当前位置: 仪器信息网 > 行业主题 > >

气体柜压力仪

仪器信息网气体柜压力仪专题为您提供2024年最新气体柜压力仪价格报价、厂家品牌的相关信息, 包括气体柜压力仪参数、型号等,不管是国产,还是进口品牌的气体柜压力仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体柜压力仪相关的耗材配件、试剂标物,还有气体柜压力仪相关的最新资讯、资料,以及气体柜压力仪相关的解决方案。

气体柜压力仪相关的论坛

  • 石墨炉气体压力低

    我的仪器是安捷伦200z型号的石墨炉原子吸收,在检测过程中,会偶尔出现“气体压力低”的报错提示,请问是怎么回事?我的钢瓶压力已经开到0.4mpa还是不行。气体管路没有破损,管路接口处也没有漏气现象。报错也是偶尔会出现,不是每天检测都会出现。

  • 气体压力问题

    在用火焰法检测时,有时会碰到次级压力缓慢下降的问题,特别是气体流量较大的元素如Cr,这会是什么问题呢,跟气管、乙炔纯度是否有关呢?

  • 冬天气体压力就低吗?

    最近我们叫的乙炔压力只有1.4MPa,问人家气体供应商,给的答复是冬天气压低,你们认为这个说法靠谱吗?

  • 【原创】质谱分析中常用气体压力单位换算

    【原创】质谱分析中常用气体压力单位换算

    在质谱分析和测试中,常常会用到各种气体作为载气或参考气等,而且对于不同的气体、以及不同的分析过程中对气体压力大小具有不同的要求。然而在使用中往往会遇到在气体压力调控时,其单位往往不尽相同,不同的文献和资料中多用得压力单位常常与气体压力表、调节阀或仪器压力控制器等的标示不一致。这就需要我们清楚的掌握气体压力不同单位之间的换算关系,以便于在实际操作中准确的定量或调节气体压力或流量,从而不至于因压力调节不准而导致分析结果的偏差或错误。下面我将经常会出现和使用的气体压力单位换算关系列出,与各位版友共享。 [B]压力单位换算[/B] [img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902232143_134861_1626579_3.jpg[/img][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134863]质谱分析中常用气体压力单位换算[/url]

  • 实验中用到有毒气体或剧毒气体时候的一点经验

    实验中用到有毒气体或剧毒气体时候的一点经验在实验中,经常需要两类气体,一类就是剧毒的,如硫化氢,氯气和其他卤素;一类是很危险的,如氢气的.但是这两类气体却是实验中最经常用到,几乎每一个做实验的人都会遇到的气体.不知道大家做这两类气体时候是怎么做的.下面说一下我遇到这两类气体的一点小措施.做这两类气体,一般系统都是密封的,并且后面连接尾气处理装置.但是有时候,反应系统很难做到密闭.譬如做加氢反应,可能是由钠产生氢气再加氢的.这样就不怎么好完全密闭了,因为完全密闭可能会有爆炸的潜在危险.但是如果不密封,氢气泄露出来,遇到一点点火星或加热的温度高等原因,可能就会爆炸起火.这个时候,我一般是在反应瓶上面套一个气球.一方面,气球可以起到密封作用,不会让氢气泄露出来.另外一方面,气球承受的压力不是很大,相当与高压釜的一个防爆阀门的作用.不会引起潜在的爆炸隐患.希望我的方法能对大家有所帮助!如果大家有更好的方法,也请说出来!

  • 探测器气体压力

    VENUS 200探测器气体压力控制在什么范围?探测器气体压力不稳定的原因?

  • 【求助】气相色谱仪各气体流速或压力范围

    想请问一下各位大师:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]在运行时,各气体流速或压力的具体范围(包括进样口、色谱柱、检测器等各模块)是多少?有总结的师兄们望能不吝赐教。

  • 关于西林瓶中气体压力测定设备

    希望大咖们可以提供一款测定密闭西林瓶上方空间气体压力值的测定设备,要求测定不能破坏西林瓶状态,不会造成西林瓶中药物失效。

  • 光声谱仪器中光声池的高精度气体压力控制解决方案

    光声谱仪器中光声池的高精度气体压力控制解决方案

    [align=center][size=16px][img=石英增强光声光谱和光热光谱技术中的高精密压力控制解决方案,600,393]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130940541042_934_3221506_3.jpg!w690x452.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,但在目前的光声和光谱研究中,对气体样品池内压力控制技术的报道极为简单,甚至很多都是错误的,根本无法实现高精度调节和控制,为此本文提出了可工程化实现的解决方案。基于动态平衡法控制介绍,解决方案采用了高精度真空计、气体流量计、电动针阀和双通道真空压力控制器等,可实现气体样品池的进气流量和真空压力的自动精密控制,并适用于多种气体。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 光声法是基于光声效应的一种光谱技术,气体分子吸收特定波长的调制光辐射能量,由振动基态跃迁到激发态,然后通过快速的辐射跃迁或者无辐射跃迁过程回到基态。 气体分子通过无辐射跃迁过程回到基态会产生热能,导致气体温度的变化,相应地引起气体压强的变化,从而产生声波信号,信号的强弱与入射光强和气体吸收大小成正比,检测声音信号即可间接测定气体浓度。在光声法中气体既是被检气体,又是吸收光辐射的探测器,利用同一光声池检测装置,只要改变光源的波长即可对多种气体进行检测。[/size][size=16px] 随着技术的发展出现了许多新型光声光谱检测技术,但光声池始终是所有光声光谱检测仪器中的核心部件,注入光声池内的被检气体压力是影响光声法测量精度的关键因素之一,主要体现在以下两个方面:[/size][size=16px] (1)气体压力的稳定性对测量精度的影响[1,2]。[/size][size=16px] (2)不同气体和浓度的光声法测量过程中,在一个最佳气体压力下时测量精度最高[3]。[/size][size=16px] 由此可见,光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,而在光声池压力控制的所有文献报道中,有些仅简单描述了压力控制基本原理,有些所描述的压力控制方法和装置根本无法实现高精度调节和控制。[/size][size=16px] 如文献[3]采用石英增强光声和光热光谱技术测量痕量一氧化碳气体含量的报道中,仅介绍了光声池进样气体方式和压力控制的原理,整个装置和压力控制结构的简单描述如图1所示,图中所示的光声池压力控制尽管包括了真空泵、针阀、压力传感器和压力控制系统(PCS),但压力控制系统的布置位置并不一定正确,既没有明确具体技术细节,也没有显示出压力控制的自动化能力和控制精度能达到什么水平。同样,许多多其他光声法测试技术的研究报道也多是如此简单介绍,并未看到光声池压力控制的详细文献报道。[/size][align=center][size=16px][color=#339999][b][img=文献[3]光声和光热谱检测系统结构示意图,600,527]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130942538680_3779_3221506_3.jpg!w690x607.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 文献[3]光声和光热谱检测系统结构示意图[/b][/color][/size][/align][size=16px] 在河北大学的发明专利CN111595786B“基于光声效应的气体检测系统及方法”中提出了一种详细的光声池内部压力控制方法[4],其结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=文献[4]基于光声效应检测系统的结构示意图,690,447]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943224524_1783_3221506_3.jpg!w690x447.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 专利[4]基于光声效应检测系统的结构示意图[/b][/color][/size][/align][size=16px] 在图2所示的光声池压力控制系统中,光声池上设有供气体进入的进气口,进气口通过导管与?30℃的冷肼预浓缩装置相连通,可以去除待测气体中水分的干扰,达到一定的浓缩效果。在光声池上还设有供气体排出的出气口、控制腔体内气压的压力监测口以及压力控制口。在进气口、出气口和压力控制口处均设有单向阀,在出气口和压力控制口处均设有真空泵。在压力监测口设有气体压力传感器,气体压力传感器连接单片机,单片机控制继电器以及一个抽气系统,当腔体内的气压未达到所设置的目标值时,压力传感器传出电信号到控制系统中的单片机来控制继电器闭合,使电机转动,抽气系统运行,保持腔内部的气压值为设定好的目标值,当腔内的气压达到设定目标值时该抽气系统不工作。[/size][size=16px] 由此可见,尽管专利[4]中采用了单片机进行压力的自动控制,但所描述的抽气系统控制是一种最简单的开关式控制方式,这种控制方式在控制精度的稳定性很差,往往会使光声池内的实际压力在设定值上下出现较大波动现象。[/size][size=16px] 另外,这种开关模式在控制过程中存在很大的滞后性,当传感器测量到压力值大于或小于设定值时才发出关闭或启动抽气电机信号,这势必带来控制延迟。而且对于小容积内的气压控制,目前已很少采用调节真空泵转速或开关式真空泵技术,这是因为会很容易影响真空泵寿命。[/size][size=16px] 为了彻底解决光声光谱和光热光谱技术中气体样品池的压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节气体样品池的进气和排气流量,使它们能快速达到动态平衡状态,本文将提出以下详细且可工程化实现的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 从研究文献所报道的光声光热法气体池内压力控制中,可以得出以下几项技术指标要求:[/size][size=16px] (1)气体池有一进气口和排气后,其中排气口连接真空泵,真空泵提供负压使样品气体通过进气口流入样品池,样品池的这种结构和气体取样方式则说明样品池内的压力一般应该是一个大气压上下的微负压或微正压,即样品池内的气体压力在500~1000Torr的绝对压力范围内,且要小于进气口压力。[/size][size=16px] (2)在文献[3]中报道了对最佳压力的测试研究,得到的最佳压力为600Torr。由此可见,针对不同气体的光声和光热法测试中,需要根据不同气体样品池的结构和具体被测气体寻找到最佳压力值,由此可保证最佳的测试精度。[/size][size=16px] (3)在文献[2,3]中,涉及到了多种气体混合和进气流量的控制,由此可说明在某些光声和光热法测试中需要具备对进气流量的调节,这也就是说,对于气体样品池而言,既要能调节进气流量,还要能调节气体压力且稳定控制。[/size][size=16px] 针对光声光谱和光热光谱技术中气体样品池的压力精密控制问题,特别是实现上述技术指标和功能,本解决方案所设计的气体样品池压力和进气流量控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=光声池气体压力和流量控制系统结构图,690,314]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943461767_8516_3221506_3.jpg!w690x314.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 光声池气体压力和进气流量控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个控制系统主要包含以下几方面的内容:[/size][size=16px] (1)压力控制模式:由于光声池内的压力需要在500~1000Torr的绝对压力范围进行调节和控制,因此解决方案中采用了动态平衡法中的下游控制模式,即恒定进气流量,通过调节排气流量的大小以达到不同的动态平衡,由此来实现不同气体压力的精密控制。进气形式如图3所示可以是单独一种气体,也可以是多种气体混合,各种气体可以通过气体质量流量控制器(MFC)进行流量的精密控制,各路气体进入一个混气罐进行混合后,再注入光声池内。气体的注入则通过排气端真空泵所提供的负压与进气端正压所形成的压力差来实现。[/size][size=16px] (2)压力控制回路:如图3中的蓝色箭头线所示,压力控制回路由1000Torr量程的电容真空计、NCNV-20型电动针阀和VPC2021-2型压力流量控制器组成,其中真空计检测光声池的真空压力并传输给控制器,控制器将传感器数据与压力设定值比较并经过PID计算,输出控制信号给排气电动针阀,实现压力自动恒定控制。[/size][size=16px] (3)流量控制回路:如图3中的红色箭头线所示,流量控制回路由气体流量计、NCNV-120电动针阀和VPC2021-2型压力流量控制器组成,其中控制器通过手动控制方式直接输出控制信号来调节进气电动针阀的开度,使得流量计达到希望值,由此可始终恒定进气流量保持不变。[/size][size=16px] 由此可见,通过图3所示的解决方案控制系统可实现光声池压力和进气流量的独立调节和控制,这种实现的关键部件是电控针阀和双通道压力流量控制器,电控针阀可以快速精密的调节进气和排气流量,而双通道压力流量控制器可直接连接真空计和流量计,实现高精度的真空压力和流量的测量,控制精度能小于读数的±1%,同时还能进行自动PID控制和手动恒定输出控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对现有文献所报道的光声池压力控制方法进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,并经过了试验考核,按照解决方案可很快的搭建起光声池压力控制系统。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,可满足光声法和光热法中对样品池气体压力的各种控制要求。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同样品气体的测量,也可进行多种气体混合后的测试,具有很大的灵活性。[/size][size=16px] (4)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了光谱设备的搭建和测试研究。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] 陈伟根,刘冰洁,胡金星,等.微弱气体光声光谱监测光声信号影响因素分析[J].重庆大学学报:自然科学版, 2011(2):7-13.[/size][size=16px][2] 张佳薇,谈志强,李明宝,等.气体流量对石英增强型光声光谱检测精度的影响[J].科学技术与工程, 2022(003):022.[/size][size=16px][3] Pinto D , Moser H , Waclawek J P ,et al.Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy[J].Photoacoustics, 2021, 22:100244.DOI:10.1016/j.pacs.2021.100244.[/size][size=16px][4] 娄存广,刘秀玲,王鑫,等.基于光声效应的气体检测系统及方法:CN202010511763.8[P]. CN111595786B[2023-11-10].[/size][size=16px][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • PE900T石墨锥气体两端的气体压力怎么调节

    石墨管总是一端烧坏,怀疑是石墨锥两端的气体压力不一致造成的,问一下各路大神怎么调节石墨锥两端的气体压力[img]https://ng1.17img.cn/bbsfiles/images/2021/12/202112071241458283_9750_4003810_3.png[/img]

  • 关于气体压力表的计量检定,请教方家!

    我中心在计量认证时有专家要求应将所用的所有气体压力表进行计量检定,可是计量所的老爷们在计量检定时将我们的压力表头从表体上卸下进行检定,导致压力表再装上后有的产生漏气等故障,类似于破坏。我们实在不想再让他们检了。也有的专家说计量认证时可以不检这类设备。不知哪位老师知道,是不是在计量认证或实验室认可时,象[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用的气体压力表一类的东西必须进行计量检定?多谢!

  • 气体稳压阀压力调节阀

    空气发生器上配备气体稳压阀上的压力调节阀(图中蓝色线条圈住部分)拧不动了,改怎么解决一下?另外,若要擦拭其污染物,擦洗哪些部位?感谢各位专家或同仁指点![img]http://ng1.17img.cn/bbsfiles/images/2018/08/201808101843455277_5645_2857050_3.jpeg[/img]

  • 【求助】气体压力处显示为0.19psi

    我使用的是安捷伦6890.今儿正常开机,发现进样口处气体流量正常,但是压力为0.19psi(设置为1.4psi)。周五的时候更换过进样套。今儿换了跟毛细管柱。我给安捷伦公司打过咨询电话。让我一个一个地方试。试的结果:柱子连检测器处,进样口处均无气体。我用的氮气瓶,试了,这个没有问题。从氮气瓶到仪器的管路我都用肥皂水试了,不漏。进样套处我所有的地方都换了。还是不行。柱子我也换了。也不行。呵呵。大家给看看,到底什么情况,谢谢。

  • 混合气体微间隙模拟放电装置中的真空压力控制解决方案

    混合气体微间隙模拟放电装置中的真空压力控制解决方案

    [size=16px][color=#990000][b]摘要:针对微间隙气体放电特性分析中需要对不同真空压力进行精密控制的要求,本文提出了相应的解决方案。解决方案采用了双路调节技术,由真空计、电控针阀和真空压力控制器组成进气和排气控制回路,可实现真空度1Pa~101kPa全量程范围内优于±1%的控制精度。同时,此解决方案适用于多种气体混合后的真空压力控制,还可进行更高真空度、更高正压压力和增加湿度等环境变量控制的拓展,更广泛适用于各种气体放电特性研究。[/b][/color][/size][align=center][size=16px][color=#990000][b]==========================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 微间隙气体放电是一种电极距离在微米或纳米量级的放电形式,由于电极距离极小,微间隙放电通常表现出不同于传统规模放电的击穿特性,从而导致低电压击穿的风险。此外,微间隙放电过程中所产生的微等离子体具有高压稳定性、非热平衡、高电子密度、高激发效率等优点,在工业和生活中有着广泛的应用。总之,微间隙气体放电特性的研究引起了的极大关注。[/size][size=16px] 在微间隙气体放电特性研究中,微间隙中气体的种类和真空压力是重要的环境条件。最近有客户对这种微间隙中的气体种类,特别是对真空压力的精密控制提出了明确要求,其目的是研究不同气体和不同真空压力下微间隙的气体放电特性。为此本文提出了微间隙气体压力的精密控制解决方案,以实现微间隙气体放电特性分析过程中的全量程的真空压力高精度自动控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案是在原有的微间隙气体放电特性测试设备上增加高精度真空控制系统,以实现在绝对压力1Pa~101kPa范围内的精密控制,全量程真空度控制精度小于±1%。整个装置的结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=微间隙气体放电试验装置及其真空压力控制系统,650,411]https://ng1.17img.cn/bbsfiles/images/2023/09/202309221532063298_6848_3221506_3.jpg!w690x437.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 微间隙气体放电试验装置及其真空压力控制系统[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统主要由气源、混气罐、电控针阀、真空计、真空压力控制器和真空泵组成,其功能和性能指标如下:[/size][size=16px] (1)气源:气源主要由高压气瓶提供,可采用不同气体的气瓶实现气体混合,以实现混合气体环境下的微间隙气体放电性能研究。混合气体中的各种气体比例可以通过相应的气体质量流量控制器进行调节。当然,也可以采用单一气体,如果是气体是空气可采用气泵作为气源。[/size][size=16px] (2)混气罐:提供气体的充分混合,混气罐内的压力要高于一个大气压。[/size][size=16px] (3)电控针阀:解决方案中采用了两个NCNV系列的电控针阀,电控针阀采用步进电机高速调节并具有极好的调节精度和线性度,全开和全闭动作时间小于1秒。一个电控针阀用于调节进气流量,以进行低压高真空范围内的控制;另一个针阀用于调节排气流量,以进行高压低真空范围内的控制。在实际应用中可根据真空腔体尺寸大小选择不同孔径的电控针阀,更大的真空腔体排气时可将排气用电控针阀更换为电控球阀,以提高排气流量和真空度调节控制速度。[/size][size=16px] (4)真空计:解决方案中采用了两个电容真空计,一个真空计的最大量程为10Torr,另一个真空计的最大量程为1000Torr,由此两真空计可覆盖整个真空度范围。选择电容真空计是因为这种真空计具有较高的测量精度和信号的线性输出,在全量程任意真空度点上的测量精度都可以保证小于0.25%。当然,真空计也可以选择全量程型的皮拉尼计,但其测量精度只能达到15%,且信号输出呈现严重的非线性,会严重影响真空度控制精度。[/size][size=16px] (5)真空压力控制器:为了保证全量程范围的真空度控制精度,选择了VPC2021-2型号的双通道真空压力控制器,每个通道与对应的真空计和针阀组成独立的闭环控制回路,其中一个通道用于控制高真空,另一个通道用于控制低真空。此双通道真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,结合电容真空计和电控针阀可实现全真空度范围优于±1%的控制精度。另外,此控制器具有PID自整定功能和自带计算机软件,便于进行过程参数的设置、运行、显示和存储。[/size][size=16px] (6)真空泵:由于需要采用微机械装置进行精密位移调节,真空泵选用干泵以避免对真空腔室内部件的污染。在具体应用中需根据真空腔体的大小和真空度范围选择相应抽速的干泵。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本文针对微间隙气体放电特性分析中所需的真空压力精密控制要求,提出了全量程真空压力高精度的解决方案,可完全满足客户在微间隙气体放电特性研究中需要。另外,此解决方案还具有很强的可拓展性和适用性,主要有:[/size][size=16px] (1)还可进行多种气体混合气氛条件下的真空度精密控制。[/size][size=16px] (2)除了上述低压真空度范围内的精密控制之外,还可进行量程的扩展,如向高真空和超高真空方向拓展,如向高压一个大气压的正压方向拓展。[/size][size=16px] (3)除了气体气氛环境的精密控制之外,还可增加湿度等环境变量的精密控制。[/size][size=16px] 总之,本解决方案可推广应用到多种环境变量的自动控制中,以满足各种形式和规格的气体放电特性的研究和分析。[/size][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【求助】气相部分气体压力和流量不稳定?怎么回事?

    气相部分气体压力和流量不稳定,这是怎么回事我用的是 瓦里安的气质CP-3800300MS,最近气相部分气体压力和流量不稳定,怀疑过是EFC的问题,但是我换了另一个进样口,结果基本一致,还是不稳定.另一个进样口得EFC是正常的啊。我很是奇怪,不知道哪里出了问题。现在郁闷死了.请大家帮帮忙啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制