尺度的复杂系统,不同尺度单元又根据其位置、结构、运动、浓度以及与其他功能单元的动态相互作用,精确、有序和协调地执行复杂多样的细胞功能,这使得细胞具有个体与系统性相统一、异质性、高度动态、不确定性等多种特征。团队期望“缓冲荧光探针(BFP)”的策略可以在未来用于开发针对更多不同细胞内生物靶点的光稳定探针,最终实现细胞内生物分子全景超时空分辨动态成像。  相关成果以“Stable Super-resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen-bond Sensitive Fluorogenic Probe”为题,于近日发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所1818组博士研究生陈婕和博士后王超。该工作得到国家自然科学基金、大连化物所创新基金等项目的资助。
  • IMCE发布高温动态弹性模量和阻尼分析系统新品
    仪器简介:比利时IMCE公司是一家专业的测试弹性模量和阻尼内耗分析仪器的生产厂家, 仪器基于共振频率动态测量方法, 应用完全非破坏性测试技术, 适用于陶瓷及金属等多种材料的生产(质量控制)及科学研究领域, IMCE公司是目前世界上唯一能在1750C高温和气氛控制条件下, 利用目前最先进的软件评估及研究, 精确测定共振频率、弹性模量、剪切模量和阻尼内耗等相关技术指标。 公司主要产品有:1、弹性模量和阻尼内耗分析仪 型号:RFDA MF Professional 2、高温炉: 型号:RFDA-HT1700 型号:RFDA-HTVP1700C 型号:RFDA-HTVP1600 HT1600, HT650. HT1050 3、软件 型号:RFDA MF Software 在中科院沈阳金属研究所高性能陶瓷与复合材料重点实验室及测试中心有该公司2套先进的高温测试系统。 技术参数:1、共振频率。 10Hz ~ 130KHz2、阻尼或内耗(10ˉ5-----0.1) 3、弹性模量 4、剪切模量 5、泊松比率 6、温度:室温--1750C。 7、气氛控制8,真空系统,激光检测主要特点:1、动态法测试(线性或非线性) 2、样品完全非破坏性测试符合ASTM-E-1876-99方法创新点:双样品高温弹性模量仪HT1700,在原有HTVP1700基础上,简化结构,去掉真空组件,增加了双样品支座及测试系统;性能上除了不能做真空及密封外,其它指标同HTVP1700相同,并且可以在普通空气下实验,可以同时测试2个样品,设备体积减小,提高测试效率一倍,价格降低一半!目前世界上同类设备中温度最高,双样品结构独一无二!高温动态弹性模量和阻尼分析系统
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 华电智控发布动态校准仪动态稀释仪标定稀释仪新品
    产品描述:DC4210-N 动态校准仪是华电智控根据现有气体在线监测行业的需求自主研发的一款高精度气体校准仪,设备通过质量流量计控制输出不同比例的流量,实现配置不同的气体浓度,主要应用于VOCs在线监测设备、环境空气监测设备的标定与气体质量控制。产品特点:? 高精度进口质量流量计控制配比,可靠性高,重复性好,零漂小;? 7寸触摸屏显示,菜单式结构,操作简单方便;? 稀释范围广,可实现1:1000的样气稀释比例;? 支持多种气体同时稀释,响应速度快,满足现场标定需要;? 全过程软件自动控制,实时监控气体流量和气体浓度值;? 具有自动清洗功能,根据程序设定自动执行管路清洗;? 具有开机自检功能,设备异常时发出报警提示;? 所有气路采用惰性化材料,维护量少,维护费用低。技术参数:? 环境温度:5℃~50℃? 精度保证温度:15~35℃? 相对湿度:<85%RH? 电源:AC220V±22V,50Hz? 外形尺寸:标准4U结构? 重量:6Kg? 响应时间:10s? 稀释比例:1:1000(可扩展)? 精度:±1.0%S.P.( ≥30%F.S.)? ±0.3% F.S. ( 30%F.S.)? 线性精度:±0.5% F.S. ? 重复性:±0.2% F.S. 创新点:U相结构设计,体积小,重量轻进口质量流量计,精度高,控制稳定可进行多气体稀释可与CEMS设备VOC设备同步联用,实现在线稀释、连续标定动态校准仪动态稀释仪标定稀释仪
  • 欧盟RoHS指令最新修订动态及应对策略
    欧盟RoHS指令自2006年7月1日正式实施以来,全世界范围内掀起了一场电子电气产品绿色环保的热潮。2009年RoHS指令修订草案和豁免条款相继出台,欧盟的目的旨在收紧现行法规、提高生产商责任以及加强欧盟27国的市场监管。面对欧盟RoHS指令的最新变化,进出口机电企业应积极关注其实施动态,通过合理利用规则(如豁免指令)为自己争取更广阔的发展空间。  RoHS指令最新修订动态  2009年6月11日,RoHS指令最新修订的豁免指令闪亮登场。欧盟《官方公报》刊登第2009/443/EC号欧委会决议:为配合技术进展,修订第2002/95/EC号指令即《限制有害物质指令》中关于铅、镉及汞豁免情况的附件。本次豁免物质共包含38个项目,其中新增六项分别为:电力变压器中直径100微米及以下细铜线所用焊料中的铅、金属陶瓷质的微调电位计中的铅、2009年12月31日前专业音频设备的光耦合器中使用的光敏电阻的镉、2010年7月1日前直流等离子显示器中阴极溅射抑制剂中的汞,其含量不得超过30毫克/显示器、以硼酸锌玻璃体为基础的高压二极管的电镀层的铅、用氧化铍连接铝制成的厚膜浆料中镉和氧化镉。  同年9月3日,欧盟提出了RoHS指令的最新修订草案。新草案一个重要的变化是将其适用范围扩展涵盖到所有电子电气设备,除非特别指明排除在外。其中在不适用产品名单中增加了大型固定工业工具(large-scale stationery industrial tools)和管风琴乐器(musical pipe organs)。同时,RoHS指令中明确限制电子电气设备中有害物质为铅、汞、镉、六价铬、多溴联苯(PBB)及多溴二苯醚(PBDE),此次没有加入新物质。新草案第4条规定,委员会应根据本条第7款给出的方法,对附件IV所列限用物质清单进行审议。另外,草案还对制造商、进口商和经销商的责任进行了规定。  作为RoHS指令的姐妹指令WEEE指令,也同期做了修订。WEEE指令修订草案制定了报废电子电气设备须达到的收集和回收目标。草案规定,成员国应鼓励生产商承担来自私人家庭电子电气废弃物收集设施的所有成本。新修订草案文本又重新插入附件IA和附件IB(电子电气设备的类别及各类别的产品清单)。新草案第2条第4款还特别补充,来自私人家庭以及非私人家庭的报废电子电气设备,一概视为来自私人家庭的报废电子电气设备。新草案同时澄清了“投放市场”指的是成员国的市场,而非欧共体市场。这对于企业履行注册责任十分重要,因为这意味着电子电气设备生产商(包括进口商)必须在其产品投放的每个市场所在国家进行注册。  相关企业应对策略  针对以上现象,检验检疫部门建议相关出口企业从以下几方面着手,积极做好应对工作:  一、正确应用豁免指令。企业必须正确理解RoHS的豁免条款,有效确定相应的产品是否在RoHS指令适用的豁免范围内。有时企业认为自身的产品属于豁免范围,但成员国的法律要求并不由欧盟委员会来解释,所以企业还应征得欧盟企业的认可。此外,对于成本较高的原材料,企业要争取用可豁免的非绿色环保材料来替代,这样可以减轻企业的短期负担。而当企业一旦遭遇产品退运、扣押时,切不可自乱阵脚。机电出口企业可以通过向当地检验检疫部门或行业协会咨询,看产品是否可以属于豁免清单范围内,以避免不必要的损失。总的来说,豁免条款的正确应用可以帮助企业规避新的环保指令,这对企业而言无疑是一次新的机遇和挑战。  二、控制加工环节和供应链,寻求替代技术。RoHS指令被称为迄今为止电子电气产品最严厉的环保法规,大多数机电出口企业都能积极应对。然而有些情况下机电出口企业深感负担较重,例如生产中部分物料(如有铅焊)本身因为含有有害物质而被淘汰,同时新的替代物(无铅焊)单价高、生产工艺不成熟、生产成本上涨。所以,企业采购部门应当严格要求供货商提供指定检测机构的RoHS检测合格报告,并要求其提供所供产品与检测产品的一致性保证。这样就能从源头上控制供应链的每一个环节。对于国际上严格禁用的有毒有害物质,机电出口企业应当尽早寻求替代技术,改进产品技术构成,提高产品的环保性能,从而促进产业升级,加快调整产业结构。  三、实时关注RoHS指令的动态。古人云:知己知彼,方能百战不殆。RoHS指令的豁免清单每4年更新一次,欧盟考虑到在电子电气行业中部分禁用的材料还没有适用的替代品进行评估,所以确定它们可以在一定范围内豁免。根据时代发展和环保要求,RoHS指令及WEEE指令会进行及时修订。这些技术法规、标准的动态及时收集,有助于企业尽早采取应对措施,优化自身产品结构,不断提高产品的市场竞争力。  随着环保意识的不断加强,我国也在积极推行绿色环保法规。虽然作为应对主体的很多企业对RoHS指令还存在观望侥幸心理,但是绿色环保是一个必然的趋势,在国内外市场上的这一普遍趋势必然引发行业洗牌。要在未来的竞争中获胜,机电出口企业应当实时关注相关标准动态,合理利用法规政策,树立绿色环保的企业形象。这才是企业的立足之根本,发展之基础。
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 技术解读 | 动态色谱法和静态容量法比较
    动态色谱法和静态容量法都是常用的比表面测试方法,目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。动态色谱法是将待测粉体样品装在样品管内(一般为U型,国仪精测具备专利直管技术,中国实用新型专利,专利号:ZL202120620155.0),通入一定比例的载气(He)和吸附质气体(N2)的混合气体,待混合气体流过样品后,根据吸附前后气体浓度变化,得到待测样品吸附量。静态容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量。两种方法比较而言1、动态法的优点是适合快速比表面积测试,如电池材料、有机材料、金属粉体等的生产监控,分析速度快,分辨率高,重复性好;缺点是由于通过浓度变化来测试吸附量,当浓度为1的情况下吸附前后将没有浓度变化,所以只能测试较低的分压范围,使得孔径测试受限;动态法是相对测量,其结果的准确性受标样与待测样吸附行为异同的影响。2、静态容量法的优点是氮气分压可以实现从极低真空到接近饱和蒸汽压范围的连续且精准的控制(国仪精测已实现分压比低至10-9的极限测量),所以静态容量法可以实现比表面积及孔径的全面分析,尤其适合中大比表面和孔隙发达的样品,例如催化剂、分子筛、碳材料等样品的比表面及孔径分布分析测试。在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以测试过程相对动态法省时;但静态法需要有抽真空、暖自由体积和冷自由体积标定的过程,加上部分样品吸附平衡过程较慢等因素,所以测试效率并不是该方法的优势。但静态法是绝对测量,其测试结果不受标样影响,在准确性上更能得到研究者的青睐;且随着真空系统和压力传感器的硬件技术发展,静态容量法在分辨率、稳定性方面都得到了很好的发展,是目前比表面积及孔径分析的主流技术。欢迎扫码咨询!
  • 精工电子发布动态热机械分析仪DMS7100
    新型测量模具和对话式软件提高仪器的操作性  精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:镰田国雄,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。本公司于8月27日发售操作性以及可靠性大幅提升的动态热机械分析仪 「DMS7100」。     动态粘弹性测量法*1,,是一种热分析的科学方法。它主要用来分析塑料,橡胶弹性体,复合材料以及各种高分子材料力学特性。动态粘弹性测量不仅测量 杨氏模量*2及玻璃化转变*3,还可以获得关于聚合物的分子运动及分子结构的信息,在开发新材料上是不可缺少的测量方法。另外,工业材料的力学特性对产品 从基础开发到批量生产的加工过程中,都起着极为重要作用。也利用在材料的品质管理中。 本次发售的动态热机械分析仪「DMS7100」,沿袭了过去机型DMS 6100的性能及功能,提高了操作性和信赖性。新机型为了固定样品,改良了各种测量模具的形状,使之更方便样品的装卸。另外,通过对话式软件的「简单测量 导航」,将样品的拆装以及条件的设定明确地表示出来,这样,即使是第一次操作仪器的人也可以简单地进行操作测量。再加上通过「Lissajous」监控功 能能够观察到每个测量点的Lissajous图形,从而能够进行更高效率的测量。并且测量中的试样状态变化可以在CCD摄像头里观察,也能够通过样品观察 选项「DMS实时视图」来进行对应。作为日本国内顶级制造商,SIINT从1974年发售热分析仪器以来取得很多成就。这次的动态热机械分析仪「DMS7100」的加入,也为用户中广 受好评的SII的热分析仪器系列「EXSTAR70000」阵容的完善画上了完美的句号。今后我们将以促进功能性高分子材料为中心的新型工业材料的研究开 发及品质管理为目的来进行积极销售。  【DMS7100的主要特征】  1. 简易装卸样品的测量模具和对话型软件的便捷操作 通过对操作人员动作的研究,我们制作出能够对应各种形变模式的多种测量模具,并且改进了结构,以实现样品的便捷装卸。另外,从测量条件的设定到测量的开始 这一系列的操作通过插图的形式表示出来,这样即使是初学者也能够简单,准确的操作。     2. 通过Lissajous监控提高测量的可靠性 仪器配有的Lissajous监控功能可以测量过程中表示样品的应力和形变关系。还可以确认测量过程中样品不同测量点的实时变形状态。另外,通过 Lissajous图形的保存,在后期的数据解析时,可确认每个测量点上的样品变形状态,从而取得更加准确的数据。     3. 削减液化氮消费量的冷却装置 可以连接使用EXSTAR70000系列采用的全自动气体冷却装置。液化氮的消耗量可以削减约30%(本公司其他仪器比),是环保型的冷却装置。4. 试样观察系统「实时视图DMS」(选配) 实时视图DMS,能够将测量中的试样状态变化通过连续的图像显示并保存。测量结束后,可以通过分析软件调取保存的图像,与温度和各种信号相对应,数据平滑 表示后进行分析。对于松弛现象等的技术评判,取得更加准确的数据提供支持。     【DMS7100主要规格】形变模式: 拉伸,双悬臂梁弯曲,单悬臂梁弯曲,3点弯曲,剪切, 薄膜剪切,压缩 测量模式 : 动态测量・ 静态测量频率数 : 正弦波振动时0.01~200Hz  合成波振动时 同时5频率 测量范围(贮藏弹性模量): 105~1012Pa(拉伸)、105~1012Pa(双悬臂梁弯曲)、 106.5~1013.5Pa(3点弯曲)、103~109Pa(剪切)、 104~1010Pa(薄膜剪切)、105~109Pa(压缩)温度范围 : -150~600℃ 升温速度 : 0.01~20℃/min*1 动态粘弹性测量:对与试样施加随时间变化(振动)的应变或应力,测量由此发生的应力或应变,试样的力学性能的测量方法。*2 杨氏模量:固定一定粗细的棒的一侧,拉伸另一侧,棒的断面应力:σ和单位长度增长:ε之间有如下比例关系:σ=Eε。比例系数E即是杨氏模量。*3 玻璃化转变:对固体非晶材料进行加热时,在低温呈现如结晶态的高刚性低粘度状态,在某一温度范围内,刚度和粘度发生急剧变化,流动性增加,这一变化即为玻璃化转变。 以上
  • 大连化物所利用原位化学交联—质谱技术解码细胞中蛋白质动态结构
    近日,大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组(1810组)赵群研究员和张丽华研究员等人与中国科学院精密测量科学技术创新研究院龚洲副研究员合作,提出了利用原位化学交联—质谱技术(in vivo XL-MS),解码细胞中蛋白质动态结构的策略。该策略将AlphaFold2的结构作为先验信息,结合in vivo XL-MS数据与多种结构计算方法评估结构与交联信息的匹配度,重构了细胞内多种蛋白质,尤其是多结构域蛋白质和固有无序蛋白质(intrinsically disordered protein,IDP)的原位动态结构。为深入研究蛋白质在细胞微环境中发挥功能的分子机制提供技术支撑。活细胞内蛋白质的原位动态结构对于揭示其生物学功能至关重要。随着深度学习算法助力蛋白质结构预测的发展迭代,AlphaFold2实现了对蛋白质结构的全面预测,然而该方法对柔性区域的结构预测仍面临挑战。近年来,in vivo XL-MS以高通量、高灵敏,且对蛋白质纯度要求低等优势,在解析活细胞内蛋白质的原位动态结构方面展示出重要潜力。张丽华团队一直致力于in vivo XL-MS新技术研究,实现了蛋白质原位构象和相互作用的规模化解析(Anal. Chem.,2020;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2023;Angew. Chem. Int. Ed.,2023;Nat. Commun.,2023)。   本工作中,针对多结构域蛋白质,研究团队提出了将结构域作为整体,利用结构域间的XL-MS数据对细胞内蛋白质动态结构建模,实现了三种多结构域蛋白质——钙调蛋白、hnRNP A1和hnRNP D0在细胞内的动态结构表征。此外,针对IDP,研究团队提出了两种互补的结构表征策略:一是将XL-MS信息直接转换为距离约束用于IDP的结构计算,二是首先使用全原子分子动力学模拟进行无偏采样,然后基于XL-MS数据对采样结构进行评估和筛选。利用这两种策略,研究团队解码了高迁移率组蛋白HMG-I/Y和HMG-17在细胞内的动态系综构象。   上述成果以“Decoding Protein Dynamics in Cells Using Chemical Cross-Linking and Hierarchical Analysis”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是1810组博士研究生张蓓蓉。该工作得到了国家重点研发计划、国家自然科学基金、中国科学院青促会等项目的资助。
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA, Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 众瑞仪器发布ZR-5211型动态气体配气仪新品
    详细介绍产品简介 ZR-5211E型动态气体配气仪(E款,新品)可以将高浓度标气按照设定的稀释比例,稀释成各种低浓度标气,可校准各种气体分析仪及其气体传感器。满足HJ 57-2017固定污染源废气 二氧化硫的测定 定电位电解法。执行标准GB_T 5275.7-2014《气体分析动态体积法制备校准用混合气体第7部分:热式质量流量控制器》HJ 57-2017固定污染源废气 二氧化硫的测定 定电位电解法技术特点高精度质量流量控制器,3路配气通道;配气流路采用防腐蚀,防吸附设计;交直流两用供电,可室外现场使用;彩色触摸屏,中文菜单化操作;创新点:1、可以将高浓度标气按照设定的稀释比例,稀释成各种低浓度标气,可校准各种气体分析仪及其气体传感器;2、高精度质量流量控制器,3路配气通道;3、外形设计更为新颖合理,体积较老款也更加轻巧,方便携带操作4、交直流两用供电,可室外现场使用。ZR-5211型动态气体配气仪
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 于兆斌先生:动态断裂仪器化冲击技术在材料测试及新品种开发中的应用
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。  如下为钢研纳克检测技术有限公司试验机产品经理于兆斌先生所作报告的精彩内容:  钢研纳克检测技术有限公司试验机产品经理于兆斌先生  报告题目:动态断裂仪器化冲击技术在材料测试及新品种开发中的应用  报告伊始,于兆斌先生介绍到,北京纳克分析仪器有限公司是中国钢研集团全资子公司,注册资金6000万人民币,是一家以冶金和材料检测仪器、标准样品的研制和销售为主的专业公司,在2012年1月正式更名为钢研纳克检测技术有限公司。其产品涉及试验机系列、硬度仪系列、金属原位分析仪、火花光谱仪、ICP光谱、碳硫氧氮氢分析仪、飞行时间质谱炉气分析系统、无损检测仪、在线检测系统和标准样品等。  此外,于兆斌先生还非常自豪地说到,钢研纳克在国内已经设有27个办事处,服务网络几乎遍及全国;钢研纳克作为主要起草单位,已参与制定了8个与试验机相关的标准;十一五期间,钢研纳克取得14项科研成果,获得了14个奖项与11项专利,制修订4项国际标准;此外,钢研纳克在永丰还建立了产业基地,设有仪器化冲击试验机生产车间、光谱调试车间、气体调试车间等。  目前,钢研纳克公司推出基于光学引伸计的新型微机控制材料试验机,该产品采用CCD动态摄像方式,实现了非接触式实时测量微小形变与全程测量,同时还可测量轴向和横向变形、自动计算材料延伸率等。这台新型微机控制材料试验机完全符合最新拉伸标准GB228-2010,解决了细丝、薄带、脆性等样品试验中形变测量不准确的技术难题。  接下来,于兆斌先生着重介绍了动态断裂仪器化冲击技术在材料测试及新品种开发中的应用。最后指出,要发展我国重要工程的相关规范,包括动态断裂分析在内的安全评估至关重要。因为普通冲击试验不能反映断裂过程,不能满足工程需要,而仪器化冲击试验机则能够完整地反映试样的断裂过程,如钢研纳克推出的NI系列冲击试验机产品便是可供用户选择的产品之一。  会议现场
  • 讲座:动态光散射技术在生物大分子及其蛋白中应用
    主讲人:Vincent Hsieh, Ph.D. (美国Wyatt公司,Senior scientist) 时间:2012/02/15(星期三) 下午14:00地址:中国科学院微生物研究所A203室 主要内容:Introduction to light scattering (LS): Dynamic LS A brief history of LS and Wyatt Technology Corp. Basic DLS theory 简要介绍动态光散射技术原理DLS: NanoStar & PlateReader 动态光散射介绍 (包括高通量动态光散射介绍)及其在蛋白上的应用MUBIU&zeta & DLS 大分子迁移率与DLS技术在生物大分子中的应用Conclusions & Questions 联系人:Wyatt北京代表处 兰先生 010-82292806
  • 南方科大郑智平/杨烽/张新瑜Adv. Sci.:原位环境电镜揭密液态金属与单原子催化剂动态演化
    南方科技大学杨烽团队与郑智平讲席教授/张新瑜团队展开合作,利用环境球差透射电子显微镜(ETEM)耦合原位谱学的方法,在高温反应环境中,从原子层次上揭示了过渡金属单原子和多孔碳载体的起源和动态演化过程,阐明了液态金属作为重要中间物种,在形成单原子催化剂和刻蚀多孔碳结构中起到的关键作用。从原子尺度研究催化剂在反应环境中的表/界面结构及其动态演变对合理设计催化剂和揭示反应机理具有重要意义。在金属催化剂合成过程中原位揭示金属物种的演化过程、认识金属在载体表面的行为是催化剂结构精确控制的关键。高温热解是一种常用来制备金属单原子催化剂的方法。然而,在高温(500-1000 ℃)以及含碳环境中,相比于贵金属(Pt、Rh、Ag等),非贵金属过渡金属(Fe、Co、Ni)纳米颗粒表现出更加复杂的动态行为,如:熔融、碳扩散、团聚、结构演化等,从而对理解和揭示这一类单原子催化剂制备过程中的结构控制机理带来挑战。另一方面,在高温(500-1000 ℃)过程中原子层次的原位表征也存在较大困难。原位环境球差透射电子显微镜(ETEM)可以从原子尺度研究工况条件下催化剂的结构和演化等过程,尤其是适合于组成、结构不均一体系的局域表征;耦合原位电子能量损失谱(EELS),还可以提供物种价态变化等信息;此外,具有原子分辨的原位球差暗场电镜也非常适合于热场环境中金属单原子的研究。作者利用原位ETEM,在200-1000℃追踪了金属有机框架化合物前驱体(Co/Zn-ZIF)热解产生Co单原子的过程。研究发现热解过程中Co金属物种表现为团聚、分散、再团聚、升华的动态过程(图1)。耦合原位EELS监测了该过程中元素的化学演变(图2),发现升温至500℃时金属Zn已经升华消失;框架中的C逐渐转化为石墨化碳;在700 ℃,碳载体中原子级均匀分散的Co与C相互作用,形成类似Co 2 C的配位结构。而这种Co-C相互作用相对较弱,在更高温度850℃重新团聚成金属Co纳米颗粒(图3)。ETEM研究表明在850℃金属Co纳米颗粒熔化,并在载体中流动、扩散,刻蚀出多孔/缺陷碳结构,同时与碳载体发生反应生成碳化物(CoC x )(如下式);Co (l) + C (ZIF) → CoC x + C 1−x (defect∕porous structure)在这一液态金属扩散过程中,伴随着金属Co原子被刻蚀后的C-N缺陷位点锚定,形成单原子结构(图3)。原位HAADF-STEM和非原位XAFS表征进一步证实了上述过程,研究发现单原子Co在多孔CN x 载体上具有良好的稳定性,而剩余的CoC x 颗粒在高温1000 ℃逐渐升华(图4)。这类单原子Co催化剂在乙基苯选择性氧化模型反应中展示出优异的催化性能和稳定循环性。该工作近期在线发表在 Advanced Science ,并被选入Hot Topic: Carbon, Graphite, and Graphene。论文第一作者是南方科技大学研究助理张璐瑶,共同第一作者是博士研究生李岩岩、博士后张蕾;通讯作者是南方科技大学的郑智平讲席教授、杨烽助理教授、张新瑜研究助理教授。原位电镜数据在南方科技大学皮米中心收集,XAFS数据在北京同步辐射光源收集。该工作得到了国家自然科学基金、北京分子科学国家研究中心、科技部重点研发计划、广东省和深圳市项目的资助。图1. 原位ETEM表征Co/Zn-ZIF在200-1000 ℃的热解过程和金属物种行为。图2. 室温-1000 ℃原位EELS表征前驱体热解形成金属单原子过程中的化学变化图3. 原位ETEM表征熔融Co纳米颗粒扩散和刻蚀碳载体形成多孔结构,单原子锚定示意图图4. 1000 ℃原位HAADF-STEM表征金属团簇升华与单原子的稳定性。WILEY论文信息:Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon DissolutionLuyao Zhang#, Yanyan Li#, Lei Zhang#, Kun Wang, Yingbo Li, Lei Wang, Xinyu Zhang*, Feng Yang*, Zhiping Zheng*Advanced Science
  • 关注!国家标准《纳米技术 动态光散射法粒度分析仪技术要求》正式发布
    2024年7月24日,由国家纳米科学中心牵头,中国计量科学研究院 、北京信立方科技发展股份有限公司等单位参与起草的国家标准GB/T 44223-2024《纳米技术 动态光散射法粒度分析仪技术要求》正式发布,并于2025年2月1日起实施。该标准由TC279(全国纳米技术标准化技术委员会)归口 ,主管部门为中国科学院。随着纳米科技的迅速发展,纳米材料的粒度表征已经成为评估材料特性的关键指标之一。动态光散射法粒度分析仪凭借其卓越的测量能力,成为亚微米及纳米级颗粒粒度分析的常用仪器。然而,现有的标准和技术规范体系尚未覆盖该类仪器的技术要求指标,中国颗粒学会颗粒测试专业委员会、北京粉体技术协会相关专家在组织多次粒度仪量值比对活动的基础上,倡议提出制定针对动态光散射法粒度分析仪设备性能要求和评价的国家标准,以推动颗粒技术的标准化发展。该标准主要介绍了动态光散射法粒度分析仪的主要技术要求,以及仪器准确性、重复性的试验方法。标准主要起草单位包括国家纳米科学中心 、中国计量科学研究院 、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 、珠海真理光学仪器有限公司 、丹东百特仪器有限公司 、华南师范大学 、济南微纳颗粒仪器股份有限公司 、珠海欧美克仪器有限公司 、合肥鸿蒙标准技术研究院有限公司 、广州特种承压设备检测研究院 、上海思百吉仪器系统有限公司 、冷能(广东)科技有限公司 、中国计量大学 、山东理工大学 、北京信立方科技发展股份有限公司 、成都精新粉体测试设备有限公司 、安泰科技股份有限公司 、安东帕(上海)商贸有限公司 、中国合格评定国家认可中心 、北京粉体技术协会 、中国颗粒学会 。为了帮助业内人士深刻理解这一重要标准,以标准规范纳米粒度仪的技术指标,接下来,本网将邀请标准主要起草人——国家纳米科学中心高级工程师朱晓阳对该标准进行深入解读,敬请期待。
  • 复旦大学冯建峰教授团队首次绘制大脑功能网络动态图谱
    复旦大学冯建峰教授团队首次绘制大脑功能网络动态图谱近日,复旦大学类脑智能科学与技术研究院冯建峰教授团队在BRAIN上在线发表了题为《脑功能网络动态特性的神经、电生理和解剖关联及其在精神疾病中的改变》(“Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders”)的论文,该研究通过核磁共振扫描技术定量刻画人类大脑各区域的动态相互作用模式,揭示了大脑产生动态变化机制,首次绘制了动态脑功能网络图谱。研究发现,大脑功能网络的动态变化程度与人类的智能高度相关。根据这一发现,未来将有可能通过赋予人工智能系统内部各部件动态相互作用的模式,使机器人真正产生人类的思维方式,这一重大成果或将对人工智能的发展带来革命性的影响。该论文被选为Brain编辑推荐和当期封面论文,《英国每日邮报》等海外几十家媒体给予焦点报道。2014年美国麦克阿瑟天才奖得主,宾夕法尼亚大学Skirkanich讲座教授Danielle Bassett专门为此研究撰写了题为“The flexible brain”的评论,该评论认为“这项工作是我们在理解大脑网络动态变化道路上的一块重要基石 (an important stepping-stone)”。“传统智商测试因无法准确反映一个人的真实智力而受到诸多质疑。随着脑成像技术,特别是近年来功能核磁共振技术的发展,为我们定量化人类的大脑,并在此基础上充分洞悉人类智力提供了重大契机。我们的研究工作最初是从理解精神疾病如精神分裂症、抑郁症等疾病的大脑动态变化机制和疾病诊断出发,但却意外的通过这一工作,在解析人类智力上有惊人的发现,相信这将对目前如火如荼的人工智能技术发展带来更大的推动。”近年来,冯建峰教授与其带领的复旦大学团队和英国华威大学团队,一直致力于利用来自世界各地的数以千计被试者的大脑静息态磁共振数据,定量刻化人脑的动态变化,识别人脑不同区域之间动态相互作用的机制以及其在精神疾病中的改变。这项研究发现,人脑中与学习、记忆紧密关联的脑区表现出高度的“可变性”。这意味着这些区域同大脑其他部分之间的连接模式变动更加频繁,可发生在短短几分钟甚至数秒之间。另一方面,人脑中与智力相关性小的区域,包括视觉区、听觉区和感觉运动区,皆表现出了低“可变性”和低“适应性”。一个人的大脑“可变性”越强或越灵活,个体的智力以及其创造力也就越高。目前,人工智能系统并不具备“可变性”和“适应性”。而这两种人类独特的智能特性,已被该研究证实对于人类大脑的学习能力至关重要的。大脑网络动态图谱的绘制,未来可被应用于构造更先进的人工神经网络,使计算机具备学习、成长和自适应的能力。这一研究成果还在脑重大疾病的诊疗上带来重大发现,在精神分裂症患者、自闭症患者以及多动症患者的大脑默认网络中,都可以观察到“可变性”的状态变异。这也意味着,大多数精神疾病的根源来自于大脑可变性或可塑性方面的改变,这一认识可使科学家们能够更有效的治疗甚至是预防精神疾病的发生。据悉,冯建峰教授是上海国家数学中心的首席科学家,2015年受聘为复旦大学新成立的类脑智能科学与技术研究院首任院长。该研究院成立一年多以来,致力于开展脑科学与人工智能交叉前沿研究,在智能算法的发展及其对脑疾病的精准诊断上取得了多项重大突破,其中包括:利用多达数千例的脑疾病数据,开发了大数据驱动的全脑关联性分析方法(BWAS)的统计学方法,利用这一方法可实现在全脑数10亿的功能联接中寻找出病根:发现了精神分裂症病人中以丘脑为中心的脑功能异变网络(2015年Nature子刊Nature Partner Journal Schizophrenia),发现了自闭症儿童与人脸识别、社交相关的神经功能环路的显着变化(2015年Brain);研究发现了抑郁症病人大脑中憎恨环路的减弱和消失(2013年Nature子刊Molecular Psychiatry);同时,团队还发现了与纹状体相关的奖励预期行为受到VPS4A和RAC1基因的调控(2015、2016年PNAS)等,揭示了精神分裂症的脑结构具有“自愈”功能(2016 Psychological Medicine)。这些突破性成果被CNN、福布斯等媒体给予集中报道,被誉为“在脑疾病的寻根和靶向治疗上找到了前所未有的新途径”。目前,研究院正在积极开展国际脑科学研究合作计划。2016年7月,在瑞士召开的人类脑图谱年会美、中、英、法、德等六国闭门会议上,冯建峰教授发起了国际脑科学研究数据字典合作计划,建立了重大脑疾病多尺度数据(遗传、神经、影像、行为和环境等)标准化采集规范,与世界最大的多尺度数据库ADNI, IMAGEN, IMAGEMEND, BIOBANK开展数据共享。“我们正在利用全维度、多中心的生物大数据,发展一系列新型智能算法,期望在脑重大疾病寻根和大脑的定量化研究中,取得更大的突破。”
  • 动态法与静态法对小比表面积的样品测试精度分析
    p style="text-align: justify text-indent: 2em "对于小比表面积样品,如电池材料、有机材料、生物材料、金属粉体、磨料等空隙度微小的材料,由于吸附量微小,静态法测试的结果较含有风热助脱装置和检测器恒温装置的高精度动态法仪器误差大。对静态法为什么在小比表面样品测试方面精度难以保证,原因如下:/pp style="text-align: justify text-indent: 2em " 以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到3%以内,可以算出要求压力传感器的精度要达到0.03%以上;但目前进口最好的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前最高精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。 但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题;/pp style="text-align: justify text-indent: 2em " 所以在小比表面样品的测试方面,静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;而有些厂家宣称静态法小比表面测试下限可以达到0.0001m2/g,是不负责任的;/pp style="text-align: justify text-indent: 2em " 对具有风热助脱、检测器恒温、低温冷阱的高精度动态法仪器,其相对不具有该装置的标准动态法比表面仪,其精度得到明显提高;动态法比表面仪,与其它分析仪器类似,其精度和灵敏度 大小主要取决于信噪比;也就是要提高精度和灵敏度,就需要从提高信号强度、抑制背景噪声、消除外界干扰三方面来控制。增加信号强度的方法一般有增加称样量、增加检测器电流,但增加 检测器电流一般噪声也会同时增大,所以检测器电流会有个最佳范围;所以在抑制噪声、消除外界干扰方面可做的工作就比较多了;其源于仪器自身的误差来源主要有:检测器温漂,信号锐度 ;以检测器恒温装置来抑制温漂,风热助脱装置可以提高信号锐度,其对于比表面1m2/g的样品0.5g对氮气的吸附量在分压0.2左右时脱附峰面积与背景可以保证在2%以内的误差;/pp style="text-align: justify text-indent: 2em " 所以对于小比表面样品,对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其灵敏度和分辨率的优势就体现出来了;但对中大比表面样品,由于信号强,普通动态法比表面积仪和静态 法比表面积仪都可以保证精度;这点就像万分之一分析天平和千分之一天平的区别;/pp style="text-align: justify text-indent: 2em " 但绝大多数含有微孔、介孔等空隙的材料,比表面不会很小;要是很小比表面的材料,其空隙度的研究价值就有限了;/pp style="text-align: justify text-indent: 2em " 综上:/pp style="text-align: justify text-indent: 2em " 一、对于小比表面样品(10m2/g以下)优先选择采具有风热助脱及检测器恒温装置的用动态色谱法比表面仪器,利用其分辨率、灵敏度高的优势;/pp style="text-align: justify text-indent: 2em " 二、对于中大比表面样品,若只测试比表面积,动态法和静态法没有明显的优劣势,动态法由于具有固体标样参比法,具有快速测定比表面的优势,静态法具有BET多点法较省时液氮消耗 小的优势;/pp style="text-align: justify text-indent: 2em "三、需要测比表面及孔径分布的样品,建议采用静态容量法的比表面及孔径分析仪。/p
  • 动态热机械分析仪原理简介
    p  动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。br//pp  DMA仪器的结构及重要部件如图所示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title="DMA结构.jpg" width="400" height="238" border="0" hspace="0" vspace="0" style="width: 400px height: 238px "//pp style="text-align: center "strongDMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构)/strong/pp style="text-align: center "1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器/pp  DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。/ppstrong驱动马达/strong—以设定的频率、力或位移驱动驱动轴/ppstrong试样夹具/strong—DMA依据所选用夹具的不同,可采用如图所示的不同测量模式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title="DMA测量模式.jpg" width="400" height="152" border="0" hspace="0" vspace="0" style="width: 400px height: 152px "//pp style="text-align: center "strongDMA测量模式/strong/pp style="text-align: center "1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩/ppstrong炉体/strong—控制试样服从设定的温度程序/ppstrong位移传感器/strong—测量正弦变化的位移的振幅和相位/ppstrong力传感器/strong—测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位/ppstrong刚度、应力、应变、模量、几何因子的概念:/strong/pp  力与位移之比称为刚度。刚度与试样的几何形状有关。/pp  归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度Lsub0/sub的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。/pp  在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。/pp  在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title="DMA-1.jpg"//pp可得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title="DMA-2.jpg"//ppFsubA/sub/LsubA/sub为刚度。所以测定弹性模量的最终方程为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title="DMA-3.jpg"//pp模量由刚度乘以几何因子得到。/pp  各种动态热机械测量模式及几何因子的计算公式见下表:/pp style="text-align: center "表1 DMA测量模式及其试样几何因子的计算公式/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title="DMA测量模式及其试样几何因子的计算公式.jpg" width="400" height="276" border="0" hspace="0" vspace="0" style="width: 400px height: 276px "//pp  注:表中b为厚度,w为宽度,l为长度。/ppstrongDMA测试的基本原理:/strong/pp  试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。/pp  测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。/pp  DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。/ppstrong复合模量、储能模量、损耗模量和损耗角的关系:/strong/pp  DMA分析的结果为试样的复合模量Msup*/sup。复合模量由同相分量M' (或以G' 表示,称为储能模量)和异相(相位差π/2)分量M' ' (或以G' ' 表示,称为损耗模量)组成。损耗模量与储能模量之比M' ' /M' =tanδ,称为损耗因子(或阻尼因子)。/pp  高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。/pp  复合模量Msup*/sup、储能模量M' 、损耗模量M' ' 和损耗角δ之间的关系可用下图三角形表示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title="复合模量三角形关系.jpg" width="400" height="191" border="0" hspace="0" vspace="0" style="width: 400px height: 191px "//pp  储能模量M' 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。/pp  模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。/pp 通常可区分3种不同类型的试样行为:/pp纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。/pp纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。/pp粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。/pp DMA分析的各个物理量列于下表:/pp style="text-align: center "表2 DMA物理量汇总/ptable border="1" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应力/span/p/tdtd width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "σ(t)=σsubA/subsinωt=FsubA/sub/Asinωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应变/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "ε(t)=εsubA/subsin(ωt+δ)=LsubA/sub/Lsub0/subsin(ωt+δ)/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量值/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "|M*|=σsubA/sub/εsubA/sub/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"储能模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’(ω)=σsubA/sub/εsubA/subcosδ/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’’(ω)=σsubA/sub/εsubA/subsinδ/span/p/td/trtrtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗因子/span/p/tdtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "tanδ=M’’(ω)/M’(ω)/span/p/td/tr/tbody/tablepstrong温度-频率等效原理/strong/pp  如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。/pp  运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。/ppstrong典型的DMA测量曲线:/strong/pp  DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。/pp  动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。/pp  等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。/p
  • 布鲁克推出具有更高动态范围的timsTOF HT质谱,进一步完善4D蛋白质组学平台
    第70届美国质谱年会(70th ASMS Conference on Mass Spectrometry and Allied Topics)于明尼苏达州(Minnesota)当地时间2022年6月5-9日(北京时间 2022年6月6-10日)举办,会议期间布鲁克公司推出新的 timsTOF HT 系统,进一步拓展了革命性的 4D-多组学 timsTOF 平台。timsTOF HT 采用新型第 4 代 TIMS(trapped ion mobility separation,捕集离子淌度分离)XR cell 和14 位 Digitizer,可实现更宽动态范围、更深的肽段覆盖率和更准确的定量分析。该系统在 4D 血浆、组织蛋白质组和表观蛋白质组学中表现出色。这些系统性能的提升不以牺牲超高灵敏度和高通量蛋白质组学分析(例如每天分析 50 个样本(SPD)或是高达 200 SPD 时的超高稳定性为代价,也不影响结果的可靠性(肽段和蛋白水平控制 1% FDR(错误发现率)),并且避免了靶向免疫识别方法中固有的抗原交叉反应性。利用 dia-PASEF 技术,timsTOF HT 质谱仪可以微克级样本中,在 60 分钟梯度内鉴定超过 100k 独特的肽段其定量分析 CV 值更是低于 5%。此外,timsTOF HT 还针对高通量、高深度和无偏血浆蛋白质组学和液体活检生物标记研究进行了优化。耶拿大学的 Florian Meier 教授说:“我们与布鲁克的合作实现了流程化组织蛋白质组学分析,这是临床蛋白质组学的一个关键领域。由于组织切片和活检常包含非常异质的细胞群,因此对他们的分析极具挑战性。timsTOF HT 系统的 dia-PASEF 采集模式可以在宽动态范围内对蛋白质进行定量分析,即使是在心脏组织等非常困难的样本中,也不会损失分析通量和灵敏度。”PrognomiQ 公司蛋白质组学部门副总裁 Bruce Wilcox 博士在胰腺癌研究中使用 Seer Proteograph 和 timsTOF Pro 2,在深度、无偏血浆蛋白质组学中对生物标志物进行探索研究。Wilcox 博士表示:“我们收集了 193 个胰腺癌患者和健康人群的样本,并采用 5 种 Seer 纳米颗粒处理样本,在这些样本中共检测到 3822 种蛋白质。通过使用多个 timsTOF 系统,约 2933 种蛋白质在至少 25% 的患者样本中被鉴定到。”在本届 ASMS 上布鲁克还宣布与 Scienion 达成协议,其具有极高灵敏度的 timsTOF SCP 系统与 CellenONE F1.4 单细胞 pico-分配器和新的 ProteoChip™ 进行共同销售,实现了由单一供应商提供的无偏、非标记单细胞蛋白质组学 (SCP) 解决方案。Scienion GmbH 首席执行官兼创始人 Holger Eickhoff 博士评论说:“我们很高兴与布鲁克一起提供完整的 SCP 解决方案。借助扩大合作关系,并通过结合我们 SCP 团队的专业知识来加速单细胞蛋白质组学解决方案的研究与开发,从而更好地满足单细胞蛋白质组学界的需求。”
  • 冷杉精密仪器发布冷杉6100气体动态校准仪新品
    冷杉6100气体动态校准仪是一台智能化在线气体校准仪器。传统校准方式采用不同浓度的多个钢瓶气体分别进样分析,通过校准曲线进行仪器校准,冷杉 6100 气体动态校准仪由流量控制系统、气路控制系统和计算机控制系统组成,使用一瓶已知浓度标气调节不同稀释比例得到不同含量的标准气体浓度梯度。完全自动化操作,大幅度减少工作量并节约配气时间。产品特点1.人性化操作界面 自主研发操作界面,需人工输入项目少,界面简洁易操作2.提供多种配气模式,满足客户各种需求 自动配气,手动配气,序列配气3.支持正压输出 支持输出压力不超过 0.1 MPa4. 流量计准确测量流量 采用进口元器件,保证校准仪的精度和线性技术参数项目参数稀释气体种类高纯空气、高纯氮气标气流量范围(0~100)SCCM流量准确度±1% F.S.稀释比根据流量计配置而定标气输出接口1/4’’管,英制操作温度5 oC~35 oC使用环境室内或机柜内使用压力(0.1~0.3)MPa稀释气流量范围(0~1000)SCCM;(0~10000)SCCM,可选流量重复性±0.2%F.S.通讯LAN;RS232电源输入220VAC,50Hz工作湿度5%~95% RH仪器尺寸(469.1×178×600)mm(W×H×D)创新点:1、配置超高性能气体控制模块》使用冷杉高精度压力、流量控制模块,流量准确度可达± 1% F.S. (10 to 100% F.S.),测试精准。》使用冷杉专业的动态PID补偿算法和机制,流量重复性可达± 0.2%F.S,实现长期运行的超高稳定性。2、软件系统支持多种功能》质量流量控制器可自动校准》支持自动配气、手动配气、序列配气设置3、产品线满足多样化选择》外观多样化选择:机柜式与便携式机柜式,适用于在机柜内或者实验室内使用;便携式,适用于运维维护,可随身携带。》管路多样化选择:惰性化与非惰性化标准气体化学性质活性高,采用惰性化管路;标准气体化学性质稳定,采用非惰性化管路。》压力输出可切换:微正压输出与正压输出微正压输出:配套检测设备有采样泵;正压输出:配套检测设备无采样泵。》稀释比多样化选择:标气流量计与稀释气流量计标气流量计:(0~100)SCCM,(0~1000)SCCM,(0~5000)SCCM,可选;稀释气流量计:(0~100)SCCM,(0~1000)SCCM,(0~5000)SCCM,可选。冷杉6100气体动态校准仪
  • 新型动态热机械分析仪(DMA)进入中山大学
    日前,中山大学和法国01dB-Metravib公司中国总代理仪尊科技有限公司(Esum Technology Limited)签订合同,购买中等力值的动态热机械分析仪(DMA)。该设备除可进行传统的材料粘弹性试验外,还可进行蠕变、应力松弛、热膨胀、静态测试、浸渍等多种试验。DMA25/50的机架可倒置,在设备上只需加一个烧杯就可进行各种浸渍试验,使目前最方便的浸渍试验方式。  DMA25/50 是测试范围极宽、功能极其强大的动态热机械分析仪(DMA),相信该类动态热机械分析仪(DMA)将会成为我国高等学校、研究单位及厂矿企业进行材料开发研究,尤其是需要浸渍材料特性研究必不可少的测试手段。  仪尊科技有限公司  Esum Technology Limited
  • 湘仪2009年上半年最新展会动态
    我公司于上半年将参加一系列展会,诚邀广大新老客户和各地同行来我公司展台参观指导!公司介绍: 湖南湘仪实验室仪器开发有限公司、长沙高新技术产业开发区湘仪离心机仪器有限公司是以生产制造离心机及实验室仪器的高新技术企业,专业生产离心机已有三十多年的历史,我国第一台超高速冷冻离心机( 55000r/min )和第一台高速冷冻离心机 (20000r/min) 都诞生于湘仪。湘仪已率先通过 IS9001: 2000 国际质量体系认证和国 CE 安全认证。质量体系的有效运行进一步保证了产品质量的稳定和可靠的售后服务以及产品的安全性。 湘仪展会动态: 1. 名称:第21届国际医疗仪器设备展览会 时间:2009年3月19日至21日 举办地点:中国国际展览中心新馆 展位号:WB79 2. 名称:第61届深圳全国夏季医博会 时间:2009年4月18日至21日 举办地点:深圳会展中心 展位号:4号馆L11-L1B 3. 名称:第37届全国制药机械博览会 时间:2009年5月11日至14日 举办地点:郑州国际会展中心 4.名称:2009年春季全国高教仪器设备展示会 时间:2009年5月17日至19日 地点:大连世界博览广场(大连市沙河口区星海广场f区10号) 5. 名称:第59届中国实验室技术及装备交易会 时间:2009年6月17日至19日 地点:上海光大会展中心 各展会详细情况请及时关注我们官方网站上的企业新闻动态(www.xiangyilxj.com) 祝 商祺 ! 地址: 湖南台商投资区湘仪科技工业园 联系电话: 0731-2842825、2842826 联系人: 卢经理 13874972826 邮政编码: 410205 电子邮件: lxjxy@lxjxy.com 公司主页: http://www.xiangyilxj.com
  • 朱溢眉等开发出TEM衍生产品:引入加速器技术,低成本捕捉微观动态
    p  strong仪器信息网讯/strong 2019年12月,在美国加州圣马特奥举行的2019年R& D 100 Awards盛典上,布鲁克海文实验室凝聚态物理与材料科学部的高级物理学家兼组长朱溢眉与美国Euclid TechLabs公司、美国国家标准技术研究院(NIST)和日本电子美国的科学家和工程师们开发的“电子束脉冲发生器”获得“2019 R& D 100”奖。/pp  这种低成本的无激光设备可以改装配置到传统的透射电子显微镜中,达到在很短的时间内对能量和生物材料的动态行为成像。/pp  《 R& D World》杂志将其评选为年度100大创新之一,他们的解决方案是一种基于电子束脉冲发生器的透射电子显微镜成像技术,可在很短的时间内对材料的动态行为进行成像,无需复杂且昂贵的脉冲激光器。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/866d4aa7-17cb-46b2-8388-70151e24180d.jpg" title="d3641119-720px.jpg" alt="d3641119-720px.jpg" width="600" height="400" border="0" vspace="0"//pp  span style="color: rgb(0, 176, 240) "该脉冲发生器使传统的透射电子显微镜能够捕获超快的物质过程,如原子振动和电荷转移,而不需要复杂而昂贵的脉冲激光器。照片中,朱溢眉坐在最前,站在其后面的是布鲁克海文实验室的研究助理付学文,主要着手展现脉冲发生器探测超快过程的能力。站在远端的两位分别是Euclid TechLabs公司工程师Hyeokmin Choe(左)和美国石溪大学研究生Chase Rendall(右),他们分别致力于将该设备应用于生物分子和量子材料。/span/pp  strong技术背景/strong/pp  由于透射电子显微镜(TEM)埃米级或更出色的空间分辨率,TEM已成为解析多种材料原子和电子结构的强大工具,应用材料包括高温超导体、铁电和铁磁、催化剂和电池等。但是,常规TEM视频速率约为每秒30帧,即33毫秒,strongspan style="color: rgb(0, 112, 192) "这太慢而无法捕获这些材料中的原子振动、晶格运动、电荷转移、离子迁移、电磁转换和其他动态过程。这种限制主要是由于TEM中产生的电子束是连续的而不是脉冲的。/span/strong/pp  在过去的15年里,探索材料的原子振动、晶格运动等的动态过程,可以通过为TEM配置可产生电子束的脉冲激光来实现,strongspan style="color: rgb(0, 112, 192) "但是基于激光器的超快TEM非常复杂且昂贵,需要对TEM进行重大修改,并且需要专业人员来操作激光系统/span/strong。/pp  strong技术方案/strong/pp  该研究小组的解决方案是电子脉冲发生器代替激光。他们使用加速器技术将电子的连续波形(电子具有类似于波的特性,以一定的频率振荡)“切割”形成10皮秒(1皮秒为万亿分之一秒)的超短脉冲,具有高重复频率(兆赫到千兆赫),用于频闪模式下的超快TEM实验。在这种模式下,脉冲被重复地循环,以创建一个时间分辨率的图像,类似于胶卷是由一系列单独的图片组成,当快速连续地观看时,就会产生连续运动的效果。脉冲的频率可以根据感兴趣现象的自然时间尺度来调整。例如,金属-绝缘体的跃迁或自旋波的传播,只要现象是可重复的,这个过程就可以被捕获。/pp  布鲁克海文实验室凝聚态物理和材料科学部的高级物理学家,电子显微镜和纳米结构小组负责人 朱溢眉表示,“span style="color: rgb(0, 112, 192) "strong将加速器技术与电子显微镜相结合是前所未有的/strong/span。” 朱溢眉与其之前一位学生June Lau(现就职于NIST)提出了电子脉冲发生器的想法,带着这个想法咨询了专门从事加速器开发的研发公司——Euclid TechLabs公司,并进一步进行合作。“在过去的五年里,双方的合作不仅带来一些列科研成果及美国专利的发表,而且还产生了可用于商业TEM的可衍生产品。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 442px " src="https://img1.17img.cn/17img/images/202001/uepic/9a885446-3580-47f8-94f0-0ef1e36b0fc9.jpg" title="electron-pulser-720px.jpg" alt="electron-pulser-720px.jpg" width="600" height="442" border="0" vspace="0"//pp  span style="color: rgb(0, 176, 240) "可以将电子束脉冲发生器(在图中右上角放大部分)改装到现有的商用透射电子显微镜中,以将电子的正常连续波形转变为脉冲束,以进行频闪超快实验。紫色框显示脉冲束,时间间隔为100皮秒。/span/pp  该团队在Euclid公司开发并制造了电子脉冲发生器,在日本电子美国总部的TEM中测试了该设备,然后将其安装在NIST和布鲁克海文实验室TEM中,以不同电压工作。此后,他们一直在进行不同的实验以探索该设备的功能,span style="color: rgb(0, 112, 192) "strong包括它是否可用于探测具有高电子相关的材料甚至生物样品中的超快动力学/strong/span。众所周知,通常用于TEM中的高能电子束会破坏原子键,从而破坏生物样品。但是,如果断裂的化学键能在脉冲之间自愈,辐射损伤便可能会减轻。/pp  “有机会与电子显微镜专家合作非常令我感到兴奋,” Euclid工程部副总裁Chunguang Jing说, “我希望我们的共同努力将带来一个有用的商业产品,可以影响电子显微镜领域。”/pp  “这项技术把我们带到了未知的领域,” 朱溢眉说,“现在,strongspan style="color: rgb(0, 112, 192) "我们不仅可以做时间分辨的测量,还可以看到生物分子对外界刺激的反应/span/strong。”span style="color: rgb(0, 112, 192) "strong我们希望我们相对廉价的技术将为科学界提供一种手段,以在所需的空间和时间范围内捕获和理解功能材料的微观结构、电子结构和自旋状态/strong/span。”/pp  布鲁克海文的贡献得到了美国能源部基础能源科学办公室的支持,欧几里德得到了美国能源部小企业创新研究补助金的支持,NIST得到了内部研发资金的支持。/pp  布鲁克海文国家实验室是由美国能源部科学办公室资助的。科学办公室是美国物理科学基础研究的最大支持者,并且致力于解决当今时代最紧迫的挑战。/pp  strong附:关于获奖/strong/pp  自1962年以来,每年的R& D 100大奖一直表彰科学技术方面的革命性思想。40多位来自学术界,工业界和政府部门的专业人员组成的评审团选出了今年的获奖者。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 68px " src="https://img1.17img.cn/17img/images/202001/uepic/b4f52ac1-4a06-4b01-9755-7effd10eb505.jpg" title="1.png" alt="1.png" width="200" height="68" border="0" vspace="0"//pp  R& D World副总裁兼编辑总监Paul J. Heney说:“这100项获胜的产品和技术将在未来几年改变行业,使世界变得更美好。”/pp  布鲁克海文获得此奖是2019年授予美国能源部国家实验室的众多奖项之一。/pp  美国能源部长Rick Perry表示:“这些奖项认可了我们国家实验室以开创性的思想形式提供的令人难以置信的价值,这些思想一旦成功就将改变我们的生活方式。” “我们为实验室不断重新定义可能的能力而感到自豪,这有助于确保我们国家更加繁荣和安全的未来。”/pp  自1987年以来,布鲁克海文实验室已经获得37项R& D 100大奖。获奖的技术包括显微镜光学、电催化剂、纳米变形方法和辐射探测器等。/p
  • 我国科学家开发新型荧光探针用于检测内源大麻素的时空动态变化
    内源性大麻素(eCB)是由神经元合成和释放的一类脂类神经调质分子,可参与大脑多个脑区的突触可塑性调节,对情绪、睡眠、食欲等神经活动过程具有调控功能。内源大麻素系统的调控异常与神经退行性疾病、癫痫、成瘾、抑郁症和精神分裂症等诸多神经疾病和精神类疾病密切相关。然而,目前缺乏高灵敏度、高时空分辨率的实验手段直接检测在体eCB的动态变化。  近日,发表在《Nature Biotechnology》上的一项题为“A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo”的研究中,来自北京大学的研究团队基于人源大麻素受体CB1和循环重排的绿色荧光蛋白cpEGFP开发了eCB探针eCB2.0,用于检测eCB的时空动态变化。  研究人员利用人源性大麻素受体CB1作为探针的骨架,并把对结构变化敏感的绿色荧光蛋白cpEGFP嵌入受体,改造后的CB1与eCB结合会引发构象变化,而构象变化则会被转换为荧光信号,因此可通过检测荧光亮度变化来反映eCB水平的变化。研究团队在体外培养的细胞、脑片和活体小鼠上均能检测到稳定的eCB信号,该探针被证实具有亲和力强、灵敏度高、分子特异性、相应速度快等优点。  该项工作首次实现了对eCB的高时空间分辨率记录,为科学界深入研究eCB在生理和病理条件下的重要功能和调控机理提供了有力的新工具。   论文链接:  https://www.nature.com/articles/s41587-021-01074-4  注:此研究成果摘自《Nature Biotechnology》,文章内容不代表本网站观点和立场,仅供参考。
  • ICP-AES仪器技术与应用最新发展动态
    上世纪60年代中期,美国Fassel和英国Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体原子发射光谱(ICP-AES)新技术。1975年美国热电佳尔-阿许公司(TJA)生产了世界上第一台商用ICP-AES,仪器的商品化有力地推动了ICP-AES分析技术的应用和发展。  ICP-AES法既具有原子发射光谱法(AES)多元素同时测定的优点,又具有原子吸收光谱法(AAS)溶液进样的灵活性和稳定性,在主、次、痕量成分的多元素同时测定,固、液、气态样品直接分析等方面具有很好的效果,堪称理想的分析方法。经过半个多世纪的发展,其应用范围是原子光谱分析技术中最为广泛的一种,由无机物分析,扩展到有机、生化、生命科学分析领域,以及当前备受关注的环境检测及食品安全监控等方面,已成为当前最具优越分析性能和实用价值的实验室必备检测手段。  2014年10月19-21日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo 中国科学仪器设备与试验技术高峰论坛&rdquo 、&ldquo 第四届中国能力验证与标准样品论坛&rdquo 、&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 在北京国际会议中心举行。10月20日下午,湿法分析(ICP-AES\ICP-MS\AAA\其他)分会场报告会举行,50余位业内知名专家、学者、技术人员出席了会议。  北京NIL国际实验室能力验证研究中心郑国经教授做题为&ldquo 原子光谱仪器新进展&mdash ICP-AES发展动态&rdquo 的报告。每一届BCEIA期间,中国分析测试协会都会组织各领域的专家对相关仪器、零部件的水平、技术特点、发展前景进行评述。郑国经教授是BCEIA仪器评议光谱组的组长,在此次报告中郑国经教授详细评述了近年来原子光谱中ICP-AES仪器技术与应用的最新发展动态。  ICP-AES仪器技术发展动态  (1)仪器分辨率有明显提高  谱线干扰是ICP-AES光谱分析的主要影响因素,所以ICP-AES仪器需要高分辨率的光学系统,才能最大限度减低光谱干扰。中阶梯光栅-棱镜双色散系统和超百万像素的固体检测器使 ICP-AES的分辨率达到&ldquo 极致&rdquo 。近期的新品仪器均标称,仪器的光学分辨率达到0.003nm或像素分辨率为0.002nm。仪器的谱线实际分辨率可以达到0.005nm的效果。  (2)高频电源采用全固态数字式发生器成为主流配置  全固态RF发生器使仪器结构更为紧凑、运行更加稳定,可达到稳定性&le 1.0%、重复性&le 1.0%。频率已经优化在27.12MHz 及40.68MHz,不同厂家均有选用,效果相近,均有很好的分析性能。  国内在这方面正在迎头赶上,近年来武汉地质大学与计量院联合研制的数字式高效全固态 ICP光源系统已取得成果,采用全数字化设计,功率调节采用数字式控制,频率为27.12 MHz,可调范围为100 W~1600 W,将大大促进国产ICP-AES仪器的发展。  (3) 炬管垂直放置,双向观测同时进行,已成为全新配置  自从上世纪末,推出端视技术以提高ICP-AES的检出灵敏度以来,据采用水平炬管,双向交替观测。经实际使用发现水平炬管不是最佳配置,因此垂直炬管成为全新配置,同时推出双向同时观测技术。实验中发现水平炬管易产生盐分、碳粒的凝结和水滴的产生,而垂直炬管设置可防止这些情况出现,并能提高分析有机样品和高盐样品时的稳定性。  (4)检测器结合不断深化的软件功能,多谱线拟合扣除光谱干扰、多波长分析数据自动判别,创造即开即用、高通量快速检测技术  固体检测器不断改进提高,新一代CCD/CID检测器具有高灵敏度、高量子化效率,像素分辨率可达到优于0.003nm。  强大的软件功能,一次测量可同时采集多条谱线及背景信息,记录所有元素的分析谱线数据,可在测量后对任何元素及其干扰直接进行数据处理,或可以随时在方法中添加其他谱线,进行数据再处理,不需重新再做分析。使ICP-AES的测定达到高样品通量、低消耗成本的效果,&ldquo 全谱全读&rdquo 的分析摸式。  (5)仪器分析性能明显提高,分析波长范围向近红外区和远紫外区扩展,检出限有很大提高  波长范围逐渐扩大,紫外向130nm、红外向1100nm扩展。在远紫外光区有很多谱线干扰少的灵敏分析线,因此努力拓宽180nm以下的分析谱线的应用,一是提高测定下限,二是消除干扰,三是扩大测定范围。  (6)溶液高通量自动进样及省时、省气、高效设计达到即开即用的效果  采用溶液高通量自动进样技术,缩短进样及冲洗时间,提高进样频率,实现高通量自动进样。  气路设计上也依据高效节能的理念,满足省时&mdash 开机即用(5分钟) 省气&mdash 无需提前和延时吹扫,所有吹扫的氩气和冷却气体都将引入等离子气充分利用 高效&mdash 高浓盐、有机样、高低浓度一次完成测定。  (7)激光剥蚀固体进样等配件已成为性能优越的商品,扩大了ICP-AES分析应用范围  将激光剥蚀(LA)超微粒子采样技术与ICP-AES分析技术相结合构成LA-ICP-AES, 形成固体样品直接进样的分析技术,已成商品配件。  近年来ICP-AES新产品  ICP-AES仪器技术进展,从提高分析能力考虑,提高仪器分辨率是关注点 改进仪器的使用流程,提高开机即用能力,减低气体消耗是主流。  近年来出现新品:耶拿高分辨率ICP仪器-PQ9000型、利曼CMOS固态检测器ICP仪器-Prodigy7型、安捷伦同步双向观测仪器-ICP5100型、珀金埃尔默平板型等离子光谱仪器-Optima 8300型、聚光科技的 ICP-5000型等。  耶拿 PQ9000:以耶拿的光学优势,高分辨率中阶梯光栅-棱镜二级色散,达到光学分辨率 0.003nm。  利曼 ICP-Prodigy7:首台采用CMOS固态检测器的ICP-AES。CMOS与目前通常采用的固体检测器CCD或CID不同,其信号采集及处理速度快于常规的CCD/CID。  安捷伦 ICP-OES 5100:智能光谱组合技术(DSC)可实现同步的水平和垂直双向同时观测,是一个全新概念。  珀金埃尔默PE 8300:平板型等离子体降低Ar气消耗量至8 L/min。  聚光科技 ICP-5000:国内率先实现了商品化的全谱型仪器,有多项自主研发技术:自主研发的自激式全固态RF电源及匹配技术、小型化中阶梯二维分光系统光路技术、自行研发的深制冷面阵CCD高速数采系统,分析软件上也有多项创新。  ICP-AES应用进展  ICP-AES分析由于其优越的分析性能,已经在很多领域的得到广泛应用,很多分析方法作为分析标准已经纳入国家标准及行业标准。  目前ICP-AES法纳入国家标准(GB/T)和行业标准:黑色金属材料GB 15个;HY 6个有色金属材料GB 56个;HY 57个能源及化工GB 10个;HY 22个水质及环境GB 1个;HY 3个矿产资源GB 7个;HY 4个其他领域GJB 1个;HY 7个  质检出版社2011年出版的:电感耦合等离子体原子发射光谱分析技术标准汇篇  ICP-AES应用动态  由于ICP-AES技术的不断发展,逐渐实现了快速、低成本、高通量的分析。特别适应用在环境、制药、食品安全或工业分析等领域上,ICP-AES分析已成低成本的检测方法。  从近年来在各公开刊物上发表的文献可以看出ICP-AES已经成为日常分析手段。查近两年2013-2014公开出版刊物中论文有关于ICP-AES分析的论文就有693篇: 2014年228篇,2013年465篇。其中出自&ldquo 冶金分析&rdquo 46篇 &ldquo 光谱实验室&rdquo 33篇 &ldquo 中国无机分析化学&rdquo 23篇 &ldquo 光谱学与光谱分析&rdquo 14篇 &ldquo 化学分析计量&rdquo 13篇 &ldquo 岩矿测试12篇等,可见其应用范围很广。  直接测定  ICP-AES分析通过选用合适仪器和分析谱线大多情况下均可以进行直接测定。主要是解决样品处理问题和谱线干扰问题。各类仪器新品均是为了实现各类样品直接测定的需要。从分析对象看主要还是归结为:  无机物的分析:通过选用合适仪器和分析谱线大多情况下均可以进行直接测定。主要是解决样品处理问题和谱线干扰问题。有机物分析:通过选用合适仪器和分析谱线大多情况下可以进行直接测定。主要是分解有机样品的处理问题和仪器的条件设定问题。  分离分析  ICP-AES作为一种元素测定的分析手段,采用简易分离后测定,可以解决没有现成分析方法或成分复杂无法进行直接测定样品分析问题,也可通过分离富集提高其测定下限,有更为广泛的应用价值。  如:用离子交换纤维柱分离铬(Ⅲ)和铬(Ⅵ)有很好的分离效果,分离后的 Cr(Ⅲ) 和 Cr(Ⅵ) 可用 ICP-AES分别测量&mdash 实现价态分析 用氢氧化镧共沉淀分离ICP-AES法测定铜精矿中铅、砷、锑、铋杂质元素 用反相色层分离ICP-AES法测定可燃毒物(Gd,U)O2中12种微量元素等。  气体进样分析  ICP-AES法通过氢化物发生以气态氢化物发生方式进样,提高了测定灵敏度。另外,以气体进样方式,可以解决特殊的分析需求。如:以发生CO2方式可以测碳、碳酸盐含量。  固体进样分析  LA-ICP-AES开拓了ICP-AES的固体进样分析方法,已有商品配件可供选用。例如:LA-ICP-AES法分析中低合金钢中多元素的研究,除Si元素外,其它元素线性相关系数均大于0.999。  虽然当前人们更多地关注于质谱分析仪器,对于原子光谱的地位与应用产生了怀疑,但是对于无机元素测定,原子光谱仍是最佳方法。特别是ICP-AES已成为实验室必备的检测手段。而环境安全、食品安全中有毒有害元素的检测是长期存在的需要,因此ICP-AES分析仪器的发展仍得到极大的关注。(撰稿人:刘丰秋)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制