当前位置: 仪器信息网 > 行业主题 > >

电子式传感器

仪器信息网电子式传感器专题为您提供2024年最新电子式传感器价格报价、厂家品牌的相关信息, 包括电子式传感器参数、型号等,不管是国产,还是进口品牌的电子式传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子式传感器相关的耗材配件、试剂标物,还有电子式传感器相关的最新资讯、资料,以及电子式传感器相关的解决方案。

电子式传感器相关的资讯

  • 长春机械科院成功研制出国内最大吨位电子式试验机
    2012年10月28日,我国在试验测试领域又传来了好消息,在众多客户的期待和瞩目中,历时一年研发,集合长春机械院最先进的测试软件和控制器技术的全新电子式大吨位系列试验机新产品终于亮相长春,迈出了全国发布的第一步。 以往,由于技术原因电子式试验机能够达到的最大试验力都比较小,一般在300-500kN,不能满足更大加载试验力的需求。 如今,试验机领域行业龙头&mdash &mdash 长春机械科学研究院成功研制出中国第一台1500kN电子式试验机。多年前长春机械院就瞄准了电子式高端试验设备技术的发展方向,不断加大科研投入,经过多年的努力,突破了多项关键技术,终于在大吨位电子式试验设备研发方面取得了骄人的成绩。在技术上,长春机械院又走在了全国试验机行业的前沿。 该系列试验机创造了国内电子式试验设备的最大试验力记录,打破了国外企业在大吨位电子式试验设备方面的垄断局面,为我国尖端制造业发展提供了技术保证,代表了我国当前在电子式试验设备方面的最高技术水平。 随着环保意识的不断提高,传统的液压式试验设备由于体积、噪音、能耗等诸多固有特征,越来越不适合现代化试验室的需求,低能耗低噪音的电子式试验设备将成为高端试验室的需求趋势,我们相信凭借长春机械院领先的技术优势和丰富的电子式试验设备种类,将引领中国试验机行业迎接电子式试验机新时代的到来。 该系列试验设备特征: 采用伺服电机进行加载,噪音小、无过冲现象 采用TPHS(Thick plate High stiffness)重型框架结构设计,确保高刚度变形小,重复试验结果误差小。 试验空间大,方便试样夹持 传动、减速均采用齿形带配丝杆副结构,效率更高,更平稳,噪音小 配置长春机械院最新研制的CLY20型电子万能试验机专用高精度负荷传感器(曾荣获国家科技进步2等奖),传感器刚度大、独有的非线性数据校正技术,确保长时工作稳定可靠性 系统采用三闭环控制,无冲击平滑转换,技术运用更成熟 自动、手动切换操作;面板、电脑双重控制 关于长春机械院: 长春机械科学研究院有限公司(原机械工业部长春试验机研究所)始建于1959年,是国家试验机行业技术归口单位,现隶属于世界500强大型央企&mdash &mdash 中国机械工业集团。 长春机械院拥有五十多年试验设备的研发制造经验及国内最大的工程试验设备研发团队,是目前国内科研能力最强的工程试验研究院所,专业基础力学试验设备、岩石岩土试验设备、土木建筑结构力学试验设备及汽车零部件检测设备、试验机附具附件等试验设备的研发制造。 目前,长春机械科学研究院有限公司在全国设有10个营销及售后服务中心,覆盖全国30个省及地区,已为上千家高校、企业、机构提供上万套各类试验设备。 五十年研发制造经验 为您量身打造各种试验解决方案
  • 应对三大挑战 德图湿度传感器的环球之旅
    ■从1996至2001,德图湿度传感器5年全球验证 在工农业生产、气象、环保、国防、科研、航天等部门,经常需要对环境湿度进行测量及控制。对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。但在常规的环境参数中,湿度是最难准确测量的一个参数。湿度测量始终是世界计量领域中著名的难题之一。这是因为测量湿度要比测量温度复杂得多,温度是个独立的被测量,而湿度却受其他因素(大气压强、温度)的影响。一个看似简单的量值,深究起来,涉及相当复杂的物理&mdash 化学理论分析和计算。 从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接收不同的方式的检测,精度都优于1%RH。德图湿度传感器的环球之旅给各地用户以一流的长期稳定性及卓越的品质保障。高品质温湿度变送器的核心在于高品质的传感器。无论是高湿、腐蚀介质、还是常规的净化室环境,testo都能应对挑战,提供卓越的温湿度解决方案。 ●挑战高湿度&mdash &mdash 为探头创造稳定微环境 在高湿度环境下,此时传统传感器的响应速度会明显变慢,且高湿环境通常会包含一些腐蚀性介质,这些腐蚀性介质危及传感器的使用寿命及稳定性。高湿度环境的测量工作是对测量技术的一个挑战。 针对这个情况,德图提供了一个独特的解决方案:testo 6614。通过加热,可创造一个高度稳定的微环境,从而确保了较快的响应速度,高精度的测量结果及良好的防腐蚀性能。外加一个用来测量实际温度的温度探头,经由微处理器计算,便可得出正确的湿度值。在此之前。高湿环境的长期稳定性与高度精确性二者一直是无法兼得的。 ●挑战腐蚀性介质&mdash &mdash 预警系统和自检测预防式维护 如今,专业的温湿度测量变送器已成为湿度调整链上可靠的连接。Testo的贡献是源于稳定的防结露的testo湿度传感器。然而,如果制程中有腐蚀性介质,传感器不久就会失效,伴随而来的是昂贵的退货(最终产品质量缺陷)和系统停工。 Testo针对以上情况开发出来了testo&ldquo 早期预警湿度探头&rdquo testo 6617。可以连续监测testo湿度传感器受到腐蚀的早期征兆。这样工作人员就可以及早得到警示。在测量错误或中断发生前就及时响应,避免损失。 由于使用了早期预警,系统管理员可以及时处理预警,及早进行探头替换,无需中断测量系统。专家都明白,与&ldquo 早期预警&rdquo 所节省的费用相比,其投资仅是很小的一部分,它确保了系统的长期可用性。 ●挑战漂移&mdash &mdash 完整信号链的全方位校准 在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,电子式湿度传感器会产生老化,精度下降,电子式湿度传感器年漂移量一般都在± 2%左右,甚至更高。一般情况下,生产厂商会标明1次标定的有效使用时间为1年或2年,到期需重新标定。 德图有着完整信号链的全方位校准,探头校准方式灵活多变,除了现场校准外,因为有数字接口,我们也可对探头进行单独校准。除了单点校准(偏移量)和两点校准(借助于盐瓶或湿度发生器)以外,P2A软件支持各个模拟输出通道的调整。使用高精度的数字万用表,整个测量链路(含数模转换器)可以进行调整。
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 分析仪不离传感器 微电子智能化为主
    分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 天门市筹建省级微型电量传感器检测机构
    记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是全省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。  此项目由该市质量技术监督局与市电工仪器仪表研究所共同组织筹建。据市质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,该市质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 湖北省筹建微型电量传感器计量检定中心
    12月22日,记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是湖北省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。  此项目由天门市质量技术监督局与天门电工仪器仪表研究所共同组织筹建。据天门质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,天门质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 共进微电子和西电共建“传感器与汽车电子封测关键技术联合实验室”
    2024年1月19日,共进微电子和西安电子科技大学共建的"传感器与汽车电子封测关键技术联合实验室"正式揭牌,该实验室旨在促进封测领域的科研合作,推动封测技术的创新和产业的发展。同时,西安电子科技大学博士生导师、封装系首任主任田文超教授也将担任共进微电子首席科学家。封装测试在传感器和汽车电子芯片性能和可靠性方面扮演着至关重要的角色。联合实验室将在传感器与汽车电子芯片的相关结构设计、材料研究、应力、热、电磁仿真和可靠性验证等方面展开合作。此外,联合实验室还将成为为学生提供实习和培训机会的平台,促进人才培养和技术交流。共进微电子总经理张文燕表示:“共进微电子一直致力于封测技术的研发与创新,而西安电子科技大学在封装领域具有丰富的研究经验和优秀的学术背景。通过合作,我们期待能够取得更多突破性的研究成果,并将其应用于实际生产中。”西安电子科技大学田文超教授也表示:“西安电子科技大学的封装专业是2009年国家首批电子封装技术本科专业,同时也是全国唯一的电子封装类国家级特色专业。通过与共进微电子建立联合实验室,我们将充分发挥双方的优势,推动封装技术的创新,促进企业技术进步和生产力提升。”未来,共进微电子将充分利用联合实验室的优势,夯实并增强共进微电子在传感器与汽车电子芯片的封装能力,为客户提供高质量的封测一体化服务!| 关于共进微电子上海共进微电子技术有限公司,简称“共进微电子”,成立于2021年12月。共进微电子由上交所主板上市公司共进股份(603118)、探针智能感知基金(国家新兴产业创业投资引导基金参股)以及一流的技术和管理团队创立,专注于智能传感器领域的先进封装测试业务。专注于智能传感器及汽车电子芯片领域的先进封装测试业务。共进微电子拥有上海研发销售中心和苏州太仓生产基地。已建设1.8万平米先进的研发中心和生产基地,生产基地包含百级、千级和万级无尘室,建设传感器及汽车电子芯片的封装测试量产生产线。共进微电子拥有完整的封装产线,涵盖从晶圆研磨、切割到前段工艺的固晶、引线键合、点胶、贴盖、回流焊,以及后段工艺的注塑成型、打标、切单。提供多种产品封装类型,包括LGA、QFN、Fan-out、SIP和2.5D/3D等。测试能力包括晶圆测试、CSP测试和成品级测试能力。共进微电子封装测试产品包括惯性、压力、电磁、环境、声学、光学、射频和微流控等传感器和汽车电子芯片。公司以满足客户需求为宗旨,制定完整的封装测试方案、流程及品质管控,为客户提供一站式解决方案,打造集研发、工程、批量生产于一体的专业综合封装测试服务平台。共进微电子致力于建设全球知名的规模大、种类齐全、技术先进的传感器及汽车电子芯片封装测试产业基地和领军企业,填补国内相关领域在批量封装、校准和测试领域的空白,突破产业链瓶颈。
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 赛微电子参设10亿产业基金,重点布局智能传感器、科学仪器等
    近日,赛微电子(证券代码:300456)发布公告,公司拟与北京国融工发投资管理有限公司(简称“国融工发”)、北京京国盛投资基金(有限合伙)(简称“京国盛基金”)、北京怀胜基金管理有限公司(简称“怀胜基金”)等方签署《有限合伙协议》,共同投资设立北京智能传感器产业发展基金合伙企业(有限合伙),传感器基金总规模10亿元,赛微电子认缴出资2.5亿元,基金管理人为国融工发。该传感基金将主要投资于智能传感器、高端科学仪器及其上下游领域,包括但不限于图像传感器、压力传感器、雷达传感器、高端科学仪器、信息安全、半导体产业等北京市高精尖产业重点领域。出资4.901亿元的京国盛基金为北京国资公司发起设立的市场化母基金,以服务北京国际科技创新中心建设为方向,围绕北京市“十四五”高精尖重点产业、北京国资公司主业领域发展,市属国企、央企混改进行投资布局,通过设立子基金吸引更多社会资本为首都经济建设贡献力量。2021年至今,基金共完成4只子基金设立决策,涉及子基金总规模达40.82亿元,投资了国电投氢能科技、中科富海等项目。出资2.5亿的赛微电子成立于2008年5月15日,公司以半导体业务为核心,面向物联网与人工智能时代,一方面重点发展MEMS工艺开发与晶圆制造业务,一方面积极布局GaN材料与器件业务。公司目前的主要产品及业务包括MEMS芯片的工艺开发及晶圆制造、GaN外延材料生长与器件设计,下游应用领域包括通信、生物医疗、工业科学、消费电子等。出资2.4亿的怀胜基金成立于2017年,为北京市怀柔区国有资本经营管理成员。基金管理人国融工发成立于1994年,是北京工业发展投资管理有限公司全资子公司。业务聚焦基金、咨询、平台管理三大核心领域,以协助政府做好高精尖领域、中小企业公共服务、产业和政策咨询等工作为己任,坚持以发挥国有企业社会作用为发展理念。
  • 奥松电子6英寸MEMS传感器芯片生产线正式投入运营,2021二期工程将建成
    p style="text-indent: 2em text-align: justify "随着生物医疗、人工智能、物联网、5G网络等新兴信息技术发展,传统制造业将会借助于新技术进一步转型升级。MEMS半导体传感器芯片在智能物联网时代中起到核心作用,智能传感器产业已成为推进传统工业转型升级的关键,这对粤港澳大湾区、乃至我国的经济发展、产业结构优化具有重大的战略意义。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://uploadimg2.moore.ren/images/news/2020-09-22/110306.jpg"//pp style="text-indent: 2em text-align: justify "据麦姆斯咨询了解,广州奥松电子有限公司6英寸MEMS半导体传感器芯片生产线正式投入运营,成功量产出温湿度、流量、气体、差压、风速等传感器芯片,并为部分珠三角客户提供MEMS半导体芯片代工服务。该生产线的建成投产标志奥松电子成为华南地区领先的MEMS半导体传感器芯片生产基地,推动国内、特别是粤港澳大湾区的MEMS半导体传感器高质量发展奠定了良好的基础。/pp style="text-indent: 2em text-align: justify "奥松电子斥巨资打造MEMS半导体芯片生产线,一期工程净化车间总面积约2500平方米,配置湿法清洗区、百级洁净度光刻区、千级洁净度镀膜区、千级洁净度刻蚀区、千级洁净度离子注入区及参观通道等。整个洁净车间安装了多套高性能风淋系统,对进入洁净间的员工或者货物进行彻底风淋除尘。/pp style="text-indent: 2em text-align: justify "该生产线一期工程于2019年3月立项,2019年6月正式进入施工阶段。经过6个月的施工,生产线的基础设施已安装完成。2020年,多台步进式投影光刻机、双面光刻机、涂胶显影机、深硅刻蚀机、大束流离子注入机、PECVD、LPCVD、氧化炉、磁控溅射机、探针台、应力测试仪、全自动RCA清洗机等先进的自动化生产设备搬入,生产线正式投入运营。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://uploadimg2.moore.ren/images/news/2020-09-22/110307.jpg"//pp style="text-indent: 0em "img style="max-width:100% max-height:100% " src="http://uploadimg2.moore.ren/images/news/2020-09-22/110308.jpg"//pp style="text-indent: 2em text-align: justify "奥松电子MEMS半导体生产线一期工程为500纳米MEMS半导体工艺制程,生产设备约占整个投资规模的70%。一期工程已成功量产出温湿度传感器、空气质量传感器、气体传感器、流量传感器、差压传感器等多款优质的芯片产品。根据规划,2021年二期工程将建成350纳米制程工艺MEMS半导体生产线;2022年三期工程将建成180纳米制程工艺MEMS半导体生产线;总项目全部建成投产后,每月流片规模将达到4万片,满足奥松电子自身需求及粤港澳大湾区各类MEMS半导体芯片的代工需求。/pp style="text-indent: 2em text-align: justify "随着物联网时代的到来,珠三角经济区作为中国最重要的制造基地之一,一直走在时代的前列。《粤港澳大湾区发展规划纲要》政策落实后,广州作为广东省省会城市和经济中心、一带一路新亚欧大陆经济走廊主要节点城市和海上合作战略支点,优势地位不断得到提升。奥松电子立足广州,在MEMS半导体传感器领域打破了国外企业的垄断,实现国产替代进口,勇担历史使命,为粤港澳大湾区建设贡献自己的一份力量。/p
  • 石墨烯传感器可让小分子“现形”
    科技日报北京7月12日电 尽管科学家因为石墨烯无与伦比的属性而对其青睐有加,但迄今为止,其实际应用仍然乏善可陈。不过,瑞士洛桑联邦理工学院(EPFL)生物纳米系统实验室和西班牙光子科学研究所的科学家们在最新一期的《科学》杂志上宣称,他们利用石墨烯独特的光学和电子学属性,研制出了一种具有超高灵敏度的分子传感器,可以探测蛋白质或药物小分子的详细信息。  在红外吸收光谱学这种标准的探测方法中,光被用来激活分子。不同分子的振动不同,借由这种振动,分子会显示其存在甚至表现自己的“性格”。这些“蛛丝马迹”可在反射光中“读出”。但在探测纳米大小的分子时,这一方法的表现差强人意。因为照射分子的红外光子的波长约为6微米,而目标分子仅几个纳米,很难在反射光中探测到如此微小分子的振动。  于是,石墨烯受命于危难之间。研究合作者丹尼尔罗德里戈解释道,如果让石墨烯拥有合适的几何形状,其就能将光聚焦在表面上的某个特定点上,并“倾听”附着其上的纳米分子的振动。他说:“通过使用电子束轰击并使用氧离子蚀刻,我们在石墨烯表面弄了一些纳米结构。当光到达时,纳米结构内的电子会振荡,产生的‘局域表面等离子体共振’可将光聚集在某个点上,其与目标分子的尺度相当,因此,能探测纳米大小的结构。”  除此之外,这一过程也能揭示组成分子的原子键的属性。研究人员称,当分子振动时,连接不同原子的原子键会产生多种振动,不同振动之间的细微差别可提供与每个键的属性以及整个分子的健康状况有关的信息。为了找出每个原子键发出的“声音”从而确定所有的频率,需要用到石墨烯。在实验中,研究人员对石墨烯施加不同的电压,让其“调谐”到不同的频率,从而能“阅读”其表面上的分子的所有振动情况,而使用目前的传感器无法做到这一点。研究人员海蒂斯奥特格说:“我们让蛋白质附着在石墨烯上,并用这一方法,得到了分子全方位的信息。”  研究人员表示,这种简单的方法表明,石墨烯在探测领域拥有不可思议的潜能,奥特格表示:“尽管我们研究的是生物分子,但这一方法或许也适用于聚合物和其他物质。”
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • 美研制出生物体与电子设备相结合的湿度传感器
    研究人员将真菌孢子与石墨烯量子点结合在一起,制造出了一种极其微小的生物机器人。  &ldquo 这是一个令人着迷的设备,你可以说它是一个传感器,也可以说它是一个类似于机械战警般的生物机器人。&rdquo 美国伊利诺伊大学芝加哥分校的科研人员日前将真菌所产生的孢子与石墨烯量子点结合在了一起,制造出了一种极其微小的生物机器人。该装置有望用于环境监测、食品安全等领域。相关论文发表在自然出版集团旗下的《科学报告》期刊上。  随着纳米技术的发展,制造出肉眼不可见的微型机器人已经成为一件可能的事情,将生物体与无生命的机器相结合也成为解决问题的一个备选方案。新研制出的这种装置主要由孢子和石墨烯量子点组成,研究人员首先从细菌中提取孢子,再将石墨烯量子点放置在孢子的表面,而后在孢子两侧各贴上一个电极。这样,当孢子周围的湿度下降时,孢子就会收缩,其中的水分会被压出。由于孢子缩小后体积变小,两侧的量子点会紧靠在一起,电极的导电性也会立即发生变化,从而达到了监测湿度的目的。研究人员将这个设备称为&ldquo 纳米电子机器人设备(NERD)&rdquo 。  该研究论文第一作者、伊利诺伊大学芝加哥分校副教授维卡斯· 贝瑞说:&ldquo 在湿度发生改变的那一刻,我们就能立即得到一个清晰准确的反馈。这个反应速度比目前最先进的人造吸水聚合物制成的传感器快10倍以上。而且与人造传感器相比,这种生物传感器在极端低压以及极低湿度下具有更加出色的灵敏度。&rdquo   物理学家组织网近日报道称,目前常见的湿度传感器的灵敏度随着湿度的增加而逐渐增强,而NERD的灵敏度在低湿度情况下反而更加灵敏。这种传感器能够适应各种环境,甚至是真空,这在防腐或食品质量监测领域有重要应用前景。对于运行在太空中的设备而言,这些传感器同样非常重要,因为在这些地方湿度的变化是预示泄漏的一个重要信号。  贝瑞说:&ldquo 这种传感器具有广泛的应用前景,此类研究为人们探索生物体与电子及机械设备的结合提供了一个新的角度。&rdquo
  • Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同
    Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同 ADVACA近日签下了AGIDP模块的倒接合同。AGIDP是增益自适应、积分、像素探测器的缩写,是一种为欧洲X射线自由 电子激光设计的X射线成像探测器,该X射线自由电子激光器位于德国汉堡的DESY。我们可以将AGIDP探测器系统理解为超高速的相机,而这一相机的时间分辨率为数百纳米秒。 “AGIPD是一种高速,低噪的积分探测器,并且在每一像素上都拥有自适应增益放大器。当它探测单个光子事件,并调节增益状态使动态范围优于10^4(@12KeV)时,其所产生的等效噪音是小于1keV的。在Burst模式下,该系统可在运行频率高达6.5 MHz的同时储存352张图像的,完全能够适用于帧频为4.5MHz的欧洲X光自由电子激光器。点击了解更多” 制作过程包括倒装焊接技术制成162个2×8多芯片硅模块,以及在25个传感器晶片上加工,大小为10.77 cm x 2.8 cm,厚度为500um的的单片硅传感器。目前使用硅传感器的混合像素探测器的发展趋势是生产更大的模组,而这些传感器已经是Advacam采用基于步进光刻技术所制造的最大的传感器了。在过去的两年里,硅传感器的制造工艺已经得到了完善,并有望获得高质量的图形和高的电产量。最终,该模块将被用于研究待测样品在7至15 keV的散射花样。(图1 对于首批AGIDP2×8硅模块中某一样品进行的辐射测试。可看出凸点键合成品率近乎完美。) 将项目授予Advacam公司,意味着公司将被视为一个值得信赖的像素探测器装配和传感器制造的合作伙伴。类似的倒装焊接技术曾在过去被成功使用过,但Advacam是首个将倒装焊接技术和传感器制造服务结合的公司。该产品是对小型R&D活动的一个成功延续,这一活动是为DESY和工业领域的客户所设计的。AGIDP业务预计将会创造该公司2019年25%至35%的营业额。图二 一批2x8 Si AGIPD模块准备运往DESY
  • 重磅!填补我国空白,这个传感器仪器获重大突破
    近日,据中国科学院合肥物质科学研究院智能机械研究所中科院合肥研究院智能所官方公众号公布,该所研制出了国内首台深海质谱仪,并在南海某海域成功完成多次海试,该工作填补了国内在深海质谱仪研制领域的空白:质谱仪是一种分离和检测不同同位素的仪器。利用质谱仪,可以对相关物质进行化学分析,为确定化合物的分子式和分子结构等提供可靠的依据。深海质谱仪的研制,可以为寻找海底油气及矿产资源,探究生命起源和早期演化以及研究全球气候变化等奠定了原位质谱探测基础。▲国内首台深海质谱仪(来源:中科院合肥研究院智能所)中科院合肥物质院智能所陈池来研究团队,长期致力于新型MEMS质谱关键技术及应用研究。作为深海智能感知技术联合实验室共建单位成员,团队先后突破质谱小型化设计集成、质谱关键器件MEMS制造、水下膜进样快速定量标定等关键技术。经过多年攻关,该团队成功研制出国内首套深海质谱仪,可在原位实现深海中N2、O2、Ar、CO2、CH4等小分子溶解气以及烷烃、芳香烃等挥发性有机物溶解气的定性及定量检测。深海极端环境塑造了特殊的生命过程,蕴藏着极大的矿产资源,对其探测是国际地球科学研究的前沿问题。深海原位探测技术可以在时间和空间维度上连续获取深海样品的组分、含量及其变化信息,因此被越来越广泛地应用于深海极端环境的研究工作中。▲深海质谱仪搭乘原位实验室完成深海探测任务后出水瞬时(来源:中科院合肥研究院智能所)2022年至今,该团队成员王晗、邵磊等携带深海质谱仪参加了多次专项海试,验证了其工作原理及工程应用的可行性,完成了设备功能性验证实验、海底定点在线检测实验及深度扫描试验。不仅如此,通过海试,该仪器还实现了深海冷泉区域溶解气的长时间(25.8h)原位检测及海平面至海底(-1388m-0m)溶解气的在线检测,获取了深海海底小分子溶解气浓度随时间的变化曲线及纵向浓度分布轮廓线等关键科学数据。相关研究成果以《用于深海气体原位检测的水下质谱仪的研制与应用》为题发表在《中国分析化学》上。▲深海溶解气在线检测深度-峰高关系曲线(来源:中科院合肥研究院智能所)海洋探测中常用的各种传感器仪器及分类海洋仪器设备的一个最大特点是,生产批量小、应用范围窄、使用寿命短,而稳定、可靠性和一致性,以及测量分辨率和精度等要求又特别高,需要在不断应用中改进制造工艺和提高技术性能。传感器技术是海洋仪器设备的基础,其各方面性能是衡量仪器设备好坏的关键,同时也是调查数据质量的保证,各种数据订正方案应运而生,但是在长期的观测中,传感器的稳定性、漂移、准确度等指标依然是最重要的部分。海洋中使用了各种各样的传感器仪器,包括声学多普勒电流剖面仪,底流流量计,底部压力和倾斜仪,电导率-温度深度(CTD),溶解氧传感器,数码相机,高清摄像机,水听器,质谱仪,光学衰减传感器,pH和二氧化碳传感器,压力传感器,远程访问液体和DNA采样器,电阻率探头,地震仪,声纳,热敏电阻阵列和湍流电流计等等。海洋传感器根据检测参数类别可大致划分为水质类、水文类、地质地震类、声学探测类、光学探测类等,每一类检测参数大则包含上百项检测目标,少则数十项检测目标,且根据应用领域和应用环境的不同,每一项检测参数的工作原理和技术实现手段各有不同。▲海洋传感器机器分类(来源:高科技与产业化)日益重视,近年我国海洋传感器仪器的研究现状,与取得的突破近年来,我国日益重视海洋传感器及仪器设备等相关海洋科学技术的研究。在2013年,科技部正式批复,组建青岛海洋科学与技术试点国家实验室;2015年6月,实验室正式投入运行,成为所有试点国家实验室中唯一转为正式国家实验室的研究机构。此外,国内有多所大学和科研机构从事海洋传感器方面的研究:山东省科学院海洋仪器仪表研究所侧重在化学/物理测量、温度/热量测量、非特定变量测量、力的测量以及控制系统方面进行技术布局;中国海洋大学侧重在非特定变量、距离/摄影测量、化学/物理测量、重力测量和控制系统方面进行技术布局;国家海洋技术中心侧重在距离测量、化学/物理测量、温度测量、流量测量和船用设备方面进行技术布局;天津大学的专利技术主要布局在化学/物理测量、平衡测量、距离测量、船用设备和非特定变量测量等领域;浙江大学的专利技术主要布局在化学/物理测量、平衡测量、信号控制传输、液力机械和船用设备等领域;浙江海洋大学的专利技术主要布局在船用设备、化学/物理测量、控制系统、平衡测量、电场分离等领域;大连科技学院的专利技术主要布局在非特定变量测量、化学/物理测量、长度/角度等测量、液力机械和距离/摄影测量等领域。在产业化方面,我国90%的传感器依赖进口,只有通过国产化来降低成本,国内海工装备才用得起传感器。国外的海洋传感器已经近二十年没有更新换代了,但是在过去二十年,材料技术、信息技术、集成电路技术等都取得了很大的进步,当这些新技术渗透到海洋传感器领域的时候,就会有大的突破,也是国内海洋传感器领域的机遇所在。海洋化学传感器、海洋微生物传感器也都存在不能与时俱进的问题,我国目前尚不具备全面、完整的微生物数据库,适合长期海洋监测的便携、低功耗、原位、实时、快速、精确的海洋微生物传感器也未有相关产品。目前,进口CTD温盐深剖面仪、ADCP等海洋仪器设备在我国还有占有很大的市场份额。但令人欣喜的看到,通过近些年来国内相关科技企业的共同努力,在部分海洋传感器领域已经做到了国产代替,其实验室测量精度已与国外同类产品不相上下,与世界先进水平也已相差无几,只是其稳定、可靠性还需要进一步提升。结语要解决海洋领域核心关键技术受制于人的问题,关键是增强科技攻关能力,强化自主创新成果的源头供给。在全球范围内传感器有超过2万亿的市场规模,我国传感器相关企业应抓住机遇,加强技术团队的学科交叉与协同攻关,强化新原理、新方法创新与已有技术的完善,多项并举才能掌握海洋科技发展主动权,合力解决海洋传感器领域的“卡脖子”问题。未来,我国将基于创新的光电集成芯片和光学传感原理,基于光电集成芯片技术,依靠发展成熟的集成电路的制造设备与工艺水平和在中国国产化的集成电路芯片制造水平,结合我国已搭建起的芯片产业链,通过国内外的密切合作,开发具有自主知识产权的芯片级海洋物理、化学和微生物传感器,并且实现微型化与国产化,应用到高端智能装备的制造领域。
  • 中科院微电子所在纳米森林柔性湿度传感器及其应用研究方面取得新进展
    近日,中科院微电子所健康电子中心毛海央研究员团队在纳米森林柔性湿度传感器及其非接触人机交互应用研究方面取得重要进展。近年来,人机交互技术因其在物联网中的重要应用而受到广泛关注。具有高灵敏度和快速响应能力的柔性智能传感器因其可将来自人体的各种信号“转换”为机器可以识别的信息并进行非接触传感,被认为在先进人机交互系统的新型控制方法研发中心发挥关键作用。研究团队成功研制出一种柔性透明的高性能湿度传感器。该传感器以纳米森林为湿敏材料,制备工艺简单便捷,具备晶圆级图形化、大批量制备能力。所制备的湿度传感器具有出色的灵敏度、快速响应能力、长期稳定性和良好的机械灵活性。基于湿度传感器的以上优异特性,研究团队进一步实现了该器件的非接触式智能开关应用。基于本研究成果的论文“Wafer-Level, High-Performance, Flexible Sensors based on Organic Nanoforests for Human-Machine Interaction”近期发表在国际著名期刊ACS Applied Materials & Interfaces上(DOI: 10.1021/acsami.3c04953),微电子所博士研究生赵越芳为该文章的第一作者,微电子所毛海央研究员、微电子所先导工艺研发中心周娜高级工程师和长春光机所李绍娟研究员为该文章的共同通讯作者。该项研究得到了国家自然科学基金、广东省重点领域研发计划和中国科学院青促会项目等的支持。除此之外,课题组也开展了纳米森林生化检测传感器ACS Sensors (2020), Sensors and Actuators B: Chemical (2020), Applied Surface Science(2022)、纳米森林热电堆传感器Advanced Functional Materials (2021)、纳米森林皮拉尼传感器IEEE Electron Device Letters(2021)和纳米森林湿度传感器IEEE Electron Device Letters (2021),Microsystems & Nanoengineering (2022) ,相关成果分别发表在传感器领域知名的国际期刊上。图1 纳米森林柔性湿度传感器工作机理及其用于人机交互的示意图图2 纳米森林柔性湿度传感器的非接触式人机界面控制能力。(a) 纳米森林柔性湿度传感器阵列的晶圆级制备。(b)使用纳米森林柔性湿度传感器阵列的运动跟踪示意图。(c-d)非接触式人机交互系统的手势识别与玩具小车控制。
  • 气体传感器企业汉威电子与第三方检测机构华测检测创业板上市
    气体传感器企业汉威电子创业板首批上市  在首批公布招股说明书的10家创业板公司中,河南汉威电子股份有限公司因其产品具有较高技术壁垒,且主要应用于政府监管和重视的工业安全生产领域,公司表现出的稳定持续的高速成长性,受到了机构投资者的广泛关注。公司昨日在上海举办的现场路演推介会吸引了众多机构投资者的积极参与。  机构投资者纷纷给予公司较高的评价,并就公司产品的核心技术、市场竞争情况、应用领域、政策扶持力度、募投项目的发展前景等问题与公司的高管层进行了充分的交流。  气体传感器是气体检测仪器仪表的核心部件。汉威电子掌握了大量的关于气体传感器选型、气敏材料配方、生产工艺、工业设计等方面的专利或者是非专利技术,成为国内唯一能够同时生产半导体类、催化燃烧类、电化学类及红外光学类四大主要类别气体传感器产品的企业,从源头上摆脱了对国外厂商的技术依赖,成为行业内填补国内空白、替代进口的领跑者。由于公司掌握了传感器的核心技术及生产能力,拥有生产检测仪器仪表的技术优势和成本优势,同时所处行业技术壁垒较高,需要严格的行业认证才能进入,因此公司毛利率达到50%以上,高于可比上市公司的平均水平。  传感器产业是国内外公认的具有广阔发展前途的高技术产业。作为该产业的一个重要分支,气体传感器在燃气、冶金、航天、石油石化、煤炭、化工、环保、煤气化等十个行业均有广泛的应用。随着国家和人民对健康和安全的日益重视,以及各大产业振兴规划都将推动国内气体检测仪器仪表市场的高速增长,预计未来三年将保持30%以上的增长率,2012年需求量超过1500万台,市场规模为30亿元以上。  面对未来几年巨大的市场需求,汉威电子将是传感器行业发展最大的受益者之一。公司的成长性和盈利能力在电子板块处于领先水平,自成立以来始终保持快速的发展势头,在2006年至2009年的三年发展中,营业收入由2910万元增长到9733万元,复合增长率达到82%,净利润由734万元增长到2969万元,复合增长率达到101%,公司的核心传感器产品的市场份额由29%增长到53%。  汉威电子此次募投项目主要投入红外气体传感器和检测器产品以及电化学气体检测仪器仪表。前者主要用于工矿企业中危险气体的检测,后者中的电化学酒精传感器可以用于各类呼出气体酒精浓度监测仪表,便于交通警察对机动车驾驶员进行饮酒检测。随着政府监管部门和民众对安全生产的日益重视,未来工矿企业必将加大对危险气体的检测投入,使得红外气体传感器具有良好稳定的成长性 而政府加大对酒后驾车的监管力度后,未来电化学酒精传感器的需求也有较大的增长空间。  据悉,目前汉威电子是国内唯一有能力产业化生产电化学传感器和红外传感器的企业,而国内其他竞争对手均需进口相关核心器件,公司具备明显的技术和成本优势。随着募投项目的逐步投产,预计2012年产量将占仪器仪表总产量的30%以上,销售收入达到仪器仪表总销售收入的50%以上,公司营业收入和净利润年均复合增长率均在30%以上,高于行业平均增速。华测检测登陆创业版 拟募集资金2.75亿元  据央视新闻频道消息,21日上会的五家创业板企业四家过会一家被否。过会的四家企业为北京北陆药业股份有限公司、西安宝德自动化股份有限公司、深圳市华测检测技术股份有限公司、武汉中元华电科技股份有限公司。  深圳市华测检测技术股份有限公司是一家全国性、综合性的独立第三方检测服务机构,主要从事工业品、消费品、生命科学以及贸易保障领域的技术检测服务,目前在国内拥有近30家分支机构组成的业务网络,拥有化学、生物、物理、机械、电磁等领域的30个实验室,取得了CMA计量认证与CNAS国家合格评定委员会实验室认可资格和检查机构认可资格,并依据ISO17025、ISO17020进行管理。本次发行股数为2100万股,发行后的总股本为8177万股,主承销商为平安证券。  在发行前,万里鹏、万峰父子合计持有公司45.74%股权,是公司控股股东和实际控制人。万峰为公司董事长,万里鹏任公司董事。  本次发行A股预计募集资金2.75亿元,主要用于建设华东检测基地和华南检测基地,项目建成后将极大地充实实验室检测网络,扩大市场份额,提高市场占有率。另据消息:  10月30日,随着创业板开市宝钟的敲响,CTI华测检测正式在深交所挂牌上市,CTI华测检测不仅成为深圳市首家在创业板上市的公司,也是国内首家成功上市的第三方检测机构。  此次,CTI华测检测成功登陆创业板,其股票代码为300012,本次公开发行股票2100万股。  作为国内最大的民营第三方测试、检验和认证服务的开拓者和领先者,其业务范围涵盖了工业品检测、消费品检测、贸易保障和生命科学四个领域。一直以来,CTI华测检测坚持为众多行业和产品提供一站式的质量解决方案,提升企业竞争力,以满足其对品质的更高要求。  目前,CTI华测检测已经拥有30多家分支机构组成的服务网络,取得了中国合格评定国家认可委员会CNAS认可及计量认证CMA资质,并获得了英国UKAS,新加波SPRING,美国CPSC认可,检测报告具有国际公信力。  以上市为契机,CTI华测检测将持续提高其检测能力,更好的为各行各业提供全面的、高质量的服务,此次成功上市,不仅标志着华测检测在成长的道路上迈出了重要的一步,更重要的是为CTI华测检测以后全方位服务能力的提升打下了坚实的基础。  深圳市华测检测技术股份有限公司:http://www.cti-cert.com/
  • 曾令文:核酸生物传感器在重金属离子检测中的应用
    仪器信息网讯 2015年6月17日,&ldquo 第四届中国食品与农产品质量安全检测技术国际论坛暨展览会&rdquo 在北京国家会议中心开幕。此次会议特别设置了&ldquo 食品与农产品中重金属元素和其他有害物质检测&rdquo 、&ldquo 食品与农产品安全微生物检测&rdquo 、&ldquo 饮用水安全检测&rdquo 等九个专题。大会第二天,来自中国科学院广州生物医药与健康研究院曾令文研究员在&ldquo 食品与农产品中重金属元素和其他有害物质检测&rdquo 专题中做了题为&ldquo 核酸生物传感器在重金属离子检测中的应用&rdquo 的报告。专题现场中国科学院广州生物医药与健康研究院 曾令文研究员  在报告中,曾令文首先介绍了重金属污染的危害、污染源和污染特点。他说,随着工农业生产的迅速发展,食品污染问题越来越严重,重金属是最主要的污染物质之一,会通过食物链的富集最终残留在人体内,对人体的组织器官构成了严重威胁。重金属污染源主要有工业污染、农业污染、生活污染和环境事故污染等。具有不可逆转性、生物积累性、难以降解、生物催化以后毒性会转变等特点。  同时曾令文提到,与其他国家相比,我国重金属污染相对比较严重。大气、土壤、水体都存在重金属污染的现象,污染一旦产生,面积会不断扩大。  其次,曾令文在报告中详细介绍了目前重金属的检测方法。据他介绍,传统重金属检测方法主要有光谱法、电化学法和基于显色螯合剂的方法等。光谱法主要包括原子吸收光谱法、原子发射光谱法、原子荧光光谱法和分光光度法等方法。光谱法和电化学法需要借助相关的仪器进行检测,具有灵敏度高、特异性好等优点。但是样品处理繁琐、检测成本和技术要求较高,不利于基层单位使用。而基于显色螯合剂的方法具有简便快速、成本低等优点,但是灵敏度不足、其他离子会干扰检测的特异性。  为了解决传统方法在检测重金属污染中面临的问题,在曾令文的带领下,课题组研制了两种新型生物传感器,基于核酸酶(DNAzyme)的传感器和基于荧光铜纳米颗粒的荧光传感器,并进行了大量实验验证方法的可行性和灵敏度。据他介绍,两种方法具有以下优点:简单、快速、检测成本较低 降低对仪器的依赖,肉眼即可观察结果 适合在基层实验室或野外使用等。  在介绍基于核酸酶(DNAzyme)的传感器在重金属检测中的应用时,曾令文说,该方法在检测重金属离子时主要有两种方法,试纸条法和荧光法。  试纸条法中主要制备了Pb2+和Cu2+特异性的DNAzyme检测试纸条,并进行相关实验进行检验。对于Pb2+来说,该方法检测限可以达到10pM,线性范围为10pM-100nM,特异性非常好,不受其他离子干扰,用湖水做回收率分析实验,结果可达88%-106%。对于Cu2+来说,该方法检测限可以达到10nM,特异性分析实验中,铜离子为0.3&mu M,其他离子为3&mu M。  荧光法中,主要制备了铜离子检测的荧光传感器和基于比色法检测铜离子的传感器,铜离子检测的荧光传感器的灵敏度可达12.8pM,线性范围是20pM-1&mu M,特异性分析实验中,铜离子为1&mu M,其他离子为10&mu M。基于比色法检测铜离子的传感器,灵敏度可达240nM,线性范围是0.4&mu M-100&mu M,特异性分析实验中,铜离子为10&mu M,其他离子为100&mu M。  在介绍基于荧光铜纳米颗粒的荧光传感器在重金属检测中的应用时,曾令文谈道,用该方法检测铅离子,灵敏度为5nM,线性范围为5-100nM,选择性分析实验中,铅离子为0.3&mu M,其他各离子为3&mu M。  最后,曾令文总结了基于核酸酶(DNAzyme)的传感器和基于荧光铜纳米颗粒的荧光传感器在进行重金属检测中的优点,并展望了两种方法在未来重金属检测中的应用前景。  编辑:张葳
  • NSTC:将量子传感器付诸实践
    量子传感器和测量设备能够为商业、政府和科学应用提供精确性、稳定性和新功能,产业界、学术界、政府部门间的合作可以促进量子测量科学和产业进展。此前,美国国家科学和技术委员会(NSTC)量子信息科学小组委员会(SCQIS)发布了题为《将量子传感器付诸实践(Bringing Quantum Sensors to Fruition can be found)》的报告。  报告以美国《量子信息科学国家战略概览》和《国家量子倡议(NQI)》法案为基础,讲述了当前主要应用的5类量子传感器是原子钟、原子干涉仪、光学磁力器、利用量子光学效应的装置和原子电场传感器,量子测量从研发到产业化阶段主要面临人才多样化、技术可行性、关键辅助性技术和组件和知识产权与技术转让4大方面挑战。报告针对量子测量研发、应用领域提出1-8年的短中期建议,其长期目标是通过量子技术的发展促进经济发展、安全应用和科学进步。该报告增强了美国QIS国家战略,体现出美国在量子测量领域的重视和决心。  (一)量子传感器  量子传感器(quantum sensors)是利用量子力学特性(如原子能级、光子态或基本粒子的自旋)进行测量的设备。量子传感器在定位、导航、计时、本地和远程、生物医学、化学和材料科学、基础物理学和宇宙学等不同领域均有使用。目前,量子测量领域有5类主要的量子传感器。表1 量子测量5类主要的量子传感器名称工作原理应用领域量子传感器原子钟当标准GPS信号不可用时,使用原子钟辅助网络和高精度时间传输协议可以为导航系统提供弹性地质学、地震学、石油勘探、电网运营和金融服务业等原子干涉仪在基础物理学领域的应用包括万有引力常数(大G)的测量、等效原理(自由落体的普遍性)的测试、毫米级的引力测量、暗物质粒子的搜索以及引力波探测的可能替代方法火山学、地下水、矿藏、潮汐动力学和冰层等地球科学研究,陀螺罗盘、卫星定位、制导、导航重力测绘和海底避障等应用光学磁力器基于蒸汽、玻色凝聚体或固态系统(如金刚石中的氮-空位(NV)中心)中原子自旋的光学磁力计用于神经功能的生物医学研究,支持生物样本的无创检测和表面科学的新工具利用量子光学效应的装置利用量子光学效应的设备提供了突破显微镜、光谱和干涉测量中的标准量子极限的机会。非经典状态的光子使测量达到海森堡极限DNA测序、酶活性跟踪、粒子物理学、暗物质搜索、量子网络协议和微光遥感原子电场传感器使用里德堡原子态作为换能器或量子天线,来测量从直流(0 Hz)到太赫兹(1012 Hz)的宽频率范围内的电磁场应用于遥感和电测领域,其他应用包括扩大蜂窝塔之间的距离,以及采集具有宽动态范围的信号  (二)困难与建议  量子测量从概念验证设计到实现可应用的产品仍然需要克服许多障碍。首先,研发工作分散、巨大应用空间和潜在用户需求,使人们很难专注于某一特定的应用或需求,许多量子测量市场驱动力和商业价值仍未明确;其次,从基础研究到商业化产品成型需要大量和持续性的资金。量子测量技术的研发不仅需要高校、研发机构和企业间共同参与,一个有凝聚力的、系统性的战略路线尤其重要,使多个机构目标一致,联合产业链上的企业在一些特定应用和关键辅助性技术上共同开发,并且与合作企业处理好知识产权、收购、商业安全和寻求战略合作伙伴等关系,使量子测量技术更加高效成熟。  1.团队人才专业多样化问题  面临的挑战:许多进行基础研究的科学家可能缺乏量子测量应用和商业化相关领域的专业知识,比如不熟悉当前具有竞争性的技术或者军事领域应用下部署传感器的严格要求等,所以还需要完善专家团队的多样化,找到各领域的专家和行业精英一同参与。但是存在寻找人才时间长,晋升和任期标准不一致,对新的联合项目缺乏方案资源或资金支持,回报周期长等实际困难,进展缓慢。  建议:QIST研发机构,如NIST、NSF、DOE、DOD、NASA和情报界,应该加快开发新的量子测量技术,并优先与量子测量最终用户建立合作伙伴关系,共同测试、开发和推广应用结果,从而帮助量子测量企业改进技术、实现市场目标或任务,共同努力通过提供新的资源、先发优势和提高对新兴技术的认识而使最终用户受益。   2.具体技术的可行性问题  面临的挑战:(1)量子技术被过于夸大,使得有些用户对量子测量的潜在应用有不切实际的期望或误解,另一方面因量子测量未被有效推广,还有一些潜在的用户不知道量子测量的存在而错过商业机会。在实现一定的市场规模之前,较难预测实验室成果的商业可行性,特别是与现有的、传统的替代方案和基准比较,传统测量已有几十年的研发经验和商业市场,量子测量大规模进入市场还需要很长一段时间。(2)因为传感器的实用价值取决于许多因素,包括在现实环境中的性能、对环境噪声的响应、可靠性、带宽、占空比和操作时间等规格,而这些实地部署时的必要条件通常不是科学家或研发专家在早期原型优化时能想到首要任务。因此,潜在市场用户应该帮助进行判断。   建议:使用传感器的机构应进行可行性研究,并与QIST研发领导人共同测试量子原型系统,以确定有市场前景的量子测量技术。(1)量子测量应用机构应确定一些相关的量子技术,并进行专门的市场调查,寻找可应用的美国政府机构进行技术商用和推广,如美国国土安全部、国家卫生研究院、农业部、美国地质调查局、美国国家海洋和大气管理局,以及能源部、国防部和NASA中的部分部门。(2)国家实验室、联邦政府资助的研发中心和学术界的科学家也可以是研发试验阶段的采用者。(3)QIST研发从业者和这些最终用户的共同努力可以优先用于现场测试、共同设计和开发新的量子传感器原型和应用。(4)各机构可以利用SCQIS及其工作组来帮助确定潜在的合作伙伴关系。   3.关键辅助性技术和组件  面临的挑战:由于控制量子系统所需的严格技术要求和高昂的工程成本,获取关键辅助性技术仍是挑战。将量子实验室原型移植到现场演示所需要的组件或工艺,如专用材料、制造设施、集成光子器件、激光器、电子器件、真空系统、互连、量子控制和诊断等,这些尚未完全可控可用,而且这些辅助性技术和器材目前没有足够的市场实现规模生产,仅在实验室内投入使用,依赖实验室研发投入和应用场景,这些障碍不但影响了所需子系统的开发,在没有多次技术迭代和后续改进的情况下,也为量子测量最终用户的使用和推广带来困难。  建议:支持研发工程的机构应该与SCQIS工作团队合作,帮助促进量子测量更精确、更实用、更优化成本的关键组件开发。与产业界共同探索,有针对性的投资相关基础设施,从而生产出跨领域、多功能的组件,为多种量子设备的开发提供可能,如适用波长的可靠激光器和集成光学电路。各机构可协调对辅助性技术的战略研发和投资,建立合资企业和人才队伍,培育可持续的量子产业基础。   4.知识产权与技术转让问题  面临的挑战:在目前量子技术尚不成熟的阶段,地区或企业间一些保证知识产权的做法可能会阻碍合作,特别是国际间的合作。同样,进出口限制也可能会推迟收购和减缓开发,进而降低竞争力。因此,需要一些策略性的措施来确保研究安全,同时维护美国公开、透明、诚实、公平、客观和民主的科学精神。过度保护研究安全免受威胁,也会同时带来另一种风险,即过度过大地实施保护措施会抑制技术交流与进步。   建议:各机构应该简化技术转让和收购的流程,如来源选择、购买权和许可协议等,鼓励量子测量技术的开发和早期应用。高效的技术转让和获取过程对创新至关重要,它们可以减少技术开发人探索商业可行性的行政障碍,帮助最终用户访问和共同开发产品,有助于推进政企合作。其次,在公平可信的情况下,相关决策可适当考虑促进创新和基础研究的方式,以减轻行政负担,促进快速创新。为此,机构应结合法律法规,慎重考虑对技术或操作风险的承受能力,探索维护研究安全的最佳操作方式。由于技术转让取决于政府、企业和学术界不同部门,一种方法是让SCQIS、NSTC实验室参与到市场小组委员会及其工作组中,有助于相关决策。  (三)短中期发展规划  为落实上述建议,报告指出了研发界在短期(1-3年)和中期(3-8年)的若干规划。  未来1-3年内:  1.QIST研发领导人向各机构提供关于量子测量的简报和研讨会。简报包括对现有量子测量技术的调查及其对机构市场需求的影响力分析。结合简报,企业将共同测试和演示量子测量,并编制具有可行性性能指标的策划清单。   2.潜在市场用户应该参加以QIST为中心的专业协会会议、研讨会和圆桌会议等,了解用户及市场需求。最终用户可以参加“提议者日活动”,告知研发界他们对量子测量技术的兴趣和期望。  3.建立流动性的量子测量研发合作企业关系,多个企业将参与联合现场测试和初步结果评估,量子测量技术的开发、测试和共同设计有助于开创和验证新的应用场景。对于成果跟踪与评估,分类各个量子测量技术成熟度将很有必要。  4.确定量子传感器的具体、高效应用场景,其中重要的一项是关键组件的优先列表,以及相关工程研发的规格和计划。  5.确定工程基础设施和研发项目清单,确定最优排序,便于解决每个项目的辅助性技术和应用难题;预估每个研发项目所需的时间、投资预算及其潜在风险;鼓励建设实施有助于多个量子测量应用的基础项目或基础设施。  6.设立或建立能够促进量子测量技术发展的法律、政策咨询机构。  7.跟进量子测量技术的各个环节进展,包括文献统计、参与者、专利、量子测量技术许可,以及量子测量销售收入、国内外的量子测量关键组件或辅助性技术发展进展等。  未来3-8年内:  一旦确定了有可行性的量子测量技术,研发界和SCQIS机构应与应用方合作推进现场测试演示,以加快技术早期采用和项目落地过渡;优先考虑组件小型化和子系统集成;争取投资方支持,与代工厂合作开发、建设研发实验基础设施;为已确定的量子测量技术和组件制定标准。  量子测量虽然还有很多基础科学有待完成,但量子测量全新的应用和平台蓄势待发。该报告介绍的量子测量发展战略侧重于原型系统的现场测试,协调和解决这一难题,将有助于推进整个QIST领域实现突破。将量子测量从实验室推向市场需要漫长的过程,必须要有相应的国家科学战略,为量子测量技术的研发、测试和应用做好全程支持与服务,从而加速量子测量变革性的产品和服务推向市场。在此过程中,早期技术采用者将获得先发优势,创新者和企业家将获得知识产权,市场用户收益于优良的量子测量组件和设备,甚至包括其他领域的科学家,从而拓宽QIST研发生态链。总而言之,为了让美国更好的实现量子技术的经济、安全和社会效益,各机构应该齐心协力,共同推动量子测量技术的关键性进步。[2]  资料来源:  [1] https://www.whitehouse.gov/ostp/nstc/reports/  [2] https://www.whitehouse.gov/wp-content/uploads/2022/03/03-2022-BringingQuantumSensorstoFruition.pdf
  • 抢占智能传感器产业制高点 郑州高新智能传感器产业基地项目开工
    9月1日,郑州高新智能传感器产业基地项目开工仪式在郑州传感谷举行。该项目开工是郑州市、郑州高新区锚定电子信息“一号产业”,抢占智能传感器产业制高点,推动智能传感器产业高质量发展的具体行动。据介绍,郑州高新智能传感器产业基地总投资约15亿元,占地面积约61.83亩,总建筑面积约5.7万平方米,项目的建设有助于加快构建智能传感器产业生态,增强产业综合实力和企业竞争力,是高水平建设中国(郑州)智能传感谷,打造千亿级智能传感器产业的必要支撑,能够加快企业创新集聚,有利于我省抢占传感器产业制高点。该项目将重点打造智能传感器材料、智能传感器系统、智能传感器终端等产业集群,建设郑州高新智能传感器产业基地,配套建设智能传感器孵化器、产品展示等综合服务平台,着力集聚智能传感器上中下游企业,形成高端产品制造为产业基础、新型研发机构为支撑、软件算法和示范应用为推动的生态体系。该项目开工建设标志着产业链发展更加延展、稳固、健全,标志着我省的智能传感器产业发展占领关键环、迈向中高端,也标志着中国(郑州)智能传感谷的建设辐射更广泛、品牌更凸显。截至目前,郑州市智能传感器核心及关联产业规模约300亿元,占全省90%,占全国约10%,关联及应用企业约4000家。主要分布在气体、仪器仪表、电力电网、环境监测等领域,在国内细分行业具备一定优势,培育了以汉威科技、炜盛电子为龙头的气体传感器,以新天科技、光力科技、天迈科技为龙头的仪器仪表传感器,以日立信、三晖电气为龙头的电力电网传感器,以驰诚电气、安然测控为龙头的环境监测传感器。2022年10月,郑州高新区在由工业和信息化部直属的中国电子信息产业发展研究院颁布的中国传感器十大园区排名中位列第四。
  • 【2023世界传感器大会】MEMS智能传感器——先进技术分论坛成功召开
    2023年11月5日,2023世界传感器大会“MEMS智能传感器——先进技术分场活动”在郑州国际会展中心成功召开。来自智能传感器等领域专家学者、企业代表、新闻媒体近2000余人线上线下参加会议。会议由郑州市人民政府、河南省科学技术协会、沈阳仪表科学研究院有限公司、传感器国家工程研究中心、中国仪器仪表学会仪表元件分会、中国仪器仪表学会仪表工艺分会承办,郑州(国家)高新技术产业开发区管理委员会、郑州市科学技术协会、郑州众智科技股份有限公司协办。河南省科学技术协会副主席王继芬、郑州市人民政府副秘书长王举等领导出席会议并致辞。由沈阳仪表院院长助理、行业中心主任张阳主持。沈阳仪表院院长助理、行业中心主任张阳领导致辞中国工程院蒋庄德院士致开幕词。蒋院士回顾了MEMS智能传感器技术的发展历程,并鼓励中国传感器人在传感器产业细分领域不断攻坚克难、突破瓶颈,以国家战略需求为导向,加快实现高水平科技自立自强。中国工程院蒋庄德院士致开幕词中国科学院上海微系统与信息技术研究所李铁研究员作《微型全集成红外CO2气体传感器及其应用》主题报告,分享了红外二氧化碳气体传感器发展现状以及最新应用领域。传感器国家工程研究中心副总工程师、沈阳仪表院研发中心主任张春光作《大型模锻压机状态监测传感器关键技术研究》主题报告,介绍了压力传感器、位移传感器、振动传感器、粘度传感器在大型装备中应用的关键技术。西安交通大学赵立波教授聚焦压力传感器技术做《微纳特种压力传感器技术》专题报告。杭州师范大学传感技术中心钱正洪主任作《磁传感测量与数据融合处理技术》专题报告,从磁传感芯片的设计、信号测量与数据融合等方面作了详细的介绍。国防科技大学吴学忠教授作了《AI赋能MEMS传感器智能化发展新趋势》专题报告,从MEMS传感器智能化发展需求、技术途径、发展现状及趋势四个方面梳理了MEMS智能传感器技术发展方向。杭州晶华微电子股份有限公司副总经理赵双龙作了《智能传感器中国芯的方案》专题报告,分享了传感器信号调理芯片国产化方案。中科院上海微系统与信息技术研究所研究员李铁传感器国家工程研究中心副总工程师沈阳仪表院研发中心主任张春光西安交通大学教授赵立波杭州师范大学传感技术中心主任钱正洪国防科技大学教授吴学忠杭州晶华微电子股份有限公司副总经理赵双龙本次会议围绕MEMS智能传感器的前沿技术、产业趋势和热点问题等进行了深入研讨,来自不同领域的行业专家分享了传感器技术、产业和应用领域的最新研究成果,探讨了今后的发展方向。
  • 【2023世界传感器大会】中欧传感器产业合作交流会在郑州顺利召开
    11月6日,2023世界传感器大会——中欧传感器产业合作交流会在郑州顺利召开。此论坛由河南省人民政府、中国科学技术协会主办,中国仪器仪表学会、郑州市人民政府、德中友好协会联合会承办,来自高校、科研院所、企业等代表150余人参会。论坛由清华大学苏州汽车研究院(相城)协同控制所副所长刘玉敏主持。中国仪器仪表学会副秘书长张莉、郑州市人民政府副秘书长王凤霞为论坛致开幕辞。中国仪器仪表学会副秘书长张莉致辞郑州市人民政府副秘书长王凤霞致辞清华大学苏州汽车研究院(相城)协同控制所副所长刘玉敏主持论坛欧洲科学院院士亨利H拉达姆森以线上报告的形式介绍了红外器件的发展现状和中国在该领域的新机遇,他展示的采用了短波红外(SWIR)技术的照片,相比传统光学照片和热成像照片有更多成像细节和成本上的优势。“这项突破性技术可以广泛应用在汽车制造、肿瘤检测等领域。”亨利院士兴奋地表示,相关的设备和芯片都已在中国生产,这项技术拥有着光明的未来。葡萄牙使馆商务处中国区投资主管玛丽安娜威尔逊介绍了葡萄牙半导体产业发展现状和合作机遇,分享了葡萄牙在半导体、传感器、信息技术、AMKOR技术等领域的发展,在传感器相关领域的人才培养,以及葡萄牙的营商环境等。“大多数人工智能的动作以及应用场景都是通过传感器来进行表达和传达的。”剑桥大学制造研究院工业顾问刘铠文博士介绍了AI人工智能领域前沿应用—通过AI多模态测评技术革新教育评价体系。他举例,“剑桥大学老师每年要花600个小时去给学生做评价,我们研发的打分评价系统,可以直接帮老师减少80%的繁重工作量。”着重分享了AI多模态测评技术在教育评价体系中的优势与应用。IMAP大中华区管理合伙人王俊雄介绍了欧洲传感器行业的并购市场情况。“欧洲市场现在由于技术创新,汽车、医疗、航空航天、消费电子等领域都处在爆发式的增长期。”王俊雄认为,国内很多厂商的资质和能力、产品、质量,已经完全够得上抢占海外市场先机。中国以色列商务发展经理刘思嘉介绍了以色列创新传感器产业、商业环境与中国合作机遇。Newsight(中国)董事长李利凯做《投资传感器产业—打造中国世界级行业领袖》主题报告,分享了投资传感器产业的心得经验。海德堡印刷电子有限公司及创新实验室总经理迈克尔克罗格尔介绍了柔性传感器带来无限机遇,分析了不同场景的柔性传感器使用方案。海德堡创新实验室业务发展主管佛罗里安乌尔里希通过汽车安全带提醒技术的实际案例,分享了柔性印刷传感器在汽车领域的应用。本次论坛围绕中欧传感器产业,通过不同的角度进行了精彩的分享,来自俄罗斯联邦驻华商务代表处、德国驻华大使馆经济处、上海阿根廷总商会的专家、企业家们也参与其中,共同研讨中欧智能传感器产业的新发展、新理念。论坛的成功举办促进了中欧文化和科技的交流,让参会代表对传感器产业有了更多新的认识与理解。
  • 通用生物传感器实现一“芯”多用,可同时检测8个数量级浓度差异的生物粒子
    研究人员开发了新的信号处理技术,与光流体生物传感器芯片一起使用,以检测浓度变化8个数量级的纳米珠混合物。图片来源:霍尔格施密特/加州大学圣克鲁斯分校美国加州大学圣克鲁斯分校团队在用于检测或分析物质的芯片传感设备方面取得重大进展,为研制高灵敏度的便携式集成光流体传感设备奠定了基础。这些设备即使涉及浓度变化很大且完全不同类型的生物粒子时,仍然可同时进行多类型的医学测试。该研究成果发表在最新一期《光学》杂志上。研究人员将新的信号处理技术应用于基于光流体芯片的生物传感器,能对8个数量级浓度的纳米珠混合物进行无缝荧光检测,将传感器可工作浓度范围扩大了1万倍以上。团队表示,新设备足够灵敏,不但可检测单个生物分子,还能在非常宽的浓度范围内工作,以同时测量和区分多种粒子类型。这一多类型分析测试平台,原理基于光流体芯片,通过用激光束照射粒子,然后用光敏探测器测量粒子的响应来检测粒子。还使得该平台具有执行各种类型分析所需的灵敏度,可检测包括核酸、蛋白质、病毒、细菌和癌症生物标志物等粒子。在这项新工作中,研究人员还开发了一种信号处理方法,得以同时检测高浓度和低浓度的粒子。他们结合不同的信号调制频率:高频激光调制以区分低浓度的单个粒子,低频激光调制以在高浓度下同时检测来自许多粒子的大信号。团队还应用到最近开发的一种极速算法,以实时识别和高精度区分。这种信号分析方法,本质是用不同浓度和各种荧光颜色的纳米珠溶液泵送光流体的生物传感器芯片。目前,其能正确识别浓度差异在混合物中超过1万倍的纳米珠。未来,其将用于分析来自人工神经元细胞组织类器官的分子产物,为人们带来神经源性疾病和儿科癌症等领域的新见解。
  • 【2023世界传感器大会】智能传感器关键材料及元器件-产业基础分场活动圆满举行
    11日5日,2023世界传感器大会在郑州国际会展中心隆重举行。本次大会由河南省人民政府与中国科学技术协会主办,河南省人民政府副秘书长魏晓伟主持开幕式。尤政、蒋庄德、周立伟等11位中外院士受邀参加。河南省副省长刘尚进、郑州市副市长马志峰、中德友好协会联合会副主席菲力克斯库尔兹出席致辞。中国科学院院士褚君浩、英国皇家工程院院士肯尼斯格拉特、开鸿数字产业发展有限公司首席执行官王成录、赛迪顾问股份有限公司副总裁李珂作大会主旨报告。相关省市领导,国际组织代表,高校、科研机构专家学者以及国内外协会、学会、知名企业代表等嘉宾共同出席开幕式。大会现场中国仪器仪表学会仪表功能材料分会、重庆材料研究院有限公司、河南省科学院、河南理工大学等单位联合承办了大会的“智能传感器关键材料及元器件”产业基础分场论坛。中国科学院院士刘云圻,俄罗斯工程院院士、欧洲科学院外籍院士李长明,河南省工业和信息化厅二级巡视员卢钦华,郑州市人民政府办公厅副主任李广利,中国仪器仪表行业协会副理事长、重庆材料研究院有限公司副总经理(主持工作)吴保安,重庆材料研究院有限公司副总经理刘奇等出席会议。论坛由河南理工大学微电子封装与精密成形研究院院长曹军主持。曹军院长主持论坛,吴保安副总经理致辞卢钦华巡视员、李广利副主任为论坛致辞,吴保安副总经理向出席的院士、专家及代表表示诚挚欢迎。刘云圻院士、李长明院士、仪综所所长欧阳劲松、中广核高级技术专家黄美良、智能传感功能材料国家重点实验室教授级高工赵鸿滨、厦门大学电子科学与技术学院副教授廖新勤分别作了题为《二维材料的可控制备及其高性能传感器》、《智能传感的创新与产业化》、《新时代传感器高质量发展的思考与建议》、《面向数字化转型的核电智能传感器的技术》、《智能传感功能材料发展现状与趋势》《功能复合材料与柔性智能触摸传感器》的学术报告,围绕智能传感器领域的技术前沿、产业趋势和热点问题进行高端对话,共享成果,共话未来。刘云圻院士作报告李长明院士作报告欧阳劲松所长作报告黄美良高工、赵鸿滨高工、廖新勤副教授作报告本次论坛的主题是“材料创新助力技术发展”,论坛采取线上线下结合的方式,来自传感器关键材料及元件、智能传感器等领域专家学者、企业代表、科技工作者代表、新闻媒体线下逾150余人参加。论坛现场
  • 关注内资厂商进军传感器事件
    我国企业在传感器高端领域(如红外传感器、速度传感器、加速传感器、GIS传感器等)已经突破了技术门槛,伴随消费电子和物联网行业的高速发展,有望迎来高成长。国内相关公司包括汉威电子、华工科技、苏州固锝、歌尔声学等。   汉威电子从事气体传感器研究生产已有二十年的历史,是国内从事气体传感器研究、生产的最早厂家。公司拥有从气体传感器-气体检测仪器仪表-气体检测控制系统的完整产业链,拥有年产65万套气体检测仪器仪表和280万支气体传感器的生产能力,而且产业链各环节已经形成了良性循环,为公司建立行业领先地位提供根本保证。2012年公司在传感器、智能仪器仪表、监控系统三大产业领域已完成及正在开发的新产品及产品升级改进共计30余项,包括由工信部批复的国家电子信息产业发展基金项目&ldquo 基于双光路气体探测技术的煤矿安全监控系统&rdquo 和国家物联网发展专项&ldquo 微型智能半导体气体传感器&rdquo ,以及由国家发改委批复的国家物联网技术研发及产业化专项&ldquo 电化学式气体探测智能终端关键技术研发及产业化项目&rdquo 。高性能热释电红外探测器、用于疾病诊断的电化学气体传感器、激光原理燃气检漏设备、激光原理工业气体检测仪、湿度传感器在2012年下半年分别投产。   华工科技是华中地区批由高校产业重组上市的高科技公司。子公司新高理自1988年始即专业从事PTC、NTC系列热敏电阻的设计、生产、安装和服务,建有教育部敏感陶瓷工程研究中心等科研机构,具有年产1亿只热敏电阻的生产能力,是目前国内的热敏电阻专业生产厂家。产品高精密温度传感器可应用于家电、厨房设备、汽车、军工及中低温干燥箱、恒温箱等场合的温度测量与控制。2012年公司提高了NTC传感器的耐候性,实现PTC传感器批量销售,积极推进汽车电子领域应用,通过东风汽车(3.04,-0.03,-0.98%)等客户审核。未来公司拟拓展办公自动化及通讯设备元器件领域,实现NRC、GRC项目批量销售。此信息由和呈小编摘录,和呈产品有培养箱系列:、霉菌培养箱、生化培养箱、恒温培养箱、细菌培养箱、低温培养箱、培养箱、隔水式恒温培养箱、电热恒温培养箱
  • 2016年我国传感器市场分析
    p style="line-height: 1.75em "strong产业现状/strong/pp style="line-height: 1.75em "  中国传感器的市场近几年一直持续增长,增长速度超过20%,传感器应用四大领域为工业及汽车电子产品、通信电子产品、消费电子产品专用设备。/pp style="line-height: 1.75em "  2012年中国传感器行业发展总体规模逐渐扩大,显著应用于汽车工业中包括汽车轮胎中的传感器应用、安全气囊中的传感器应用、底盘系统中的传感器应用、发动机运行管理系统中的传感器应用、废气与空气质量控制系统中的传感器应用和需求、ABS中的传感器应用和需求、车辆行驶安全系统中的传感器应用和需求、汽车防盗系统中的传感器应用和需求、发动机燃烧控制系统中的传感器应用和需求、汽车定位系统中的传感器应用和需求、汽车其他系统中的传感器应用和需求。/pp style="line-height: 1.75em "  除此以外,中国传感器在其他领域也有新的应用,如工业控制领域、在环境保护领域、在设施农业中、在多媒体图像领域、其它有关传感器的应用。回顾中国传感器行业,虽然发展迅速,但是也存在一些不利的因素。如在产品技术上产业基础薄弱、科技与生产脱节、产品技术水平偏低、产品种类欠缺、企业产品研发能力弱。/pp style="line-height: 1.75em "  但另一方面国家不断制定有利传感器产业发展的战略与政策,全年整机系统市场的快速发展,新兴技术的不断推动也都成为传感网发展的利好因素。/pp style="line-height: 1.75em "strong市场容量/strong/pp style="line-height: 1.75em "  据中国产业调研网发布的中国传感器市场现状调研与发展趋势分析报告(2016-2020年)显示,在政府的支持下,我国的传感器技术及其产业取得了长足进步。国内传感器产业在“双加工程”即:加快力度加快发展的方针指导下,建立了中国敏感元器件与传感器生产基地。/pp style="line-height: 1.75em "  目前,国内有三大传感器生产基地,分别为:安徽基地主要是建立力、光敏规模经济 陕西基地1990年2月成立了陕西省敏感技术产业集团公司,主要是建立电压敏、热敏、汽车电子规模经济为主要目标 黑龙江基地主要建立气、湿敏规模经济为主要目标。/pp style="line-height: 1.75em "strong2016年中国传感器市场趋势分析/strong/pp style="line-height: 1.75em "  而目前我国已有1700多家从事传感器的生产和研发的企业,其中从事微系统研制、生产的有50多家。同时,传感器越来越多地被应用到社会发展及人类生活的各个领域,如工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等。/pp style="line-height: 1.75em "  据统计,至2015年,我国物联网整体市场规模将或达到7500亿元,传感器产业将从中直接受益。据预测,未来5年中国传感器市场将稳步快速发展,在物联网市场规模大幅增长的动力之下,2015年中国传感器市场规模有望达到1213亿元左右。/pp style="line-height: 1.75em "strong市场格局/strong/pp style="line-height: 1.75em "  我国传感器的生产企业主要集中在长三角地区,并逐渐形成以北京、上海、南京、深圳、沈阳和西安等中心城市为主的区域空间布局。长三角区域:以上海、无锡、南京为中心,逐渐形成包括热敏、磁敏、图像、称重、光电、温度、气敏等较为完备的传感器生产体系及产业配套。/pp style="line-height: 1.75em "  珠三角区域:以深圳中心城市为主,由附近中小城市的外资企业组成以热敏、磁敏、超声波、称重为主的传感器产业体系。东北地区:以沈阳、长春、哈尔滨为主,主要生产MEMS力敏传感器、气敏传感器、湿敏传感器。/pp style="line-height: 1.75em "  京津区域:主要以高校为主,从事新型传感器的研发,在某些领域填补国内空白。北京已建立微米/纳米国家重点实验室。中部地区:以郑州、武汉、太原为主,产学研紧密结合的模式,在PTC/NTC热敏电阻、感应式数字液位传感器和气体传感器等产业方面发展态势良好。/pp style="line-height: 1.75em "  此外,传感器产业伴随着物联网的兴起,在其他区域如陕西、四川和山东等地发展很快。/pp style="line-height: 1.75em "strong面临问题/strong/pp style="line-height: 1.75em "  一是核心技术和基础能力缺乏,创新能力弱。传感器在高精度、高敏感度分析、成分分析和特殊应用的高端方面差距巨大,中高档传感器产品几乎100%从国外进口,90%芯片依赖国外,国内缺乏对新原理、新器件和新材料传感器的研发和产业化能力。/pp style="line-height: 1.75em "  二是共性关键技术尚未真正突破。设计技术、封装技术、装备技术等方面都存在较大差距。国内尚无一套有自主知识产权的传感器设计软件,国产传感器可靠性比国外同类产品低1-2个数量级,传感器封装尚未形成系列、标准和统一接口。传感器工艺装备研发与生产被国外垄断。/pp style="line-height: 1.75em "  三是产业结构不合理,品种、规格、系列不全,技术指标不高。国内传感器产品往往形不成系列,产品在测量精度、温度特性、响应时间、稳定性、可靠性等指标与国外也有相当大的差距。四是企业能力弱,从目前市场份额和市场竞争力指数来看,外资企业仍占据较大的优势。/pp style="line-height: 1.75em "  我国传感器企业95%以上属小型企业,规模小、研发能力弱、规模效益差。针对这些问题,我国应该如何分步去解决?如何提高综合竞争力,并逐步参与到国际竞争中去?/pp style="line-height: 1.75em "strong前景预测/strong/pp style="line-height: 1.75em "  我国2015年传感器需求量可高达32亿只,市场规模可达1213亿元左右,足以形成传感器产业和信息产业新的经济增长点。除了工业自动化系统、大型重点工程配套以及汽车电子化、家电类产品的应用之外,在现代农业、环保检测与治理、医疗卫生以及食品检测类市场领域里的应用是突如其来、无法估量的。/pp style="line-height: 1.75em "  此外,国内水资源控制系统和家电类商品正处于由传统技术向节能减排和技术升级的发展阶段,变频式空调和家用吸尘器、洗衣机、太阳能热水器,特别是大型中央空调器已开始大量使用压力控制、温度调节等系统,这就为各种传感器在家用空调、洗衣机、吸尘器、家庭供水系统等方面的应用开辟了广阔的空间,构成了我国新的市场需求和应用增长点。/ppbr//p
  • 透明电极指纹传感器问世
    p  让手机屏任何位置都能识别身份/pp  科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。/pp  指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。/pp  消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。/pp  韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。/pp  这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。/pp  研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。/pp  总编辑圈点/pp  手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。/ppbr//p
  • 可自然降解传感器问世
    p style="text-indent: 2em "在英国《自然· 电子学》杂志14日在线发表的一篇动物研究论文中,美国科学家介绍了一种可移植、可伸展的应变及压力传感器,可以在有效使用期结束后自然降解。该装置将用于实时监测受损软组织所受的微弱应力和压力变化,有助于为患者设计个性化的康复方案。/pp style="text-indent: 2em "传感器技术早已“轻松”应用于多种不同的环境,它们能集成到小型化的发射器或接收器系统中,也能与人体直接接触服务于医疗应用。这其中,可降解传感器是一种新兴技术,它们在预定的使用期限结束后会自然降解,因此不需要通过二次手术取出来。/pp style="text-indent: 2em "但是,生物相容性微传感器的生产目前还是一个非常耗时和昂贵的过程,现有的这类传感器的感应性能十分有限,或是其生物相容性还未经证明。/pp style="text-indent: 2em "此次,美国退伍军人事务部研究人员佩吉· 福克斯、斯坦福大学鲍哲南及他们的同事,报告了一种由完全生物可相容材料构成的、可伸展、可生物降解的应变及压力传感器。这一可移植传感器具有高灵敏度,能够区分小到0.4%的应变和12Pa的压力(一粒盐产生的压力)变化。/pp style="text-indent: 2em "为了测试该传感器的生物相容性,研究团队将其移植进一只大鼠的背部。在移植手术8周后,未观察到负面炎症反应(除了第1周出现初期炎症反应)。/pp style="text-indent: 2em "研究人员表示,他们能够控制传感器的降解,使其寿命与组织愈合所需的时长一致。此外,经过一定的设计,在降解过程中,该传感器的灵敏度也不会有明显下降。/pp style="text-indent: 2em "针管有一次性的,医疗电子仪器也可以有一次性的。可降解的生物传感器一旦进入实用,我们就可以将很多临床定性描述转为量化指标,病人的恢复快慢可显示在屏幕上,痛觉程度也不再模糊。医生的工作将因此大大便利。/p
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制