当前位置: 仪器信息网 > 行业主题 > >

细胞凋亡分析

仪器信息网细胞凋亡分析专题为您提供2024年最新细胞凋亡分析价格报价、厂家品牌的相关信息, 包括细胞凋亡分析参数、型号等,不管是国产,还是进口品牌的细胞凋亡分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞凋亡分析相关的耗材配件、试剂标物,还有细胞凋亡分析相关的最新资讯、资料,以及细胞凋亡分析相关的解决方案。

细胞凋亡分析相关的仪器

  • 默克密理博秉承一贯的创新理念,突破流式研发的思维定式,带来了革命性创新一代Muse&trade 智能触控细胞分析仪。内置Pad版触屏式电脑,结合全面的预置细胞分析常规实验方案,为您开创前所未有的流式操作新体验。您只需动动手指,即可实现包括:细胞计数,细胞活性,细胞周期,细胞凋亡等在内的细胞分析常规实验。分分钟让您体验悦动指尖的细胞分析艺术。 除此之外,默克密理博还将为Muse&trade 平台不断开发更多细胞分析的预置实验方案,近期8个预置实验方案即将推出:涉及Caspase 凋亡通路、线粒体损伤、免疫分型、淋巴细胞活力分析、细胞信号通路、DNA损伤等多个研究应用领域。用户将全部免费获得预置实验方案的软件升级。申请试用 | 索取MUSE资料 | 询价 更多详情,请点击此处 默克密理博:新流式,新思维 &mdash &mdash 全新的流式平台,全新的学术思维
    留言咨询
  • 赛多利斯Incucyte 实时活细胞分析系统,可有效捕获培养箱中细胞的变化。系统支持高分辨率荧光和明场图像采集,能够实现数小时、数天或数周内数据的实时记录。系统使用灵活,从增殖分析到肿瘤球免疫杀伤检测,均可协助用户实时观察和定量复杂的生物变化。集成式软件可以简化数据分析,快速获得结果,并生成可供发表的图表和绘图。 技术优势 1. 灵活简单的样品制备:兼容多种培养容器- 在正式开始实验前,可用免标记法分析细胞融合度,监测培养瓶/ 培养皿,以确保细胞健康- 可用 96 和 384 孔板同时开展多种实验,一次性可容纳多达6 块板Incucyte 试剂可显著提高效率- 检测试剂对细胞健康和形态无影响- 采用经过验证的活细胞检测试剂和配套方案,可节省实验优化和问题查找分析的时间2. 简单灵活的实验设置快捷设置,一步完成- 向导式操作界面,可指引用户设置自动采集和分析参数- 可容纳多个用户同时使用,支持不同的采集频率和图像放大倍数- 远程监测:凭借免费许可证,即可从联网端口控制您实验室里的Incucyte 系统 向导式界面可快速进行实验设置,即使您初次使用,也能轻松完成。3. 多种成像模式获取和查看实时图像- 可采集优质高清相差、红色和绿色荧光图像以及视频- 通过自动对焦,可选择 4 倍、10 倍或 20 倍物镜成像,同时用于多个应用领域- 对细胞干扰最小- 别具匠心的移动光学设计即细胞保持静止状态,让光学元件移动,尤其适用于分析敏感和非贴壁细胞- 采取非侵入性、非干扰性图像采集模式,对整个生物学过程进行长期监测,展现出其本来状态 自动获取实时图像。4. 实时自动分析-可重复的高效图像:根据不同应用领域,选择相应的数据处理和分析模块,可对数千幅图像进行可重复的定量分析,消除操作偏差- 强大的可视化图像和动态检测:专为生物学家开发的可定制的灵活工具,能够快速评估结果,缩短从生成数据到发表的时间 使用Incucyte VesselView 立即查看培养容器中所有位置的图像,并快速评估实验结果,对感兴趣的图像可以放大通过mask 自动识别感兴趣的区域生成时间间隔的图表,可直接用于演示使用Incucyte PlateGraph可立即查看所有96 或384 孔动态趋势,并导出数据以计算EC50 或IC50 值 广泛应用 细胞健康- 细胞增殖:采用免标记法实时自动监测细胞生长,或用NucLight&trade 核标记法实时自动测量活细胞数目。- 细胞凋亡:采用简单的均相方法实时检测活细胞凋亡情况。- 细胞毒性:采用均相法实时检测细胞活性,操作简单,适用于筛选。- 神经突分析:对单纯的神经元培养物、及其与星形胶质细胞的共培养体系,自动实时检测神经突动力学。- 肿瘤球:实时监测肿瘤球的形成、生长和健康状态,并进行定量分析。细胞迁移和侵袭- 划痕迁移和侵袭:研究处理因素对细胞迁移(2D基质)或侵袭(3D凝胶)的效应。- 趋化作用:使用ClearView&trade 96孔板查看并确认趋化因子介导的趋化迁移或侵袭效应。细胞功能- 免疫细胞成簇:无需从培养箱中取出,即可对细胞成簇和扩增进行观察和定量分析。- 抗体内化:适用于抗体筛选或治疗分析的快速、动态、高通量检测。- 免疫细胞杀伤:通过对NucLight&trade 核标记的细胞直接计数或利用IncucyteCaspase 3/7 试剂检测凋亡,来分析肿瘤细胞死亡。- 细胞吞噬:对细胞吞噬pHrodo标记的生物颗粒或靶细胞进行连续分析,并生成视频。- 血管生成:使用我们的共培养检测全套试剂盒,完成血管形成的动力学分析。监测细胞和其他工作流程- 活细胞免疫细胞化学:采用新的免疫细胞化学方法揭示表面蛋白表达的动力学。- 细胞培养QC:无需从培养箱中取出细胞,即可免标记监测细胞形态和增殖。- 克隆稀释:自动扫描克隆,并通过全孔分析验证单克隆性。- 转染效率:采用GFP/RFP 监测和定量分析基因转染的效率和动态变化。- 报告基因:实时检测启动子驱动的重组GFP/RFP 报告基因表达活性。提出新问题- 设计以前无法开展的新实验- 可用于日常监测,也可通过基于图像的动态检测,解答独特的科学问题获取新答案- 实时连续分析,不错过任何一个数据点- 剖析随时间变化和因细胞而异的生物活性- 通过图像和视频这种可视化方式来验证实验结果保护培养的细胞- 无需将细胞从培养箱内取出或干扰培养环境,即可完成细胞分析- 采用的试剂不会影响细胞健康和形态提高效率- 自动获取和分析图像,轻松便利- 兼容 96和 384 孔板,并完成多重性检测- 同时可容纳多个用户和多种应用
    留言咨询
  • Lionheart LX是一款高性价比的全自动显微成像系统,整个机型设计紧凑,无需人眼通过目镜观察样本,有效的避免长时间人眼观察造成的视觉疲劳,也无需耗费高昂的采购成本和学习成本,搭载具有高内涵分析功能的Gen5软件,可以自动化进行图片拍摄、处理和分析,在实验室应用非常广泛。特点全自动智能显微成像系统:Lionheart LX拥有全自动的6位物镜转轮,能够同时实现4色荧光通道的成像,具有高精度电动载物台,可以自动聚焦、自动曝光、一键式成像,Gen5软件功能可以让用户体检轻松简单的全自动图像拍摄和分析。具有高对比度明场、彩色明场和荧光成像模式:明场、彩色明场和20多种荧光通道成像可选,Lionheart LX 突破多种成像拍摄体验,从Z轴层切(Z-stacking)到Z轴图像展示(Z-projection),Montage拍摄实现图像拼接,并且具有视频录制、自定义坐标拍摄和高通量整版拍摄功能,极大的拓宽了Lionheart LX在生命科学领域的应用。非标记细胞成像:可以通过高对比度明场进行非标记细胞成像,利用Gen5软件全自动完成图片拍摄、图片处理和结果分析,方法简便,适用于细胞计数、细胞毒性、细胞增殖和融和度相关实验。Lionheart LX典型应用:——终点法活细胞检测细胞凋亡细胞自噬细胞周期细胞毒性线粒体膜电位——组织学(HE)——非标记细胞计数——融合度分析——基因毒性彗星分析γH2AX——表型分析免疫荧光
    留言咨询
  • 赛多利斯Incucyte 实时活细胞分析系统,可有效捕获培养箱中细胞的变化。系统支持高分辨率荧光和明场图像采集,能够实现数小时、数天或数周内数据的实时记录。系统使用灵活,从增殖分析到肿瘤球免疫杀伤检测,均可协助用户实时观察和定量复杂的生物变化。集成式软件可以简化数据分析,快速获得结果,并生成可供发表的图表和绘图。 Incucyte SX5 实时活细胞分析仪更多色彩,更多发现,更多可能 配备了专利光学组件的全新 Incucyte SX5可以更加深入地分析每个样本的信息。专为活细胞分析设计的颜色多达 5 种,功能更强大。该仪器具有更多通道,可以使用更多试剂。采用专门定制的软件,适用于更多应用领域。帮助您深入了解更多细胞生理学的相关信息。为活细胞分析赋能从每个样本获取更多信息,探索更多应用。支持多达五个不同的荧光通道( 同时可使用三个) 进行长时程活细胞实验。加速实现研究目标通过一个平台,即可完成复杂的免疫- 肿瘤细胞相互作用、神经元共培养突触活动、癌细胞代谢等研究。保护宝贵细胞样本三色光学模块正在申请专利,包括长波长、低光毒性NIR 通道,以及专为长期活细胞试验而设计的试剂。提高生产力最多可并行使用六个微孔板,自动获取并分析图像,为您提供远程控制便利。 关键功能 专为活细胞分析设计- 多达 5 个不同的荧光通道- 每次可同时使用 HD 相位和多达 3 个荧光通道 ( 绿色 /橙色/ 近红外)- 新三色光学模块包含一个长波长,低光毒性 NIR 通道和适用于完整应用的优化试剂- 自动式转台配备 4x、10x 和 20x 物镜支持多个用户- 配备支持 3 个可互换容器的托盘以及 600 多个容器- 最多可以同时放置 6 个微孔板- 通过远程网络访问和无使用限制的许可证,可无缝支持多用户使用 广泛应用 细胞健康与增殖增殖与细胞计数细胞周期细胞凋亡细胞毒作用细胞活性线粒体膜电位 新增!ATP 代谢 新增!细胞功能免疫细胞杀伤抗体内化免疫细胞化学吞噬作用神经突动力学神经元活动血管新生三维细胞建模肿瘤球生长与活性肿瘤球侵袭类器官QC 新增!细胞运动与形态趋化性迁移和侵袭划痕迁移和侵袭
    留言咨询
  • xCELLigence技术采用孔板底部嵌有微金电极的专利微孔板,可实现非侵入性地检测细胞行为。在实验过程中,微金电极可检测细胞增殖、粘附力、形态变化、迁移、分化等多种指标。出色的快速检测功能可以实现精细的时间分辨率,因此对所有细胞效应都可进行秒、分、小时或天来检测。xCELLigence RTCA eSight将显微成像与实时无标记检测进行整合,实现了活细胞成像与高灵敏度生物传感技术的完美结合,可以满足客户同时对同一细胞群进行实时阻抗和成像检测。xCELLigence 高灵敏度生物传感技术采用孔板底部嵌有微金电极的专利微孔板,可实现非侵入性地检测细胞行为。在实验过程中,微金电极可检测细胞增殖、粘附力、形态变化、迁移、分化等多种指标。出色的快色检测功能可以实现精细的时间分辨率,因此对所有细胞效应都可进行秒、分、小时或天来检测。而xCELLigence RTCA eSight成像功能可以在进行生物传感检测的同时,同步实时采集细胞图像,从而提供细胞群在空间和时间上的动态视图,并为任何基于细胞的检测提供前所未有的详细信息,进一步验证时间依赖性的细胞活力和细胞行为。 xCELLigence RTCA eSight性能:独特的多功能性:能够单独或同时对相同的活细胞群进行实时无标记的生物传感器监测和动力学成像。获取与生理相关数据:可检测原代细胞或标准组织培养细胞株的生长、贴壁能力、形态变化、增殖和凋亡。RTCA eSight提供了一个前所未有的视野来监测细胞行为和功能机制。更高效的活细胞成像:RTCA eSight搭载了明场、3个荧光通道(红,绿,蓝),可兼容多种孔板类型,以及用户自定义实验流程的功能。每个卡槽可独立运行和编辑流程,这使得该系统会成为多用户平台的理想选择。超快速:使用xCELLigence生物传感技术可实现在15秒内读取一块96孔板,同时可通过活细胞、实时、同步成像检测进一步探究你的实验。两种检测模式一次设置活细胞成像技术和实时生物传感技术可以对同一细胞群上进行检测,这将为细胞行为提供了更具洞察力的信息。只需将培养板放入培养箱中,设置实时数据采集和分析参数即可。多模式数据采集采用独家xCELLigence生物传感技术实时采集数据,并实时叠加图像。功能强大的RTCA软件将两种数据类型集成到同一个时间进行显示。丰富的实验信息及强大的数据分析数据分析可通过多种格式显示和导出,包括RTCA图像、KT50(在既定E:T效靶比下达到50% cytolysis的时间)、% cytolysis剂量效应或IC50剂量效应曲线。
    留言咨询
  • CellInsight CX7高内涵细胞分析和筛选平台Thermo Scientific™ Cellinsight™ CX7高容量分析平台是一款集成式台式仪器,综合自动化细胞显微成像和形态学大数据分析多种技术,能满足大部分实验室研究和药物筛选要求。可以结合任意一种成像模式——明场、宽场和共聚焦 ——从您的样本中提取所需的生物学信息。各种成像模式均可应用专利的激光自动聚焦技术,实现快速且可重复的读取,即便是在样本孔零散分布的情况下。全方位整合式共聚焦成像,提高了厚样本的分辨率7通道荧光和5通道彩色明场成像全自动化和激光自动聚焦,适合高通量自动化图像采集和定量分析集成软件,优化的应用方案采用LED光源进行彩色明场成像,对组织样本进行形态学分析。此外,您还可以使用经典的多重分析染料,如苏木精-伊红 (H&E) 及荧光探针,为组织切片的数据相关性提供新的可能。对于共聚焦成像,双转盘模式,提供了适合厚组织样本和3D基质的清晰成像。宽场成像模式使用与共聚焦相同的光源——7色固态LED光引擎,可提供广泛的激发光谱,最大程度地提高了多重分析的性能。低温制冷科研级CCD照相机可在各种成像模式下提供高灵敏度和分辨率。缩短了通道切换时间,最大程度减少了光强度波动,有助于缩短扫描时间,并提升定量性能。操作十分简单:Cellinsight CX7平台可以采用自动化机械手操作的筛选反应板,或者您可以自己上样。高效分析HCS数据HCS要真正达到易操作,必须满足初学者的要求,同时不影响经验丰富的用户常用的功能。Thermo Scientific™ HCS Studio™ 细胞分析软件提供了基于图标的操作指南,利用反应板图和注释工具设置分析并高效管理您的实验设计。新用户有超过30种现成的分析可供选择,可以通过优化满足特定的细胞系或表型要求。您可以使用直观的图标,轻松选择分析和优化的实验方案,确认设置,并开始收集过程数据,如: 细胞凋亡 自噬 细胞周期 DNA损伤 浸润 运动 肌管形成 神经轴突生长 突触发生经验丰富的用户可以使用灵活的软件工具从头开始构建自己的分析。他们可以通过即时反馈掌控数百种方案,包括: 背景校正 目标分割 点/颗粒检测 ROI感兴趣的区域 检测灵敏度 特殊图像格式 图像对比度 表型阈值设置对于进行自定义分析的研究人员而言,获得结果的时间是一项关键衡量标准。越快获得结果,就可以越快速地做出决策,调整参数,评价结果或重复实验。HCS Studio软件用户可以快速发现提供数据实时处理的智能软件的优势,只需采集需要的数据即可生成具有统计学意义的结果。对于诸如检测96孔板中的神经轴突生长等分析,Cellinsight CX7平台可以在4分钟内读取反应板并报告结果。此外,HCS Studio软件的分析性能工具可使您根据多个检测标准测量分析性能,并选择能提供最佳Z-prime结果的参数。分析结束时,您可以直接使用结果,无需汇集数据并进行离线处理。
    留言咨询
  • 生命科学的研究已进入了细胞组学的研究,科学家们渴求探究细胞深层次和综合性信息,既提供细胞群体的群体信息,也关注个体细胞的差异,既能看到细胞表型的特点,更能研究细胞的功能,但目前的流式细胞技术已无法满足科学家们的应用需求。Merck Millipore公司2012年推出的FlowSight多维全景流式细胞仪第一次实现了从群体到个体,从表型到功能的综合细胞分析,引领流式细胞技术进入了崭新的时代。 FlowSight是下一代专家级流式细胞仪FlowSight是一款体积小巧,但是功能强大的下一代专家级流式细胞仪。该系统革命性地设计提高了信噪比以及荧光检测的灵敏度。标配12个检测通道,除了传统荧光强度信息,还能获得&ldquo 每个细胞&rdquo 的明场、暗场以及10个荧光图像。FlowSight可以最多配置四根激光管(405, 488, 561, 642 nm),并加配785nm激光器专用于SSC信号检测,同时还可配置96孔板自动上样系统(AutoSampler)。FlowSight具有低于10MESF的超高检测灵敏度,特别对于弱信号的检测,有明显的优势。 FlowSight突破传统流式局限,实现圈门不再靠猜FlowSight与其他传统流式细胞仪不同之处在于它带来了每个细胞的真实图像。对于每个细胞,它能够生成12张图片。所获得的图片能够鉴别来自细胞质、细胞膜和细胞核的荧光。您只需点击散点图中的每个点或直方图中的每个点,即可查看与之对应的细胞图片。因此使用者再也不用靠猜测来判断设门是否准确。在FlowSight中,设门后,使用者可以通过观察所设门内外的细胞图片来确认设门是否准确。 FlowSight拓展了流式细胞技术的应用范围,获得前所未有的深入的细胞信息1. 细胞周期细化分析FlowSight可以将细胞周期分析和有丝分裂细胞分析结合起来。如下图所示,研究人员利用FlowSight对THP-1细胞周期进行分析(如下图左图所示),通过观察每个时期的细胞图片,FlowSight不仅可以分析细胞的G0/G1,S,G2/M期,还可将M期细分为分裂前期,中期,晚期,末期,获得最全面的细胞周期数据。 2. 八色免疫分型免疫分型通常用来鉴别血细胞亚群。FlowSight最多能够同时检测10色荧光,最大程度地满足研究者的实验需求。在这个例子中,研究人员用抗CD45, CD14, CD16, CD19, CD3, CD4和 CD123的抗体以及DAPI染料对细胞进行标记。通过一系列设门分析,他们鉴别了以下细胞类群: (A) CD3+ T细胞, CD4+ 辅助T细胞 (B) CD16+ 粒细胞 (C) CD19+ B 细胞 (D) CD14+ 单核细胞 (E) CD123+ pDC/嗜碱性粒细胞. 3.NFkB核转位研究NF-&kappa &beta 作为一种广泛存在的转录因子,被激活由胞浆转入胞核,从而参与炎症反应、免疫反应、细胞凋亡、肿瘤发生等。可以将细胞核和NF-&kappa &beta 分别用DAPI和FITC染色,FlowSight可观察每个细胞是否发生 NF-&kappa &beta 核转位,并量化分析NFkB核转位程度以及发生核转位细胞的比例。FlowSight革命性地光路设计,实现独特应用FlowSight系统平台也是由液流系统,光学系统和电子系统等三大部分组成。液流系统将样本细胞悬液和系统鞘液注入流动室中,使细胞在鞘液流的约束下聚焦在液流的中心,逐个流过检测窗口。光学系统中光源照射通过检测窗口的细胞,从而产生光信号。光源分为两种,其一用于产生明场细胞图像,另一种是用于产生荧光细胞图像的激光器。光源照射细胞产生的光信号被大数值孔径的物镜收集,然后通过光路系统传递到由二向色镜构成的滤光片堆栈(Dichroic Filter Stack)。光信号在这里被分成不同波段投射到TDI CCD的相应检测通道上,产生一个明场细胞图像,一个暗场细胞图像(Side Scatter,SSC)及至多10个不同荧光通道的细胞图像。FlowSight的光路系统能够自动调整焦距,并实时测定细胞运动速度,而其采用高端航空遥拍CCD进行信号采集,信噪比比PMT提高10-20倍,上述这些手段保证了系统采集到的细胞图像的质量和荧光信号的灵敏度。 综上,FlowSight多维全景流式细胞仪,采用革命性的技术,解决了传统流式细胞仪无法获得细胞个体信息的局限,真正让流式细胞仪睁开了&ldquo 眼睛&rdquo ,不仅可以对大量细胞进行统计学分析,而且还能观察细胞形态,极大地拓展了传统流式细胞仪的应用。虽然FlowSight是在2011年推出的,但是Amnis公司的下一代流式技术已经非常成熟,全球装机已经超过200台,超过300篇文献发表,其中大量Nature、Science和Blood等高水平文章。
    留言咨询
  • NovoCyte Penteon是一台灵敏的流式细胞仪,具有5激光和多达30个荧光通道。它具有出色的灵敏度、分辨率、速度和灵活性。它还具有7.2 log的宽动态范围以及全自动补偿功能,让用户能够在同一实验中检测暗淡信号和明亮信号。在上一代智能化流式细胞仪基础上,提供了更强大的处理能力,以适应更高端的使用需求。搭载自动上样系统NovoSampler Q,兼容40管流式管架、 24/48/96/384孔板等多种上样方式,还可以整合到不同的实验室自动平台。简便及友好的NovoExpress 软件,在数据获取、分析及报告方面带来更可期待的用户体验。仅限研究使用。不可用于诊断目的。- 5激光30荧光通道- 超凡灵敏度和分辨率- 软件功能强大,支持数据边获取边分析- 智能化设计,操作无需人工值守,简化工作流程- 高通量检测自动完成- 10^7.2宽动态范围检测,无需电压调节- 高速收集,最高可达100,000次/秒- 准确的体积法绝对计数功能,无需计数微- 优异的散射光分辨率,可检测小至100nm的颗粒具有流体反馈控制机制始终保持非常稳定的流速。在各种样品流速下具有出色的稳定性,可在不同的操作条件下提供一致的结果。新版NovoExpress,继续保留传统的优秀功能之外,提供了更多高级分析方法:- 细胞周期分析模块:除了之前的Watson Pragmati算法之外, 又新增了Dean Jet Fox(DJF)分析模型。为G1,S和G2 / M的定量拟合、以及其他参数(如CV's和G2 / G1 比率)的量化提供了更多选择, 尤其适合药物处理后的不规则周期分析。- 细胞增殖分析模型:自动分析细胞增殖,快速识别细胞分裂代数,并计算增殖指数,便于定量。- 热图数据显示:用户定义参数的颜色,方便快速查看并同时比较多个样品。 应用领域:- 癌症/免疫学- 药物及疗法开发- 病毒感染研究- 疫苗开发- 细胞生物学- 干细胞- 微生物学/水生生物学- 植物学性能指标:激光器数量5激光器配置UV/紫色/蓝色/黄色/红色荧光通道30工作原理:无与伦比的光电检测器硅光电倍增管 (SiPM) 是基于硅基底的固态半导体器件,具备光子能级灵敏度,动态范围为 7.2 个数量级,是一款具有光子计数功能的紧凑检测器。NovoCyte Penteon 设计中的创新光学器件包含 30 个独立的 SiPM,可收集并处理来自每个荧光通道的信号。出色的散射光分辨率,可检测小颗粒NovoCyte Penteon 散射光检测光学系统和信号处理电子器件经过优化,可以分辨粒径小至 0.1 µ m 的颗粒。凭借这种优异的分辨率,可轻松识别和分析血小板、细菌和各种亚微米颗粒。高重现性和稳定性NovoCyte Penteon 和 NovoCyte Quanteon 的液路系统专为提供高性能而设计。NovoCyte Penteon 和 NovoCyte Quanteon 拥有其他流式细胞仪无法比拟的液路一致性和稳定性。使用蠕动泵的其他仪器通常会受到液路脉动的影响,导致绝对细胞计数不一致和不准确。应用:凋亡分析细胞凋亡也称为细胞程序性死亡,是细胞调控自身死亡的过程,通过激活特定通路使细胞发生收缩、凝聚,并最终通过吞噬作用被清除。这与坏死细胞死亡形成鲜明对比,坏死细胞死亡时细胞失控死亡并裂解,可产生免疫反应异常激活等有害影响。因此,凋亡细胞以非常有序的方式死亡,可限制其对周围细胞和组织的破坏。多种方法可用于测定细胞死亡并区分其为凋亡还是坏死。NovoCyte 流式细胞仪具有自动补偿设置和宽荧光检测动态范围,可轻松对检测进行定量,无需调整 PMT 电压免疫表型分析免疫状态与疾病状态、治疗效率以及对疫苗等外部刺激的反应有关。免疫表型分析可快速识别候选细胞类型、亚类和功能。由于免疫细胞可能影响疫苗的免疫原性及其效能,因此监测多种免疫细胞群的频率以及特定细胞亚群(如单核细胞、NK 细胞、T 细胞和 B 细胞)的分化或活化状态至关重要。NovoCyte 流式细胞仪可同时定量分析多种白细胞,以便更好地了解患者的免疫状态并监测机体对传染病的免疫反应。细胞增殖细胞增殖是一种重要功能,是高度结构化的事件,如果不受控制,会导致疾病。我们可以通过绝对细胞计数或使用染料(例如 CFSE)测量增殖。当 CFSE 标记的细胞发生分裂时,染料在子细胞之间平均分配,随着染料的不断稀释,我们可以测量 CFSE 荧光随时间的损失。此外,还绘制染料的平均荧光强度 (MFI) 与细胞浓度随时间的变化曲线,以揭示两者之间的反比关系。这类分析方法通常用于观察 T 淋巴细胞活化的变化。图:使用 CFSE 测量 Jurkat T 细胞增殖。A) 使用 CFSE 标记 Jurkat T 细胞,并通过 NovoCyte 流式细胞仪分析细胞随时间的变化,以测定细胞分裂。每个峰值都对应于一个单独的时间点。B) 使用随细胞分裂产生的信号稀释,绘制绝对细胞计数与 CFSE 的平均荧光强度 (MFI) 随时间的变化曲线。细胞因子检测细胞因子是免疫细胞对病原体、自身免疫或治疗药物的激活反应所必需的小分子。细胞因子的信号传导可以调节基因调控、先天免疫反应和适应性免疫反应以及炎症。因此,测量细胞因子产生并确定细胞因子产生的来源对于深入了解免疫反应非常重要。基于微球的流式细胞术检测是测量细胞因子的高效方法,可以使用具有不同荧光强度的混合微球来测量单个样品中的多种可溶性分析物。细胞内蛋白质检测对细胞内蛋白质的检测和分析有助于细胞亚群和细胞过程的额外表征。为分析非细胞表面蛋白质,需要进行细胞固定和破膜。然而,许多磷酸特异性抗体与许多基于去垢剂的常用破膜方法(用于细胞内染色)不兼容。在确定磷酸特异性抗体的适宜固定和破膜方法时,需要特别注意。最常见的方法是用 1.5% 多聚甲醛固定,然后用 100% 甲醇破膜。虽然这种方法适用于多种抗体,但请注意,并非每种磷酸特异性抗体都适用。此外,在异质性样品中鉴定不同的细胞群,需要对表面蛋白连接的磷酸化蛋白进行染色。必须特别考虑这些表位对固定剂的敏感性,并采取相应预防措施,避免损害表位。因此,样品在固定前可能需要对特定的表面标记物进行染色细胞周期分析正常的人体细胞是含有恒定数量 DNA 的二倍体。在细胞分裂的过程中,DNA 合成导致总 DNA 含量翻倍,随后在有丝分裂后恢复正常的 DNA 含量。利用 NovoCyte 流式细胞仪,可以进行详细的细胞周期分析,了解肿瘤细胞分化、细胞转化以及细胞与化合物之间的相互作用。图:在 10 µ g/M MG132 或 500 µ g/M 5-FU 处理 16 小时后,使用 ACEA NovoCyte 流式细胞仪分析 A549 细胞的细胞周期分布。NovoExpress 内置的细胞周期分析模块中的图像显示了处于 G0/G1 期(绿色)、S 期(黄色)和 G2/M 期(蓝色)的细胞。与正常未处理的细胞相比,MG132 处理的细胞停滞在 G2/M 期,而 5-FU 处理的细胞停滞在 G0/G1 期。
    留言咨询
  • 图像细胞分析仪 400-860-5168转4449
    明场通道 + 双荧光通道荧光模块可更换镜头可更换(5x 或10x)强LED光源,曝光时间短,速度快台盼蓝染色,AO/PI双荧光染色细胞浓度和活率细胞大小直方图IQOQ(3W,需另购买)GMP模块(3.5W,需另购买)可兼容DeNovo FCS Express流式分析软件除正常明场、荧光细胞计数功能外,扩展应用:细胞周期、细胞凋亡、GFP/RFP表达效率、免疫分型、线粒体膜电位、ROS检测等
    留言咨询
  • Countstar Rigel S3系统整合了一个三荧光通道加明场的电子显微镜,图像分析,细胞计数于一体的台式仪器。这台全自动图像采集分析的设备为细胞计数,细胞活率以及T/NK细胞介导的细胞毒性检测提供了一体化解决方案。仪器内预置了多个实验类型,包括台盼蓝计数,AO/PI双荧光计数,细胞杀伤,细胞凋亡,细胞周期等。这些预置的实验类型可以大大简化例行的细胞实验室的工作。Countstar S3系统提供一个标准的,满足GMP需要的细胞质量控制解决方案。核心优势一次性自动检测5个样品符合GMP要求以及FDA 21 CFR Part 11多通道,多功能简单,轻松的操作免维护与服务一体机设计,触摸屏用户友好和灵活的软件系统产品特性简单Countstar Rigel S3系统预置的实验类型可以简化常规细胞实验室的任务(细胞计数,活率,细胞毒性实验),同时提供高质量可靠的实验数据.AO/PI 双荧光计数通过双荧光法染色,快速准确测定细胞浓度,活率,同时可以排除杂质,细胞碎片以及无核细胞的干扰。细胞毒性检测通过三色荧光染色,快速测定CAR-T/NK细胞对于靶细胞的毒性检测。GFP转染 BioApp基于三种荧光颜色测定获得细胞转染效率和细胞活率。细胞凋亡BioApp通过使用Hoechst 33342, Annexin V-FITC and PI,分析细胞的凋亡情况。台盼蓝BioApp基于台盼蓝染色原理测量细胞的细胞数,活率和浓度。三步法Countstar Rigel S3系统通过简单的三步操作,仅需20微升样品,即可从样品到结果,每个计数样本都会自动显示细胞总数、浓度和平均直径等信息。结果显示界面。40 秒/样品准确和稳定的检测结果Countstar Rigel S3系统可以一次自动检测5个样品,这样可以大大提高检测效率和降低成本。同时结合“固定焦距”,结果会更加稳定和可靠。全触屏,用户友好和灵活的软件系统APP式管理,每一个实验类型可以被复制,不同的项目和不同的操作者可以有独立的实验类型,数据会按照APP进行分类,这样可以使数据管理的工作大大简化。符合GMP要求以及FDA 21 CFR Part 11Countstar Rigel S3系统是为了满足现代制药需求而设计。软件符合21 CFR Part 11,包括电子签名,电子记录,审计追踪功能等。于此同时,我们提供IQ/OQ服务以及PQ支持,帮助用户建立一个可靠的检测系统。Counstar Rigel S3在免疫治疗领域的应用免疫疗法,如CAR-T治疗包括从病人收集外周血单核细胞(PBMC),然后分离所需的T细胞亚群,通过基因改造产生工程CAR-T细胞,CAR-T细胞在体外大规模扩增后再回输到患者。 Countstar Rigel S3系统可以对整个CAR-T生产过程中细胞浓度,活率进行监测,并且符合GMP的要求。Read moreAO/PI双荧光法检测活率:吖啶橙和碘化丙啶是可以和细胞核核酸结合的荧光染料。AO可以穿透活细胞和死细胞对细胞核进行染色并发出绿色荧光,PI进入死细胞对细胞核进行染色并发出红色荧光。因此AO/PI为细胞核染料,可以准确区分活细胞与死细胞,而且可以排除杂质或者非特异细胞的干扰,进行精准的浓度活率检测。AO/PI双荧光染色法PBMC细胞图像Read moreT/NK 细胞介导的细胞毒性对靶标细胞用无毒的无放射性的钙黄绿素进行标记(或者GFP转染标记),我们可以观察CAR-T细胞对肿瘤细胞杀伤效应。活的肿瘤细胞会含有钙黄绿素或者GFP,死的肿瘤细胞不含有钙黄绿素或者GFP。Hoechst33342被用来染色所有的细胞(包含T细胞和肿瘤细胞),PI用来染色所有的死细胞(包含T细胞和肿瘤细胞)。这种染色策略可以让我们对细胞进行精准的区分。图 6 Countstar Rigel S3分析T细胞介导的细胞毒性图片细胞毒性%=(对照组的活细胞数 – 实验组的活细胞数)/ 对照组的活细胞数)x 100%Read more细胞凋亡:细胞凋亡的测定是通过测量细胞早期凋亡激活的标记来了解细胞如何死亡。 这些是凋亡细胞的特定生物化学和形态学标记,而在正常细胞和坏死细胞中不发生的此变化。 使用Countstar FL通过Hoechst 33342,Annexin V-FITC,PI标记细胞, 可以将细胞分成不同的阶段。 该Counstar软件可以通过直接计数提供即时结果。图 4 K562靶细胞与效应细胞混合培养3h 后,Hoechst 33342,CFSE,PI染色的荧光图像GFP转染GFP可通过转基因技术引入动物细胞或其他微生物。 Countstar Rigel S3为检测GFP转染提供了一种快速简便的检测方法。 用Hoechst 33342和碘化丙啶(PI)染色来确定总细胞群和死细胞群以及检测表达GFP的群体。 该软件可以通过直接计数给出即时结果(包括GFP阳性百分比,浓度和活率)。图 9使用Hoechst 33342(蓝色)定位活细胞,并且可以容易地确定表达GFP的细胞(绿色)的百分比。 用碘化丙锭(PI 红色)染色死细胞。台盼蓝细胞浓度和活率分析Countstar Rigel S3也可以通过台盼蓝染色法对细胞进行活率和浓度的测定。 这里显示的是细胞系的放大代表图像。 由于所有细胞都用台盼蓝染色,显示细胞台盼蓝染色图像以及Countstar Rigel S3细胞识别图像。图 10台盼蓝染色图像以及Countstar Rigel S3细胞识别图像
    留言咨询
  • ◆ ◆ ◆ ◆实时真阻抗细胞动态检测仪◆ ◆ ◆ ◆PART I 什么是真阻抗细胞检测 阻抗指贴附细胞对检测电流所起的阻碍作用。Maestro Z的真阻抗技术采用不同频率的交流电来检测细胞的阻抗变化。该技术不但可以检测因细胞数量变化导致的阻抗变化,还能实时检测因细胞形态、通透性变化而导致的细微阻抗变化。PART II Maestro Z的特点一体化设计 该仪器无需额外占用培养箱空间。专门设计的样本仓可以屏蔽外界电磁和机械噪音,避免培养箱开关门等额外操作导致检测结果偏差。真阻抗检测技术 该平台延续了Axion BioSystems公司成熟的高信噪比电生理检测技术,采用不同频率交流电,可用来检测细胞细微阻抗变化。友好易用的软件 操作软件提供实时数据记录,自动数据分析,自动数据报告生成。除此之外,还提供自动扣除本底,Nomalization等高阶数据分析,免除繁琐的手工计算。软件还符合FDA 21 CFR Part 11条款,兼容企业在GXP方面合规要求。数据安全性 自带数据储存,无惧电脑宕机,确保重要数据安全。PART III 应用方向简介 样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试想要了解更详细特点,快来联系我们吧! Axion BioSystems ImagineExploreDiscover
    留言咨询
  • ◆ ◆ ◆ ◆细胞实时无损监测系统Maestro Z/ZHT提供1-96灵活通量选择的领先一代生物电实时分析系统。运行无需CO₂ 培养箱及电脑支持,以最大程度集约化您的工作流程并降低故障发生率。 ◆ ◆ ◆ ◆PART I 什么是真阻抗细胞检测 阻抗指贴附细胞对检测电流所起的阻碍作用。Maestro Z的真阻抗技术采用不同频率的交流电来检测细胞的阻抗变化。该技术不但可以检测因细胞数量变化导致的阻抗变化,还能实时检测因细胞形态、通透性变化而导致的细微阻抗变化。PART II Maestro Z 独特优势√ 使用新一代阻抗技术,实时、无标记地长时间连续监测细胞生理状态√ 内置环境控制系统,集细胞培养、信号捕获及处理为一身√ 自带备份硬盘结合GxP版本系统,实验数据安全可溯√ 软件界面友好并支持移动App实时监控,数据分析简便快捷√ 配套细胞板底部设有观察窗,方便观察细胞形态、贴壁情况及汇合度√ 广泛应用于细胞的增殖、凋亡、迁移、侵袭及屏障功能等研究方向一般实验流程:(简单高效、省时省力)PART III 应用方向简介 样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • Countstar Rigel细胞荧光分析仪,将细胞图像转化为数据结果。 明场分析外加4个荧光激发光,多至13种荧光分析,染料选择不再受限。细胞活率、凋亡、转染、周期等细胞图像和分析结果同时呈现在显示屏上。一体机设计,预置检测程序,FCS类流式软件分析(选配),从操作到分析带给您全新体验。“定焦"的专利设计,避免人为调焦带来的误差,荧光定量更加准确。此外, Countstar Rigel满足欧盟CE认证,可按照客户的应用开发检测试剂、程序及仪器,实验操作快捷方便,为荧光细胞分析提供整体解决方案。核心优势一体机设计,操作简单,触屏一键检测自动快速检测,2.5分钟内检测5个样品自动化多荧光同步检测 最多可达13种荧光组合独创的专利“定焦”技术,无需人工调焦灵活的实验类型管理智能化、人性化的数据库管理系统符合FDA 21 CFR Part11FCS 类流式软件自动化多荧光同步检测 最多可达13种荧光组合* 最多4个激发光加5个检测器滤光片组合,可检测多达13种荧光通道;* 全自动光路切换,单次实验可同时检测4个荧光通道加明场;灵活、人性化的细胞分析程序, “APP” 式管理FDA 21 CFR Part 11为了适应现代生物制药的需求,Countstar Rigel软件系统的数据管理和控制性能完全符合 FDA 21 CFR Part11,如下特点保证了该功能的合规性:FCS 类流式软件(选配)FCS Express系列软件是De Novo公司开发的一款对细胞荧光图像进行量化分析的软件。FCS Express可以进行单细胞/多细胞分析参数设定和细胞图像分析,特别是在Countstar Rigel与FCS Express联用可以对细胞周期进行分析,帮助使用者获得更多的分析结果。产品应用荧光法细胞计数及活率检测吖啶橙(AO)和碘化丙啶(PI)是核酸核酸结合染料。 分析细胞时,可以排除细胞碎片,碎片和假象颗粒以及尺寸过小的杂质,如血小板,从而得出高度准确的结果。Countstar FL提供了一种更加简便和准确的PBMCs的分析方法,可是使用户在不裂解红细胞的情况下即可对PBMCs进行分析。Read more细胞凋亡细胞凋亡的不同阶段分为早期,中期和晚期。 指定的标记物磷脂酰丝氨酸(Phosphatidylserine,PS)可以记录细胞凋亡的单个阶段。Countstar Rigel为用户提供了一个以图像为基础的研究方法,使用户能够在看到细胞凋亡不同阶段的同时,获得分析的结果。Read moreT/NK 细胞介导的细胞毒性对靶标细胞用无毒的无放射性的钙黄绿素进行标记(或者GFP转染标记),我们可以观察CAR-T细胞对肿瘤细胞杀伤效应。活的肿瘤细胞会含有钙黄绿素或者GFP,死的肿瘤细胞不含有钙黄绿素或者GFP。Hoechst33342被用来染色所有的细胞(包含T细胞和肿瘤细胞),PI用来染色所有的死细胞(包含T细胞和肿瘤细胞)。这种染色策略可以让我们对细胞进行精准的区分。图 6 Countstar Rigel S3分析T细胞介导的细胞毒性图片细胞毒性%=(对照组的活细胞数 – 实验组的活细胞数)/(对照组的活细胞数x 100)Read more细胞周期细胞周期是细胞实验室一项常规的实验。通常情况下实验室可能会使用其它流式细胞仪检测,但是这样的检测方法通常费时费力。Countstar Rigel 提供一种实验室桌面的解决方案,可以让用户快速简单的知道细胞周期结果。通过Countstar Rigel 用户可以看到并且分析出细胞周期的不同过程。Read moreCD Marker分析现代细胞生物学研究中对CD分子的测定已经成为疾病研究的一个很有参考价值的指标,比如HIV患者CD4+细胞的百分比会显著降低,系统性红斑狼疮患者CD8+CD28-细胞会较正常人增加。Countstar Rigel提供了一种更为快速和操作简便的方法来使免疫细胞分型工作变得更加高效。通过可见的细胞图像和强大的数据分析功能, Countstar Rigel能够让用户从此不再需要大量复杂的对照设置及荧光补偿调整,即可获得稳定可靠的结果。Read more转染效率现代细胞生物学研究中对CD分子的测定已经成为疾病研究的一个很有参考价值的指标,比如HIV患者CD4+细胞的百分比会显著降低,系统性红斑狼疮患者CD8+CD28-细胞会较正常人增加。Countstar Rigel提供了一种更为快速和操作简便的方法来使免疫细胞分型工作变得更加高效。通过可见的细胞图像和强大的数据分析功能, Countstar Rigel能够让用户从此不再需要大量复杂的对照设置及荧光补偿调整,即可获得稳定可靠的结果。本型号 仅限于科学研究,不用于诊断
    留言咨询
  • Cellaca PLX配备有Matrix分析软件、专用试剂和耗材,可为准确检测少量细胞样本提供一站式解决方案,快速为下游实验进行亚群分析。Cellaca PLX单个样本分析仅需15-50uL,与流式细胞仪相比,所需样本体积可节省10-30倍。仪器配备明场和六色荧光通道,一分钟内可完成多色荧光以及细胞活率分析,从而缩短下游实验等待时间。目前试剂盒支持免疫细胞表型检测,细胞凋亡检测,高通量细胞活率检测和荧光蛋白分析。系统符合21 CFR Part 11法规规范。
    留言咨询
  • CYRIS FLOX 智能多维度细胞长周期全息分析平台CYRIS FLOX 智能多维度细胞长周期全息分析平台的特点: 24孔独立同时检测 测量参数包括耗氧率(OCR)、产酸(ECAR)以及细胞膜电阻抗 结合了显微成像功能,在参数测量的同时对细胞进行细胞成像 显微成像可监测细胞的增值、细胞凋亡、细胞死亡、细胞再生以及细胞形态等动态变化情况 全自动紫外灭菌系统 准确的温度、湿度控制,可进行室温+5~50°C的温度调节 全自动移液工作站,24通道自动独立换液和加药,杜绝人为干扰 含有气体控制单元,可对氧气浓度进行智能调节,氧控范围:1-21% 全部开放性试剂,可多次重复使用的耗材,节约使用成本 完全封闭且自动化的工业级设计,支持进行长期、可达几周至数月的实验周期是一台将能量代谢参数与显微成像实现时间一致性的自动化能量代谢测量设备实现了智能换液,避免试剂重叠带来的实验干扰性,准确的细胞能量代谢测量
    留言咨询
  • 配备可替换5X和10X物镜以及插拔式荧光模块,可从六个荧光通道中选择两个同时进行成像和分析。除台盼蓝和AO/PI细胞计数与活率分析以外,Spectrum还可将数据一键导出至DeNovo FCS Express流式分析软件进行细胞周期、凋亡、GFP/RFP表达、表面标志物分析等多种类流式分析。
    留言咨询
  • 赛多利斯Incucyte 实时活细胞分析系统,可有效捕获培养箱中细胞的变化。系统支持高分辨率荧光和明场图像采集,能够实现数小时、数天或数周内数据的实时记录。系统使用灵活,从增殖分析到肿瘤球免疫杀伤检测,均可协助用户实时观察和定量复杂的生物变化。集成式软件可以简化数据分析,快速获得结果,并生成可供发表的图表和绘图。 技术优势 1. 灵活简单的样品制备:兼容多种培养容器- 在正式开始实验前,可用免标记法分析细胞融合度,监测培养瓶/ 培养皿,以确保细胞健康- 可用 96 和 384 孔板同时开展多种实验,一次性可容纳多达6 块板Incucyte 试剂可显著提高效率- 检测试剂对细胞健康和形态无影响- 采用经过验证的活细胞检测试剂和配套方案,可节省实验优化和问题查找分析的时间2. 简单灵活的实验设置快捷设置,一步完成- 向导式操作界面,可指引用户设置自动采集和分析参数- 可容纳多个用户同时使用,支持不同的采集频率和图像放大倍数- 远程监测:凭借免费许可证,即可从联网端口控制您实验室里的Incucyte 系统 向导式界面可快速进行实验设置,即使您初次使用,也能轻松完成。3. 多种成像模式获取和查看实时图像- 可采集优质高清相差、红色和绿色荧光图像以及视频- 通过自动对焦,可选择 4 倍、10 倍或 20 倍物镜成像,同时用于多个应用领域- 对细胞干扰最小- 别具匠心的移动光学设计即细胞保持静止状态,让光学元件移动,尤其适用于分析敏感和非贴壁细胞- 采取非侵入性、非干扰性图像采集模式,对整个生物学过程进行长期监测,展现出其本来状态 自动获取实时图像。4. 实时自动分析-可重复的高效图像:根据不同应用领域,选择相应的数据处理和分析模块,可对数千幅图像进行可重复的定量分析,消除操作偏差- 强大的可视化图像和动态检测:专为生物学家开发的可定制的灵活工具,能够快速评估结果,缩短从生成数据到发表的时间 使用Incucyte VesselView 立即查看培养容器中所有位置的图像,并快速评估实验结果,对感兴趣的图像可以放大通过mask 自动识别感兴趣的区域生成时间间隔的图表,可直接用于演示使用Incucyte PlateGraph可立即查看所有96 或384 孔动态趋势,并导出数据以计算EC50 或IC50 值 广泛应用 细胞健康- 细胞增殖:采用免标记法实时自动监测细胞生长,或用NucLight&trade 核标记法实时自动测量活细胞数目。- 细胞凋亡:采用简单的均相方法实时检测活细胞凋亡情况。- 细胞毒性:采用均相法实时检测细胞活性,操作简单,适用于筛选。- 神经突分析:对单纯的神经元培养物、及其与星形胶质细胞的共培养体系,自动实时检测神经突动力学。- 肿瘤球:实时监测肿瘤球的形成、生长和健康状态,并进行定量分析。细胞迁移和侵袭- 划痕迁移和侵袭:研究处理因素对细胞迁移(2D基质)或侵袭(3D凝胶)的效应。- 趋化作用:使用ClearView&trade 96孔板查看并确认趋化因子介导的趋化迁移或侵袭效应。细胞功能- 免疫细胞成簇:无需从培养箱中取出,即可对细胞成簇和扩增进行观察和定量分析。- 抗体内化:适用于抗体筛选或治疗分析的快速、动态、高通量检测。- 免疫细胞杀伤:通过对NucLight&trade 核标记的细胞直接计数或利用IncucyteCaspase 3/7 试剂检测凋亡,来分析肿瘤细胞死亡。- 细胞吞噬:对细胞吞噬pHrodo标记的生物颗粒或靶细胞进行连续分析,并生成视频。- 血管生成:使用我们的共培养检测全套试剂盒,完成血管形成的动力学分析。监测细胞和其他工作流程- 活细胞免疫细胞化学:采用新的免疫细胞化学方法揭示表面蛋白表达的动力学。- 细胞培养QC:无需从培养箱中取出细胞,即可免标记监测细胞形态和增殖。- 克隆稀释:自动扫描克隆,并通过全孔分析验证单克隆性。- 转染效率:采用GFP/RFP 监测和定量分析基因转染的效率和动态变化。- 报告基因:实时检测启动子驱动的重组GFP/RFP 报告基因表达活性。提出新问题- 设计以前无法开展的新实验- 可用于日常监测,也可通过基于图像的动态检测,解答独特的科学问题获取新答案- 实时连续分析,不错过任何一个数据点- 剖析随时间变化和因细胞而异的生物活性- 通过图像和视频这种可视化方式来验证实验结果保护培养的细胞- 无需将细胞从培养箱内取出或干扰培养环境,即可完成细胞分析- 采用的试剂不会影响细胞健康和形态提高效率- 自动获取和分析图像,轻松便利- 兼容 96和 384 孔板,并完成多重性检测- 同时可容纳多个用户和多种应用
    留言咨询
  • 小鼠细胞追踪成像分析仪细胞追踪技术是一种科学研究方法,用于观察和研究细胞在生物体内的动态行为。它主要依赖于特定的标记方法,使得研究人员能够在复杂的生物环境中准确地识别并追踪单个或多个细胞。细胞追踪技术在生物医学研究中具有广泛应用,包括肿瘤、神经科学、心血管疾病、免疫学等领域。通过追踪细胞的运动、增殖、分化和凋亡等过程,研究人员可以更深入地理解生物体的生命活动和疾病机制,从而为疾病的治疗和预防提供新的思路和方法。小鼠细胞追踪是一种利用特定技术来观察和研究小鼠体内细胞动态行为的方法。其中,一种常用的技术是荧光标记,通过将荧光蛋白基因插入到小鼠的基因组中,使小鼠细胞表达出红色的荧光信号,从而可以追踪和观察小鼠细胞的生长和分化情况。这种方法具有操作简单、灵敏度高、分辨率高等优点,并且可以通过不同颜色的荧光蛋白对不同的小鼠细胞进行区分和追踪。在小鼠细胞追踪中,研究人员可以观察细胞在体内的迁移、增殖、分化和凋亡等过程,从而了解细胞的命运和生物体的生命活动。此外,通过记录和分析不同时间点的荧光信号,可以追踪小鼠细胞的谱系发育和命运决定。这些数据有助于研究者更好地理解小鼠的生命活动和生理现象,为生物医学研究提供重要的参考。核磁共振(MRI)技术是一种非侵入性的成像技术,可用于小鼠细胞追踪。通过在小鼠体内注入氧化铁纳米颗粒,通过MRI技术检测,实现对特定细胞的追踪和成像。纽迈推出的小鼠细胞追踪成像分析仪是一款功能强大,无损伤性的成像分析仪,可以观察标记细胞在小鼠体内的分布、迁移和生长情况,了解细胞在体内的动态行为。这种技术具有非侵入性、高分辨率和高灵敏度等优点,可以实现对小鼠体内细胞的长期追踪和成像。小鼠细胞追踪成像分析仪技术指标:场强:1±0.05T ,共振频率约42MHz动物线圈:直径60mm小鼠细胞追踪成像分析仪适用范围:磁共振造影剂大、小鼠活体成像小鼠细胞追踪成像分析仪应用方向:肿瘤识别(脑、皮下、肝脏)肿瘤生长与治疗过程肥胖研究磁共振造影剂研究小鼠细胞追踪成像分析仪应用案例:
    留言咨询
  • Lionheart LX是一款高性价比的全自动显微成像系统,整个机型设计紧凑,无需人眼通过目镜观察样本,有效的避免长时间人眼观察造成的视觉疲劳,也无需耗费高昂的采购成本和学习成本,搭载具有高内涵分析功能的Gen5软件,可以自动化进行图片拍摄、处理和分析,在实验室应用非常广泛。特点全自动智能显微成像系统:Lionheart LX拥有全自动的6位物镜转轮,能够同时实现4色荧光通道的成像,具有高精度电动载物台,可以自动聚焦、自动曝光、一键式成像,Gen5软件功能可以让用户体检轻松简单的全自动图像拍摄和分析。具有高对比度明场、彩色明场和荧光成像模式:明场、彩色明场和20多种荧光通道成像可选,Lionheart LX 突破多种成像拍摄体验,从Z轴层切(Z-stacking)到Z轴图像展示(Z-projection),Montage拍摄实现图像拼接,并且具有视频录制、自定义坐标拍摄和高通量整版拍摄功能,极大的拓宽了Lionheart LX在生命科学领域的应用。非标记细胞成像:可以通过高对比度明场进行非标记细胞成像,利用Gen5软件全自动完成图片拍摄、图片处理和结果分析,方法简便,适用于细胞计数、细胞毒性、细胞增殖和融和度相关实验。Lionheart LX典型应用:——终点法活细胞检测细胞凋亡细胞自噬细胞周期细胞毒性线粒体膜电位——组织学(HE)——非标记细胞计数——融合度分析——基因毒性彗星分析γH2AX——表型分析免疫荧光更多内容请关注:
    留言咨询
  • Lionheart LX是一款高性价比的全自动显微成像系统,整个机型设计紧凑,无需人眼通过目镜观察样本,有效的避免长时间人眼观察造成的视觉疲劳,也无需耗费高昂的采购成本和学习成本,搭载具有高内涵分析功能的Gen5软件,可以自动化进行图片拍摄、处理和分析,在实验室应用非常广泛。特点全自动智能显微成像系统:Lionheart LX拥有全自动的6位物镜转轮,能够同时实现4色荧光通道的成像,具有高精度电动载物台,可以自动聚焦、自动曝光、一键式成像,Gen5软件功能可以让用户体检轻松简单的全自动图像拍摄和分析。具有高对比度明场、彩色明场和荧光成像模式:明场、彩色明场和20多种荧光通道成像可选,Lionheart LX 突破多种成像拍摄体验,从Z轴层切(Z-stacking)到Z轴图像展示(Z-projection),Montage拍摄实现图像拼接,并且具有视频录制、自定义坐标拍摄和高通量整版拍摄功能,极大的拓宽了Lionheart LX在生命科学领域的应用。非标记细胞成像:可以通过高对比度明场进行非标记细胞成像,利用Gen5软件全自动完成图片拍摄、图片处理和结果分析,方法简便,适用于细胞计数、细胞毒性、细胞增殖和融和度相关实验。Lionheart LX典型应用:——终点法活细胞检测细胞凋亡细胞自噬细胞周期细胞毒性线粒体膜电位——组织学(HE)——非标记细胞计数——融合度分析——基因毒性彗星分析γH2AX——表型分析免疫荧光
    留言咨询
  • Lionheart LX是一款高性价比的全自动显微成像系统,整个机型设计紧凑,无需人眼通过目镜观察样本,有效的避免长时间人眼观察造成的视觉疲劳,也无需耗费高昂的采购成本和学习成本,搭载具有高内涵分析功能的Gen5软件,可以自动化进行图片拍摄、处理和分析,在实验室应用非常广泛。特点全自动智能显微成像系统:Lionheart LX拥有全自动的6位物镜转轮,能够同时实现4色荧光通道的成像,具有高精度电动载物台,可以自动聚焦、自动曝光、一键式成像,Gen5软件功能可以让用户体检轻松简单的全自动图像拍摄和分析。具有高对比度明场、彩色明场和荧光成像模式:明场、彩色明场和20多种荧光通道成像可选,Lionheart LX 突破多种成像拍摄体验,从Z轴层切(Z-stacking)到Z轴图像展示(Z-projection),Montage拍摄实现图像拼接,并且具有视频录制、自定义坐标拍摄和高通量整版拍摄功能,极大的拓宽了Lionheart LX在生命科学领域的应用。非标记细胞成像:可以通过高对比度明场进行非标记细胞成像,利用Gen5软件全自动完成图片拍摄、图片处理和结果分析,方法简便,适用于细胞计数、细胞毒性、细胞增殖和融和度相关实验。Lionheart LX典型应用:——终点法活细胞检测细胞凋亡细胞自噬细胞周期细胞毒性线粒体膜电位——组织学(HE)——非标记细胞计数——融合度分析——基因毒性彗星分析γH2AX——表型分析免疫荧光
    留言咨询
  • 产品描述NucleoCounter® NC-250&trade 是一款用于检测细胞染色后荧光信号, 具有双荧光通道显微镜的细胞计数仪。使用NucleoCounter® NC-250&trade 可简单快速的多次测定细胞活性和数量。一次测定8个样本,只需混合荧光染色剂和细胞悬液后上样(每块计数板含8个计数槽),按“RUN”即可得到结果。NucleoCounter® NC-250&trade 可以简单,快速(5分钟)和高精度测定细胞周期。另外,您可以通过我们快速可靠的细胞凋亡检测方法测定细胞状态。VitaBright-48&trade 染料与细胞内的硫醇结合时会立即发生荧光反应。硫醇的含量与细胞状态呈正相关,凋亡时细胞中硫醇含量降低。NucleoCounter® NC-250&trade 是一款紧凑型台式仪器,它完美地适合任何从事细胞研究,质量控制或产品监控的细胞实验室。NC-250的主要优点※3分钟内进行8次 细胞活性和数量测定 细胞总数 细胞活性 细胞直径 细胞团占比※ 一次运行可完成多达8次高级分析高精度细胞周期分析通过快速的细胞凋亡实验检测细胞状态※ 速度快、操作简单※ 卓越的可重复性※ 无需校准※ 无需维护和保养※ 多功能运行软件※ 符合美国联邦法规第21章第11款规定NucleoCounter® NC-250&trade 三种实用的检测细胞活性和细胞数量测定:3分钟完成8个样本的分析※ 将细胞样本与Solution 18混合,上样并按下“RUN”。※ 在3分钟内获得8个样本总细胞数、活性、细胞直径和细胞团占比的结果。细胞周期测定:无需固定或使用RNase处理即可快速获得结果※ 在37°C下将细胞样本与Solution 10和12的混合液一同孵育5分钟,加入Solution 11中和后上样并按下“RUN”。※ 在4分钟内获得8个高精度细胞周期谱。细胞活性测定:zui新的创新性细胞凋亡测定※ 将Solution 6加至细胞样本中,立即上样并按下“RUN”。※4分钟内完成8次细胞凋亡测定。
    留言咨询
  • BD生物成像系统是BD生物系统的新成员,由Atto Bioscience,IPLab组成,为细胞内生物反应和生物现象的实时分析提供专业分析系统,包括先进的光学仪器、灵活的用户友好软件及源于BD Pharmingen高品质的配套试剂。BD生物成像系统集合诸多专业人才致力于研发和设计,先进的产品和技术为高通量生物学和细胞分析领域的科研工作者提供专业系统的服务。性能介绍突破传统基于显微镜的高通量成像系统的限制,配有复杂的专业软件,可对单一细胞或细胞的单一层面的形态和机能进行自动化、实时的、高通量的共聚焦图像采集和分析。●兼顾 kinetic和 endpoint 分析●完整的液流处理image-as-you-add能力●真实的共聚焦实时成像●全光谱激光照明●96-和384-孔板和载玻片成像●环境控制的活细胞实验●灵活的软件容易navigation和分级●整合的双目镜观察●高精确度的x,y,z轴●悬浮细胞或松散贴壁细胞可以实现稳定成像应用举例凋亡●JC1●YoPro●Annexin V●核断裂(DAPI或Hoechst)细胞毒性●活细胞/死细胞●Ethidium homodimer/calcein AM●Propidium iodide/fluorescein diacetate●脂肪变性●线粒体功能紊乱NFkB活性●核转移●新的分析方法离子通道和放射成像●Ca++(Fluo-4,Fluo-2)●Na+(SBFI)●Ca++/ Na+cAMP●ACT:One™ 完整机体/组织成像●Montage成像Dual Ratiometric成像●JC1●钙(Fura-2)
    留言咨询
  • Moxi GO II Orflo荧光双通道快速流式细胞计数仪应用:细胞计数,粒径测量,细胞活率检测,CAR-T应用,细胞凋亡,细胞转染,其他流式分析等。特点:市面上唯一一款将行业公认的金标准库尔特原理和双荧光通道流式检测相结合的细胞分析仪。描述:采用库尔特原理,结合微流控技术,对细胞进行精确计数和粒径测量;同时系统配备双荧光检测通道,具备细胞活率检测、凋亡分析、转染检测等多种流式分析功能。系统内预置多种应用程序,直接调用,即可实现细胞精准计数、粒径测量、细胞健康评估(无需染料)、细胞活性检测,细胞凋亡检测,细胞转染检测、细胞质控,CAR-T等,广泛适用于哺乳动物,血小板,酵母,藻类等多种样本。Moxi GO II的优势:细胞计数准确:对3um-35um细胞样本进行逐个计数,样本浓度可低至5x103细胞/ml粒径测量精准:采用体积置换的方式测量细胞体积,准确度高,CV值3%多样的流式检测:采用2个PMT检测通道,满足多种常规流式分析应用快速:流式结果检测仅需10秒易用:小巧便携,即开即用,触屏操作,无需维护应用方向:哺乳动物,血小板,酵母,藻类等多种样本,细胞计数,细胞粒径测量,细胞健康评估(无需染料)、细胞活性检测,细胞凋亡检测,细胞转染检测、细胞质控,CAR-T应用等
    留言咨询
  • 德国徕卡 MICA宽焦全场景显微成像分析平台迈入人人皆享的时代现在,每个人都可以利用显微镜获得更多发现消除超过 85% 的需要特殊专业知识的繁琐设置步骤大鼠大脑的组织切片。细胞核用 DAPI 染色(蓝色)、STL 用 FITC 染色(绿色)、星形胶质细胞 (GFAP) 用 Cy3 染色(黄色),新生神经元 (NeuN) 用 Cy5 染色(红色)。10x 宽场平铺扫描,同时采集 4个标记。减少 85% 的步骤,轻松获得首张图像获得首张图像的时间减少 1/3训练时间减少 1/2 技术支持:智能自动化所有光电数字元件均为全电动化和智能自动化。多模态显微成像分析中枢上只保留一个按钮,即打开按钮。所有过程都快速融入软件的工作流程中。智能成像只需轻触一下 OneTouch,所有设置都会根据应用要求和当前样本进行自动优化。从“样本保护”到“图像质量”的范围中选择一个等级,所有照明和检测参数就会轻松进行相应的调整。迈入触手可及的时代多模态显微成像分析中枢:观察样本所需的一切都集中在一个易于使用的系统中4 倍数据信息 100% 相关性通过绝对的时空相关性获取关键情境信息使用传统显微镜依次采集 & 使用 MICA 同时采集MICA 提供绝对相关标记,避免时空失配U2OS 细胞用 MitoTracker Green(线粒体结构,青色)和 TMRE(活性线粒体,品红色)染色。使用 63x/1.20 CS2 Water MotCORR 物镜在 2 分钟 100 帧依次采集两个通道。 德国徕卡 MICA宽焦全场景显微成像分析平台 技术支持:4 个标记同时获取在同一次采集中可为宽场和共聚焦两种模式同时捕捉到不同结构的全部 4 个标记。同时采集多个标记可将采集速度至少提高 4 倍,并确保 100% 的时空分辨率。4 个标记 100% 相关在同一次采集中可为宽场和共聚焦两种模式同时捕捉到全部 4 个标记。这样就避免了依次采集过程中移动对象的标记之间发生时空失配——数据现在 100% 相关!FluoSync 专利技术FluoSync 是一种新的光谱分解方法,可快速实现同时成像。它可以检测多达 4 个不同的标记,实现真正的染料分离,并且不会出现时空失配。FluoSync 以独特的方法将专用硬件与新的混合分解方法结合在一起。 实时调节成像参数实验中需要时,可以从快速总览无缝切换到高分辨率细节创建总览在载体上找到样本结构,并观察结肠切片的总体形态。确定感兴趣区域以进行更详细的检查。获得更多的亚结构细节切换到下一个更高的放大倍率让您能够评估组织的完整性,并可定位适合进一步分析的区域。选择感兴趣的细胞开始查看更多细节,并选择单个细胞以获取亚细胞信息。但是,有些细节仍然模糊不清。选择感兴趣的细胞THUNDER 是获得更强对比度并看到更多细节的首选方法。这样您就可以做出正确的选择,进一步观察样本细节。获取亚细胞信息只需点击一下鼠标,即可从宽场模式切换到共聚焦模式来获取更多亚细胞信息。从亚细胞信息中发现更多添加 LIGHTNING 功能可获取亚细胞结构的更多细节,而且无缝集成到从快速总览到高分辨率细节的整个工作流程。使用:一致的成像参数MICA 将 IMC、 THUNDER 和 LIGHTNING 等透射光和荧光成像模式统一到一台多模态显微成像分析中枢中,适用于固定样本和活样本。点扫描共聚焦采用点扫描共聚焦和光学切片技术,在所有 3 个维度上都达到最高分辨率。针孔以物理方式阻挡非焦面信号,产生最佳的轴向分辨率,特别适合厚样本的 3D 成像。MICA 也是一台细胞培养装置被封闭的整个环境舱中可进行环境控制(温度、二氧化碳和湿度调节),为短期和长期活细胞观察提供理想条件。 由每孔 1000 个稳定转染 MDCK MX1-GFP 细胞(左半)和每孔 1000 个 U2OS 细胞 孔(右半)形成 3D 球状体。延时采集超过 60 小时,间隔 30 分钟。绿色, GFP。黑白综合调制对比度。在整个实验过程中提供近似生理环境的条件由每孔 1000 个稳定转染 MDCK MX1-GFP 细胞(上排)和每孔 1000 个 U2OS 细胞(下排)在 5 个不同的时间点形成 3D 球状体。 延时采集超过 60 小时,间隔 30 分钟。 绿色, GFP。 灰色,综合调制对比度。MICA 是一台细胞培养装置,可将样本保持处于最佳条件下并最大限度减少溶液挥发通过系统智能减少超过 60% 的流程步骤传统显微镜使用传统显微镜,您需要定义从样本到分析的各个实验设置步骤。MICA 自动化使用 MICA,系统智能可极大简化工作流程,从样本到获得发现只需 8 个步骤,省时省力。使用:Sample FinderMICA 的 Sample Finder 可快速、自动生成相关区域的焦面总览。手动定位并手动聚焦已经成为历史。OneTouch 自动照明只需轻触一下 OneTouch,所有设置都会根据应用要求和当前样本进行自动优化。从“样本保护”到“图像质量”的范围中选择一个等级,所有照明和检测参数就会轻松进行相应的调整。基于人工智能的分析MICA 利用人工智能识别图像中的对象,可使每一位研究人员高效、准确、放心地进行成像、分析并获得清晰的可视化结果。无需掌握成像处理技能。 简化整个工作流程 ,减少从样本到获得洞察所需的时间和工作量利用您的科学专业知识进行基于人工智能的线粒体图像分割训练U2OS 细胞用 SiR-Actin、TMRE(线粒体活性)、 CellEventTM(半胱天冬氨酸酶活性)和 DAPI(细胞核)标记。在时间点 0 时加入细胞凋亡诱导剂星形孢菌素。63 倍放大,宽场模式13 小时延时。在整个实验过程中实现 100% 的可重现性和可重复性使用:像素分类器轻松训练 MICA 来识别图像中的对象,无需掌握图像处理技能。只需在图像上绘制示例,像素分类器即可学习再现输入信息并分割图像中的所有对象。在用户界面上进行注释利用简单易用的绘图工具直接在 MICA 用户界面的图像上训练人工智能。可重复使用的 AI 模型和项目参数默认在不同的项目中重复使用相同的采集设置,提高可再现性和可重复性。重复使用 AI 模型可确保不同项目和不同使用者之间的一致性和无偏分析。认识 MICA多模态显微成像分析中枢时代已经到来!体验未来。在关键应用中认识 MICA荧光多孔板测定MICA 可同时对 4 个标记成像,实现 100% 时空相关性。该关键应用展示了 MICA 如何用于荧光多孔板测定细胞凋亡中的 Caspase 3/7 活性。U2OS 细胞用 SiR-Actin、TMRE(线粒体活性)、 CellEventTM(半胱天冬氨酸酶活性)和 DAPI(细胞核)标记。在时间点 0 时加入细胞凋亡诱导剂星形孢菌素 (3μM) 。63 倍放大,宽场模式。13 小时延时。3D 组织成像MICA 可使您在实验需要时从快速总览无缝切换到高分辨率观察。了解 MICA 如何帮助您识别去酪氨酸化微管蛋白阳性细胞,以及如何从微管蛋白网络的总览进入图像分割。使用宽场和共聚焦成像,以 20x 和 63x 放大倍率采集的肠组织切片图像。使用 LIGHTNING 处理的 20 倍宽场图像,使用 THUNDER 处理的 63 倍共聚焦图像。细胞核以蓝色标记,线粒体以绿色标记,去酪氨酸化微管蛋白以红色标记。长期延时MICA 是一台活细胞培养系统,可将样本保持在生理条件下,并最大限度减少蒸发。了解 MICA 如何帮助您测量球状体生长和分析蛋白质表达水平。由每孔 1000 个稳定转染 MX1-GFP 细胞形成 3D 球状体。延时采集超过 72 小时,间隔 30 分钟。绿色, GFP。灰色,综合调制对比度。
    留言咨询
  • 德国徕卡 MICA宽焦全场景显微成像分析平台迈入人人皆享的时代现在,每个人都可以利用显微镜获得更多发现消除超过 85% 的需要特殊专业知识的繁琐设置步骤大鼠大脑的组织切片。细胞核用 DAPI 染色(蓝色)、STL 用 FITC 染色(绿色)、星形胶质细胞 (GFAP) 用 Cy3 染色(黄色),新生神经元 (NeuN) 用 Cy5 染色(红色)。10x 宽场平铺扫描,同时采集 4个标记。减少 85% 的步骤,轻松获得首张图像获得首张图像的时间减少 1/3训练时间减少 1/2 技术支持:智能自动化所有光电数字元件均为全电动化和智能自动化。多模态显微成像分析中枢上只保留一个按钮,即打开按钮。所有过程都快速融入软件的工作流程中。智能成像只需轻触一下 OneTouch,所有设置都会根据应用要求和当前样本进行自动优化。从“样本保护”到“图像质量”的范围中选择一个等级,所有照明和检测参数就会轻松进行相应的调整。迈入触手可及的时代多模态显微成像分析中枢:观察样本所需的一切都集中在一个易于使用的系统中4 倍数据信息 100% 相关性通过绝对的时空相关性获取关键情境信息使用传统显微镜依次采集 & 使用 MICA 同时采集MICA 提供绝对相关标记,避免时空失配U2OS 细胞用 MitoTracker Green(线粒体结构,青色)和 TMRE(活性线粒体,品红色)染色。使用 63x/1.20 CS2 Water MotCORR 物镜在 2 分钟 100 帧依次采集两个通道。 德国徕卡 MICA宽焦全场景显微成像分析平台 技术支持:4 个标记同时获取在同一次采集中可为宽场和共聚焦两种模式同时捕捉到不同结构的全部 4 个标记。同时采集多个标记可将采集速度至少提高 4 倍,并确保 100% 的时空分辨率。4 个标记 100% 相关在同一次采集中可为宽场和共聚焦两种模式同时捕捉到全部 4 个标记。这样就避免了依次采集过程中移动对象的标记之间发生时空失配——数据现在 100% 相关!FluoSync 专利技术FluoSync 是一种新的光谱分解方法,可快速实现同时成像。它可以检测多达 4 个不同的标记,实现真正的染料分离,并且不会出现时空失配。FluoSync 以独特的方法将专用硬件与新的混合分解方法结合在一起。 实时调节成像参数实验中需要时,可以从快速总览无缝切换到高分辨率细节创建总览在载体上找到样本结构,并观察结肠切片的总体形态。确定感兴趣区域以进行更详细的检查。获得更多的亚结构细节切换到下一个更高的放大倍率让您能够评估组织的完整性,并可定位适合进一步分析的区域。选择感兴趣的细胞开始查看更多细节,并选择单个细胞以获取亚细胞信息。但是,有些细节仍然模糊不清。选择感兴趣的细胞THUNDER 是获得更强对比度并看到更多细节的首选方法。这样您就可以做出正确的选择,进一步观察样本细节。获取亚细胞信息只需点击一下鼠标,即可从宽场模式切换到共聚焦模式来获取更多亚细胞信息。从亚细胞信息中发现更多添加 LIGHTNING 功能可获取亚细胞结构的更多细节,而且无缝集成到从快速总览到高分辨率细节的整个工作流程。使用:一致的成像参数MICA 将 IMC、 THUNDER 和 LIGHTNING 等透射光和荧光成像模式统一到一台多模态显微成像分析中枢中,适用于固定样本和活样本。点扫描共聚焦采用点扫描共聚焦和光学切片技术,在所有 3 个维度上都达到最高分辨率。针孔以物理方式阻挡非焦面信号,产生最佳的轴向分辨率,特别适合厚样本的 3D 成像。MICA 也是一台细胞培养装置被封闭的整个环境舱中可进行环境控制(温度、二氧化碳和湿度调节),为短期和长期活细胞观察提供理想条件。 由每孔 1000 个稳定转染 MDCK MX1-GFP 细胞(左半)和每孔 1000 个 U2OS 细胞 孔(右半)形成 3D 球状体。延时采集超过 60 小时,间隔 30 分钟。绿色, GFP。黑白综合调制对比度。在整个实验过程中提供近似生理环境的条件由每孔 1000 个稳定转染 MDCK MX1-GFP 细胞(上排)和每孔 1000 个 U2OS 细胞(下排)在 5 个不同的时间点形成 3D 球状体。 延时采集超过 60 小时,间隔 30 分钟。 绿色, GFP。 灰色,综合调制对比度。MICA 是一台细胞培养装置,可将样本保持处于最佳条件下并最大限度减少溶液挥发通过系统智能减少超过 60% 的流程步骤传统显微镜使用传统显微镜,您需要定义从样本到分析的各个实验设置步骤。MICA 自动化使用 MICA,系统智能可极大简化工作流程,从样本到获得发现只需 8 个步骤,省时省力。使用:Sample FinderMICA 的 Sample Finder 可快速、自动生成相关区域的焦面总览。手动定位并手动聚焦已经成为历史。OneTouch 自动照明只需轻触一下 OneTouch,所有设置都会根据应用要求和当前样本进行自动优化。从“样本保护”到“图像质量”的范围中选择一个等级,所有照明和检测参数就会轻松进行相应的调整。基于人工智能的分析MICA 利用人工智能识别图像中的对象,可使每一位研究人员高效、准确、放心地进行成像、分析并获得清晰的可视化结果。无需掌握成像处理技能。 简化整个工作流程 ,减少从样本到获得洞察所需的时间和工作量利用您的科学专业知识进行基于人工智能的线粒体图像分割训练U2OS 细胞用 SiR-Actin、TMRE(线粒体活性)、 CellEventTM(半胱天冬氨酸酶活性)和 DAPI(细胞核)标记。在时间点 0 时加入细胞凋亡诱导剂星形孢菌素。63 倍放大,宽场模式13 小时延时。在整个实验过程中实现 100% 的可重现性和可重复性使用:像素分类器轻松训练 MICA 来识别图像中的对象,无需掌握图像处理技能。只需在图像上绘制示例,像素分类器即可学习再现输入信息并分割图像中的所有对象。在用户界面上进行注释利用简单易用的绘图工具直接在 MICA 用户界面的图像上训练人工智能。可重复使用的 AI 模型和项目参数默认在不同的项目中重复使用相同的采集设置,提高可再现性和可重复性。重复使用 AI 模型可确保不同项目和不同使用者之间的一致性和无偏分析。认识 MICA多模态显微成像分析中枢时代已经到来!体验未来。在关键应用中认识 MICA荧光多孔板测定MICA 可同时对 4 个标记成像,实现 100% 时空相关性。该关键应用展示了 MICA 如何用于荧光多孔板测定细胞凋亡中的 Caspase 3/7 活性。U2OS 细胞用 SiR-Actin、TMRE(线粒体活性)、 CellEventTM(半胱天冬氨酸酶活性)和 DAPI(细胞核)标记。在时间点 0 时加入细胞凋亡诱导剂星形孢菌素 (3μM) 。63 倍放大,宽场模式。13 小时延时。3D 组织成像MICA 可使您在实验需要时从快速总览无缝切换到高分辨率观察。了解 MICA 如何帮助您识别去酪氨酸化微管蛋白阳性细胞,以及如何从微管蛋白网络的总览进入图像分割。使用宽场和共聚焦成像,以 20x 和 63x 放大倍率采集的肠组织切片图像。使用 LIGHTNING 处理的 20 倍宽场图像,使用 THUNDER 处理的 63 倍共聚焦图像。细胞核以蓝色标记,线粒体以绿色标记,去酪氨酸化微管蛋白以红色标记。长期延时MICA 是一台活细胞培养系统,可将样本保持在生理条件下,并最大限度减少蒸发。了解 MICA 如何帮助您测量球状体生长和分析蛋白质表达水平。由每孔 1000 个稳定转染 MX1-GFP 细胞形成 3D 球状体。延时采集超过 72 小时,间隔 30 分钟。绿色, GFP。灰色,综合调制对比度。
    留言咨询
  • 德国徕卡 MICA宽焦活细胞全场景显微成像分析平台迈入人人皆享的时代现在,每个人都可以利用显微镜获得更多发现消除超过 85% 的需要特殊专业知识的繁琐设置步骤大鼠大脑的组织切片。细胞核用 DAPI 染色(蓝色)、STL 用 FITC 染色(绿色)、星形胶质细胞 (GFAP) 用 Cy3 染色(黄色),新生神经元 (NeuN) 用 Cy5 染色(红色)。10x 宽场平铺扫描,同时采集 4个标记。减少 85% 的步骤,轻松获得首张图像获得首张图像的时间减少 1/3训练时间减少 1/2 技术支持:智能自动化所有光电数字元件均为全电动化和智能自动化。多模态显微成像分析中枢上只保留一个按钮,即打开按钮。所有过程都快速融入软件的工作流程中。智能成像只需轻触一下 OneTouch,所有设置都会根据应用要求和当前样本进行自动优化。从“样本保护”到“图像质量”的范围中选择一个等级,所有照明和检测参数就会轻松进行相应的调整。迈入触手可及的时代多模态显微成像分析中枢:观察样本所需的一切都集中在一个易于使用的系统中4 倍数据信息 100% 相关性通过绝对的时空相关性获取关键情境信息使用传统显微镜依次采集 & 使用 MICA 同时采集MICA 提供绝对相关标记,避免时空失配U2OS 细胞用 MitoTracker Green(线粒体结构,青色)和 TMRE(活性线粒体,品红色)染色。使用 63x/1.20 CS2 Water MotCORR 物镜在 2 分钟 100 帧依次采集两个通道。 技术支持:4 个标记同时获取在同一次采集中可为宽场和共聚焦两种模式同时捕捉到不同结构的全部 4 个标记。同时采集多个标记可将采集速度至少提高 4 倍,并确保 100% 的时空分辨率。4 个标记 100% 相关在同一次采集中可为宽场和共聚焦两种模式同时捕捉到全部 4 个标记。这样就避免了依次采集过程中移动对象的标记之间发生时空失配——数据现在 100% 相关!FluoSync 专利技术FluoSync 是一种新的光谱分解方法,可快速实现同时成像。它可以检测多达 4 个不同的标记,实现真正的染料分离,并且不会出现时空失配。FluoSync 以独特的方法将专用硬件与新的混合分解方法结合在一起。 实时调节成像参数实验中需要时,可以从快速总览无缝切换到高分辨率细节创建总览在载体上找到样本结构,并观察结肠切片的总体形态。确定感兴趣区域以进行更详细的检查。获得更多的亚结构细节切换到下一个更高的放大倍率让您能够评估组织的完整性,并可定位适合进一步分析的区域。选择感兴趣的细胞开始查看更多细节,并选择单个细胞以获取亚细胞信息。但是,有些细节仍然模糊不清。选择感兴趣的细胞THUNDER 是获得更强对比度并看到更多细节的理想方法。这样您就可以做出正确的选择,进一步观察样本细节。获取亚细胞信息只需点击一下鼠标,即可从宽场模式切换到共聚焦模式来获取更多亚细胞信息。从亚细胞信息中发现更多添加 LIGHTNING 功能可获取亚细胞结构的更多细节,而且无缝集成到从快速总览到高分辨率细节的整个工作流程。使用:一致的成像参数MICA 将 IMC、 THUNDER 和 LIGHTNING 等透射光和荧光成像模式统一到一台多模态显微成像分析中枢中,适用于固定样本和活样本。点扫描共聚焦采用点扫描共聚焦和光学切片技术,在所有 3 个维度上都达到最高分辨率。针孔以物理方式阻挡非焦面信号,产生良好的轴向分辨率,特别适合厚样本的 3D 成像。MICA 也是一台细胞培养装置被封闭的整个环境舱中可进行环境控制(温度、二氧化碳和湿度调节),为短期和长期活细胞观察提供理想条件。 由每孔 1000 个稳定转染 MDCK MX1-GFP 细胞(左半)和每孔 1000 个 U2OS 细胞 孔(右半)形成 3D 球状体。延时采集超过 60 小时,间隔 30 分钟。绿色, GFP。黑白综合调制对比度。在整个实验过程中提供近似生理环境的条件由每孔 1000 个稳定转染 MDCK MX1-GFP 细胞(上排)和每孔 1000 个 U2OS 细胞(下排)在 5 个不同的时间点形成 3D 球状体。 延时采集超过 60 小时,间隔 30 分钟。 绿色, GFP。 灰色,综合调制对比度。MICA 是一台细胞培养装置,可将样本保持处于最佳条件下并理想限度地减少溶液挥发通过系统智能减少超过 60% 的流程步骤传统显微镜使用传统显微镜,您需要定义从样本到分析的各个实验设置步骤。MICA 自动化使用 MICA,系统智能可极大简化工作流程,从样本到获得发现只需 8 个步骤,省时省力。使用:Sample FinderMICA 的 Sample Finder 可快速、自动生成相关区域的焦面总览。手动定位并手动聚焦已经成为历史。OneTouch 自动照明只需轻触一下 OneTouch,所有设置都会根据应用要求和当前样本进行自动优化。从“样本保护”到“图像质量”的范围中选择一个等级,所有照明和检测参数就会轻松进行相应的调整。基于人工智能的分析MICA 利用人工智能识别图像中的对象,可使每一位研究人员高效、准确、放心地进行成像、分析并获得清晰的可视化结果。无需掌握成像处理技能。 简化整个工作流程 ,减少从样本到获得洞察所需的时间和工作量利用您的科学专业知识进行基于人工智能的线粒体图像分割训练U2OS 细胞用 SiR-Actin、TMRE(线粒体活性)、 CellEventTM(半胱天冬氨酸酶活性)和 DAPI(细胞核)标记。在时间点 0 时加入细胞凋亡诱导剂星形孢菌素。63 倍放大,宽场模式13 小时延时。在整个实验过程中实现 100% 的可重现性和可重复性使用:像素分类器轻松训练 MICA 来识别图像中的对象,无需掌握图像处理技能。只需在图像上绘制示例,像素分类器即可学习再现输入信息并分割图像中的所有对象。在用户界面上进行注释利用简单易用的绘图工具直接在 MICA 用户界面的图像上训练人工智能。可重复使用的 AI 模型和项目参数默认在不同的项目中重复使用相同的采集设置,提高可再现性和可重复性。重复使用 AI 模型可确保不同项目和不同使用者之间的一致性和无偏分析。认识 MICA多模态显微成像分析中枢时代已经到来!体验未来。在关键应用中认识 MICA荧光多孔板测定MICA 可同时对 4 个标记成像,实现 100% 时空相关性。该关键应用展示了 MICA 如何用于荧光多孔板测定细胞凋亡中的 Caspase 3/7 活性。U2OS 细胞用 SiR-Actin、TMRE(线粒体活性)、 CellEventTM(半胱天冬氨酸酶活性)和 DAPI(细胞核)标记。在时间点 0 时加入细胞凋亡诱导剂星形孢菌素 (3μM) 。63 倍放大,宽场模式。13 小时延时。3D 组织成像MICA 可使您在实验需要时从快速总览无缝切换到高分辨率观察。了解 MICA 如何帮助您识别去酪氨酸化微管蛋白阳性细胞,以及如何从微管蛋白网络的总览进入图像分割。使用宽场和共聚焦成像,以 20x 和 63x 放大倍率采集的肠组织切片图像。使用 LIGHTNING 处理的 20 倍宽场图像,使用 THUNDER 处理的 63 倍共聚焦图像。细胞核以蓝色标记,线粒体以绿色标记,去酪氨酸化微管蛋白以红色标记。长期延时MICA 是一台活细胞培养系统,可将样本保持在生理条件下,并最大限度减少蒸发。了解 MICA 如何帮助您测量球状体生长和分析蛋白质表达水平。由每孔 1000 个稳定转染 MX1-GFP 细胞形成 3D 球状体。延时采集超过 72 小时,间隔 30 分钟。绿色, GFP。灰色,综合调制对比度。
    留言咨询
  • 特点:用于检测细胞染色后荧光信号, 具有双荧光通道细胞计数仪。可简单快速的多次测定细胞活性和数量。NucleoCounter NC-250&trade 是一款用于检测细胞染色后荧光信号, 具有双荧光通道显微镜的细胞计数仪。 使用NucleoCounter NC-250&trade 可简单快速的多次测定细胞活性和数量。一次测定8个样本,只需混合荧光染色剂和细胞悬液后上样(每块计数板含8个计数槽),按 “RUN”即可得到结果。 NucleoCounterNC-250&trade 可以简单,快速(5分钟)和高精度测定细胞周期。 另外,您可以通过我们快速可靠的细胞凋亡检测方法测定细胞状态。 VitaBright-48&trade 染料与细胞内的硫醇结合时会立即发生荧光反应。硫醇的含量与细胞状态呈正相关,凋亡时细胞中硫醇含量降低。 NucleoCounterNC-250&trade 是一款紧凑型台式仪器,它完美地适合任何从事细胞研究,质量控制或产品监控的细胞实验室。 NC-250&trade 的主要优点※ 3分钟内进行8次 细胞活性和数量测定 细胞总数 细胞活性 细胞直径 细胞团占比※ 一次运行可完成多达8次高级分析 高精度细胞周期分析 通过快速的细胞凋亡实验检测细胞状态※ 速度快、操作简单※ 卓越的可重复性※ 无需校准※ 无需维护和保养※ 多功能运行软件※ 符合美国联邦法规第21章第11款规定 NucleoCounter NC-250&trade 三种实用的检测 细胞活性和细胞数量测定:3分钟完成8个样本的分析※ 将细胞样本与 Solution 18 混合,上样并按下“RUN”。※ 在3分钟内获得8个样本总细胞数、活性、细胞直径和细胞团占比的结果。 细胞周期测定:无需固定或使用RNase处理即可快速获得结果※ 在 37°C 下将细胞样本与Solution 10 和12的混合液一同孵育5分钟,加入 Solution 11中和后上样并按下“RUN”。※ 在 4 分钟内获得8个高精度细胞周期谱。 细胞活性测定:最新的创新性细胞凋亡测定※ 将Solution 6 加至细胞样本中,立即上样并按下“RUN”。※ 4分钟内完成8次细胞凋亡测定。 NucleoCounter NC-250&trade 技术规格:上样体积:A2计数板为30μl、A8计数板为10μl测量体积:细胞活性和细胞数量测定:A2计数板为11.2μl、A8计数板为2.4μl分析时间:细胞活性和细胞数量测定: 一个A8计数板:3分钟/8个样本 一个A2计数板:2分钟/2个样本适用细胞浓度:细胞活性和细胞数量测定:5×103至1×107个/毫升细胞浓度最适范围:细胞活性和数量测定:5×104至5×106个/毫升仪器尺寸:19×29×32 cm(宽度x高度x长度),9千克配套软件:NucleoView&trade NC-250北京赛百奥科技有限公司供应德国ChemoMetec系列产品并提供技术支持,欢迎咨询
    留言咨询
  • IncuCyte S3:第三代长时间动态活细胞成像及数据分析系统 目前,大部分的细胞检测方法采用的仍然是传统的终点法——仅仅给出最终结果,而且往往需要标记细胞和破坏细胞。这种方法无法得到细胞在生长时的真正状态,也无法对细胞的生长过程做出动态的监测和分析。美国Essen公司开发了第三代长时间实时动态活细胞成像分析仪——IncuCyte S3,用一种非侵入式的方法,记录细胞的实时生长状态。这种成像方法,被称为“实时细胞内涵成像”(Live Content Imaging),扩充了用户记录和理解细胞生长、细胞行为和细胞形态的途径。IncuCyte是一套用于非伤害的、长时间实时动态的活细胞成像分析平台。IncuCyte S3通过将成像系统放置于培养箱中,实时记录分析细胞生长变化,实现多组细胞数天或数十天细胞生长发育、运动、蛋白表达等指标的长期监测,扩充了用户记录和研究细胞生长、细胞行为和细胞形态的途径。 置于培养箱内,长时成像、无需值守IncuCyte S3安装在培养箱中,长时间记录每一个时间节点,时间可长达7天至30天。输出每孔完全实验影像,帮助用户了解每个孔内连续变化的动态数据,并自动统计分析多样化的实验结果。多客户端远程操控,获取及分析图像数据基于客户-服务器原理,可在局域网上任何一台计算机上访问IncuCyte,进行远程监控、获取和分析实验情况。高通量及兼容性支持目前所有标准的细胞培养耗材,兼容市面上200余种实验耗材,节省实验成本,可根据实验需要自由组合孔板、培养皿、培养瓶、载玻片等。 直观易用的软件操作界面S3系统9TB、18TB的存储空间,支持外部数据存储系统,输出向局域网内任何电脑,图像、视频等多种保存形式。业界认可-超2500文献发表IncuCyte S3的应用领域(20种以上应用): 细胞迁移 细胞侵袭 细胞凋亡细胞质控 细胞毒性 细胞增殖 单克隆筛选 全孔成像 干细胞监测 血管新生 神经生长跟踪 3D肿瘤球体观察报告基因 T细胞免疫杀伤 细胞趋化 细胞吞噬应用举例:(一) 监测细胞毒性(Cytotoxicity) 发生细胞毒性时,细胞膜会破裂,这时使用非渗透的染料,如YOYO-1或CellTox Green就可以将发生细胞毒性的细胞染色,然后用IncuCyte进行观察。 关键特性:1)运用NucLight慢病毒试剂标记健康细胞,用细胞非渗透性DNA染料标记发生毒性细胞,同时监测细胞增殖和细胞毒性;2)可区别细胞毒性(Cytotoxic)和细胞抑制(Cytostatic);3)可将数据导出到第三方软件,计算EC50和IC50;4)可通过获取4×、10×或20×的高清晰度相差图像,跟踪细胞形态,确认细胞是否死亡;5)过程免洗,混合染料,然后读数即可;6)可观察多种化合物和药物对细胞的毒性作用。图1:HT-1080细胞用NucLight-Red标记,并在YOYO-1存在的条件下用喜树碱(Camptothecin)处理。高清晰度相差图像和荧光图像用于确认细胞是否死亡。图2:上两图:十字孢碱(Staurosporine)作用在红色荧光蛋白标记的HT-1080细胞上的时序过程。上左图表示YOYO-1标记的细胞死亡个数随时间的变化;上右图表示红色荧光蛋白标记的细胞增殖随时间的变化。下两图:对上两图的曲线下面积(AUC)进行分析,下左图表示十字孢碱作用下的细胞毒性和增殖,下右图表示放线菌酮(Cycloheximide)作用下的细胞毒性和增殖。细胞毒性用每平方毫米的YOYO-1标记细胞个数表示,细胞增殖用每平方毫米的红色细胞核个数表示。曲线下面积(AUC)被用来计算IC50值和EC50值。(二) 监测报告基因(Reporter Gene) 细胞用含GFP/RFP的载体转染,GFP/RFP的上游插入需要研究的启动子。这样就可以通过IncuCyte观察GFP/RFP的时序性表达的荧光强度和荧光细胞个数,从而监测通路刺激(如NF-κB)的作用、启动子的活性或报告基因的表达活性。 与传统的终点荧光素酶方法对比,IncuCyte的关键特征在于:1)数据丰富:96-或384-孔的实时动态数据可获得终点法无法获得的洞察能力;2)节约成本:无需裂解,无需荧光素酶法需要的终端反应底物,节省时间和花费;3)方便:实时动态读数使用户能在单个的实验中优化信号窗,无需事先决定何时终止实验;4)敏感:可得到每个条件下的多个时间点数据,增加了实验的定量性和稳定性;5)可定制:用户可根据需要定制启动子,修改反应体系,监测药物对报告基因的作用。图3:HEK293细胞用商用的报告基因(pNF-κB-rhGFP)短暂转染后的荧光图像,该图像是用rhTNF-α(11ng/ml)处理细胞20hr后拍摄的。图4:在用rhTNF-α刺激HEK293细胞后,NF-κB驱动的rhGFP报告基因的表达(n=5孔)。在用pNF-κB-rhGFP报告基因转染的HEK293细胞中,用3倍稀释的rhTNF-α处理。图像以15min为间隔获得。图像表示外在的rhTNF-α的浓度越高,细胞的荧光覆盖度就越大,表示细胞内部的NF-κB的活性越强。
    留言咨询
  • 介电泳细胞特性分析仪3DEP Dielectrophoresis Cell Analysis System 介电泳DIELECTROPHORESIS任何物质都有一定的介电特性,在外加电场之下,它们会受到不同程度的极化,而顺着外加电场的方向来排列。如果外加不均匀的电场,极化的微粒会受到介电泳动力(dielectrophoretic force)的影响,造成不同程度的漂移。简而言之,极化(polarizable)的微粒在不均匀(non-uniform)的外加电场中所发生的运动,便称为「介电泳动」。利用不均匀电场来操纵微小物体的介电泳动技术,除了可由交流频率的调控来切换其模式(正、负)之外,介电泳动也具有大量平行处理的潜质,再结合光学微影技术的运用,让单一芯片上具备许多独立操作的微孔槽,而每一微孔槽都可经由介电泳动的机制来操纵微小粒子。这即是微介电泳槽技术(DEP-Well Technology)的基础。细胞在不均匀的电场中会因频率的不同而改变被极化的状态,当细胞被极化后往高电场的方向移动时称为positive-DEP(上图);若往低电场的方向移动则为negative-DEP(下图) 微介电泳槽技术DEP-WELL TECHNOLOGY微介电泳槽技术乃是将不均匀电场设计在3D的微小孔槽中,并可将细胞直接置于微小孔中进行介电泳动分析的一种专利技术。3DEP使用专利的微孔芯片,芯片上的20个微孔壁都由正负交错的电极所构成以形成不均匀电场;20个孔洞中之每一微孔(装载约1000个细胞)于实验时会同时给与不同的频率(10k~20M-Hz)使细胞有不同程度的极化,再由摄像机来辨别孔洞的明暗度变化,以量化样本的介电泳强度;当DEP-negative时细胞会被推挤到孔洞中间,拍照时暗度提升,当DEP-positive时细胞会被吸附到孔洞壁上,拍照时亮度提升。不同类型的细胞,拥有不同的介电特性,各孔洞的明亮度也会有所不同。 突破性新技术介电泳技术虽已发展数十年,但由于传统介电泳普遍为2D,需在单一样本内改变频率做数小时以上的观测,且由于能放置细胞数量少,导致实验变异性大,跨入门坎高。3DEP整合了微电极微孔槽芯片、光学感应侦测系统、自动信号撷取系统及自动化分析软件等,将介电泳此一技术首次商品化进入市场;不但操作门槛降低,更有高度的稳定性与再现性,让介电泳细胞分析从理论变成真实可靠的应用。 专利芯片设计抛弃式的芯片设计让实验之间不会有交叉污染的机会;样本的分析小到病毒微粒,大到心肌细胞都适用,整个实验样本不需标定也不会伤害样本。实验时20个孔洞同时给与不同频率进行侦测,只需数秒就可得到实验结果,跳脱了过往费时费工的限制;3D孔洞的设计可放入大量的样本,以明暗度的变化来量化DEP-Force,使实验的稳定性与再现性达到可商业化的标准。自动化分析软件20个孔洞中的明暗度变化直接换算为DEP-Force,中间省略繁琐的物理公式。由环境导电度与电场强度、大小等参数的固定之下,软件会自动进一步计算出细胞膜导电度(membrane conductance)、细胞膜电容度(membrane capacitance)、细胞质导电度(cytoplasm conductivity)和细胞质介电度(cytoplasm permittivity),让细胞在介电泳下的分析获得更多的信息。 介电泳分析细胞的方式,并不像一般的分子标记侦测细胞的化学性变化,而是侦测细胞的物理性变化,包括有:细胞质离子含量和组成、膜电位、膜的导电性、形态学和表面粗糙度、尺寸和形状的形式。由于各种细胞具有不同的介电特性(导电率、介电常数),当受到某种程度的非均匀交流电场时,会诱发细胞上电荷有不同程度的极化现象,细胞将因其不同的介电特性而受到正或负的介电泳力,在此力的作用下会移动到不均匀电场的特定位置,利用此特性即可鉴别不同介电特性的细胞,如肿瘤细胞与正常细胞的介电特性有显著的差异。再由于此法不会破坏细胞且适合微小化,目前已成功应用于分离水中细菌、酵母菌细胞,且能分辨出血液中之癌症细胞及红血球细胞。 干细胞分化潜质的早期鉴定若在干细胞分化之前就可判断其偏好分化的方向,将可协助未来干细胞的挑选和临床应用。此研究使用已经确认会分化为Neural-Cells的SC27与确认会分化为Astrocytes的SC23人类神经干细胞进行测试分析。分化前两细胞不论是型态与marker表现都几乎一致,无法以现行方法分辨。但介电泳实验则可证实两个样本在membrane-capacitance有显著差异,表示两样本之间细胞膜的介电特性有所差异,虽然从图像上无法分辨,但以介电泳侦测方式则可看出端倪;且不论在人类与小鼠和不同细胞代数之间都获得一致的结果。因此遵循此标准,未来将可在早期就判定此神经干细胞分化的趋向。Biophysical characteristics reveal neural stem cell differentiation potential.H. Labeed et al,PLoS One.2011.细胞早期癌化的侦测目前许多癌症由于发现时已是末期,因此治愈机率相对降低,若能提早发现并治疗将可大幅降低死亡率,可惜的是目前许多分子诊断的方式也难以早期发现正常细胞转化成癌症细胞的征状。使用human oral keratinocytes(HOK)、dysplastic oral-keratinocytes(DOK)及oral squamous cell carcinomas(H357,H157)进行细胞物理性质的分析。结果发现随着细胞恶性的程度增加,其Effective Membrane Capacitance逐渐上升,代表其细胞膜的完整性降低;同时Cytoplasmic Conductivity逐渐下降,表示其细胞质内的导电度下降。借此方式,可从病人口腔直接收集样本,进行早期的分析诊断。Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis.H.J. Mulhall et al, Anal Bioanal Chem. 2011. 细菌抗药性快速检测近来具有抗药性的细菌感染逐年增加,因此快速评价抗生素是否具有杀死细菌的效果就变得相当重要。但传统的纸锭扩散试验(Disk diffusion test)大约需要24小时,在测试结果出来之前,病人仍处在危险之中。以E. coli为例,加入40-μg/mL-polymyxin-B,在一小时及两小时后可观察到E. coli的细胞膜导电度(Gspec)与电容度(Cspec)有相当程度的上升,而细胞质导电度(σcyto)则是明显的下降;此结果表示此抗生素造成E. coli细胞膜严重的破损,进一步使得细胞质内的离子渗漏出来。此测试方式不但可在数秒之内就知道抗生素对细菌的效果,且敏感性与稳定性也相当可靠。Rapid determination of antibiotic resistance in E. coli using dielectrophoresis.K.F. Hoettges et al, Phys Med Biol. 2007. 药物毒性评价药物剂量与细胞存活率的关联性是评价药物使用浓度的重点,快速而又准确的定量药物毒性将可大幅缩短实验时间。由于药物处理后,细胞膜形态与胞内离子浓度的变化比生化标志的出现更为快速,因此可以利用介电泳技术快速评价药物对细胞的反应(图A)。使用Doxorubicin药物处理K562细胞4小时后,即可使用介电泳技术观察细胞死亡情形(白色柱状),且此结果与传统利用Trypan-blue的方法一致(灰色柱状图),不同之处在于Trypan-blue需在药物处理72小时后才有反应,若处理4小时则无法分辨差异(黑色柱状图)(图B)。此现象反映在不同的细胞株中,表示此技术可用来快速评价药物毒性。应用范畴DEP-Well-技术应用领域极为广泛,由于不同生理状态的细胞或细菌,其介电特性皆不同,因此可用来检测干细胞分化能力、细胞凋亡、分辨正常细胞与肿瘤细胞、分辨血液中之癌症细胞(Circulation Tumor Cell,CTC)与红血球细胞、检测细菌种类与抗药性等,极适合用在药物毒性测试与口腔癌检测。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制