当前位置: 仪器信息网 > 行业主题 > >

纤维素酶检测

仪器信息网纤维素酶检测专题为您提供2024年最新纤维素酶检测价格报价、厂家品牌的相关信息, 包括纤维素酶检测参数、型号等,不管是国产,还是进口品牌的纤维素酶检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维素酶检测相关的耗材配件、试剂标物,还有纤维素酶检测相关的最新资讯、资料,以及纤维素酶检测相关的解决方案。

纤维素酶检测相关的资讯

  • 如何用乌氏粘度计测纤维素的黏度?
    中旺科技乌氏粘度计可根据标准高精确检测纤维素黏均聚合度、特性黏度数据。纤维素是一类有机化合物,其化学通式(C6H10O5)n,是由葡 萄糖组成的大分子多糖,大量的存在于绿色植物和海洋生物中,是自然界中分布最广、储量最大的天然高分子材料,具有生物相容性好、可再生和可生物降解等优势。常温下,纤维素既不溶于水,又不溶于一般的有机溶剂,如酒精、乙醚、丙酮、苯等,它也不溶于稀碱溶液中,能溶于铜氨Cu(NH3)4(OH)2溶液和铜乙二胺[NH2CH2CH2NH2]Cu(OH)2溶液等。目前纤维素及其衍生产品主要被用在包装、涂层、生物医学、废水处理、能源和电子领域等。纤维素也可制成甲基纤维素、乙基纤维素、羧甲基纤维素、聚阴离子纤维素等醚类化学物质,用于原油勘探、食品行业、陶器胎土、日化产品、合成洗涤、石墨制品、中性笔生产加工、电子元器件、工业涂料、建筑建材、设计装饰、蚊香片、烟草、造纸工业、橡胶材料、农业、粘胶剂、塑料、炸药、焊工及科研器材等方面。纤维素的平均聚合度是判断纤维素材料应用的重要参考指标,不同纤维素材料应用聚合度数值也各不相同。有关纤维素的相关国家标准GB_T29305-2012、ASTMD 4243-2016、GB_T 1548-2016等中明确规定测定纤维素粘均聚合度、特性黏度的方式方法。中旺乌氏粘度仪不仅完全符合标准规定的测试要求,有关测试条件精度值还要远远高于标准要求。IVS400全自动粘度仪杭州中旺科技有限公司的IVS400全自动粘度仪采用双模式在线清洗,无需拆下粘度计,可直接在线清洗、排废全智能软件系统。能够精准便捷的测试纤维素的粘均聚合度、特性黏度数据。推进纤维素功能材料的功能化利用,促进天然高分子材料的发展。测试流程称样用万分之一天平称取纤维素样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定铜乙二胺溶剂到溶样瓶中;溶样将溶样瓶放入P12中旺聚合物溶样器中(可多个溶样同时进行溶解),采用磁力搅拌的方式,按照规定的温度、时间溶样;黏度测试打开IVS400粘度仪,设置所需水槽温度(25℃±0.01℃),将溶液加入乌氏粘度计中,打开软件,自动测试,自动计算,电脑端可自动储存测试数据;清洗粘度管自动排废后,加入清洗试剂自动清洗并干燥。
  • 中国纤维素乙醇技术标准正在制定
    全球最大的工业酶制剂生产商诺维信全球执行副总裁托马斯那奇昨日透露,中国国家标准委已经通过行业协会推进纤维素乙醇技术标准的制定。这无疑是加速中国纤维素乙醇商业化运营的一大利好消息。  那奇昨日在京面对媒体时介绍说,目前中国每年有7亿吨农业废弃物,其中2亿吨将用于纤维素乙醇的制造,若以1/5-1/4的转化比率来讲,中国将具备4000万-5000万吨的产能,但目前中国生物质能源却还处在“襁褓”阶段。专家则指出,2011年第三季度诺维信与中粮和中石化两大央企巨头在华合作运营的乙醇示范工厂能否展示足够商业化可行性才是关键,而标准的建立对大规模的投产更有推动作用和行业意义。
  • VELP发布意大利VELP全自动纤维素新品
    意大利VELP公司全新推出全自动纤维素分析仪,可以测定粗纤维,酸性洗涤纤维和中性洗涤纤维。具有如下特点:彩色显示手触屏,更便捷:具有内置标准程序和可编辑程序;全自动完成包括试剂预加热,消煮、过滤、排废等操作步骤,自动添加酸,碱,蒸馏水,酶和消泡剂,酸和碱试剂瓶配备液位传感器,液位低时会自动报警提醒。可通过网线或者Wifi连接VELP Ermes云平台,通过手机或者PC端实时监控仪器运行情况,并可以远程操控仪器。消煮时,设置加热强度百分比,以减少浸提时的泡沫产生。创新点:1,实现了全自动运行:包括试剂预加热,消煮、过滤、排废等操作步骤;同时试剂的添加实现全自动,包括自动添加酸,碱,蒸馏水,酶和消泡剂。2,物联网:可以通过Wifi或者网线和Ermes云平台连接,随时随地和机器进行信息交换。3,扩展性和数据准确性创新:可以外接扫码器和天平,在称重前扫描坩埚上的条形码可以自动把传输并保存在机器上,避免样本重量和编号出现错误。意大利VELP全自动纤维素
  • VELP发布意大利VELP全自动纤维素新品
    意大利VELP公司全新推出全自动纤维素分析仪,可以测定粗纤维,酸性洗涤纤维和中性洗涤纤维。具有如下特点:彩色显示手触屏,更便捷:具有内置标准程序和可编辑程序;全自动完成包括试剂预加热,消煮、过滤、排废等操作步骤,自动添加酸,碱,蒸馏水,酶和消泡剂,酸和碱试剂瓶配备液位传感器,液位低时会自动报警提醒。可通过网线或者Wifi连接VELP Ermes云平台,通过手机或者PC端实时监控仪器运行情况,并可以远程操控仪器。消煮时,设置加热强度百分比,以减少浸提时的泡沫产生。创新点:1,实现了全自动运行:包括试剂预加热,消煮、过滤、排废等操作步骤;同时试剂的添加实现全自动,包括自动添加酸,碱,蒸馏水,酶和消泡剂。2,物联网:可以通过Wifi或者网线和Ermes云平台连接,随时随地和机器进行信息交换。3,扩展性和数据准确性创新:可以外接扫码器和天平,在称重前扫描坩埚上的条形码可以自动把传输并保存在机器上,避免样本重量和编号出现错误。意大利VELP全自动纤维素
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 木材衍生的纳米纤维素纸半导体制成
    日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创建有用的微观和宏观结构并实现出色的功能和最终用途的多功能性,仍然具有挑战性。  纤维素是一种源自木材的天然且易于获取的材料。纤维素纳米纤维(纳米纤维素)可制成具有与标准A4纸张尺寸相似的柔性纳米纤维素纸(纳米纸)片材。纳米纸不导电,但加热可引入导电特性。不过,这种受热也可能破坏纳米结构。  大阪大学研究人员与东京大学、九州大学和冈山大学合作,设计出一种处理工艺,使纳米纸能够加热,又不会破坏从纳米尺度到宏观尺度的纸结构。  “纳米纸半导体的一个重要特性是可调性,因为这允许为特定应用展开设计。”研究作者古贺博隆副教授解释说,碘处理对保护纳米纸的纳米结构非常有效。将其与空间控制的干燥相结合,意味着热解处理不会显著改变设计的结构,并且可使用选定的温度来控制电性能。  研究人员使用折纸和剪纸技术来提供纳米纸在宏观层面的灵活性。他们将鸟和盒子折叠起来,冲压出苹果和雪花等形状,并通过激光切割产生更复杂的结构。这证明了新工艺可能达到的细节水平,以及热处理没有造成损坏。  成功应用的例子是,纳米纸半导体传感器结合到可穿戴设备中,以检测穿过口罩呼出的水分和皮肤上的水分。纳米纸半导体也被用作葡萄糖生物燃料电池的电极,产生的能量点亮了一个小灯泡。  古贺博隆表示,新研究展现的将纳米材料转化为实际设备的结构维护和可调性非常令人鼓舞,新方法为完全由植物材料制成的可持续电子产品的下一步发展奠定了基础。
  • GE FFHP再生纤维素滤膜全球首发回顾
    GE&BioDot下一代快速体外诊断技术与整体解决方案研讨会暨FFHP滤膜全球首发回顾 近日,GE医疗集团生命科学部在北京向全球发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。 9月13日,GE医疗生命科学部在现代尤伦斯艺术中心同BioDot中国联合举办了第二次&ldquo 下一代快速体外诊断技术与整体解决方案研讨会&rdquo 。会议期间,正式向全球发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。 此次会议是继今年6月14日上海成功举办第一届后,再一次在北京地区召开,吸引了大量的消费者和用户的兴趣。 &ldquo 我们在美国以及欧洲同BioDot共同举办了一些类似的活动&rdquo ,GE医疗生命科学部商业发展总监Nicola Raw表示,&ldquo 但相比较而言,中国无疑取得了最好的效果,共有237位新老用户和顾客参与了在中国的两次研讨会。&rdquo GE医疗生命科学部消耗品销售总监汪景长说:&ldquo 本次研讨会时一个将我们的用户集合在一起的极佳机会,我们邀请的国内外嘉宾在一起做了出色翔实的报告和有价值的讨论。可以明确的是,我们将会坚定地开发更多诊断方面的应用。&rdquo 北京研讨会中的实际操作演示 超过150名国内外专家参与了本次研讨会,讨论了包括快速体外诊断测试技术、设备、应用程序和POC发展战略在内的相关问题。会议期间,GE医疗生命科学部发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。FFHP 膜的毛细爬升变异系数(CV) 小于10%,具有很低的批内和批间差,可为客户提供更高的检测一致性、更一致的检测限值和更低的检测优化成本。除了发布FFHP之外,会议的亮点还包括一系列以客户为主导的讨论,实际操作演示以及由GE医疗生命科学部Klaus Hochleitner和 Mike Salter所做的报告等活动。
  • VELP发布FIWE ADVANCE 全自动纤维素测定仪新品
    可对单个或多个样本进行纤维素提取和测定,完成包括沸煮,冲洗和过滤三个步骤。配备RC2 加热板用于预加热试剂。高效的加热元件,节省时间。可以应用于:-粗脂肪测定(依据Weende方法)-中性洗涤剂纤维素和酸性洗涤剂纤维素测定(NDF和ADF,依据Van Soest方法)-酸性洗涤剂木质素测定(ADL, 依据Van Soest方法)-纤维素的不同组分(纤维质,半纤维素和胶质的测定)FIWE可以进行独立的或者连续的提取步骤,包括煮沸,洗涤和过滤。创新点:(1)可通过WIFI或网线可以和V E L P的E r m e s云平台连接,可以在任何时间和任何地点对仪器进行监控和控制;(2)配备彩色图形化手触屏,方便方法设置和操作,可实时图形化显示运行状态; (3)自动化程度高且高效,2个小时完成一批6个样本的测定。FIWE ADVANCE 全自动纤维素测定仪
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。  DM 2500P 技术参数  1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光  2. 目镜:10X/22mm视域  3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度  5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um  6. 可双向调中孔位的物镜转盘,5孔位  7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺  8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱  9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱  DM 2500P 主要特点  1. 无限远光学校正系统,图像清晰,高反差  2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱  3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力  4. 检偏镜可180度旋转  5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整  7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护  8. 调节工具可放在镜体上方便随时取用  9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变  10. 各种滤片都经过防热处理  11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动  江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。  工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。  摘自南通醋酸纤维素工程技术研究中心网站
  • 大连化物所制备出基于光子纤维素纳米晶的柔性汗液传感器
    近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)的功能化研究提供了一种新思路。   在低碳循环经济的倡导下,CNC作为一种生物基材料被迅速地开发,在电子、生物塑料、能源等领域被广泛的应用,有望加速推进各领域的可持续发展。特别的是,CNC可以自发组织形成手性向列液晶结构,产生绚丽的光子结构色,这对可持续性光学和光学传感的发展非常重要。然而,此类材料在潮湿或液体环境中的功能失效,不可避免地损害了它们在生物医学、膜分离、环境监测和可穿戴设备中的发展。因此,通过简单有效的手段使得CNC在液体环境下稳定存在,并实现功能化的应用非常重要。本工作中,团队发展了一种制造不溶性CNC基水凝胶的简单且有效的方法,利用分子间氢键重构,热脱水使优化的CNC复合光子膜在水溶液中形成一个稳定的水凝胶网络。研究发现,该水凝胶在干湿状态之间可以可逆转换,便于进行特定的功能化处理。团队通过在液体环境下吸附溶胀引入功能化分子,得到了具有抗冻性(–20℃)、强粘附性、良好生物相容性、对Ca2+高灵敏度和高选择性感应的水凝胶。该工作有望促进利用可持续纤维素传感器监测其他代谢物(即葡萄糖、尿素和维生素等)的应用,并为在环境监测、膜分离和可穿戴设备中运行的数控水凝胶系统奠定了基础。   卿光焱团队长期致力于CNC手性功能化相关研究,开展了一系列工作:通过整合CNC自组装工艺和DMF溶剂中的紫外光引发的有机聚合,实现高性能光子材料的合成,从而增强CNC基复合材料的弹性变形概念(Small,2022);将强手性的CNC系统与强发光的稀土配合物进行结合,制备出携带四种光学信息的手性光子复合膜(Adv. Funct. Mater,2022)等。   相关研究成果以“Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat”为题,于近日发表在Small上。该工作的第一作者是大连化学物理研究所1824组博士研究生李琼雅。上述工作得到国家自然科学基金、辽宁省兴辽英才计划、大连化学物理研究所创新基金等项目的支持。
  • Supelco推出纤维素型手性液相色谱柱
    Sigma-Aldrich旗下著名分析品牌Supelco 近日宣布推出Astec Cellulose DMP 纤维素型手性液相色谱柱。Supelco 早先推出的Astec CHIROBIOTIC&mdash &mdash 大环糖肽型、Astec CYCLOBOND&mdash &mdash 环糊精型、Astec P-CAP&mdash &mdash 多环胺基型、Astec CLC (copper ligand exchange)&mdash &mdash 配位交换型和Protein-based&mdash &mdash 蛋白质型 手性HPLC色谱柱,一直深受广大分析工作者的喜爱,特别是Astec CHIROBIOTIC系列和Astec CYCLOBOND系列获得了广泛支持和青睐,许多在其它品牌色谱柱上未能实现的对映体拆分在其上都获得了良好的分离,应用领域非常广泛。 大环糖肽型、环糊精型和纤维素型手性柱是几种常用的手性固定相,具有互补的选择性,Supelco近日推出的 Astec Cellulose DMP 纤维素型手性柱具有如下特点:&bull 5um超高纯全多孔球形硅胶基质&bull 3,5-二甲苯氨基甲酸酯衍生化的纤维素涂层&bull 经典的纤维素型手性柱选择性&bull 正相模式下适合多种手性样品的分离&bull 高效、高载样量&bull 分析到制备规模可供选择&bull 具有竞争力的价格 Astec Cellulose DMP纤维素型手性柱的加入充实了原有的产品线,选择性相互补充,手性分离产品更为齐全,目前,Sigma-Aldrich公司旗下Supelco品牌的手性柱系列有:手性液相柱1)Astec CHIROBIOTIC&mdash &mdash 大环糖肽型(Astec CHIROBIOTIC V 、 Astec CHIROBIOTIC V2 、 Astec CHIROBIOTIC T 、 Astec CHIROBIOTIC T2、Astec CHIROBIOTIC TAG 、 Astec CHIROBIOTIC R)2)Astec CYCLOBOND&mdash &mdash 环糊精型( Astec CYCLOBOND I 2000、Astec CYCLOBOND I 2000 AC、 Astec CYCLOBOND I 2000 DM、Astec CYCLOBOND I 2000 DMP、Astec CYCLOBOND I 2000 DNP、Astec CYCLOBOND II、 Astec CYCLOBOND II AC、Astec CYCLOBOND SP、 Astec CYCLOBOND RSP、 Astec CYCLOBOND HP RSP3)Astec P-CAP&mdash &mdash 多环胺基手性HPLC柱4)Astec CLC (copper ligand exchange)&mdash &mdash 配位交换型5)Protein-based&mdash &mdash 蛋白质型 手性气相柱&mdash &mdash 环糊精型1)Astec CHIRALDEX2)Supelco &alpha -, &beta -, g-DEX
  • 中科院纤维素化学重点实验室2011年开放基金开始申请
    据中国科学院广州化学研究所纤维素化学重点实验室网站消息,该实验室2011年开放基金已经开始申请,截止日期为2010年12月30日。  详情请见:纤维素重点实验室2011年开放基金申请指南
  • 日立实验|紫外可见分光光度法评价纳米纤维素
    紫外可见分光光度法评价纳米纤维素前言:纳米纤维素来源于木材或草等植物纤维,其具有良好的可再生性,力学性能等。为构建脱碳社会,全球各国不断推动纳米纤维素的研发与应用。根据生产工艺,纳米纤维素可分为纤维素纳米纤丝(CNF)和纤维素纳米晶(CNC)等,作为一种新材料,在广泛应用前,对它的安全性评价是必要的,但目前缺乏评价纳米纤维素安全性的统一方法。日本新能源和产业技术开发组织(NEDO)进行了多种纳米纤维素评价方法的开发和评估,本文参考NEDO课题项目“非食用植物源性化学品的制造工艺技术的开发/CNF安全性评价手段的开发”等案例,采用日立紫外-可见-近红外分光光度计UH5700测定了纤维素纳米晶(CNC)。 应用实例:实验样品为使用TEMPO氧化制备的纤维素纳米晶(CNC)和葡萄糖。利用苯酚-硫酸法对样品进行测定1。苯酚-硫酸法的原理是通过对样品进行酸分解,定量分析其分解产物。样品处理过程如图所示。苯酚-硫酸法 由于待测样品量较少,因此需要使用微量样品池,并搭配微量样品池用挡光板,可以测量340~600 µL左右的微量样品。微量样品池及挡光板测定结果如图1所示,在488 nm处获得了特征吸收峰,不同浓度的样品与吸光度的关系如图2所示。图1 样品的吸收光谱图2 样品浓度与吸光度的关系由结果可以看出,使用紫外可见分光光度法可以对纳米纤维素进行定量分析,但测量重现性较低,可能是由于样品不纯,因此,测量过程需要尽可能避免接触纸巾、纺织布等纤维制品。 总结:苯酚-硫酸法不需要特殊的试剂,操作简单,使用日立UH5700能够在488 nm处得到良好的特征峰,能够实现对单一种类纳米纤维素的定量分析。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 化妆品行业或被彻底改变:纤维素制成闪光材料无毒可降解
    生活中有很多闪闪发光的包装,化妆瓶、水果盘等等,但它们很多是由有毒和不可持续的材料制成的,会造成塑料污染。最近,英国剑桥大学的研究人员找到了一种方法,可以从纤维素(植物、水果和蔬菜的细胞壁的主要组成部分)中制造出可持续、无毒、且可生物降解的闪光剂。相关论文发表在11日的《自然材料》杂志上。  这种闪光剂由纤维素纳米晶体制成,是通过结构色来改变光线,从而焕发出鲜艳的颜色。在自然界中,譬如蝴蝶翅膀和孔雀羽毛的闪光,都是结构色的杰作,这种色彩经历一个世纪也不会褪色。  研究人员称,利用自组装技术,纤维素可以产生色彩鲜艳的薄膜。通过优化纤维素溶液和涂层参数,研究小组能够完全控制自组装过程,从而使材料可以成卷地大规模制造。他们的工艺与现有的工业规模机器兼容。使用商业上可获得的纤维素材料,只需几个步骤就能转化为含有这种闪光剂的悬浮液。  在大规模地生产出纤维素薄膜后,研究人员将它们研磨成用于制造闪光或效果颜料的大小的颗粒。这种颗粒可生物降解,不含塑料,无毒。此外,与传统方法相比,该过程的能源密集度要低得多。  他们的材料可用来替代化妆品中广泛使用的塑料闪光颗粒和微小的矿物颜料。传统颜料,如日常使用的闪光粉,属于不可持续材料,而且会污染土壤和海洋。一般的颜料矿物必须在800℃的高温下加热才能形成颜料颗粒,这也不利于自然环境。  该团队制备的纤维素纳米晶体薄膜可以用“卷到卷”工艺大规模制造,就像用木浆造纸一样,首次将这种材料工业化制造。  在欧洲,化妆品行业每年使用约5500吨微塑料。该论文资深作者、剑桥大学优素福哈米德化学系的西尔维亚维格诺里尼教授表示,他们相信这种产品可以彻底改变化妆品行业。  将来,研究人员还将进一步优化生产过程,并使该种闪光剂商业化。
  • 中国化学会纤维素专业委员会完成换届,傅强任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。2022年10月19日,中国化学会纤维素专业委员会(以下简称“委员会”)成立大会在线上召开,来自全国高校、科研院所及企业的46个单位的60位代表参加。傅强教授向与会代表汇报了中国化学会纤维素专业委员会的相关工作报告。经与会代表无记名投票,选举四川大学傅强教授为委员会新一届主任委员,中国科学院化学研究所张军研究员、南京林业大学金永灿教授、华中科技大学杨光教授、武汉大学蔡杰教授为副主任委员。聘任武汉大学常春雨教授为秘书长。共有60人当选新一届委员会委员。中国化学会纤维素专业委员会委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:傅强副主任:张军、金永灿、杨光、蔡杰秘书(长): 常春雨委员:委员姓名工作单位蔡杰武汉大学常春雨武汉大学陈朝吉武汉大学陈礼辉福建农林大学陈文帅东北林业大学邸勇泰安赛露纤维素醚技术研究所段博武汉大学房桂干中国林业科学研究院林产化学工业研究所付时雨华南理工大学傅强四川大学贺盟盐城工学院黄进西南大学化学化工学院、软物质材料化学与功能制造重庆市重点实验室黄翔芬欧汇川(中国)有限公司黄勇中国科学院理化技术研究所蒋兴宇南方科技大学金永灿南京林业大学廖兵广东省科学院刘瑞刚中国科学院化学研究所刘石林华中农业大学刘守新东北林业大学罗晓刚武汉工程大学彭新文华南理工大学祁海松华南理工大学邵自强北京理工大学石志军华中科技大学孙剑北京理工大学孙平川南开大学陶友华中国科学院长春应用化学研究所田卫国中国科学院化学研究所王立军浙江科技学院王林格华南理工大学王莎南京林业大学王天富上海交通大学王小慧华南理工大学王志国南京林业大学吴凯四川大学吴敏中国科学院理化技术研究所伍强贤华中师范大学谢海波贵州大学徐坚深圳大学徐敏华东师范大学许凤北京林业大学闫立峰中国科学技术大学杨光华中科技大学杨桂花齐鲁工业大学杨鹏陕西师范大学杨全岭武汉理工大学应广东山东太阳纸业股份有限公司于海鹏东北林业大学余龙华南理工大学张凤山山东华泰纸业股份有限公司张建明青岛科技大学张军中国科学院化学研究所张振华南师范大学赵大伟沈阳化工大学郑明远中国科学院大连化学物理研究所钟春燕海南椰国食品有限公司周金平武汉大学朱宏伟岳阳林纸股份有限公司朱锦中科院宁波材料技术与工程研究所
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • 安捷伦科技推出优于纤维素卡片的干血斑样品制备卡片
    安捷伦科技推出优于纤维素卡片的干血斑样品制备卡片 2011 年6 月6 日,安捷伦科技公司(纽约证交所:A)推出了用于干血斑生物分析的Bond Elut DMS(干基质血斑)样品制备卡片。该专利设计与传统纤维素卡片相比具有诸多优势。 干血斑分析是生物研究领域的一项新兴技术。与液体样品制备程序相比,它能够显著降低成本并减少耗时的步骤,且具有同等的分析精度。 主要应用包括药物代谢和药代动力学研究。 非纤维素型Bond Elut DMS 不用试剂浸渍。这就降低了分析物的非特异性结合,从而能增强质谱响应和改善信噪比。安捷伦的这一新产品可以兼容自动化操作和标准冲孔工具,冲压力仅需纤维素卡片的五分之一。使用该卡片能够加快工作流程、减轻技术人员的疲劳以及使自动化过程更加平稳。 不论血液样本中红细胞的比例多少,Bond Elut DMS都提供形状、大小一致和重现性好的血斑样品。 安捷伦与五家全球制药和合同研究机构携手合作,为制药生物分析市场开发出了Bond Elut DMS。 安捷伦样品制备产品经理Paul Boguszewski 说:&ldquo 目前只有安捷伦能够提供适用于生物分析的如此完整的样品制备技术。安捷伦能够提供固相萃取、蛋白质沉淀/过滤、湿法萃取和干血斑样品制备消耗品。这些产品是我们著名的液相色谱柱和系统以及全面的高灵敏度质谱系列产品的完美补充。&rdquo 了解更多信息,请访问:www.agilent.com/chem/DMS 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 美国主要使用以玉米为原料的第一代生物燃料,逐渐过渡到第二代纤维素乙醇燃料
    内布拉斯加大学林肯分校能源科学研究所主任肯尼斯卡斯曼认为,美国对进口蔗糖乙醇燃料征收高额关税是正确的,可以保障美国纤维素乙醇燃料发展。他认为,市场一旦放开,美国很可能从依赖进口石油转为依赖进口乙醇燃料。巴西方面则认为,美国采取的贸易保护措施,牺牲了环保利益。虽然要求降低或取消进口蔗糖乙醇燃料关税的呼声已引起奥巴马的注意,但观察人士认为,关税调整落实较难,那些以农业为支柱产业的美国某些州,将以政治手段阻挠降低蔗糖乙醇燃料的进口关税。ELISA试剂盒在这场新能源热潮中,如何发展更环保、效益高的能源成为讨论的焦点,也由此激起无数热议。近日,巴西蔗糖工业协会常务理事埃德瓦多莱奥公开表态,抗议美国对进口巴西产蔗糖乙醇燃料征收54%的高额关税。他表示,蔗糖乙醇燃料比美国广泛使用的玉米乙醇燃料环保,负面影响较低,社会效益更佳。ELISA试剂盒由于外汇匮乏,巴西在20世纪70年代的两次石油危机中,经济濒临崩溃。于是该国政府决定大力发展乙醇燃料,降低对进口能源的依赖。如今,巴西乙醇燃料的使用比例达55%,数千条管道输送乙醇燃料,几乎所有加油站都供应乙醇燃料。不仅如此,近年来巴西生产的汽车几乎都配装弹性燃料发动机,可使用汽油或车用乙醇。今年4月,巴西总统卢拉在一次地区峰会上,ELISA试剂盒曾向美国总统奥巴马表达对美限制进口蔗糖乙醇燃料的不满。他指出,美国的再生能源政策影响巴西对美国出口蔗糖乙醇燃料。卢拉认为,美国选择玉米为乙醇燃料的主要原料是错误的,会造成玉米供应紧张、价格上涨等问题,还会使那些以玉米为主要粮食作物的国家陷入粮食危机。密歇根大学汽车研究中心主任安娜斯坦菲诺保罗持相同观点:“美国中西部地区种植的玉米被广泛用于制造乙醇燃料,造成食品价格持续上涨。”
  • 富睿捷冻干机水溶剂应用实例-纤维素气凝胶
    客户:浙江理工大学;机器:富睿捷2.5L(-55℃);客户样品:纤维素气凝胶(水溶剂)。
  • 上新!赛多利斯推出RC(再生纤维素)膜超滤管
    p style="text-align: justify text-indent: 2em "2020年8月31日,上海 —— 国际领先的制药和实验室设备供应商赛多利斯中国公司宣布,推出新一代RC(再生纤维素)膜超滤管Vivaspin® Turbo 15 RC。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 529px height: 300px " src="https://img1.17img.cn/17img/images/202009/uepic/87b21663-7234-43d7-8ea0-c0a5b773a535.jpg" title="Vivaspin® Turbo 15 RC.JPG" alt="Vivaspin® Turbo 15 RC.JPG" width="529" height="300"//pp style="text-align: center "RC(再生纤维素)膜超滤管Vivaspin® Turbo 15 RC/pp style="text-align: justify text-indent: 2em "span style="text-align: justify text-indent: 2em "作为蛋白质相关研究的基础耗材,Vivaspin® Turbo 15 RC 超滤管秉承赛多利斯超滤管一贯的高流速、实用、简洁的设计风格,专注于满足实验室蛋白质、病毒等小分子样品的浓缩和缓冲液置换。Vivaspin® Turbo 15 RC 系列超滤管将作为PES(聚醚砜)膜和hydrosart膜超滤管的重要补充使赛多利斯成为目前市场上超滤管膜材质最全的供应商,满足生物和医学实验室各种样品的不同需求。/span/pp style="text-align: justify text-indent: 2em "蛋白质的性质多种多样、带电性质不同、缓冲液不同,造成其适用的过滤膜材质也不同。选择合适的膜材质,才能得到最佳的过滤速度和回收率。赛多利斯全面的膜材质和截留分子量选择方案,将帮助用户找到最适合自己珍贵样品的超滤管型号。/pp style="text-align: justify text-indent: 2em "Vivaspin® Turbo 15 RC 超滤管继续采用专利设计的尖角死体积技术,让样品收集更加方便。Turbo优化的膜高度、内部坡度和双片膜设计,保证快速浓缩最后几毫升样品,可以大幅缩短离心时间。此外Turbo的pp外壳和表面处理,保证在极端温度下也不会开裂,并且兼容性优异。/pp style="text-align: justify text-indent: 2em "从事生命科学和医学研究的科学家们,对样品污染问题越来越关注,并且研究的样品也日趋多样化。这就要求超滤管不仅可以节省研究者的时间,还要具有稳定的质量和优异的回收率。正是基于这样的需求,Turbo 系列超滤管将RC膜和PES膜双剑合璧,提供全面且表现优异的超滤解决方案。/pp style="text-align: justify text-indent: 2em "strongVivaspin® Turbo 15 RC超滤管的主要特性和优势包括:/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) "strong高流速和绝佳回收率/strong/span/pp style="text-align: justify text-indent: 2em "Vivaspin® Turbo RC优化的管和膜高度设计,实现了快速的离心过滤速度。同时,秉承Vivaspin® Turbo系列膜和外管的平滑融合工艺,在保证过滤速度的同时也能兼顾回收率。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) "strong舒适方便的设计/strong/span/pp style="text-align: justify text-indent: 2em "Vivaspin® Turbo RC秉承了Vivaspin® Turbo系列专利的尖角死体积回收器,让样品的回收更加方便可控。同时,外管上增加的刻度标识,可以更加精确的控制浓缩倍数和样品体积,让样品浓缩和缓冲液置换更加容易控制和记录。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) "strong稳定的质量和安全性/strong/span/pp style="text-align: justify text-indent: 2em "Vivaspin® Turbo RC革命性的应用了耐腐蚀材料,不易受温度影响,没有胶黏剂,可以有效减少因为保存温度变化而导致的裂管,也大大降低了样品污染的可能性。对于有严格分析测试要求的珍贵生物样品,安全性大为提高。/pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) background-color: rgb(255, 255, 0) "strong关于赛多利斯/strong/span/pp style="text-align: justify text-indent: 2em "赛多利斯集团是国际领先的生命科学研究及生物制药行业的合作伙伴,包含两大业务部门:实验室产品与服务事业部和生物工艺事业部。实验室产品与服务事业部通过创新型实验室仪器及耗材,专注于为实验室研究、制药和生物制药的质量保证以及学术研究机构提供产品和服务。生物工艺事业部拥有广泛的产品组合,主要致力于一次性使用解决方案,帮助客户安全有效地生产生物技术药物和疫苗。截止2019年末,集团在全球设有约60个生产和销售基地,拥有9,000多名员工,所服务的客户遍及世界各地。/ppbr//p
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 中科院合成生物学重点实验室召开学术委员会一届二次会议
    1月23日,中国科学院合成生物学重点实验室2009年学术年会暨学术委员会一届二次会议在中国科学院上海生命科学研究院植物生理生态研究所召开。  实验室学术委员会主任杨胜利院士,学术委员会委员赵国屏院士、邓子新院士、黄力研究员、吴家睿研究员、孙志浩教授、张嗣良研究员、王磊教授、刘海燕教授、陈代杰研究员、姜卫红研究员、薛红卫研究员,专家委员会委员林国强院士、汤章城研究员以及实验室全体课题组长出席了本次会议。会议由实验室学术委员会主任杨胜利院士和实验室副主任覃重军研究员、李来庚研究员共同主持。  实验室主任赵国屏院士代表实验室向与会专家们致欢迎辞。常务副主任覃重军研究员向学术委员会汇报了2009年实验室各项工作的进展情况。  会上,学术委员会首先听取了各课题组的报告:覃重军研究员报告题为“合成生物学的细胞工场――超级链霉菌”,姜卫红研究员报告题为“丁醇的生物制造”,周志华研究员报告题为“纤维素酶的发现、重组与表达”,杨晟研究员报告题为“多酶组合制备手性化学品”,杨琛研究员报告题为“代谢网络检测和重构”,赵国屏研究员课题组赵维报告题为“Complete genomic sequence of Amycolatopsis mediterranei U32 revealed its genetic characteristics in biology and rifamycin production”,李来庚研究员报告题为“Understanding of Plant Secondary Growth System and Dissection of Cellulose Synthesis Machinery”,张鹏研究员报告题为“木薯和甘薯淀粉品质改良的基因工程”。学术委员会专家们对各课题组的工作给予了肯定和积极的评价,同时,还对各课题组的工作给予了具体的指导并提出许多宝贵的建议。
  • 从七大新兴产业看化工发展新机会之三:新能源推广需化工科技辅佐
    继蒸汽机、电力和计算机之后,新能源产业将引领新一代产业革命。发展新能源产业的关键在于通过技术途径降低成本,开发与新能源产业相配套的新型化工材料,提高生物燃料转化技术水平,促成规模化发展。  风能 : 把叶片 “ 做强做大 ”  风力发电成本已经与火力发电接近,是最有希望摆脱政府补贴依赖、与传统能源竞争的新能源之一。  在风电设备中,叶片是实现风力发电机组有效捕获风能的关键部件,叶片越大捕风能力也就越强。目前发电装备大型化已成为风力发电的必然趋势,这对叶片材料在成本和性能上提出了更高的要求。我国叶片材料的开发与国外还有一定差距,目前能够规模生产3MW风机组及与之配套的叶片,5兆瓦海上风电叶片计划在今年下线,而国外已经开始了10兆瓦风电叶片的研发工作,且我国兆瓦级叶片所用的树脂和PVC等关键材料大部分依赖进口。随着风力发电对叶片的长度、寿命、性能、重量和环境适应性要求日益提高,开发轻质高强、耐久性好的复合材料已刻不容缓。  在新型复合材料开发方面,采用高性能环氧树脂、乙烯基树脂替代聚酯树脂作为树脂基体,采用碳纤维替代玻璃纤维作为增强材料提高叶片的承载能力,已经成为叶片材料的发展趋势。当务之急是突破新型复合材料的生产成本,从原材料、工艺技术、质量控制等各方面深入研究,开展高性能真空灌注环氧树脂体系、环氧结构胶黏剂、高性能叶片保护涂料的研发及规模化生产技术研究,开发耐候性、抗老化性好的环氧树脂,开发可回收利用的热塑性复合材料。  生物燃料:降本降耗看酶催化  在生物燃料开发方面,以木薯、秸秆、农林废弃物、微藻为原料的新一代非粮生物燃料,不仅原料来源广泛,而且极具碳减排潜力。  纤维素乙醇是业界公认的绿色燃料生产技术,但由于提高酶催化效率等关键技术尚未突破,导致生产过程的高能耗问题凸显,生产成本较高。现有的纤维素酶比活力较低,因此生产效率低、单位原料用酶量很大,导致纤维素酶和木聚糖酶的生产成本过高。此外,高效发酵菌株的缺乏也是制约生物质转化燃料产业化的瓶颈,应重点利用基因工程构建能同时高效利用己糖和戊糖的菌种,实现乙醇的高效率转化。纤维素乙醇还存在着预处理工艺复杂、现有原料难以收集和运输等问题。我国应加快以农作物秸秆和木质素为原料生产乙醇技术研发和产业化示范,实现原料供应的多元化,同时优化燃料乙醇生产工艺,降低水耗、能耗和污染,降低生产成本,逐步扩大燃料乙醇生产规模和乙醇汽油推广范围。  生物柴油具有优良的环保性能和可再生性,且运输、存储和使用更加安全,发展前景十分看好。我国可以重点利用蓖麻油、桐子油等非食用油,开发餐饮业油脂等废油利用的新技术、新工艺,提高脂肪酶转化效率,加快制订生物柴油技术标准,降低微藻制油生产成本,建立示范企业,提高产业化规模,加速我国生物柴油产业化进程。  光伏发电:新材料破局高电价  太阳能光伏发电是我国重点发展的新能源产业,但是由于半导体材料的光电转换效率较低,导致生产成本高企,发电价格一直居高不下,短期内与传统能源相比缺乏竞争力。要规模推广光伏发电产业,相关材料生产水平亟待提高。  我国虽然光伏电池产量高居世界第一,但是由于缺乏核心技术,材料研发水平与欧美发达国家还存在不少差距,主要表现在传统晶硅电池领域缺乏多晶硅高效低成本清洁生产技术,在砷化镓、碲化镉、硫化镉、铜铟镓硒、纳米晶二氧化钛等薄膜太阳能电池领域缺乏深入研究。  太阳能光伏发电最终的竞争力将取决于生产成本和光电转换效率的高低。在现有材料的开发工艺上,应该重点发展高纯多晶硅提纯工艺技术与关键装置,发展大面积超薄硅片和浆料回收利用技术,加强对熔铸、剖锭及切割等关键技术创新,完善高效低成本晶硅电池和薄膜太阳能电池等关键技术和产品,支持组件封装工艺关键技术和新材料研发与产业化。在新材料的研发上,应积极开发低成本、轻量、柔软性良好的发电层材料,开发高耐久性、高效率、低成本的周边材料,开发单位面积大、吸光性好、电荷传输好的纳米线电池、多层电池、聚光电池等。
  • 我国拟制定67项新兴产业领域检验检测标准
    仪器信息网讯 为加强战略性新兴产业领域标准化工作,国家标准委发布了177项国家标准制修订项目计划。其中包括国家林业局、农业部、中国航天科技集团公司、中国电力企业联合会、国家标准化管理委员会、中国石油和化学工业联合会、中国建筑材料联合会、中国电力企业联合会等主管单位负责的检验检测标准67项。序号计划编号项目名称标准性质制修订采用国际标准完成时间主管部门技术归口单位1720141560-T-432林业生物质原料分析方法 淀粉测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会1820141561-T-432林业生物质原料分析方法 灰分的测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会1920141562-T-432林业生物质原料分析方法 取样方法推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2020141563-T-432林业生物质原料分析方法 样品处理方法推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2120141564-T-432林业生物质原料分析方法 总固体含量测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2220141565-T-432生物质原料分析方法 不可溶性糖测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2320141566-T-432生物质原料分析方法 蛋白质含量测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2420141567-T-432生物质原料分析方法 结构碳水化合物测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2520141568-T-432生物质原料分析方法 可溶性糖的测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2620141569-T-432生物质原料分析方法 纤维素酶活性测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2720141570-T-432生物质原料分析方法 预处理后不溶固体含量测定推荐 制定无2016国家林业局全国林业生物质材料标准化技术委员会2820141571-T-326百合品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会2920141572-T-326大白菜品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3020141573-T-326大豆品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3120141574-T-326大麦品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3220141575-T-326甘蓝型油菜品种鉴定技术规程SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3320141576-T-326高粱品种鉴定技术规程 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3420141577-T-326黄瓜品种鉴定SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3520141578-T-326结球甘蓝品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3620141579-T-326辣椒品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3720141580-T-326陆地棉品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3820141581-T-326苹果品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会3920141582-T-326普通番茄品种鉴定 Indel分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4020141583-T-326普通西瓜品种鉴定SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4120141584-T-326水稻品种鉴定 SNP分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4220141585-T-326水稻品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4320141586-T-326小麦品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4420141587-T-326玉米品种鉴定 SNP分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4520141588-T-326玉米品种鉴定 SSR分子标记法推荐 制定无2016农业部全国植物新品种测试标准化技术委员会4620141589-T-520连续碳化硅纤维测试方法 第1部分:单纤维拉伸性能推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会4720141590-T-520连续碳化硅纤维测试方法 第2部分:单纤维直径推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会4820141591-T-520连续碳化硅纤维测试方法 第3部分:束丝表面浆料的去除与附着率推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会4920141592-T-520连续碳化硅纤维测试方法 第4部分:束丝拉伸性能推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会5020141593-T-520连续碳化硅纤维测试方法 第5部分:密度推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会5120141594-T-520连续碳化硅纤维测试方法 第6部分:电阻率推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会5220141595-T-520连续碳化硅纤维测试方法 第7部分:高温强度保留率推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会5420141597-T-520陆地观测卫星光学遥感器在轨场地辐射定标方法 第1部分:可见光近红外推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会5520141598-T-520陆地观测卫星光学遥感器在轨场地辐射定标方法 第2部分:热红外推荐制定无2016中国航天科技集团公司全国宇航技术及其应用标准化技术委员会11220141655-T-524智能变电站继电保护检验测试规范推荐 制定 2015中国电力企业联合会中国电力企业联合会12320141666-T-469反渗透和纳滤装置渗漏检测方法推荐 制定无2016国家标准化管理委员会全国分离膜标准化技术委员会12520141668-T-469纳滤膜测试方法推荐 制定无2015国家标准化管理委员会全国分离膜标准化技术委员会12620141669-T-469渗透气化透水膜性能测试方法推荐 制定无2015国家标准化管理委员会全国分离膜标准化技术委员会13120141674-T-606制冷剂用氟代烯烃 水分的测定通用方法推荐 制定无2016中国石油和化学工业联合会全国化学标准化技术委员会13220141675-T-609建筑设备和工业安装用绝热制品 热膨胀系数的测定推荐制定无2016中国建筑材料联合会全国绝热材料标准化技术委员会13320141676-T-609建筑外墙外保温系统耐候性试验方法推荐 制定无2016中国建筑材料联合会全国绝热材料标准化技术委员会13420141677-T-609建筑用绝热材料制品 外墙外保温系统抗拉拔的测定(泡沫块试验)推荐制定ISO 12968:20102016中国建筑材料联合会全国绝热材料标准化技术委员会13520141678-T-609建筑用绝热制品 外墙外保温系统抗冲击性测定推荐制定 ISO 29803:20102016中国建筑材料联合会全国绝热材料标准化技术委员会13620141679-T-609绝热材料制品 产品性能符合性评定推荐制定无2016中国建筑材料联合会全国绝热材料标准化技术委员会13820141681-T-609矿物棉制品纤维脱落测定方法推荐 制定无2016中国建筑材料联合会全国绝热材料标准化技术委员会14020141683-T-609外墙外保温系统动态风压试验方法推荐 制定无2016中国建筑材料联合会全国绝热材料标准化技术委员会14120141684-T-609外墙外保温系统抗穿透性测试方法推荐 制定无2016中国建筑材料联合会全国绝热材料标准化技术委员会14220141685-T-609碳/碳复合材料拉伸性能测试方法推荐 制定无2015中国建筑材料联合会全国纤维增强塑料标准化技术委员会14320141686-T-609碳纤维体积电阻率的测定推荐 制定ISO 13931:20132015中国建筑材料联合会全国玻璃纤维标准化技术委员会14420141687-T-609道路车辆 制动衬片摩擦材料 实样摩擦性能试验方法推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会14620141689-T-609摩擦材料冲击强度试验方法推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15120141694-T-609湿式自动变速箱摩擦元件试验方法 第1部分:术语和定义&ensp &ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15220141695-T-609湿式自动变速箱摩擦元件试验方法 第2部分:SZBL型摩擦试验机使用指南&ensp &ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15320141696-T-609湿式自动变速箱摩擦元件试验方法 第3部分:低速逐步功率试验方法&ensp &ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15420141697-T-609湿式自动变速箱摩擦元件试验方法 第4部分:高速逐步功率试验方法&ensp &ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15520141698-T-609湿式自动变速箱摩擦元件试验方法 第5部分:耐久性试验方法&ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15620141699-T-609湿式自动变速箱摩擦元件试验方法 第6部分:摩擦性能与压力速度温度关系试验&ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会15720141700-T-609湿式自动变速箱摩擦元件试验方法 第7部分:带式摩擦试验机试验方法&ensp &ensp 推荐制定无2016中国建筑材料联合会全国非金属矿产品及制品标准化技术委员会16120141704-T-609高热导率陶瓷导热系数的检测推荐制定无2016中国建筑材料联合会全国工业陶瓷标准化技术委员会16220141705-T-609精细陶瓷抗热震性能试验方法推荐制定无2016中国建筑材料联合会全国工业陶瓷标准化技术委员会16720141710-T-609光伏玻璃 多环境因素耦合加速老化试验方法及性能评价推荐制定无2016中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会16820141711-T-609光热玻璃反射镜面型测试方法推荐制定无2016中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会16920141712-T-524电动汽车充电连接装置检验试验规范推荐 制定无2015中国电力企业联合会中国电力企业联合会
  • 【清洁度显微镜微百科】产品和检测设备与时俱进
    # 始于航天,行于汽车清洁度最早的历史应用于航空航天工业,也可以用符号Sa表示。60年代初美国汽车工程师( SAE )和美国宇航工业协会( SAE )开始使用统一的清洁度标准,从而全面地应用于航空和汽车行业。机电仪表产品的清洁度是一项非常重要的质量指标。清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。(摘自:百度百科)而汽车行业中关于清洁部件的要求,最早则由罗伯特博世公司(Robert Bosch)在1996年为了提高柴油汽车发动机共轨喷射系统的生产质量而提出的,他们在生产流程中发现小喷嘴很容易被系统中残留的污染颗粒堵塞,因此提出了生产中清洁部件的质量规范,由此诞生了零部件清洁度测试标准。此后,在汽车系统中很多可靠性问题都被归因于微粒子污染,即零部件清洁度不足。(摘自网络)产品与要求一同进化随着汽车工业的的大规模发展,汽车类产品的制造技术日益复杂,为了保障汽车的行驶安全,因此需要更高水平的污染控制能力。(当然,不仅是汽车、航空航天、重型机械和电气工程行业,技术产品日益复杂,因此对生产条件和生产部件的清洁要求也日益提高。)技术设备和部件表面上残留的污物可能会导致设备性能不可靠和/或很差;在制造过程中,设备上残留的颗粒会造成停工、延误交货时间、浪费材料和能源以及退货等问题。技术清洁度检测应用包括对ABS系统、柴油喷射器、制动卡钳、液压系统、管道、PCB、互连系统和较大重型机械部件的清洁情况进行检测。清洁度检测过程技术清洁度检测是一个包含了一系列准备步骤和检测步骤的较为复杂的过程,此文将对技术清洁度的检测过程进行概括介绍。检测之前对部件的准备工作分为如下步骤:部件清洗准备阶段始于从生产线上取下一个部件样本并进行清洗(在提取步骤之前)。提取在放置于无尘室的提取柜中去除被测部件上的颗粒。可以通过冲洗、喷洗、晃动冲洗或超声波清洗的方法去除颗粒。过滤对提取液进行过滤,并在滤膜上收集提取的颗粒(过滤材料包括纤维素、聚酯、玻璃纤维和尼龙网布)。烘干并称重滤膜被烘干,并准备接受进一步分析。滤膜烘干后,会留下所有杂质,然后,使用分析天平对其称重检测过程包括以下步骤:图像采集和载物台的移动烘干的滤膜被放置在电动显微镜的载物台上,以采集检测所需的图像。颗粒的探测观察滤膜的图像,以找到表现为明亮背景中黑色区域的颗粒。粒径的测量根据不同参数对所探测到的颗粒进行测量,这些参数包括:最大卡尺直径(与颗粒投影相切的两条平行线之间的距离)和等效圆直径。粒径的分类对颗粒进行了测量之后,将颗粒分成不同的粒径级别组。两个主要粒径等级为差值(由最小和最大粒径定义)和累积(仅由最小粒径定义)。颗粒计数外推法在滤膜中定义一个区域进行扫查,并探测其中的颗粒。这些区域可以是滤膜尺寸(整个滤膜区域)、流经区域(颗粒所覆盖的滤膜区域)、最大扫查区域(检测所能扫查的最大区域),以及检查区域(由用户定义的实际扫查区域)。颗粒计数归一化由外推法获得的颗粒计数被归一为某种比较值,从而可以对多次测量获得的结果进行比较。归一化方法包括清洗区域(归一为1000平方厘米区域的颗粒计数)、清洗体积(归一为100立方厘米区域的颗粒计数)、清洗样件(归一为单一样件的颗粒计数),以及过滤流体(归一为1毫升或100毫升过滤流体的颗粒计数)。污染水平的计算这种分类水平不是由粒径决定的,而是由(大多数国际标准)所定义污染级别中的颗粒总体数量决定的。清洁度代码的定义某些标准将测量数据的表现方式简化为简要的说明。这种清洁度代码根据标准而定义,并由粒径的级别和污染水平构成。最大审核值进行核查以获得最大审核值是一个可选步骤。如果需要获得一个最大审核值,则会在检测配置中确定,也可能会确定一个颗粒绝对数量值或者一个最大清洁度代码。反光颗粒和非反光颗粒的区分金属颗粒和非金属颗粒之间的区别是通过确定颗粒是否反光而完成的(这种区分极其重要,因为金属颗粒会造成比非金属颗粒大得多的伤害)。纤维鉴别在滤膜上探测到的纤维通常与滤膜上发现的其他颗粒来自于不同的地方(例如:纤维可能来自工作服或者抹布)。因此需要根据评估清洁度所使用的标准,识别、分析或忽略纤维。结果的复核在复核结果的过程中可能会执行以下操作:删除被错认为颗粒的项目;将靠得很近并被错认为是单个大颗粒的多个颗粒分开;将靠得很近并被错认为是不同颗粒的一个颗粒的组成部分融合在一起;修正错误的颗粒标签(例如:金属或非金属)。报告的创建技术清洁度检测报告可以包括某些颗粒采集参数的说明、颗粒分类表、颗粒区域覆盖的详细信息,以及最大颗粒的图像。CIX清洁度显微镜:为技术清洁度检测而设计技术清洁度检测向检测人员提出了一系列挑战,其中包括在检测过程中核查检测结果,同时观察反光和非反光颗粒,每天检测多个样本,基于不同的标准修正并重新计算结果,以及制作合规性报告分享结果。OLYMPUS CIX系列清洁度显微镜,特别为技术清洁度检测而设计,不仅可以迎接上述挑战,而且使用方便,可以使用户在非常舒适的条件下完成检测。OLYMPUS CIX系列清洁度显微镜的高端光学部件,硬件和软件的无缝整合,以及无需维护的可靠设计,确保了图像条件的再现性,并使清洁度检测成为一项可以轻松完成的日常任务。
  • 10月1日起实施的食品行业相关国家标准
    GB 23487-2009 食品添加剂 2-甲基-3-呋喃硫醇  GB 23488-2009 食品添加剂 2,3-丁二酮  GB 23489-2009 食品添加剂 大茴香脑(天然)  GB 8537-2008 饮用天然矿泉水  GB/T 23375-2009 蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定  GB/T 9455-2009 饲料添加剂 维生素AD3微粒  GB/T 18634-2009 饲用植酸酶活性的测定 分光光度法  GB/T 23822-2009 糖果和巧克力生产质量管理要求  GB/T 23823-2009 糖果分类  GB/T 23871-2009 水产品加工企业卫生管理规范  GB/T 23873-2009 饲料中马杜霉素铵的测定  GB/T 23874-2009 饲料添加剂木聚糖酶活力的测定 分光光度法  GB/T 23875-2009 饲料用喷雾干燥血球粉  GB/T 23876-2009 饲料添加剂 L-肉碱盐酸盐  GB/T 23877-2009 饲料酸化剂中柠檬酸、富马酸和乳酸的测定 高效液相色谱法  GB/T 23878-2009 饲料添加剂 大豆磷脂  GB/T 23879-2009 饲料添加剂 肌醇  GB/T 23880-2009 饲料添加剂 氯化钠  GB/T 23881-2009 饲用纤维素酶活性的测定 滤纸法  GB/T 23882-2009 饲料中L-抗坏血酸-2-磷酸酯的测定 高效液相色谱法  GB/T 23883-2009 饲料中蓖麻碱的测定 高效液相色谱法  GB/T 23884-2009 动物源性饲料中生物胺的测定 高效液相色谱法  GB/T 23890-2009 油菜籽中芥酸及硫苷的测定 分光光度法  GB/T 23375-2009 蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定  GB/T 15664-2009 水果、蔬菜及其制品 甲酸含量的测定 重量法  声明:以上内容由食品伙伴网根据国家标准公告内容筛选整理完成,仅供参考。查看完整的公告内容请登录国家标准委网站。点击链接可以直接下载相应标准。
  • 61项国家及行业检测方法标准10月1日起实施
    我国10月1日将实施355项国家标准及行业标准,其中61项与检测方法有关,以下目录仅供参考。 标准编号标准名称替代情况标准状态实施日期HJ 477-2009污染源在线自动监控(监测)数据采集传输仪技术要求 未实施2009-10-1GB/T 9703-2009生貉子皮检验方法替代GB/T 9703-1988未实施2009-10-1GB/T 9700-2009盐湿猪皮检验方法替代GB/T 9700-1988未实施2009-10-1GB/T 9699-2009小湖羊皮检验方法替代GB/T 9699-1988未实施2009-10-1GB/T 8135-2009生黄鼠狼皮检验方法替代GB/T 8135-1987未实施2009-10-1GB/T 8134-2009生水貂皮检验方法替代GB/T 8134-1987未实施2009-10-1GB/T 8133-2009生猾皮检验方法替代GB/T 8133-1987未实施2009-10-1GB/T 7602.3-2008变压器油、汽轮机油中T501抗氧化剂含量测定法 第3部分:红外光谱法 未实施2009-10-1GB/T 7602.2-2008变压器油、汽轮机油中T501抗氧化剂含量测定法 第2部分:液相色谱法 未实施2009-10-1GB/T 6155-2008 炭素材料真密度和真气孔率测定方法 替代GB/T 6155-1985 GB/T 6156-1985未实施2009-10-1GB/T 5169.5-2008电工电子产品着火危险试验 第5部分:试验火焰 针焰试验方法 装置、确认试验方法和导则替代GB/T 5169.5-1997未实施2009-10-1GB/T 5169.31-2008电工电子产品着火危险试验 第31部分:火焰表面蔓延 总则 未实施2009-10-1GB/T 5169.30-2008电工电子产品着火危险试验 第30部分:热释放 试验方法概要和相关性 未实施2009-10-1GB/T 5169.29-2008电工电子产品着火危险试验 第29部分:热释放 总则 未实施2009-10-1GB/T 5169.28-2008电工电子产品着火危险试验 第28部分:烟模糊 小规模静态试验方法 材料 未实施2009-10-1GB/T 5169.27-2008电工电子产品着火危险试验 第27部分:烟模糊 小规模静态试验方法 仪器说明 未实施2009-10-1GB/T 5169.26-2008电工电子产品着火危险试验 第26部分:烟模糊 试验方法概要和相关性 未实施2009-10-1GB/T 5169.25-2008电工电子产品着火危险试验 第25部分:烟模糊 总则 未实施2009-10-1GB/T 5169.24-2008电工电子产品着火危险试验 第24部分:着火危险评定导则 绝缘液体 未实施2009-10-1GB/T 5169.23-2008电工电子产品着火危险试验 第23部分:试验火焰 管形聚合材料500W垂直火焰试验方法 未实施2009-10-1GB/T 5028-2008 金属材料 薄板和薄带 拉伸应变硬化指数(n值)的测定 替代GB/T 5028-1999未实施2009-10-1GB/T 3711-2008 酚类产品中性油及吡啶碱含量测定方法 替代GB/T 3711-1983未实施2009-10-1GB/T 3412.1-2009大坝监测仪器 检测仪 第1部分:振弦式仪器检测仪 未实施2009-10-1GB/T 3411.1-2009大坝监测仪器 孔隙水压力计 第1部分:振弦式孔隙水压力计 未实施2009-10-1GB/T 2424.26-2008电工电子产品环境试验 第3部分:支持文件和导则 振动试验选择 未实施2009-10-1GB/T 2424.15-2008电工电子产品环境试验 第3部分:温度/低气压综合试验导则替代GB/T 2424.15-1992未实施2009-10-1GB/T 2423.26-2008电工电子产品环境试验 第2部分:试验方法 试验Z/BM:高温/低气压综合试验替代GB/T 2423.26-1992未实施2009-10-1GB/T 2423.25-2008电工电子产品环境试验 第2部分:试验方法 试验Z/AM:低温/低气压综合试验替代GB/T 2423.25-1992未实施2009-10-1GB/T 2423.2-2008电工电子产品环境试验 第2部分:试验方法 试验B:高温替代GB/T 2423.2-2001未实施2009-10-1GB/T 2423.21-2008电工电子产品环境试验 第2部分:试验方法 试验M:低气压GB/T 2423.21-1991未实施2009-10-1GB/T 2423.16-2008电工电子产品环境试验 第2部分:试验方法 试验J及导则:长霉替代GB/T 2423.16-1999未实施2009-10-1GB/T 2423.1-2008电工电子产品环境试验 第2部分:试验方法 试验A:低温替代GB/T 2423.1-2001未实施2009-10-1GB/T 23890-2009油菜籽中芥酸及硫苷的测定 分光光度法 未实施2009-10-1GB/T 23884-2009动物源性饲料中生物胺的测定 高效液相色谱法 未实施2009-10-1GB/T 23881-2009饲用纤维素酶活性的测定 滤纸法 未实施2009-10-1GB/T 23877-2009饲料酸化剂中柠檬酸、富马酸和乳酸的测定 高效液相色谱法 未实施2009-10-1GB/T 23874-2009饲料添加剂木聚糖酶活力的测定 分光光度法 未实施2009-10-1GB/T 23873-2009饲料中马杜霉素铵的测定 未实施2009-10-1GB/T 23635-2009限定性有害生物检测与鉴定规程的编写规定 未实施2009-10-1GB/T 23634-2009红火蚁检疫规程 未实施2009-10-1GB/T 23375-2009蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定 未实施2009-10-1GB/T 23292-2009 拖拉机燃油箱 试验方法 未实施2009-10-1GB/T 23291-2009 机床 整体爪手动自定心卡盘检验条件 未实施2009-10-1GB/T 23256-2009 石油液体管线自动取样 测定石油液体中水含量的自动取样器性能的统计学评估 未实施2009-10-1GB/T 2317.4-2008电力金具试验方法 第4部分:验收规则替代GB/T 2317.4-2000未实施2009-10-1GB/T 2317.3-2008电力金具试验方法 第3部分:热循环试验替代GB/T 2317.3-2000未实施2009-10-1GB/T 2317.2-2008电力金具试验方法 第2部分:电晕和无线电干扰试验替代GB/T 2317.2-2000未实施2009-10-1GB/T 22764.5-2008低压机柜 第5部分:基本试验方法 未实施2009-10-1GB/T 22720.1-2008旋转电机 电压型变频器供电的旋转电机 Ⅰ型电气绝缘结构的鉴别和型式试验 未实施2009-10-1GB/T 22719.2-2008交流低压电机散嵌绕组匝间绝缘, 第2部分:试验限值 未实施2009-10-1GB/T 22719.1-2008交流低压电机散嵌绕组匝间绝缘 第1部分:试验方法 未实施2009-10-1GB/T 22718-2008高压电机绝缘结构耐热性评定方法 未实施2009-10-1GB/T 22717-2008电机磁极线圈及磁场绕组匝间绝缘试验规范 未实施2009-10-1GB/T 22716-2008直流电机电枢绕组匝间绝缘试验规范 未实施2009-10-1GB/T 22714-2008交流低压电机成型绕组匝间绝缘试验规范 未实施2009-10-1GB/T 22708-2008绝缘子串元件的热机和机械性能试验 未实施2009-10-1GB/T 22665.6-2008手持式电动工具手柄的振动测量方法 第6部分:锤类工具 未实施2009-10-1GB/T 22665.5-2008手持式电动工具手柄的振动测量方法 第5部分:圆锯 未实施2009-10-1GB/T 22665.4-2008手持式电动工具手柄的振动测量方法 第4部分:非盘式砂光机和抛光机 未实施2009-10-1GB/T 22665.3-2008手持式电动工具手柄的振动测量方法 第3部分:砂轮机、抛光机和盘式砂光机 未实施2009-10-1GB/T 22665.2-2008手持式电动工具手柄的振动测量方法 第2部分:螺丝刀和冲击扳手 未实施2009-10-1GB/T 22665.1-2008手持式电动工具手柄的振动测量方法 第1部分:电钻和冲击钻 未实施2009-10-1GB/T 22636-2008门扇 尺寸、直角度和平面度检测方法 未实施2009-10-1GB/T 22635-2008门扇 湿度影响稳定性检测方法 未实施2009-10-1GB/T 22632-2008门扇 抗硬物撞击性能检测方法 未实施2009-10-1GB/T 22631-2008建筑物垂直部件 抗冲击试验 冲击物及通用试验程序 未实施2009-10-1GB/T 22588-2008闪光法测量热扩散系数或导热系数 未实施2009-10-1GB/T 22572-2008 表面化学分析 二次离子质谱 用多δ层参考物质评估深度分辨参数的方法 未实施2009-10-1GB/T 22571-2008 表面化学分析 X射线光电子能谱仪 能量标尺的校准 未实施2009-10-1GB/T 22565-2008 金属材料 薄板和薄带 拉弯回弹评估方法 未实施2009-10-1GB/T 22564-2008 萤石 取样和制样 未实施2009-10-1GB/T 22563-2008 萤石的水分测定 未实施2009-10-1GB/T 22472-2008 仪表和设备部件用塑料的燃烧性测定 未实施2009-10-1GB/T 22471.2-2008 电气绝缘用树脂浸渍玻璃纤维网状无纬绑扎带 第2部分:试验方法 未实施2009-10-1GB/T 21956.4-2009 农林窄轮距轮式拖拉机防护装置强度试验方法和验收条件 第4部分:后置式动态试验方法 未实施2009-10-1GB/T 1999-2008 焦化油类产品取样方法 替代GB/T 1999-1980 GB/T 2289-1994未实施2009-10-1GB/T 1997-2008 焦炭试样的采取和制备 替代GB/T 1997-1989未实施2009-10-1GB/T 18990-2008 促黄体生成素检测试纸(胶体金免疫层析法) 替代GB/T 18990.1-2003 GB/T 18990.2-2003 GB/T 18990.3-2003未实施2009-10-1GB/T 18634-2009饲用植酸酶活性的测定 分光光度法替代GB/T 18634-2002未实施2009-10-1GB/T 17777-2009饲料中钼的测定 分光光度法替代GB/T 17777-1999未实施2009-10-1GB/T 17289-2009 液态烃体积测量 涡轮流量计计量系统 替代GB/T 17289-1998未实施2009-10-1GB/T 17288-2009 液态烃体积测量 容积式流量计计量系统 替代GB/T 17288-1998未实施2009-10-1GB/T 16913-2008粉尘物性试验方法替代GB/T 16913.1~16913.11-1997未实施2009-10-1GB/T 15664-2009水果、蔬菜及其制品 甲酸含量的测定 重量法替代GB/T 15664-1995未实施2009-10-1GB/T 15249.5-2009合质金化学分析方法 第5部分:汞量的测定 冷原子吸收光谱法替代GB/T 15249.5-1994未实施2009-10-1GB/T 15249.4-2009合质金化学分析方法 第4部分:铅量的测定 EDTA滴定法替代GB/T 15249.4-1994未实施2009-10-1GB/T 15249.3-2009合质金化学分析方法 第3部分:铜量的测定 碘量法替代GB/T 15249.3-1994未实施2009-10-1GB/T 15249.2-2009合质金化学分析方法 第2部分:银量的测定 火试金重量法和EDTA滴定法替代GB/T 15249.2-1994未实施2009-10-1GB/T 15249.1-2009合质金化学分析方法 第1部分:金量的测定 火试金重量法替代GB/T 15249.1-1994未实施2009-10-1GB/T 15214-2008 超声诊断设备可靠性试验要求和方法 替代GB/T 15214-1994未实施2009-10-1GB/T 14267-2009光电测距仪替代GB/T 14267-1993未实施2009-10-1GB/T 14233.1-2008 医用输液、输血、注射器具检验方法 第1部, 分:化学分析方法 , 替代GB/T 14233.1-1998未实施2009-10-1GB/T 14048.17-2008低压开关设备和控制设备 第5-4部分:控制电路电器和开关元件 小容量触头的性能评定方法 特殊试验 未实施2009-10-1GB/T 13917.9-2009农药登记用卫生杀虫剂室内药效试验及评价 第9部分:驱避剂替代GB/T 17322.10-1998未实施2009-10-1GB/T 13917.8-2009农药登记用卫生杀虫剂室内药效试验及评价 第8部分:粉剂、笔剂替代GB/T 17322.9-1998未实施2009-10-1GB/T 13917.7-2009农药登记用卫生杀虫剂室内药效试验及评价 第7部分:饵剂替代GB 13917.7-1992未实施2009-10-1GB/T 13917.6-2009农药登记用卫生杀虫剂室内药效试验及评价 第6部分:电热蚊香液替代GB 13917.6-1992 GB/T 17322.6-1998 GB/T 17322.7-1998未实施2009-10-1GB/T 13917.5-2009农药登记用卫生杀虫剂室内药效试验及评价 第5部分: 电热蚊香片替代GB 13917.5-1992 GB/T 17322.5-1998未实施2009-10-1GB/T 13917.4-2009农药登记用卫生杀虫剂室内药效试验及评价 第4部分:蚊香替代GB 13917.4-1992 GB/T 17322.4-1998未实施2009-10-1GB/T 13917.3-2009农药登记用卫生杀虫剂室内药效试验及评价 第3部分: 烟剂及烟片替代GB 13917.3-1992 GB/T 17322.3-1998未实施2009-10-1GB/T 13917.2-2009农药登记用卫生杀虫剂室内药效试验及评价 第2部分:气雾剂替代GB 13917.2-1992 GB/T 17322.2-1998未实施2009-10-1GB/T 13917.1-2009农药登记用卫生杀虫剂室内药效试验及评价 第1部分: 喷射剂替代GB 13917.1-1992 GB/T 17322.1-1998未实施2009-10-1GB/T 13917.10-2009农药登记用卫生杀虫剂室内药效试验及评价 第10部分:模拟现场替代GB 13917.8-1992 GB/T 17322.11-1998未实施2009-10-1GB/T 11793-2008未增塑聚氯乙烯(PVC-U)塑料门窗力学性能及耐候性试验方法替代GB/T 11793.1-1989 GB/T 11793.2-1989 GB/T 11793.3-1989未实施2009-10-1GB/T 11146-2009 原油水含量测定 卡尔费休库仑滴定法 替代GB/T 11146-1999未实施2009-10-1GB 8537-2008饮用天然矿泉水替代GB 8537-1995未实施2009-10-1GB 3836.11-2008 爆炸性环境 第11部分:由隔爆外壳“d”保护的设备 最大试验安全间隙测定方法 替代GB 3836.11-1991未实施2009-10-1CJ/T 307-2009城镇排水设施气体的检测方法 未实施2009-10-1
  • 首届“闵恩泽能源化工奖”获奖人员名单公布
    闵恩泽院士是我国德高望重的著名科学家,中国石油石化科技界的泰斗,是我国炼油催化技术的奠基者、石油化工技术自主创新的先行者、绿色化学的开拓者,曾获2007年度国家最高科学技术奖。  2013年4月3日,中国石油化工集团公司和中国工程院联合设立&ldquo 闵恩泽能源化工奖&rdquo 奖励基金,用于奖励在能源化工领域从事研发和产业化过程中作出突出贡献的优秀科技人员,激励高端领军人物奋发创新,吸引优秀青年人才积极投入,大胆创新,培养国际一流的能源化工科技人才。该奖励基金由闵恩泽院士创议并发起。奖励基金包括闵恩泽院士个人捐资和中国石油化工集团公司捐资,本金运作和保值增值部分用于奖励。&ldquo 闵恩泽能源化工奖&rdquo 设&ldquo 杰出贡献奖&rdquo 和&ldquo 青年进步奖&rdquo 两类奖项,每两年评选一次。  奖励基金设立理事会和评审委员会。基金理事会设在中国石油化工集团公司,理事长由中国石油化工集团公司董事长傅成玉担任,常务副理事长由中国石油化工股份有限公司高级副总裁戴厚良担任,副理事长由中国工程院副院长谢克昌院士担任。评审委员会设在中国工程院,主要由教育部、中国科学院、中国工程院、国家自然科学基金委员会、中国石油化工集团公司、相关高等院校等单位在相关领域具有较高造诣的院士及专家学者组成。评审委员会分设提名委员会和专家委员会,第一届提名委员会和专家委员会主任分别由闵恩泽院士和王基铭院士担任。  依据《闵恩泽能源化工奖基金章程》和《闵恩泽能源化工奖评选办法》等相关规定,经&ldquo 闵恩泽能源化工奖&rdquo 提名委员会提名、专家委员会评选和基金理事会审批,决定授予清华大学陈国强、中国石油化工股份有限公司石油化工科学研究院杜泽学、北京大学刘海超、北京化工大学谭天伟等4人&ldquo 杰出贡献奖&rdquo 授予南京工业大学郭凯、中国科学院大连化学物理研究所李昌志、中国科学院青岛生物能源与过程研究所牟新东、中国科学院过程工程研究所王岚、中国石油化工股份有限公司北京化工研究院许宁、中国石油化工股份有限公司石油化工科学研究院曾建立、北京化工大学范立海等7人&ldquo 青年进步奖&rdquo 。  上述获奖者在生物质燃料和生物基有机化工科技前沿领域取得了优异成果,主要包括:微流场技术在生物基材料应用研究、离子液体介导的纤维素水解等国际领先的制备技术 催化选择一步氢解和近临界水条件下水解耦合加氢转化纤维素的绿色新途径、纤维素联合生物加工等合成工艺 生物基聚氨酯、生物基尼龙、生物基无毒增塑剂以及采用秸秆、藻渣合成生物基异戊二烯等生物基有机化工产品开发。  获奖人主要贡献如下:  一、杰出贡献奖  陈国强 男,50岁,奥地利格拉茨(Graz)工业大学博士毕业,微生物和生物材料专业,清华大学教授。陈国强博士推动了我国生物塑料聚羟基脂肪酸酯产业的发展,使我国在该领域产业化和学术研究的水平处于世界前沿。其有关学术成果达200多篇,论文被他人引用超过4900次(H指数为39) 获得有关聚羟基脂肪酸酯授权专利20余件。先后获国家技术发明奖二等奖(第一完成人)、纽伦堡国际发明奖等奖励,是国家杰出青年科学基金获得者、教育部长江学者特聘教授和973&ldquo 合成生物学&rdquo 项目的首席科学家。  杜泽学 男,49岁,中国石化石油化工科学研究院工学博士毕业,有机化工(生物柴油)专业,中国石化石油化工科学研究院教授级高工。杜泽学博士提出了利用近/超临界甲醇醇解技术,开发地沟油等废弃油脂生产生物柴油的新工艺 组织开展探索研究,找到了降低反应温度和压力的办法,解决了原料深度转化、产品分离与质量达标等问题 组织开展新工艺的中试,攻克了工艺放大面临的诸多工程化难题,开发成功了适应多种原料、生产过程清洁的SRCA生物柴油绿色工艺 在生物柴油及相关领域申请国内外发明专利57件,其中获得国外专利授权4件、中国专利授权33件 发表论文22篇。  刘海超 男,45岁,中国石化石油化工科学研究院博士毕业,催化化学专业,北京大学化学与分子工程学院教授。刘海超博士主要从事分子催化与能源化学研究,在生物质选择催化转化等基础研究方面取得了原创性成果,揭示了催化剂构&mdash 效关系和反应机理,发明了选择氢解、近临界水条件下水解耦合加氢等纤维素绿色解聚转化为多元醇的新方法,发展了从纤维素直接合成丙二醇、甘油催化氧化合成乳酸等生物质化学品合成的新途径。获得授权发明专利20余件,发表学术论文80余篇,荣获&ldquo 中国催化青年奖&rdquo 等奖励。  谭天伟 男,49岁,清华大学博士毕业,生物化工专业,中国工程院院士,北京化工大学教授。谭天伟博士通过多年选育筛选出具有新基因的亚罗解脂酵母脂肪酶,并研究成功酶膜固定化新方法,实现了生物柴油、维生素A棕榈酸酯等产品的工业生产 创建了基于中间代谢物控制发酵过程优化的方法 利用发酵废弃物中的废菌丝体,提取麦角固醇和壳聚糖,显著地降低了麦角固醇生产成本 开发了喷射法制备壳聚糖吸附剂工艺,并采用分子印迹技术提高吸附容量1倍。已申请国内外发明专利37件 发表论文300余篇,其中SCI收录200余篇、 EI收录210余篇。以第一完成人先后获得国家技术发明奖二等奖2项,省部级一等奖4项、二等奖4项 是国家杰出青年基金获得者、中国青年科技奖获得者、何梁何利创新奖获得者。  二、青年进步奖  郭凯 男,31岁,英国谢菲尔德大学博士毕业,生物化工专业,南京工业大学教授。郭凯博士针对生物化工过程效率偏低和生物产业链偏短的问题,开展了微流场技术在生物基材料及精细化工品领域的应用研究,逐步形成了以微流场技术为核心的技术平台、以生物基材料为核心的产品体系。其从尺度效应对反应本征的影响研究入手,通过流体场结构设计,有效拓展流场边界,推进了微流场技术的工程化应用,并成功将微流场技术应用于生物基无毒增塑剂、生物基尼龙单体、生物基聚氨酯单体的制造过程中 创新了3D打印技术和粉末冶金技术等微流场反应装备的快速制造模式,开发了针对生物化工和化学化工工艺特异性微流场反应装备。累计发表论文30余篇 申请及授权专利近20件 参与编写书籍1部 获省部级科技进步一等奖1项。  李昌志 男,34岁,中国科学院大连化学物理研究所博士毕业,有机化学专业,中科院大连化学物理研究所副研究员。李昌志博士针对纤维素利用中的两个科学难题,在国际上率先提出离子液体介导的纤维素水解技术,并将其成功应用于天然生物质原料水解 实现由纤维素高选择性转化制备生物质关键平台化合物5-羟甲基糠醛,尤其是进一步开发了高浓度反应过程,对工业放大生产5-羟甲基糠醛具有重要科学意义和应用价值 发展了天然生物质原料全组分催化氢解制二元醇和单酚类化合物的催化过程,该过程亦表现出潜在的工业应用价值。共发表SCI论文19篇,申请发明专利11件,获得专利授权3件。  牟新东 男,34岁,北京大学博士毕业,生物质绿色转化专业,中国科学院青岛生物能源与过程研究所研究员。牟新东博士及其带领的绿色化学催化团队针对木质纤维素生物质利用中的瓶颈问题,设计开发了节能省水的动态挤压预处理工艺,并建成千吨级/年预处理量的中试系统 完成了由单糖制备呋喃二甲醇、呋喃二甲酸的公斤级小试生产与下游呋喃二甲醚产品的开发 开发了由单糖制备混合二元醇,和经糠醛和羟甲基糠醛制备高附加值&alpha ,&omega -二元醇和1,2-二元醇的催化体系,具备一定的工业化潜力。他先后主持国家863计划、国家自然科学基金、山东省及青岛市重大科学研究计划等项目。作为第一或通讯作者,已在SCI期刊上发表论文20余篇,其中第一作者论文单篇最高引用次数达160余次,申请专利30余件,其中国际专利2件,获得专利授权4件。  王岚 女,32岁,中国科学院研究生院博士毕业,生化工程专业,中国科学院过程工程研究所助理研究员。王岚博士建立了汽爆和水流筛分组合处理新方法,使汽爆秸秆酶解效率提高1倍,提出了提高纤维素酶解效率的秸秆组分分级思路。发现了秸秆降解物中的可溶性木质素是抑制丁醇发酵的主要抑制物,建立了活性炭去除汽爆秸秆酶解液中的抑制物用于发酵丁醇的新方法。首次提出了采用秸秆中易于降解的半纤维素为发酵原料,建立了汽爆秸秆半纤维素水解液发酵丁醇的方法。采用与其技术配套的自主加工的工业化装置系统,完成了年产600吨秸秆丁醇中试试验,并建成了年产5万吨丁醇以及联产乙醇、丙酮、聚醚多元醇和纸浆的生产线。在国内外学术期刊上发表论文10余篇 申请中国发明专利7件、国际PCT专利1件,获得中国专利授权4件 出版中英文专著2部。  许宁 女,33岁,北京大学博士毕业,高分子化学专业,中国石化北京化工研究院高级工程师。许宁博士进行了生物可降解聚酯的改性工作,设计并合成了多种结构新颖、性能独特的聚酯 开展了含糖聚酯研究,合成了一系列结构精细可控的侧链含糖聚己内酯,构筑了国际上首个可降解的胰岛素控制释放体系模型 在聚乳酸合成与改性领域进行了研究,制备了增韧聚乳酸材料。作为第一作者发表论文5篇 申请专利21件,获得专利授权9件。  曾建立 男,32岁,中国科学院过程工程研究所博士毕业,生物化工专业,中国石化石油化工科学研究院高级工程师。曾建立博士针对废弃油脂生产的生物柴油酸值容易超标的问题开展研究,确定了影响产物酸值的关键因素,并完成了亚临界两段醇解反应制备生物柴油的小试实验 在此基础上,提出了第二代生物柴油新工艺(SRCA-Ⅱ),并完成了2000吨/年中试试验,为第二代生物柴油工艺开发作出了突出贡献。发表文章12篇,申请专利6件。  范立海 男,31岁,浙江大学博士毕业,生物化工专业,北京化工大学副教授。范立海博士成功实现了单株酵母以纤维素为唯一碳源直接转化燃料乙醇技术路线 首次解决了结晶型纤维素无法被酵母直接降解利用的国际性难题。已发表SCI论文10余篇,其中作为第一作者在《美国科学院院刊》(PNAS)1篇,申请国内发明专利3件。  特此公告。  &ldquo 闵恩泽能源化工奖&rdquo 基金理事会  2013年12月20日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制