当前位置: 仪器信息网 > 行业主题 > >

纤维强度检测

仪器信息网纤维强度检测专题为您提供2024年最新纤维强度检测价格报价、厂家品牌的相关信息, 包括纤维强度检测参数、型号等,不管是国产,还是进口品牌的纤维强度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维强度检测相关的耗材配件、试剂标物,还有纤维强度检测相关的最新资讯、资料,以及纤维强度检测相关的解决方案。

纤维强度检测相关的资讯

  • 国家高性能纤维表征检测(宁波)基地建成
    近日,中国化学纤维工业协会授予中科院宁波材料技术与工程研究所“国家高性能纤维表征检测(宁波)基地”。表明宁波材料所在高性能纤维表征检测方面得到了业界的广泛认可,同时,也将促进中国高性能纤维产业的发展。  高性能纤维(High-Performance Fibers)是指具有高拉伸强度和压缩强度、耐磨擦、高耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维,主要包括碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、玄武岩纤维等。它们通常采用高技术制成,且大多应用于工业、国防、医疗、环境保护和尖端科学各方面。  经过几年的发展,宁波材料所先后置办了热分析仪(DSC、TG)、凝胶色谱仪(GPC)、气相色谱仪(GC)、万能材料试验机、纤维强伸度仪、纤维细度仪和密度梯度管等先进精良仪器,同时结合公共技术服务中心测试中心的大型设备仪器,在高性能纤维的表面微观形貌与结构分析、物性分析、有机和无机成分分析方面形成了比较完善的体系,在纤维检测方面取得了较大的进展,并为国内多家单位提供了测试服务。目前,宁波材料所能够依据实践得出的检测方法来测量高性能纤维的各种性能以及为高性能纤维的质量问题提供解决方案。
  • “人机并举” 精准施“测”——安徽省纤维检验局以高水平检验检测服务助推纤维产业高质量发展
    党的二十大报告指出,实现高质量发展是中国式现代化的本质要求之一。制造业是国民经济的主体,强大的制造业是大国崛起的根本途径。高质量的现代化制造业离不开坚实的国家质量基础设施(NQI)。联合国工业发展组织和国际标准化组织在总结质量领域100多年实践经验基础上,指出包括计量、标准、检验检测和认证认可的国家质量基础设施是政府和企业提高生产力、提高质量的重要技术手段。以检验检测等为主要内容的质量基础设施水平提升是制造业高质量发展的必由之路。从某种意义上讲,产品质量不仅是加工制造出来的,也是检验检测出来的,检验检测是产品质量把关的“眼睛”。近年来,安徽省纤维检验局以服务纤维纺织产业高质量发展为己任,致力于检验检测技术能力建设,创新变革检验检测技术方法,运用互联网+检测技术,提升检验检测自动化、智能化水平,推动行业检验检测技术能力整体数字化提升,发挥检验检测在助力纤维纺织产业提升核心竞争力的重要作用。通过“人机并举”、精准施“测”,全面提升纤维检验综合能力和水平,不断为纤维纺织产业实现高质量发展贡献力量,不断为加快建设现代化美好安徽增添新动能!“人机并举”,坚持科技创新引领不断增强纤维检验核心竞争力党的二十大报告明确指出,必须坚持科技是第一生产力、人才是第一资源、创新是第一动力。安徽省棉、麻、毛、丝等天然纤维资源丰富,产业基础深厚。安徽省纤维检验局紧紧围绕科技创新、人才提升这条主线,不断增强纤维检验核心竞争力。一是科技创新赋能纤维检验智能化、自动化、信息化水平提升。该局联合中国科学技术大学开展“棉纤维智能检测工程系统”研究项目,着力解决HVI(棉花大容量快速检测仪)检验存在的人工操作工作强度大、操作时间长、工作效率低以及易疲劳操作引起检验误差,棉纤维粉尘导致职业病等问题。该项目已完成10项发明专利申请,其中6项授权,将整合国产HVI设备,实现“人机”通信和自动化操作功能,提高检验操作的一致性和可靠性,提升检验效率。棉纤维智能检测系统操作该局联合合肥工业大学智能制造技术研究院开展“基于深度视觉的生丝黑板智能检测方法及应用”研究项目,着力解决生丝均匀、清洁和洁净项目人工目光检测判别结果主观性较大及检测数据不可复现性等问题。该项目已完成4项发明专利申请、论文两篇,将提升生丝黑板检测过程的数字化水平,使黑板原始图像可溯源,检验数据可复现,生丝疵点识别更准确,实现生丝缺陷自动检测、分类识别和自主评级功能,检验过程智能化、信息化和可视化,保证结果准确、公正。二是坚持标准创新引领。该局依托安徽省纤维及纤维制品标准化技术委员会,按照“系统管理、重点突破、整体提升”的工作思路,进一步完善纤维及纤维制品标准化技术,推进重点领域关键技术研究,以标准化为抓手,在发展现代农业、培育新兴产业、促进循环经济等方面取得较大成绩。2023年,该局组织申报的地方标准《安徽省学生用纤维制品采购与验收规范》已通过立项评审,正在筹备起草《生丝黑板智能检验方法》和《羽绒加工企业技术管理规范》。分析检验羽绒成分近几年来,安徽省纤维检验局先后参与制修订行业标准8项、地方标准9项、团体标准2项,经原国家质检总局批准立项的科研项目《高效利用纺纱落棉生产水刺无纺布工艺技术研究》获原安徽省质量技术监督局2015年度“科技兴检”二等奖。三是深化人才发展体制机制改革。该局印发《安徽省纤维检验局综合考核体系实施方案》《编制外聘用人员薪酬结构和考核分配方式》等一系列制度性文件,创新实施按季度开展干部职工平时考核,将技能提升与职级晋升、绩效奖励、评先评优等直接挂钩。发挥省纤维检验局“领头雁”作用,举办全省纤检系统棉花实验室管理暨棉花HVI操作员培训班,组织承办棉花检验技术能力评测专项活动。该局还通过遴选、招录、引进、编制外聘用等多种渠道引进各类专业人才,不断夯实人才支撑基础。截至目前,全局职工本科以上学历达80%,硕士(研究生)以上学历占比超过1/3,博士1人。安徽省纤检局公证检验科2019年荣获“省直机关三八红旗集体”称号,并被全国妇联授予“全国巾帼文明岗”光荣称号。精准施“测”,坚持技术支撑建设不断助力企业夯实质量检验能力基础《质量强国建设纲要》明确要求公益性机构围绕科技创新、优质制造、乡村振兴、生态环保等重点领域,加强功能性定位和专业化建设,开展质量基础设施助力行动。近年来,安徽省纤维检验局始终发挥省级专业纤检优势,突出目标导向和需求导向,助力全省纤维企业不断夯实质量检验能力基础。一是不断助推羽绒企业检验能力提升。该局立足安徽羽绒产业发展优势,联合安徽省总工会组织举办全省纤维(羽绒)检验技术人员职业技能竞赛,覆盖全省70余家羽绒企业和纤维检验机构,参赛选手达300余人。通过技能竞赛,有效激发全省羽绒企业和检验机构技术人员钻研检验技术、勤练检验技能热情,提高羽绒检验检测技术人员的技能和职业素养,提升羽绒检验规范化、专业化水平。同时,通过搭建平台,促进各企业间的技术交流与合作,不断增强安徽省羽绒企业整体竞争力。二是不断助推生丝企业检验能力提升。该局及时回应安徽省生丝企业检验能力提升需求,组织举办全省生丝企业检验技术交流培训会,进一步提高全省生丝企业检验能力和水平,增强企业质量意识。同时,开展生丝企业质量状况及公检覆盖率情况调研,逐步扩大全省生丝企业公证检验覆盖面,进一步发挥生丝公证检验对维护市场秩序、促进生丝产业健康发展的重要作用。三是持续开展企业质量技术帮扶。准确运用公证检验数据推动产品质量提升,对省内企业25/27D特殊生丝公检过程中发现切断次数很多的问题,主动帮助企业查找原因,协助企业及时调整设备,迅速解决问题。在保证检验质量的情况下,安徽省纤维检验局全力优化检验流程,将公证检验时间由规定的5天时间压缩到3天,有效缩短棉花、生丝等大宗农产品交易和滞留时间,大大减少企业经营成本,开展纤维制品免费技术咨询和检验服务,制定《关于加强絮用纤维制品免费公益性检验检测管理的通知》,为赈灾救济、养老公寓和学校幼儿园等公益性单位,提供免费检验服务。产业聚焦,推动产业与检验深度融合不断凝聚高质量发展合力党的二十大报告明确指出,高质量发展是全面建设社会主义现代化国家的首要任务;坚持把发展经济的着力点放在实体经济上。安徽省纤维检验局立足安徽纤维产业发展实际,始终坚持以公证检验为主线,科研创新为支撑,制度建设为保障,公共服务为目的。该局围绕服务国家棉花产业战略发展,每年带领全省纤检系统奔赴新疆等全国各地开展国家储备棉、新疆监管棉公证检验。充分发挥互联网+公证检验数据技术优势,持续巩固“专业仓储监管+在库公证检验”工作模式,棉花公证检验结果得到棉花生产、流通企业和纺织用棉企业的高度认可。围绕安徽羽绒产业优势,将“开展革命老区产地羽绒公证检验和天然纤维资源型产业乡村振兴战略实施试点”写入省部合作备忘录,创新开展羽绒公证检验。通过搭建羽绒质量检验检测平台,增加羽绒加工附加值,带动农民增收、农业增效,助力乡村振兴战略。围绕全省天然纤维产业高质量发展,与安徽财经大学合作开展《安徽天然资源调研与发展》项目,对安徽天然纤维资源状况、存在问题进行研究,提出解决问题的基本对策,形成的《关于推进安徽省天然纤维资源产业高质量发展的建议》作为提案提交安徽省政协十二届五次会议。经过不懈努力,安徽省纤维检验局纤维综合检验能力水平得到持续稳步提升。截至目前,全局检测实验室约4000平方米,恒温恒湿室面积约500平方米,主要仪器设备120余台(套),价值1400余万元,拥有大容量棉花综合测试仪(HVI)、气质联用仪、生丝和羽绒等多种纤维检测仪器。近年来,累计免费为全省企业开展产地棉仪器化公证检验17余万吨,生丝1150批690吨,纤维计量检定1000余台。该局服务供给侧结构性改革,高质量完成国家储备棉入库检验41余万吨,出库检验64余万吨。2014年至今连续9年累计组织200多人次入疆完成新疆监管棉公检任务125余万吨。知之愈明,则行之愈笃。安徽省纤维检验局将牢牢把握高质量发展这个首要任务,围绕服务经济社会发展这个中心任务,紧扣纤维检验综合能力提升这个核心,不忘初心,笃行不怠,努力为安徽省纤维产业高质量发展不断作出新的更大贡献。
  • 电子剥离试验机检测复合膜剥离强度为10N/25mm符合特定标准
    一、引言复合膜剥离强度是衡量其性能的重要指标之一,而电子剥离试验机是检测这一指标的重要工具。在多个行业和领域中,对复合膜的剥离强度都有明确的标准要求。本文将探讨电子剥离试验机检测复合膜剥离强度为10N/25mm是否符合这些标准。二、剥离强度标准概述剥离强度通常以N/cm或N/mm为单位,表示单位宽度下剥离材料所需的力。对于复合膜来说,其剥离强度受到材料类型、生产工艺、使用环境等多种因素的影响。在不同的应用领域和行业中,对剥离强度的要求也有所不同。三、电子剥离试验机检测结果分析电子剥离试验机通过模拟实际使用中的剥离过程,测量剥离过程中所需的力量来评估材料的剥离性能。当电子剥离试验机检测复合膜剥离强度为10N/25mm时,我们需要根据具体的应用领域和行业标准来判断其是否符合要求。1.行业标准对照根据行业标准,我们可以发现10N/25mm的剥离强度在某些领域是符合要求的。例如,在胶带、电子绝缘材料等领域,手动剥离法标准值要求剥离强度达到或超过10N/25mm。这表明,在这些领域中,电子剥离试验机检测到的10N/25mm剥离强度是符合标准的。2.实际应用考虑除了满足行业标准外,我们还需要考虑复合膜在实际使用中的性能需求。如果10N/25mm的剥离强度能够满足复合膜在实际应用中的稳定性和可靠性要求,那么这一检测结果就是符合要求的。四、结论综上所述,电子剥离试验机检测复合膜剥离强度为10N/25mm在胶带、电子绝缘材料等领域是符合标准的。然而,在其他领域中,对剥离强度的要求可能有所不同。因此,在具体应用中,我们需要根据行业标准和实际使用需求来判断剥离强度是否符合要求。
  • 国网天津电科院研发全国首台钢纤维混凝土无损检测仪器
    近日,国网天津市电力公司电力科学研究院(以下简称电科院)研发的全国首台钢纤维混凝土无损检测仪器在天津宝坻地区电网混凝土制品检测中率先试应用,以不破坏制品结构的方式成功检测出钢纤维混凝土内部制造质量,实现检测时间的大幅缩短和检测可靠性的有效提升。  在首次现场应用中,电力工作人员手持检测仪器,在不破坏制品内部结构的情况下,顺利对宝坻电网某区域水泥电杆等电网混凝土制品的内部钢筋直径、抗压强度进行了测量。“该仪器具有无损、全检、便携、直观等优势,它的研发应用成功解决了国内钢纤维混凝土制品检测难、监管难、评价难的问题。”电科院技术人员陈韶瑜介绍说。  近年来,随着我国电网能源网架加快建设,钢纤维混凝土制品使用量逐年递增,但质量管控和制品安全性检测手段较为落后,构建新型质检模式迫在眉睫。电科院针对以上问题,结合电力系统内外钢纤维混凝土产品在运期间质量情况,进行电力混凝土无损全检的可行性论证,对钢筋直径、分布、腐蚀情况、保护层厚度、混凝土强度、内部裂纹等开展测量试验,进行破坏比对和结果修正,并完善试验数据库,以开发钢纤维混凝土无损检测仪。  电科院技术团队在仪器研发中攻克了钢纤维混凝土内部钢筋直径测量技术,实现在不破坏钢纤维混凝土制品的情况下,精准测量出制品内部钢筋数量及直径,达到国际领先水平 首创了钢纤维混凝土抗压强度测量技术,适用于钢筋、纤维、钢丝网等不同类型的钢纤维混凝土,填补了国际空白。同时在业内率先打造钢纤维混凝土制品全寿命周期检测方式,实现了钢纤维混凝土制品数字化质量管控,具有检测效率高、缺陷检出率高、检测投入成本低等优点。  未来,钢纤维混凝土无损检测仪将广泛推广应用在我国能源、水利、交通、通讯、建筑等领域的工程建设中,通过快速检测钢纤维混凝土制品存在的隐患及质量问题,提高钢纤维混凝土领域整体产品质量,减少隐患工程发生,降低事故率,保障能源电力和通讯设施、公共和民用建筑、桥梁安全,为质量强国贡献国网智慧和天津力量。  下一步,电科院将充分积累钢纤维混凝土无损检测仪试用经验,提高检测效率和稳定性,将仪器积极推广至电网企业的各级物资检测中心及发电企业、通信、水利、交通、建筑等行业中,并为用户提供“个性化装置、软件和运维指导方案”。
  • 福建厦门市质检院塑料薄膜拉伸强度检测能力通过验证
    近日,福建省厦门市质检院塑料薄膜拉伸强度检测能力以“满意”结果通过验证。据悉,塑料薄膜拉伸性能是用来评价分析材料静态力学性能的参数,拉伸强度是用来判定材料初次出现破坏的应力点。影响塑料薄膜拉伸性能试验结果的因素有很多,除了样品本身,试验仪器、试样的状态调节处理和试验环境、操作过程等对结果影响也很大。此次厦门市质检院塑料薄膜拉伸性能测定的能力验证顺利通过,客观准确地反映出该院在技术水平和质量管理等方面的综合实力,说明该院在包装材料领域检验检测能力可为生产企业控制质量提供良好的技术支持、为使用单位提供强有力的技术保障,有效保证产品的质量安全。据悉,厦门市质检院将以参加国内外能力验证为契机,进一步提高业务水平,为社会各界提供更全面、更高效、更优质的技术服务,为包装材料行业高质量发展提供可靠的技术支撑。
  • 拉力试验机检测胶粘贴剂的剥离强度有什么缺点和不足
    拉力试验机在检测胶粘贴剂的剥离强度时,虽然可以作为一种力学测试手段,但相比专门的卧式剥离试验机,确实存在一些缺点和不足。以下是拉力试验机在此应用中的几个主要问题:一、测试原理的局限性方向性不匹配:剥离强度测试要求的是沿着材料界面施加的剥离力,而拉力试验机主要用于测量材料在拉伸方向上的力学性能。这种方向性的不匹配可能导致测试结果无法准确反映胶粘贴剂在界面处的粘附性能。测试模式差异:卧式剥离试验机通过特定的夹具和测试模式,能够模拟更真实的剥离过程,而拉力试验机可能无法提供相同的测试条件,从而影响测试结果的准确性和可靠性。二、测试参数的难以精确控制剥离速度和角度:剥离速度和剥离角度是影响剥离强度测试结果的重要因素。拉力试验机在控制这些参数方面可能不如卧式剥离试验机精确,特别是在需要高精度控制时,可能导致测试数据的偏差。试样准备和夹持:胶粘贴剂的剥离强度测试对试样的准备和夹持有特殊要求。拉力试验机可能无法提供足够的夹具选择和试样准备指导,从而影响测试结果的稳定性和可重复性。三、测试结果的局限性数据解读困难:拉力试验机在测试过程中记录的数据可能更多地反映了材料的整体力学性能,而非界面处的粘附性能。因此,在解读测试结果时可能存在困难,难以直接得出剥离强度的准确值。缺乏多维度分析:卧式剥离试验机能够记录剥离力、剥离速度、剥离距离等多种数据,并进行多维度分析。而拉力试验机可能无法提供如此全面的数据分析功能,限制了测试结果的深入理解和应用。四、适用范围的限制材料类型限制:对于某些特定类型的胶粘贴剂或材料组合,拉力试验机可能无法提供准确的剥离强度测试结果。这是因为不同材料和界面间的粘附性能差异较大,需要采用更适合的测试方法和设备。应用场景限制:在实际应用中,胶粘贴剂的剥离强度往往与具体的应用场景密切相关。拉力试验机可能无法完全模拟这些场景下的测试条件,导致测试结果与实际应用存在偏差。总结拉力试验机在检测胶粘贴剂的剥离强度时存在测试原理局限性、测试参数难以精确控制、测试结果局限性以及适用范围限制等缺点和不足。相比之下,卧式剥离试验机在这些方面更具优势,能够提供更准确、可靠和全面的测试结果。因此,在选择测试设备时,应根据具体需求和测试标准来选择合适的试验机。
  • 商飞/成飞/航材院/中科院/中国飞机强度研究所等航空大咖确认赴蓉出席2021航空计量检测国际论坛
    Date:2021.11.11-122021航空计量检测国际论坛International Aviation Measurement & Test Summit 20212021年11月11-12日November 11-12, 2021四川,成都Chengdu, Sichuan, China联合主办单位:士研咨询士研民航研究院《航空工程进展》支持单位:成都市航空航天产业联盟士研民航研究院,《航空工程进展》联合成都市航空航天产业联盟将于2021年11月11-12日在成都召开2021航空计量检测国际论坛。关于本次航空计量检测国际论坛的参会事宜/商务合作/展台赞助/奖项申请,请联系组委会(86 21) 6095 7203,邢先生。【组委会】【已确认发言嘉宾】谭久彬,院士,中国工程院王建华,副总工程师兼ARJ21型号总工艺师,中国商飞上海飞机制造有限公司郭广平,副总工程师,中国航发北京航空材料研究院周维虎,研究员、博导、光电技术研发中心主任,中国科学院微电子所李正强,试验验证中心主任,中国商飞上海飞机设计研究院吴敬涛,副总师,中国飞机强度研究所吴英建,总工程师,航空工业上海航空测控技术研究所杨扬,无损检测技术高级工程师,研究员,航空工业集团质量工程技术专家,航空工业成都飞机工业(集团)有限责任公司张定华,航空宇航制造工程国家重点学科负责人,西北工业大学李国龙,科技质量部副部长兼计量校准实验室副主任 ,北京航空工业精密机械研究所更多发言嘉宾持续更新中.....【发言嘉宾简介】嘉宾简介PROFILE谭久彬院士中国工程院演讲主题:关于航空发动机智能装配测量的现状与发展趋势● 谭久彬,1955年生于哈尔滨,中国工程院院士,哈尔滨工业大学精密仪器工程研究院院长,兼任国家计量战略专家咨询委员会副主任,中国仪器仪表学会副理事长,国际测量与仪器委员会(ICMI)常务委员等。他一直致力于高端装备制造中的超精密测量技术与仪器工程研究;突破超精密测量仪器设计方法、超精密运动基准技术、甚多轴位置和运动精度快速超精密测量技术、高性能光学/超声显微测量技术、超精密快速驱动控制技术等系列核心技术;研制成功4种国家级计量标准装置和21种大型超精密测量仪器与超大型超精密专用测试仪器,形成系统的超精密测量技术体系,精度水平处于国际前列;解决了我国战略武器装备、航空发动机、高性能卫星相机等36个重大型号高端装备研制生产中的超精密测量难题,推动了该类装备性能的提升;建成国内第一个超精密仪器研发基地和产业化基地,推动了我国超精密仪器技术与产业的发展;以第一获奖人获国家技术发明奖一等奖1项、二等奖2项。嘉宾简介PROFILE王建华副总工程师兼ARJ21型号总工艺师中国商飞上海飞机制造有限公司演讲主题:飞机总装中的燃油密封测试技术● 1982年7月本科毕业于南京航空学院飞机制造专业,获学士学位。1982年8月份进入西安飞机制造公司工作,历任车间工艺员、转包生产项目经理、型架分厂技术厂长、技术装备总厂总工程师、西飞公司副总工艺师。1999年,被评聘为研究员级高级工程师。1993年4月至1996年3月在北京航空航天大学读工业外贸专业研究生,获硕士学位。2003年9月至2008年8月,在上海航空特种车辆有限责任公司任总工程师、总工艺师。2008年9月至今,中国商飞上海飞机制造有限公司工作,历任工装部部长、型号总工艺师、公司副总工程师兼ARJ21型号总工艺师。具有40多年的飞机制造事业生涯,从实践中积累了丰富的飞机整机制造经验,其中具有军机制造20年的经验,民机制造20年的经验,对飞机制造已经达到心领神会、融会贯通的境界,成为国内不可多得的知名的飞机制造方面的专家。嘉宾简介PROFILE郭广平副总工程师中国航发北京航空材料研究院演讲主题:完善航空无损检测标准体系,保障航空安全● 郭广平,博士,研究员。中国航发北京航空材料研究院副总工程师。中国机械工程学会无损检测分会副主任委员,全国无损检测标准化技术委员会副主任委员。工作领域包括航空材料与结构的无损检测、航空材料力学性能测试与表征等,围绕航空用精密复杂铸件、复合材料制件等对象,在超声C扫描、激光散斑、红外热像、工业CT、中子照相等无损检测技术方面均有较深入研究工作。机械工业出版社《无损检测手册》(第二版,2012)副主编,《无损检测》、《材料工程》和《实验力学》等杂志编委。发表学术论文60余篇,获得集团及省部级科技奖励6项。嘉宾简介PROFILE周维虎研究员、博导、光电技术研发中心主任中国科学院微电子所演讲主题:精密测量仪器及服务助力先进飞机研制● 周维虎,中国科学院微电子研究所,光电中心主任,研究员,博士生导师。1983年本科毕业于合肥工业大学精密仪器系;2000年于合肥工业大学精密仪器系获工学博士学位;2001年-2003年,在美国Wisconsin- Milwaukee大学做博士后,2003年-2004年美国Oakland 大学做博士后,2001年-2004年担任美国Automated Precision Inc.(Maryland,USA)公司高级研究员。主持完成50余项课题研究,获得省部级科技奖励7项,发表论文150余篇,申请专利40余项,编写教材1部,起草国家计量检定规程和规范4部。主要研究方向为光电精密测量技术与仪器、集成电路光学检测技术与装备、飞秒激光测量技术、大尺寸几何量计量测试技术、先进制造激光在线测量等。近年来获得国务院特殊津贴、中国机械工业科学技术发明特等奖、中科院朱李月华优秀教师奖等。目前担任科技部重大仪器专项总体组专家、科技部制造基础与关件部件专项总体组专家、装备发展部强基工程指南编写组专家、全国光电测量标准化技术委员会副主任委员、中国计量测试学会计量仪器专业委员会副主任委员、中国仪器仪表学会光谱仪器专业委员会副主任委员。华中科技大学等十余所高校兼职教授和博士生导师,《Optical Engineering》等十余份国外期刊审稿人,多次在国际会议做特邀报告,担任国际会议分会场主席。嘉宾简介PROFILE李正强试验验证中心主任中国商飞上海飞机设计研究院演讲主题:民用飞机地面试验测试技术发展● 2006年西北工业大学与柏林工业大学联合培养博士毕业,专业研究方向为飞行器控制工程和系统工程,其后进入西北工业大学博士后工作站,主要研究方向是综合技术与控制工程;2013年进入民用飞机模拟飞行国家重点实验室,主要从事国家重点实验室建设工作;2018年任职上海飞机设计研究科技发展部部长,现担任上海飞机设计研究院试验验证中心主任。嘉宾简介PROFILE吴敬涛副总师中国飞机强度研究所演讲主题:航空结构强度试验的发展及新模式● 吴敬涛,高级工程师,航空工业强度研究所综合强度与气候适应性专业副总师,飞机气候环境适应性研究室主任。他带领团队攻克了全机气候环境实验室设计建设和气候环境试验技术的多项难题,凝练20余项国内首创关键技术。建立了全机气候试验质量管理体系和气候试验标准体系,并在两型飞机的气候试验中得到应用验证,填补了我国整机实验室气候环境试验领域的空白。先后主持和参与民机专项科研、两机专项、航空科学基金、集团创新基金、空装专用技术等多项研究课题,攻克了大尺寸多环境因素气流组织分析、内外场环境的等效性分析等关键技术。发表学术论文20余篇,参与编写专著3本,申请国家发明专利10余项。先后获得国防科技进步奖二等奖2项、中航工业集团科学技术进步奖多项。荣获航空工业研究院“新锐青年”、陕西国防科技工业“十大创新标兵”等荣誉称号。嘉宾简介PROFILE杨扬无损检测技术高级工程师,研究员,航空工业集团质量工程技术专家航空工业成都飞机工业(集团)有限责任公司演讲主题:无损检测新技术在航空制造领域中的应用及展望● 杨扬,成都飞机工业(集团)有限责任公司无损检测技术高级工程师师,研究员,航空工业集团质量工程技术专家,中国航空材料工程分会委员,中国材料与试验团体标准委员会委员,全国无损检测综合技术标准委员会委员,航空/航发无损检测人员资格鉴定委员会委员,无损检测RT/CT/DR3级,主编/参编多项国标、行标及集团标准。嘉宾简介PROFILE张定华航空宇航制造工程国家重点学科负责人西北工业大学演讲主题:涡轮叶片无损检测与质量评估精铸全流程● 张定华,男,汉族,生于1958年11月,四川成都人,教授,博士生导师,首批“新世纪百千万人才工程国家级人选,陕西省三秦学者,西北工业大学航空宇航制造工程国家重点学科负责人。现任航空发动机及燃气轮机重大科技专项基础研究委员会制造工艺专业组副组长,中国航空发动机集团公司科技委委员,西安三航动力科技有限公司董事长。工作经历:1981年获得西北工业大学工学学士学位,1984年获得西北工业大学工学硕士学位,1989年毕业于西北工业大学航空宇航制造工程系,获航空宇航制造工程博士学位,1991年由讲师破格晋升教授,1996-1999年先后在美国Cornell大学和Rochester大学做高级访问学者,2001年在法国国立理工大学做访问学者。2000-2002年担任西北工业大学飞行器制造工程系系主任,2000-2019年担任现代设计与集成制造技术教育部重点实验室主任。2002-2011年任西北工业大学机电学院院长。【会议议程】1.11月11日 上午航空计量检测技术标准和应用发展2.11月11日 下午计量检测赋能飞机研发设计3.11月12日计量检测助力飞机制造维修【关键议题】计量测试技术在航空制造业的应用和发展方向完善航空无损检测标准体系,保障航空安全精密测量仪器及服务助力先进飞机研制未来飞机设计测试系统及技术航空发动机研制过程中的若干计量测试问题航空机载设备测试及先进技术微小几何量检测技术及在飞机制造中的应用发展飞机装配数字化测量系统的若干问题航空测试仿真赋能飞机制造创新飞机复合材料修理超声相控阵无损检测技术研究解决航空制造瓶颈问题,发力先进航空检测实验室建设
  • 剥离强度测试仪能否兼顾测试无纺布胶带的拉伸强度
    随着工业领域的快速发展,材料性能的检测变得越来越重要。剥离强度测试仪作为一款专业设备,被广泛应用于胶粘剂、胶粘带等相关产品的剥离、拉断等性能测试。然而,当面对无纺布胶带这一特殊材料时,我们不禁要问:剥离强度测试仪能否兼顾测试无纺布胶带的拉伸强度呢?一、剥离强度测试仪的基本原理与功能剥离强度测试仪是一种电子剥离试验机,通过模拟实际使用过程中的剥离过程,对材料的剥离强度进行精确测量。其基本原理是通过施加一定的力量,使试样在特定条件下发生剥离,从而测得剥离力的大小。剥离强度测试仪具有高精度、高稳定性等特点,能够准确反映材料的剥离性能。二、无纺布胶带的特性与拉伸强度测试需求无纺布胶带作为一种新型材料,具有优异的柔韧性和粘附性,广泛应用于包装、固定、保护等领域。无纺布胶带的拉伸强度是衡量其质量和耐用性的重要指标。在实际应用中,无纺布胶带需要承受各种外力作用,因此其拉伸强度的大小直接影响着其使用效果和安全性。三、剥离强度测试仪在测试无纺布胶带拉伸强度方面的应用虽然剥离强度测试仪主要用于测试材料的剥离性能,但在实际应用中,我们发现它同样可以用于测试无纺布胶带的拉伸强度。这是因为无纺布胶带的拉伸过程可以看作是一种特殊的剥离过程,即胶带纤维在拉伸方向上的剥离。因此,通过调整剥离强度测试仪的测试参数和条件,我们可以实现对无纺布胶带拉伸强度的测量。在测试过程中,我们需要注意以下几点:首先,选择合适的试样尺寸和形状,以确保测试结果的准确性和可靠性;其次,根据无纺布胶带的特性,设定合适的剥离速度和剥离角度;最后,对测试数据进行处理和分析,以得出无纺布胶带的拉伸强度值。四、剥离强度测试仪在测试无纺布胶带拉伸强度方面的优势与局限性剥离强度测试仪在测试无纺布胶带拉伸强度方面具有操作简便、测量精度高等优势。通过该设备,我们可以快速获得无纺布胶带的拉伸强度数据,为产品设计和质量控制提供有力支持。然而,剥离强度测试仪在测试无纺布胶带拉伸强度方面也存在一定的局限性。由于剥离强度测试仪主要用于测试剥离性能,因此在测试拉伸强度时可能无法完全模拟实际使用过程中的复杂条件。此外,不同品牌和型号的剥离强度测试仪在测试原理和性能上可能存在差异,这也可能对测试结果产生一定影响。五、结论与建议综上所述,剥离强度测试仪在一定程度上可以兼顾测试无纺布胶带的拉伸强度。然而,在实际应用中,我们还需要根据具体需求和条件进行选择和调整。为了确保测试结果的准确性和可靠性,我们建议采取以下措施:首先,选择合适的剥离强度测试仪品牌和型号,以确保其性能和精度符合测试要求;其次,根据无纺布胶带的特性,设定合适的测试参数和条件;最后,对测试数据进行综合分析和评估,以得出全面准确的结论。
  • 药品包装用镀铝复合膜剥离强度测试仪对于包装材料检测有何意义
    在药品生产领域中,包装材料的质量和安全性一直是备受关注的重点。其中,镀铝复合膜作为一种常见的药品包装材料,其剥离强度成为衡量包装质量的关键指标之一。而镀铝复合膜剥离强度测试仪作为专业检测工具,在保障药品包装安全方面发挥着不可替代的作用。一、提升药品包装质量的精准检测镀铝复合膜剥离强度测试仪采用先进的测试原理和技术,能够准确测量镀铝复合膜与药品之间的剥离力。通过这一测试,可以及时发现包装材料存在的潜在问题,如粘合力不足、易剥离等,从而确保药品在运输和储存过程中不易受到外界污染或损坏。同时,测试仪的精确性也为药品生产企业提供了可靠的数据支持,有助于企业优化生产工艺,提升产品质量。二、保障患者用药安全的重要屏障药品包装的安全直接关系到患者的用药安全。如果药品包装材料剥离强度不足,可能导致药品在使用过程中意外泄漏或破损,进而引发药品污染、剂量不准确等问题。而镀铝复合膜剥离强度测试仪的应用,则能够在源头上保障药品包装的完整性和安全性,有效避免患者因包装问题而导致的用药风险。三、推动药品包装行业的技术创新随着药品包装技术的不断发展,对包装材料性能的要求也在不断提高。镀铝复合膜剥离强度测试仪的出现,不仅为药品生产企业提供了有效的检测手段,也推动了药品包装行业的技术创新。通过不断研发和优化测试技术,可以进一步提高药品包装的可靠性和安全性,满足市场对高质量药品包装的需求。四、降低生产成本与风险,提升市场竞争力镀铝复合膜剥离强度测试仪的使用,有助于药品生产企业在生产过程中及时发现并解决包装材料问题,从而避免因包装问题导致的生产延误、退货等风险。这不仅可以降低企业的生产成本,还可以提高企业的生产效率和产品质量,进而提升企业在市场上的竞争力。五、行业标准化与规范化的推动者随着镀铝复合膜剥离强度测试仪在药品包装行业的广泛应用,其对行业标准化和规范化的推动作用也日益显现。通过制定统一的测试标准和操作规范,可以确保药品包装材料的质量和安全性得到有效控制。同时,这也为行业内的企业提供了一个公平竞争的平台,有助于推动整个行业的健康发展。综上所述,镀铝复合膜剥离强度测试仪在药品包装材料检测中具有重要的意义。它不仅能够提升药品包装的质量和安全性,保障患者的用药安全,还能够推动药品包装行业的技术创新和规范化发展。因此,对于药品生产企业而言,积极采用镀铝复合膜剥离强度测试仪进行包装材料检测,无疑是一种明智的选择。
  • 光热红外显微技术首次应用于刑侦领域指纹中易爆炸物的检测
    在全球恐怖主义不断威胁下的今天,有效的易爆炸物检测已经成为众多重要区域需要进行的关键程序之一,包括机场,边境检查站,以及高安全建筑的入口等。指纹作为人类留下痕迹的一种“照片”——手指的摩擦脊皮肤的图案,自19世纪以来已经成为犯罪现场鉴定当事人身份的一种常规手段。另外,许多被人接触过的东西都会残留在指纹的自然分泌物和污染物的复杂混合物中,如每天服用的药片,咖啡,或刑侦领域常见的毒品和易爆炸物等。传统的可视化指纹检测手段,如扑粉,茚三酮熏蒸,真空金属沉积等,尽管可以重建指纹图案,但其同时可能对一些指纹脊状突起中含有的化学物质造成破坏。近年来,许多技术被用于指纹中痕量外源物质的分析鉴定,如解吸电喷雾电离质谱(DESI-MS),液相色谱-质谱(LC-MS),但通常需要额外的溶剂喷雾处理,且空间分辨率不足(~150 μm),或者分析过程会对指纹造成破坏。傅里叶变换红外(FTIR)光谱显微镜,可以探测样品中分子间化学键的固有分子振动,并提供丰富的化学信息, 已成为一种快速、无需标记、无损的样品表征方法,被广泛应用于包括刑侦在内的众多领域。FTIR透射模式测试通常选用红外光透明的材料,而反射模式则选用硅片,聚酯薄膜或铝覆盖的玻璃基底,但两者在指纹分析上多局限于收集在选定波数下指纹中组分物质的二维分布信息。另外对于那些沉积在既不透明也不反射红外的基底上的样品,衰减全反射法(Attenuated total reflectance,ATR)似乎成为的选择,但ATR通常不是法医鉴定的一种理想方法,因为ATR要求被分析的样品和ATR晶体紧密接触,往往会导致样品变形甚至后破坏剩余的证据。 图1. 光热红外光谱显微技术用于检测指纹中的易爆炸物基于以上考虑,新加坡国立大学同步辐射光源线站的科学家们和新加坡刑事调查局刑侦部门共同合作开发出了一种新的红外检测手段(图1),即使用基于新型光热红外(Optical- Photothermal InfraRed,O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage来分析指纹中含有的痕量易爆炸物微粒,该技术带来了一系列的优势,如亚微米的红外光谱和成像分辨率,易操作的远场、非接触显微镜工作模式和明显高于FTIR光谱显微镜的灵敏度。在实验过程中,四种代表性易爆材料,包括PETN(季戊四醇四硝酸酯)、RDX(黑索今炸药)、C-4 (塑料炸药,黑索今炸药和塑化剂,粘结剂的混合物)和TNT(2,4,6-三硝基苯),可直接被分散在指纹内(“直接”指纹)或沉积在基底物质上 (间接”指纹)进行检测,无需任何复杂的样品制备过程。而传统红外样品制备时通常会使用KBr,混合后在一定压力下进行薄片的压制。从光学显微照片2a中可以看出,薄片中KBr颗粒与RDX的混合是不均匀的,肉眼无法准确识别出目标物质RDX。为了定位混在KBr颗粒之间的易爆物,作者采集了单一波长1269 cm-1下的O-PTIR图像, 对应于RDX分子的C-N拉伸振动的显著红外吸收线(红色),清晰显示了RDX分子在混合物中的分布情况。另外,类似于FTIR光谱技术,光热红外技术可以提供样品红外吸收带相对于波数[cm-1]的谱图函数信息。如图2c所示, 作者采集了C-4, RDX,PETN和TNT四种物质的O-PTIR图像和FTIR光谱,通过对比可知所有分析的光谱都包含易爆物自身的特征红外吸收峰,可以视为他们的“签名”。值得注意的是,尽管基于O-PTIR的非接触亚微米分辨红外拉曼同步测量系统mIRage使用非接触(远场),反射模式,其光谱质量仍然非常接近于透射测量模式下的FTIR吸收光谱,且红外吸收带强度和浓度之间遵照比尔定律成线性关系。图2. (a) Cassegrain显微物镜记录的混有RDX的KBr薄片的10倍放大光学图像,(b) O-PTIR激光反射(绿色)和在1269 cm-1波长下采集的单波数O-PTIR图像(红色)叠加后的照片, (c) 含有四种高爆炸物的参照物的FTIR(黑色)和O-PTIR(红色)谱图对比,(C-4, RDX, PETN 和 TNT)。单波数图像,又称为离散频率图像,已被广泛用于高倍率下样品感兴趣区域的定位。图3a展示了作者收集到的被PETN污染的指纹光学图像,该指纹沉积在桌面上,是通过使用粉末(Hi-Fi Silk Gray)显影, 胶带(Spex C-lifts)分离后获取到的。在该例子中,单波数的图像为1000×200点组成的矩阵(500×300 μm2),每一个单点都对应于该位置O-PTIR振幅的值(即与特定波数下(1003 cm-1和1473 cm-1,该点处材料的红外吸收和数量成正比),换句话说,这些图像是所选波数下红外吸收强度的二维分布(吸收)图。图3. (a) 被易爆物PETN污染的指纹的光学照片,(b)指纹中五个不同位置收集的O-PTIR光谱与PETN的标准参考红外谱图的对比;(c, d)在同样的500 * 300平方英寸的面积下采集的单波数下O-PTIR图像,每像素约1毫秒,(c) 1003 cm-1和 (d) 1473 cm –1。综上所述,作者认为O-PTIR技术是一种分析具有挑战性样品的理想手段,如隐藏的指纹,提供隐藏在大量外源物质中的微小(亚微米)粒子的化学信息(如易爆物)且不需要复杂的样品制备过程。这些信息可以通过单波数红外成像和亚微米空间分辨率的红外光谱获得,后者使用目前的FTIR光谱显微镜是无法做到的(分辨率受限于红外波长,约10-20 μm)。另外,该分析手段非常简单快捷,无破坏性,且不需要基于接触的方法(例如ATR光谱技术),使得样品的完整性被完全的保持。特别指出的是,该技术的非破坏性非常重要,尤其是在法医领域,因为它可以允许同时使用其他技术对相同样本进行互补和比对分析,并作为法律证据。此外,随着技术的发展,O-PTIR现在可以与拉曼显微镜相结合,以提供真正的亚微米同步的红外拉曼测试,使得在一个仪器上通过一次测量即可进行互补和验证分析。 技术支持:Quantum Design中国结合红外光谱的应用和科技的需求,专注先进红外光谱技术的引进, 近期QD中国引进了美国PSC公司的非接触亚微米分辨红外&拉曼同步测量系统mIRage(图4)。它是全球科技创新R&D100大奖的获奖者,基于O-PTIR技术,克服了传统红外光谱仪空间分辨率受限于红外光波长的问题,将分辨率从原来的10-20微米提升到了0.5微米,并且可以实现同时、同样品区域、相同分辨率的红外光谱和拉曼光谱测试,测量过程更简单、便捷。目前该样机安装于Quantum Design中国北京实验室,更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!图4. Quantum Design中国北京mIRage样机实验室及仪器工程师合影 参考文献:[1] Agnieszka Banas et. al, Detection of High-Explosive Materials within Fingerprints by Means of Optical-Photothermal Infrared Spectromicroscopy. Anal. Chem. 2020, 92, 14, 9649–9657.产品信息:非接触式亚微米分辨红外拉曼同步测量系统:https://www.instrument.com.cn/netshow/SH100980/C363244.htm
  • 广州纤维产品检测院采购950万元检测设备
    中经国际招投标有限公司广东分公司受广州市纤维产品检测院的委托,对广州市纤维产品检测院检测设备采购项目(二)进行公开招标采购,招标文件【招标编号:CEITCL-GD-CZHW-130826】公示期为 2013年9月4日至2013年9月10日五个工作日,欢迎符合资格条件的供应商投标。  一、招标编号:CEITCL-GD-CZHW-130826  二、采购项目名称:广州市纤维产品检测院检测设备采购项目(二)  三、项目内容及数量:  1. 投标人必须对包组内所有内容进行投标,只对包组内部分内容进行投标的,视为无效投标。  2. 简要技术要求或者采购项目的性质:详见招标文件采购项目内容。  3. 项目类别:货物类。  4. 经政府采购管理部门同意,本项目采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。  四、供应商资格要求:  1. 在中华人民共和国注册的具有独立民事责任的法人,取得合法企业工商营业执照   2. 具备《中华人民共和国政府采购法》第二十二条资格条件   3. 本项目不接受联合体投标。  五、符合资格的供应商应当在2013年9月4日8时30分起至2013年9月23日17时30分止(法定节假日除外)到中经国际招投标有限公司广东分公司购买招标文件,招标文件每套售价200元(人民币),售后不退。投标人必须携带以下相关资料原件或复印件加盖公章到代理机构所在地购买招标文件:  1. 经年审合格的营业执照副本复印件   2. 法定代表人证明书或法定代表人授权委托书   3. 法定代表人或投标人授权代表身份证复印件   4. 投标人注册属地人民检察院出具的《无行贿犯罪档案记录证明》复印件和《公平竞争承诺书》原件。  六、招标文件质疑  根据《广东省实施〈中华人民共和国政府采购法〉办法》第三十五条的规定,供应商认为政府采购文件的内容损害其权益的,可以在公示期间或者自期满之日起七个工作日内以书面形式向采购人或者采购代理机构提出质疑。应当以书面形式提交质疑书原件。质疑供应商为自然人的,应当由本人签字 质疑供应商为法人或者其他组织的,应当由法定代表人或者主要负责人签字盖章并加盖公章。逾期质疑无效。供应商以电话、传真或电邮形式提交的质疑属于无效质疑。  七、本次招标项目公告等相关信息在相关法定媒体上公布,并视为有效送达,不再另行通知,本招标项目不举行集中答疑会,如有任何疑问请以书面、传真或电邮形式至采购代理机构释疑。  八、投标截止时间:2013年9月24日9时30分(注9时00分开始受理投标文件)  九、投标文件送达地点:广州市越秀区寺右一马路18号泰恒大厦14楼1408室  十、开标评标时间: 2013年9月24日9时30分  十一、开标评标地点:广州市越秀区寺右一马路18号泰恒大厦14楼  十二、采购人的名称、地址:  采购人名称:广州市纤维产品检测院  采购人地址:广州市滨江中路草芳围35号之二  十三、采购代理机构的名称、地址和联系方式:  政府采购代理机构:中经国际招投标有限公司广东分公司  地址:广州市越秀区寺右一马路18号泰恒大厦14楼  联系人:陈小姐 李先生  联系方式:020-28842163  邮政编码:510060  传真:020-28842162  中经国际招投标有限公司广东分公司  二〇一三年九月三日
  • LSST-01正压法泄漏与密封强度测试仪在碳酸饮料与非碳酸饮料瓶盖检测中的应用差异
    LSST-01正压法泄漏与密封强度测试仪是一种专业的设备,用于检测饮料瓶盖的密封性能。这种测试仪通过模拟瓶盖在实际使用过程中可能遇到的各种压力条件,来评估其密封性能是否符合标准。对于碳酸饮料和非碳酸饮料,由于其内部压力和化学成分的差异,检测时的压力设定可能会有所不同。碳酸饮料与非碳酸饮料的区别:内部压力:碳酸饮料含有溶解的二氧化碳,在密封状态下会产生较高的内部压力。非碳酸饮料通常不含或含少量气体,因此其内部压力较低。化学成分:碳酸饮料中的酸性物质可能会对瓶盖材料产生腐蚀作用,而非碳酸饮料的化学成分通常较为温和。检测时的考虑因素:压力设定:碳酸饮料的测试可能需要更高的压力设定,以模拟其在储存和运输过程中可能遇到的高压环境。密封性能:碳酸饮料的瓶盖需要具备更强的密封性能,以防止气体泄漏和保持产品的碳酸化状态。材料兼容性:测试时还需考虑瓶盖材料与饮料成分的兼容性,确保长时间接触不会影响密封性能。LSST-01测试仪的应用:正压检测:LSST-01测试仪能够通过正压法检测瓶盖的密封性能,确保在设定的压力下无泄漏发生。强度测试:除了泄漏检测,该设备还能测试瓶盖的抗压力,评估其在高压力下的密封强度。模拟环境:可以模拟不同的温度和湿度条件,以评估瓶盖在不同环境下的密封性能。结论:虽然LSST-01正压法泄漏与密封强度测试仪可以用于检测碳酸饮料和非碳酸饮料的瓶盖密封性能,但由于两者在内部压力和化学成分上的差异,检测时的压力设定和测试条件可能会有所不同。碳酸饮料的瓶盖通常需要更高的密封性能和更强的抗压力,因此在进行测试时需要特别考虑这些因素,以确保瓶盖能够满足产品的质量和安全要求。
  • DBL-01电子剥离试验机能否同时检测贴膏剂的剥离强度和黏附力
    DBL-01电子剥离试验机是一种专门用于测定材料剥离强度的设备,它能够模拟实际使用过程中材料层与层之间的剥离行为。这种设备广泛应用于各种材料的剥离性能测试,包括但不限于塑料薄膜、胶带、标签、医疗用品等。对于贴膏剂这类医疗用品,剥离强度和黏附力是两个重要的性能指标:剥离强度:指的是贴膏剂从皮肤或其他表面分离时所需的力量,它反映了贴膏剂的粘附持久性。黏附力:通常指的是贴膏剂在初次接触皮肤或其他表面时的粘附能力,它关系到贴膏剂的初始粘附性能。DBL-01电子剥离试验机在设计上可能具备同时检测这两种性能的能力,具体取决于设备的配置和测试模式。以下是使用DBL-01进行测试的一般步骤:测试剥离强度:样品准备:将贴膏剂固定在测试机的上夹具上,确保测试部分平整且无褶皱。设备设置:根据贴膏剂的特性和测试标准,设置适当的测试速度和行程。开始测试:启动测试,下夹具将沿着预定的路径移动,逐渐剥离贴膏剂。数据记录:记录剥离过程中的力量变化,以确定剥离强度。测试黏附力:样品准备:将贴膏剂的粘性面向下放置在测试平台上。设备调整:调整测试机的上夹具,使其能够施加一个垂直于粘性面的力。施加力:上夹具向下施加力,模拟贴膏剂初次粘附的过程。数据记录:记录达到一定粘附效果所需的力量,以评估黏附力。注意事项:确保测试前设备已经校准,以保证测试结果的准确性。测试条件(如温度、湿度)应符合相关标准或产品规格要求。测试后,应对测试数据进行详细分析,并与标准或历史数据进行比较。结论:DBL-01电子剥离试验机理论上能够同时检测贴膏剂的剥离强度和黏附力,但具体的测试能力还需根据设备的技术规格和测试条件来确定。通过这种设备,制造商可以确保贴膏剂产品在安全性、有效性和用户体验方面满足高标准。
  • 研究新进展:便携式气相色谱仪实时监测与评价车内气味强度
    北京化工大学化学学院最新发布了一篇研究文章,该研究致力于开发一种便携式气相色谱仪,结合机器学习实现现场的VOC采集和快速的气味评价。研究者通过使用卷积神经网络-长短期记忆(CNN-LSTM)建立了气味强度的预测模型;由于收集的数据量较小,使用生成对抗网络(GAN)对每个气味强度类别的VOC数据进行了生成,以增强模型的训练。 在生成数据后,研究者再次使用CNN-LSTM建立了模型,并与人工神经网络(ANN)、支持向量机(SVM)和梯度提升决策树(XG-Boost)进行了比较。结果表明,使用GAN生成数据后的测试准确率优于原始数据。未来的工作将集中在进一步优化模型和扩大数据集上,以提高预测的准确性和稳定性。这项研究表明,通过使用深度学习和生成对抗网络,可以有效地预测车内的气味强度,从而改善车内的空气质量。此外,研究者还将探索将这种方法应用于其他环境条件下的空气质量预测,为未来的空气质量监测和改善提供了新的可能性。便携且模型结构较小的设备可以直接嵌入到车上,从而实现现场的VOC采集和快速的气味评价。
  • 福岛核电站检测出史上最高辐射强度值
    资料图:当地时间2013年10月15日,日本福岛,福岛县知事佐藤雄平考察福岛核电站。该核电站在本月初造成核污水泄露,污水流入太平洋。  中新网10月24日电 据日本媒体报道,日本东京电力公司确认23日从福岛第一核电站港湾外连接外海的排水沟中采集的水样,经检测其中锶等释放β射线的放射性物质,最高辐射值每升的辐射强度已经高达14万贝克勒尔。这是有史以来,此处检测到的辐射强度的最高值,与前一天相比竟骤升了2.3倍。  东电表示,采集样本的地点距外海的直线距离约600米,在排水路线约800米的地方。22日采集的样本中每升的辐射强度约59000贝克勒尔,与21日相比上升了11倍。据此,东电断定8月份是这附近的罐区泄漏了约300吨污染水。  约一周前东京电力公司发布消息称,在福岛第一核电站发生高活度核污水泄漏的地上储罐附近的观测井里,从地下水中测出活度达每升79万贝克勒尔的氚和40万贝克勒尔的锶90等释放β射线的放射性物质。两个数值均为该观测井的最高值,水样于17日采集。其中,释放β射线的放射性物质骤升至16日数据(61贝克勒尔)的6500倍以上。  东电主张这是“受到了此前从储罐中泄漏的污水渗入土壤的影响”,否认出现新的泄漏。东电还认为,台风“韦帕”带来的强降雨也造成了一定影响。
  • 一招直接检测赛马毛发中的违禁药物——成像质谱显微镜技术应用大解析
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/1b29067b-1fd8-40e4-ad30-65ef06707ece.jpg" title="微信截图_20200619185620.png" alt="微信截图_20200619185620.png"//pp style="text-align: center "由 Equine Racing Co. Co.,Ltd. 的首席执行官 Masaru Sese 先生提供/pp style="text-align: justify line-height: 1.75em text-indent: 2em "1.简介/pp style="text-align: justify line-height: 1.75em text-indent: 2em "在法医学领域,除尿液作为药物测试样品外,毛发样品也在不断引起研究者注意。由于通常药物作为尿代谢产物接收检测时,如果没能在药物清除前采集到尿液样品,就无法检测出来。而毛发中的药物则不会代谢掉,并且停留时间很长。换言之,尿液中的药物可能会在最后一次摄入后几天内,由于代谢和排泄的关系排除体外,而毛发样品的特点在于只要不修剪,即可长期保留摄入历史。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,已将气相色谱质谱(GC-MS)和液相色谱质谱(LC-MS)等常规手段作为检测毛发样品的新方法,投入实际使用。采集的毛发经洗涤、干燥后,切割为约 5mm 至 1cm 长度,经提取、纯化后,进行分析。人类毛发平均每月增长 1cm,如果可以确定所测毛发的位置,即可确定“何时使用过药物”、“使用过何种药物”以及“用量多少”。请关注 Ono、Mizuno 等人的文献,该文献作为法医学领域的毛发分析提供参考,包括上述样品预处理方法sup(1) - (3)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前此类毛发分析方法不仅在人来源样品,同时在赛马药物检测领域引起了极大关注sup(4)(5)/sup。迄今报告用于马毛分析的测试样品均来自马鬃毛(以下简称“马毛”)。但是,马毛通常较长,需要充分洗涤和干燥来去除样品表面的污染物。另外,由于切割后所得样品数量很多,前处理过程也会十分麻烦。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  鉴于此,目前除 GC-MS 或 LC-MS 方法以外,已有报道使用质谱成像(MSI)技术进行毛发分析的新方法。利用 MSI,经预处理的毛发样品可被直接分析。近年来,Kamata 等发表使用 MSI 检测人类毛发中药物摄入史的开创性论文sup(6) (7)/sup。使用 MSI 检测毛发中的药物摄入史,则必须沿纵向去除毛发角质层,露出髓质。该过程十分困难, 因此如参考文献 6 所述,尽管制造专用装置进行该步骤,依然无法去除长度超过约 1-2cm 的角质层。与人的毛发不同,马的鬃毛很长,从而导致这一过程变得更加麻烦,因此目前尚未有在马毛中进行检测药物摄入的报道。本文将介绍使用MSI 技术检测马毛中甾体抗炎药磷酸地塞米松的应用实例,该马毛样品长 4cm,经手动方式去除角质层。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2. 质谱成像/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在质谱分析时,分子被离子化,根据其在电场和磁场中的位移差来测量其质量(实际为 m/z 值,将质量除以离子所带电荷数)。如前所述,MSI 与使用现有 GC-MS 和LC-MS 方法的不同之处在于,无需进行提取,可直接分析样品表面,获得待测药物空间分布信息。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常的实验步骤包括准备样品切片,并将其放置在ITO 导电玻璃上。随后样品被电离并进行质谱分析。在分析时,确定样品检测区域和测量点间的间隔, 获取每个测量点的质谱图及对应位置信息。获取所有测量点质谱图后,选择与目标分子对应的m/z, 并根据其强度分布获得目标分子的定位信息。与常规成像技术不同,IMS 不需要进行免疫化学染色或span style="text-indent: 0em "GFP 标记等。由于直接获得分子量信息,可区分目标化合物的原型及其代谢物 由于能够同时电离多种化合物并进行质谱检测,可在一次分析中获得多种不同物质的定位信息。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  3. iMScope iTRIO/i 的开发理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,可以在多种质谱仪上进行 MSI 实验,可选择的离子源以及质谱种类也是各种各样。自 2004 年以来,作者与岛津株式会社(8)合作开发iMScope TRIO™ 成像质谱显微镜,目前正在大阪大学岛津分析创新研究实验室(9)进行各种相关应用研究。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  iMScope TRIO 的开发理念如图 1 所示。尽管普通显微镜可以观察组织结构,但很难获取相关各种组分的信息。另一方面,iMScope TRIO 将对样品的显微观察和基质辅助激光解吸电离(MALDI)技术相结合从而进行成像质谱分析。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/2029d9c6-f5b4-43f7-b811-16f72c0baad9.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 1 iMScope iTRIO/i™ 成像质谱显微镜的理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用常规显微镜,可区分样品结构上的差异,但是难以获取相关化学成分的信息。相比之下,iMScope iTRIO/i™ 可同时进行光学显微观察和质谱检测,获得对应组分的强度分析信息。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a181f299-6dcb-4cff-a093-46608a9dd1f2.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 2 本研究中使用的分析设备/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A) iMLayer™ :基质升华仪,(B)iMScope iTRIO/i ™ :成像质谱检测,以及(C)iMScope iTRIO/i ™ 系统的示意图。该系统在大气压下进行样品的显微镜观察,并使用 MALDI 电离方式,生成的离子引入离子阱并由飞行时间质谱仪进行检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  4. 实验方法/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究使用 iMLayer™ 基质升华仪进行 MALDI 基质涂敷(图 2(A))。所用基质为 α-氰基-4-羟基肉桂酸(α-CHCA,Merck)和 9-氨基吖啶(9-AA, 东京化学工业有限公司),分别用于正离子模式分析和负离子模式分析,通过 iMLayer 涂敷在样品表面上厚度为 0.5 μm。正离子模式分析中,基质升华后,使用喷枪手动喷涂 α-CHCA 溶液(10 mg/ml, 使用 30%乙腈/0.1%甲酸溶液)sup(10)/sup。负离子模式分析中,9-AA 升华后,将 5%的甲醇蒸气喷覆于样品表面 3 秒钟,进行重结晶sup(11)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用iMScopei TRIO/i 进行检测(图 2(B),(C))。如上所述,iMScope TRIO 配有光学显微镜,可在大气压下获得样品表面图像,同时配置大气压MALDI 离子源。MALDI 所用激光器为 Nd:YAG 激光器,频率为 1 kHz。在大气压下产生的离子通过差级真空系统导入质量分析单元,并由离子阱飞行时间质谱仪检测。质量范围(m/z)在 50-3000 之间,本次目标药物磷酸地塞米松为小分子药物,质量范围设定至m/z1000。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图 3(A)显示该样品的的分析流程。基本过程:span style="text-indent: 0em "采集马毛、去除角质层、涂覆基质、使用 iMScope /spani style="text-indent: 0em "TRIO/ispan style="text-indent: 0em " 检测成像。用浸有蒸馏水的布擦拭所采集每一束马毛的表面。该方式仅针对 MSI 可行,因为MSI 无需提取即可直观分析样品。相反,在已有方法中,如清洗不充分,在提取过程中会发生污染问题。清洁马毛表面后,立即干燥马毛。将干燥后的马毛固定于黏贴导电双面胶带的 ITO 载玻片(Matsunami Glass Ind.,Ltd.)上,并使用切片刀在立体显微镜下从毛囊末端开始去除角质层,如图3(B)所示。由于马毛的直径约为人类毛发直径的两倍(约 200μm),因此即使通过手动操作,也可轻松去除表面。除去角质层后,将剩余附着于 ITO 玻璃载玻片上的毛发作为待测样品,涂覆基质并进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究所使用药物为地塞米松磷酸钠(DexaSP),为一类甾体类抗炎药。DexaSP 可使用 9-AA 基质直接以负离子模式进行检测。或者,通过用吉拉德T 试剂(GirT)对DexaSP 进行衍生化,提高正离子模式的离子化效率(图 4)sup(12)/sup。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6d74094f-3a75-4167-8954-e714ae6c80a0.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 3(A)分析流程和(B)马毛表皮去除方法/pp style="text-indent: 0em line-height: 1.75em text-align: center "在立体显微镜下使用冷冻切片机刀片去除角质层,暴露出髓质/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/60fdbd8b-a130-43a6-87b2-c4fd636464d0.jpg" title="4.png" alt="4.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 4 地塞米松磷酸钠(DexaSP)是靶向药物/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  如进行正离子模式检测,将以 Gir T 试剂作为衍生试剂生成的 DexaSP 衍生物作为检测目标。对于负离子模式检测,将无变化的 DexaSP 作为检测目标。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  5. 结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图5 显示使用标准品在正离子模式和负离子模式获得的检测结果。span style="text-indent: 0em "如前所述,在正离子模式检测中,将 GirT 衍生后的 DexaSP 衍生物作为检测目标,而在负离子模式检测中,将无变化 DexaSP 作为检测目标。正离子模式下, 使用α-CHCA 检测,DexaSP 衍生物的质荷比为 m/z 586.267,对应[GirT-DexaSP-2Na + 2H] +离子。另一方面,负离子模式中,使用 9-AA 检测, [DexaSP-H]- 的质荷比为 471.160。两种模式下均观察到 DexaSP 由来的峰,但鉴于前处理所需时间且负离子模式强度约高出正离子模 式 100 倍,决定使用 9-AA 在负离子模式下对马毛进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  分析可疑马毛样本时,需进行对照实验,检测未给予 DexaSP 的马毛样品,确认没有 m/z 471.160 离子的出现(图 6(A))。图 6(B)显示地塞米松磷酸酯给药后马毛的质谱成像结果。该测试样品于 2017 年 7 月 13 日采集的马毛,该马匹在 2017 年 6 月上旬,连续 3 天注射 15 至 20 mL 0.1%的地塞米松磷酸钠水溶液(Fujita Pharmaceutical Co)。iMScope TRIO 的测量间隔在 x 方向上为 80 μm,在y 方向上为 5 μm,激光斑点大小为 2(系统参数)。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在该实验中,测量总长为 4cm 的马毛,将其划分为1cm 的区间分别进行检测。在图 6(B)中,所得数据虽然分为 4 个部分,但马毛样本并未被分割: 4cm 长的马毛被固定在 ITO 载玻片上。从毛囊向尖端进行扫描,并在距毛囊约 16.48 mm 处,检测到较高强度地塞米松磷酸酯信号。该结果是首次从毛发中直接检测到原本会于体内迅速代 谢的磷酸酯,具有重要意义。此处质谱成像结果使用绝对强度来表示峰强度,并在 300-1500 强度范围内以多色带显示。在这一结果中暖色表示较高的峰强度。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d2a0f5a7-7467-4895-8488-c1387c81251f.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 5 标准品的检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  正离子模式和负离子模式均可获得信号,但考虑前处理的简便性和离子强度的差异,选择负离子模式进行检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f4d9af67-3298-4f85-9e23-22c90acd07f8.jpg" title="6.png" alt="6.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 6 马毛中 DexaSP 分布检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)是未给药马匹的马毛检测结果,作为阴性对照 (B)给药后马匹的马毛中检测结果(注射 15-20 mL 由 Fujita Pharmaceutical Co.提供的 0.1%地塞米松磷酸钠水溶液,浓度 1.315 mg/mL, 连续注射 3 天。)用 iMScope TRIO™ 扫描从毛囊开始 4 cm 长度的马毛样本。记录每 1 cm 马毛的检测结果。在距毛囊 16.48 mm 处观察到目标药物最大强度。由于马毛平均每月以 2.0 cm 的速度生长,可判断在采样日期前 25 天给药。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  6. 讨论/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本实验中,根据目标化合物离子化效果选择负离子模式进行分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊 16.48 mm 位置处观察到药物的强大信号。马毛的平均生长速度为每月2cm,是人类的两倍。 基于该生长速率以及最大强度信号距离毛囊的位置估算给药时间,大约在24-25 天前。根据给药记录,该药物在采集毛发前约一个月给药,通过对比该信息,认为药物定位正确。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  另一方面,尽管离子强度较低,但是在毛囊附近依然检测到一些信号。经确认质谱图,发现该信号源自噪声,由此认为进一步提高离子化效率和信噪比对分析实际样品十分重要。为达到这一目标,可能需要进一步改进基质涂覆方法或选择其他基质。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  7. 总结与展望/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  地塞米松磷酸钠是一种经获准使用的抗炎药,但禁止在比赛前使用sup(13)/sup。最近一次在 2016 年 12 月东京大奖赛上,冠军赛马阿波罗肯塔基在赛后发现使用过这一药物的事件依然记忆犹新。本次结果是将iMLayer 基质升华与iMScopei TRIO /i成像质谱分析相结合,应用于违禁药物检测领域的首个示例。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  此外,由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。另一方面,由于在成像结果中存在大量噪声,有必要对毛发预处理流程进行进一步优化,提高离子强度。从该检测结果来看,探索对可检测药物(包括合成类固醇类)定量分析方法的建立也是必不可少的。尽管该应用仍存在许多问题以待解决,但我们依然认为iMScope iTRIO/i 的潜力十分值得期待。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  8. 马毛分析的可能性/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前,世界范围内关于赛马违禁药物控制的讨论很多, 讨论赛马违禁药物检测和赛马伤害保护(ICRAV:国际赛马分析专家和兽医会议)的国际会议每两年召开一次。2018 年,在阿拉伯联合酋长国的迪拜举行该会议,作者首次参加并介绍了这项研究结果。图 7 显示了会场和 Meydan 赛马场的景色。能够在世界顶级赛马场之一的 Meydan 赛马场旁会议厅中展示这项研究,是迄今为止作者一生中最难忘的事件之一。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常,来自日本的参会者均为 JRA 相关人员或赛马化学实验室的研究人员,而作者则是大学中唯一的参会者。不仅如此,来自香港赛马会、澳大利亚赛马会和其他地方的研究人员对使用 IMS 进行药物检测产生了浓厚兴趣并寄予厚望,讨论非常活跃。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2018 年 11 月,在撰写本文时,岩手赛马比赛中参赛的赛马 Ubatouban 被检测出使用禁用药品去氢睾酮(14)。今后,我将继续改进和优化该检测方法(包括简化毛发前处理技术),使这种来自日本的新型检测方法在世界赛马领域中用以进行违禁药品检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者同时还得到岛津制作所的大力支持, 并与Equine Racing Co., Ltd.的全体员工进行广泛合作,其中来自Equine Racing Co., Ltd.的代表人也是本文的合著者。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者将在图8 中展示马毛采样图片以及作者和合著者的最新照片作为本文的结尾。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee91fa21-88d0-4e07-a965-a1df9ad924ef.jpg" title="7.png" alt="7.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 7 ICRAV2018/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)、(B)ICRAV 2018 会场的场景,(C)举行 ICRAV 的 Meydan 赛马场。Meydan 赛马场景色壮观,其规模和完备程度在日本也数一数二。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6a43445f-916c-4ab3-9fb7-890880d85bf3.jpg" title="8.png" alt="8.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 8 参观 Equine Racing Co., Ltd./pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)Equine Racing Co., Ltd.的工作人员介绍马匹。(B)在马腿上可以看到的称为“栗子”的部分:角质化的退化拇指(C) 鬃毛采样 (D)作者(右)和合著者(左)的近期照片。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  参考文献/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (1) Masahiro Ohno (2005) Asahi Law Review, 32, 144-199/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (2) Dai Mizuno (2017) Analysis, 12, 589-590/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (3)Shima N et al. (2017) Drug. Metab. Dispos., 45, 286-293, https://doi.org/10.1124/dmd.116.074211/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (4)Wong JKY et al. (2018) J. Pharm. Biomed. Anal., 158, 189-203,a href="https://doi.org/10.1016/j.jpba.2018.05.043" _src="https://doi.org/10.1016/j.jpba.2018.05.043"https://doi.org/10.1016/j.jpba.2018.05.043/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(5) Madry MM et al. (2016) BMC Vet. Res., 12, 84, /spana href="https://doi.org/10.1186/s12917-016-0709-5" _src="https://doi.org/10.1186/s12917-016-0709-5" style="text-indent: 0em "https://doi.org/10.1186/s12917-016-0709-5/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(6)Kamata T et al. (2015) Anal. Chem., 87, 576-81, https://pubs.acs.org/doi/10.1021/acs.analchem.5b00 971/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (7)Hang W, Ying Wang (2017) Anal. Chimica Acta, 975, 42-51, a href="https://doi.org/10.1016Zj.aca.2017.04.012" _src="https://doi.org/10.1016Zj.aca.2017.04.012"https://doi.org/10.1016Zj.aca.2017.04.012/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(8)Harada T et al. (2009) Anal. Chem., 81,9153-7, https://doi.org/10.1021/ac901872n/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (9) https://www.shimadzu.co.jp/labcamp//pp style="text-align: justify text-indent: 0em line-height: 1.75em " (10)Shimma S et al. (2013) J. Mass Spectrom., 48, 1285-90, https://doi.org/10.1002/jms.328/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (11)Nakamura J et al. (2017) Anal. Bioanal. Chem., 409, 1697-1706, a href="https://10.1007/s00216-016-0118-4" _src="https://10.1007/s00216-016-0118-4"https://10.1007/s00216-016-0118-4/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(12) Shimma S et al.(2016) Anal. Bioanal. Chem., 408, 7607-7615,/spanspan style="text-indent: 0em "https://doi.org/10.1007/s00216-016-9594-9/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (13) http://company.jra.jp/0000/law/law07/07.pdf/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (14) http://www.iwatekeiba.or.jp/news/180915i/ppbr//p
  • 新恒温恒湿实验室 提升福建纤维检测水平
    纤维检测过程突发故障,检测环境气流不稳,检测结果可能就不权威。不过,以后可以不必再为此而担心。记者昨日从省质监局纤检所获悉,新恒温恒湿实验室日前经改造后投入使用,使福建省纤维检测处于国内先进水平。  省质监局纤检所相关人士介绍,之前,在纤检方面实验室所使用的都是单机组控温,福州天气温差变化快,一旦机组遇到故障,检测很容易受到影响。一些不规范的实验室甚至还有可能含糊过去。  但是,新恒温恒湿实验室投入使用后,其面积及设施在全国同行机构中处于先进水平。该实验室将可以在福州地区气候条件下,满足各种纺织检测24小时不间断进行,检测条件都达到国家一级大气标准。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。 缺陷检查和复检 随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。 传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。 众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。 原子力显微镜 通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。 使用原子力显微镜自动缺陷复检 基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。 AOI和ADR-AFM的比较 图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。 ADR-SEM和ADR-AFM的比较 除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。
  • 东南大学研发纳米纤维检测技术 可检测室内重金属含量
    p  近几年,随着雾霾现象日益为人们所关注,加强对环境检测和监测成为人们开始关心的话题之一。随之净化器市场迎来发展契机,但使用净化器后的空气质量到底如何,人们并不了解。4月21日,东南大学生物医学工程学院研发的纳米纤维检测技术于东大科技成果价值增值工程首批高潜力项目推介会上展示。该技术可以测出室内空气中重金属的含量,甚至小到PM0.1的颗粒也能测出,让前来“淘宝”的企业代表眼前一亮。/pp  东大生物医学工程学院康学军教授介绍,室内空气污染可达到室外的4倍,PM2.5中的60%-80%是重金属颗粒和细菌病毒,其中PM0.1危害最大,可进入血液循环,甚至影响心血管和大脑。而目前市场上主导的玻纤纤维、光传感技术却拿PM0.1束手无策,根本无法检测和处理。目前国内污染严重地区中小学教室有150万间,幼儿园教室52万间,空气污染地区家庭达1亿户。室内空气质量检测有很大的需求。/pcenterimg alt="东南大学研发纳米纤维检测技术 可检测室内重金属含量" src="http://images.ofweek.com/Upload/News/2017-04/24/nick/1493018963014096618.jpg" width="500" height="306"//centerp  据了解,东大研发的空气质量检测技术,是基于纳米纤维这种新材料,微小如PM0.1的颗粒,也难逃它的“法网”。纳米纤维实际上就是一张膜,把它贴在家里,就能“收集”空气中的污染物,室内铅、汞、砷、镉这些对人体危害大的重金属到底含量多少,一目了然。更重要的是,东大研发的在线监测系统,可由专家根据相关的数据进行分析形成报告,并通过APP向用户推送,提出解决方案。/pp  据了解,此项技术已在国家环境分析测试中心试用,预计明年开始示范推广。/p
  • 4种特种动物纤维检测方法获国家专利授权
    6月12日,上海检验检疫局原材料中心所属纺织及消费品安全检测中心(简称消费品中心)研发的&ldquo 基于DNA分析的羊毛羊绒定量检测方法&rdquo 、&ldquo 牦牛源性纤维成分荧光定量PCR定性检测方法&rdquo 、&ldquo 藏羚羊绒及其制品的荧光定量PCR定性检测方法&rdquo 、&ldquo 兔源性纤维成分荧光定量PCR定性检测方法&rdquo 4项发明专利获国家知识产权局正式授权,获得国家发明专利证书。  传统的特种动物纤维主要是检测人员根据纤维的外观形态来判定的。物种相近的动物纤维因外观形态、理化性质相近不易分辨,是业界公认的难题。而DNA检测利用的是物种自带遗传物质,具有特异性,客观、准确。  消费品分中心的科研小组,通过多年的摸索,建立了基于DNA分析的山羊绒、绵羊毛、牦牛绒、兔毛、狐狸毛、藏羚羊绒等特种动物纤维的定性鉴别方法,还建立了羊绒羊毛定量检测方法,实现了特种动物纤维的仪器客观检测。与传统方法相比,该方法重复性好、准确度高,可以批量检测,检测效率为传统方法的6倍以上。  这四项发明专利的授权,标志着该局在特种动物纤维检测技术领域的突破,填补了我国在该领域的检测技术空白。
  • 广州纤维检测院拟采购1285万元检测仪器
    广东采联采购招标有限公司(以下简称‘政府采购代理机构’)受广州市纤维产品检测院(以下简称‘采购人’)委托,对广州市纤维产品检测院仪器采购项目(一)进行国内公开招标,详情请参见招标文件。现将该项目招标文件(0851-1361GZ13C205,请点击打开)进行公示,公示期为2013年5月10日至2013年5月16日五个工作日。欢迎符合条件的合格投标人参加投标,有关事项如下:  1. 本项目投标邀请及招标文件中所有时间均为24小时制北京时间,所有货币单位均为人民币元,所使用的计量单位均以《中华人民共和国法定计量单位》为准(特别注明除外)。  2. 项目编号:0851-1361GZ13C205  3. 项目名称:广州市纤维产品检测院仪器采购项目(一)  4. 政府采购品目编号:A100602(检验及实验室设备)采购内容数量交货期最高限价检验仪器一批自合同签订之日起50日历天内人民币1285万元  5. 项目类型:货物类  6. 采购内容、数量、交货期和最高限价:  注:1.产品详细技术参数及执行标准、规格及主要配件详见招标文件中的“用户需求书”。  2.经政府采购管理部门同意,采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。  7. 合格投标人资格要求:  7.1 具备《中华人民共和国政府采购法》第二十二条资格条件   7.1.1 具有独立承担民事责任的能力   7.1.2 具有良好的商业信誉和健全的财务会计制度   7.1.3 具有履行合同所必需的设备和专业技术能力   7.1.4 有依法缴纳税收和社会保障资金的良好记录   7.1.5 参加政府采购活动前三年内,在经营活动中没有重大违法记录   7.1.6 法律、行政法规规定的其他条件。  7.2 具有生产或供应能力的国内供应商   7.3 提供投标人注册属地人民检察院出具的《无行贿犯罪档案记录证明》复印件和《公平竞争承诺书》原件   7.4 本项目不接受联合体投标。  8. 获取招标文件的时间、地点、方式及招标文件售价:  8.1 获取招标文件时间:2013年5月10日-2013年5月29日,每日9:00-11:30,13:30-17:00(法定节假日除外)  8.2 获取招标文件地点:广州市环市东路472号粤海大厦18楼广东采联采购招标有限公司  8.3 获取招标文件方式:(投标人凭以下资料加盖单位公章购买招标文件)  8.3.1 投标人注册属地人民检察院出具的《无行贿犯罪档案记录证明》复印件(原件核查)和《公平竞争承诺书》原件(《行贿犯罪档案查询申请书》及《公平竞争承诺书》格式点击下载)   8.3.2 经年审合格的营业执照副本或事业单位法人证书复印件(原件核查)   8.3.3 税务登记证(地税)副本复印件、社会保险登记证或相关证明文件复印件(原件核查)   8.3.4 购买招标文件经办人,需提供:  8.3.4.1. 经办人如是法定代表人,需提供法定代表人证明书原件及法定代表人身份证复印件(原件核查)   8.3.4.2. 经办人如是投标人授权代表,需提供法定代表人授权委托书原件及授权代表身份证复印件(原件核查)。  备注:1、以上资料参与正式投标时须放入投标文件中。  2、为了提高效率,供应商可先下载“购买招标文件登记表(点击打开)”,填写后打印并与以上资料一并携带购买招标文件。  8.4 供应商购买招标文件需按要求提供以上资料并经审查,只接受通过以上方式正式获取招标文件的供应商的投标。  8.5 招标文件售价:招标文件每份人民币300.00元整,售后不退。(如需邮寄另加人民币60元特快专递费,售后不退。在任何情况下政府采购代理机构对邮寄过程中发生的迟交或遗失都不承担责任)。  9. 投标、开标时间及地点:  投标时间:2013年5月30日14:00~ 14:30  投标截止及开标时间: 2013年5月30日14 :30  投标及开标地点:广州市环市东路472号粤海大厦18楼广东采联采购招标有限公司会议室。  10. 本项目相关公告在以下媒体发布:  10.1 法定媒体:中国政府采购网(www.ccgp.gov.cn)和广州市政府采购网(www.gzg2b.gov.cn)。相关公告在法定媒体上公布之日即视为有效送达,不再另行通知。  10.2 补充媒体:政府采购代理机构网站(www.chinapsp.cn)上公布。  11. 根据《广东省实施〈中华人民共和国政府采购法〉办法》第三十五条的规定,供应商认为政府招标文件的内容损害其权益的,可以在公示期间或者自期满之日起七个工作日内以书面形式(加盖单位公章,电话咨询或传真或电邮形式无效)向采购人或者我司提出质疑,质疑书应包括的内容:具体的质疑事项、事实依据及相关确凿的证明材料、投标人名称及地址、授权代表姓名及其联系电话、质疑时间。质疑书应当署名并由法定代表人或授权代表签字并加盖公章。投标人递交质疑书时需提供质疑书原件、法定代表人授权委托书(应载明委托代理的具体权限及事项)及授权代表身份证复印件。  12. 采购人联系方式:  采购人名称:广州市纤维产品检测院  联系人电话:020-3440 2309  采购人地址:广州市海珠区滨江中路草芳围35号之二  13. 政府采购代理机构及联系方式:  政府采购代理机构:广东采联采购招标有限公司  地址:广州市环市东路472号粤海大厦18、23楼  联系人:黎小姐  联系方式:020-8765 1688-16  邮政编码:510075  电邮:CL87651688y@163.com  传真:020-8765 1698  网址:www.chinapsp.cn  政府采购代理机构内部纪律监督电话:020-8765 3380  14. 如采用汇款方式购买招标文件请汇至以下账户:  户名:广东采联采购招标有限公司  开户行:中国光大银行广州分行东环支行(人民币)(购买招标文件开户行)  账号:7787 0188 0000 44524 (购买招标文件账号)
  • 冻干测试汇总:冻干前产品关键温度及冻干后产品机械强度测试
    1.塌陷温度Tc定义:塌陷温度 (Tc)是产品粘度降低到无法支撑自身的三维结构的临界温度。检测设备:冻干显微镜方法简介:冻干显微镜是一台“微型冷冻干燥机”,测量过程模拟冷冻干燥过程,在一个特殊的冷冻干燥阶段利用受控的低压条件,允许水蒸气从样品中升华。冻干显微镜是在光学显微镜下观察特定样品或制剂的结构。除了能够确定塌陷温度 (Tc),Biopharma Lyostat5 冻干显微镜还能够测定共晶熔化温度 (Tm),识别结晶现象、表皮/结皮形成以及退火对冰晶生长的影响和溶质结构。 2.玻璃态转变温度(Tg’)定义:玻璃态转变温度(glasstransition temperature,Tg)是无定形的冻结混合物从脆性状态变为柔性状态的临界温度。检测设备:Lyotherm3冷冻状态分析仪(灵敏度更高)/DSC方法简介:Lyotherm是最新的分析技术、阻抗分析(Impedance analysis)与传统差热分析(Differential thermal analysis, DTA)的独特组合。该仪器可以识别样品中的电和热变化,通过结合差热分析 (DTA) 和阻抗分析来得到Tg' ,这使得研究者可以更完整地了解样品的热和电特性。这些技术使用两种不同的视角来增强分析数据,为分析提供额外的维度,从而允许使用者进行更详细和更准确的分析。● 电阻抗:阻抗(Zsinφ)是一个将电容、电感和电阻信息相结合,组成的与样品内分子迁移率相关的指标。阻抗的变化可以识别样品软化、稳定化、结晶、玻璃化转变、熔化和其他相变。● DTA:通过将比较样品温度与参考物温度来识别关键事件的热分析方法。对放热/吸热、玻璃化转变和熔化事件的识别收集了有关阻抗事件的更多信息。方法比较:聚合物在发生玻璃化转变时,力学性能、比热、比热容等发生变化, 因此玻璃转化温度可以通过差示扫描量热法(DSC)、调制差示扫描量热法(MDSC)、热机械分析法(TMA)、动态热机械分析(DMA)来检测 目前药物的Tg’常用DSC来进行检测,它测量的是伴随玻璃化转变的热容变化。但软化和等温相变,或非常小的热足迹的相变,就其性质而言用热分析技术很难看到。然而,大多数相变都伴随着分子迁移率的变化,这是由于物理或化学重新定向导致溶液中的电感、电容和电阻中的一种或多种产生大的波动。由于电阻和热技术的协作,Lyotherm可在复杂的解决方案中发现更多的事件,并且经常比DSC识别更多信息。3.固体玻璃态转变温度Tg定义:材料从硬脆的玻璃态转变为柔软的,类似橡胶的高弹态时的温度。检测设备:DSC方法简介:通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差(热流率)与温度的关系,进而得到测试材料的玻璃化转变温度。4.共晶温度Teu/共熔温度Tm定义:制品预冻过程中,对于结晶体系,随着温度降低,当制品达到冰点以下时,体系中形成冰核,冰核逐渐增长,其余溶液中溶质的浓度逐渐提高,并在达到过饱和时析出结晶,温度持续降低直至剩余溶液完全固化为冰和溶质的结晶混合体,此时的温度即为共晶点。制品干燥过程中,随温度逐渐升高,完全凝固的溶质和溶剂开始融化,此时温度即为共熔点。检测设备:1. DSC(常用)2.冷冻状态分析仪Lyotherm方法简介:1. 差示扫描量热法,通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差(热流率)与温度的关系,进而得到测试材料的共晶共熔温度。 冷冻状态分析仪Lyotherm采用差热分析法(DTA)法是利用制品在冻结(或融化)时,因放热(或吸热)而使其自身温度发生变化。根据物料的这种物理现象,测得制品的共晶点(共熔点)5.冻干饼/冻干珠机械强度检测检测设备:Micropress机械强度测试仪方法简介:MicroPress是一种可以原位定量测定冻干饼强度和物理特性的仪器。通过设置参数和分析方法,MicroPress将能够分析您的冻干饼和冻干珠机械强度。通过机械挤压样品,测得应力和应变数据,从而获得杨氏模量和破坏时的*应力。研究杨氏模量和破坏时的*应力的意义:● 冻干珠/冻干蛋糕在运输过程中保持完好。● 筛选合适的工艺条件(例如在冷冻过程中使用的冷却速度)。● 筛选合适的辅料成分,使蛋糕更坚固耐用。● 蛋糕属性的定量测量可以用于比较,批内/批间一致性。● 对技术转移和放大至关重要。● 为遵循QbD方法的法规文件提供丰富数据支持。 6.莱奥德创冻干课程关注“莱奥德创冻干工场”官方公众号,获取冻干讲堂线上培训课程。莱奥德创冻干工场上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干培训平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题培训课程。课程结合了来自Biopharma的冻干理论培训课程体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题培训内容。课程获取方式Step 1:关注公众号搜索关注“莱奥德创冻干工厂”公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的课程Banner Step 4:开始学习7、寻求冻干服务解决方案?莱奥德创还专注于提供先进的冻干设备应用和制剂开发相关服务。提供冻干前后产品性能测试,配方和工艺开发,冻干工艺优化,冻干工艺转移/放大,小批量冻干生产,金字塔冻干系统培训等全方位冻干相关服务。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    作者: Sang-Joon Cho, Park Systems Corp.副总裁兼研发中心总监、Ilka M. Hermes, Park Systems Europe 首席科学家利用原子力显微镜进行的自动缺陷复检,通过纳米级的分辨率在三维空间中可视化缺陷。因此,纳米级成像设备是制造过程的一个重要组成部分,它被视为当今半导体行业中最理想的技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行精确检测和准确分类。 与时俱进的光刻工艺使得生产的半导体器件越来越微小化。器件尺寸一旦减小,晶圆衬底上的纳米级缺陷就限制了器件的性能使用。因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征技术。由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,进而损害定量成像和随后的缺陷分类。而原子力显微镜 (AFM) 自动缺陷复检 (ADR)技术则有效地解决了该问题。该技术利用 AFM 常用的纳米分辨率,能够在三维空间中可视化缺陷,大大减少了缺陷分类的不确定性。因此,ADR-AFM 成为了当今半导体行业缺陷复检最理想的技术。缺陷检查和复检由于摩尔定律,半导体器件变得越来越小,需要检查的缺陷(DOI)大小也在减小。DOI可能会降低半导体器件性能的缺陷,因此对工艺良率的管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战。合适的表征技术必须能够在两位数或一位数纳米范围内以高横向分辨率和垂直分辨率对缺陷进行无创成像。一般来说,半导体行业的缺陷分析包含两个步骤。第一步:缺陷检测。利用吞吐量虽高但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,接下来需要依赖高分辨率技术进行缺陷复检。第二步:缺陷复检。利用高分辨率显微镜方法,如透射电子显微镜(TEM)或扫描电子显微镜(SEM)或原子力显微镜(AFM)。通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少检查的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,而非接触测量模式的AFM则有效地避免了该影响。它不仅可以无创地扫描表面,还有高横向和垂直分辨率对缺陷进行成像。因此,原子力显微镜能提供可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中可达到最高的垂直分辨率。除接触模式外,AFM还可以启用动态测量模式,即悬臂在样品表面上方振荡。由此,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。随着自动化原子力显微镜的更新发展,原子力显微镜的应用越来越广泛,从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正发展成为用于缺陷分析的新一代在线测量解决方案。使用原子力显微镜自动缺陷复检AFM 缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。基于此,用户最初会在 AOI 和 AFM 之间的附加步骤中,手动在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤不仅非常耗时还大大降低了吞吐量。另外,使用 AFM 的自动缺陷复检需要从 AOI 数据中导入缺陷坐标。而缺陷坐标的导入需要准确对准晶圆及精减AOI 和 AFM 之间的载物台误差。位置精度比AOI 更高的光学分析工具(例如Candela),可以有效减少中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。自动化的测量过程无需用户在场,吞吐量还增加了一个数量级。为了保持纳米级的针尖半径和连续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可有效防止探针针尖磨损并确保对缺陷进行精确地定量复检。△图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 在相同纳米级缺陷下所产生的不同缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 则通过机械直接扫描缺陷表面进行成像。除了横宽,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。可视化的缺陷三维形状确保了缺陷分类的可靠性和精确性,而这些是AOI无法实现的。当对比分别利用 AOI 和 ADR-AFM 确定缺陷的大小时,我们发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的 91 nm 尺寸的三分之一。在测量“pit”缺陷 5 和 6 时,我们观察到了 AOI 和 ADR-AFM 之间的最大偏差。AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。上述比较清楚地表明,仅用AOI不足以进行缺陷的成像和分类。△图2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM, ADR-SEM 也可以进行高分辨率的缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检。在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先需要通过ADR-SEM对晶圆的相同区域进行成像,然后通过ADR-AFM进行测量(图2)。AFM图像显示,ADR-SEM扫描的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可视性,图2a表明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术不断创新,半导体器件尺寸不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM自动化的测量简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础。在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI性能,AFM的高垂直分辨率有助于进行可靠的三维缺陷分类。非接触式测量模式确保了无创伤的表面表征,并有效防止AFM针尖磨损,从而确保在许多连续测量中能够依旧保持精准的高分辨率。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。缺陷检查和复检随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。使用原子力显微镜自动缺陷复检基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术中半导体器件尺寸的不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM测量的自动化简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础,在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI,AFM的高垂直分辨率有助于可靠的三维缺陷分类。非接触式测量模式确保了无创伤表面表征,并防止AFM针尖磨损,从而确保在许多连续测量中能够维持高分辨率。作者:Sang-Joon Cho, Vice President and director of R&D Center, Park Systems Corp.Ilka M. Hermes, Principal Scientist, Park Systems Europe.
  • 广州纤维产品检测院采购900万元仪器
    广东华鑫招标采购有限公司(以下简称“采购代理机构”)受广州市纤维产品检测院(以下简称“招标人”)的委托,就广州市纤维产品检测院仪器设备采购项目(委托编号:GDHX11263)进行国内公开招标,经过评标委员会的评审和推荐,并经采购人确认,评审结果如下:  一、包组内容、中标人名称、地址和中标报价:  包一 气质联用仪5台 液质联用仪1台 超高效液相色谱仪1台  中标人名称:广州市徕康科技有限公司  中标人地址:广州市天河区黄埔大道西100号B-610A房  中标报价: ¥8,945,000.00(人民币捌佰玖拾肆万伍仟元整)  请中标供应商务必自中标通知书发出之日起三十日内带齐有关文件与采购人签订合同,并在8月27日前依谈判文件中《中标服务费承诺书》的承诺向采购代理机构缴纳中标服务费。  收款单位名称:广东华鑫招标采购有限公司  开户银行:农行远洋宾馆支行  开户帐号:44032601040004092  二、定标日期:广州市纤维产品检测院仪器设备采购项目于2011年8月12日定标  三、评标委员会成员名单:谭寿再、李穗中、吴敏仪、袁敏、卢其明、陈宏基、黎仲明  四、采购代理机构的名称和地址:  采购代理机构名称:广东华鑫招标采购有限公司  采购代理机构地址:广州市环市东路区庄立交高迅大厦11楼(中山眼科医院东临)  五、采购项目联系人姓名和电话  采购项目联系人姓名:邹小姐  采购项目联系人电话:020-87303028、87303068  广东华鑫招标采购有限公司  二○一一年八月十二日
  • 循丝探理│碳纤维取向度如何测?
    导 读碳纤维作为高性能纤维的翘楚,具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性,并且沿纤维轴方向有很高的强度和模量,其外形呈纤维状、柔软、可加工成各种织物,一直以来,是航空航天、风电叶片、汽车、压力容器等高端应用场景的核心材料之一。 老话常说:心往一处想,劲儿往一处使。其实说的就是“方向一致进而形成强大的合力”。类似,对纤维材料而言,其分子链、微晶在拉伸等加工过程中产生的方向效应,即取向效应,亦对纤维的机械性能有着直接影响。岛津XRD(X射线衍射仪),配有纤维取向度专用附件,可方便、迅捷的对聚合物等纤维材料取向程度进行测定。 什么是纤维取向度?定义:表示纤维的晶体轴沿着纤维长度方向排列的平行程度或择优取向程度。 先来看两张示意图:左图给各位看官直观的感觉是不是就像一群散兵游勇? 而右图则是整齐队列的既视感?整齐划一、万众一心、众志成城!!! 是的,合成纤维等线形聚合物在未发生取向时,大分子链或链段、微晶的排列是随机的、无序的;而在纺丝、拉伸等加工过程中,大分子链或链段、微晶受到外力的作用,则会表现出不同程度的取向效应。 发生取向后,由于在取向方向上原子之间的作用力以化学键为主,而在与之垂直的方向上,原子间的作用力以较弱的范德华力为主,因而纤维取向度越高,则纤维长度方向上的机械强度、弹性模量等机械性能越好。 XRD测试纤维取向度原理 XRD作为材料结构分析的典型手段,可对纤维材料取向度进行有效表征。图1 纤维取向度测试时光路示意图 在正交透射模式下(图1),将纤维束置于子午线方向,保持光管、样品位置固定不动,探测器作2θ扫描收集衍射信号,此过程称为子午扫描。将纤维束置于赤道线方向,重复上述过程,即为赤道扫描;存在高度取向的纤维,赤道扫描与子午扫描谱图差异较大。 选取某特征衍射峰,将探测器固定于该特征峰峰位处,纤维束在垂直于入射X射线的平面内旋转(图1),测得β-I角度-强度分布曲线,此过程称之为方位角扫描,并采用以下经验公式即可计算纤维取向度π。 式中:π—纤维取向度 H—方位角扫描谱峰半峰宽(单位°) 岛津解决方案 针对纤维取向度测试,岛津XRD开发有纤维取向度专用附件,纤维专用样品架(图2)可保证纤维束平直拉紧,旋转样品台(图3)可实现正交透射模式及平面内旋转,以及数据处理模块“Preferred Orientation”可一键给出纤维样品取向度。 以某碳纤维样品实际测试为例,其赤道扫描及子午扫描谱图叠加见图4;显然,纤维束在两种方向放置测试,测得谱图差异十分明显,例如黑色箭头标示处,赤道扫描,该衍射峰强度非常高,而在子午扫描时该处基本未出峰,这表明该碳纤维存在很强的取向。 图4 碳纤维样品赤道扫描与子午扫描谱图叠加 利用岛津分析软件“Basic Process”模块,对赤道扫描谱图进行处理,读取最强峰衍射角2θ=25.69°,将探测器固定在25.69°进行方位角扫描,测得的强度分布曲线如图5所示。 图5 碳纤维样品方位角扫描谱图 利用岛津分析软件“Basic Process”模块,对方位角扫描谱图进行平滑、扣除背底、寻峰等操作后,利用岛津分析软件“Preferred Orientation”模块即可直接计算出碳纤维样品取向度为83.7%。 结语 纤维取向度对纤维的机械强度、弹性模量及其它机械性能有着直接影响,因此对纤维取向度进行测定有着非常重要的实际意义。类似的测试可拓展用于不同批次、不同工艺下纤维产品的对比,进而指导工艺优化。 撰稿人:崔会杰 *本文内容非商业广告,仅供专业人士参考。
  • 《絮用纤维制品异味的测定》填补异味检验领域的空白
    很多人在选购服装、床上用品的时候都有闻一闻气味的习惯,很多纺织品和絮用纤维制品的国家标准也对异味检验项目提出要求,但是均没有具体的检测方法标准对异味项目进行检测。日前通过审定的《絮用纤维制品异味的测定》国家标准将填补这个领域的空白。  据了解,我国的强制性国家标准《国家纺织产品基本安全技术规范》、《絮用纤维制品通用技术要求》和《生态纺织品技术要求》等标准均要求检验异味,种类包括霉味、高沸程石油味(汽油味、煤油味、柴油味等)、鱼腥味、芳香烃味、未洗净动物纤维膻味、臊味等。对于异味这项反映纤维及纤维制品质量的重要技术指标,是以人工感官检验的方法进行检验的。在这类主观性检验中,检验人员对异味种类的正确理解、熟悉程度、对检验方法的掌握以及个体的因素,对检验结果均会产生较大的影响。尽管标准中对检验人员提出了须经培训的要求,但由于异味检验在国内开展时间不长,检验人员的实践经验相对不足,异味检验存在着一些问题。  标准的霉味、鱼腥味等都是什么味道?2009年2月发布的《纤维及纤维制品异味标准样品》就是标准的“异味”样品的国家标准。检验人员闻一闻标准样品,按相关要求,再去闻一闻检验的样品,就可以判定是否有异味。当然不是每次检验都需要闻一闻标准样品,但是需要按要求用标准样品对嗅觉进行校准。  据中国纤维检验局技术管理处处长冯平介绍,正常情况下,纺织纤维都会带有一些纤维自身固有的气味。絮用纤维制品在生产及加工过程中会产生化学物质的残留,这些残留物在纺织产品的使用过程中逐渐挥发或氧化分解会产生特殊气味 絮用纤维制品被微生物污染后,微生物的繁殖以及微生物对纤维和其上残留有机物的分解也会产生气味。有些异味达到一定程度,就会对人体健康产生不利影响,所以国内外纺织产品标准中均对异味提出了检验要求。随着《纤维及纤维制品异味标准样品》的使用越来越广泛,中国纤维检验局又联合其他实验室完成了《絮用纤维制品异味的测定》国家标准,填补了检测领域的空白。  据介绍,这项标准由国家纤维质量监督检验中心、广州市纤维产品检测院、重庆市纤维织品检验所共同完成。调查显示,异味检验的问题主要是同一个样品在同一个实验室检测,不同人员的检测结果不同 同一个样品在不同实验室检测,也会出现不同结果。其原因一是部分检验人员对异味了解不深、辨别不清 二是不同人员对气味的敏感程度不同,对气味的强度的掌握上尺度不一 三是对于异味的检验方法尚无详尽的描述,对检测的环境条件也无严格限定,而异味是由纤维及其制品中的某些物质挥发到空气中产生的,不同温度下,物质挥发的程度不同,异味的严重程度也就不同。  据标准主要起草人、国家纤维质量监督检验中心周硕介绍,标准对实验室的设备和材料、检测环境、试样准备、检验程序等方面的要求都是感官检验准确性的重要前提。尤其对检测人员进行了详尽的要求,其中包括身体健康,嗅觉正常,不吸烟,不酗酒 检测当天不使用带气味化妆品或护肤品,检测前洗手并用清水漱口去除口腔气味。并且规定了进入检测环境内需要进行2~3次深呼吸,然后静待10秒以适应检测环境。并且对检测人员的嗅觉校准提出了要求,规定了长期从事该项目检测的试验人员一个月进行一次嗅觉校准,试验人员发生变化、疾病或长期未从事该项目检测时应缩短嗅觉校准时间为一周等要求。  这项标准结合《纤维及纤维制品异味标准样品》可提高检验人员对絮用纤维制品包括纺织品中规定的异味种类的辨别,统一把握异味的强度,提高异味检验的准确度。
  • 国内首台碳纤维抽油杆超声波检测装置投入试运行
    p  2017年12月16日,胜利油田技术检测中心在胜利新大实业集团有限公司第三工业园,完成了“碳纤维抽油杆超声波在线连续检测装置”的现场调试工作,现场数据采集达到预期效果,标志着该中心研发的国内首台碳纤维抽油杆超声波检测装置取得成功。/pp  碳纤维抽油杆作为一种新兴抽油设备,在节能增效、深抽提液、降低修井频次等方面具有显著优势,是目前采油技术发展应用的新方向。但是,如何通过检测实现其生产质量的把关以及作业过程的可靠性,是该技术推广与应用面临的一项重大问题。为此,技术检测中心特种设备检验所牵头开展了中石化课题《碳纤维连续抽油杆检测评价技术研究》,并参与了中石化课题《碳纤维连续抽油杆检测评价系统研发》。/pp  为切实解决碳纤维抽油杆推广应用过程中的实际难题,确保课题有效运行,技术人员集思广益、悉心钻研,先后调研、测试了多项无损检测技术,最终确定采用超声波开展在线连续检测的可行性。技术人员结合碳纤维抽油杆生产线的工况与超声波技术的特点,开展了检测装置的研发,经过不断的实验测试与方案变更,最终研制成功了基于水浸超声的碳纤维抽油杆在线检测装置。/pp  该检测装置的成功试运行,标志着碳纤维抽油杆检测评价系统硬件部分圆满完成。今后,技术检测中心将瞄准如何准确评价抽油杆的产品质量,开展超声波检测信号与碳纤维抽油杆力学性能对应关系的研究;确定产品质量超声检测评定标准,实现该技术的在线应用,推动碳纤维抽油杆在油田的推广与应用。/p
  • 日立实验|台式扫描电镜在化妆品石棉纤维检测中的应用
    前言:随着经济的发展和人民物质生活水平的提高,人们对于美的追求日益提高,个人护理用品和化妆品的需求也随之逐年增加。但是,近年来化妆品及个人护理品的质量安全新闻屡屡出现,化妆品安全问题越来越受到人们关注,因此对化妆品的质量管理和检测就尤为重要。滑石是一种含水的镁硅酸盐矿物,经过机械加工可以制成滑石粉,具有润滑性好和吸附力强等优点,被广泛运用于化妆品及个人护理产品中,例如爽身粉、粉底、隔离霜以及防晒产品等。滑石粉本身化学结构稳定,对人体并无危害。但是天然滑石矿与含有石棉成分的矿物常常共生,因此滑石粉原料中常伴有石棉杂质。而石棉已被国际公认为致癌物,因此各个国家和地区对滑石粉作为化妆品原料使用时,均会对其石棉残留物进行严格的控制要求。 图(1). 滑石(左)与石棉纤维(右),图片来源于网络在我国,《化妆品卫生规范》(2007年版)以及现行的《化妆品安全技术规范》(2015年版)都将石棉列为禁用物质,即不得作为化妆品原料使用的物质。此外在2010年的时候发布了《进出口化妆品中石棉的测定》(SN/T 2649.1-2010)这项出入境检验检疫行业标准。该测定标准中包括对试样进行X射线衍射分析方法和扫描电镜-能谱分析方法,其中通过扫描电镜检测出4个以上的石棉纤维粒子即判定该试样含有石棉,但是实际样品中的待检测粒子却是成千上万个的。因此,如何提高检测效率也是人们关注的问题。实验:日立台式电镜TM4000Ⅱ具有优良的自动化调节功能,可以配备续拍照-拼图软件Multi Zigzag以及能谱(EDS)探测器,对化妆品中的石棉检测的效率提高带来帮助。下面为大家介绍使用日立台式扫描电子显微镜TM4000Ⅱ检测石棉纤维的方法。步骤一:石棉纤维不喷金前处理制样将石棉纤维样品均匀放置在贴有导电胶的样品载台上。因为TM4000系列具有低真空功能,可以对不导电样品直接观察,因此不必对石棉纤维进行喷金前处理,避免对其形貌和元素分析产生干扰。步骤二:选择观察区域进行连续自动拍照通过TM4000Ⅱ标配的四分割背散射电子(BSE)探测器可以清晰的观察到石棉纤维结构,使用Multi Zigzag功能选择观察区域及相关参数,软件会自动控制样品台移动进行大范围拍照,参数设置和拍照过程如图(2)所示。图(2). Multi Zigzag参数设置及拍照过程步骤三:选择观察区域进行连续自动拍照如图(3)所示,在自动拍照完成后,我们可以对各个区域的每一张图片进行检索查看,快速统计石棉纤维的数量。TM4000Ⅱ还具有坐标记忆功能,选中包含石棉纤维的图片,一键式操作样品台就可以自动回到该图片坐标的位置,然后对石棉纤维进行更细致的观察。图(3). 自动拍照结果检索及坐标记忆功能演示步骤四:对石棉纤维进行尺寸测量和能谱元素分析如图(4)所示,在样品台自动移动到特定石棉纤维的坐标后,可以对该石棉纤维进行尺寸测量和能谱测试,进一步确认其形态和元素组成。图(4). 石棉纤维尺寸测量和能谱测试结果总结:由以上述分析可知,利用日立台式电镜TM4000Ⅱ可以有效地对石棉纤维进行形貌和成分进行观察分析。这一检测方法将有助于对制品和环境中的石棉纤维进行快速准确检测,满足人类对自身工作生活环境的健康需求。日立台式电镜TM4000Ⅱ产品特点简化寻找视野\图像拍摄\图像确认等一系列操作过程公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 江西纺织品纤维成分检测实现重大突破纪实
    只需将纺织品样品放在光谱采集探头下,电脑屏幕上即刻就会显示出面料中棉/涤、棉/氨、锦/氨、涤/氨、涤/粘胶等多种纺织原料的成分含量。这神奇的一幕,发生在江西检验检疫局综合技术中心。 在这里,传统方法耗时几个小时甚至十几个小时才能完成的成分检测,被缩短到了立时可见,快速、无损、无污染,极大地提高了检测速度。 5年耕耘,江西局综合技术中心在纺织品纤维成分检测方面收获了累累硕果。他们将近红外光谱分析技术应用于纺织品成分检测,被专家赞为革命性的突破。 市场之需 市面销售的纺织品上必须有纺织原料成分标签,这是世界上几乎所有国家法令或标准的规定,也是保护消费者合法权益的重要保障。 中国是世界上最大的纺织品生产国、出口国和消费国,纺织服装年进出口总额达千亿美元,国内纺织品消费总额达万亿元。验证纺织产品成分是否符合相关法律法规,是纺织品生产企业、社会公共检测机构和政府监管机构的重要工作。出入境检验检疫部门、质量监督部门和工商管理部门承担着重要的责任。据不完全统计,全国从事纺织品原料组分检测的(包括外资企业设立的)各类实验室达2000家以上,大多数规模较大的生产企业、甚至经营企业也都配有此类实验室。按照我国强制性技术规范的要求,每年仅原料组分检测的批数就超过6000亿批次。 然而,由于传统的检测技术存在检测周期长、检测环境要求高、使用有毒有害化学试剂、破坏样品等问题,使得纺织产品成分含量验证性检测批次大打折扣。 在这样的大环境下,一些不法生产企业为降低成本,擅自降低混纺面料中某些纤维成分的含量,以次充好,实际成分与标识不符,导致大批量的不合格成品在市场上流通。近年来,从全国各地质检部门公布的抽查结果可以看出,不合格纺织品中成分及含量与实际不符问题尤其突出,国内市场50%的服装不合格,其中超过50%属于原料组分标识不合格。 研发之路 为解决纺织产品质量控制实际需求和检测技术支撑之间的矛盾,研究和开发一种快速简捷、不需要化学试剂、无需破坏样品的纺织品原料组分检测方法,是检验监管机构和生产企业的迫切需求,也让江西局综合技术中心踏上了漫漫的研发之路。 2010年,江西局综合技术中心引进人才,组建了近红外光谱分析技术研究团队,致力于纺织服装等产品的近红外光谱快速检测技术的研究,并与北京化工大学、中国检验检疫科学研究院等单位建立了红外光谱技术研发合作关系。 经过5年多的研究,收集了2万多个纺织样品,在通用型、便携式和微型近红外光谱仪上开发出了近红外光谱法快速检测棉/涤、棉/氨、锦/氨、涤/氨、涤/粘胶等多种常见纺织品的分析模型,使传统方法耗时几个小时甚至十几个小时才能完成的检测,缩短到了现在3分钟内即可完成,极大地提高了检测速度。这一快速、无损、无污染的检测技术,被专家誉为&ldquo 纺织纤维成分检测的革命性突破&rdquo 。 为便于推广应用,研究团队及时将成熟的模型转化为检验检疫行业系列标准,目前已发布实施的有SN/T 3896.1-2014《进出口纺织品 纤维定量分析 近红外法 第1部分:聚酯纤维与棉的混合物》,还有4个系列标准已通过审定待发布实施。为进一步方便客户使用,降低近红外光谱技术使用的门槛和成本,还建立了基于物联网的纺织纤维成分近红外光谱快速检测数据处理中心,客户联网后将待检测纺织品的近红外光谱数据传输至数据处理中心,即可在一两分钟内得到检测结果。 收获之甜 江西局综合技术中心在近红外光谱分析技术研究领域的突出表现,引起了学术界的广泛关注,先后受邀参加了2012年9月在广西桂林举办的全国第四届近红外光谱学术会议和2012年11月在北京举办的第446次香山科学会议学术讨论会。在全国第四届近红外光谱会议上,该技术中心向与会者介绍了利用近红外光谱技术检测纺织品原料组分的研究成果,得到了与会专家和学者的充分肯定;在香山科学会议上,该技术中心向与会者做了题为《消费品品质近红外物联网检测及健康安全》的报告,近红外光谱技术在纺织品检测领域的应用成果得到了陆婉珍院士及其他参会专家的好评与关注。 辛勤换来的研究成果也引起了仪器设备生产企业的关注,聚光科技(杭州)公司、瑞士步琦公司、赛默飞世尔公司等先后与江西局综合技术中心接洽,商讨共同合作开发小型专用近红外光谱仪事宜,与聚光科技(杭州)公司的合作已进入实施阶段。 利用近红外光谱分析技术检测纺织品纤维成分具有检测速度快、便于操作、不使用化学试剂、不破坏样品等优点,可广泛应用于生产企业产品质量自控、销售企业进货(入场)商品质量验收、监督管理部门质量监控等多个领域。这一技术受到了国家质检总局领导的充分肯定和兄弟单位的广泛认可,系统内外多家单位已采购或预算采购近红外光谱仪器,应用江西局综合技术中心的研究成果开展纺织品纤维成分的检测,以保证国内纺织产品的质量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制