当前位置: 仪器信息网 > 行业主题 > >

吸收法工业仪

仪器信息网吸收法工业仪专题为您提供2024年最新吸收法工业仪价格报价、厂家品牌的相关信息, 包括吸收法工业仪参数、型号等,不管是国产,还是进口品牌的吸收法工业仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吸收法工业仪相关的耗材配件、试剂标物,还有吸收法工业仪相关的最新资讯、资料,以及吸收法工业仪相关的解决方案。

吸收法工业仪相关的资讯

  • 萃取富集-石墨炉原子吸收法测试工业废水中铊含量
    铊及铊化物都具有剧毒,铊对动植物的毒性远大于铅、镉、汞等其他重金属。《GB 31573-2015 无机化学工业污染物排放标准》中规定涉铊的无机化合物工业企业,其车间或生产设施废水排放口的铊总量限值为0.005 mg/L。现行水质中铊含量测定标准《HJ 748-2015 水质铊的测定石墨炉原子吸收分光光度法》中列出了两种测试方法:沉淀富集法和直接法。直接法对于基体复杂的废水样品而言,基体影响大,且灵敏度不足,准确性存疑;沉淀富集法则需要用到溴水(剧毒试剂)、离心机(额外的实验设备)等,对实验室管理体系要求较高,增加了企业的管理成本。珀金埃尔默开发了一种利用铁盐和溴化钾试剂对废水样品中的铊进行萃取富集处理的方法,有效去除碳酸锂生产企业排放废水中的复杂基质,并降低对石墨炉原子吸收光谱仪的灵敏度要求,大大简化了处理过程,节省企业的管理成本,结果准确可靠,是一种高性价比的企业内控检测方法。仪器和试剂本次实验使用的是PerkinElmer™ 900T型火焰-石墨炉一体式原子吸收光谱仪,配置铊元素无极放电灯(Tl-EDL)。样品处理用到的试剂有:硫酸、磷酸、盐酸、铁(III)盐(即硫酸铁或氯化铁)、溴化钾、甲基异丁基酮(MIBK),纯度要求在分析纯以上。前处理精确量取废水样品25mL于烧杯中,加入铁盐试剂,盐酸,混匀后置于150 ℃ 电热板上加热,待无气泡冒出后,提高加热温度使溶液近干。取下稍冷后,加入硫酸(1+4),加热数分钟,用水转移至50mL比色管中,加水定容至35mL,加入溴化钾试剂,摇匀。静置,加入磷酸,加水定容至50mL刻度,摇匀。向比色管中准确加入5 mL甲基异丁酮(MIBK),充分振摇数分钟,待静置分层后,取上层有机相测试。样品分析仪器测试参数石墨炉升温程序标准溶液与样品测试谱图如下图所示,峰型左右对称呈正态分布形状,出峰时间在1秒左右,表明石墨炉温度程序对样品合适。标准溶液和样品溶液Tl测试谱图标准曲线和样品测试结果见下图,萃取富集-石墨炉原子吸收法测试TI的结果与ICP-MS法一致,加标回收符合方法验证要求。通过萃取富集的处理方式,样品中低浓度Tl元素可以浓缩至有机相中,相应的限量指标也从原来0.005 mg /L转变为0.025 mg/L,同时原本干扰大的基体组分也去除干净,大大降低对仪器的灵敏度要求。萃取富集石墨炉法Tl标准曲线AAS和ICPMS测试结果想要了解更多测试细节,欢迎扫码下载应用报告。扫描上方二维码即可下载资料
  • 天津市发布《铅蓄电池工业污染物排放标准》,LUMEX原子吸收助力铅镉污染物监测
    《导读》--天津市生态环境局近期会同市市场监管委发布《铅蓄电池工业污染物排放标准》(DB12/856-2019)(以下简称《标准》),明确了pH值等11项污染物排放限值。新建企业自2019年2月1日起执行《标准》,现有企业自2020年1月1日起执行。 该标准规定了铅蓄电池生产行业水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准控制项目包括11项污染物排放限值和单位产品基准排水量;其中涉及水污染物8项,包括pH值、化学需氧量、悬浮物、总磷、总氮、氨氮、总铅、总镉;大气污染物3项,包括铅及其化合物、硫酸雾和颗粒物。LUMEX高频塞曼原子吸收可以为铅、镉污染物检测提供有效、稳定、准确的解决方案。 铅蓄电池工业是重金属污染防治的重点监管行业,是我市铅排放占比最高的行业。该标准实施后,可以有效促进企业加强运营管理、提高工艺水平、减少无组织排放,有利于天津市地表水环境质量及环境空气质量的改善,通过减少铅、镉等对人体健康有危害的重金属污染物排放,有助于铅蓄电池行业的健康、可持续发展。 LUMEX公司自1991年成立以来一直致力于新产品和先进技术的开发,现已拥有100多种分析方法,为全球用户提供相应行业的解决方案,现产品和方法用户遍布全球80多个国家。LUMEX原子吸收经过二十年多年的发展,具备成熟的仪器方法和配置,独特的优势特点受到广大用户的好评。 LUMEX将其独有的高频塞曼背景校正专利技术、无极放电灯技术用于石墨炉原子吸收,并结合最优软件流程设计,研制出快速、稳定、可靠、智能的MGA1000原子吸收光谱仪。产品特点:高频塞曼背景校正技术(50KHz)塞曼全波段校正有效消除化学背景干扰和结构背景干扰,实现超低检出限,测定稳定性更好。极快的升温速率—瞬时升温高达7000℃/秒瞬时升温速度高可有效提高原子化效率,减少挥发损失,灵敏度较高,检测结果更准确。光源设计—高强度无极放电灯先进的高强无极放电灯EDL光源保证能够实现超低痕量重金属的准确检测,砷As和硒Se无需氢化物发生器即可直接检测。灯座设计—兼容性强旋转六灯座同时兼容空心阴极灯和高强度无极放电灯(EDL),无需额外EDL灯位及供电系统,操作更简单,检测结果更加稳定。独有的准双光束光路设计独特设计有效消除由于元素灯、电子元件和设备引起的仪器漂移,提高仪器的长期稳定性。STPF稳定温度石墨炉平台技术结合快速升温速率,可兼容Massman 石墨管和Lvov’s平台石墨管,纵向加热及STPF设计使石墨管寿命更长,石墨管平台与石墨管契合度好,原子化效率高,能够消除基质干扰,提高分析重复性一体化冷却循环水设计仪器集成冷却循环水系统,冷却效率高,无需单独外接冷却循环水和其他管线。开机即测—仪器无需预热即使仪器和元素灯不经预热,测量数据也能保持很好的稳定性。卓越的软件控制—实现全自动测量高智能型软件设计,全自定义元素、样品及序列等参数,实现六种元素灯自动切换,所有样品自动顺序测量,完全实现无人值守自动测量。精巧设计紧凑一体化设计,整合石墨炉电源,布局合理,安全性能高,外观紧凑小巧,节省实验室空间。前 言为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》等法律、法规,保护环境,防治污染,促进铅蓄电池工业生产工艺和污染治理技术的进步,结合天津市实际情况,制定本标准。本标准实施之日起,天津市铅蓄电池工业污染物排放控制按本标准的规定执行,环境影响评价文件或排污许可证要求严于本标准时,按照批复的环境影响评价文件或排污许可证执行。本标准由天津市生态环境局提出并归口。本标准起草单位:天津市生态环境监测中心。本标准主要起草人:刘佳泓、周晶、赵吉睿、孙猛、张骥、张莹、高翔、杨丽萍、张玉慧、张丽红、张震、何富生、陈魁。本标准由天津市人民政府于2018年12月27日批准。本标准为首次发布。铅蓄电池工业污染物排放标准1 适用范围本标准规定了铅蓄电池生产企业(含生产设施)水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准适用于天津市辖区内铅蓄电池生产企业(含生产设施)水、大气污染物的排放管理,新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证管理及其建成投产后的水、大气污染物排放管理。本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》《中华人民共和国固体废物污染环境防治法》《中华人民共和国环境影响评价法》《天津市大气污染防治条例》《天津市水污染防治条例》等法律、法规、规章的相关规定执行。2 规范性引用文件本标准引用下列文件或其中的条款。凡是不注日期的引用文件,其最新版本(包括所有修订单)适用于本标准。GB 3097海水水质标准GB 3838地表水环境质量标准GB 6920水质 pH值的测定 玻璃电极法GB 7475水质 铜、锌、铅、镉的测定 原子吸收分光光度法GB 11893水质 总磷的测定 钼酸铵分光光度法GB 11901水质 悬浮物的测定 重量法GB 30484电池工业污染物排放标准GB/T 14295空气过滤器GB/T 15432环境空气 总悬浮颗粒物的测定 重量法GB/T 16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 55大气污染物无组织排放监测技术导则HJ/T 397固定源废气监测技术规范HJ/T 399水质 化学需氧量的测定 快速消解分光光度法HJ 75固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范HJ 535水质 氨氮的测定 纳氏试剂分光光度法HJ 536水质 氨氮的测定 水杨酸分光光度法HJ 537水质 氨氮的测定 蒸馏-中和滴定法HJ 539环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 544固定污染源废气 硫酸雾的测定 离子色谱法HJ 636水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法DB12/ 856—2019水质 氨氮的测定 连续流动-水杨酸分光光度法HJ 667水质 总氮的测定 连续流动-盐酸萘乙二胺分光光度法HJ 670水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法HJ 685固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 700水质 65种元素的测定 电感耦合等离子体质谱法HJ 776水质 32种元素的测定 电感耦合等离子体发射光谱法HJ 828水质 化学需氧量的测定 重铬酸盐法HJ 836固定污染源废气 低浓度颗粒物的测定 重量法3 术语和定义下列术语和定义适用于本标准。3.1 铅蓄电池 lead-acid battery又称铅酸蓄电池。含以稀硫酸为主的电解质、二氧化铅正极和铅负极的蓄电池。3.2 铅蓄电池生产企业 lead-acid battery manufacturing plants指从事铅蓄电池生产、极板加工、电池组装的生产企业。3.3 现有企业 existing facility指本标准发布之日前已建成投产或环境影响评价文件已通过审批的铅蓄电池生产企业。3.4 新建企业 new facility指本标准发布之日起环境影响评价文件通过审批的新建、改建、扩建的铅蓄电池生产企业。3.5 排水量 amount of drainage指生产设施或企业向企业法定边界以外排放的废水的量,包括与生产有直接或间接关系的各种外排废水(含厂区生活污水、厂区锅炉和电站排水等)。3.6 单位产品基准排水量 benchmark effluent volume per unit product指用于核定水污染物排放浓度而规定的单位铅蓄电池产品的废水排放量上限值。3.7 排气筒高度 stack height指排气筒(或其主体建筑构造)所在的地平面至排气筒出口的高度。3.8 企业边界 enterprise boundary指铅蓄电池生产企业的法定边界;若无法定边界,则指实际边界。3.9 标准状态 standard condition指温度为273K,压力为101325Pa时的状态。本标准规定的有组织大气污染物标准值以标准状态下的干空气为基准;企业边界无组织排放的铅及其化合物、硫酸雾、颗粒物浓度为监测时大气温度和压力下的浓度。3.10 公共污水处理系统 public wastewater treatment system指通过纳污管道(渠)等方式收集废水,为两家以上排污单位提供废水处理服务并且排水能够达到相关排放标准要求的企业或机构,包括各种规模和类型的城镇污水处理厂、区域(包括各类工业园区、开发区、工业集聚区等)废水处理厂等,其废水处理程度应达到二级或二级以上。3.11 直接排放 direct disge指排污单位直接向环境水体排放水污染物的行为。3.12 间接排放 indirect disge指排污单位向公共污水处理系统排放水污染物的行为。4 技术及管理要求4.1 实施时间新建企业自本标准发布之日起执行;现有企业自2020年2月1日起执行本标准。4.2 水污染物排放限值及要求4.2.1 水污染物排放限值执行表1的规定,单位产品基准排水量执行表2的规定。4.2.2 排放限值按污水不同的排放去向和不同的功能区分为三级,其中一级、二级为直接排放标准,三级为间接排放标准。4.2.3 排入GB 3838中IV类(含)以上水体及其汇水范围内水体的污水,以及排入GB 3097中二类、三类海域的污水执行一级标准。4.2.4 排入GB 3838中V类或排污控制区水体及其汇水范围内水体的污水,以及排入GB 3097中四类海域的污水执行二级标准。4.2.5 排入公共污水处理系统的污水执行三级标准。4.2.6 本标准规定的水污染物排放限值适用于单位产品实际排水量不高于单位产品基准排水量的情况。若单位产品实际排水量超过单位产品基准排水量,则按照GB 30484的相关规定换算为水污染物基准排水量排放浓度,并据此判定排放是否达标。4.3 大气污染物排放限值及要求4.3.1 大气污染物排放限值执行表3的规定。4.3.2 企业边界无组织排放小时浓度限值执行表4的规定。4.3.3 产生大气污染物的生产工艺和装置必须设置局部或整体气体收集系统,并安装集中净化处理装置。排气筒高度应不低于15m,具体高度按批复的环境影响评价及排污许可文件从严确定。4.3.4 生产设施应采取合理的通风措施,不得故意稀释排放。在国家未规定生产设施单位产品基准排气量之前暂以实测浓度作为判定是否达标的依据。5 污染物监测要求5.1 一般要求5.1.1 企业应按照有关法律、法规、规章、规范性文件及相关标准等规定,建立企业监测制度,制定监测方案,对污染物排放状况及其对周边环境质量的影响开展自行监测,保存原始监测记录,并公布监测结果。5.1.2 新建企业和现有企业安装污染物排放自动监控设备的要求,按有关法律、法规、规章、规范性文件及相关标准等规定执行。5.1.3 企业应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性采样口、采样测试平台和排污口标志。5.1.4 对企业排放废水和废气的采样,根据监测污染物的种类,在规定的污染物排放监控位置进行,有废水和废气处理设施的,应在处理设施后监测。5.1.5 企业产品产量的核定,以法定报表为依据。5.1.6 对企业污染物排放情况进行监测的采样点位置、采样时间和监测频次等要求,按国家有关污染源监测技术规范的规定和生态环境主管部门的要求执行。5.1.7 本标准发布实施后,新发布的国家环境监测分析方法标准中,其方法适用范围相同的,也适用于本标准排放对应污染物的测定。5.2 水污染物监测要求水污染物浓度的测定采用表5所列的方法标准。5.3 大气污染物监测要求5.3.1 排气筒中大气污染物的监测采样按GB/T 16157、HJ/T 397或HJ 75的规定执行。5.3.2 无组织排放监测按HJ/T 55进行监测。5.3.3 大气污染物浓度的测定采用表6所列的方法标准。6 其它污染控制要求6.1 有组织废气污染控制要求。各生产工序产生的废气必须收集、处理达标后方可排放;熔铅、板栅、制粉、和膏、分片、称片叠片、组装等工序产生的含铅废气,应采用符合GB/T 14295要求的高效空气过滤器或其他更先进的除尘设施。6.2 无组织废气污染控制要求。所有涉铅生产工序应集中布置在独立、封闭的车间内。厂房设置机械排风,维持负压运行,排风需经过废气处理装置处理。6.3 污染治理设施运行与管理要求。企业应加强对污染治理设施的运行管理和定期维护,并做好记录,保留台账备查。7 实施与监督7.1 本标准由各级生态环境部门负责监督实施。7.2 在任何情况下,企业均应遵守本标准规定的污染物排放控制要求,采取必要措施保证污染治理设施正常运行。在发现企业耗水或排水量有异常变化的情况下,应核定企业的实际产品产量和排水量,按照GB 30484要求换算水污染物基准排水量下的排放浓度。7.3 各级生态环境部门在对排污单位进行监督检查时,可以现场即时采样,监测结果可以作为判定污染物排放是否超标的证据。来源:LUMEX分析仪器
  • 对应国标:水质中锑的测定-原子吸收分光光度法
    日前,环保部发文:为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,决定制定《水质锑的测定 石墨炉原子吸收分光光度法》和《水质锑的测定 火焰原子吸收分光光度法》等国家环境保护标准。新闻链接:http://www.instrument.com.cn/news/20150112/150885.shtml 锑及其化合物被美国环保局及欧盟列为优先污染物,也是日本环境厅密切关注的污染物,其毒性大小主要取决于锑的氧化态和结合体。三价锑与红细胞具有高亲和性,其毒性是五价锑的10倍左右。三价锑化物不仅有致癌作用,还会影响人体某些酶及器官的作用,而无机锑的毒性更要强于有机锑的化合物,所以我们要对水质中的锑进行监测。 对于水质中锑的测定,日立原子吸收分光光度计既可使用火焰法+氢化物发生器,也可使用石墨炉法对环境水、河水、下水道水、废水中的锑进行测定。对于含量极低的样品,我们还有新型石墨管-双孔石墨管,可以提高检测灵敏度。 图为.废水中锑的测定(火焰+氢化物发生器法) 图为.河水中锑的测定(石墨炉法-双孔石墨管) 欲了解详情,请点击《日立原子吸收分光光度计测定水中的锑》,链接:http://www.instrument.com.cn/netshow/SH102446/s500745.htm关于日立原子吸收分光光度计ZA3000,请点击:http://www.instrument.com.cn/netshow/SH102446/C170248.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 中国核能行业协会立项《核工业用锆及锆合金化学分析方法 第1部分:碳量的测定 高频燃烧红外吸收法》等19项团体标准
    各有关单位:根据《中国核能行业协会团体标准管理办法(试行)》的规定,经过形式审查、现状检索分析、专家评审,现决定对《核工业用锆及锆合金化学分析方法 第1部分:碳量的测定 高频燃烧红外吸收法》等19项拟立项团体标准(详见附件1)进行公示,接受社会监督。公示期为公示之日起10个工作日。如有异议,请于公示期内向中国核能行业协会标准化委员会办公室进行书面反馈,将填写的《中国核能行业协会团体标准立项项目异议书》(附件2)的盖章扫描版或发送至电子邮箱:standard@org-cnea.cn,或邮寄至: 地址:北京市西城区南礼士路21号六层邮编:100032收件人:中国核能行业协会标准化委员会办公室联系电话:010-56971742联系人:张加军特此。 附件:1.中国核能行业协会团体标准立项项目公示表2.中国核能行业协会团体标准立项项目异议书 中国核能行业协会2024年1月25日关于《核工业用锆及锆合金化学分析方法 第1部分:碳量的测定 高频燃烧红外吸收法》等19项拟立项团体标准的公示.pdf
  • 水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪
    XY-2201E总有机碳TOC分析仪  水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪  水质总有机碳的测定燃烧氧化-非分散红外吸收法(TOC分析仪)是一种常用的水质检测方法,用于测量水中的总有机碳。这种方法通过燃烧样品,将有机碳转化为二氧化碳,然后使用红外光谱仪测量其浓度。  具体步骤包括:  1. 样品处理:将水样进行适当的前处理,如去除悬浮物和金属氧化物等,以避免干扰。  2. 燃烧氧化:将处理过的水样在高温下进行燃烧,使有机物氧化为二氧化碳,以便测量其浓度。  3. 非分散红外吸收法:使用红外光谱仪测量生成二氧化碳的浓度,从而推算出总有机碳(TOC)的含量。  这种方法的优点是测量范围广、灵敏度高、选择性好,可以用于测量不同类型和浓度的水样。同时,TOC分析仪是一种连续测量的仪器,可以实时监测水样的TOC浓度,有助于及时了解水质状况。  一、产品介绍:  XY-2201E总有机碳TOC分析仪采用了高温催化燃烧氧化法,将试样连同净化气体(高纯氧)分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生产的二氧化碳经载气输送依次被导入非分散红外气体检测器NDIR中, CO?被检测。从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。即:TOC=TC-IC  二、产品特点:  1.高温催化氧化,对于难消解的有机碳,也能高效率的氧化,使得产品易于分析高浓度的TOC样品;  2.快速分析(1~4min);  3.更高的安全性,燃烧炉加热采用多重保护,独立于温度控制系统的过热保护电路,过热能自动切断加热,确保产品安全;  4.实时流量监视,保持流路稳定,保证数据的可靠性;  5.管路多方位清洗和吹扫,可以根据需求,按操作要求清洗内部回路,大大减少了故障发生率及仪器维护时间;  6.仪器自动排废,自动排酸和进酸,进酸量控制稳定;  7.较少的样品和试剂消耗,每次测量需消耗高纯水0.5μL,酸试剂2ml(IC测试时),高纯氧气约2000ml(标况下,流速100ml/min,通气时间20min.);  8.NDIR检测器的CO?检测有良好的线性和高准确性。CO?信号转化成为一个峰曲线,然后再由内置的数据处理器计算出TOC数值(TC与IC之差);  9.催化燃烧氧化法氧化能力强,几乎可以氧化所有的有机物且性能稳定。680℃燃烧法几乎是在所有盐份的融点以下,这样可以延长催化剂和燃烧管的寿命,这一点尤其是在测定对象是含盐份的水样时很重要;  10.仪器使用高分辨率7寸触摸宽屏,采用智能系统,全中文界面,使得界面友好,操作简便。  三、技术参数:  1.测定范围:0~1000mg/L(非稀释状态),稀释状态可达到0~30000mg/L  2.重 复 性:≤ 3%  3.示值误差:TC:±0.1%F.S或±5%(取较大者)  IC:±0.1%F.S或±4%(取较大者)  4.线 性:R2≥99.9%  5.检出下限:0.5mg/L  6.分析时间:2~4min  7.注 射 量:10μL~500μL  8.外部存储:U盘  四、使用范围:  地表水、地下水、生活污水、工业废水中总有机碳(TOC)的测定,应用于环境监测、城市给排水、疾病控制、化工电力等行业。
  • 国内原子吸收光谱仪行业现状
    原子吸收光谱仪的可应用于冶金、地质、采矿、石油、轻工业、农业、医药、卫生、食品以及环境监测等。  经过一代科学技术工作者的努力,目前,我国已经成功地掌握了原子吸收光谱仪的设计、生产技术。在火焰分析方面,与国外同类型仪器相比,国产仪器的典型元素检出极限达到相同水平,甚至超过国外。但由于我国在新产品研究开发方面投入不足,使国产仪器在自动化程度和长期工作可靠性方面还有不少差距,尤其是石墨炉分析技术差别更大。为了改变这一落后面貌,北京、上海等地的企业及研究所着重投入资金用于无火焰石墨炉技术的研究开发,在分析重复性与元素检出限等方面取得不少进展,并有新产品推出。  2014年1-5月,我国原子吸收光谱仪行业市场规模达到了8.7亿元,同比增长了11.7%。2013年,我国原子吸收光谱仪行业市场规模达到了17亿元,同比增长了5.6%。  2011-2014年我国原子吸收光谱仪行业市场规模及增长情况    数据来源:国家统计局  2014年1-5月,我国原子吸收光谱仪行业产值达到了6.3亿元,同比增长了11.7%。2013年,我国原子吸收光谱仪行业产值达到了12.1亿元,同比增长了3.4%。  2014年1-5月,我国原子吸收光谱仪行业出口达到了1130万美元,同比增长了5.1%。2013年,我国原子吸收光谱仪行业出口达到了1960万美元,同比减少了19.4%。  2014年1-5月,我国原子吸收光谱仪行业进口达到了4620万美元,同比增长了10.2%。2013年,我国原子吸收光谱仪行业进口达到了9220万美元,同比增长了4%。  分销渠道在市场营销策略中起着关键作用,它们提供了将产品从生产高商转移到工业用户手中的手段,原子吸收光谱仪作为一种特殊的工业品,客户资源相对消费品而言较少。分销渠道以直销营销为主,渠道多为扁平化。  仪器企业一般采用以下几种类型:从生产商到最终用户 从生产商到代理商到最终用户 从生产商到代理商到批发商再到最终用户。  由于教育,政府,科研院所等行业相对集中,采取第一种方式较好。厂矿企业由于分散广,信息难以收集,采用后两种方式相对较好。  分析仪器属于高新技术、集成化较高的产品,在国外高精尖产品闯入中国市场时,国内企业必将面临冲击,实力不足的中国企业在未来的市场竞争中将会被淘汰出局。其实国内很多产品并不弱,但缺乏各个专业化企业间的联合,才造成终端产品与国外产品差距的拉大。  此外,大多国产仪器还不能实现模具化生产,阻碍了其水平的提高。民营企业由于资金不足,相对国企来说,还缺乏国家的支持,又要把生产利润的很大部分投入到研发中去,因此只能是有心无力。要想和国外产品竞争,并且最终胜出,国家的支持很重要。另外,国内众多企业还可以联袂出手。注:以上文中所列观点、数据不代表本网立场,仅供读者参考。
  • 原子吸收法对锂电池正极活性物质/电解液高精度分析
    随着技术的不断革新,锂电池正在逐渐朝着小型轻量化,大容量化,长寿命化发展,对于锂电池的安全性能有了更高的要求,锂电池中每种材料的主成分、添加物和杂质都会影响其安全性和性能,因此需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,这种方法对某些元素的检测灵敏度低。而且使用成本较高。日立偏振塞曼原子吸收分光光度计可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。 ■ 分析实例对钴酸锂中的锂元素和钴元素进行定量分析,最终得到两种元素的摩尔比基本为其理想摩尔比1:1,其精度低于1%。采用日立偏振塞曼原子吸收分光光度计可以高精度地测定正极材料中组成元素的摩尔比。从电解液结果可知,分别使用火焰法测定电解液中钠元素,石墨炉法测定电解液中钾元素,可得到准确地测定结果,并且石墨炉法测定钾元素灵敏度高,可轻松实现ppb级别测定。采用日立偏振塞曼原子吸收分光光度计可以准确高灵敏度测定有机溶剂-电解液中含有的异物。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 气相分子吸收光谱法及仪器的发展历程
    一、气相分子吸收光谱法的理论兴起1. 气相分子吸收光谱法是20世纪70年代兴起的一种简便、快捷的分析手段,1976年Cresser等人首先提出气相分子吸收光谱法(GPMAS),成功的测定了H2S、NO2、NO、Cl等气体;2. GPMAS在我国起步较晚,20世纪八十年代后期,张寒奇等人研究开发利用气态分子吸收测定水中的氯化物;3. 当时在上海宝山钢铁总厂环境监测站任职的臧平安先生从1988年开始研究GPMAS,开发出快速测定NO2-N和NO3-N的方法以及NH3-N和硫化物的实用新方法,并逐步研制出了专用的气相分子吸收光谱仪,仪器性能较原子吸收光谱仪优越,使用也更方便; 1990年和1992年臧平安先生先后发明了“亚硝酸根离子的测定方法”和“硝酸盐氮的测定方法”,(专利号:ZL 90102835.5和ZL 92108475.7),气相分子吸收光谱法在真正意义上实现了可实用化。二、世界上第一台气相分子吸收光谱仪的诞生1. 臧平安先生从20世纪90年代开始进行仪器的调研试制,并于1998年研制出了第一台气相分子吸收光谱仪样机;2. 2000年1月臧平安先生与上海分析仪器总厂合作,由上海自立仪器厂代工,正式生产气相分子吸收光谱仪商品机;3. 2001年臧平安先生脱离上海分析仪器总厂,成立公司,自主研发生产气相分子吸收光谱仪。三、气相分子吸收光谱仪相关标准的制定1. 2002年臧平安先生开发研究了亚硝酸盐氮、硝酸盐氮、氨氮、凯氏氮、总氮、硫化物6个项目的气相分子吸收光谱法(以上方法均被纳入《水和废水监测分析方法》第四版,臧平安先生成为该版编委会成员之一)。2. 2004-2005年,臧平安先生在中国环境监测总站的支持下,协调组织了6个环境检测站,进行了方法验证,并顺利通过;于2005年参与起草制定了环保部“气相分子吸收光谱法的环境行业标准”、“编制说明书”和“数理统计”报告,标准号分别为HJ/T 195 -2005、H J/T 196 -2005、HJ/T 197 -2005、HJ/T198-2005、HJ/T 199-2005、HJ/T195200-2005,于2006年1月1日起实施;3. 2008年国家环保部颁布了12项污染排放标准,开始采用了气相分子吸收光谱法作为水质中氨氮、总氮、硫化物的测定方法,随后每年颁布的排放标准也均采用了气相分子吸收光谱法;
  • 气相分子吸收光谱法快速测定水中高锰酸盐指数
    第3 期2 0 1 1 年6 月N o . 3 J u n . 2 0 1 1 95 气相分子吸收光谱法快速测定水中高锰酸盐指数 赵建平 沈璧君 赵洋甬 胡建林 宁波市环境监测中心 浙江宁波 315010)摘 要 以亚硝酸盐作为还原剂,通过间接测定亚硝酸盐的方式,建立了水中的高锰酸盐指数的快速定量分析方法。水样中的高锰酸盐加硫酸氧化后,用亚硝酸盐进行还原,再用分子光谱吸收法测定亚硝酸盐,从而间接测定高锰酸盐指数。结果表明,方法的检出范围为0 ~ 9mg/L,检出限0.29mg/L, 平均回收率93.2 ~ 103.1%,相对标准偏差3.8 ~ 5.8% 不高于10%。该方法具有测定快速、准确度高、浊度影响少、所用试剂安全环保的特点,特别适合于应急、在线监测、流动注射领域的仪器的开发与使用。关键词 亚硝酸盐 高锰酸盐 气相分子吸收光谱法中图分类号 O657.3Rapid Determination of CODMn by Molecular Absorption SpectrometryZhao Jianping Shen Bijun,Zhao Yangyong,Hu Jianlin(Ningbo environmental monitoring center Ningbo Zhejiang 315010)Abstract This study describes a novel fast quantitative analysis method used nitrite as reductive agent for the detectionof Potassium Permanganate Index (CODMn). The acidulated permanganate in water was fi rstly deoxidized by nitrite.Subsequently, the concentration of nitrite was detected by molecular absorption spectrometry. Due to the reaction betweenpermanganate and nitrite, the readout signals were related to the concentration of potassium Permanganate Index. The resultsindicated a high sensitivity and stability with a detection limit of 0.29 mg/l (R.S.D.% was 3.8%~5.8%) and the recoverywas 93.2%~103.1% ranging from 0 to 9mg/l. The proposed method is rapid and accurate, few disturbances fr om theturbidity of the water and environm entally friendly. Taking into account these advantages, this method represents a promisingplatform for environmental emergency monitoring, on-line analysis and fl ow injection instrument exploitation and application.Key words Nitrite CODMn Molecular absorption spectrometry高锰酸盐指数为地表水体受有机污染物和还原性无机污染物污染程度的综合指标,是指在酸性或碱性的介质中以高锰酸盐为氧化剂处理水样时所消耗的氧,以氧的mg/L 来表示[1],一般采用水样被高锰酸盐氧化后用草酸钠还原,再用高锰酸盐滴定多余草酸钠的方法进行测定,对还原反应和加热氧化后高锰酸盐残留量有较高要求。采用本方法可以在常温的条件下进行多余的亚硝酸盐测定,由于浊度等对分子光谱吸收法影响极少[2],本方法特别适用浊度较大水体的高锰酸盐指数测定。1 检测原理水样加入硫酸呈酸性后,加入一定量的高锰酸盐溶液并在沸水浴(100℃)加热一定时间,剩余的高锰酸盐用亚硝酸钠还原并加入过量,再加入柠檬酸-乙醇溶液,在柠檬酸的介质中,加入乙醇为催化剂,将亚硝酸盐瞬间转化为NO2, 用载气载入气相分子吸收光管中,在213.9 纳米波长处测定吸光值。2 实验部分2.1 仪器与试剂分子吸收光谱仪(上海北裕公司),DG200 加热反应器(哈希公司)、高锰酸钾1/5KMnO4=0.01mol/L、1+3 硫酸、柠檬酸- 乙醇溶液,C=0.5mol/L 柠檬酸+10% 乙醇、以上试剂均为分析纯。2.2 试验方法取10mL 比色管,抽取样品5mL,加入0.5mL高锰酸钾,3mL 硫酸(1+3)于100° 温度DG200 加热反应器加热30 分钟,冷却后加入100mg/L 亚硝酸钠0.7mL, 反应3 ~ 5 分定容至25mL,波长收稿日期:2011-03-08基金资助:国家水专项水污染源应急监测技术体系研究(2009ZX07527-002-06)作者简介:赵建平(1971-),男,浙江宁波人,高级工程师96 Modern Scientific Instruments No . 3 Ap r . 2 0 1 0213.9nm 处,测定吸光度。2.3 工作条件锌空心阴极灯电流:2.5mA;工作波长213.9nm;氮气输入压力为0.2MPa;测量方法:峰高;积分时间2.0min3 结果与讨论3.1 还原剂的选择亚硝酸盐同高锰酸盐反应为无机反应中间产物少。分子吸收光谱法适用于海水地表水工业污水等各类水的测定,检出范围大[1]。3.2 酸度的选择消解完成后,按化学方程平衡计算,加入等摩尔亚硝酸盐(100mg/L)0.7mL 还原。经试验,消解后可直接进分子吸收光谱仪进行检测,高酸性对测定无明显影响。3.3 干扰的消除由于水样消解后水样中原有亚硫酸盐等还原性物质已被氧化,不影响测定;高锰酸盐等被亚硝酸盐等还原,浓度较低亦已不影响测定。3.4 工作曲线的制作取新配9.60 mg/L 高锰酸盐标准溶液0.0、0.5、1.0、1.5̷ 5.0,分别按实验步骤操作,测定吸光度并制作标准曲线,标准曲线为Y=0.0364x+5E-5,高锰酸盐指数的线性范围为0.0 ~ 9mg/L, 相关系数为0.999,检出限为0.29 mg/L,低于国标0.5mg/L。3.5 样品的检测及回收率与精密度取不同浓度标准溶液及样品各2 个,按实验方法进行检测,用标准曲线法求得高锰酸盐指数,结果见表1。表1 高锰酸盐指数的测定样品均值*/ug 加标量/ug 测定/ug 加标回收率*/% 相对标准偏差/%标准1(203138) 7.44 3.72 11.05 98.5 4.7标准2(203137) 2.38 2.38 4.79 101.3 3.8样品1 8.44 5.21 13.08 93.2 5.8样品2 3.20 4.22 7.52 103.1 4.2* 均平行测定5 次。3.6 不同分析方法的比较不同分析方法的比较,见表2。表2 不同分析方法的比较样品国标GB11892-89/(μ g/mL) 本法/(μ g/mL)标准1(203136)5 . 2 4 、5 . 6 2 、4 . 8 8 、5 . 5 8 、4.91、4.99、5.10、5.225.02、5.32、4.97、5.12、5.21、5.19、4.98、5.26标准2(203135)3 . 7 0 、3 . 6 9 、3 . 8 5 、3 . 9 2 、3.51、3.48、3.65、3.813.51、3.81、3.66、3.72、3.64、3.55、3.71、3.90样品18 . 3 0 、8 . 4 5 、8 . 4 6 、7 . 9 0 、7.96、8.01、8.25、8.468.34、8.47、8.20、7.96、8.02、8.41、8.12、8.26经t 检验,本法与国标监测结果无明显区别。4 结论采用DG200 加热反应器消解,用亚硝酸盐还原后,直接用分子吸收原子吸收光谱法进行测定的方法。具有测定快速、准确度高、浊度影响少、所用试剂安全环保的特点,特别适合于应急、在线监测、流动注射领域的仪器的开发与使用。参考文献[1]  国家环境保护总局等编. 水和废水监测分析方法(第四版),2002.223-224[2] 魏复盛,等. 水与废水监测分析方法指南(上册)[M]1997:225-240[3]  周天泽编著.化学分析测试中的干扰消除[M]. 首都师范大学出版社,1996,50[4]  海洋监测规范. 第四部分, 海水分析.GB/T17378.4-2007,101[5]  华东师范大学无机化学教研组等编著. 无机化学. 华东师范大学出版社,1997[6] 水质亚硝酸盐氮的测定. 分光光度法,GB/T 7493-1987
  • 依据JIS K0102采用火焰原子吸收法对钠进行背景校正
    JIS K0102“工厂废水的检验方法”是日本工业标准,在众多领域有着广泛的应用。2019年3月20日,日本工业调查会针对JIS K0102作了相关修订,其中补充了采用火焰原吸法测定钠、钙、钾时,仪器应支持背景校正。但钠、钙、钾元素的测定波长为可见光区,不能用氘灯校正法准确扣除背景吸收。想要符合JIS K0102标准,就需要分析仪器采用偏振塞曼校正或自吸效应背景校正等方法,支持长波长的背景校正。 日立火焰原子吸收分光光度计采用偏振塞曼背景校正法,自推出以来40余年间备受用户青睐。下面为您介绍偏振塞曼校正法的特点和钠的测定实例。 日立偏振塞曼原子吸收分光光度计ZA3000 □ 目前在在火焰原子吸收法实现偏振塞曼校正比较困难,能实现这一技术的厂家也较少。日立ZA3000系列原子吸收分光光度计可同时对火焰和石墨炉原吸法实现偏振塞曼校正可长时间获得稳定的基线。□ ZA3000采用空心阴极灯作为测量光源,可以在全波长范围内进行塞曼背景校正。□ 打开空心阴极灯,基线就十分稳定,开机即可测量。□ 采用双检测器,同时检测样品光束和参比光束,完全实时的背景校正技术获得可信的分析结果。 锅炉水中的钠分析(火焰法)■ 测量条件■ 实验结果■ 实验表明:日立偏振塞曼原子吸收光谱仪ZA3000系列,可同时在火焰和石墨炉实现偏振塞曼背景校正。采用火焰原吸法,即使对于吸收波长在589nm的钠元素也可以完成准确的背景校正,因此符合JIS K0102标准规定的在长波长也可以完成准确的背景校正,能够快速准确的测出试样中钠含量。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 《气相分子吸收光谱仪》国家标准2023年正式实施
    2022年10月,《GB/T 42027-2022 气相分子吸收光谱仪》国家标准正式发布,2023年5月1日正式实施。本文件规定了气相分子吸收光谱仪的要求、试验方法、检验规则、标志、包装、运输和贮存,适用于基于特定的化学反应机理将被测物中的测定成分转化为气态分子,并根据气态分子的特征吸收光谱进行定量检测的气相分子吸收光谱仪。气相分子吸收光谱仪是我国自主研发的一种光谱类分析仪器,广泛应用于我国环境、食品、农业、海洋等水质质量检测领域。目前国内已经有不少关于气相分子吸收光谱法的检测标准,但是一直没有关于产品的标准出台。而正因为此,各厂家产品性能各异、差异性较大,缺少设备评价的统一标准,因此出台相关国家标准是非常必要的,可以有效规范仪器生产及使用,确保仪器的质量,同时由于气相分子吸收光谱仪是我国自主研发的科学仪器,加强标准建立工作尤其重要,在此基础上还可以进行国际标准的申请工作。鉴于此,《气相分子吸收光谱仪》的产品标准在2019年底被正式列为国家标准制定项目。该标准由TC124(全国工业过程测量控制和自动化标准化技术委员会)归口,TC124SC6(全国工业过程测量控制和自动化标准化技术委员会分析仪器分会)执行 ,主管部门为中国机械工业联合会。标准起草单位包括:由上海安杰环保科技股份有限公司、中国环境监测总站、上海市计量测试技术研究院、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、上海北裕分析仪器股份有限公司等企业、浙江省计量科学研究院、青岛佳明测控科技股份有限公司。相比于传统分光光度计,气相分子吸收光谱仪具有精度高、检测下限低,不受水中杂质、颜色的干扰,采用少量常规试剂,耗材少,检测成本低,检测速度快等优点,满足现代仪器行业智能化和低成本的发展趋势,将在我国环境监测及保护中发挥重要的作用。据了解,本标准发布后两年内进行宣贯,宣贯对象是气相分子吸收光谱仪生产企业、各级环境监测站、水利水文机构、石油化工等行业大型企业、海洋监测部门、第三方检测机构、农林单位、高校、科研院所等相关单位。
  • JASIS 2018新品发布之耶拿:原子吸收仪
    p  strong仪器信息网讯/strong 2018年9月5日,日本最大规模的分析仪器展JASIS 2018在东京幕张国际展览中心盛大开幕,吸引来自全球各地的万余名观众参观出席。br//pp  作为德国最大的分析仪器公司之一,耶拿在展会期间带来其原子吸收仪新品——novAA800。/pp style="text-align: center "img title="耶拿novAA800原子吸收仪.jpg" style="width: 400px height: 267px " alt="耶拿novAA800原子吸收仪.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/50a556b4-242d-47ec-8e2e-aea60ab0f020.jpg" height="267" border="0" vspace="0" width="400"//pp style="text-align: center "strong耶拿novAA800原子吸收仪/strong/pp  novAA800于2017年10月在中国上市, novAA800的技术改进包括:首先,整个火焰和石墨炉的切换非常方便,可以瞬间完成火焰和石墨炉的切换,切换后用户无需调节 另外,仪器可以进行吹扫,减少氧气干扰,提高灵敏度,降低检测限,减少腐蚀性气体 检测器方面,我们首次在普通原子吸收上采用了CCD检测器,扣背景的能力增强,信噪比提升,数据准确性进一步提高 最后,皮实耐用是该仪器最大优点。/pp /p
  • 中国原子吸收的“前世今生”——访北京瑞利分析仪器有限公司前总工章诒学
    1954年,澳大利亚物理学家A.Walsh提出了有关原子吸收光谱(Atomic Absorption Spectroscopy,AAS)分析方法的理论。1958年,第一台商品型火焰AAS 仪器问世。自此,开启了原子吸收光谱的发展历程。  谈到中国原子吸收的生产制造历史,不得不提到北京第二光学仪器厂(二光),很多的&ldquo 第一&rdquo 发生在二光。而对于中国原子吸收仪器的研发、制造历史的亲身经历,对于未来技术发展方向的了解&hellip &hellip 莫过于北京瑞利分析仪器有限公司的前总工章诒学。  到2014年,章诒学研制原子吸收光谱已有33年历史,亲身经历、参与和见证了中国的原子吸收光谱仪器怎样从无到有,从简单到复杂,从低端到高端,产量和市场从少到多,成为一种量大面广、可以和国外仪器一比高下的科学仪器。而如今,章诒学还工作在研发的第一线,另外,每年参加PITTCON等光谱方面学术会议与展览会,积极了解原子吸收的最新进展。  日前,仪器信息网的编辑就中国原子吸收的过去、现在与未来,采访了章诒学。北京瑞利分析仪器有限公司的前总工 章诒学中国原子吸收的&ldquo 里程碑&rdquo   国内第一台商品原吸  上世纪60年代,在中国,分析仪器市场需求已经打开,但是商品化的光谱仪器国内几乎没有。当时原子吸收正经历从科研装备向商品化仪器转变的过程。据章诒学回忆,根据国家规划,当时机械工业部向北京市机电工业局下达了建立&ldquo 物理光学仪器生产基地&rdquo 的任务。北京光学仪器厂部分物理光学仪器、北京科学仪器厂物理光学仪器的研发人员、装配人员、设计图纸、装配工具以及初步样机等全部打包&ldquo 搬&rdquo 到了二光。二光成立于1968年12月, 1988年更名为北京瑞利分析仪器有限公司,现归属北京北分瑞利分析仪器(集团)有限责任公司公司(文中统称&ldquo 二光&rdquo )。  我国原子吸收商品仪器的研制始于北京科学仪器厂的倪国栋(浙大光仪系毕业)原子吸收研发团队,该团队1971年加入到二光。在已有研发的基础上,1972年即推出了国内第一台商品原子吸收WFX-Y2型,火焰原子化方式。不过据章诒学介绍,这款仪器并没有大批量推向市场,只生产了10多台。是什么原因导致了中国第一台原子吸收没有成功产业化呢?章诒学说,Y2的研制过程中,有色院、矿冶院作为合作方试用了Y2,而试用结果是认为Y2有不太成熟的地方,需要继续改进。  获得国家科学技术奖项、国内第一台石墨炉原吸  在从原子化、火焰稳定性、喷雾器供气等方面不断对Y2改进的同时,国际上出现了石墨炉原子吸收仪器,专家们和研发团队建议我国开展石墨炉技术的研制。  说到这里,章诒学是1972年加入到了原子吸收团队,Y2研制时处于学习阶段 在1973年初开始石墨炉原子吸收WFX-Y3型研制的时候,章诒学已经开始负责Y3石墨炉机械设计 1979年倪国栋由于个人原因离开二光的时候,章诒学开始担任原子吸收团队的负责人。  Y3的研制中,中科院环境化学所倪哲明团队的马怡载先生起到了非常积极的作用,马怡载先生对石墨炉原子化技术非常感兴趣。当时由于中国还没有开放,很多工作都需要自己动手。中国石墨炉原子吸收的研制是从寻找高纯度、高密度、高强度要求的石墨材料开始的,马怡载先生与章诒学分别赶赴兰州炭素厂和哈尔滨电炭厂,最终从兰州炭素厂找到了符合要求的石墨材料。之后,在大量的石墨炉分析试验中,了解到热解镀层石墨管的寿命长、灵敏度高,章诒学找到了北京电子管厂和航天部1院703所王恩福,正巧王恩福与章诒学二人是北大校友,其部门是研制火箭头上使用的石墨部件,巧的是为响应军转民号召,正在积极寻找民用项目。二人交流了原子吸收仪器中石墨管的技术需求,王恩福部门的大型进口设备、技术能力完全可以解决该问题。说起来非常有意思的是,后来王恩福看到了原子吸收石墨管的市场空间和前景,自己成立了专门公司,一直运营到现在。  历经了两年的时间,解决了石墨材料、热解石墨管加工、电源设计等技术难题,1975年二光推出了WFX-Y3型石墨炉原子吸收。Y3技术革新的地方不只是增加了石墨炉法,还实现了数字化。当然,这个数字化和现在所说的数字化不一样,原来的Y2是指针显示,Y3则实现了数码管显示。这两方面的技术进步,都是填补了国内空白,并且可以说与国际先进技术保持了同步。令人印象深刻的是,Y3还在1978年获得了第一届科学大会奖,科学大会奖是现在国家科学技术奖项的前身,Y3能够获得国家级大奖,其意义和分量不言而喻。  计算机化的原吸  1978年,由于改革开放,中国很多行业受到了巨大冲击,其中,电子工业首先垮台。如现在很火的798文化创意园的前身是中国电子元器件产业园,目前主要依靠收取文化创意工作室的租金生存。这种冲击肯定是给国家工业发展带来负面影响,不过换个角度来讲,例如,对于分析仪器行业来说,大量国外的质量好、价格也不贵的电子元器件涌进来,使得电路板整体故障率下降,促进了分析仪器质量的提升。  章诒学一直坚持&ldquo 追寻国际先进技术不断改进&rdquo 的观念,认为产品改进是无止境的。改革开放之后,中国与国际接轨、信息更通畅,原子吸收的研发人员积极地学习电子、光学等方面先进技术。&ldquo 当时原子吸收的市场、应用已经多起来了,普及程度大,已被列为量大面广的分析仪器。&rdquo 章诒学说道,&ldquo 当时在原子吸收技术进步方面,最主要的发展是计算机化。&rdquo   1985年二光推出了采用计算机进行控制的WFX-1F型原子吸收产品。当然,当时还是286、386等单板机 并且仪器内置了一个9寸电视机显示屏幕。由于计算机的引入,可以实时检查原子化过程中信号变化,达到了毫秒级响应速度,发现了一些原理性问题。另外,1F还推出了自吸收扣背景技术,说到自吸,当时是与广西化工所马治中先生合作的。马治中先生实验室有一台二光的Y2,马先生虽然是研究分析化学的,但是对电子技术很感兴趣,他通过改动Y2的电路实现了自吸收背景校正。  WFX-1F的技术进步较多,在1986年获得了国家科技进步三等奖,是原子吸收光谱历史上获得的第二个国家级奖项。  在1984年国家鼓励技术引进的时候,原子吸收方面也引进了日立、精工等产品。对于技术引进,章诒学说从中学到了很多,如一种新型的原子化技术&mdash &mdash 钨舟电热原子化,才知道原来原子化方式不只有火焰和石墨炉,后来,这种原子化技术的变更-钨丝电热原子化应用在了二光后来的910型便携原子吸收仪器上。另外,更主要的还是学到了装配、机械加工技术,在工业设计等方面也受到了启发。  发展塞曼原吸  塞曼效应背景校正是近年来最受关注的原子吸收扣背景技术,章诒学对于恒磁场塞曼效应背景校正技术一直比较偏爱,尤其关注日立公司的恒磁场技术。可以说二光的塞曼原子吸收仪器研发上受日立公司技术影响较多。章诒学介绍,日立的原子吸收从170、180、5000、2000,一直到3000型,始终坚持在恒磁场塞曼效应背景校正技术方向上改进,并且不断有新&ldquo 东西&rdquo 出来,&ldquo 这种坚持自己技术路线不断进步的理念值得学习。&rdquo   二光的塞曼背景校正技术是与广州测试所的何华焜先生合作的,何先生是中国最早研究塞曼背景校正技术的人之一。1988年的时候何华焜先生与二光合作推出了交变磁场塞曼背景校正技术的WFX-1G,不过,虽然该样机通过了鉴定,但在后期的试验中发现由于交变磁场部件振动导致基线&ldquo 振荡&rdquo 显著,并且由于该技术不能应用于火焰原子吸收上,最终,WFX-1G没有批量生产。不过这也为二光继续研究塞曼背景校正技术打下了基础,仍然是与何华焜先生合作,经过了3年研究,在2006年,二光推出了并列式火焰与石墨炉原子化系统、恒定磁场横向塞曼效应背景校正WFX-810。  1975年WFD-Y3石墨炉、1985年WFX-1F计算机、2006年WFX-810塞曼代表了中国原子吸收的技术进步的步伐。其中,像石墨炉技术、自吸收扣背景技术等的研发几乎与国际同步,而自吸扣背景还可能早于国外。  中国原子吸收早期的应用领域主要是冶金、地质,后来扩展到了环境、食品、医药等领域。国产厂商除了二光之外,还有北分、上分、南分、沈分等。原子吸收技术的&ldquo 现在与未来&rdquo   &ldquo 单光束与双光束&rdquo 之争  &ldquo 单光束与双光束&rdquo 之争这个话题是章诒学提出的,她还自豪的说在单光束与双光束的光路设计方面是我们中国影响了外国。事件源于上世纪八十年代初,当时大量的进口原子吸收产品涌进了中国,进口原子吸收多采取了双光束的光路设计,而大部分国产原子吸收则是采取单光束设计方式。单光束光路设计简单、光强高,弱点是基线漂移、稳定时间长。而双光束的基线稳定性好,弱点是光路复杂、光强弱,砷等弱光元素受影响较大。  当时国外公司极力宣传双光束的优势,基线稳定、不用预热、开机就能使用等。当时,邓勃、马怡载、何华焜、吴廷照等老一辈原子吸收学者们组织了一次PK活动,现场测试、比较国内外原子吸收仪器的稳定性。PK的结果是,单光束的原子吸收仪器效果更好,虽然其基线漂移是缺陷,需要稳定一定时间才能使用,而且当时的元素灯稳定性没有现在的好,稳定时间多在十五或二十分钟。但是单光束原子吸收的光能量强、信噪比好。如今,随着光源制作技术的发展,元素灯的预热时间变短了很多,性能更稳定 而且由于计算机技术的引进,调零方便,基线漂移很容易解决。  相反,双光束仪器设计的镜子多,而多一块反射镜最少也要损失15%~20%的能量,原子吸收本就是减弱光强度的过程,如此导致检测到的信号非常弱。那次PK之后,可以说,国外仪器公司也有不坚持双光束的了,至少将双光束当作卖点进行大力宣传的少了很多。  原吸&ldquo 短板&rdquo 之多元素同时检测  分析速度慢、一次只能分析一个元素是原子吸收的固有缺陷。而2004年,德国耶拿公司在世界上首次推出了连续光源火焰原子吸收光谱商品仪器。耶拿的连续光源原子吸收是通过采用脉冲氙灯作为连续光源、中阶梯光栅的分光系统、CCD 检测器等技术,实现了多元素连续检测。  不过,不同元素的原子化条件差异很大,即使是采用连续光源,真正实现多元素同时测定仍有难度,仍需要发展新的技术。另外,连续光源原子吸收仪器的结构与运行都相对复杂,而且,中阶梯光栅等技术具有一定难度,国内短时间内无法达到。  在这种情况下,国内的原子吸收走了另外一条技术路线:多元素灯+CCD。多元素灯,用两种以上金属合金制作的空心阴极灯,据了解相关部件供应商现在最多已经可以做到8元素灯。&ldquo 今后可以根据用户的需求定制特色多元素灯,不过哪些元素适合组合在一起还需要进一步研究开发,&rdquo 章诒学说。  大势所趋之现场检测、小型化  就像标题所说的,小型化、便携化,能够现场检测,是分析仪器&ldquo 大&rdquo 的发展方向,也是原子吸收的发展方向之一。  随着全社会对于环境健康和人类健康问题越来越重视,包括原子吸收光谱仪在内的各类重金属检测仪器发挥的作用越来越大,现场小型化、便携式、车载等专用的重金属检测仪也得到长足的发展。从另一个方面来讲,随着大型直读光谱、质谱仪器的迅速发展,原子吸收要保持其仪器和操作上简便易用的特长,应使原子吸收仪器向小型化、专用化方面发展。  2010年,二光推出了便携式原子吸收WFX-910型,采用CCD检测器和钨丝电热原子化器,实现了三元素同时检测。不过,章诒学也说道,仍然有许多的工作要做,如:真正实现多元素的同时检测 软件和整体结构的继续改进 目前910在现场还是手动操作,未来可以自动化程度更高些,如远程控制、无线网络数据传输等,逐步实现江河湖海的实时监测,因为我国的很多江河的源头都是在远离人烟的地方,如果仪器能够远程控制开机、采样、运行、报数据等将为国家水环境事业解决了实际问题 样品处理和分析条件方面需要进行更深入的研究,以便实现真正能拿到野外使用。  章诒学还遗憾地说道,910推出后,由于没有方法标准的支持,检测出的结果不被认可,使得该仪器的市场推广成了大问题。  多功能化是方向吗?  近年来一些仪器公司推出了多功能的原子吸收,如沈阳华光推出过一台集合了火焰原子吸收、石墨炉原子吸收、氢化物发生原子荧光、紫外可见分光光度计、火焰光度计于一身的原子吸收。北京华夏科创公司推出主要用于饮用水标准中11项指标检测的原子吸收和原子荧光&ldquo 二合一&rdquo 的多功能原子吸收光谱仪。  不过,对于这种多功能的原子吸收,其实用性、客户反应如何,还有待进一步的考察。  &ldquo 样品前处理仪器化&rdquo 缺乏  样品前处理技术的仪器化,是所有分析仪器都面临的问题,章诒学指出,&ldquo 前处理技术是开启新应用市场的关键。&rdquo 样品前处理是分析工作的一道坎,分析化学的人不会&ldquo 搞&rdquo 仪器,&ldquo 做&rdquo 仪器的人不了解分析,所以,目前,样品前处理属于两边都够不着的&ldquo 空白区&rdquo 。  说到这里,章诒学举了一个例子,当时910便携原子吸收推出后,蒋仕强老师非常看好910在饲料行业原料进厂前的检测应用,推荐去联系廊坊一家饲料企业,该企业质控经理看过测试数据后,认为910 能够满足企业的需求。不过,企业的分析人员水平较低,无法胜任复杂的样品前处理技术,对此,质控经理提出了一个要求,能否将910的前处理做成自动、&ldquo 傻瓜相机&rdquo 式的?对于这样的要求,章诒学说自己受到了&ldquo 刺激&rdquo ,&ldquo 太难了,仪器厂家对于这方面很外行,不过这一定是一个方向。&rdquo   仪器小型化的目的是为了在现场能够进行检测,恰恰目前还缺少了一个环节&mdash &mdash 样品前处理,未来在这方面有大量的工作可做。全自动化、半自动化的前处理技术或发现新的处理方法解决传统方法不好解决的问题,再或者,另辟蹊径&mdash &mdash 发展直接进样技术。也谈国内外的差距  &ldquo 总的来说,中国的原吸与国际发展方向一致、同步,&rdquo 章诒学说道,&ldquo 国产原子吸收仪器研发力量越来越弱,国内仪器企业的光机系统、分析软件、电路设计的人才很缺乏。&rdquo   长期稳定性之殇  总体来说,国内外原子吸收之间最大的差距是在于长期稳定性。国产原子吸收的长期稳定性较差,这也是用户购买国产原子吸收不自信的地方。用户普遍反应是&ldquo 使用时间长了之后,故障多,数据重现性差。&rdquo   国内外制造水平存在差距之外,关键零部件如光电倍增管、固态检测器等目前几乎都是进口的。很多业内人士建议,国家应该大力扶持关键零部件产业的发展。  一揽子解决方案的&ldquo 真与假&rdquo   国产原子吸收的用户多是县级单位、企业的用户,仪器操作人员的技术水平较低,更加需求全面解决方案。国外厂家的一揽子解决方案真正做到了包含前处理方法、配套试剂等环节。而国内真正能够做到全面解决方案的厂家还不多。  究其原因,章诒学认为,国产仪器厂家的人才结构上存在缺陷,不愿意养、也养不住分析化学人才 而且对于&ldquo 不只造仪器,还要教用户用仪器,最好还能配套前处理设备或方法&rdquo 这种需求缺少意识,然而恰恰这些方面对于占领市场很重要。  同质化、低价竞争的怪圈  &ldquo 国产原子吸收的现状不是很好,同质化、低价竞争现象较严重,&rdquo 章诒学说道。国产原子吸收多是中低档产品,低价竞争的结果是利润薄、研发投入下降。对于相关产业联盟一直没能真正建起来,章诒学感到困惑,&ldquo 不形成联盟,在应对国外竞争时将毫无优势可言。&rdquo   另外,章诒学也谈到目前在仪器招投标中存在的一些弊端,如&ldquo 明明两个灯就够了,偏偏要配八个灯?!灯多了之后,稳定性变差、仪器结构与运行都变得复杂。还有狭缝的个数也是,并不是越多越好,一些仪器厂家往往将这些参数宣传成了&lsquo 噱头&rsquo 。&rdquo   采访编辑:刘丰秋
  • 闪谱发布ReadMax 1000 光吸收酶标仪新品
    ReadMax 1000 光吸收酶标仪上海闪谱生物科技有限公司成立于原中国科学院上海生物工程中心,与复旦大学、上海交通大学等高校有着良好的合作关系,致力于为临床医学、生命科学和药物研发提供高精度、高通量、高性能的专业酶标仪,在国内处于领先地位,拥有该领域的核心技术。ReadMax光吸收酶标仪可以广泛应用于有机化学、临床诊断、药物筛选、生物化学、分子生物学、免疫生物学、细胞生物学、环境分析、食品安全检测、材料科学等多个领域。完全可以取代进口产品,是高性能酶标仪的国产领导品牌,是科研单位与生化制药厂的明智选择。ReadMax 1000 主要特点:1、适用于蛋白质定量分析,支持Bradford、Lowry等方法;2、适用于终点法ELISA/EIA分析;3、适用于MTT(IC50/LD50)分析;4、适用于细胞活性和细胞毒性测试;5、适用于蛋白酶与激酶、磷脂酶等酶类活性测试;6、适用于内毒素LAL分析;7、能够检测任何标准96孔微孔板;8、内置滤光片架,标准配置405 nm,450 nm,492 nm和620 nm四个滤光片,最多可安装7个滤光片;9、具有单波长、双波长检测功能;10、采用8个测量通道和1个参比通道;11、具有单孔动力学分析模式,动力学法ELISA/酶学分析;12、使用LED光源,寿命长、发光稳定;13、可使用专用光吸收检测板可为设备进行校正认证;14、使用USB数据接口,可以直接导出数据至U盘;15、使用7寸触屏控制,不需要额外的电脑;16、全中文界面,适合国内操作人员使用与教学;17、性能不低于进口同类产品,具有极高的性价比;ReadMax 1000 主要指标:1、检测波长范围:400 nm ~ 680 nm(1 nm步进);2、带宽:9 nm;3、测定范围:0 ~ 4.000 OD;4、OD线性范围:1.0% (0 - 2.0 OD),1.5% (2.0 - 3.0 OD) @ 450 nm;5、OD准确度:0.5% + 0.010 OD (0 - 2.0 OD),1.0%+0.010 OD (2.0 - 3.0 OD) @ 450 nm ;6、OD重复性:SD < 0.001 OD 或CV < 0.5 % @ 450 nm;7、读取速度:96孔板 15 s8、微孔板类型: 96孔板。ReadMax 1000主要组成:1、主机(包括光源、检测器、触控屏);仪器附件(选配)1、MF-10型孵育振荡仪;ReadMax 1000光吸收全波长酶标仪工作站软件界面:由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:内置滤光片架,标准配置405 nm,450 nm,492 nm和620 nm四个滤光片,最多可安装7个滤光片,性能不低于进口同类产品,具有极高的性价比ReadMax 1000 光吸收酶标仪
  • 石墨炉原子吸收光谱仪检测空心胶囊中铬含量
    自4月9日爆出老酸奶和果冻产品中可能含有工业明胶后,4月15日央视《每周质量报告》爆出药用空心胶囊也可能采用工业明胶作为生产原料。   根据CCTV13新闻频道《每周质量报告》栏目调查,记者走访了河北、江西、浙江等地的多家明胶厂和药用胶囊厂,发现部分明胶生产企业,采用铬超标的&ldquo 蓝矾皮&rdquo 为原料,生产工业明胶,然后通过一些隐秘的销售链条,把工业明胶卖到一部分胶囊厂买作为原料,生产加工药用胶囊。  由于工业明胶主要原料是皮革制品,而鞣制是制革生产中最为关键的工序,铬鞣法(主要有效成分为氧化铬,12%左右)自问世以来由于其优越的鞣制性能一直占据着鞣剂的统治地位。因此,目前认为铬(Cr)元素含量超标是识别工业明胶和食用明胶的主要区别。  铬是一种多价态的金属离子,有二价、三价和六价。人们认为:三价铬是生物和人体必需的一种微量金属元素,人如果缺乏它,会出现遗传不正常,葡萄糖代谢紊乱等症状,但如果长期大量的摄入三价铬,那么一方面是影响身体的抗氧化系统,容易得一些慢性的氧化性的这种疾病,比如说像糖尿病、高血压这一类的疾病,那么另外一方面,由于抗氧化系统受到了损伤,又容易发生肿瘤等这种异常增生的疾病。而六价铬却是强烈的致癌和致突变的诱发因子,它更易被人体吸收,其毒性比三价铬大100倍。六价铬可以影响细胞的氧化、还原,能与核酸结合,对呼吸道、消化道有刺激、致癌、诱变作用。对于空心胶囊,2010版中国药典中所规定的限量值为2mg/Kg。原理主要测试仪器检出限加标回收重现性原子吸收光谱法南京科捷4520A原子吸收光谱仪1.9pg 95%-110% 2.0%按照上述方案,分别对7种不同来源和品牌的药物胶囊进行测试,所得结果如下表:样品名称胶囊1胶囊2胶囊3胶囊4胶囊5胶囊6胶囊7样品含量(mg/Kg)3.3610.83.651.4248.51.976.30下图为铬检测的标准曲线可以看出,通过这一方法,药用胶囊中的微量铬能被准确检出。   南京科捷分析仪器有限公司参考2010年版《中国药典》,采用微波消解石墨炉原子吸收法,开发了药用空心胶囊中的铬含量的检测方法。原子吸收光谱法法具有操作简便,检测限低,重复性好,线性范围宽,回收率高等特点;完全满足空心胶囊中铬含量的测定,为药用胶囊中工业明胶的检验提供了良好的解决方案。欢迎来电咨询空心胶囊中铬含量检测原子吸收光谱仪!联系电话:尹先生13951792301 李经理18974821899 郑经理13951691728
  • 斯珀特发布二硫化碳曝气吸收仪新品
    主要性能◆全样品位:4位。◆大屏幕触摸屏:方便直观操作。◆每个样品可独立调节氮气流量。◆加热方式:恒温水浴。◆可选配封闭气路:实验操作中所有的气体都在密闭空间内,吹出来的气体通过排气管道可直接导出室外或作进一步洗气除害处理,避免了有害气体对操作者的伤害,同时避免了样品的交叉污染。排出气体可通过一个管路直接导出室外,无需在通风橱内进行,大大降低了实验对空间的要求。◆显示方式:数显 控温精度±1℃。创新点:二硫化碳曝气吸收仪是一款专门针对橡胶、化纤、化工原料等行业排放废水中二硫化碳的检测中繁琐、复杂的曝气过程而开发的一款前处理设备。适用国标:GB/T 15504-19965水质 二氧化碳的测定 二乙胺乙酸铜分光光度法二硫化碳曝气吸收仪
  • 水泥行业排放新标准将增原子吸收等需求
    仪器信息网讯  12月27日,环保部联合国家质量监督检验检疫总局发布了《水泥工业大气污染物排放标准》(GB 4915-2013)和《水泥窑协同处置固体废物污染控制标准》(GB 30485-2013)两项新标准。  我国2012年水泥产量达到22.1亿吨,占世界水泥产量的56%,现有规模以上水泥生产企业约4000家,其中水泥熟料生产企业2400多家、新型干法水泥生产线1600多条。据统计,我国水泥工业颗粒物(PM)排放占全国排放量的15%-20%,二氧化硫(SO2)排放占全国排放量的3%-4%,氮氧化物(NOx)排放占全国排放量的8%-10%,属污染控制的重点行业。  《&ldquo 十二五&rdquo 节能减排综合性工作方案》(国发〔2011〕26号)、《国家环境保护&ldquo 十二五&rdquo 规划》(国发〔2011〕42号)、《节能减排&ldquo 十二五&rdquo 规划》(国发〔2012〕40号)、《重点区域大气污染防治&ldquo 十二五&rdquo 规划》(环发〔2012〕130号)、《关于执行大气污染物特别排放限值的公告》(环境保护部公告 2013年第14号)等文件明确规定2015年水泥行业NOx排放量控制在150万吨,淘汰水泥落后产能3.7亿吨 对新型干法窑降氮脱硝,新、改、扩建水泥生产线综合脱硝效率不低于60% 在大气污染防治重点地区,对水泥行业实施更加严格的特别排放限值。  与水泥工业执行的现行标准《水泥工业大气污染物排放标准》(GB 4915-2004)相比,新标准重点提高了颗粒物、NOx的排放控制要求。新标准将PM排放限值由原标准的50 mg/m3(水泥窑等热力设备)、30 mg/m3(水泥磨等通风设备)收严至30 mg/m3、20 mg/m3 将NOx排放限值由800 mg/m3收严到400 mg/m3,除此之外,二氧化硫和氟化物的排放限量也收严至原标准的50%。考虑到现有企业需要进行脱硝除尘改造,标准规定新建企业自2014年3月1日起执行新的排放限值,现有企业则在标准发布后给予一年半过渡期,过渡期内仍执行原标准,到2015年7月1日后执行新标准。新标准还增设了特别排放限值。特别排放限值针对包括&ldquo 三区十群&rdquo 47个城市的重点控制区的&ldquo 6+1&rdquo 重点行业(领域),其限值和实施时间点规定都更为严厉,火电项目实施时间要求与规划发布时间同步,其他行业实施时间与排放标准发布时间同步。  值得注意的是,新标准在原有污染物控制项目(PM、SO2、NOx、氟化物)的基础上增加了氨(NH3)和汞(Hg)控制项目,排放限值分别为0.05 mg/m3和10 mg/m3。汞及其化合物的检测方法为《固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)》(HJ 543),使用的原子吸收分光光度计为原标准所无,氨的检测方法为《环境空气和废气 氨的测定 纳氏试剂分光光度法》(HJ 533)和《环境空气氨的测定 次氯酸钠-水杨酸分光光度法》(HJ 534)。另外,二氧化硫的检测新增《固定污染源废气二氧化硫的测定 非分散红外吸收法》(HJ 629)为标准方法,与原有的两种标准方法碘量法与定电位电解法相比,检测精度更高而且即可用于瞬时监测也可用于连续监测,因此新标准预计会在未来两年增加可观的原子吸收分光光度计需求,也会带来一定的非分散红外法二氧化硫气体分析仪或带非分散红外法二氧化硫气体分析的多组分气体分析仪的需求。  根据环保部官方解读,此次新标准的NOx排放限值是基于SNCR技术确定的,未来随着SCR技术的成熟,环保要求会进一步提高,将基于新技术制定更严格的NOx排放限值。  声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654077-8032。  附件:  水泥工业大气污染物排放标准(GB4915&mdash 2013)  水泥窑协同处置固体废物污染控制标准(GB30485&mdash 2013)
  • 气相分子吸收光谱技术应用交流会
    会议报到时间:10月29日会议开始时间:10月30日会议地点:北京辉腾商务酒店工体店主办单位:中国仪器仪表行业协会分析仪器分会承办单位:上海安杰环保科技有限公司一、会议主题:气相分子吸收光谱应用技术交流会二、会议背景: 目前我国工业、农业和生活污染排放负荷大,全国化学需氧量排放总量为2294.6万吨,氨氮排放总量为238.5万吨,远超环境容量。全国地表水国控断面中,仍有近十分之一(9.2%)丧失水体使用功能(劣于Ⅴ类),24.6%的重点湖泊(水库)呈富营养状态;不少流经城镇的河流沟渠黑臭,饮用水污染事件时有发生。全国4778个地下水水质监测点中,较差的监测点比例为43.9%,极差的比例为15.7%。全国9个重要海湾中,6个水质为差或极差。全国水环境的形势非常严峻,2015年4月国家环保部出台《水污染防治行动计划》,对污水处理、工业废水、全面控制污染物排放等方面进行强力监管并启动严格问责制,铁腕治污将进入新常态。 国家对水质监测非常重视,可用于水质检测的仪器及方法繁多,气相分子吸收光谱仪即是其中之一,目前可检测氨氮、凯氏氮、亚硝酸盐氮、硝酸盐氮、总氮、硫化物、有机汞等,广泛应用于环境监测、水文监测、农业检测等各种领域的水质分析。由中国仪器仪表行业协会分析仪器分会主办、上海安杰环保科技有限公司承办本次气相分子吸收光谱仪应用交流会,希望通过学术交流探讨在水质监测领域新仪器、新方法的应用,汇集科学仪器行业的智慧,更好地服务国家环境监测事业。三、会议议程: 2015年10月30日上午 9:30-10:00 开幕式、领导致辞 国家水利部水资源司领导致辞 国家农业部农业环境重点实验室领导致辞 中国仪器仪表行业协会领导致辞 10:00-12:00 会场主题报告 水质监测新方法探讨——气相分子吸收光谱仪的应用 齐文启(中国环境监测总站) 气相分子吸收光谱仪的应用方法扩展 陈舜琮(北京理化测试中心) 气相分子吸收光谱仪的十四年发展历程 臧平安(安杰科技总工程师) 气相分子吸收光谱仪新产品介绍 孙璐(安杰科技总经理) 2015年10月30日下午 拟参观上海安杰(北京)生产基地四、会议费用标准 此次会议会务费全免,为了保证参会代表的住房安排,请与10月20日前电话联系我们。五、会议联系方式 联系人:曾祥丽 联系电话:13357726798 邮箱:13357726798@163.com 传真:010-53028853 中国仪器仪表行业协会分析仪器分会上海安杰环保科技有限公司
  • 原子吸收火焰法安全维护
    用户朋友们,实验室如何使用好原子吸收分光光度计呢?不仅需要获取稳定准确的测试数据,还要仪器能够安全长寿命运行。因为原子吸收分光光度计要使用可燃性气体,安全问题尤为重要。 为了确保仪器的正常运行,特此我公司提供《岛津原子吸收分光光度计(AA)安全维护告客户函》及《AA安全维护项目一览表》,它将告诉您怎样安全维护岛津原子吸收分光光度计。 您可点击文末阅读原文下载《AA安全维护项目一览表》,我们将一如既往地为您提供高品质的产品和专业的服务。 原文请点击以下链接:https://www.shimadzu.com.cn/weixin/20220407_AA_anquanweihu.pdf
  • 原子吸收测定水中矿质元素 - 非同“钒”响
    钒是人体必需的微量元素,虽然含量极低,总量大约仅有25mg,但研究显示,钒进入人体细胞后能产生广泛的生物学效应,可以起到防止胆固醇蓄积、降低过高血糖、帮助骨骼发育钙化等效用。  《HJ 673-2013水质 钒的测定 石墨炉原子吸收分光光度法》中规定了可以用原子吸收石墨炉法测定水中的钒,适用于地表水、地下水、生活污水和工业废水中钒的测定。  我们使用日立ZA3000原子吸收分光光度计,测定了矿泉水中的钒。图. 矿泉水中钒的测定结果此应用特点:矿泉水中含有丰富的矿质元素,例如钙、钠等,会产生背景吸收,影响基线稳定性。日立ZA3000采用偏振塞曼校正法,可以实现全波长实时背景校正,避免背景干扰。日立ZA3000原子吸收分光光度计特点:(1) 火焰石墨炉均采用偏振塞曼校正法:基线稳定,开机就能测量(2) 石墨管双进样技术:有效提高灵敏度(3) 暴沸自动检测功能:提高数据的重现性(4) 石墨管残留清除功能:减小记忆效应(5) 自动进样器连续注入:减少样品污染,缩短分析时间,减少改进剂用量关于该应用的详细信息,请点击: http://www.instrument.com.cn/netshow/SH102446/down_554090.htm关于日立ZA3000原子吸收分光光度计,请点击:http://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 无需同步辐射光源,台式X射线吸收精细结构谱仪(XAFSXES)最新发布!
    美国easyXAFS公司新推出无需同步辐射光源的台式X射线吸收精细结构谱仪——可以放置在实验室内使用的XAFS! 1. 什么是XAFS?X射线吸收精细结构(X-ray absorption fine structure,XAFS)原理: X射线通过光电效应被物质吸收,产生光电子(出射波);经过周围原子散射,产生散射波;相位不同的两列波在吸收原子处产生干涉,影响吸收原子处的光电子波函数,即吸收系数μ。随能量E变化的μ(E)曲线即XAFS。 由上可知,XAFS信号由吸收原子周围的近程结构决定,可提供小范围内原子簇结构信息,包括配体种类、配位数、配位距离等结构信息和元素价态分析等电子结构信息。 2. 哪里可以做XAFS测试?目前XAFS测试需要依赖同步辐射光源,国内仅有三家:北京高能物理所,上海光源、中国科学院大学;XAFS测试服务也只是同步辐射实验室内的一小部分应用,实在难以满足广大科研用户的使用需求。不过不用担心,台式XAFS谱仪将为您提供服务! 3. 台式XAFS/XES谱仪由美国easyXAFS公司研发的台式X射线吸收精细结构谱仪(XAFS/XES),无需同步辐射光源即可提供XAFS和XES测试;台式体积,可放置于实验室内随时使用,大节省了科研等待时间!同时具有操作简单、方便;配有7位自动样品轮;可集成辅助设备,控制样品条件;后期维护成本低等优势。 XAFS300XES100 4. 应用案例4.1 不同配体化合物的鉴别应用台式XAFS谱仪可以快速实现不同配体化合物的鉴别,直观明了!尤其对广泛应用而言,操作使用无压力。如下图中CoP和CoP标准品。 Mundy, Cossairt, et al., Chemistry of Materials 2018 4.2 同步辐射&台式XAFS/XES经过不同温度处理的橡木的生物炭样品,其同步辐射实验结果和台式XAFS/XES实验结果相一致,即随着温度升高,氧化态S的样品含量在减少。XES:CS500 (800 ppm S) 50min;Oak600 sample (150 ppm S) 6hSynchrotron XANES:CS500(800 ppm)24min;Oak 600sample(150ppm S)114minHolden, Seidler, et al., J. Phys. Chem. A, 2018 4.3 固体核磁&台式XAFS/XES通过对比P的MAS NMR和XES的结果,证明了用P的Kα 的XES谱图可以定量检测LnP量子点的氧化程度和磷酸盐的种类。而且仅从几毫克的样品量即可获得高分辨结果,时间短,将会是更好的测量工具。XES:<5mg样品量,30min内SSNMR:10—20mg样品量,长达数天 在SSNMR谱图中,0ppm位置的峰对应的是表面磷酸盐,而该组分显示在约2014.41 eV的Kα1能量位置。 不同价态的含P化合物的谱图出峰差异,可以判断化合物种类。 -3 -1 +5Stein, Holden, et al., Chem. Mater., 2018. 5. 仪器用户台式XAFS/XES一经推出,便受到广泛的关注,其的性能,得到越来越多的用户认可。目前已安装的用户单位有:催化剂研究方向格罗宁根大学 马克思普朗克研究所 苏黎世理工大学 电池研究方向 克劳斯塔尔工业大学乌尔姆赫尔姆霍兹研究所放射性核素研究方向 谢菲尔德大学
  • 近红外吸收染料的吸收光谱
    |前言近红外吸收染料通常在700~1200nm范围内有最大吸收波长,因其重要的光学性能而应用广泛,如隔热玻璃、激光防护、热写显示、等离子显示器等。为了获取性能优异的近红外吸收染料,需要确定其吸收性能。因此具有近红外波长测定范围的紫外分光光度计必不可少。日立新型紫外分光光度计产品UH5700,检测波长范围190~3300nm波长,同时,标配操作软件UV Solutions Plus具有峰检测功能,可以轻松测定不同近红外吸收染料的吸收光谱。日立紫外可见近红外分光光度计UH5700|应用数据样品制备:将近红外吸收染料粉末溶解于甲苯溶液中,获得待测样品。光谱测定:以甲苯溶液为参比,使用UH5700测定样品的吸收光谱图1 五种近红外吸收染料的吸收光谱1 1纵轴是以每个样品的最大峰值波长归一化后的值UH5700采用连续可变狭缝功能,根据光量大小自动调节狭缝,即使在能量较低的检测器切换波长附近仍然可获得平缓的光谱。如图所示样品约在800~1100nm范围内有最大吸收峰,包含了UH5700的检测器切换波长。 图2 峰检测软件界面2峰高是以每个样品的最大峰值波长归一化后的值图3 峰检测结果UH5700操作软件UV Solutions Plus具有峰检测功能,同时对五种近红外吸收染料进行了峰检测,结果如表所示,可以轻松获取不同样品吸收峰的位置、面积、起始波长等信息。 |总结日立UH5700在近红外波长处获得的数据噪声小,非常适合检测和近红外波长有关的样品。软件中的峰检测功能可以快速分析多个样品的光谱性能,提高工作效率。
  • 安杰科技气相分子吸收光谱仪助力科研创新及水文监测
    助力科研,创新发展合肥工业大学资源与环境工程学院陈天虎教授团队利用安杰气相分子吸收光谱仪对厌氧发酵产气中硫化氢浓度、发酵液中硫化物含量以及发酵底物中酸可挥发性硫进行检测,检测重复性及加标回收率良好。该研究成果发表在国际知名学术期刊Analytical Methods,这是气相分子吸收光谱成套仪器在国际学术领域取得的重要突破。安杰科技作为本篇SCI期刊论文的设备供应商感到非常自豪,愿意在以后为更多高等科研院所提供性能更加优越的气相分子吸收光谱仪产品,助力科研领域的创新发展。助力水文,提升效率云南省水文水资源局红河分局陈金梦工程师在《云南水文水资源》杂志上系统比较了总氮测定过程中传统的紫外分光光度计法与安杰气相分子光谱仪的差异,阐述了气相分子吸收光谱仪的巨大优势,从而大大提升了水文系统水质检测的效率。上述两案例是近年来安杰科技在科研仪器及水文系统应用的典型案例,安杰科技气相分子光谱仪已经被上海交通大学、北京师范大学、华东师范大学等多所高等科研院校在样品分析及实验教学中所应用。同时,2016年安杰科技作为主要起草单位,起草制定了5项水利标准《T/CHES 12-2017 水质 氨氮的测定 气相分子吸收光谱法》、《T/CHES 13-2017 水质 硝酸盐氮的测定 气相分子吸收光谱法》、《T/CHES 14-2017 水质 亚硝酸盐氮的测定 气相分子吸收光谱法》、《T/CHES 15-2017 水质 总氮的测定 气相分子吸收光谱法》、《T/CHES 16-2017 水质 硫化物的测定 气相分子吸收光谱法》,并于2017年9月1日开始执行。2018年安杰科技气相分子吸收光谱技术被纳入国家《水利先进实用技术重点推广指导目录》,在水文系统得到了充分的推广应用。水文领域主要客户包括长江水利委员会、黄河水利委员会、松辽流域水环境监测中心、江西省赣州市水文局、湛江海洋与渔业环境监测站等等。AJ系列气相分子吸收光谱仪升级产品AJ-3700,已经通过中国仪器仪表行业协会的新产品鉴定,专家一致认为该仪器的综合技术指标达到同类产品的国际领先水平。该产品已经大规模投放市场,将以更加优质的软硬件条件继续助力科研创新及水文监测。安杰科技始终致力于气相分子吸收光谱仪的研究开发,力争将国产仪器做大做强!
  • 《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部组织编制了《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见稿,现公开征求意见。请于2022年8月8日前将意见建议书面反馈生态环境部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:生态环境部监测司杜祯宇。水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环 境保护法》,防治生态环境污染,改善生态环境质量,规范水中氨氮的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮的气相分子吸收光谱法。 本标准是对《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195-2005)的修订。修订的主要内容如下: ——增加了氨氮的定义、试样制备、质量保证和质量控制、废物处置以及注意事项等条款; ——删除了气液分离装置、无氨水的制备; ——修改了方法适用范围、规范性引用文件、试剂配制、样品保存时间、校准曲线标准物质以及结 果计算与表示; ——完善了干扰和消除、光源类型、载气类型、校准曲线类型等内容; ——细化了仪器参考条件。水质 总氮的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中总氮的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中总氮的气相分子吸收光谱法。本标准是对《水质 总氮的测定 气相分子吸收光谱法》(HJ/T 199-2005)的修订。主要修订内容如下:——增加了总氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等条款;——删除了气相分子吸收光谱法的术语和定义、无氨水的制备; ——修改了方法适用范围、规范性引用文件、方法原理、试剂和材料、样品的采集与保存;——完善了干扰和消除、光源类型、载气类型、前处理方式、校准曲线类型、结果计算与表示;——细化了仪器参考条件。水质 硫化物的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋 环境保护法》,防治生态环境污染,改善生态环境质量,规范水中硫化物的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水、工业废水和海水中硫化物的气相分子吸收光谱法。 本标准是对《水质 硫化物的测定 气相分子吸收光谱法》(HJ/T 200-2005)的修订。主要修订内容如下: ——增加了硫化物的术语和定义、质量保证和质量控制、废物处置; ——删除了适用范围中的“饮用水”、气相分子吸收光谱法的术语和定义、气液分离装置; ——修订了样品的采集与保存、絮凝沉淀分离法、载流液(酸化剂)的配制、计算公式; ——完善了干扰和消除、光源类型、载气类型、校准曲线的建立、结果与表示。铜水质自动在线监测仪技术要求及检测方法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环 境污染,改善生态环境质量,规范铜水质自动在线监测仪的技术性能,制定本标准。 本标准规定了铜水质自动在线监测仪的技术要求、性能指标及检测方法。 本标准为首次发布。镍水质自动在线监测仪技术要求及检测方法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环 境污染,改善生态环境质量,规范镍水质自动在线监测仪的技术性能,制定本标准。 本标准规定了镍水质自动在线监测仪的技术要求、性能指标及检测方法。 本标准为首次发布。征求意见单位名单(点击下载)
  • 石墨炉原子吸收法分析高盐样品中的锑元素
    三价锑有毒性,对人体的危害极大,因此对于该成分的测定显得尤为重要。可以通过原子吸收分光光度法对可能含有锑元素的样品进行定量分析。但对于一些高盐且目标元素含量很低的样品,例如尿样,高盐背景会影响检测灵敏度。下面给大家介绍一种使用石墨炉原子吸收分光光度法测定高盐样品的方法:将60μL样品和20μL基体改进剂,共80μL试剂注入石墨管,测定样品中微量锑元素。即使大量注入样品,也可实现高灵敏度、高精度的定量分析。高盐样品中锑元素的条件设置■ 样品制备模拟尿液:参照JIS T 3214 膀胱留置用导尿管*模拟尿液中钠浓度:5.4 g /L*样品:将模拟尿液稀释2倍,并向其中加入锑元素(硝酸5%)■ 基体改进剂配置选择Pd1000 mg/L(硝酸10%)和Pd+Mg 1000 mg/L(硝酸10%)两种基体改进剂进行比较,如下图所示,Pd1000 mg/L(硝酸10%)作为基体改进剂的吸光度更高,因此选择Pd1000 mg/L(硝酸10%)作为基体改进剂。 ■ 加热后注入条件设置什么是加热后注入?对于大进样量的情况,可将石墨管加热至预设温度后再注入样品,这样可抑制样品散开,使样品停滞在石墨管中央,由此提高重现性,增加了进样量。通过优化,加热注入温度设置为80℃。 另外对于大量进样的情况,还可以选择日立DII型双注入技术热解石墨管来进行测试。■灰化、原子化温度设置—温度程序自动生成功能【灰化温度设置】背景吸收现象主要是由尿样中的钠元素(5000 mg/L左右)引起的。灰化温度≤1000℃时,背景吸收值偏高,以至于很难准确测定样品。通过温度程序自动生成功能可得到如下图所示的温度和吸光度关系图,由图可见灰化温度为1300℃时样品吸光度值最高,背景吸光值低,因此灰化温度设置为1300℃。【原子化温度设置】不同的原子化温度,原子吸收信号强度也不相同。通过温度程序自动生成功能可获得最佳原子化温度,如下图可见,原子化温度≤2500℃时,信号强度较弱。最终原子化温度设置为2800℃。分析高盐样品中的锑元素按JIS T 3214 膀胱留置用导尿管说明,配置模拟尿液样品。标准液是将关东化学社配置的原子吸光用标准液使用0.1%的硝酸稀释而成。■ 测定条件■ 测定结果上述是模拟尿样测定的结果:线性良好,回收率为97.3%,结果准确可靠。使用日立偏振塞曼原子吸收分光光度计ZA3000系列进行高盐度样品分析时,先加热石墨管再注入样品,不仅可以增加进样量(最多可注100μL),而且分析灵敏度高;配合日立原吸软件的温度程序自动生成功能,可方便快速地对干燥、灰化、原子化温度进行优化,得到最优的温度程序。
  • 最强二氧化碳吸收器问世
    物美价廉,可用于电池及人造树研制一种新的聚合物被证明适于去除大气中的二氧化碳  美国加利福尼亚州的研究人员生产出一种能够从空气中去除大量二氧化碳气体的廉价塑料制品。沿着这条路,这种新材料将能够用于大型电池的研制,甚至在避免灾难性气候变化的尝试中,成为旨在降低大气二氧化碳浓度的“人造树木”的主要成分。  这些长期目标一直吸引着由洛杉矶市南加利福尼亚大学(USC)的化学家George Olah领导的研究团队。作为1994年诺贝尔化学奖得主,Olah一直设想未来社会主要依赖由甲醇(一种简单的液体酒精)制成的燃料。随着容易开采的化石燃料在未来几十年变得愈发稀缺,他提出,人们可以贮存大气中的二氧化碳,并将其与从水中分离的氢相结合,从而形成一种具有广泛用途的甲醇燃料。  Olah和他的同事还在研制一种廉价铁基电池,这种电池能够储存由可再生能源产生的额外电力,并在需求高峰时输入电网。在运行时,铁电池会从空气中攫取氧。但即便只有微量的二氧化碳加入反应也将使电池报废。最近几年,研究人员开发出一些很好的二氧化碳吸收装置,它们由名为沸石的多孔固体与金属有机骨架构成。但是这些吸收装置价格昂贵。因此Olah和他的同事着手寻找一种成本更低的替代方法。  研究人员转而求助聚乙烯亚胺(PEI),这是一种廉价的聚合物,同时也是一种像样的二氧化碳吸收器。但它只能在表面俘获二氧化碳。为了增大PEI的表面积,USC的研究团队将这种聚合物溶解于一种甲醇溶剂中,并将其铺在一堆煅制二氧化硅的上面,后者是一种工业生产的、由玻璃熔解的小滴制成的廉价多孔固体。当溶剂蒸发后,留下的固体PEI便具有很大的表面积。  当研究人员对新材料的二氧化碳吸收能力进行测试时,他们发现,每克该物质在潮湿的空气中——类似于目前大多数的环境条件——平均可吸收1.72毫微摩尔的二氧化碳。这已经远远超过近期由氨基硅制成的另一个竞争对手1.44毫微摩尔每克的吸收值,并且在迄今进行的二氧化碳吸收能力测试中处于最高水平。研究小组在日前出版的《美国化学会志》中报告了这一研究成果。  如果二氧化碳处于饱和状态,这种PEI-二氧化硅合成物也很容易再生。当聚合物被加热至85摄氏度后,二氧化碳便会飘离。而其他常用固体二氧化碳吸收器则必须加热超过800摄氏度才能够赶走二氧化碳。  哥伦比亚大学的二氧化碳空气捕获专家Klaus Lackner表示:“这很有趣。它能够在低温下工作真太好了。”研究团队成员之一、USC的化学家Surya Prakash认为,这使它除了保护电池之外还能够用来抓住空气中的二氧化碳。这种聚合物可用于建造旨在减少大气中二氧化碳浓度的人造树大农场,以及防止气候变化的最严重破坏。但前提是世界各国愿意花费数不清的资金来控制大气中的二氧化碳。  由于这种聚合物会在高温下降解,因此意味着它不可能用于吸收来自工厂烟囱或汽车排气管中的二氧化碳——那里的二氧化碳通常浓度很高且温度也很高。为了克服这一瓶颈,Prakash说,USC的研究团队如今正在研制高表面积且更耐热的PEI。
  • GBC高端原子吸收光谱仪Ultra Z进入中国航空市场
    堪称原子吸收光谱仪的终极水平的 GBC公司的Avanta Ultra Z 系统,日前已经由照生有限公司与北京航空仪器仪表有限公司鉴定正式商业销售合同以及技术合作协议,标志着GBC公司的高端原子吸收光谱仪开始为中国的航空事业提供准确的分析技术和服务。该系统集合了横向加热、纵向塞曼、石墨炉实时彩色观察系统、燃烧头自动旋转、超脉冲背景校正等尖端光谱分析技术,此前已经应用于疾病控制、钢铁工业等领域。北京青云航空仪器仪表有限公司将使用Avanta Ultra Z原子吸收光谱仪进行准确的材料分析和测量。
  • 气相分子吸收光谱仪入选《2019年上海市创新产品推荐目录》
    12月20日,上海市经济和信息化委员会正式发布《2019上海市创新产品推荐目录》。安杰科技AJ-3700气相分子吸收光谱仪成功入选,获得重点推荐。《2019年上海市创新产品推荐目录》由上海市经济和信息化委员会组织申报和评审。该目录通过评选一批采用创新技术的新产品,鼓励新技术应用落地,推进新产品市场化发展,加快上海市产业转型升级和企业创新步伐,为上海市建设具有全球影响力的科技创新中心增添新动力。此次,共有80项产品被纳入《目录》,体现了上海年度科技创新及应用落地的前沿水平,入选产品具有较强的行业示范意义。安杰科技入选产品介绍AJ-3700系列气相分子吸收光谱仪功能特点 -测定对特征光谱吸收采用的连续可调光源(寿命≥2000小时);-结构设计:功能部件模块化设计,功能区域划分明确;-单点定标功能:只需配制标准曲线最高点浓度标液,通过自动稀释自动完成标线绘制;-自动稀释功能:样品超标可自动稀释,最大稀释倍数40倍;-压力监测功能:采用机械+电子双重压力监控系统,确保用户安全;-均质吹扫系统:稳压气源+恒流阀,流量调控更精准,可靠性更佳,可定义吹扫均质时间及过程;-在线除水系统:半导体自动除水,PWM温度反馈控制,优化除水效率;-测量方式:连续进样;-采用内置砂芯气液分离技术,提高气液分离效率和测量灵敏度300%。 技术指标 波长检测范围:190~900nm;波长准确性:±0.2nm;波长重复性:0.1nm;基线噪声:±0.0002Abs;基线漂移:0.0005Abs(30min);标准曲线线性系数:r>0.9998。 应用领域用于地表水、地下水、海水、饮用水、生活污水及工业污水中氮化物、硫化物的测定。
  • 世界首台气相分子吸收光谱仪的诞生——上海安杰环保发展回顾
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  供稿:上海安杰环保科技股份有限公司/span/pp  上海安杰环保科技股份有限公司(简称“安杰科技”),原上海安杰环保科技有限公司,成立于2001年12月29日。公司在成立之初租用了50平方米的工作室,臧平安高级工程师担任总负责人,技术人员有来自上海宝钢仪器修理科、上海分析仪器厂、上海天美仪器厂和上海光学仪器厂的退休和兼职软硬件高级工程师5人,股东2人,总共8人。公司整体技术力量较强,成立初期就设计开发了AJ-2100气相分子吸收光谱仪,也是世界上第一台气相分子吸收光谱仪。/pp style="margin-top: 10px margin-bottom: 10px "  strong一、发明气相分子吸收光谱法,获得环保部认可/strong/pp  安杰科技总工程师臧平安发明了测定亚硝酸根离子和硝酸根离子的方法并申请了发明专利,他是气相分子吸收光谱法(GPMSA)的杰出开拓者。气相分子吸收光谱法是“节能环保”的分析监测手段,它不仅抗干扰性能强、测定样品速度快、节约化学试剂,而且不使用有毒有害的化学试剂,因而受到了广大分析检测工作者的欢迎。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/5d3e3ebf-88d0-478c-ba4c-bf05151d54c8.jpg" title="安杰环保1_副本.jpg" alt="安杰环保1_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "臧平安“亚硝酸根离子的测定方法”发明专利证书/span/pp  经过多年努力,氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮及硫化物测定方法于2002年被纳入了“水和废水监测分析方法(第四版)”。为更容易推广这一节能环保的分析监测手段,应广大分析监测者及监测站等的要求,并在中国环境监测总站领导齐文启研究员的支持和指导下,该系列监测方法于2004年正式获得国家环保部科技标准司的批准,以安杰科技生产的AJ-2100气相分子吸收光谱仪作为指定验证仪器,组织了全国范围内6家环境监测站,对“氨氮等6项气相分子吸收光谱法”进行了方法验证,将取得的验证数据进行了“数理统计”、起草了“标准编制说明书”,并按照行业标准格式编制了“氨氮等6项气相分子吸收光谱法”标准。随即于2005年7月,由国家环保部科技标准司在全国范围内召集了9位环境监测系统的知名、权威专家,在上海召开了“氨氮等6项气相分子吸收光谱法”的标准审定会议,与会专家一致认为:/pp  (1)“氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮、硫化物的气相分子吸收光谱法均通过简单的化学反应产生相应的气态分子,通过测定气态分子对特征谱线的吸收达到测量目的。/pp  (2)方法选择性好、操作简单、快速、测定结果准确。/pp  (3)所编制的标准方法避免了汞、酚二磺酸、对氨基二甲基苯胺、对氨基苯磺酰胺、N-(1-萘基)-乙二胺等有毒试剂的二次污染。/pp  (4)方法编写用语规范、整体结构清晰、操作性强。/pp  (5)可以作为HJ/ T195-200(2005)国家环境保护保行业标准”。/pp style="margin-top: 10px margin-bottom: 10px "  strong二、世界第首台气相分子吸收光谱仪的诞生/strong/pp  臧平安高级工程师从1986年开始研究气相分子吸收光谱法。他所属的宝钢环境监测站一直在使用原子吸收分光光度计进行气相分子吸收光谱法的测定,由于其灵敏度达不到要求,因此臧平安的理想是退休后研发一种专用的气相分子吸收光谱仪器。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/e0ed24dd-281e-409e-ae72-ded31104ed90.jpg" title="安杰环保2_副本.jpg" alt="安杰环保2_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "一九九三年十二月,中国科技信息杂志社编著的“国家级科技成果研制功臣名录”中第64页中,了收录了“亚硝酸根离子的测定方法”/span/pp  臧平安高级工程师自参加工作直至1996年退休,一直是从事仪器分析方面的工作,先是做极谱分析,之后就是原子吸收分析。臧平安爱好电子技术,参加过电子技术培训班,连续订购了多年的“无线电”杂志,买了许多“电子技术”参考书,孜孜不倦地学习电子技术。他工作认真、细心严谨 做仪器分析久了,不但会使用仪器测定样品,还能修理和改装极谱仪,他曾经花了近3年时间,于1979年独自设计组装了一台YXF-79型原子吸收分光光度计,使用了13年时间仍然好用。由于有装配仪器的功底,他在1994年将要退休的时候就着手谋划研发气相分子吸收光谱仪样机的准备工作。/pp  但是,他于1996年退休后并未马上开始研发仪器,而是在宝钢“退管会”参加了“太极拳”和“交谊舞”两期学习班,期间还炒过股票。休整了两年的时间,直到1998年才正式研发样机。仅用了一年多的时间就研发出了首台气相分子吸收光谱仪样机。/pp  在研发样机时并未明确要将仪器推向市场。样机研制成功后退掉了租的房子,将仪器搬到家里摆放在茶几上。不时地测试着仪器的性能,以其能够测出卓越的技术指标而感到心情愉悦。有时竟然把这台样机当做玩具消磨时间,还不时地为同事测试家里自来水中的亚硝酸根离子。他曾经测试对比过“活性炭水质净化器”消除亚硝酸根离子的效果。/pp  在一天傍晚,他将烧水壶灌满了自来水,放置一个晚上,到第二天早晨从水壶倒出一杯水,打开水龙头放出一杯新鲜的自来水,再从净水器中放出一杯净化的水。将这3杯水分别用这台样机进行了测定。测定结果竟然是早晨放出的新鲜自来水中亚硝酸根离子含量最低,头一天放在烧水壶里的水含量次之,而净化器放出来的净化水含量特别高。/pp  通过这个试验说明,放在水壶里未烧开的水所含的铵离子受到细菌的作用,一部分转化成了亚硝酸根离子 从自来水龙头放出来的水是密闭在管道路里的,没有氧气,细菌很难将其转化成亚硝酸根离子 而水质净化器出来的水含量高的原因是净化器使用时间过长,其中的活性炭吸附了过量的亚硝酸根离子正在脱落阶段,早就应该更换滤芯中的活性炭了。这说明使用水质净化器一定要及时更换滤芯,这正是人们容易忽略或者是为了省钱想多用些时间反而喝了许多污染严重的水。这个试验也说明,用气相分子吸收光谱仪能够非常容易地在家里测定水中的有害物质,因为测定用的化学试剂仅仅是无毒的柠檬酸和无水乙醇。/pp  亚硝酸根离子是公认的诱发致癌物质,通过这次试验,臧平安拆除了这个水质净化器。免得使用不当,花了钱还要受毒害。上海自来水的水质还是比较清洁的,所以从此就直接使用自来水一直到今天。/pp  虽然不曾想到要将研发的仪器推向市场,但当上海分析仪器厂的吴洪池总工程师到中国环境监测总站找到齐文启研究员询问:“环境监测方面有没有新的仪器要研发”时,齐文启研究员立刻说:“你去找宝钢的臧平安,他有新东西”。/pp style="margin-top: 10px margin-bottom: 10px "  strong三、成立上海安杰环保科技有限公司/strong/pp  那是1999年的7月份,以当时上海分析仪器厂的“三产”——自立仪器厂为甲方、上海分析仪器厂以吴洪池为首的6人为乙方、臧平安作为技术股为丙方。三方合作进行了气相分子吸收光谱仪的生产。在臧平安研发的样机基础上,采用了电脑控制和数据处理。所以于2000年非常顺利地组装好了三台商品样机,命名为GMA-2000型气相分子吸收光谱仪。/pp  三台样机由上海市技术监督局鉴定合格后,全部由臧平安销售并为用户进行了安装调试。/pp  生产和销售了三台样机后,由于合作的乙方人员调离和吴洪池的退休,“三产”已不具备生产能力。另外,在合作期间臧平安体会到,采用大规模集成电路装配气相分子吸收光谱仪远比组装YXF-79型原子吸收分光光度计来得容易。在这种情况下,成立了上海安杰环保科技有限公司,专业研发生产AJ-2100型的气相分子吸收光谱仪。/pp  AJ-2100型的气相分子吸收光谱仪虽然是手动操作的仪器,但是比起已有的光度法,操作十分简单,比较容易得到较好的分析结果 测定速度之快前所未有。例如,测定一个样品的硝酸盐氮只需2分钟,与酚二磺酸光度法相比测定速度提高了60倍,与戴氏合金蒸馏光度法相比,提高了180倍。再如硫化物的测定,与对氨基二甲基苯胺光度法相比,测定速度也高了约15倍,但是气相分子吸收光谱法测定硫化物操作极其简便,测定结果的相对标准偏差在2%左右,远远高于光度法的12%。/pp  尽管如此,随着环境水质污染日益严重、监管要求提高,检测样品越来越多,手工操作的气相分子吸收光谱仪越来越不能满足环境监测的要求。在这种情况下安杰科技相继研发出了半自动化AJ-2200和全自动化AJ-2500气相分子吸收光谱仪。但是,全自动化的仪器在一段时间内存在着不稳定和不可控的质量问题,不能满足环境监测的需求。/pp style="margin-top: 10px margin-bottom: 10px "  strong四、适应时代发展,改革重组/strong/pp  直至2008年,安杰科技是气相分子吸收光谱仪的唯一供应商。为了适应发展要求,在技术力量相对不足的情况下,公司于2013年进行了改革重组扩大了规模,注入和加强了新的技术力量,壮大了技术队伍。逐步确立和完善了仪器的研发方向以及要突破的关键技术,在保证分析结果的准确性和满足水环境监测工作要求的基础上,实现整机自动化、检测流程优化 集中力量开发具有自主知识产权、更加智能化、更加自动化的快速检测仪器。期间陆续推出了AJ-3000、AJ-3000Plus、AJ-3700等最新产品,产品在稳定性和自动化方面有了大幅度的提升。/pp style="margin-top: 10px margin-bottom: 10px " strong 五、成为科技创新板首家分析仪器挂牌企业/strong/pp  2016年,上海安杰环保科技有限公司正式更名为上海安杰环保科技股份有限公司,成功挂牌上海科技创新版(股票代码300089),实现资本对接,成为国家科技创新板首家分析仪器制造挂牌上市企业。/pp  通过不懈的努力,安杰科技的气相分子吸收光谱仪以其优异的性能逐渐获得了市场的关注和认可,分别获得了中国仪器仪表行业协会颁发的自主创新金奖、中国分析测试协会颁发的CAIA二等奖和BCEIA金奖、仪器信息网颁发的科学仪器优秀新产品奖、和中国仪器仪表学会分析仪器分会颁发的朱良漪青年创新奖。公司首席科学家臧平安先生被授予2018年度“中国科学仪器研发特别贡献奖”。为进一步提升产品的品质和鼓励创新,安杰科技获得了2018国家科技部“重大科学仪器设备开发”重点专项的支持。/pp  上海安杰环保科技股份有限公司,以拥有专利的气相分子吸收光谱法为核心技术,在水质检测领域走出了一条国产高端科学仪器研发自主创新之路,产品拥有完全自主知识产权,为国家打造“青山、绿水、蓝天”的目标正在做出不懈的努力。/p
  • 闪谱发布ReadMax 1500 光吸收全波长酶标仪新品
    ReadMax 1500 光吸收全波长酶标仪上海闪谱生物科技有限公司成立于原中国科学院上海生物工程中心,与复旦大学、上海交通大学等高校有着良好的合作关系,致力于为临床医学、生命科学和药物研发提供高精度、高通量、高性能的专业酶标仪,是国内光栅型酶标仪生产商,拥有该领域的核心技术。ReadMax光吸收型全波长酶标仪可以广泛应用于有机化学、临床诊断、药物筛选、生物化学、分子生物学、免疫生物学、细胞生物学、环境分析、食品安全检测、材料科学等多个领域。完全可以取代进口产品,是高性能酶标仪的国产领导品牌,是科研单位与生化制药厂的明智选择。ReadMax 1500 主要特点:1、适用于大多数生命科学研究工作,尤其是DNA/RNA分析;2、适用于蛋白质定量分析,支持紫外吸收、Bradford、Lowry等方法;3、适用于终点法ELISA/EIA分析;4、适用于MTT(IC50/LD50)分析;5、适用于细胞活性和细胞毒性测试;6、适用于微生物鉴定,细菌浓度分析;7、适用于蛋白酶与激酶、磷脂酶等酶类活性测试;8、适用于内毒素LAL分析;9、能够检测任何标准96孔或紫外透射96孔微孔板;10、内置光栅单色器,波长范围为190 ~ 1000 nm;11、波长精度可达 ± 1 nm,波长重复性可达0.2 nm;12、具有单波长、双波长检测功能;13、具有单孔动力学分析模式,动力学法ELISA/酶学分析;14、具有光谱扫描模式,可得出紫外-可见光谱;15、使用闪烁氙灯光源,寿命长、发光稳定;16、可使用专用光吸收检测板可为设备进行校正认证;17、使用USB数据接口,可以直接导出数据至U盘;18、使用7寸触屏控制,不需要额外的电脑;19、全中文界面,适合国内操作人员使用与教学;20、性能不低于进口同类产品,具有极高的性价比;ReadMax 1500 主要指标:1、检测波长范围:190 nm ~ 1000 nm(1 nm步进);2、波长准确度:± 1.0 nm;3、波长重复性: 0.2 nm;4、带宽:2.5 nm(2~10 nm可定制);5、杂散光: 0.01% (@230 nm);6、测定范围:0 ~ 4.000 OD;7、OD线性范围:1.0% + 0.003 OD (0 - 2.0 OD) 2.0% (2.0 - 2.5 OD) @ 450 nm;8、OD准确度:1.0% + 0.003 OD (0 - 2.0 OD) 2.0% (2.0 - 2.5 OD) @ 450 nm 9、OD重复性:SD < 0.001 OD 或CV < 0.5 % @ 450 nm;10、读取速度:96孔板 20s11、微孔板类型: 96孔板。ReadMax 1500主要组成:1、主机(包括光源、检测器、触控屏);仪器附件(选配)1、MF-10型孵育振荡仪;2、ND-10型微量检测板;ReadMax 1500光吸收全波长酶标仪工作站软件界面: 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:使用7寸触屏控制,不需要额外的电脑,具有单波长、双波长检测功能ReadMax 1500 光吸收全波长酶标仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制