当前位置: 仪器信息网 > 行业主题 > >

顶空固相取仪

仪器信息网顶空固相取仪专题为您提供2024年最新顶空固相取仪价格报价、厂家品牌的相关信息, 包括顶空固相取仪参数、型号等,不管是国产,还是进口品牌的顶空固相取仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合顶空固相取仪相关的耗材配件、试剂标物,还有顶空固相取仪相关的最新资讯、资料,以及顶空固相取仪相关的解决方案。

顶空固相取仪相关的论坛

  • 顶空固相微萃取

    请问顶空固相微萃取的平行样是用三个瓶子各吸附一次,还是一个瓶子吸附三次呢

  • 【讨论】顶空固相微萃取

    想请各位老师、专家帮一下忙,由于我们想买一套顶空固相微萃取装置,不知道那家公司的好一点,价格怎么样?我们是装在安公司7890-5975C GCMS上的。

  • 【讨论】顶空固相微萃取的基线

    刚开始做顶空固相微萃取,发现基线老是不稳定,有时波动较大,但做直接进样的时候就很好,可以排除仪器的原因。有谁做过这个啊,给点经验吧。

  • 基质效应 顶空固相微萃取

    采用顶空固相微萃取分析固体物质中的6种挥发性香气成分,因为该类物质中都含有这6种香气成分,不知道拿什么去做标准曲线而考察基质效应。请教过几个老师说了两种方法,1:低温旋蒸去除样品中的挥发性成分,拿去除挥发性成分后的剩余固体作为空白基质,加入不同浓度的表品做标准曲线。2:用含有这6种香气成分的样品直接添加不同浓度的标品和内标,根据内标算出分析物的含量,然后以峰面积之差做Y值,浓度之差作为X,看此时是否成线性关系。我觉得两个都有缺陷,第一个方法旋蒸去除挥发性成分会影响到顶空部分的压强,成分吸附间的竞争也没有了,所以觉得有缺陷。不知第二种方法哪里有缺陷,请各位老师给予指教,谢谢。

  • 顶空固相萃取,顶空瓶的吸附问题

    [color=#444444]大家好,我现在做顶空固相萃取实验,自己做的萃取瓶,瓶盖上安了个[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]橡胶隔垫,用的是聚四氟乙烯垫密封,我不清楚这个橡胶隔垫与聚四氟乙烯对挥发性气体有没有萃取性能!这样做会不会对实验结果造成影响。请大家指点一下![/color]

  • 顶空固相微萃取气质联用,气体进样问题

    网上没有搜索到HS-SPME-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]仪器的使用指南和气体全自动固相微萃取顶空进样系统的protocol,烦请各位大佬指点或分享资料,非常感谢!

  • 顶空固相微萃取中遇到的问题

    熟悉顶空固相微萃取的同学们,有几个问题想请假下??1.进样垫引起的鬼峰,我单独把萃取头插进进样垫,然后再拔出来,进样就会有峰,这是不是进样垫引起的,如何消除呢??2,。在没有加样品的空白萃取的时候也还是有很多鬼风,郁闷死了知道的同学给我解解惑

  • 【分享】薹菜风味物质的顶空固相微萃取-气质联用分析

    利用顶空固相微萃取和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]- 质谱联用分析技术,对春、秋两个季节栽培的3 个薹菜品种进行风味物质成分分析。共检测鉴定出了腈类、酯类、醛类、酮类、醇类等11 类化合物。其中(E)-2- 丁烯酸二乙酯、1-丁烯基-4- 异硫氰酸酯、2,4- 已二烯-1- 醇、3- 己烯-1- 醇、(E,E)-2,4- 己二烯醛、2- 己烯醛、3- 戊烯腈、苯丙腈和2- 苯乙基异硫氰酸是薹菜的主要风味物质。不同品种和不同的栽培季节薹菜的风味物质构成不同。

  • 【实战宝典】固相微萃取顶空法有几个步骤适用于哪些范围?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/2028979问题描述:[font=宋体]固相微萃取顶空法有几个步骤适用于哪些范围?[/font]解答:[font=宋体]在顶空萃取模式中,萃取过程可以分为两个步骤:[/font]a)[font=宋体]被分析组分从[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]中先扩散穿透到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中。[/font]b)[font=宋体]被分析组分从[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]转移到萃取固定相中。[/font][font=宋体]这种改型可以避免萃取固定相受到某些样品基质(比如人体分泌物或尿液)中高分子物质和不挥发性物质的污染。在该萃取过程中,步骤([/font]2[font=宋体])的萃取速度总体上远远大于步骤([/font]1[font=宋体])的扩散速度,所以步骤([/font]1[font=宋体])成为萃取的控制步骤。因此挥发性组分比半挥发性组分有着快得多的萃取速度。实际上对于挥发性组分而言,在相同的样品混匀条件下,顶空萃取的平衡时间远远小于直接萃取平衡时间。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 顶空固相微萃取—气质联用分析金华火腿挥发性风味物质

    [font=微软雅黑][font=微软雅黑]吹扫捕集和顶空固相微萃取方法均可用于挥发性风味物质的提取。带有自动进样装置的吹扫捕集方法具有取样量少、富集效率高、无溶剂萃取、与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]连接可实现自动进样等优点[/font],但目前在肉品风味测定领域应用较少;顶空固相微萃取则应用最为广泛,也具有快速简便、无溶剂萃取、使用温和的提取条件、与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]连接实现自动进样等优点。这两种前处理方法都可以顶空采样,区别是吹扫捕集为动态顶空,顶空固相微萃取为静态顶空。金华火腿是中国传统腌腊/发酵肉制品,生产周期长,其挥发性风味物质种类多、成分复杂,比一般肉制品挥发性风味分析具有更大难度,因此也更具代表性。本文以金华火腿挥发性风味物质为研究对象,对吹扫捕集和顶空固相微萃取这两种前处理方法的应用进行深入研究,确定主要影响因素及适宜的条件参数,进而结合[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用鉴定挥发性风味化合物,并且比较这两种前处理方法配合不同极性色谱柱所测定的金华火腿挥发性风味组分。具体研究内容和结果如下:1.分析金华火腿样品在测定其挥发性风味前的贮藏温度对风味测定结果的影响。分别将真空包装的金华火腿小块样品(3cm×3cm×1cm)存放于4℃和-20℃,贮藏20 d后测定挥发性风味物质。对比总离子流图发现,4℃储存样品的己醛谱峰相对于其它化合物谱峰明显高于-20℃,从而大大掩蔽了其它化合物的谱峰,不利于保持金华火腿挥发性风味组分的相对比例关系。同时,4℃贮藏样品呈现黄褐色,-20℃依然保持火腿的微红色。因此,样品在测定挥发性风味前,应贮藏于-20℃。2.在极性和非极性色谱柱条件下,分别对吹扫捕集/顶空固相微萃取法进行研究,通过Plackett-Burman试验设计筛选方法的显著影响因素(P0.05),针对显著影响因素进行单因素和组合试验,具体分析不同因素及水平、不同极性色谱柱对挥发性风味测定结果的影响。结果表明:预热(吹扫)/萃取温度、吹扫/萃取时间、样品质量三个因素是风味前处理方法的显著影响因素(P0.05),并且这些因素的确定不受色谱柱极性影响。吹扫捕集显著影响因素,其水平的具体取值受色谱柱容量的影响;顶空固相微萃取则受萃取头容量的影响。3.两种前处理方法结合[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用分析金华火腿挥发性风味物质。共检出金华火腿挥发性化合物106种,极性色谱柱和固相微萃取、极性色谱柱和吹扫捕集、非极性色谱柱和吹扫捕集、非极性色谱柱和固相微萃取四种不同组合方式分别检出挥发性化合物55、48、60、69种,且极性和非极性色谱柱检出不同种类化合物的相对百分含量有较大差别。[/font]

  • 【求助】气质专用的WAX毛细管柱及固相微萃取(带顶空)厂家及价钱?

    我想买个WAX毛细管柱及,固相微萃取(主要用于除水,带顶空),但是安捷伦好象没有[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]专用的WAX毛细管柱,同时安捷伦也没有固相微萃取。听说瓦里安有这两个东西,求教大家谁有买过相同的东西,能否给个厂家及参考价格?[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]专用的WAX毛细管柱及固相微萃取(带顶空)厂家及价钱?

  • 测产品(香皂、洗衣液、洗洁精等)中的香气成分。用顶空还是固相微萃取 ????

    测产品(香皂、洗衣液、洗洁精等)中的香气成分。用顶空还是固相微萃取 ???? 一直测液体香精样品,就是直接进样。现在GC-MS这么普通,感觉没有多大的意义。 而大部分客户感 兴趣的是某产品的气味,(例如:香皂,饮料,洗护用品等)对这些问题,光秃秃的GC-MS 就显得搓手无力了。 是。公司也配备了顶空设备,安捷伦的G1888 我就一年多前用过2次。还是安装工程师的电话指导 开机 做的方法。出峰很不理想, 铃兰醛后面几乎看不到峰 个人认为不应该这样 也可能是方法问题。趁着这段时间快过年了,不太忙。 想自己重新鼓捣鼓捣顶空的分析方法 最好有这两个设备 且亲身使用过的老师 来帮忙回答下,说说切身体会 和两种方法测相同的产品 会有哪些优缺点 ?

  • 顶空固相微萃取分析牛栏山二锅头酒中的挥发性物质

    液液萃取和顶空固相微萃取结合[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]- 质谱联用技术分析牛栏山二锅头酒中的挥发性物质[font=宋体]摘要: 采用浸入式固相微萃取( DI- SPEM) 、液液萃取(liquid- liquid extraction, LLE)结合[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]- 质谱联用([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])技术对牛栏山二锅头的风味物质进行了定性研究, 并采用保留指数法对定性结果进行了验证。共获得了101 种香味化合物的确切定性结果, 其中包括35 种酯类、13 种酸类、15 种醇类、5 种醛类、1 种酮类、15 种芳香族及酚类、5 种呋喃类、2 种吡嗪类、3 种缩醛类、1 种硫化物、6 种其他类化合物。此次实验为进一步深入研究牛栏山二锅头风味物质奠定了基础, 也拓展了SPME 技术在白酒风味分析中的应用。[/font] [font=宋体]牛栏山酒厂地处北京市顺义区牛栏山镇, 具有300年的酿酒历史。其地处土地肥沃的燕山脚下, 东临潮、白二河汇合处。同时, 地处水源八厂补给区内, 地下水源丰富, 水质清纯, 甘甜, 含有多种有益于人体的矿物质, 酿酒用水取自地下约100 m 的地下水, 所酿制的酒醇洌甘爽[1]。清初以来, 牛栏山酿酒业就已十分发达。康熙五十八年《顺义县志》卷二“集镇”载: 牛栏山酒肆茶坊等“铺店亦数百家” 其“黄酒、烧酒”为远近闻名的地方特色“物产”。此后的《顺义县志实业志》亦记载: “造酒工: 做是工者约百余人(受雇于治内十一家烧锅), 所酿之酒为平北特产, 销售邻县或平市, 颇脍灸人口, 而尤以牛栏山之酒为最著”。此处所提的“烧酒”, 即现在的牛栏山二锅头酒。自1952 年建厂后, 在酿造二锅头的工艺过程中,我们一直保持着制曲、立米查、发酵等一系列工序, 在质量上才保持了传统的清香、口味甘洌、酒体醇厚、酒力强劲的特点[1], 牛栏山二锅头酒逐渐成为我国北方清香型的代表性白酒之一, 在国内外具有较高的知名度, 产品远销美国、韩国、日本、加拿大等国家。 白酒的微量成分十分复杂。根据它们的化学属性不同, 可以将酒中的微量成分分为酯类、酸类、醇类、醛类、酮类、芳香族及酚类、呋喃类、吡嗪类、缩醛类、硫化物和其他类化合物。白酒的主要成分是酒精和水, 占总量的98 %~99 %, 但决定白酒质量和风格的却是许多微量的( 占总量的1 %~2 %) 呈香呈味有机化合物及其量比关系[2]。到1998 年, 白酒中已检出342 种成分,其中定量检出180 种以上, 其中包括醇类36 种、酯类99 种、酸类55 种、羟基化合物20 种、缩醛类37 种、芳香族化合物26 种、含氮化合物38 种、呋喃化合物7种、含硫化合物6 种、醚类14 种、芳香烃类1 种、其他化合物3 种[2]。白酒风味物质的检测方法主要有直接进样法[3]、通过液液萃取后浓缩再进样[4]、顶空进样法[5]、顶空固相微萃取法[6]和浸入式固相微萃取法[7]等。[/font] [font=宋体]本实验通过液液萃取、浸入式固相微萃取技术, 将样品中的风味物质进行萃取浓缩, 然后利用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]进行定性。液液萃取技术是一种传统的样品前处理技术,对白酒中的微量组分可起到浓缩、富集的作用, 有利于极微量物质的定性分析。固相微萃取技术(Solidphasemicroextraction, SPME) 是1990 年由加拿大学者Pawliszyn 提出, 并于20 世纪90 代中期日趋完善的样品提取新技术, 它无需复杂的装置, 价格低廉, 操作相对简单, 而其所具有的高度富集作用, 又使方法的测定下限延伸至μg/L(ppb)乃至ng/L(ppt) [8][/font]

  • 顶空固相微萃取-气相色谱检测生活饮用水中增塑剂邻苯二甲酸二乙酯的方法

    顶空固相微萃取-气相色谱检测生活饮用水中增塑剂邻苯二甲酸二乙酯的方法

    顶空固相微萃取-气相色谱检测生活饮用水中增塑剂邻苯二甲酸二乙酯的方法赵熙睿余伟杰范义锋(上海新拓分析仪器科技有限公司)前沿塑化剂(增塑剂)是一种高分子材料助剂,也是环境雌激素中的酞酸酯类(PAEsphthalates),其种类繁多,最常见的品种是DEHP(商业名称DOP)。DEHP化学名邻苯二甲酸二(2-乙基己)酯,是一种无色、无味液体,工业上应用广泛。塑化剂从化学结构分类有脂肪族二元酸酯类、苯二甲酸酯类(包括邻苯二甲酸酯类、对苯二甲酸酯类)、苯多酸酯类、苯甲酸酯类、多元醇酯类、氯化烃类、环氧类、柠檬酸酯类、聚酯类等多种。塑化剂种类可达百余种。2011年台湾地区不法企业添加的是DEHP、DINP等。DEHP和DINP急性毒性均较低。动物试验发现长期大量摄入DEHP和DINP,会产生内分泌干扰作用,可造成生殖和发育障碍,并能诱发动物肝癌。但尚无证据表明对人类具有致癌性。邻苯二甲酸二乙酯属于苯甲酸酯类的塑化剂。因此,检测邻苯二甲酸二乙酯在水中的含量具有重要意义。本实验主要采用顶空固相微萃取(HS-SPME)-气相色谱的方法检测自来水中的邻苯二甲酸二乙酯,从而达到监控水中塑化剂的目的。SPME 发明于1990 年,被广泛应用于不同食物基质、环境样本特别是水样中的挥发或半挥发性物研究。这项独特技术之所有被广泛接受,主要是由于其强大的应用优势。SPME通过将提取和预浓缩合并为简单的一步而极大地降低了有机溶剂用量。此外,它还使原本极耗费时间的样本处置和前处理效率显著提高。自动化的SPME 是一种高效、适用于常规分析的前处理手段。本次实验采用MASS-6027全自动固相微萃取仪(上海新拓分析仪器科技有限公司)实现与安捷伦7890B气相色谱的全自动SPME联用,对自来水中可能存在的代表性增塑剂邻苯二甲酸二乙酯进行了定量分析。实验条件本次实验采用MASS-6027全自动固相微萃取仪(上海新拓分析仪器科技有限公司),安捷伦7890B气相色谱配备FID检测器。色谱柱为HP-5毛细管色谱柱(30m×320μm×0.25μm)。固相微萃取探针SPME-C-01(75 um PDMS)(上海新拓分析仪器科技有限公司)。样品前处理标准样品配制:通过逐级稀释法分别配制不同浓度的邻苯二甲酸二乙酯标准水样(25、50、100、200、400、600、800、1000μg/L)各50 mL于容量瓶。分别取10mL标准水样于20 mL顶空瓶中,放入干净的磁子一颗,密封顶空瓶并将其放置在自动样品盘上。通过程序控制实现SPME批处理程序操作,之后经过气相色谱分析,整个SPME过程勿须手动操作。整个流程图如下:http://ng1.17img.cn/bbsfiles/images/2016/06/201606131456_596749_2205858_3.pngfile:///C:\Users\fantuantuan\AppData\Roaming\Tencent\Users\470501220\QQ\WinTemp\RichOle\TI0.png自动SPME分析自动SPME批处理程序包括将样品从样品盘位置转移到顶空萃取位中,使待测目标物挥发,并通过固相微萃取探针吸附萃取,之后通过热解吸将待测目标物从固相微萃取探针脱附到气相进样口;同时,净化清洗(老化)固相微萃取探针避免影响下一个样品的萃取。自动SPME参数: SPME探针75μm PDMS(SPME-C-01)老化时间5min萃取温度80℃萃取时间45min解析时间5min搅拌速度1000rpm气相色谱参数: 载气:N2 1.0mL/min进样口温度:250℃FID检测器检测器温度 300℃,空气流量:400 mL/min,氢气流量:20 mL/min色谱柱:HP-5 5% Phenyl Methyl Siloxane 0℃-325℃:30m ×320μm×0.25μm柱温箱:45℃,保持1min。以40℃/min升至130℃,保持5min。以12℃/min升至180℃。以7℃/min升至[color=#2F

  • 【原创大赛】顶空固相微萃取-气相色谱检测生活饮用水中增塑剂邻苯二甲酸二乙酯的方法

    【原创大赛】顶空固相微萃取-气相色谱检测生活饮用水中增塑剂邻苯二甲酸二乙酯的方法

    顶空固相微萃取-气相色谱检测生活饮用水中增塑剂邻苯二甲酸二乙酯的方法赵熙睿余伟杰范义锋(上海新拓分析仪器科技有限公司)前沿塑化剂(增塑剂)是一种高分子材料助剂,也是环境雌激素中的酞酸酯类(PAEsphthalates),其种类繁多,最常见的品种是DEHP(商业名称DOP)。DEHP化学名邻苯二甲酸二(2-乙基己)酯,是一种无色、无味液体,工业上应用广泛。塑化剂从化学结构分类有脂肪族二元酸酯类、苯二甲酸酯类(包括邻苯二甲酸酯类、对苯二甲酸酯类)、苯多酸酯类、苯甲酸酯类、多元醇酯类、氯化烃类、环氧类、柠檬酸酯类、聚酯类等多种。塑化剂种类可达百余种。2011年台湾地区不法企业添加的是DEHP、DINP等。DEHP和DINP急性毒性均较低。动物试验发现长期大量摄入DEHP和DINP,会产生内分泌干扰作用,可造成生殖和发育障碍,并能诱发动物肝癌。但尚无证据表明对人类具有致癌性。邻苯二甲酸二乙酯属于苯甲酸酯类的塑化剂。因此,检测邻苯二甲酸二乙酯在水中的含量具有重要意义。本实验主要采用顶空固相微萃取(HS-SPME)-气相色谱的方法检测自来水中的邻苯二甲酸二乙酯,从而达到监控水中塑化剂的目的。SPME 发明于1990 年,被广泛应用于不同食物基质、环境样本特别是水样中的挥发或半挥发性物研究。这项独特技术之所有被广泛接受,主要是由于其强大的应用优势。SPME通过将提取和预浓缩合并为简单的一步而极大地降低了有机溶剂用量。此外,它还使原本极耗费时间的样本处置和前处理效率显著提高。自动化的SPME 是一种高效、适用于常规分析的前处理手段。本次实验采用MASS-6027全自动固相微萃取仪(上海新拓分析仪器科技有限公司)实现与安捷伦7890B气相色谱的全自动SPME联用,对自来水中可能存在的代表性增塑剂邻苯二甲酸二乙酯进行了定量分析。实验条件本次实验采用MASS-6027全自动固相微萃取仪(上海新拓分析仪器科技有限公司),安捷伦7890B气相色谱配备FID检测器。色谱柱为HP-5毛细管色谱柱(30m×320μm×0.25μm)。固相微萃取探针SPME-C-01(75 um PDMS)(上海新拓分析仪器科技有限公司)。样品前处理标准样品配制:通过逐级稀释法分别配制不同浓度的邻苯二甲酸二乙酯标准水样(25、50、100、200、400、600、800、1000μg/L)各50 mL于容量瓶。分别取10mL标准水样于20 mL顶空瓶中,放入干净的磁子一颗,密封顶空瓶并将其放置在自动样品盘上。通过程序控制实现SPME批处理程序操作,之后经过气相色谱分析,整个SPME过程勿须手动操作。整个流程图如下:http://ng1.17img.cn/bbsfiles/images/2016/06/201606131456_596749_2205858_3.png自动SPME分析自动SPME批处理程序包括将样品从样品盘位置转移到顶空萃取位中,使待测目标物挥发,并通过固相微萃取探针吸附萃取,之后通过热解吸将待测目标物从固相微萃取探针脱附到气相进样口;同时,净化清洗(老化)固相微萃取探针避免影响下一个样品的萃取。自动SPME参数:SPME探针75μm PDMS(SPME-C-01)老化时间5min萃取温度80℃萃取时间45min解析时间5min搅拌速度1000rpm气相色谱参数:载气:N2 1.0mL/min进样口温度:250℃FID检测器检测器温度 300℃,空气流量:400 mL/min,氢气流量:20 mL/min色谱柱:HP-5 5% Phenyl Methyl Siloxane 0℃-325℃:30m ×320μm×0.25μm柱温箱:45℃,保持1min。以40℃/min升至130℃,保持5min。以12℃/min升至180℃。以7[

  • 安捷伦顶空固相微萃取气质联用5977B+7890B+7697A的相关疑问

    ①仪器型号为安捷伦顶空固相微萃取[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]5977B+7890B+7697A,它的加热箱,定量环,传输线的温度应该设置为多少呢,或者以什么为参考呢?②跑了两个不同的升温程序,图①是最终温度为300℃,图2最终温度为260℃且升温速度低于①。最终积分后图①的物质比图2多了50+。图③是图①和图②的对比,请问我该怎样优化我的条件呢?[img]https://ng1.17img.cn/bbsfiles/images/2022/03/202203190007446590_5090_5565681_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/03/202203190007446541_9101_5565681_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/03/202203190007446619_6593_5565681_3.png[/img]

  • 顶空固相微萃取检测石油样品中的痕量多环芳烃

    顶空固相微萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱法检测石油样品中的痕量多环芳烃文章图片多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物, 广泛分布于天然环境中, 属于持久有机污染物, 具有极强的致癌毒性。迄今已发现有200多种PAHs, 有相当部分具有致癌性, 其中常见的有16种同类物质[sup][[url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b1-1008-3650-43-3-226]1[/url]][/sup]。石油是多环芳烃在自然界的主要存在源, 在与石油相关的案件中, 多环芳烃痕量组分的检测是石油检测的一个重点。近年来, 顶空固相微萃取(HS-SPME)技术逐渐被人们关注, 因其集取样、萃取及富集于一体, 萃取快速、操作简单, 便于实现自动化而广泛用于挥发性物质分析研究中。多采用固相微萃取-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术进行检测, 但单级质谱技术的分析灵敏度较低, 不能满足痕量组分的检测。本文在文献报道[sup][[url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b2-1008-3650-43-3-226]2[/url], [url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b3-1008-3650-43-3-226]3[/url], [url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b4-1008-3650-43-3-226]4[/url]][/sup]基础上, 利用顶空固相微萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-三重四极杆串联质谱(GC/MS/MS)方法, 对石油中的16种多环芳烃, 采用多离子反应监测(MRM)技术, 选择适当的母离子进行二次质谱分析, 获得了比单级质谱选择离子检测(SIM)技术更多的碎片信息(母离子加子离子), 同时有效去除了基质离子和其它物质的干扰, 为石油样品中的多环芳烃痕量组分的检测提供了方法和依据。[color=#333333]1 材料与方法[/color][size=14px][color=#333333]1.1 仪器与试剂[/color][/size]Bruker SCION TQ-456GC 三重四极杆[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用仪及液体-顶空-固相微萃取三合一自动进样器(美国, 布鲁克公司) 固相微萃取装置:65 μ m PDMS/DVB、100 μ m PDMS和85 μ m PA 3种萃取头(美国, supelco公司)。16种 PAHs混合标准溶液40 mg/L(美国, sigma-Aldrich公司) 晕苯标准溶液0.5 mg/mL(美国, sigma-Aldrich公司)。尾油样品:原样稀释10倍, 主要测定晕苯的含量 QLH样品:齐鲁尾油原样, 稀释500倍, 含烷烃与芳烃 A样品:QLH里萃取出的芳烃, 稀释约50倍 PAHs混合标准溶液配制:取适当PAHs标准溶液与晕苯标准溶液混合, 配制成浓度为1 mg/L的17种PAHs混合标准溶液(含内标物氘代对三联苯)。所用溶剂均为二氯乙烷。[size=14px][color=#333333]1.2 实验条件[/color][/size]1.2.1 顶空固相微萃取条件SPME萃取头(65 μ m PDMS/DVB):首次使用前于300 ℃老化1 h 萃取方式:顶空自动 搅拌速度:500 r/min 样品预热平衡时间:20 min 样品平衡和萃取温度:40 ℃ 解析温度:300 ℃ 解析时间:100 s。1.2.2 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]条件进样口温度:300 ℃, 不分流进样 载气流速:1 mL/min 色谱柱:VF-5MS柱 柱温:柱起始温度为70 ℃, 保持1 min, 以25 ℃/min的速率升至140 ℃, 后以10 ℃/min的速率升至 240 ℃, 再以5 ℃/min 的速率升至300 ℃, 保持7.2 min。1.2.3 质谱条件EI源 离子源温度:250 ℃ 传输线温度:290 ℃ [i]m[/i]/[i]z[/i] 50-550 碰撞气:2 mTorr 溶剂延迟:4.5 min。[size=14px][color=#333333]1.3 样品制备[/color][/size]准确移取3.00 mL待测样品于20 mL规格的顶空样品瓶中, 压紧瓶盖放入自动进样盘中, 固相微萃取借助自动进样器完成。[color=#333333]2 结果与讨论[/color][size=14px][color=#333333]2.1 质谱条件的优化[/color][/size]为获得最佳分析结果, 保证对目标物定性定量的准确性, 对待测物的母离子、产物离子、碰撞能量等质谱参数进行了优化。首先采用全扫描模式获得待测物的母离子, 再用产物离子扫描模式通过优化碰撞能量获得产物离子, 最后采用优化的质谱参数在MRM模式对待测物进行定性定量分析。经过优化, 得到了较为理想的分析结果, 优化后的质谱条件见[url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#outline_anchor_11]表1[/url]。图1为1 mg/L PAHs混合标准溶液直接进样, 全扫描测定得到的总离子流图。[table=657][tr][td=1,1,140][img]http://www.xsjs-cifs.com/html_resources/images/table-icon.gif[/img][/td][td][b]表1[/b] PAHs 的MRM质谱条件[b]Table 1[/b] MRM conditions for PAHs[/td][/tr][/table][table=657][tr][td] [/td][td][list][*][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#]Figure Option[/url][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_1.png]Fig.1 Total ion chromatograms of PAHs standard solution (1 mg/L)" style="margin: 0px padding: 5px 10px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(40, 117, 222) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal line-height: normal display: block width: auto background-image: initial background-position: initial background-size: initial background-repeat: initial background-attachment: initial background-origin: initial background-clip: initial text-align: left position: relative white-space: nowrap "[/url][/list][/td][/tr][tr][td][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_1.png]Fig.1 Total ion chromatograms of PAHs standard solution (1 mg/L)" style="margin: 0px padding: 0px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(34, 34, 34) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none line-height: 24px "[img]http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/thumbnail/img_1.png[/img][/url][/td][td][b]图1[/b] 1 mg/L PAHs混合标准溶液总离子流[b]Fig.1[/b] Total ion chromatograms of PAHs standard solution (1 mg/L)[/td][/tr][/table][size=14px][color=#333333]2.2 顶空固相微萃取条件的优化[/color][/size]2.2.1 萃取纤维涂层的选择本实验比较了常用的100 μ m PDMS、65 μ m PDMS/DVB(MW50-300)和85 μ m PA 3种固相微萃取纤维涂层对PAHs的吸附效果, 实验表明, 萃取率大小依次为65 μ m PDMS/DVB(MW50-300) 85 μ m PA 100 μ m PDMS。因此, 本文选择65 μ m PDMS/DVB(MW50-300)作为萃取纤维涂层。2.2.2 萃取温度和时间的优化分别在30、40、50、60 ℃下进行萃取和检测, 结果表明:随着萃取温度提高, 萃取率有相应的提高, 当温度超过40 ℃后, 样品的萃取量反而减少。本实验选择40 ℃作为萃取温度。固定温度为40 ℃, 对达到吸附平衡所需时间进行考察, 改变萃取时间分别为10、20、30、40 min, 结果表明:随着萃取时间增加, 萃取率相应增加, 20 min达到吸附平衡, 因此选择萃取时间为20 min[sup][5[/sup]-[sup][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b7-1008-3650-43-3-226]7[/url]][/sup]。[size=14px][color=#333333]2.3 线性方程、相关系数及灵敏度的检测[/color][/size]分别配制浓度为1、4、20、100、1000 μ g/L的标准混合溶液, 根据本文建立的方法进行检测。以定量离子的质谱峰面积为纵坐标([i]y[/i]), 各目标物的含量为横坐标([i]x[/i], μ g/L), 进行线性回归, 用浓度0.1μ g/L的PAHs混合标准溶液, 以S/N=3确定检出限, 以S/N=10确定定量限, 结果见[url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#outline_anchor_15]表2[/url]。[table=657][tr][td=1,1,140][img]http://www.xsjs-cifs.com/html_resources/images/table-icon.gif[/img][/td][td][b]表2[/b] 多环芳烃的线性方程、相关系数、检出限、定量限[b]Table 2[/b] Linear equation, correlation coefficient, LOD and LOQ of PHAs[/td][/tr][/table][size=14px][color=#333333]2.4 样品全扫描与MRM扫描结果比较[/color][/size]比较样品全扫描与MRM扫描结果可知, MRM扫描模式能够排除复杂石油样品的基质干扰, 提高了检测的灵敏度和准确度, 避免了假阳性结果的产生[sup][[url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b8-1008-3650-43-3-226]8[/url], [url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#b9-1008-3650-43-3-226]9[/url]][/sup], 结果见图2~4。[table=657][tr][td] [/td][td][list][*][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#]Figure Option[/url][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_2.png]Fig.2 Total ion chromatograms of tail oil with full and MRM scanning" style="margin: 0px padding: 5px 10px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(40, 117, 222) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal line-height: normal display: block width: auto background-image: initial background-position: initial background-size: initial background-repeat: initial background-attachment: initial background-origin: initial background-clip: initial text-align: left position: relative white-space: nowrap "[/url][/list][/td][/tr][tr][td][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_2.png]Fig.2 Total ion chromatograms of tail oil with full and MRM scanning" style="margin: 0px padding: 0px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(34, 34, 34) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none line-height: 24px "[img]http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/thumbnail/img_2.png[/img][/url][/td][td][b]图2[/b] 尾油样品的全扫描与MRM扫描TIC图[b]Fig.2[/b] Total ion chromatograms of tail oil with full and MRM scanning[/td][/tr][/table][table=657][tr][td] [/td][td][list][*][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#]Figure Option[/url][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_3.png]Fig.3 Total ion chromatograms of QLH tail oil with full and MRM scanning" style="margin: 0px padding: 5px 10px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(40, 117, 222) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal line-height: normal display: block width: auto background-image: initial background-position: initial background-size: initial background-repeat: initial background-attachment: initial background-origin: initial background-clip: initial text-align: left position: relative white-space: nowrap "[/url][/list][/td][/tr][tr][td][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_3.png]Fig.3 Total ion chromatograms of QLH tail oil with full and MRM scanning" style="margin: 0px padding: 0px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(34, 34, 34) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none line-height: 24px "[img]http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/thumbnail/img_3.png[/img][/url][/td][td][b]图3[/b] QLH尾油样品全扫描与MRM扫描TIC图[b]Fig.3[/b] Total ion chromatograms of QLH tail oil with full and MRM scanning[/td][/tr][/table][table=657][tr][td] [/td][td][list][*][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226.html#]Figure Option[/url][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_4.png]Fig.4 Total ion chromatograms of sample A with full and MRM scanning" style="margin: 0px padding: 5px 10px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(40, 117, 222) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal line-height: normal display: block width: auto background-image: initial background-position: initial background-size: initial background-repeat: initial background-attachment: initial background-origin: initial background-clip: initial text-align: left position: relative white-space: nowrap "[/url][/list][/td][/tr][tr][td][url=http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/img_4.png]Fig.4 Total ion chromatograms of sample A with full and MRM scanning" style="margin: 0px padding: 0px box-sizing: border-box transition: all 0.3s ease 0s color: rgb(34, 34, 34) font-family: "Microsoft YaHei", 微软雅黑, SimHei, 黑体, serif text-decoration-line: none line-height: 24px "[img]http://www.xsjs-cifs.com/article/2018/1008-3650-43-3-226/thumbnail/img_4.png[/img][/url][/td][td][b]图4[/b] 样品A全扫描与MRM扫描TIC图[b]Fig.4[/b] Total ion chromatograms of sample A with full and MRM scanning[/td][/tr][/table][color=#333333]3 结论[/color]本文采用顶空固相微萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱方法, 通过优化萃取条件和质谱条件, 建立了一种痕量检测石油样品中的多环芳烃的简单有效的方法, 检出限和定量限测定结果表明, 方法的灵敏度高, 各PAHs化合物在10~500 μ g/L浓度范围内相关系数在0.999以上, 线性关系良好。实验结果表明顶空固相微萃取-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱检测具有较高的排除基质干扰能力以及灵敏度优势, 完全能满足案件中有关石油样品中的多环芳烃痕量组分的检测需求

  • 用顶空固相微萃取进样峰拖尾严重

    我是进的混标。第一张图是液体直接进样,峰型特好一点没问题都没有。第二张图是换了顶空萃取,同一个物质直接拖成了两个峰。条件都没变,也换了spme专用衬管,萃取温度是50度,只是改了进样方式同样的标品就拖尾。安捷伦工程师让把进样口吹扫时间改成了0.5min,还是没有改善。排查不出原因了,求助一下各位老师[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2022/11/202211031630170795_543_5364651_3.png[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/11/202211031630523466_4523_5364651_3.png[/img]

  • 零顶空萃取器基本原理和用途

    JRY零顶空用途:用于样品中挥发性物质浸出的专用装置,高密闭的空间能使实验更准确、无偏差。原理:通过不断施加相同的压力得到样品的初始液相,一般是做固废或危废用到的预处理设备,与试剂反应,通过不断减压原理,将气体排出,目的是把固废或危废的样品通过零顶空装置后抽滤出浸出液,再对浸出液进行萃取得出萃取液;而顶空进样器是设定条件后可以直接进样到色谱仪中测定的,做土壤或水样比较多,在达到相对温度平衡时取上层气体进样

  • 气质联用顶空萃取

    [color=#444444]我准备用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]测含硫风味物质,前处理方法是选择固相微萃取还是顶空直接进样啊,各有什么优缺点呢?没有条件每个都试一下,二者对样品浓度有什么要求?[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制