当前位置: 仪器信息网 > 行业主题 > >

细胞核型分析

仪器信息网细胞核型分析专题为您提供2024年最新细胞核型分析价格报价、厂家品牌的相关信息, 包括细胞核型分析参数、型号等,不管是国产,还是进口品牌的细胞核型分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞核型分析相关的耗材配件、试剂标物,还有细胞核型分析相关的最新资讯、资料,以及细胞核型分析相关的解决方案。

细胞核型分析相关的资讯

  • 基于Perturb-seq技术,绘制首个全基因组范围的人类细胞基因型-表型综合图谱
    近日,美国加州大学旧金山分校与纪念斯隆凯特琳癌症中心等单位的研究人团队合作Cell期刊发表了题为“Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq”的研究性文章。研究团队利用一种紧凑的、多路CRISPR干扰文库(CRISPRi),结合单细胞转录组测序、Perturb-seq技术等分析了数千个功能缺失的基因扰动在不同细胞类型中的作用,揭示了细胞表型、基因功能和调控网络的多维信息,绘制了第一个全面的人类细胞基因型-表型综合图谱。文章发表在Cell研究概要图,来源:Cell新基因功能数据可供其他科学家使用。图片来源:Jen Cook-Chrysos/Whitehead Institute建立遗传变化和表型之间的关联对于理解基因和细胞功能至关重要。经典的研究方式主要包括以表型为中心的“正向遗传”,即揭示驱动表型的基因变化;以及以基因为中心的“反向遗传”,即对确定的遗传变化引起的不同表型进行解析。近年来,基因技术的革新也推动了表观遗传遗传研究的进展。其中,CRISPR-Cas9基因编辑技术可以轻松地对基因进行编辑,进而抑制或激活基因,在揭示基本细胞机制、分化因子和遗传疾病相关基因以及识别癌症驱动基因等层面提供了有力工具。单细胞技术的发展也使在单细胞层面读取表观遗传学、转录组学、蛋白质组学和成像信息等成为可能,同时单细胞维度的研究也可以深入分析选择性遗传扰动影响的具体细胞类型和细胞状态。因此,单细胞CRISPR筛选可以同时分析单细胞的遗传干扰和高维表型,从而将正向遗传学的基因与反向遗传学丰富的表型相结合。虽然单细胞CRISPR筛选技术前景广阔,但其应用仅限于最多几百个基因扰动研究,并且这些基因扰动研究也通常被用来解决预先确定的生物学问题。目前,高通量、无偏颇的单细胞CRISPR筛选研究仍然缺失。主要研究内容全基因组Perturb-seq的多路CRISPRi策略Perturb-seq是指利用CRISPR-Cas9技术将基因变化引入细胞内,然后使用单细胞转录组测序捕获特定基因变化导致的转录组信息变化,能够研究给定细胞类型的全面遗传扰动影响,可以以前所未有的深度跟踪打开或关闭基因的影响。基于Perturb-seq,研究团队探究了可以提高可扩展性和数据质量的关键参数,例如遗传扰动模式和sgRNA库,并最终设计了一种包含多个时间点和细胞类型的Perturb-seq筛选方法,并可利用10x Genomics的液滴法单细胞转录组测序技术对所有筛选策略下的细胞状态进行解析。图1. 基因组尺度Perturb-seq的多路CRISPRi策略示意图,来源:Cell为了揭示基因扰动的功能后果和基因型-表型关系,研究团队使用人类血癌细胞系以及来自视网膜的非癌细胞,对超过250万个细胞进行了Perturb-seq,并使用这些数据构建了一个基因型-表型综合图谱。研究团队根据基因的共同调控将其聚类到特定表达程序中,并计算每个扰动簇中每个基因表达程序的平均活性。分析结果包含多个与基因干扰相关的已知表达程序,包括蛋白酶体功能障碍导致的蛋白酶体亚基上调、 ESCRT蛋白缺失时NF-kB信号通路的激活,以及胆固醇生物合成上调对囊泡运输缺陷的反应等。有趣的是,聚类分析发现了许多驱动红系或髓系分化的基因扰动,与K562细胞的多系潜能也是一致的。正如预期的那样,红细胞生成的关键调控因子(GATA1、LDB1、LMO2和KDM1A)的缺失导致了髓系分化增强,BCR-ABL及其适配体GAB2的抑制则促进了红细胞的分化。接下来,研究团队分析了选择性必需基因的分化作用,因为这些基因可能是颇具前景的治疗靶点。研究发现,在K562细胞中必需的酪氨酸磷酸酶PTPN1的缺失驱动了髓细胞分化。此外,在靶向实验中,联合敲除PTPN1和KDM1与单独敲除任意一个基因相比,导致分化和生长缺陷的表型会显著增加,表明这些靶点是通过不同的细胞机制发挥作用。以上结果强调了表型在了解细胞分化和治疗靶点方面的效用。图2. 基于Perturb-seq的基因型与表型关系汇总,来源:Cell单细胞中非整倍体的基因驱动和影响探索单细胞异质性可以揭示在整体或平均检测中被遗漏的机制。为了评估基因扰动诱导表型的外显率,研究团队采用SVD评分作为单细胞表型大小的衡量标准,通过单细胞SVD分数的变化对基因扰动进行表型影响评估。SVD评分是量化每个受扰动细胞的转录组相对于对照细胞的离群程度。分析结果表明,许多与染色体分离有关的基因都是细胞异质性的主要驱动因素,包括TTK、SPC25、DSN1,这些遗传干扰导致的极端转录变化可能是由于有丝分裂错误分离导致的染色体拷贝数的急性变化。为了探究这一点,研究人员使用inferCNV估算了基因组中单细胞DNA拷贝数变异。与预期一致,干扰纺锤体装配检查点的核心组成部分TTK,可以导致非整倍体和近整倍体细胞的染色体拷贝数发生显著变化。此外,干扰TTK的细胞中有76%发生了核型改变,未受干扰的细胞中只有2%发生了核型改变。值得注意的是,由于染色体的随机增加或减少,TTK敲除细胞具有高度可变的核型,这也是其表型异质性的原因。同时,该分析还揭示了单细胞CRISPR筛选可以用来解析表型,而不是预先定义的实验终点。图3. 单细胞中非整倍体的基因驱动和后果,来源:Cell发现线粒体基因组的应激特异性调控因子当前,领域内一个关键的科学问题是如何理解细胞核和线粒体基因组的表达来应对线粒体压力。该最新研究的实验设计为探究这一问题提供了可能。为了确定基因扰动引起的差异表达模式,研究团队检测了单细胞转录组测序数据在线粒体基因组中的分布。为了验证这种基于位置的分析的有效性,首先证实了已知线粒体转录调控因子(TEFM)和RNA降解(PNPT1) 的敲除会导致线粒体基因组位置发生重大变化。相比之下,研究发现许多基因扰动似乎导致了mRNA相对丰度的变化,而不是位置排列的总体变化。鉴于观察到的反应的复杂性,研究人员提出可能有多种机制影响不同线粒体编码转录本的水平,以应对不同的压力。图4. 解析压力应激下线粒体基因组的调控机制,来源:Cell结 语 单细胞CRISPR筛选代表了一种新兴的工具,可用于生成丰富的基因型-表现型图谱。但目前单细胞CRISPR筛选研究仅限于预先选择的基因,研究重点也是预先确定的生物学问题。在该最新研究中,研究团队进行了全基因组规模的单细胞CRISPR筛选,并展示了这些筛选策略是如何使用数据驱动的分析来解剖广泛的生物学现象,强调了关键的基因功能和衍生原则,同时绘制了丰富的基因型-表型图谱以指导未来的研究。该研究为系统探索遗传和细胞功能提供了源动力,同时也为领域提供了宝贵的数据资源。在未来,研究人员希望将Perturb-seq用于癌细胞系之外的不同类型细胞研究,也希望继续探索基因功能图谱。文章共同通讯作者Thomas M. Norman博士表示:“该研究是多个科研团队多年合作工作的结晶,很高兴看到它继续取得成功和扩展,我认为这个数据集甚至将使来自生物医学以外领域的研究团队进行各种分析成为可能。”参考文献:1. Replogle et al., Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq, Cell (2022).2. Fianu, I., et al., (2021). Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887.3. Kummer, E., and Ban, N. (2021). Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 22, 307–325.
  • 北航团队研发新型分析生物芯片平台(CPR) 可用于活细胞中核蛋白分析
    细胞核内的蛋白质在基因的调控、翻译和表达的过程中扮演着重要的角色,常与肿瘤发生、转移以及耐药性有关。但核蛋白被细胞膜和核膜的双重屏障包围,实际检测中,面临比细胞质蛋白检测更多困难。常规蛋白质免疫印迹法、酶联免疫吸附实验和免疫沉淀法均需要将细胞裂解,无法满足活细胞实时检测。而活细胞状态下检测细胞核蛋白主要方法,如分子荧光染料法和质粒表达法,需要特定筛选条件而缺乏一定的适用性,不能满足需求内源核蛋白的精准检测。近日,北京航空航天大学常凌乾课题组在Biosensors and Bioelectronics上发表了题为Companion-Probe & Race Platform for Interrogating Nuclear Protein and Migration of Living Cells的研究论文。该工作设计了一种新型分析生物芯片平台(CPR),能在活细胞中探测核蛋白,同时实时追踪细胞的迁移;该芯片结合纳米电穿孔技术(课题组标签技术),将一种携带有识别细胞核内蛋白特异性识别肽的相伴型组合探针递送进活细胞核内,到检测到靶蛋白后产生绿色荧光。为了追踪活细胞的迁移,作者在平台上设计了多个带有标志点的放射状微通道,作为细胞的可寻址跑道。通过记录细胞在一定时间内经过的标志点的数量,可以监测细胞的迁移距离和估计迁移速度(图1)。图1. 用于探测活细胞核内蛋白和迁移行为的CPR平台原理图作者将40个标记点定义为四个部分,从细胞内探测区域的边缘(起点)到微通道的静脉孔,每十个标记点设为一组间隔。课题选择与细胞迁移率相关的MDM2蛋白作为检测蛋白,其表达水平与细胞迁移速度呈正相关。综合分析结果显示,45%以上的MDM2蛋白过表达的细胞迁移到20号-40号微标记,而对照组细胞只在20号微标记内迁移,表明MDM2蛋白过表达的细胞的迁移能力增强。作者根据在迁移观察区移动的时间和细胞的迁移距离估计了这些细胞的迁移速度,并验证了MDM2蛋白过表达的细胞的速度明显快于对照细胞。通过CPR平台和MATLAB软件计算的迁移速度具有可比性,证明了CPR平台在一定时期内通过简单地计算标记点来评估细胞迁移速度的可行性。根据MDM2蛋白表达和细胞迁移速度的关系分析,MDM2蛋白的表达水平与细胞迁移速度呈正相关关系(图2)。这一结果与报道的MDM2蛋白高表达促进肿瘤迁移的研究一致。图2. 细胞迁移分析的CPR平台为评估CPR平台的多功能性,作者在CPR平台上分析了六个原发性肺肿瘤细胞样本 (T1-T6) 和六个原发性正常肺细胞样本 (N1-N6) 细胞核内MDM2表达。在所有六个原发性肺肿瘤细胞的细胞核中都观察到明显的绿色荧光,表明MDM2蛋白在肿瘤细胞中的高表达。研究发现,相同时间内,原发性肺肿瘤细胞比原发性正常肺细胞迁移得更远(图3)。原代细胞的成功检测显示了CPR平台在分析不同来源的细胞样本方面的高度通用性。图3. 用于跟踪原代细胞迁移的CPR平台该研究第一单位为北京市生物医学工程高精尖创新中心和北京航空航天大学生物与医学工程学院。常凌乾教授为主要通讯作者。第一作者为孙宏博士、董再再博士和张清洋博士。文章的其他主要共同作者包括,中国科学院大学深圳先进技术研究院任培根研究员,北京大学肿瘤医院吴楠教授。https://www.sciencedirect.com/science/article/abs/pii/S0956566322003219
  • 南京铭奥代理Somatos牛奶体细胞分析仪,牛奶体细胞计数仪
    为了满足各大牧场,乳品回收站控制奶牛的体质及时发现病情,检测牛奶品质,提前判断奶牛隐形乳房炎、监控病牛的治疗情况,提高牛奶的品质的市场需要,南京铭奥现代理新产品Somatos牛奶体细胞分析仪,牛奶体细胞计数仪。该牛奶体细胞仪可用于计算牛奶体细胞数,原理是将牛奶样品经表面活性剂处理后。奶样中体细胞的细胞膜和核膜被破坏,细胞核DNA大量释放,,细胞内的DNA释放出来引起牛奶黏度的变化,同时运用超声波检测系统对经过表面活性剂处理后的牛奶进行检测,记录超声参量(声速、衰减、功率谱)与体细胞数的关系,从而得出黏度变化与体细胞数的关系,从而可以通过测定黏度来测定体细胞数。 牛奶体细胞测定仪/牛奶体细胞计数仪Somatos牛奶体细胞分析仪,牛奶体细胞计数仪计数速度快,每个样品测定只需4分钟,检测范围很广,为:90000-1500000,价格合理实惠,非常适合各类牧场及乳品回收站使用。 牛奶体细胞分析仪,牛奶体细胞计数仪
  • 清华大学张奇伟、张新荣团队合作开发单细胞空间代谢组分析新方法
    多细胞生物由复杂的层次性机制来维持稳态。在组织层面上,这种稳态通常由细胞内基因调控网络和细胞外环境中各种信号介导的相互作用共同维持。因此,具有空间分辨率的单细胞组学技术对理解组织微环境具有重要意义。现在国际上已有多种空间组学方法(如转录组、蛋白组)来测量单细胞级别的空间信号分布,但是仍然缺乏空间代谢组的分析方法。  SEAM方法采用高空间分辨质谱成像结合机器学习算法,实现了组织原位代谢异质性可视化、单细胞核图像识别、代谢特征信息提取以及单细胞的聚类、差异化分析,从而能够让研究者系统的解析组织中单细胞的“代谢指纹图谱(metabolic fingerprint)”(图1)。由于器官或组织中的单个细胞的代谢物图谱存在明显的空间分布的异质性,因此,定位单个细胞在组织网络中的位置、区分相关代谢物的指纹图谱差异、确定重要代谢物的分子组成有重要意义。  图1.SEAM在单核分辨率下捕捉到空间代谢异质性  为了验证新方法,清华大学张奇伟、张新荣团队解析了野生型小鼠肝脏组织中的空间代谢异质性,发现了肝细胞代谢异质性亚群。这一发现和前人通过蛋白或者基因表达所验证的肝组织分区现象(Liverzonation)有着高度一致(图2),有效证明了SEAM方法的可靠性和准确性。  图2.SEAM在小鼠肝脏中通过代谢指纹图谱分析发现Liverzonation现象  作者还对人肝纤维化中的代谢异质性进行了空间代谢组和空间转录组联合分析。发现在肝纤维化样本中存在有两种代谢差异的肝细胞亚群,它们和纤维化区域的距离在不同样本间存在有统计学差异(图3)。通过代谢组和转录组的共同分析,发现其中的存在有谷丙酰胺的上调以及其对应代谢相关的跨膜转运蛋白的基因表达上调。虽然单细胞转录组的研究已经取得长足进展,与转录组及其表型研究密切相关的代谢组研究在单细胞水平目前还缺少方法。本文提出的“SEAM”方法,系统解析了组织空间中的单细胞代谢组,对于整个单细胞技术领域的进步具有重要的推进作用。  图3. SEAM在人类肝纤维化样本中发现代谢极性  相关成果以“SEAM是一个研究组织微环境的单细胞核空间代谢组学方法”(SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment)为题于10月4日发表于《自然方法》(Nature Methods)。论文第一单位是清华大学自动化系。共同通讯作者是清华大学北京信息国家研究中心、医学院张奇伟教授,清华大学化学系张新荣教授,清华大学原副研究员陈阳(现中国医学科学院基础医学研究所研究员)。共同第一作者为清华大学自动化系博士生原致远、生命科学学院博士生周启明、化学系博士生蔡乐斯。中日友好医院潘林教授在本工作中参与了病理切片相关实验指导和细胞类型鉴定。北京协和医院郑永昌教授提供了临床样本。清华大学北京市中医药交叉研究所李梢教授为项目研究提出积极建议。项目由国家重点研发计划,国家自然科学基金以及北京信息国家研究中心基金等项目提供经费支持。  论文链接:https://www.nature.com/articles/s41592-021-01276-3
  • 多组分时空分析:走进单细胞的“社会”
    p style="text-indent: 2em "1952年,美国细胞生物学家威尔逊曾提出,“一切生命的关键问题都要到细胞中去寻找答案。”纵观近50年来荣获诺贝尔奖生理学或医学奖和化学奖的重大突破,70多个都与细胞生物学密切相关。/pp style="text-align: center text-indent: 2em "img title="20197282317511500.jpg" style="max-height: 100% max-width: 100% " alt="20197282317511500.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/8e8f4b00-dde2-40b2-8c13-4213c687f8ec.jpg"//pp style="text-align: center text-indent: 0em "span id="_baidu_bookmark_start_182" style="line-height: 0px display: none "?/span研究团队进行相关实验/pp style="text-align: center text-indent: 0em "图片来源于网络/pp style="text-indent: 2em "作为研究细胞生命活动规律的科学,细胞生物学在科学家的显微镜下经历了近180年的历史,但细胞对人类来说依然是“黑箱”一般的存在。如今,研究人员正在尽力通过对单个细胞进行研究来阐明细胞的“天性”。/pp style="text-indent: 2em "自2014年起,在国家自然科学基金重大项目“单细胞多组分时空分析”支持下,中国科学家在有关单细胞生物学的重大科学问题上取得了一系列进展。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong没有两个细胞是完全相同的/strong/span/pp style="text-indent: 2em "如果把细胞环境比作一个社会,每个细胞就是一个独立的人。/pp style="text-indent: 2em "在对人类社会的研究中,不仅个体的特征和行为值得关注,研究所处环境中个体之间相互协调或对抗作用等关系以及群体所产生的集体行为,也相当重要。细胞研究亦是如此。/pp style="text-indent: 2em "多年来,通过对细胞的研究,科学家已经对生命体的生长发育、遗传变异、认知与行为、进化与适应性等若干生命科学问题有了较为清晰的认识。不过,在清华大学副教授陆跃翔看来,这些还远远不够。/pp style="text-indent: 2em "“在之前的研究中,科学家探索出细胞新陈代谢、生命运动过程中的各种表征方法,如蛋白表达分析、基因转录检测(反转录PCR)等,这些方法更多的是在大样本的细胞中进行观察与测量后,得到一个平均结果。”陆跃翔解释到。/pp style="text-indent: 2em "然而,没有两个细胞是完全相同的。这些平均结果掩盖了细胞之间微小的差异,这些差异可能在某些关键生命过程如细胞分化、肿瘤的发展过程中起着决定性作用。/pp style="text-indent: 2em "为了获取细胞生理状态和过程中更准确、更全面的信息,科研人员将目光瞄准单个细胞。/pp style="text-indent: 2em "“单细胞内部的生命活动,可以被认为是生物活性分子之间复杂的化学反应的结果,正是这些分子的时空分布、结构、功能及其相互作用方式,决定了细胞增殖、分化、凋亡以及重大疾病发生、发展、迁移等过程。”陆跃翔分析道。/pp style="text-indent: 2em "但是想要研究这些生物活性分子形成的精密复杂的相互作用和调控网络并非易事。它不仅要求科学家了解其化学成分,更要理解它们之间相互作用的复杂过程,以及在细胞内部细胞器中特定位置的作用区域和时空变化。/pp style="text-indent: 2em "strong2014年,国家自然科学基金委员会发布重大项目“单细胞多组分时空分析”申请指南,/strong清华大学化学系教授张新荣组织的研究团队的申请获批。他们凝练出strong荧光探针制备与合成、新型时空分辨成像方法以及在细胞内生物分子相互作用/strong研究等关键科学问题。/pp style="text-indent: 2em "“我们希望发展建立适于单细胞中多种生物活性分子时空分辨的荧光分析新方法,驱动生命科学和基础与临床医学研究进步。”谈及科学目标,张新荣如是说。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong新技术带你深入了解“社会”/strong/span/pp style="text-indent: 2em "如何实现这一目标?在张新荣看来,这需要从单细胞中多组分分子的时空信息获取方法出发。为此,项目组将其分为“荧光探针制备与合成”“新型时空分辨成像方法”以及“细胞内生物分子相互作用”三大方向进行攻关。/pp style="text-indent: 2em "strong要了解细胞这个独特的“社会”,首先需要的是一台可以钻进细胞内部获取关键分子信息的“放大镜”。因此,荧光探针制备与合成至关重要。/strong/pp style="text-indent: 2em "针对单细胞中极低含量分子检测问题,山东师范大学教授唐波课题组综合运用共轭聚合物信号放大、无光源激发、光谱红移、核酸杂交链式放大等技术,构建了若干超灵敏的分子与纳米荧光探针,实现了细胞及活体中某些活性分子浓度皮摩尔水平的原位、动态检测。/pp style="text-indent: 2em "同时,细胞中生理过程的发生和发展往往不是一类分子的孤立事件,涉及到多种分子的参与。因此课题组还开发了一系列的两组分、三组分和四组分同时检测的荧光探针,并设计了多模态探针来获取更丰富的成像信息。/pp style="text-indent: 2em "“本项目的一个重要特色工作是时任中国科学院上海应用物理研究所研究员樊春海课题组基于框架核酸构建的多组分分析探针和成像方法。”张新荣介绍,框架核酸是一类人工设计的结构核酸,具有尺寸精确、结构精确、修饰精确的特点,通过精确的化学修饰,可以将多种小分子及大分子探针负载到框架核酸上,实现多组分探针的可控构建。/pp style="text-indent: 2em "不过,实现探针在亚细胞区域内对胞内生物活性分子的精确定位和实时检测可并不那么容易。/pp style="text-indent: 2em "“细胞核内分子密度大且背景荧光特别高,导致人们对单分子的观察非常困难。传统光学显微成像分辨率,不足以解析染色体DNA的构造。”陆跃翔告诉记者,尤其在超高空间分辨率的前提下,要实现持续的动态观察,对荧光探针和成像方法都提出了更大的挑战。/pp style="text-indent: 2em "在活细胞超分辨成像方面,北京大学生物动态光学成像中心研究员孙育杰课题组研发了高性能探针Gmars-Q,使其在光照时进入暗态,从而延长成像时长,比已有最好探针的活细胞超分辨成像时间长一个数量级,这种超高分辨成像技术实现了纳米尺度的活细胞核内动态观测。/pp style="text-indent: 2em "“Gmars-Q的独特机制打开了基于蛋白结构和动力学优化荧光蛋白的设计策略。”德国卡尔斯鲁厄理工学院教授Gerd Ulrich Nienhaus曾对此给予高度评价。/pp style="text-indent: 2em "strong在现代分析化学的发展中,大科学装置的应用也越来越受到科学家的重视。/strong/pp style="text-indent: 2em "依托中国科学院高能物理研究所和中国科学院上海应用物理研究所的两台strong同步辐射光源,/strong樊春海课题组和中国科学院高能物理研究所研究员高学云课题组开展了strong同步辐射X射线细胞成像方法/strong的研究。/pp style="text-indent: 2em "实验团队通过搭建X射线全场三维成像平台,合成了一系列X射线成像探针,发展了细胞成像算法,实现了单细胞的X射线三维成像。为了应对单一技术无法在高分辨率下同时实现细胞的结构与功能定位的挑战,课题组又发展了X射线与超分辨荧光联用技术,实现了在纳米分辨下的细胞结构与功能融合成像的突破。/pp style="text-indent: 2em "已有研究发现DNA不仅有序列信息,还有三维结构信息。基于此,北京大学教授、中国科学院外籍院士谢晓亮课题组通过对sgRNA改造,开发了一种全新的活细胞染色质DNA的多色、稳定标记系统,实现对活细胞内基因位点的长时间连续观察追踪。/pp style="text-indent: 2em "2018年,该重大项目迎来一项重磅突破。谢晓亮课题组在《科学》上发表文章,介绍他们在单细胞水平研究双倍体哺乳动物细胞的基因组结构研究方面取得的成果。利用新发展的Dip-C技术,项目组构建了人源双倍体细胞的具有高空间分辨率的单细胞基因组三维结构。/pp style="text-indent: 2em "“这种结构分型对研究细胞功能有着至关重要的作用,也为唐氏综合症等染色体非整倍体疾病提供了研究和干预手段。”谢晓亮说。/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "让基础研究走出实验室/span/strong/pp style="text-indent: 2em "对于细胞“社会”的深层解析,不仅为了阐明各种生命现象与本质,科学家更是希望据此对这些现象和规律加以控制和利用,以达到造福人类的目的。在该重大项目支持下,诸多研究展现出了良好的社会应用前景。/pp style="text-indent: 2em "“许多疾病的研究和治疗最终都必须回归细胞水平。”在张新荣看来,一系列单细胞多组分时空分析技术能够有效加深人们对生命现象的本质理解,也有助于了解疾病机理,进而促进生物医药科学和相关产业的发展。/pp style="text-indent: 2em "strong“项目研发的诊疗一体化功能纳米探针,为相关重大疾病成因、诊断提供表征手段和依据,对疾病的早期预警以及提高疾病治愈率有着重要意义。/strong”张新荣讲道,部分创制的探针已经进行了市场转化,基于探针建立的荧光成像技术也成为国家重大新药创制课题中药效评价的关键技术之一。/pp style="text-indent: 2em "例如,唐波课题组研究的“超高灵敏度—可逆探针”能够在活体水平上示踪炎症发生发展过程中超氧阴离子的浓度水平及动态变化过程,缩短了药物临床试验周期,提高了药物筛选效能。为即将进入临床Ⅱ、Ⅲ期的鼻敏胶囊、咳敏胶囊、结肠炎栓3个中药新品种的作用靶点、药效评价研究提供了技术支撑。/pp style="text-indent: 2em "而基于同步辐射装置的X射线细胞显微成像技术,分辨率很容易达到数十纳米,可以在大视场下实现完整细胞的纳米分辨无损成像,与荧光显微装置相比具有巨大优势,在细胞显微成像方面也展现出了巨大的应用前景。/pp style="text-indent: 2em "然而,对于人类来说,走进细胞“社会”是一个任重而道远的过程。还有无数未知的奥秘等着科学家去探索。/pp style="text-indent: 2em "张新荣表示,该重大项目成果为下一步融合多种分析方法、发展全器官跨尺度高灵敏三维成像提供了基础。/pp style="text-indent: 2em "“通过研发同步辐射X射线相衬—电镜融合成像,有可能在全脑三维微米精度地图引导下选取局部特征区域进行纳米精度的结构解析,大幅降低高精度神经网络解析的盲目性。在特定位点,也可利用荧光分子成像和质谱分子解析,进一步作功能研究。”项目组成员表示,在有关“社会”的探索与发现之旅上,中国科学家一直砥砺前行。/p
  • 【网络讲堂预告】高质量细胞形态分析应用实例分享-Molecular Devices
    网络讲堂:高质量细胞形态分析应用实例高内涵筛选 (high-content screening, HCS) 是利用全自动的系统来观察细胞受药物刺激后的形态变化,进而实现迅速筛选有效药物。除了加速药物开发应用之外,HCS 高通量的特性也被广泛运用于各类以细胞为模型的生命科学研究上。利用高内涵筛选系统,不但能大幅缩短研究时长,更能提供精确可靠的细胞形态统计分析。细胞核于颗粒性分析,左上图为原始图,右上图为信号识别图本次讲座将以多个案例分享ImageXpress高内涵成像分析平台在肿瘤免疫学、细胞生物学、药理学、再生医学研究上的应用。快扫描下面二维码报名参加吧!讲座日期:2018年12月20日周四 讲座时间:10:00-11:00(北京时间) 主讲人:何佳霖 博士,产品经理,美谷分子仪器有限公司台湾技术支持中心 主讲人简介:新竹清华大学学士、台北阳明大学博士。专长为细胞信号通路与显微成像研究。
  • 微流控技术大有可为——第三届微流控细胞分析学术报告会成功召开
    仪器信息网讯 金秋九月,两年一度的行业盛会,第十九届分析测试学术报告会暨展览会(简称:BCEIA 2021)于2021年9月27-29日在北京中国国际展览中心(天竺新馆)召开。作为BCEIA的重要组成部分,9月28日,由中国分析测试协会和清华大学化学系联合举办的第三届微流控细胞分析学术报告会在中国国际展览中心天竺新馆召开,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台,展示微流控细胞分析领域的最新科研成果。会议当天参会人员逾百人,现场座无虚席。 开幕式现场清华大学化学系林金明教授致辞会议首日,共有10余位专家分别作精彩主题报告:报告人:东北大学 王建华教授 报告题目:《等离子体质谱(单)细胞分析研究》王建华教授介绍了基于等离子体质谱(ICP-MS)的单细胞分析研究。基于流式进样,用时间分辩ICP-MS分析单细胞中微量铬,发现细胞铬浓度与培养液中Cr(III)或Cr(VI)密切关联。三维微交叉液滴发生与ICP-MS联用,使多细胞事件概率小于0.005%,发现MCF-7细胞摄取金纳米粒子时存在明显异质性。利用平面和三维螺旋通道-惯性流辅助单细胞操控,实现高通量单细胞进样,结合ICP-MS分析单细胞对金属纳米粒子的摄取及分布。结合核酸适配体修饰的金纳米粒子与肿瘤细胞表达的biomarker蛋白的相互作用,可检测单个循环肿瘤细胞。报告人:复旦大学 刘宝红教授报告题目:《基于微流控芯片的单细胞检测》刘宝红教授介绍了一系列单细胞单分子成像技术。在生物体内,细胞生活在复杂的微环境中,细胞通过感知周围微环境的变化而调节自身行为和功能,从而影响细胞的形态、基因表达、蛋白质水平和定位,因此,需要发展微纳尺度的微环境模拟和测量方法。在这些变化过程中,蛋白质及其微环境中分泌的特异性生物分子的差异表达起到了关键的作用。该课题组发展了一系列单细胞单分子成像技术,实现了对细胞内外代谢小分子、miRNA、蛋白质等的成像与监测;研究了在微纳限域条件下细胞及其关键生物分子的高灵敏度测量。报告人:上海交通大学医学院分子研究院 张鹏研究员(代厦门大学 杨朝勇教授) 报告题目:《单细胞精准捕获与测序》张鹏教授介绍了该课题组在开发高通量单细胞捕获和分析研究的进展。张鹏教授介绍了利用分子凝胶,实现适体文库三维结构精确调控;利用焓变驱动筛选,提高适体环境适应性。应用机器辅助学习,提高筛选效率。提出协同捕获策略,构筑系列仿生多价和刺激影响界面,实现临床外周血样品CTC高效捕获,开发了无创肿瘤筛查试剂盒。报告人:西安交通大学 赵永席教授报告题目:《单细胞核酸扩增分析》赵永席教授介绍了该课题组在单细胞核酸扩增分析工作进展。核酸是携带遗传信息的重要物质,参与细胞生长、发育、增殖等基本过程。系统分析胞内的核酸序列、碱基修饰以及空间邻近关系等多层次特征,是理解细胞状态、探索生命过程的基础。此次报告将围绕细胞内核酸种类多、同源序列差异小、碱基修饰结构相似、空间邻近距离小所导致的分析检测难题,发展DNA编码扩增分析方法,实现核酸的精准识别与高灵敏定量分析,在单细胞水平解析生命过程与疾病进程中的核酸信息。报告人:中科院大连化学物理研究所 陆瑶研究员报告题目:《基于微流控芯片的单细胞分泌分析技术研究》陆瑶研究员介绍了该课题组在基于微流控芯片的单细胞分泌分析技术研究工作进展。在单细胞水平对这一小部分细胞分泌的生物分子信号实现高灵敏的检测,不仅有助于更清晰认识这些细胞的状态、个体之间的差异/联系等群体细胞研究方法无法分辨的信息,也将有助于发现细胞分泌的异常及其与疾病、药物反应的关系。该课题组利用条形码微流控芯片围绕单细胞分泌谱多组学分析、单细胞分泌谱动态分析、单细胞仿生微环境构建及单细胞操控等方面开展研究,加深了对细胞分泌、通讯异质性规律的认识,并有望为稀有细胞分析等应用提供技术支持。报告人:华中科技大学 刘笔锋教授报告题目:《微流控芯片高通量单细胞分析新方法》刘笔锋教授介绍了该课题组在微流控芯片高通量单细胞分析新方法开发工作进展。单细胞分析是当前分析化学研究的热点,对于揭示细胞异质性及其机制具有重要科学意义,在肿瘤、神经科学、发育生物学和精准医学等领域具有重大应用。刘笔锋重点介绍基于微流控芯片的单细胞分析新技术,聚焦如何实现高通量单细胞分析,包括单细胞水平的化学灌流刺激、药物评价和微生物筛选与分选等及其在生物医学与环境中的应用。报告人:深圳大学 张学记教授报告题目:《微流控芯片细胞多维度分析》张学记教授介绍3D打印技术快速制备可拆卸的微流控装置用于重构肿瘤微环境,该方法极大的便利了以无标记的方式对细胞进行分析和测定。报告人:清华大学 何彦教授 报告题目:《单个纳米颗粒细胞摄取的动态过程分析》何彦教授采用单颗粒暗场成像技术,系统地分析了等离子激元金纳米棒 (AuNR) 在不同条件下的内吞动力学,为细胞摄取纳米颗粒提供了完整的物理图像,为纳米毒性和精准纳米医学的进一步发展提供了重要参考。报告人:国家纳米科学中心 孙佳姝研究员报告题目:《基于微纳传感技术的肿瘤液体活检》孙佳姝研究员介绍了细胞外囊泡作为生物标志物在疾病诊断方面的应用。孙佳姝课题组开发了快速、灵敏、低成本微流控热泳适体传感器与机器学习算法相结合,提高了对乳腺癌和前列腺癌的精准检测,该方法为无创活检提供了新思路。报告人:武汉大学 赵兴中教授 报告题目:《从循环肿瘤细胞到有核红细胞》外周血中的稀有细胞对作为精准医疗的前提和基础的精准诊断,具有不可替代的作用。赵兴忠教授就循环肿瘤细胞和核红细胞这两种外周血稀有细胞的研究进展做了报告。报告人:哈尔滨工业大学 朱永刚教授 报告题目:《细胞代谢物的微流控检测》朱永刚教授介绍了用于检测细胞代谢物(如葡萄糖和乳酸)的微流控装置,并且介绍了基于液滴技术的单细胞蛋白质分析的发展现状。报告人:北京工商大学 林玲教授 报告题目:《3D微流控肿瘤微环境用于细胞代谢产物的研究》林玲教授介绍了基于微流控技术构建的3D细胞共培养模型以及3D肿瘤微环境模型,并介绍了这些模型在药物诱导以及代谢检测等方面的应用。报告人:岛津(中国)公司 韩美英博士 报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》韩美英博士详尽介绍了岛津公司和清华大学林金明教授研发的CELLENT CM-MS微流控芯片质谱联用仪的功能、特点。CM-MS能够更准确地反映生物的真实状态,可为细胞代谢研究、药物代谢研究、疾病机理研究等领域提供强大有效的实验工具。随后,来自海南大学的周诗正分享了题目为《基于深度学习神经网络的图像激活微流控微藻细胞检测系统》的口头报告。至此,第三届微流控细胞分析学术报告会第一天日程圆满落幕,会议受到了众多学者嘉宾以及参会人员的一致热烈反响。期待明日精彩报告继续!会议现场座无虚席参会者踊跃提问本文涵盖了9月28日当天第三届微流控细胞分析学术报告会报告的部分精彩内容,而为期两天的报告会还将继续在会场二楼的E203会议室内进行,欢迎持续关注。
  • 清华大学-岛津中国联合举办第六期微流控芯片质谱联用细胞分析讲习会
    2019年1月8日,清华大学-岛津中国在岛津西安分析中心成功举办了第六期微流控芯片质谱联用细胞分析讲习会。首期微流控芯片质谱联用细胞分析讲习会于2017年9月在岛津中国质谱中心成功举办,至今已经走过北京、广州、上海及成都等地。第六期讲习会来到古都西安,介绍了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪,得到了来自高校、研究所及企业三十多位专家学者的关注及报名参会。第六期微流控芯片质谱联用细胞分析讲习会合影  岛津企业管理(中国)有限公司事业战略室本部长端裕树博士首先代表岛津公司对参加讲习会的全体代表和专家表示热烈欢迎。随后,清华大学林金明教授介绍了微流控芯片质谱联用细胞分析的最新研究进展,西安交通大学生命科学与技术学院赵永席教授做了题为“活细胞核酸组装与扩增分析”的学术报告,端裕树博士对微流控芯片质谱仪器的结构和性能做了详细的介绍,清华大学化学系许柠研究助理介绍了仪器的实验方法,并现场演示了仪器对细胞的缺氧实验,为参会代表展示了现场试验结果,回答代表们提出了问题和仪器使用过程中的注意事项。林金明做微流控芯片质谱联用仪器研发与应用的研究进展介绍赵永席教授做题为“细胞核酸组装与扩增技术”的学术报告端裕树博士介绍仪器研发过程、结构和性能许柠助理介绍仪器的使用方法并现场演示微流控芯片上的细胞分析方法  讲习会后,在工作人员引导下,代表们参观了岛津西安分析中心实验室。对于本期讲习会,全体与会者给予了一致好评。最终,第六期微流控芯片质谱联用细胞分析讲习会圆满结束。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 高内涵——基于FRET分析活细胞中的ERK信号转导
    Extracellular signal-regulated kinase(ERK)是胚胎发生,细胞分化,细胞增殖和细胞死亡调控的关键组成部分。ERK途径起源于质膜中的活化受体,并通过Ras/Raf/MEK至ERK(图1)。图1. Ras/Raf/MEK/ERK信号级联将信号从细胞表面受体如EGF受体(EGFR)传播到细胞内蛋白质。ERK是该途径的最终组分,并且在被生长因子(例如EGF(表皮生长因子))激活后,触发下游效应,如激酶或转录因子的激活。该途径被不同类型的受体激活,包括受体酪氨酸激酶 (例如EGF受体)以及G蛋白偶联受体。作为信号传导途径的最终组分,ERK磷酸化不同的细胞内蛋白质,包括大量其他激酶和转录因子。ERK信号传导途径存在于各种癌症类型中,因此正在研究作为治疗干预的靶标。在这里,我们描述了如何在Operetta CLS高内涵分析系统上自动化研究ERK信号传导的活细胞FRET测定。该测定可以用于药物发现。基于FRET的ERK生物传感器FRET是从供体分子到受体分子的非辐射能量转移。能量转移需要供体和受体间隔小于10nm,因此提供了研究分子接近度变化的敏感工具,例如蛋白质 - 蛋白质相互作用(分子间FRET)或蛋白质的构象变化(分子内FRET)。在这项研究中,我们专注于分子内FRET,使用称为EKAREV的CFP-YFP生物传感器(图2)。稳定表达EKAREV的细胞由Somponnat Sampattavanich博士友情提供(图3)。在该生物传感器中,供体和受体荧光团以单一融合蛋白编码。EKAREV生物传感器经过优化,可以减少随机触发的基础FRET信号,并使其可靠地与距离相关。ERK对EKAREV的磷酸化触发构象变化,使CFP和YFP靠近诱导FRET。图2.细胞外信号调节激酶活性报告基因(EKAREV)的示意图。在该生物传感器中,两种荧光蛋白通过ERK底物结构域,接头和结合结构域分开。一旦ERK底物结构域经过ERK的磷酸化,就会触发构象变化,使CFP和YFP紧密接近并允许FRET发生。EKAREV生物传感器是分子内FRET的实例,其中供体和受体以1:1的固定化学计量存在。因此,进行双通道比率实验就足够了,通道1检测受体发射光(IAcceptor),通道2检测供体发射(IDonor),将得到的两个荧光信号强度进行背景校正,并计算它们的比率以给出相对FRET效率EFRET:测定方法将1.2×104EKAREV细胞/孔接种到CellCarrier-96Ultra微量培养板(PerkinElmer#6055300),150μl培养基(表1)中。孵育2天后(37℃,5%CO2),150μl饥饿培养基洗涤两次并在饥饿培养基中孵育5小时以降低基础ERK活性。另外,在孵育开始时向细胞中加入各种浓度的抑制剂或DMSO。4.5小时后,将细胞核用4μM DRAQ5在37℃,5%CO2下染色30分钟。然后用饥饿培养基洗涤细胞一次,并加入含有8μl 20x浓缩抑制剂或DMSO对照的150μl新鲜饥饿培养基。作为对照,在某一时间点,向细胞中加入8μl20x浓缩诱导物(PMA或EGF)。为了抑制FRET信号,应用PD184352,SCH772984和Ulixertinib。含有或不含有所测试化合物的最高DMSO浓度的培养基用作对照。试剂,化合物和介质列表成像在宽场模式下使用20x高NA物镜(NA 0.8)在Operetta CLS系统上建立长时间实验,获取图像总共97分钟。将FRET诱导化合物添加到血清饥饿细胞后,开始时间序列,测量间隔为每8分钟一次,在此设置中获得了四个渠道:DRAQ5 (ex 615-645,em655-760),CFP(ex 435-460,em 470-515),YFP(ex490-515,em 525-580)和FRET(ex 435-460,em 515-580)(图3)。图3.稳定表达EKAREV生物传感器的人乳腺上皮细胞。细胞核用DRAQ5染色。随后,在Operetta CLS系统上使用宽场模式的20x高NA物镜对细胞成像。分析策略使用Harmony高内涵成像和分析软件进行自动图像分析。简言之,将图像分割成细胞和背景。计算细胞质和背景中的供体和FRET强度,然后计算背景校正的FRET比率作为最终结果(图4)。图4.使用Harmony软件进行比率FRET定量的图像分析工作流程:细胞和背景的细胞质被分段,低表达细胞被强度阈值排除。量化供体和FRET通道的强度及其适当的背景,并计算背景校正的FRET强度比。减去背景强度在活细胞应用中尤其有利,其中具有自发荧光组分的培养基通常导致更高的背景并因此导致更小的测定窗口。结果为了探索是否可以使用基于FRET的生物传感器在Operetta CLS上研究ERK信号传导的调节,用不同的ERK和MEK激活剂和抑制剂处理EKAREV细胞。(图5)。图5.外源添加的活化剂(绿色)和抑制剂(红色)示意图及其对ERK信号通路的影响。表达EKAREV的细胞用EGF或PMA处理以诱导ERK活化,另外,用三种MEK和ERK特异性抑制剂(PD184352,SCH772984,Ulixertinib),在途径的不同位置中断信号转导。PMA和EGF充当Ras/Raf/MEK/ERK信号级联的特异性激活剂。EGF特异性结合细胞表面上的EGF受体,而PMA作为亲脂性,膜可渗透的分子通过直接激活RAF激活该途径。PD184352可以通过选择性抑制MEK1/2来抑制ERK途径,而Ulixertinib和SCH772984都是ERK1/2的有效和选择性抑制剂。首先,为了更多地了解FRET诱导和抑制的动态性质,记录了97分钟的长时实验。正如所料,与未处理的对照相比,单独用EGF或PMA处理细胞导致FRET比率的强烈增加(图6)。大约30分钟后信号处于高位。对照显示较低水平的ERK活化,并且观察到随时间稳定增加。由于ERK1/2可以通过多种生长因子和有丝分裂来调节,这可能是由活细胞成像过程中的自分泌或旁分泌信号引起的。用不同浓度的ERK抑制剂(SCH772984)共同处理细胞导致ERK反应的剂量依赖性降低。在5μMSCH772984中,通过EGF的ERK活化几乎可以忽略不计,表明在该浓度下ERK被完全抑制。请注意,0.5%DMSO是实验中使用的最高浓度,确实对FRET比率有影响,因此需要包括此对照。用第二种ERK1/2特异性抑制剂Ulixertinib获得了类似的结果(数据未显示)。图6.在Operetta CLS系统上使用基于EKAREV FRET的生物传感器的ERK信号传导的时间进程。通过EGF或PMA刺激ERK诱导快速FRET信号增加,在约30分钟后平稳。高浓度的SCH772984(5μM)导致几乎完全抑制ERK活化(1μg/ ml EGF),没有可测量的FRET信号增加。较高稀释度的SCH772984仅部分抑制EGF诱导的ERK活化。control显示没有任何处理的样品有中间轻微上升的FRET信号。0.5%DMSO略微抑制FRET信号,这是实验中使用的DMSO的最高浓度。测定统计:Z' = 0.87(在时间点32分钟计算,DMSO为阴性,EGF为阳性对照)当FRET信号在32分钟后达到恒定水平时,选择该时间点以确定SCH772984的IC50值。用1μg/ mL EGF和系列稀释的SCH772984处理EKAREV细胞,稀释范围为10pM至3μM。计算的IC50值为272nM的剂量反应曲线如图7所示。图7.ERK抑制剂SCH772984导致基于FRET的EKAREV信号的剂量依赖性降低。在1μg/ ml EGF存在下,用递增浓度的SCH772984处理EKAREV细胞。在孵育32分钟后,在Operetta CLS系统上测定FRET比率,因为信号在此时间点稳定。高Z' 值(Z' = 0.89)显示出优异的分析性能。为了研究EKAREV FRET成像测定是否可用于研究直接作用于MEK1/2的途径调节,测试了MEK1/2抑制剂PD184352对PMA化细胞的作用(图8)。如图所示,PD184352抑制PMA诱导的ERK活化。图8.在Operetta CLS系统上测量的PD184352对PMA活化的Ras/Raf/MEK/ERK信号级联的抑制。EKAREV细胞用另一组活化剂和抑制剂(PMA+PD184352)处理,其作用在RAF/MEK的上游(与图5比较)。用200或2000nM PMA处理的EKAREV细胞显示出高FRET反应(诱导后32分钟)。通过将细胞与MEK1/2特异性抑制剂PD184352以10μM的浓度共孵育来抑制活化。结论EKAREV FRET生物传感器可用于Operetta CLS系统的活细胞成像测定,以研究ERK的激活和抑制。级联内不同靶标的调节很容易测量,因此这种方法可以有助于鉴定干扰Ras/Raf/MEK/ERK信号级联的新化合物。该测定在活细胞中进行,因此它可用于分析ERK信号传导动力学,而定量ERK磷酸化的常规生物化学技术通常是终点测定。尽管细胞群中生物传感器表达水平相对不均匀(图3),但FRET比率的计算提供了特别好的化验数据和统计数据,Z' 值高于0.87。EKAREV生物传感器的优化设计,Operetta CLS系统的高质量成像以及Harmony内图像分析的出色工具都有助于提高这里提供的高含量FRET分析的稳定性。Harmony软件的构建模块概念允许创建易于设置和理解的图像分析序列,并且不需要专业的图像分析知识。该测定还提供了Opera Phenix™ 高含量筛选系统的可比较结果和测定统计数据。由于Operetta CLS和Opera Phenix系统比传统显微镜具有更高的通量,基于FRET的生物传感器的高含量成像为药物发现和细胞信号传导中的基础研究开辟了新的可能性。参考文献1. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B-E.,Karandikar, M., Berman, K. & Cobb, M. H. (2001).Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 22(2), 153-183. doi/10.1210/edrv.22.2.04282. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,Roberts, K. & Walter, P. (2007) Molecular Biology of the Cell,Garland Science., 5th revised edition, ISBN-10: 08153410593. McCubrey, J. A, Steelman, L. S., Chappell, W. H., Abrams,S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J.,Evangelisti, C., Martelli, A. M., and Franklin, R. A. (2007):Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773,1263–84. doi:10.1016/j.bbamcr.2006.10.0014. F?rster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437 (1-2), 55-75.5. Sun, Y., Wallrabe, H., Seo, S.-A., & Periasamy, A. (2012). FRET microscopy in 2010: The legacy of Theodor F?rster on the 100th anniversary of his birth. Chemphyschem., 12(3), 462–474.doi:10.1002/cphc.201000664. FRET6. Fassler, M., Boettcher, K., Malle, M. (2015): Measuring FRET using the Opera Phenix High Content Screening System: A High Throughput Assay to Study Protein-Protein Interactions,Application Note published by PerkinElmer, In., Waltham,MA, USA7. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita,Y., Kamioka, Y., & Matsuda, M. (2011). Development of an optimized backbone of FRET biosensors for kinases and GTPases.Mol Biol Cell, 22, 4647-56. doi/10.1091/mbc.E11-01-00728. Harvey, C. D., Ehrhardt, A. G., Cellurale, C., Zhong, H., Yasuda,R., Davis, R. J., & Svoboda K. (2008). A genetically encoded fluorescent sensor of ERK activity. PNAS, 105(49), 19264-19269. doi_10.1073_pnas.080459点击链接了解更多珀金埃尔默高内涵相关资料http://e86.me/0ZaJW1关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 清华大学-岛津中国联合举办第六期微流控芯片质谱联用细胞分析讲习会
    p  2019年1月8日,清华大学-岛津中国在岛津西安分析中心成功举办了第六期微流控芯片质谱联用细胞分析讲习会。/pp  首期微流控芯片质谱联用细胞分析讲习会于2017年9月在岛津中国质谱中心成功举办,至今已经走过北京、广州、上海及成都等地。第六期讲习会来到古都西安,介绍了由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪,得到了来自高校、研究所及企业三十多位专家学者的关注及报名参会。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/027f115f-a7a9-417c-b2d5-8a736173bfb2.jpg" title="1_副本.jpg" alt="1_副本.jpg"//pp style="text-align: center "strong第六期微流控芯片质谱联用细胞分析讲习会合影/strong/pp  岛津企业管理(中国)有限公司事业战略室本部长端裕树博士首先代表岛津公司对参加讲习会的全体代表和专家表示热烈欢迎。随后,清华大学林金明教授介绍了微流控芯片质谱联用细胞分析的最新研究进展,西安交通大学生命科学与技术学院赵永席教授做了题为“活细胞核酸组装与扩增分析”的学术报告,端裕树博士对微流控芯片质谱仪器的结构和性能做了详细的介绍,清华大学化学系许柠研究助理介绍了仪器的实验方法,并现场演示了仪器对细胞的缺氧实验,为参会代表展示了现场试验结果,回答代表们提出了问题和仪器使用过程中的注意事项。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/aad681c0-8486-4c34-9129-df227eb4ac54.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="text-align: center "strong林金明做微流控芯片质谱联用仪器研发与应用的研究进展介绍/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/03af8353-e6db-4b79-bc3b-4f78611653fd.jpg" title="3_副本.jpg" alt="3_副本.jpg"//pp style="text-align: center "strong赵永席教授做题为“细胞核酸组装与扩增技术”的学术报告/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/98a21a10-6da4-4ebb-b141-0181214f9889.jpg" title="4_副本.jpg" alt="4_副本.jpg"//pp style="text-align: center "strong端裕树博士介绍仪器研发过程、结构和性能/strong/ppstrong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/70bc3041-ff92-48c8-9980-629f74b2d356.jpg" title="5_副本.jpg" alt="5_副本.jpg"//pp style="text-align: center "strong许柠助理介绍仪器的使用方法并现场演示微流控芯片上的细胞分析方法/strong/pp  讲习会后,在工作人员引导下,代表们参观了岛津西安分析中心实验室。对于本期讲习会,全体与会者给予了一致好评。最终,第六期微流控芯片质谱联用细胞分析讲习会圆满结束。/ppbr//p
  • iCCA2023报告摘要|单细胞分析技术专题
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)8月31日,第六届细胞分析网络大会(iCCA2023)特设【单细胞分析技术】专题会场,12位嘉宾在线分享!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023  (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 精彩报告 速览 微流控芯片质谱联用细胞药物代谢分析方法研究林金明 清华大学 教授【摘要】细胞是生物体结构和功能的基本单位。了解细胞的组成、结构和功能,探索细胞的生命活动,对于人类认知与掌控生物体生命活动的基本规律有着十分重要的意义。微流控芯片技术,结合先进的质谱检测、分子成像、生物信息学等技术,为细胞生物学研究提供了强有力的研究平台,也为改变细胞生物学的研究方式提供了可能。本次讲座将结合我们研究组近期的科研工作,简要介绍微流控芯片质谱联用技术在细胞药物代谢领域的进展和研究成果,探讨微流控芯片技术在中药的代谢分析研究中所面临的挑战和发展方向,为扩大其在生物医学领域的研究和应用提供参考和可能的思路。 基于有源数字微流控的单细胞分选和操控系统马汉彬 中国科学院苏州生物医学工程技术研究所 研究员【摘要】 相对于传统数字微流控,有源矩阵数字微流控基于薄膜半导体技术,其阵列规模、样本体积和操控精度均有指数级提升。该平台能够高效的生成大规模微滴阵列,无需借助微纳结构,便可实现单细胞微滴样本生成,并在二维平面内进行样本的可编程控制。高通量单细胞分泌分析技术研究陆瑶 中国科学院大连化学物理研究所 研究员【摘要】分泌是细胞的基本行为,介导通讯、免疫保护等功能。由于细胞存在异质性,往往只是细胞群中的小部分细胞主导分泌相关功能,群体细胞检测无法分辨这些多功能性细胞,必须发展单细胞分析工具进行相关研究、应用。但传统单细胞分泌分析技术存在检测信息不全面的不足,难以满足研究、应用需求。基于此,我们利用微流控芯片发展单细胞分泌因子多维、动态、互作等创新分析技术,显著提高了当前活体单细胞分泌分析技术检测能力,在药物/疫苗开发、疾病诊断、免疫学研究等领域具有重要的科学意义和十分广阔的应用前景。实时单细胞多模态分析仪的应用丁琳 江苏瑞明生物 高级产品经理【摘要】实时单细胞多模态分析仪的应用案例 (1)助力药物开发和药物载体开发; (2)检测细胞代谢标志物,信号分子和酶活为生物传感器开发提供表征工具。。单细胞结构脂质组学及生物医学应用马潇潇 清华大学 长聘副教授【摘要】单细胞分析是揭示细胞间异质性的关键技术,对基础生物学研究,疾病标志物筛查及新药研发均有重要意义。目前,单细胞脂质组分析仍面临诸多技术挑战。本报告介绍本团队在单细胞结构脂质组技术及应用方面的最新研究进展。单细胞固有电学特性高通量流式分析技术研究赵阳 中国科学院微电子研究所 副研究员【摘要】面对单细胞固有电学特性测不快、传感原理不明等难题,我们提出一种基于交叉压缩通道的检测方法,将检测通量提升了1万倍。并设计了一种基于物理模型快速求解器的实时阻抗流式细胞分析仪(piRT-IFC),实现了“细胞进,结果实时出”的全流程自动化处理能力,并验证其在未知细胞样本上具有相较神经网络加速方法更好的泛化能力。基于单细胞测序的肿瘤免疫研究:从机制到疗效预测胡学达北京百奥智汇科技有限公司 副总裁【摘要】 靶向 CTLA4、PD-1 和 PD-L1 等免疫检查点抑制剂(Immune Checkpoint inhibitor, ICI)的发现和临床应用彻底改变了癌症临床治疗的局面。免疫治疗为抗肿瘤带来突破,但只有部分患者发生响应,建立响应与持久性精准预测体系是目前该领域最关键的科学与临床问题。通过单细胞组学研究ICI治疗过程中肿瘤微环境免疫细胞动态演化规律与互作特征,能够发现具有抗肿瘤特异免疫响应驱动作用的细胞类型与分子标记。我们鉴别了不同患者对PD-1治疗不同耐药机制,寻找在响应或耐药患者中差异富集的细胞类型和特征表达基因,作为克服PD-1单抗耐药的治疗靶点创新智造助力单细胞组学标准化和规模化左亚军 深圳华大智造科技股份有限公司 产品市场中心产品经理【摘要】 创新智造助力单细胞组学标准化和规模化 1. MGI 单细胞组学全流程解决方案 2. 单细胞行业进入湿实验标准化时代 3. DNBelab C系列单细胞新品和应用案例。新一代中通量FISH技术、自动化仪器开发及其在精准诊断中的运用曹罡 深圳理工大学 教授【摘要】生物大分子(蛋白质、DNA、RNA等)在组织、细胞内的精确定位对生命体维持正常功能扮演着重要角色。在单细胞水平高通量的检测生物大分子的原位空间组学新技术对理解生命的重要生理功能及疾病的发生发展有着重要意义。目前从一代测序到高通量基因测序技术和单细胞测序都需要从细胞、组织提取核酸,丢失基因的空间位置与病理、组织学特征等信息,只能获得一个维度的基因序列信息。空间基因原位测序与原位检测技术可以整合基因序列信息与空间位置信息,必将对基因测序与病理诊断有着巨大的推动作用!近年来我们实验室开发了相关的高通量单细胞生物大分子(蛋白质、DNA、RNA等)空间组学和新一代FISH解析技术的开发及其仪器开发。此外,我们也将这些技术运用到肿瘤精准诊断中,以期推动肿瘤的精准治疗。单细胞核酸编码扩增分析赵永席 西安交通大学生命分析化学与仪器研究所 教授【摘要】团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。单细胞转录组学解析前列腺管腔干细胞身份属性以及谱系可塑性郭旺昕 深圳湾实验室 博士后(高栋课题组)【摘要】前列腺成体干细胞身份属性的解析对研究前列腺组织的损伤修复和肿瘤起始都具有重要的意义。然而正常前列腺成体干细胞的身份属性存在巨大的争议,是前列腺研究领域悬而未决的重要科学问题。因此,我们利用单细胞转录组测序技术系统分析了35129个正常成年雄性小鼠前列腺细胞,发现前列腺管腔细胞可以分为Luminal-A、Luminal-B和Luminal-C三个细胞亚群。进一步阐述了Luminal-C细胞通过自我更新和分化维持前列腺管腔细胞谱系,证实了Luminal-C细胞可以作为前列腺肿瘤的起始细胞。单细胞测序技术与应用解析崔淼 深圳湾实验室 工程师/测序平台负责人【摘要】近几年来,单细胞测序技术发展迅速,与传统测序方法相比起来,其对解决生物材料的低获取量和生物异质性等问题尤为重要。凭借这一技术,研究者们可在单细胞水平上面研究生物进程和一些疾病的发生发展,包括肿瘤进化和癌变、早期胚胎发育、神经细胞异质性等。本次报告将从多方面逐一介绍单细胞测序技术:包括单细胞测序技术概念及发展历程、单细胞测序技术原理及实验设计、单细胞测序技术操作流程及注意事项、单细胞测序条件选择、单细胞测序技术应用等。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 更高通量!10x Genomics推出新一代单细胞分析平台Chromium X
    单细胞分析已经成为生物学领域的一个变革性突破。了解细胞多样性有助于人们深入了解细胞内机制及其在健康和疾病中的应用。不过对许多研究人员而言,因为存在技术、成本和扩展性上的挑战,单细胞分析遥不可及。10x Genomics公司近日宣布推出新一代的单细胞分析平台——Chromium X系列。Chromium X单细胞分析平台由于其专有的Next GEM技术,使单细胞分析简单、可靠、可扩展。该技术的关键是能够生成数十万个单个单元分区,每个分区包含用于下游分析的识别条码。结合创新的试剂输送系统和软件分析工具,可以发现以前无法获取的生物信息。此外,Chromium X在10x Genomics Cloud中提供了完全集成的自动化系统支持,完整的温度控制,并改进了访问支持。总而言之这是一台强大而灵活的仪器,能够让百万级别的细胞研究变得常规。新系列Chromium X是10x Genomics单细胞分析平台的高通量版本,据10x Genomics公司介绍,其单个细胞实验仅需花费2美分。随着Chromium X系列的推出,单细胞测序在技术、成本和扩展性方面的挑战正在消失。Chromium X相当灵活,适合任何实验室,它能够在单次运行中分析数百个至数十万个细胞,让百万级的细胞研究变得常规。哈佛医学院单细胞核心实验室的科学主管Luciano Martelotto表示:“我们需要以更大的规模和尽可能高的分辨率来分析细胞,以便回答科学家的许多问题。大规模、高分辨率的时代即将到来,我们需要一些产品,让大规模转化实验变得常规,就像Chromium X承诺的那样。”10x Genomics的联合创始人兼首席科学官Ben Hindson表示:“新的Chromium X系列对我们来说是一个里程碑,也是我们迄今为止最雄心勃勃的项目。我们为科学家提供了一种先进的仪器,具有极大的灵活性,能够产生新的见解来促进人类健康。”Chromium X系列与10x Genomics现有的各种低通量和标准单细胞分析兼容,在数据管理、分析和协作上获得10x Genomics Cloud Analysis的支持。Chromium X系列现在接受预订,预计将在本季度晚些时候发货。
  • Nature Methods | 张奇伟/张新荣团队合作开发出单细胞空间代谢组分析新方法
    2021年10月4日,清华大学北京信息国家研究中心/医学院张奇伟教授(美国德州大学达拉斯分校客座教授)与清华大学化学系张新荣教授团队合作在Nature Methods杂志上在线发表论文:SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment ,提出一种在单细胞分辨率下进行空间代谢异质性分析的新方法。SEAM方法采用高空间分辨质谱成像结合大数据算法,实现了组织原位代谢异质性可视化、单细胞核图像识别、代谢特征信息提取以及单细胞的聚类、差异化分析,从而能够让研究者系统的解析组织中单细胞的“代谢指纹图谱(metabolic fingerprint)”。由于器官或组织中的单个细胞的代谢物图谱存在明显的空间分布的异质性,因此,定位单个细胞在组织网络中的位置、区分相关代谢物的指纹图谱差异、确定重要代谢物的分子组成有重要意义。为了验证新方法,作者解析了野生型小鼠肝脏组织中的空间代谢异质性,发现了肝细胞代谢异质性亚群。这一发现和前人通过蛋白或者基因表达所验证的肝组织分区现象(Liver zonation)有着高度一致,有效证明了SEAM方法的可靠性和准确性。作者还对人肝纤维化中的代谢异质性进行了空间代谢组和空间转录组联合分析。发现在肝纤维化样本中存在有两种代谢差异的肝细胞亚群,它们和纤维化区域的距离在不同样本间存在有统计学差异。通过代谢组和转录组的共同分析,发现其中的存在有谷丙酰胺的上调以及其对应代谢相关的跨膜转运蛋白的基因表达上调。虽然单细胞转录组的研究已经取得长足进展,与转录组及其表型研究密切相关的代谢组研究在单细胞水平目前还缺少方法。本文提出的“SEAM”方法,系统解析了组织空间中的单细胞代谢组,对于整个单细胞技术领域的进步具有重要的推进作用。该论文的共同通讯作者是清华大学张奇伟教授、清华大学张新荣教授、原清华大学陈阳副研究员(现中国医学科学院基础医学研究所研究员)。共同第一作者为清华大学自动化系、北京信息国家研究中心博士生原致远、清华大学生命科学学院、生命科学联合中心博士生周启明、清华大学化学系博士生蔡乐斯。中日友好医院潘琳教授在本工作中参与了病理切片相关实验指导和细胞类型鉴定。北京协和医院郑永昌教授提供了临床样本。清华大学北京市中医药交叉研究所李梢教授为项目研究提出积极建议。
  • 厦门大学杭纬教授课题组LA-ICP-MS技术新进展:实现单细胞质谱成像分析
    近日,厦门大学化学化工学院杭纬教授课题组在单细胞质谱成像研究方面取得进展,相关成果以“Single-Cell Mass Spectrometry Imaging of Multiple Drugs and Nanomaterials at Organelle Level”为题发表于ACS Nano(DOI: 10.1021/acsnano.1c02922)。  探究化学物质在生物组织甚至单细胞内的位置分布是生命科学研究的重要方向之一。特别是随着金属元素组学和元素标记技术的发展,对于元素的分析检测显得愈加重要。电感耦合等离子体质谱(ICP-MS)技术是最常用的元素检测手段之一,通过与激光剥蚀(LA)采样方法的联用,使得这种传统的溶液进样质谱技术具有了原位分析和化学成像的能力。但是,由于衍射极限以及透镜数值孔径等因素的限制,这种激光采样方法的空间分辨能力仍然停留在微米级别,难以应用于单/亚细胞水平上的成像研究。  杭纬课题组首次设计了具有三通结构的样品剥蚀池,从而将微透镜光纤激光采样技术与ICP-MS相结合,搭建了LA-ICP-MS成像平台,该装置可以实现低至400纳米空间分辨率的质谱成像,对生物组织和单细胞内的多种化学物质进行可视化探测,还易于实现可调分辨率的成像模式。以同一片小鼠小肠剖面组织为研究对象,获得了从500纳米至10微米空间分辨率的药物分布成像图片。利用高分辨模式的成像,能够更直观、精准地描绘出小肠组织内微小的细节和药物的分布,从而揭示小肠对药物的吸收和作用机理。  这种高空间分辨率的LA-ICP-MS成像装置也可以在细胞器水平上实现对单细胞的成像分析。课题组将HeLa细胞与金纳米棒、卡铂等药物同时培养,而后将在石英片上贴壁生长的细胞放入样品剥蚀池内进行成像检测。结果表明金纳米棒主要位于细胞的溶酶体内,而金纳米棒上修饰的不同基团会影响细胞对纳米材料的摄取量、细胞的形貌以及活性产生 而卡铂药物被癌细胞摄取后主要分布在细胞核内,通过与核内DNA的相互作用诱导癌细胞凋亡。这种纳米级空间分辨的元素成像有望在生物学与医学等多领域获得应用,在纳米尺度下揭示待测物的化学物质分布。  该工作是在杭纬教授指导下完成的。实验部分主要由该院2017级博士研究生孟一凡(已毕业)完成,高超鸿、陆桥等参与了论文的研究工作。研究工作得到国家自然科学基金(项目批准号:21974116、21521004、22027808)的资助和支持。  论文链接: https://doi.org/10.1021/acsnano.1c02922
  • 视频回放|第六届细胞分析技术大会iCCA2023圆满举办!
    仪器信息网讯 细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义。近年来随着分析技术的不断提高,人们越来越意识到细胞具有个体差异性,原位细胞分析、微流控技术、细胞成像分析、单细胞分析、流式细胞技术等创新的细胞分析技术发展迅速,使得对细胞进行精确操控、识别、分离和分析成为了可能。仪器信息网于2023年08月30日-09月01日成功举办了第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。三十余位业内资深专家学者、企业技术专家等,就类器官、微流控、干细胞、单细胞测序、原位测序、流式、生物制品、生物成像技术等各领域,围绕前沿创新的细胞分析技术在科研中的应用与解决方案多角度多维度分享。本次会议共吸引近2000人参会。应广大用户要求,会议主办方经征得报告嘉宾同意,特剪辑整理会议视频回放特辑,供从业人员观看学习。(部分报告内容不便回放,敬请谅解!)细胞分析技术微信交流群(进群后请及时添加群主微信 并发送 姓名+单位+职位 或名片)为帮助广大实验室用户及时了解前沿技术进展、创新产品与解决方案,仪器信息网特此约稿。欢迎投稿,投稿文章将于话题专栏展示并在仪器信息网相关渠道推广,投稿邮箱:liuld@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13683372576(同微信)。会场一:类器官与器官芯片(08月30日)关键词Highlight:干细胞、类器官培养回放地址报告专家报告题目09:30-10:00熊春阳 北京大学工学院 教授细胞(类器官)力学芯片研究进展10:00-10:30林鹤鸣 安捷伦科技(中国)有限公司 产品应用专家安捷伦细胞分析技术在类器官领域的应用10:30-11:00王凯 北京大学医学部 研究员干细胞与类器官11:00-11:30潘晓 哈美顿(上海)实验器材有限公司 应用工程师Hamilton自动化解决方案在细胞高通量筛选的应用11:30-12:00蔡志伟 上海交大附属仁济医院 研究员Application of organoid technology in prostate stem cell and cancer research午间休息13:30-14:00冷泠 中国医学科学院北京协和医院 正高级教授复杂皮肤类器官构建及其应用14:00-14:30陆叶舟 赛多利斯(上海)贸易有限公司 生物分析产品应用科学家实时活细胞成像分析在3D器官细胞模型中的应用14:30-15:00陈华英 哈尔滨工业大学(深圳) 副教授基于微流控的细胞无标记分选和打印研究15:00-15:30于化龙 贝克曼库尔特 高级应用专家流式细胞术在类器官研究中的应用15:30-16:00杨根 北京大学 副教授 TOPMOS类器官高通量药物筛选系统16:00-16:30游换阳 徕卡显微系统(上海)贸易有限公司 应用专员类器官多维度多模态影像应用16:30-17:00陈早早 东南大学 副研究员/江苏艾玮得生物科技有限公司 副总经理类器官与器官芯片在细胞分析中的应用与发展会场二:单细胞分析技术(上)(08月31日)关键词Highlight:微流控、质谱、流式、代谢、电学特性分析报告时间报告专家报告题目09:00-09:30林金明 清华大学 教授 微流控芯片质谱联用细胞药物代谢分析方法研究09:30-10:00马汉彬 中国科学院苏州生物医学工程技术研究所 研究员 基于有源微流控的单细胞分选和操控系统10:00-10:30陆瑶 中国科学院大连化学物理研究所 研究员高通量单细胞分泌分析技术研究10:30-11:00丁琳 江苏瑞明生物 高级产品经理实时单细胞多模态分析仪的应用11:00-11:30马潇潇 清华大学 长聘副教授单细胞结构脂质组学及生物医学应用11:30-12:00赵阳 中国科学院微电子研究所 副研究员单细胞固有电学特性高通量流式分析技术研究会场三:单细胞分析技术(下)(08月31日)关键词Highlight:转录组、空间测序、原位测序报告时间报告专家报告题目13:30-14:00胡学达 北京百奥智汇科技有限公司 副总裁基于单细胞测序的肿瘤免疫研究:从机制到疗效预测14:00-14:30左亚军 深圳华大智造科技股份有限公司 市场中心产品经理创新智造助力单细胞组学标准化和规模化14:30-15:00曹罡 深圳理工大学 教授新一代中通量FISH技术、自动化仪器开发及其在精准诊断中的运用15:00-15:30赵永席 西安交通大学 教授单细胞核酸编码扩增分析 15:30-16:00郭旺昕 深圳湾实验室 博士后单细胞转录组学解析前列腺管腔干细胞身份属性以及谱系可塑性16:00-16:30崔淼 深圳湾实验室 工程师/测序平台负责人单细胞测序技术与应用解析会场四:细胞治疗产品的CMC质量控制分析(09月01日)关键词Highlight:CART、细胞治疗、流式细胞仪报告时间报告专家报告题目09:30-10:00原丽华 中国科学院苏州纳米技术与纳米仿生研究所 流式平台主管/高级工程师细胞治疗产品生物分析方法选择和案例分享10:00-10:30汪莹 博腾生物 分析研发部 生化分析经理细胞治疗药物产品IND申报的质量控制要点解析10:30-11:00杨英 北京昭衍药物检定研究有限公司 生物分析部总监免疫细胞治疗产品质量控制策略探讨会场五:细胞成像分析技术(09月01日)关键词Highlight:荧光探针、分子示踪成像、超分辨、单分子追踪报告时间报告专家报告题目14:00-14:30王璐 复旦大学 研究员蛋白响应型荧光探针用于超分辨荧光成像和生物传感研究14:30-15:00侯尚国 深圳湾实验室系统与物理生物学研究所 特聘研究员基于目标锁定机制的三维单分子示踪光学显微成像15:00-15:30李迪 中科院生物物理所 正高级工程师结构光照明超分辨荧光显微镜的开发和生物学应用15:30-16:00陈忠文 中国科学院生物与化学交叉研究中心 研究员 细胞膜信号转导的单分子追踪
  • 技术线上论坛|1月21日《亚微米尺度下的胶原蛋白分析及其在单细胞、细菌层面的生物学应用》
    [报告简介]在本次网络研讨会中,我们将讲述亚微米同步光热红外(O-PTIR)光谱和拉曼显微镜(IR+Raman)是如何在生命科学领域中应用和文章发表的,从组织到细胞,甚至单个细菌细胞。Kathy Gough教授(加拿大马尼托巴大学)将展示她近期发表的关于O-PTIR在胶原蛋白、肌腱和纤维分析上的新研究成果。在该研究中,偏振光被用于深入了解分子层次取向,从完整定向肌腱切片(在CaF2和玻璃上)和直径约500 nm的单个纤维中获得红外光谱和图像,以获得生物聚合物的次经过验证的互补化数据。原纤维红外光谱中酰胺I和酰胺II条带相比于完整肌腱较窄,且相对强度和条带形状均发生了改变。这些红外光谱代表了正常I型胶原原纤维在偏振光下的可信赖红外谱图,可作为未来胶原组织研究的基准来进行使用。[注册链接]PC端用户点击https://www.photothermal.com/webinars/报名 ,手机用户请扫描上方二维码进入报名[主讲人介绍]Prof. Kathy Gough,Department of Chemistry, University of Manitoba, Canada (加拿大曼尼托巴大学, 化学系)Kathleen M. Gough是加拿大曼尼托巴大学化学系教授、地理与环境系兼职教授,也是生物医学工程研究项目的核心成员。她是远场FTIR和O-PTIR振动光谱以及近场红外成像和拉曼显微镜的专家。她的研究领域从生物/生物医学研究(细胞和细胞核、脑组织、正常和损伤的心脏组织、正常和机械损伤的肌腱、真菌、酵母细胞、北海冰硅藻)到新材料(合成蜘蛛丝、用于伤口敷料的聚丙烯酸水凝胶、自消毒材料)。Kathy Gough教授开创了使用远场红外光谱层析成象技术并用于3 D可视化微观目标的先驱工作,立体像素分辨率可达1.1 µm3,并和其前博士生CFindlay (2017)共同拥有该。2017年,她被选为应用光谱学学会会员,同时也是临床光谱学和应用光谱学编辑顾问委员会成员。Dr. Mustafa Kansiz, Director of Product Management and Marketing, Photothermal Spectroscopy Corp. (PSC公司产品运营和市场总监)[报告时间]开始: 2021年1月21日 10:00 AM结束: 2021年1月21日 11:00 AM请点击注册报名链接,预约参加在线讲座[技术线上论坛]http://www.qd-china.com/zh/n/2004111065734
  • FluidFM BOT单细胞显微操作赋能CRISPR基因编辑取得重大突破——加速细胞系的开发进程,实现单个细胞多基因编辑
    Jennifer Rottenberger1, Paul Monnier2, Maria Milla2, Tobias Beyer2, Dario Ossola2, Justin S Antony1 and Markus Mezger11 University Children' s Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany2 Cytosurge AG, Saegereistrasse 25, 8152 Glattbrugg, Switzerland生物制药和生物学研究以及生物制品的生产制造都依赖于基因修饰的细胞系,这些细胞系的基因被修饰,以诱导所需的表现型。随着CRISPR等基因编辑技术的发现和发展,多位点编辑的越来越引起了研究者的重视,但实际研究表明,整个实验进程是冗长而复杂的过程。近期,来自德国图宾根大学附属儿童医院的学者和来自瑞士Cytosurge公司工程师合作,通过FluidFM BOT技术手段,在不到三周的时间内完成了多基因敲除的单克隆细胞系。 FluidFM BOT助力CRISPR实现新突破自CRISPR作为一种基因编辑技术被发现和发展以来,它已经彻底改变了许多生命科学的研究领域。它为科学家提供了一种高度通用的基因工程工具,已经应用于各种广泛的生物体。科学家们对多基因位点编辑的多重策略的兴趣也正在急剧的增加:多重gRNAs的使用可以大大的增强CRISPR的应用范围。如多位点基因编辑,基因失调,细胞凋亡等。用传统技术手段包括转染等方法将多个gRNAs传递到细胞中具挑战。除了由几次DNA双链断裂引起的DNA损伤反应外,细胞活力也可能因物理损伤和化合物进入细胞核所引起的毒性而大大降低。所有这些都大地限制了CRISPR多位点编辑的潜力和效率。FluidFM BOT技术具,可将化合物直接的输送到任何细胞的细胞核中(图1)。因此,所有的试剂可以调整为佳的配比剂量进行注射,这样的话就很大程度上提高了效率,降低了细胞所受的物理压力,同时也减少了脱靶效应。FluidFM BOT技术完全屏蔽了常规基因递送方法的障碍,甚至CRISPR RNP复合物可以与数十甚至数百种不同的gRNAs共同注射。此外,FluidFM BOT的注射物不依赖于待注射物本身的特性,对于难以转染的细胞(如原代细胞)或需要大量的基因插入和沉默时候更具特优势。图1:FluidFM BOT技术可以温和地操作单个细胞。 在传统的细胞系发展系统实验中,为了得到稳定转染的细胞系,候选细胞系在增殖过程中被反复评估。目前需要的时间是12到14周。相比之下,通过FluidFM BOT技术可以挑选一个BOT注射编辑过的单个细胞,并从中产生克隆体——从转染之日起直到克隆体被鉴定出来,不到三周的时间。大大提高了细胞系构建的时间。 FluidFM BOT技术进行多基因敲除构建细胞系接下来,我们将展示了如何使用FluidFM BOT技术在不到三周的时间内生成单克隆多敲除细胞系(图2)。先,通过FluidFM BOT技术将外源物注射到CHO细胞中,同时靶向几个不同基因的基因组位点,直接将gRNA/Cas9 RNP复合物导入细胞核。纳米注射后,记录每个转染细胞的位置,这样以便在注射24小时后使用FluidFM BOT探针进一步分离成功转染的细胞。然后将这些细胞扩展成单克隆细胞系。接下来对细胞进行测序,以确定基因编辑是否成功。图2:FluidFM BOT技术进行细胞株开发流程:1天,细胞经FluidFM BOT注射转染。2天,选择成功转染的细胞,通过FluidFM BOT系统进一步进行单细胞分离。从3天到14天,分离的单细胞扩展成稳定的单克隆细胞系,并对其基因组进行分析。 1天:FluidFM BOT单细胞注射转染通过FluidFM BOT技术进行纳米注射,简单的点击鼠标即可完成对几十个CHO细胞的细胞核进行注射,以大约5个细胞/分钟的速度自动完成注射。荧光标记物与所有不同的gRNA/Cas9 RNP复合物共注射,以方便监测注射过程并识别佳候选复合物(图3)。图3:FluidFM BOT注射CRISPR/Cas9复合物和荧光标记物的CHO细胞的荧光图像。 2天:FluidFM BOT进行单细胞分离和分选FluidFM BOT对细胞进行了注射转染24小时后,使用集成FluidFM BIO系列操作软件(ARYA)可以再次的找到所有目标细胞。进而,进行FluidFM BOT进行单细胞分离和分选,将目标单细胞采用孔径为4 μm的FluidFM探针进行单分离,放入空的孔板中(图4)。从视觉角度可以完全确保细胞系的单克隆性。图4:明场成像可以完全确保细胞系的单克隆性。 3 - 14天:单克隆细胞的扩增和突变分析分离后培养克隆,并在3天和6天后监测其生长情况(图5.1和5.2)。90%以上的分离细胞发育成一个细胞群落。转染后14天,收集克隆并对目标基因进行测序分析。50%的克隆在靶向位点上显示突变。图5.1:分离3天后的12组CHO细胞集落。图5.2:单克隆细胞群落生长6天后 结论结果表明,通过FluidFM BOT技术对单个细胞进行注射,完成了多个gRNAs同时递送到选定的单个细胞中这一艰难的任务。采用FluidFM BOT技术方法进行的CRISPR细胞编辑技术,同时共注入几十种gRNAs所获得的细胞系可以进一步扩增。此外,我们在这里证明了FluidFM BOT技术的使用大大减少了多表型单克隆细胞系的开发时间,从数月减少到三周。 展望FluidFM BOT技术为单细胞基因工程领域带来了全新的突破,有潜力解决科学家目前面临的一些艰巨的挑战,尤其是在他们需要快速和有效地开发单克隆细胞系时。传统的方法完全适用于常见的细胞系和基因工程策略,但当处理不常见的、罕见的或脆弱的、和已知难以转染的原代细胞类型,或者需要复杂的实验设计——例如CRISPR多基因编辑时,传统的方案就非常受限制。在这些特殊情况下,FluidFM BOT技术可能是可用的解决方案。
  • 中科院分子细胞卓越中心陈铭、赵宏伟:高内涵成像分析系统应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心化学生物学技术平台陈铭研究员和高级工程师赵宏伟联合供稿,以下为供稿内容:高内涵成像分析系统,通俗来讲就是自动化成像平台和图像定量分析平台的集成,于20世纪90年代中后期推出第一代产品。高内涵成像分析系统的出现得益于自动化技术的进步,也依赖于计算机辅助的图像自动采集和信息提取能力的提升,其鲜明特点就是图像采集速度快、样品检测通量高、数据分析功能强。高内涵主要应用于高通量药物筛选和功能基因组筛选的细胞表型类实验检测,也适用于中低通量的细胞学研究中实验条件的摸索和优化。本文主要从图像高通量采集和图像批量分析两个方面介绍一下应用心得,并简要介绍一下我们在高内涵使用中遇到的一些思考。1. 自动化成像:图像采集要兼顾成像速度和成像质量的平衡作为高通量检测设备,高内涵的成像速度非常快,现在的技术能在5分钟之内完成一整块384孔板的单通道单视野的高质量图像采集。高内涵的成像对象通常是板底透明的微量多孔板,包括1-1536孔板,其中以96孔板和384孔板的使用最为常见。当然,借助于适配器的使用,也可以实现对培养皿和玻片的观察。根据板底材质的不同,分为PS材质多孔板和玻璃底多孔板,其中板底透明的黑色PS材质微孔板使用较广泛。根据板底厚度的不同,板底厚度大于200 μm的属于厚底板,小于等于200 μm的属于薄底板。薄底板多用于高数值孔径物镜的成像,厚底板适配于长工作距离物镜。同时,由于高数值孔径物镜比较宽,容易与多孔板边缘的裙边相撞,导致多孔板最外面的一圈的孔无法成像,现在也有低裙边的多孔板来兼容高数值孔径物镜的整板成像。此外,出于特定的实验目的,还有一些特殊的板型,也可以在高内涵上进行图像采集,比如适用于3D 类器官培养的U型底多孔板,用于研究细胞迁移能力的Transwell孔板等。区别于一般的荧光显微镜,高内涵属于自动化的倒置荧光显微镜,通常搭配自动化的载物台来驱动多孔板的移动。目前通用的载物台是机械载物台和高精度磁悬浮载物台,可以实现连续时间点成像后稳定的视频输出。由于所有的微孔板的板底都无法保证厚度是绝对一样的,因此高质量图像采集的自动化还依赖于精确自动聚焦技术的发展。常用的聚焦方式包括基于激光的硬件聚焦和基于图像的软件聚焦。基于激光的硬件聚焦是通过光源的反射或折射实现的,利用近红外激光探测微孔板的底部界面作为自动聚焦的参照,特点是速度快、重复性高、光毒性低。我们平台目前使用的高内涵设备的聚焦方式为硬件聚焦,包括双峰探测和单峰探测两种板底探测方式。双峰探测的原理是利用激光探测微孔板板底下表面和空气之间的界面得到第一个探测峰,物镜继续向上移动,激光会探测到微孔板板底上表面和溶液之间的界面得到第二个探测峰,对于样品的聚焦就是在第二个探测界面上加上聚焦高度实现的。这种双峰探测方式可以保证同一个荧光通道的图像都是在样品的同一高度上采集得到,聚焦精确,但同时也相对容易受到一些因素的干扰造成聚焦困难,包括微孔板板底的厚度及均一度,以及溶液的性质和体积等。当使用低倍物镜或检测玻片样品时,双峰探测模式不再适用,只能使用单峰探测方式,即在自动聚焦时只能探测到多孔板板底的下表面和空气之间的界面或者玻片和空气之间的界面。单峰探测模式下,自动聚焦的实现是把单峰界面作为聚焦参照,加上板底厚度或玻片厚度作为理论上的第二个界面从而实现样品的自动聚焦。这种单峰探测方式下聚焦更容易些,但共聚焦成像的精确度会降低。需要特别注意的是硬件聚焦对于板底的洁净程度要求较高,多孔板在进行成像前最好用喷过消毒酒精的无尘纸擦拭,而且要保证物镜镜头洁净无尘,避免因为板底和物镜上的灰尘造成聚焦失败。另外有些自动化微孔板成像设备,还配置了软件聚焦模式。软件聚焦是指机器自动在z轴上拍摄一系列图像,根据算法挑选最大对比度的图像作为样品图像,这种软件聚焦模式速度通常较慢,而且容易因细胞碎片或死细胞等原因导致聚焦不精确。作为显微镜,高内涵的成像模式也包括宽场成像和共聚焦成像。高内涵仪器上宽场成像用途比较广泛,但对于一些信噪比很低的实验或者需要观察亚细胞结构的筛选则必须使用共聚焦成像。为了适配检测通量和检测速度,因此高内涵上的共聚焦只能是转盘共聚焦,有效提高了成像速度的同时但也会导致图像分辨率受一定损失。目前主流的高内涵品牌推出的共聚焦,有较低端的LED光源的单转盘共聚焦,也有激光光源的双转盘共聚焦。由于共聚焦排除了非焦平面的杂散光,到达样品的激发光的光子数量的急剧锐减,微透镜双转盘共聚焦能极大地提高到达样品的光子数量,从而达到比较好的成像效果。高内涵的共聚焦通常搭配水镜使用,与空气镜相比,水镜的透光量是空气镜的4倍以上。另外,目前虽然有的高内涵搭配了油镜,但是油镜并不适用于高通量筛选,进行稳定的大规模自动化实验时还是空气镜和水镜更为适用。作为高通量自动化仪器,高内涵通常会搭配机械臂和多孔板堆栈来提高检测通量。考虑到荧光成像样品最好避光保存,降低荧光淬灭或衰减风险,在使用多孔板堆栈时,条件允许的情况下最好能做适当的避光措施以更好地保护样品的荧光信号。在实际科研应用中,有的实验细胞密度较低,有的实验因为药物处理或siRNA处理导致的细胞毒性问题使部分样品孔内细胞比较稀疏,有的类器官成像实验中样品只存在于孔内的部分区域,对于上述这些情况可以考虑使用低倍物镜进行预扫描,对扫描结果进行简单的图像分析确认精确的检测区域,再对目标区域进行高倍物镜下的正常图像采集。这不仅可以节省大量的检测时间,同时也避免了大量冗余数据的产生。2. 细胞图像分析:标准化、多参数、高通量、无偏差高内涵图像采集速度快和检测通量高的直接结果是会产生海量的图像数据,因此,标准的、无偏差的批量图像分析是必不可少的。同一批次的筛选样品,设置一个通用的图像分析方法,可以稳定的用于所有筛选数据的批量分析。高内涵分析软件能够根据细胞图像提取数百到数千个特征参数,用于定义或区分不同细胞表型,也可以输出所有的特征参数用于实验数据的评价。高内涵的图像分析软件可包含三个难度的分析模式:简单的预设方法模式,灵活的模块化组合模式,以及难度最大的个性化分析方法开发模式。预设方法模式对操作新手比较友好,按照实验类型简单修改后套用即可,比如细胞计数、荧光强度分析、细胞增殖分析、细胞凋亡分析、蛋白核质转位分析、蛋白受体内化分析、Spot分析等等。由于面临的实验需求多种多样,在我们平台的实际科研应用中高内涵图像分析通常采用灵活的模块化组合模式,优化调整不同的模块参数使其更加贴合具体的实验需求。基于这种分析模式,细胞的亚群分析、基于图像的纹理分析、细胞周期分析、Spot分析、神经细胞分化分析、单细胞迁移轨迹追踪分析、微核分析、类器官分析、免疫细胞杀伤分析等实验类型,都已获得很好的分析效果。图像分析主要包括以下步骤:图像的处理、图像分割、特征参数的定量和提取、细胞亚群分类和结果输出。图像分析环节特别具有挑战性的步骤就是图像分割,尤其是对于样品质量比较差或者是没有荧光标记的明场图像而言。对于细胞分布不均匀,细胞核拥挤成团的样品的分割,往往要尝试很多分割方法,包括对图像进行锐化或模糊化处理、通道叠加、调整细胞识别方法的荧光阈值或对比度、优化不同切割方法的参数等,从而获得最好的分割效果。对于分割不理想的图像,可以将细胞区域和背景区域分割,对细胞区域进行整体定量。现在随着机器深度学习技术在高内涵图像分析软件中的应用拓展,软件图像分割能力已得到很大提升。当微孔板上孔内细胞表型的异质性比较大的时候,采用整孔平均值这样的参数定义不同处理之间的差异时,往往信号的窗口比较小。为了增大信号窗口,可以考虑采用将细胞群体划分为不同的亚群,针对不同的亚群进行数据分析,或者是计算某个亚群在群体细胞中的占比。对于荧光图像的分析,多数情况下平均荧光强度(即mean-mean值,每个孔内所有像素点的平均荧光强度)可以反映不同孔之间的差异,但当不同处理导致细胞形态发生变化时,总荧光强度的平均值(即sum-mean,每个孔内所有细胞的总荧光强度的平均值)更能反映真实的孔间差异。对于一些荧光强度比较低的样品,阴性样品和阳性样品的信号窗口不够大的时候, 通过扣除背景信号,也可以提高阴性阳性之间的信号窗口。我们常用的背景信号的计算方法有四种:① 通过平均荧光强度和对比度,反推背景荧光强度;②通过纹理分析,找出没有细胞的区域定义为背景区域,定量该背景区域的荧光值为背景荧光强度;③圈选细胞之外的一圈无细胞区域为背景区域,定量该区域的荧光强度;④制备没有荧光标记的细胞孔,该孔的荧光值作为背景荧光。高内涵分析软件虽然能够对细胞图像提取成百上千个生物学参数,但大多数情况下,简单表型只需要其中一个或几个参数就可以进行数据评价,判断药物处理效果和反映趋势。常用的参数包括:荧光强度、荧光总强度、细胞数量、细胞面积、阳性细胞比例、荧光强度比值等。但是有一些复杂的细胞表型,无法用单个或几个参数进行简单区分,这时候结合软件的机器自学习功能/深度学习功能,利用多参数体系对细胞群体进行分类,可能更容易实现不同表型的区分。3. 高内涵系统使用过程中需注意完善的地方总的来说,高内涵细胞成像和图像分析功能都很强大,但是在实际的使用中也面临着一些问题和挑战。首先,高内涵实验产生的数据量非常庞大,高效安全的数据存储管理非常重要。如果由于配套电脑的硬盘容量跟不上实际实验规模的需求,仪器管理员往往会处于频繁的数据备份和硬盘清理工作中。同时也需要有高速稳定的数据信息传输途径,确保采集好的图像能及时传输到分析软件系统,避免发生数据丢失的情况。其次,图像分析对电脑的运算性能要求比较高,特别是有些类型的图像分析方法步骤复杂,定量参数繁多。比如单细胞实时追踪实验,需要对单个细胞的多个连续时间点进行多参数定量统计,最后的结果输出阶段也需要对单个细胞数据进行呈现,因此对电脑的运算能力很有挑战。如果配置的数据分析电脑性能与这类图像分析的需求不太匹配,往往会导致分析速度过慢甚至容易发生宕机现象。最后,对于实心的类器官样品,目前常见的高内涵系统的激光穿透效率和成像分辨率还不足够理想,重构获得的三维图像可以用于获取体积面积等参数,但还不太能对球体深处内部细胞进行高质量分割,也较难获取准确的蛋白定位信息。相信这也是高内涵成像系统在未来发展提升中会逐渐优化解决的一些要点。本文作者:赵宏伟,化学生物学技术平台,高级工程师陈铭,化学生物学技术平台,平台主任,研究员
  • 华大智造单细胞赛道再发力!发布单细胞液滴生成仪及组学新品
    7月29日,在第十二届细胞产业大会的单细胞多组学与临床应用分论坛上,华大智造重磅发布其在单细胞领域的两款最新产品,单细胞液滴生成仪 DNBelab C-TaiM 4(泰山),以及单细胞表观组学产品scATAC建库试剂盒。单细胞液滴生成仪 DNBelab C-TaiM 4(左)及单细胞表观组学产品scATAC建库试剂盒(右)这是华大智造继DNBelab C系列高通量单细胞转录组建库试剂盒产品后,单细胞组学全流程产品家族补充的重要产品,更为完善的产品组合也将更好地赋能全球生命科学实验室开启规模化、标准化的单细胞多组学研究。两款新品加持单细胞测序全流程本次上新的单细胞液滴生成仪DNBelab C-TaiM 4 (以下简称TaiM4)的命名灵感来源自“泰山”,传递了华大智造不断攀登技术极限的理念。TaiM 4能为细胞或细胞核的分离和标签提供稳定的动力。该仪器配备4个独立控制的微流控通路,同时兼容单细胞ATAC文库和3’ RNA文库制备需求,支持1-4个样本的灵活上样。它延续了华大智造单细胞产品小巧轻便、即开即用的优点,适用于2500米以下的海拔实验环境。此外,该设备在单细胞ATAC文库制备过程中的细胞核分离、标记过程仅需6分钟;在单细胞3’RNA文库制备过程中的细胞核分离、标记过程仅需9分钟。华大智造单细胞液滴生成仪DNBelab C-TaiM 4另外一款上新产品是DNBelab C系列高通量单细胞ATAC文库制备试剂盒套装及配套的微流控载片。和DNBelab C-TaiM4 单细胞液滴生成仪配套使用,可以完成数万细胞核的ATAC文库制备。试剂盒套装包含液滴生成使用的百万级标签磁珠、自主开发的液滴生成油、以及适配华大智造测序仪的文库制备试剂等。该产品基于精密压力驱动微流控技术,污染率低,可完成高质量单细胞ATAC文库的制备和数据产出。可用于免疫组学、肿瘤、神经科学、发育生物学等领域的单细胞研究。两篇Nature 科研应用表现不俗值得一提的是,scATAC建库试剂盒已经在科研应用中牛刀小试,早期试用的结果已用于2篇Nature文章中,产品数据表现不俗。一站式平台 助力单细胞多组学标准化、规模化华大智造作为生命科技核心工具缔造者,能够为单细胞测序全流程提供独一无二的一站式平台。其中,针对细胞/细胞核制备环节,华大智造提供小鼠多组织解离试剂盒和50+物种组织解离方案指南;此外,已经发布的DNBelab C系列3’ RNA建库产品,已经产出了 30000+例样本数据,覆盖了40多种物种类型和300多种组织类型,重磅预告了不同物种组织的3’ RNA数据表现白名单,并展示了部分数据;在数据分析环节,提供配套的单细胞高通量、高精度多模态分析平台,不仅能够对单细胞测序数据进行简单的质控,还支持更多功能的分析和多组学数据的整合。华大智造产品市场中心总监汪婧婧博士在发布会现场表示:“华大智造在单细胞领域,除了为科研人员提供单细胞建库产品和基因测序产品MGISEQ-2000、DNBSEQ-T7、DNBSEQ-T20外,还能够提供自动化文库制备系统MGISP-100,将复杂的单细胞文库制备过程转移到自动化平台一键运行,为单细胞行业引入了全新的自动化概念,这将开启单细胞湿实验标准化时代的到来,我们也坚信单细胞多组学标准化、规模化时代终将来临。”汪婧婧博士华大智造产品市场中心总监单细胞产品家族图自动化建库流程图在单细胞产品领域,华大智造通过其率先发布的DNBelab C系列产品,已收获了众多企业及科研用户的好评。在过去的一年时间里,国内已有9个企业认证成为华大智造单细胞产品服务商,终端使用客户数量100多家。在科研产出上,基于华大智造单细胞测序平台,已累计产出高质量文章50多篇,其中包括2篇Nature,1篇Cell,其中有21篇文章IF>10,充分证明了该单细胞平台性能的优越性。小结:单细胞技术是当前测序领域最火的技术之一,相关公司超过50家,其中不乏众多国产企业。作为国内基因测序上游龙头企业,华大智造并非在单细胞领域走的最快的,但其追赶之势十分迅猛,加上本身先天平台优势,大有后来者居上的势头。如其所言:“未来,华大智造将进一步深耕单细胞组学领域,发挥自身在基因测序设备领域、实验室自动化领域的优势,为规模化的科学研究、为单细胞组学全面进入临床及精准健康研究,提供更为优质、标准的系列产品组合,赋能单细胞多组学标准化、规模化时代”。
  • Nature、Cell等高水平文献带您解析:单细胞组学研究过程中保持细胞存活的全新方案!
    目前,单细胞组学分析大都依赖于将细胞裂解的方案,单细胞活检是少有的非侵入性的单细胞分析方法,它允许研究人员在不杀死细胞的情况下获取细胞的转录组信息,单细胞组学通过分离和分析单个细胞的分子成分来阐述细胞异质性。从单细胞活检中获得的基因表达谱是裂解方案获取细胞转录组的全面升级 (Chen et al., Nature, 2022)。FluidFM OMNIUM在单细胞组学研究中的特征:多功能单细胞显微操作系统- FluidFM OMNIUM,可以自动、高效的完成单细胞提取或单细胞注射实验,可有效应用于原位活细胞基因测序Live-seq和单细胞活检,让研究人员能够在不杀死细胞的情况下对细胞进行转录组测定,从而为单细胞转录组学带来新的范式。在表型分型前记录细胞转录组。记录随时间推移的转录事件,以揭示分子成分如何影响细胞行为。直接链接单个细胞的历史和生长轨迹,揭示过去的细胞状态和了解细胞的谱系决定。在接受特定疗法之前和之后,对异质性疾病的单细胞进行活检,以确定用于早期药物开发的分子标签。FluidFM OMNIUM进行单细胞活检的显著优势:无创单细胞活检在不改变基因表达、细胞表型或细胞间相互作用的情况下获得可靠的结果。通过活检对单细胞进行连续和实时监测FluidFM提取保留细胞活力:在相同的运行中从相同的细胞中提取几次或随时间周期性地提取。分析时间序列基因表达单细胞转录组序列分析Live-seq活细胞单细胞测序和单细胞活检是如何进行:Live-seq活细胞单细胞测序方法将FluidFM OMNIUM系统与高灵敏度的低输入RNA-seq方案配对。FluidFM OMNIUM可以从活单细胞的细胞室中提取亚皮升体积,然后分离提取物进行进一步分析。通过避免破坏性方法(如细胞裂解),可以在同一细胞上进行进一步的下游分子和表型分析,甚至随着时间的推移进行转录组分析。这将为您的转录组学、代谢组学、蛋白质组学或任何其他组学研究引入发展路径分析而不是终点分析。专属的——在FluidFM操作软件中内置了专属的Live-seq应用工作流程。易用的——仅需在电脑界面上用鼠标进行指向和点击的操作即可。先进的——空心的、具有力学感应的FluidFM探针(请参考下面FluidFM探针图)FluidFM探针:用金字塔的横截面可以看到镂空的中间通道。FluidFM技术进行单细胞组学研究相关文章:使用Live-seq进行全基因组测序来自中国科学院深圳先进技术研究院的陈万泽研究员等展示了Live-seq活细胞单细胞测序技术的建立,这是一种利用FluidFM技术提取RNA并保留细胞活力的单细胞转录组分析方法。通过使用巨噬细胞暴露于脂多糖(LPS)的模型,他们能够根据影响巨噬细胞LPS反应异质性的能力进行全基因组排序。此外,研究表明Live-Seq可用于连续描绘LPS刺激前后单个巨噬细胞的转录组。这使得细胞轨迹的直接映射成为可能,并将scRNA-seq从终点法跨越到突破性的时间分析方法。W. Chen, O. Guillaume-Gentil, P. Yde Rainer, C. G. Gä belein, W. Saelens, V. Gardeaux, A. Klaeger, R. Dainese, M. Zachara, T. Zambelli, J. A. Vorholt & B. Deplancke. Live-seq enables temporal transcriptomic recording of single cells. (Aug 2022) Nature, doi:10.1038/s41586-022-05046-9.单细胞提取质谱联用来自ETH的Guillaume等利用FluidFM技术,通过亚皮升分辨率无损定量地提取细胞内液,然后进行飞行时间质谱分析。通过这种方法,他们从单个HeLa细胞质中检测和鉴定了几个代谢物。通过13C-Glucose摄取实验进行了验证,这表明代谢物采样结合质谱分析是可能的,同时保留了生理环境和被分析细胞的活力。O. Guillaume-Gentil, T. Rey, P. Kiefer, A.J. Ibáñ ez, R. Steinhoff, R. Brö nnimann, L. Dorwling-Carter, T. Zambelli, R. Zenobi & J.A. Vorholt. Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. (May 2017) Anal Chem., 89(9), 5017-5023. doi:10.1021/acs.analchem.7b00367.单细胞提取后细胞内分子成分分析来自ETH的Guillaume等证明了使用FluidFM以亚皮升的分辨率对单细胞的细胞质和核质部分进行定量采样,然后对从细胞质或细胞核中提取的可溶性分子进行全面分析,包括检测酶活性和转录丰度等。O. Guillaume-Gentil, R.V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli & J.A. Vorholt. Tunable Single-Cell Extraction for Molecular Analyses. (Jul 2016) Cell, 166(2), 506-516. doi: 10.1016/j.cell.2016.06.025.相关产品1、多功能单细胞显微操作系统- FluidFM OMNIUM
  • 华北理工大学附属医院236.00万元采购流式细胞仪
    详细信息 华北理工大学附属医院医疗设备(三)采购项目(二次)公开招标公告 河北省-唐山市-路北区 状态:公告 更新时间: 2022-07-15 招标文件: 附件1 华北理工大学附属医院医疗设备(三)采购项目(二次)公开招标公告 发布时间: 2022-07-15 一、项目基本情况 项目编号: ZHZB2022083 项目名称: 医疗设备(三) 采购方式: 公开招标 预算金额: 2360000.00 最高限价: 2360000.00 采购需求: 01包:流式细胞仪1台;02包:染色体核型分析仪1台#detail#项目三(二次)招标公告#_#pdf#_#d75c34d9-519c-4bee-8466-5211a250dbd4 合同履行期限: 详见招标文件 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2022年07月18日至 2022年07月22日, 9-12-12-17(北京时间,法定节假日除外) 地点: 登录河北省公共资源交易平台自行下载招标文件,并及时查看有无澄清和修改。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年08月10日09点00分(北京时间) 地点: 河北省公共资源交易中心开标大厅 四、响应文件提交 截止时间: 2022年08月10日09点00分 五、开启 时间: 2022年08月10日09点00分 地点: 河北省公共资源交易中心开标大厅 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 华北理工大学附属医院 地址: 唐山市路北区建设南路73号 联系方式: 刘倩 0315-2308169 2.采购代理机构信息 名 称: 河北章赫招标代理有限公司 地 址: 石家庄市友谊南大街265号石邑大厦 联系方式: 祝安 0311-66035633 3.项目联系方式 项目联系人: 祝安 电 话: 0311-66035633 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:流式细胞仪 开标时间:2022-08-10 09:00 预算金额:236.00万元 采购单位:华北理工大学附属医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河北章赫招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华北理工大学附属医院医疗设备(三)采购项目(二次)公开招标公告 河北省-唐山市-路北区 状态:公告 更新时间: 2022-07-15 招标文件: 附件1 华北理工大学附属医院医疗设备(三)采购项目(二次)公开招标公告 发布时间: 2022-07-15 一、项目基本情况 项目编号: ZHZB2022083 项目名称: 医疗设备(三) 采购方式: 公开招标 预算金额: 2360000.00 最高限价: 2360000.00 采购需求: 01包:流式细胞仪1台;02包:染色体核型分析仪1台#detail#项目三(二次)招标公告#_#pdf#_#d75c34d9-519c-4bee-8466-5211a250dbd4 合同履行期限: 详见招标文件 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2022年07月18日至 2022年07月22日, 9-12-12-17(北京时间,法定节假日除外) 地点: 登录河北省公共资源交易平台自行下载招标文件,并及时查看有无澄清和修改。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年08月10日09点00分(北京时间) 地点: 河北省公共资源交易中心开标大厅 四、响应文件提交 截止时间: 2022年08月10日09点00分 五、开启 时间: 2022年08月10日09点00分 地点: 河北省公共资源交易中心开标大厅 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 华北理工大学附属医院 地址: 唐山市路北区建设南路73号 联系方式: 刘倩 0315-2308169 2.采购代理机构信息 名 称: 河北章赫招标代理有限公司 地 址: 石家庄市友谊南大街265号石邑大厦 联系方式: 祝安 0311-66035633 3.项目联系方式 项目联系人: 祝安 电 话: 0311-66035633
  • 中国医科大学附属盛京医院500.00万元采购细胞定量分析
    详细信息 中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目招标公告 辽宁省-沈阳市-和平区 状态:公告 更新时间: 2023-03-13 (中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目)招标公告 项目概况 中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目招标项目的潜在供应商应在线上获取招标文件,并于2023年04月07日 13时30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:JH22-210000-65101 项目名称:中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目 包组编号:001 预算金额(元):5,000,000.00 最高限价(元):5,000,000 采购需求: 查看 品目1:支气管导航系统 1套 进口 一、项目概况: 1.设备名称:支气管导航系统 2.数量:1套 3.用途说明: a) 用于经支气管途径进行肺内组织活检采样。 b) 用于对纵隔淋巴结的定位与活检采样,进行肺癌分期。 c) 用于外科微创手术的病变的标记定位; d) 用于肺外周病变的微创介入治疗。 二、主要技术参数及要求: (一)系统功能: ★1.导航方式:经支气管实时电磁导航。 2.具备虚拟导航功能。 3.导航精度≤3mm。 ★4.可适用直径1cm的肺部病变。 (二)系统技术要求: 1.系统台车 (1) 具备复合视频输入。 (2) 具备S端子视频输入。 (3) 具备DVI-D视频输出。 2.专用计算机系统 (1)配备触摸显示屏,尺寸≥24寸,分辨率≥1900×1200像素。 (2)导航视窗个数≥12个。 (3)具备内窥镜视图。 (4)具备虚拟支气管镜视图。 (5)具备局部视图 (6)具备气道探测器视图和3D CT视图,可实现360度三维CT任意视角查看功能。 (7)具备静态3D支气管视图。 (8)具备动态3D支气管视图。 (9)具备最大密度投影(MIP)视图,可三维重建肺部血管。 (10)具备平行视图。 (11)具备探头视图。 (12)具备CT视图水平位。 (13)具备CT视图冠状位。 (14)具备CT视图矢状位。 (15)最多同时可显示导航视窗个数≥ 6 个。 (16)注册匹配方式:自动/手动。 (17)具备注册5星评分功能,用于评估导航误差。 (18)具备定位子系统。 (19)具备每次活检位置标记功能。 3.导航系统附件: ★(1) 具备独立电磁定位板,占地面积≤500mm×600mm,厚度≤10mm。 (2) 定位板工作频率最少包括以下频率:2.5 kHz, 3.0 kHz, 3.5 kHz。 (3) 定位板最大磁场≤350 mG。 (4) 支持符合使用条件的手术床≥2张。 (5) 具备可重复使用电磁定位贴片。 (6) 具备脚踏开关。 4.定位配件: (1)具备固头式定位导管,导管外径≤2.0 mm,导管末端含电磁感应器,且可感知3D位置。 ★(2)具备可伸缩式预弯延长导管,预弯设计便于远端方向调节,并同时满足导管内径≥2.0 mm,外径≤2.6 mm,长度≤1070 mm,可选预弯角度至少包括180°、90°和45°。 (3)具备内镜适配器,可固定延长导管与支气管镜的相对位置和调节轻紧度,便于实现单人导航操作。 (4)电源要求:输入电压220-240 VAC,50/60Hz;输入功率≤400VA。 (5)运行环境要求:温度范围15°C-35°C (59°F-95°F),相对湿度30%-75%,大气压范围70.0kPa–106.0kPa。 品目2:射频治疗仪 1套 国产 1.治疗主机: 1.1治疗范围:宫颈糜烂、宫颈息肉、宫颈肥大、尖锐湿疣、前庭大腺囊肿。 1.2工作频率:550KHz±40KHz。 1.3输出功率范围:15~50W可调,步进为1W。 ★1.4阻抗百分比显示为100~999%。 2.无烟保证指标: 2.1烟雾净化高频手术电极:设置在手术刀头的吸风口,吸烟率≥99%。 2.2管径大于5MM的专用操作手柄。 2.3气管防折叠系统:设有防折皱装置的管路。 2.4专用真空系统:140L/MIN抽吸45dB超低静音,可以产生≥-700mmHg的近似真空的压力。 2.5四层烟尘净化系统 ①.防尘:HEPA对直径为0.3微米微粒的过滤效≥99 %; ②.除臭:活性炭专用于吸附甲醛、苯系物、氨、氧、TVOC等有害物质,祛除异味; ③.灭菌:活性炭可杀灭大肠杆菌,金黄色葡萄球菌、霉菌、脓菌等致病菌,抑制流行病原的传播。 ④.杀毒:冷触酶可破坏固化病毒的蛋白质,将有机污染物和部分无机物分解成二氧化碳和水。 ★2.6 手柄:方便拔插手术电极;拥有凝、切双按钮;大于5MM的管径,宫颈自动无烟电切技术,自动旋切病变组织。 2.7 无烟手术电极具有:锥形电极、环形电极、方形电极、适形电极。 3.专用宫颈刀具: 宫颈凝固刀、宫颈肥大刀、宫颈息肉刀、尖锐湿疣刀、前庭大腺囊肿刀。 4.宫颈冷刀自动锥切系统: 4.1锥切范围可控:冷刀切割范围可控制,可根据宫颈坏死组织大小,控制深入的深浅从而控制切割的范围。 ★4.2无热损伤:自动锥切通过电机控制,完全冷锥切。 4.3活组织细胞取检:手动控制切割。 4.4组织结构:送检细胞组织结构完整,保留完整的上皮和足够的间质。 4.5送检组织染色后可见:细胞大小、形态;细胞核大小、颜色、形状、核分裂是否增多、有无病理性核分裂像;异性细胞多少及区域;基底膜是否完整。 5.侧开式专用窥阴器: 方便观察与治疗阴道壁疾病,在治疗过程中可在不抽出刀具的情况下直接置入或取出窥阴器。 6.工作环境温度: 6.1环境温度范围:5℃-40℃ 6.2相对湿度:≤80% 6.3电源:交流220V±22V 50Hz±1 Hz 6.4大气压力70kpa-106kpa 合同履行期限:合同签订后60日内。 需落实的政府采购政策内容:中小微企业(含监狱企业)的规定;对于促进残疾人就业政府采购政策的规定、对于节能产品、环境标志产品的相关规定等。 本项目(是/否)接受联合体投标:否 二、供应商的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.落实政府采购政策需满足的资格要求:无。 3.本项目的特定资格要求:设备属于医疗器械的,需提供医疗器械生产许可证(国产产品制造商提供)、医疗器械经营许可证(或对应类别备案凭证)、医疗器械注册证(有效期内),否则提供设备不属于医疗器械的情况说明。 三、政府采购供应商入库须知 参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。 四、获取招标文件 时间:2023年03月13日 09时30分至2023年03月20日 17时30分(北京时间,法定节假日除外) 地点:线上获取 方式:线上 售价:免费 五、提交投标文件截止时间、开标时间和地点 2023年04月07日 13时30分(北京时间) 地点:辽宁承明招投标有限公司(沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室)。 六、公告期限 自本公告发布之日起5个工作日。 七、质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。 1、接收质疑函方式:线上或书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、其他补充事宜 1.本项目采用全流程电子招投标,参与本项目的供应商须自行办理好CA锁,供应商除在电子评审系统上传投标(响应)文件外,应在递交投标(响应)文件截止时间前提交按采购文件规定的介质形式(U盘)存储的可加密备份文件,并承诺备份文件与电子评审系统中上传的投标(响应)文件内容、格式一致,备系统突发故障使用。供应商仅提交备份文件或电子投标文件的,投标(响应)无效。详见辽宁政府采购网《关于完善政府采购电子评审业务流程等有关事项的通知》 辽财采函{2021} 363号。2.供应商自行准备电子设备确保能够自行报价及解密。3.电子投标文件在辽宁政府采购网线上提交,备份文件提交至辽宁承明招投标有限公司。 九、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称: 中国医科大学附属盛京医院 地 址: 沈阳市和平区三好街36号 联系方式: 廖主任 024-23895213 2.采购代理机构信息: 名 称: 辽宁承明招投标有限公司 地 址: 沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室 联系方式: 024-86803737 邮箱地址: liaoningshangyu@126.com 开户行: 光大银行沈阳皇姑支行 账户名称: 辽宁承明招投标有限公司 账号: 7581018800024251300007 3.项目联系方式 项目联系人: 孙少伟、郭晓川 电 话: 024-86803737 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:细胞定量分析 开标时间:2023-04-07 13:30 预算金额:500.00万元 采购单位:中国医科大学附属盛京医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:辽宁承明招投标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目招标公告 辽宁省-沈阳市-和平区 状态:公告 更新时间: 2023-03-13 (中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目)招标公告 项目概况 中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目招标项目的潜在供应商应在线上获取招标文件,并于2023年04月07日 13时30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:JH22-210000-65101 项目名称:中国医科大学附属盛京医院胸外科支气管导航系统等设备采购项目 包组编号:001 预算金额(元):5,000,000.00 最高限价(元):5,000,000 采购需求: 查看 品目1:支气管导航系统 1套 进口 一、项目概况: 1.设备名称:支气管导航系统 2.数量:1套 3.用途说明: a) 用于经支气管途径进行肺内组织活检采样。 b) 用于对纵隔淋巴结的定位与活检采样,进行肺癌分期。 c) 用于外科微创手术的病变的标记定位; d) 用于肺外周病变的微创介入治疗。 二、主要技术参数及要求: (一)系统功能: ★1.导航方式:经支气管实时电磁导航。 2.具备虚拟导航功能。 3.导航精度≤3mm。 ★4.可适用直径1cm的肺部病变。 (二)系统技术要求: 1.系统台车 (1) 具备复合视频输入。 (2) 具备S端子视频输入。 (3) 具备DVI-D视频输出。 2.专用计算机系统 (1)配备触摸显示屏,尺寸≥24寸,分辨率≥1900×1200像素。 (2)导航视窗个数≥12个。 (3)具备内窥镜视图。 (4)具备虚拟支气管镜视图。 (5)具备局部视图 (6)具备气道探测器视图和3D CT视图,可实现360度三维CT任意视角查看功能。 (7)具备静态3D支气管视图。 (8)具备动态3D支气管视图。 (9)具备最大密度投影(MIP)视图,可三维重建肺部血管。 (10)具备平行视图。 (11)具备探头视图。 (12)具备CT视图水平位。 (13)具备CT视图冠状位。 (14)具备CT视图矢状位。 (15)最多同时可显示导航视窗个数≥ 6 个。 (16)注册匹配方式:自动/手动。 (17)具备注册5星评分功能,用于评估导航误差。 (18)具备定位子系统。 (19)具备每次活检位置标记功能。 3.导航系统附件: ★(1) 具备独立电磁定位板,占地面积≤500mm×600mm,厚度≤10mm。 (2) 定位板工作频率最少包括以下频率:2.5 kHz, 3.0 kHz, 3.5 kHz。 (3) 定位板最大磁场≤350 mG。 (4) 支持符合使用条件的手术床≥2张。 (5) 具备可重复使用电磁定位贴片。 (6) 具备脚踏开关。 4.定位配件: (1)具备固头式定位导管,导管外径≤2.0 mm,导管末端含电磁感应器,且可感知3D位置。 ★(2)具备可伸缩式预弯延长导管,预弯设计便于远端方向调节,并同时满足导管内径≥2.0 mm,外径≤2.6 mm,长度≤1070 mm,可选预弯角度至少包括180°、90°和45°。 (3)具备内镜适配器,可固定延长导管与支气管镜的相对位置和调节轻紧度,便于实现单人导航操作。 (4)电源要求:输入电压220-240 VAC,50/60Hz;输入功率≤400VA。 (5)运行环境要求:温度范围15°C-35°C (59°F-95°F),相对湿度30%-75%,大气压范围70.0kPa–106.0kPa。 品目2:射频治疗仪 1套 国产 1.治疗主机: 1.1治疗范围:宫颈糜烂、宫颈息肉、宫颈肥大、尖锐湿疣、前庭大腺囊肿。 1.2工作频率:550KHz±40KHz。 1.3输出功率范围:15~50W可调,步进为1W。 ★1.4阻抗百分比显示为100~999%。 2.无烟保证指标: 2.1烟雾净化高频手术电极:设置在手术刀头的吸风口,吸烟率≥99%。 2.2管径大于5MM的专用操作手柄。 2.3气管防折叠系统:设有防折皱装置的管路。 2.4专用真空系统:140L/MIN抽吸45dB超低静音,可以产生≥-700mmHg的近似真空的压力。 2.5四层烟尘净化系统 ①.防尘:HEPA对直径为0.3微米微粒的过滤效≥99 %; ②.除臭:活性炭专用于吸附甲醛、苯系物、氨、氧、TVOC等有害物质,祛除异味; ③.灭菌:活性炭可杀灭大肠杆菌,金黄色葡萄球菌、霉菌、脓菌等致病菌,抑制流行病原的传播。 ④.杀毒:冷触酶可破坏固化病毒的蛋白质,将有机污染物和部分无机物分解成二氧化碳和水。 ★2.6 手柄:方便拔插手术电极;拥有凝、切双按钮;大于5MM的管径,宫颈自动无烟电切技术,自动旋切病变组织。 2.7 无烟手术电极具有:锥形电极、环形电极、方形电极、适形电极。 3.专用宫颈刀具: 宫颈凝固刀、宫颈肥大刀、宫颈息肉刀、尖锐湿疣刀、前庭大腺囊肿刀。 4.宫颈冷刀自动锥切系统: 4.1锥切范围可控:冷刀切割范围可控制,可根据宫颈坏死组织大小,控制深入的深浅从而控制切割的范围。 ★4.2无热损伤:自动锥切通过电机控制,完全冷锥切。 4.3活组织细胞取检:手动控制切割。 4.4组织结构:送检细胞组织结构完整,保留完整的上皮和足够的间质。 4.5送检组织染色后可见:细胞大小、形态;细胞核大小、颜色、形状、核分裂是否增多、有无病理性核分裂像;异性细胞多少及区域;基底膜是否完整。 5.侧开式专用窥阴器: 方便观察与治疗阴道壁疾病,在治疗过程中可在不抽出刀具的情况下直接置入或取出窥阴器。 6.工作环境温度: 6.1环境温度范围:5℃-40℃ 6.2相对湿度:≤80% 6.3电源:交流220V±22V 50Hz±1 Hz 6.4大气压力70kpa-106kpa 合同履行期限:合同签订后60日内。 需落实的政府采购政策内容:中小微企业(含监狱企业)的规定;对于促进残疾人就业政府采购政策的规定、对于节能产品、环境标志产品的相关规定等。 本项目(是/否)接受联合体投标:否 二、供应商的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.落实政府采购政策需满足的资格要求:无。 3.本项目的特定资格要求:设备属于医疗器械的,需提供医疗器械生产许可证(国产产品制造商提供)、医疗器械经营许可证(或对应类别备案凭证)、医疗器械注册证(有效期内),否则提供设备不属于医疗器械的情况说明。 三、政府采购供应商入库须知 参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。 四、获取招标文件 时间:2023年03月13日 09时30分至2023年03月20日 17时30分(北京时间,法定节假日除外) 地点:线上获取 方式:线上 售价:免费 五、提交投标文件截止时间、开标时间和地点 2023年04月07日 13时30分(北京时间) 地点:辽宁承明招投标有限公司(沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室)。 六、公告期限 自本公告发布之日起5个工作日。 七、质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。 1、接收质疑函方式:线上或书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、其他补充事宜 1.本项目采用全流程电子招投标,参与本项目的供应商须自行办理好CA锁,供应商除在电子评审系统上传投标(响应)文件外,应在递交投标(响应)文件截止时间前提交按采购文件规定的介质形式(U盘)存储的可加密备份文件,并承诺备份文件与电子评审系统中上传的投标(响应)文件内容、格式一致,备系统突发故障使用。供应商仅提交备份文件或电子投标文件的,投标(响应)无效。详见辽宁政府采购网《关于完善政府采购电子评审业务流程等有关事项的通知》 辽财采函{2021} 363号。2.供应商自行准备电子设备确保能够自行报价及解密。3.电子投标文件在辽宁政府采购网线上提交,备份文件提交至辽宁承明招投标有限公司。 九、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称: 中国医科大学附属盛京医院 地 址: 沈阳市和平区三好街36号 联系方式: 廖主任 024-23895213 2.采购代理机构信息: 名 称: 辽宁承明招投标有限公司 地 址: 沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室 联系方式: 024-86803737 邮箱地址: liaoningshangyu@126.com 开户行: 光大银行沈阳皇姑支行 账户名称: 辽宁承明招投标有限公司 账号: 7581018800024251300007 3.项目联系方式 项目联系人: 孙少伟、郭晓川 电 话: 024-86803737
  • 如何同时对单细胞进行多组学研究
    大多数全基因组分析提供了大量细胞的平均水平,但是最近的技术进步可以克服这个局限。开创性的单细胞分析现在能够对基因组、表观基因组、转录组、蛋白质组和代谢组谱系进行分析。Cell旗下的Trends inBiotechnology综述了为同一的细胞提供复杂的谱系,将不同维度的分析组合成多组学分析的方法。  策略  和活细胞荧光成像不同,组学的方法比如新一代测序和质谱是破坏细胞进行分析的。第一代单细胞分析选择了一种类型的生物大分子(比如DNA、 RNA、染色质、蛋白或代谢产物)就会丢弃其它所有的材料。而现在证实了一个概念:不同的组学可以在同一个细胞进行平行分析。例如,基因组/转录组或基因 /蛋白水平。现在已经确定了如图所示的多组学单细胞分析的五种基本策略。  结合  在相同或相似的生物分子上的实验分析可以合并成一个单一的操作。例如,基于纳米孔测序方法和单分子实时(SMRT)技术所获得的动力学曲线,不仅反映了DNA序列,也进行了 DNA甲基化检测。同样,精心优化质谱检测可以提供相同细胞的蛋白组学和代谢组学数据。要从单个细胞获得高品质的集成文件,进一步提高检测的效率将是必不可少的。  组分分离  不同种类的生物分子可以在从相同的细胞裂解液提取、分离、和独立分析。例如,最近的一项研究用生物素标记的寡聚dT接头沉淀总RNA,进行 RNA测序文库制备,而游离的DNA可扩增后进行DNA测序。这种策略严重地依赖分离的质量,因为所有留在错误组分中的材料都丢失了。  分别处理  当精确的生化分离不可行时,细胞裂解液可以分别被独立处理。最近的一项研究通过将裂解液分别进行多步定量PCR反转录RNA分析和对DNA抗体报告基因的定量PCR分析。从概念上来说分别处理不如生化组分分离,因为有一些材料不可避免地丢失在错误的组分中。它是进行不同分析的最一般的策略。  转换  不同组学之间的生化转换使得它们能一起分析。例如,亚硫酸氢钠处理将DNA甲基化转换成DNA序列信息,可以进一步与GpC甲基转移酶处理结合来捕获DNA甲基化和单细胞核小体定位。它也可以通过对连接细胞核中三维空间接近的DNA片段的操作,获得单细胞染色体结构的信息。  预测  作为对上述实验策略的补充,也可以对一个或多个组学直接检测,而后通过计算机的方法来预测其它的。这五种策略的设为计更加全面的多组学分析提供了一个框架,因为它们可以以许多不同的方式相结合。  应用  单细胞多组学分析能发现其它方法难以处理的问题。  复杂组织和整个器官的数据驱动的分析可能会挑战我们目前的细胞类型的概念。随着分辨率和单细胞分析的吞吐量,我们可以找出无数的细胞状态,而不是少数的稳定和不同类型的细胞。  多组学分析的另一个关键的应用程序是在医药上。许多肿瘤、肿瘤部分区域在耐药、复发和转移、变化上不同,综合数据集可以提供足够详细的图谱来识别的肿瘤内差异的生物学基础。在平行的多组学分析可以帮助发现不同的耐药性,例如基于遗传和表观遗传学的改变,从而有助于自适应和个性化治疗。  第三个多组学谱系的应用是在生物技术和生态系统中研究不可培养微生物。这些细菌通常很难获得足够纯的群体进行大量分析,而单细胞的操作是综合分析的关键,例如将一定的蛋白组学和相关的代谢谱系联系起来。  最后,测量同一细胞内的细胞状态的不同方面的能力有望揭开细胞的基因组、表观基因、转录组、蛋白质组与代谢组之间的相关联系 可以揭示DNA甲基化、染色质于转录起始之间的复杂关系。  结语  第一个单细胞多组学的检测已经存在了,这预示了单细胞系统生物学是一个令人兴奋的新领域。文章预测,关注单细胞作为生物学的核心将为基础科学提供见解,在生物技术和生物医学方法提供有效的应用机会。
  • 单细胞转录组测序的最新进展盘点
    单细胞转录组分析(scRNA-seq)尽管是一项相当年轻的技术,但商业化的scRNA-seq平台正在不断涌现,而生物信息学方案也越来越多。现在就让我们来盘点一下最新的研究进展。 SPLiT-seq:成本低至一美分 艾伦脑科学研究所的副主任Bosiljka Tasic指出,全基因组的单细胞分析目前很受欢迎。它让人们了解整个系统中的单个组分,也就是单细胞。与PCR和原位杂交等技术不同,全基因组分析无偏向地告知了细胞正在表达什么,而不需要你去选择分析什么。 现在有许多平台和技术可用于制备测序用的单细胞RNA。这些技术大体是在微孔板的各个孔中分离单个细胞,或者使用微滴来充当单个细胞的反应室。无论采用哪种方式,Tasic认为关键是在分析的某个时刻将细胞分离并添加条形码,这样才能将RNA序列分配到它们当初来源的那个细胞。 Bosiljka Tasic联合华盛顿大学的Georg Seelig团队开发出一种称为SPLiT-seq的技术,其中细胞本身作为反应室。这种技术将细胞或细胞核固定,以便捕获RNA,不过洗涤试剂可以进进出出。通过一系列合并和分离的步骤,它开展逆转录并连接条形码标签,最终进行裂解和PCR(使用条形码引物)。 SPLiT-seq技术于今年3月发表在《Science》杂志上。据Tasic介绍,这是一种低成本的技术,每个细胞的建库成本低至一美分(约合人民币七分钱),大大降低了实验室开展单细胞分析的门槛。“真正强大的是它几乎无需任何特殊仪器,”Tasic补充说。 研究团队利用SPLiT-seq技术对出生后第2天和第11天小鼠大脑和脊髓组织的细胞核进行分析。他们成功地鉴定出100多种细胞类型,其基因表达模式与细胞功能、区域特异性和分化阶段相对应。这些数据可用于创建基因表达图谱,与艾伦研究所的其他参考图谱互补。snDrop-seq:单核RNA测序 加州大学圣地亚哥分校的张鹍(Kun Zhang)团队则关注人体组织的单细胞分析。“你需要将细胞彼此分离,才能开展各种单细胞分析,”他说。不过,大脑组织很难解离,“这就使结果存在很大的偏向性,因为有些细胞分离,而有些细胞则彼此相连。相比之下,提取完整的细胞核则相对简单”。 他们采用了一种经过改进的snDrop-seq方案,希望破坏微滴中的核膜,并尽量避免RNA降解。“常规的Drop-seq或10X Genomics方案不行,因为膜不会破裂,”张鹍解释说。目前有几种方法可以完成这项任务,比如改变微流体芯片,让核膜在机械力作用下分解。“我们实际上提高了温度来破坏核膜。” 他们同时开展了snDrop-seq和scTHS-seq,后者为染色质开放性检测。“这使得我们能够在RNA水平和染色质水平上比较这些单细胞,”张鹍指出。他们能够重建各种脑细胞的表观遗传图谱,并利用单细胞多组学方法将风险因素与特定的细胞类型相关联,了解神经元、小胶质细胞和少突胶质细胞对阿尔茨海默病、自闭症或精神分裂症等病的贡献。Smart-seq2:处理少量样本 Wellcome Sanger研究所的Adam Reid及其同事想要了解疟疾生命周期中的遗传控制。 通过测序不同步的单细胞并分析转录组,他们发现寄生虫阶段的发育实际上有很大的变化。“如果对大量RNA进行测序,这一点并不明显,”研究人员谈道。 他们对低通量的Smart-seq2方案进行了修改,目标是分析每个阶段的100个细胞。 Reid表示,与高通量的10X Genomics或Drop-seq平台相比,“你可以获得更多关于哪些基因表达以及表达丰度如何的信息”。 引起疟疾的疟原虫非常小,含有极少量的RNA,并且基因组偏向性非常明显,GC含量 低至20%,而哺乳动物大约是35-40%。因此,建库的试剂往往不能很好地发挥作用,不过通过增加PCR循环次数和尝试不同的酶,研究人员还是很好地解决了这一问题。生物信息学工具:ASAP 人们也许会对scRNA-seq望而却步,因为需要购买复杂的仪器和掌握生物信息学流程。有时,生物学家和信息学家之间的沟通“非常糟”,瑞士生物信息学研究所的负责人Bart Deplancke回忆说。在准备开展脂肪组织的单细胞转录组学研究时,他们有许多数据集需要处理,却发现其合作者往往无法开展。 于是,他们着手安排合作,让两类研究人员能以更直观的方式观察和处理数据。他们开发出一个名为Automated Single-cell Analysis Pipeline(ASAP)的平台。这是一个基于Web的完整流程,提供了标准工具,包括过滤、降维、聚类、差异表达和功能富集。它能够与各种数据库交互,并以2D或3D显示结果。“对于每个步骤,我们都提供了基本教程,它将告诉你每种分析工具能做什么,”Deplancke说。 他指出,“即使是生物信息学家也很喜欢用,因为它能够快速处理和查看数据。然后他们与生物学家一起观察数据,提出一些新的假设,并通过实验或计算手段来进一步证明它。”
  • Amnis量化成像流式细胞仪在血液学研究中的应用
    Amnis量化成像流式细胞仪在血液学研究中的应用 白血病是一类造血干细胞恶性克隆性疾病。克隆性白血病细胞因为增殖失控、分化障碍、凋亡受阻等机制在骨髓和其他造血组织中大量增殖累积,并浸润其他非造血组织和器官,同时抑制正常造血功能。白血病的诊断、分类和预后分层需要综合运用形态学、免疫表型和遗传分析方法,而传统上这需要在多个平台上进行检测以便得到最终结果。 成像流式细胞术可以在一个仪器上产生以上所有结果,从而为白血病的诊断和研究开辟了新的工具。基于图像的流式细胞术结合高分辨率数字图像和标准流式细胞仪所获得的定量荧光信息,可以确定细胞抗原的定位(即细胞表面、细胞质、细胞核),并且可根据荧光强度、细胞形状、细胞大小和纹理信息等组合变量选择特定的细胞群体进行分析,而这是标准流式细胞仪无法实现的特征。 急性早幼粒细胞白血病(APML)为急性髓细胞白血病的一种特殊类型,急性早幼粒细胞白血病可以通过观察早幼粒细胞中粒细胞白血病蛋白- PML蛋白的异常弥散分布来进行快速检测。在正常细胞中,大部分PML蛋白以不连续点状方式分布在细胞核内,而在APML细胞中PML蛋白会呈弥散性分布。常规检测方法为显微镜观察,免疫组化,荧光原位杂交以及传统流式细胞术,但这些方法主观性很强,灵敏度低。Lizz Grimwade等人[1]尝试利用Amnis量化成像流式技术,根据 PML蛋白分布的模式的不同,对正常细胞和APML细胞的PML蛋白分布进行客观的区分。对病人样本进行自动检测,通过统计发生PML蛋白聚集的细胞比率来评估 APML发病的风险。结果表明,Amnis量化成像流式技术能够分析大量样本,确定PML蛋白的分布形式,从而找到潜在的异常细胞,增加了检测的灵敏度和准确率。图1. 急性早幼粒细胞白血病(APML)免疫荧光显微镜染色显示(A)在非APML患者中聚集的PML小体和(B) APML患者中弥散性PML小体 (红色,罗丹明抗PML;蓝色,DAPI核染色)。Modulation纹理分析分别显示在非APML病例(C)和(D)在APML病例中的结果。(E)和(F)分别显示非APML患者FITC标记的PML聚集体和APML患者弥散性PML。(G) 显示非APML患者和APML患者之间弥散染色的细胞百分比差异。 慢性淋巴细胞白血病(CLL)是最常见的白血病,其特征表型和预后在很大程度上取决于是否存在细胞遗传学畸变。检测这些细胞遗传学异常的金标准是在载玻片上的细胞涂片或组织切片上进行荧光原位杂交(FISH)。荧光原位杂交(FISH)是一种显微镜技术,使用荧光探针检测DNA序列,通常在载玻片上完整细胞的中期细胞涂片或间期细胞核上进行。来自澳大利亚的科学家Henry Hui等[2]展示了使用自动、高通量的Amnis量化成像流式细胞仪评估数千个细胞悬液中CLL细胞染色体的特异性FISH探针信号。成像流式细胞仪的EDF景深扩展能力使FISH探针信号能够被解析并定位在免疫表型细胞的(染色的)细胞核内。多色流式细胞术免疫表型分析最常用于诊断白血病,因为CLL细胞具有特征性表型,它们是成熟B淋巴细胞(CD19、CD20阳性),特征为共表达CD5和CD23抗原。CLL还表现为异质性遗传不稳定性。超过80%的病例预先存在细胞遗传学畸变,最常见的是11q、13q或17p缺失和12三体(15%的病例),这些可用于将患者分为高、中、低和极低预后风险类别。图2展示利用Amnis成像流式进行12号染色体三体CLL细胞的分析方法。使用Amnis ImageStreamX Mk II平台在血液样品上开发的自动化“immuno-flowFISH”方法在CLL中评估12号染色体的临床方法可能应用于疾病分层的诊断和后续治疗以评估疾病预后。这些应用将帮助临床医生优化治疗决策,从而改善患者的治疗效果。 图2. Amnis成像流式细胞仪进行12号染色体三体CLL细胞的分析方法。(A)分别根据明场图像的清晰度、面积、宽长比等参数对聚焦细胞进行识别。(B)细胞通过SYTOX AADvanced荧光强度(Intensity_MC_Ch05)进一步鉴定有核细胞,排除增殖细胞或紧密重叠的细胞。(C)和(D)根据CD19-BV480 (Ch07)、CD3-AF647 (Ch11)和CD5-BB515 (Ch02)表达差异对细胞进行分群,分为T细胞(CD3+CD5+CD19-), B细胞(CD3-CD5-CD19+)和CLL细胞(CD3-CD5+CD19+)。(E-G)对每个细胞亚群在CEP12-SpectrumOrange探针(Ch03)通道进行FISH小点计数的结果。(H)可在图像库中查看细胞免疫表型或FISH小点计数的亚群,以确认定量分析。259细胞为CD19-BV480阴性,CD3-AF647阳性,CD5-BB515阳性,12号染色体正常T细胞;细胞4419是一个CD19+CD3-CD5-12号染色体正常B细胞;细胞7805是一个CD19+CD3-CD5-12号染色体三体CLL细胞;细胞1851是一个CD19+CD3-CD5+12号染色体正常B细胞;和细胞1828是一个CD19+CD3-CD5+12号染色体三体CLL细胞。 Amnis量化成像流式细胞仪可以让科学研究更加生动,富有乐趣,其高灵敏度的检测和成像分析的大数据则让文章充满亮点,是您科学研究的好帮手。 相关阅读:Amnis量化成像流式细胞仪系列 利用传统流式细胞检测技术,研究人员可以分析成千上万个细胞,获得每个细胞的散射光信号和荧光信号,从而得到细胞群体的各种统计数据,但是传统流式细胞检测技术获得的细胞信息相对有限。细胞对研究人员来说,只是散点图上的一个点,而不是真实的细胞图像,缺乏细胞形态学、细胞结构及亚细胞水平信号分布的相关信息。要想获得细胞图像,研究人员就必须使用显微镜进行观察,但显微镜能够观察的细胞数量是非常有限的,很难提供细胞群体的量化与统计数据。Luminex公司Amnis量化成像流式技术开创性地将流式细胞技术与荧光显微成像技术结合于一体,在传统流式抽象的统计学数据基础上,既能提供细胞群的统计数据,又还可以获得单个每个单细胞的明场和荧光图像,从而为研究人员提供了细胞形态学、细胞结构和亚细胞信号分布的完整信息。 Amnis量化成像流式细胞仪具有高达12个检测通道,可以对通过流动室中的每个细胞进行成像,并对图像进行多参数量化分析,获得全新的细胞形态统计学数据。系统配有功能强大的数据分析软件IDEAS,可以对每个细胞图像通道分析超过上百种量化参数。这些参数不仅包括细胞整体的散射光和荧光信号强度,还包括对细胞形态,荧光分布、小点计数、荧光共定位等多种信息的分析。随着Amnis高速显微成像流式细胞技术的发展成熟,越来越多的科研人员开始将这种革命性的技术手段运用到自身的研究领域,并发表了大量有影响力的论文。图3.路明克斯Amnis量化成像流式细胞仪,左为FlowSight,右为ImageStreamX Mk II 参考文献: [1] Grimwade, L., Gudgin, E., Bloxham, D., Scott, M. A., & Erber, W. N. (2010). PML protein analysis using imaging flow cytometry. Journal of Clinical Pathology, 64(5), 447–450. doi:10.1136/jcp.2010.085662 [2] Hui, H., Fuller, K. A., Chuah, H., Liang, J., Sidiqi, H., Radeski, D., & Erber, W. N. (2018). Imaging flow cytometry to assess chromosomal abnormalities in chronic lymphocytic leukaemia. Methods, 134-135, 32–40. doi:10.1016/j.ymeth.2017.11.003
  • 一文了解罕见病|PCR\基因测序\流式细胞术助力
    第16个“国际罕见病日”主题“Share your colours”——“点亮你的生命色彩”仪器信息网讯|每年2月的最后一天是国际罕见病日,今年的国际主题是“Share your colours”——“点亮你的生命色彩”。罕见病的检测治疗进展如何?需要哪些科学仪器技术?本网特别整理供大家了解。国际罕见病日国际罕见病日是每年二月的最后一天。2008年2月29日,欧洲罕见病组织(EURODIS)发起并组织了第一届国际罕见病日。首届国际罕见病日纪念活动在欧洲各国成功举行,通过各种活动促进了社会对罕见病的认识。2009年2月28日,欧洲、北美、拉丁美洲等30多个国家的罕见病组织参加了第二个国际罕见病日的活动,其后在各国的一致拥护下,将每年二月的最后一天定为国际罕见病日。截至2022年2月,全球已知的罕见病有7000多种。中国有2000多万罕见病患者,每年新增患者超20万。罕见病的基因诊断与基因治疗研究进展在仪器信息网第五届基因测序网络会议上,瑞羿奥纳生物医药董事长、分子遗传学三级教授杨海涛博士曾分享报告《罕见病的基因诊断与基因治疗研究进展》。罕见病的分子诊断在传统的酶学检测技术的基础上,整合了高通量二代测序技术(NGS),基因芯片技术和三代测序技术以更长的读取碱基片段等新技术在罕见病中展示出了潜在的巨大的应用价值。点击播放蛋白质组学、代谢组学的崛起使多种罕见病的诊断更加准确。同时结合分子影像技术和生物信息技术,计算机辅助诊断/人工智能(AI)的出现展示了更加广泛的应用前景。以CRISPR/CAS9为代表的基因编辑技术和以mRNA技术为代表的蛋白替代治疗技术的迅速发展使罕见病的基因诊断治疗方面取得了很大的进步,杨海涛博士对当前的出现的新技术和在罕见病基因诊断和治疗方面应用做了一个分析和总结。国家罕见病医学中心设置标准(点击查看全文)2022年12月28号,国家卫生健康委办公厅印发国家罕见病医学中心设置标准,主要从国家罕见病医学中心设置基本要求、医疗服务能力、教学能力、科研能力、承担公共卫生任务和社会公益性任务情况、落实医改相关任务及医院管理情况等共计六个方面阐述。其中提到医院能利用PCR、qPCR、MLPA、一代测序、二代测序等技术开展罕见病致病基因检测。罕见病基因检测能力。医院能利用PCR(巢式PCR、长片段PCR、倒位PCR、三引物PCR等)、荧光定量PCR(qPCR)、多重连接探针扩增(MLPA)、染色体微阵列分析(CMA)、荧光原位杂交(FISH)、染色体核型分析、一代测序、二代测序等技术开展罕见病致病基因检测。近3年,开展基因检测病例数≥2500例,3并覆盖超过1/3的中国罕见病目录病种(附件1)。流式细胞术在罕见病中应用*(点击查看全文)1.诊断和鉴别诊断FCM可以辅助阵发性睡眠性血红蛋白尿和原发性联合免疫缺陷的诊断及鉴别诊断,此外FCM也应用于其它多种罕见病如X连锁淋巴增生症、重症先天性中性粒细胞缺乏症等的诊疗中。2.遗传咨询和产前筛查诊断对于有特定免疫表型的PID,可在17周胎龄后进行脐带血穿刺术,通过流式细胞检测进行快速且敏感的产前诊断检测;另外WAS是一种X连锁隐性遗传疾病,女性携带者将致病突变位点传递给其男性后代的概率为50%,当先证者致病突变已知时,可对男性胎儿进行羊毛膜、羊水细胞DNA 测序、脐带血WASp流式检测。3.PID新生儿筛查除了产前筛查诊断外,对新生儿进行原发性免疫缺陷病筛查,可帮助医患及时诊治新患病的新生儿、提高患儿的生存预后。4.罕见病的治疗干细胞移植:造血干细胞移植(HSCT)是治疗血液系统疾病、自身免疫性疾病、某些实体瘤和基因缺陷疾病的重要手段之一,尤其是针对罕见病,HSCT是POEMS综合征、WAS等重要治疗手段,更是SCID、重症先天性中性粒细胞缺乏症(Severe Congenital Neutropenia,SCN)等目前唯一的根治手段。FCM进行CD34+干细胞计数具有快速、简便、可定量等特点,已广泛应用于移植物中HSC/ HPC数量的检测及确定采集时机等。(*文源:安捷伦)70%获批罕见病药物已入保早些时候,Frost&Sullivan联合北京病痛挑战公益基金会在线上发布《2023中国罕见病行业趋势观察报告》。报告显示,在2019年至2022年,《第一批罕见病目录》涉及的121种罕见病当中,分别有6种罕见病9种药品、6种罕见病6种药品、7种罕见病7种药品,6种罕见病的7种药品,合计16种罕见病29种罕见病药品通过谈判纳入医保。从报销力度看,在73种已经入保的罕见病药物中,甲类药物17种,乙类药物56种。甲类药物能够全额报销,乙类药物需要自付一部分,报销比例因各地政策和药物有所不同,通常为70%~80%。
  • 应用:日立电镜-Gatan 3View联用技术在生物细胞三维重构的应用
    利用SU5000和Gatan 3View 2XP 对老鼠肝细胞截面的高分辨截面观测 图1. 老鼠肝细胞高分辨BSE图像仪器:热场发射SU5000 , Gatan 3View 2XPSEM(加速电压: 2 kV, 真空模式: 高真空)3View(图像大小: 16k×16k, 像素点尺寸: 2 nm/pixel, 观测区域: 33 mm×33 mm)图. 1 为老鼠肝细胞整体染色并树脂包埋后的高分辨截面观测结果,图中可观测到整个细胞及细胞器的分布。右图是左图黄框内区域数字放大5倍后的结果,图中可明显观测到细胞核 (N) 及其附近的内质网(ER) ,线粒体(M) 及嵴(←), 高尔基体(G), 糖原颗粒 (▲)分布。利用SU5000和Gatan 3View 2XP 对老鼠肝细胞超薄切片观测及三维重构 (a) 超薄切片观测图像 (b)三维重构结果(长为10 μm的正方体)(c) 三维重构 (XY 面, YZ 面,XZ 面)图2. 老鼠肝细胞连续切片及三维重构结果 图. 2 为老鼠肝细胞染色树脂包埋后连续切片(a)及三位重构(b)(c)结果。 三维重构图像可以通过300张截面图像堆叠计算得到。 由于热场发射电子枪束流的稳定性,可连续长时间地拍摄获取300多张的图像。通过三维重构的结果可直观地看到细胞尺寸结构及其细胞器的三维分布,能更多地获取生物细胞的信息。 利用SU5000和Gatan 3View 2XP 对老鼠肝细胞三维重构结果分析 图3. (a) 连续截面BSE图像堆叠图像结果 (b) 线粒体及细胞核体分布 (红色为线粒体,绿色为细胞核)(c)线粒体的尺寸分布直方图 通过连续切片获得的三维重构结果,可选择性的得到所需信息,如线粒体的分布,结构,尺寸数目的面分布及体分布等。 图3为三维堆叠图及后续分析出的线路体(红色)及细胞核(绿色)的分布图。可直观地观测到线粒体的形状,结构及分布。 图2显示的是线粒体的尺寸分布直方图,可通过软件直接得到线粒体的体分布和面分布,进而分析细胞内线粒体的数目及分布。 仪器: 热场发射SU5000 Gatan 3View 2XP 三维重构: Image Pro Premier 3D (Media Cybernetics Inc.)SEM条件:加速电压 2 kV 真空模式 高真空3View条件:图像尺寸 8k×8k 像素尺寸 4.4 nm/pixel 观测区域 36 mm×36 mm 切片厚度 50 nm 切片数  300 该产品更多信息请关注:SU5000 http://www.instrument.com.cn/netshow/SH102446/C220210.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注日立高新官方网站:http://www.hitachi-hightech.com/cn/
  • 南京铭奥成为进口牛奶体细胞检测仪/牛奶体细胞计数仪中国总代
    为了迎合各大牧场,乳品回收站控制奶牛的体质,及时发现病情,提前判断奶牛隐形乳房炎、监测控制病牛的治疗情况,进而提高牛奶品质的市场需要,南京铭奥现成为新产品牛奶体细胞测定仪/牛奶体细胞计数仪Somatos的中国总代理。该牛奶体细胞仪可用于计算牛奶体细胞数,原理是将牛奶样品经表面活性剂处理后。奶样中体细胞的细胞膜和核膜被破坏,细胞核DNA大量释放,,细胞内的DNA释放出来引起牛奶黏度的变化,同时运用超声波检测系统对经过表面活性剂处理后的牛奶进行检测,记录超声参量(声速、衰减、功率谱)与体细胞数的关系,从而得出黏度变化与体细胞数的关系,从而可以通过测定黏度来测定体细胞数。 牛奶体细胞测定仪/牛奶体细胞计数仪Somatos牛奶体细胞检测仪,牛奶体细胞速测仪计数速度快,牛奶混合物单次分析检测时间不超过4分钟,检测范围很广,为:90000-1500000,相对误差范围小,仅为±3%,要求功率不超过20伏安,价格合理实惠,非常适合各类牧场及乳品回收站使用。
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 中科院能源所利用单细胞拉曼分选-测序耦合系统 首次精确到一个细菌细胞的环境菌群scRACS-Seq
    摘要:2021年5月,中国科学院青岛生物能源与过程研究所荆晓艳博士等人应用星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节)在美国微生物学会会刊《mSystems》在线发表题为“One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE)”的文章。单细胞拉曼分选耦合测序(RACS-Seq)是剖析环境菌群功能机制的重要手段,但拉曼分选后单个细菌细胞基因组的覆盖度通常低于10%,极大限制了其应用。近日,中国科学院青岛生物能源与过程研究所单细胞中心基于星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),首次实现了精确到一个细菌细胞、全基因组覆盖度达93%的环境菌群scRACS-Seq,为环境微生物组原位代谢功能研究提供了一个强有力的新工具。土壤是地球上最重要的生态系统之一,土壤微生物组的代谢活动支撑着农业与畜牧业,也在地球元素循环、全球气候变化中起着关键性作用。同时,土壤菌群也是地球上最多样与最复杂的微生物组之一,而其中大部分微生物尚难以培养,因此,单个细胞精度的拉曼分析-分选-测序(Single-cell RACS-Seq,简称scRACS-Seq)策略,是剖析土壤等环境菌群之代谢机制的重要手段。然而针对环境菌群的scRACS-Seq一直以来存在两大瓶颈,一是难以无损、快速地获取具有特定拉曼表型的单个细胞;二是难以获得高覆盖度的单细胞基因组数据。这已经成为scRACS-Seq技术体系在复杂菌群中得以广泛应用的关键瓶颈。针对这一业界共性难点问题,单细胞中心荆晓艳、公衍海和徐腾等组成的联合攻关小组,基于前期发明的RAGE-Seq技术(Raman-activated Gravity-driven Encapsulation and Sequencing Xu, et al, Small, 2020,点击查看),从液相拉曼分析稳定同位素底物饲喂的土壤菌群出发,将特定拉曼表型的细菌单细胞精准分离并包裹到皮升级液滴中,进而耦合下游基因组测序。结果表明:(i)土壤菌群中细胞代谢活跃的低丰度物种(如Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp. 和 Pseudomonas spp.等)可经耦合重水饲喂与标记的RAGE-Seq精准地识别和分选,其单细胞基因组覆盖率可高达〜93%;(ii)同样,基于RAGE-Seq,含类胡萝卜素的土壤微生物细胞(如Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., 和Pedobacter spp.等)能实现单个细胞分辨率、高基因组覆盖度的代谢重建,从而完整、深入地挖掘其类胡萝卜素合成途径;(iii)这些“原位”合成类胡萝卜素的土壤微生物细胞中,既有代谢活跃的,也相当部分是惰性的,表明基于纯培养的策略势必错失这些代谢惰性的功能微生物,因此“原位”、单细胞精度的功能细胞识别和分离,对于全面、客观的菌群功能剖析和资源挖掘具有重要意义。精确到一个细胞的拉曼分析-分选-测序(scRACS-Seq)此外,该工作还通过组分与状态均精确可控的人工菌群,建立了系统且严格的scRACS-Seq质量评价与控制体系。基于该体系,发现该技术能将不同拉曼表型的细菌单细胞从菌群中快速、精准分离,在保证单细胞拉曼光谱质量的同时,分选准确性达100%。此外,以来自于靶标细胞周围水相的空液滴为阴性对照,发现靶标细胞序列中被菌群中其他细胞DNA污染的概率极低。上述工作定量证明了scRACS-Seq的灵敏度、特异性和可靠性。借助星赛生物的RACS-Seq®单细胞拉曼分选-测序耦合系统,以及相应的RAGE芯片和单细胞分析试剂盒(包括环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等环节),scRACS-Seq可以在复杂菌群中以单个微生物细胞的分辨率建立新陈代谢与基因组的联系,从而精确回答“谁在做什么,为什么”。该系统广谱适用于细菌、古菌、真菌和动植物细胞,正服务于涵盖各种复杂生态系统的研究和应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制