当前位置: 仪器信息网 > 行业主题 > >

电梯控制中仪

仪器信息网电梯控制中仪专题为您提供2024年最新电梯控制中仪价格报价、厂家品牌的相关信息, 包括电梯控制中仪参数、型号等,不管是国产,还是进口品牌的电梯控制中仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电梯控制中仪相关的耗材配件、试剂标物,还有电梯控制中仪相关的最新资讯、资料,以及电梯控制中仪相关的解决方案。

电梯控制中仪相关的论坛

  • 注意!电梯检验检测即将迎来新变化

    3月18日,市场监管总局发布关于进一步做好《电梯监督检验和定期检验规则》《电梯自行检测规则》实施工作的通知。详情如下:[align=center]市场监管总局关于进一步做好《电梯监督检验和定期检验规则》《电梯自行检测规则》实施工作的通知[/align]各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委),有关单位:《电梯监督检验和定期检验规则》(TSG T7001—2023,以下称新版检规)和《电梯自行检测规则》(TSG T7008—2023,以下称检测规则)已由市场监管总局2023年第14号公告发布,于2023年4月2日起施行,过渡期为1年。为确保新版检规和检测规则更好实施,结合过渡期内各地工作进展情况,现就有关事项通知如下。一、加大政策支持力度,促进检测工作顺利实施各地市场监管部门要切实做好新版检规和检测规则的贯彻实施,充分调动电梯使用、生产单位积极性,鼓励电梯使用、维保单位开展自行检测,落实安全主体责任。(一)规范检测准入条件。满足检测规则第2.2条要求的检测单位,即可从事电梯自行检测工作,不得新增任何限制条件或设置任何事前审批环节。按照《特种设备检验检测机构核准规则》(TSG Z7001—2004)核准的具有电梯定期检验TD1资质的甲类综合检验机构,在2025年12月31日前可从事电梯检测工作。(二)明确免征地区或单位检测主体。对于免征特种设备检验费用的地区或单位,电梯使用单位满足检测规则的条件即可开展自行检测,也可委托向其提供电梯维护保养服务的单位或者经核准的特种设备检测、检验机构开展;检验机构可以同时承担电梯检验和电梯检测工作,但不得以任何形式收取检测费用。(三)推进电梯检测数据联通。检测单位要按照当地市场监管部门要求,及时传递、报告或者公示电梯自行检测信息。各地市场监管部门要积极应用电梯等特种设备安全监管平台,为检测单位传递、报告自行检测信息提供便利,确保电梯检验检测方式调整有序平稳过渡。(四)强化检测结果应用。电梯自行检测工作由维保单位承担的,如果自行检测项目及其内容能够覆盖《电梯维护保养规则》(TSG T5002—2017)中第五条第(九)项所述的年度自行检查项目及其内容,维保单位可不再单独进行本年度的自行检查工作。电梯变更使用单位时,原使用单位(或产权单位)可以持上一年度的电梯自行检测报告办理。二、加强事中事后监管,保障检验检测工作质量各地市场监管部门要深入推进电梯安全筑底行动,加强对检验机构、检测单位和检验、检测行为的监督检查,提高检验、检测工作质量。(一)强化退出机制。对违反法律法规、不按照安全技术规范进行检验、检测的,依法依规严肃查处,并将处理结果向社会公开,积极营造依法施检、公平公正的电梯检验检测行业氛围。(二)提升合规管理水平。督促检验机构完善管理制度,优化内部工作流程,主动公示检验程序和收费标准,建立客户回访制度,增强服务意识,提升服务效能和满意度。(三)严厉查处超期不检测行为。检查发现到期不检测的电梯,应当依照《中华人民共和国特种设备安全法》第十五条相关规定,下达特种设备安全监察指令书,逾期不予整改的,依据《特种设备安全监督检查办法》(国家市场监督管理总局令第57号)第三十六条进行处理。三、细化具体实施要求,提升检验检测规则可操作性(一)规范检验检测工作程序。1. 落实音像记录要求。对于新版检规中要求进行音像记录的试验项目,检验机构及人员应当保证其记录内容的唯一性、完整性和可追溯性。对于检验的全过程进行不间断视频和音频记录的,则无需再对相关试验项目单独进行音像记录。同时,检验机构应当做好音像记录的存储和管理工作。对于使用场所涉密或者其他不宜进行音像记录的,使用单位应当向检验机构出具书面说明,经检验机构确认后,检验人员可以不对相应的试验过程进行音像记录。2. 换发《特种设备使用标志》。检验机构应当依据新版检规和检测规则,出具或换发《特种设备使用标志》(式样见附件),且不得以任何形式收取费用。如在检验(检测)周期内,使用单位更换电梯维保单位的,使用单位应当凭《电梯自行检测符合性声明》和相应的维保合同原件,到最近一次实施检验的检验机构换取标志。3. 明确检验检测实施月份。对于未按新版检规检验过的电梯,经与使用单位沟通确认,可以将最近一次《特种设备使用标志》的“下次检验日期”所在的月份作为后期定期检验或自行检测的实施月份。(二)规范检验检测技术要求。1. 关于驱动主机停止装置与上行超速保护装置试验。如未按照新版检规进行过监督检验的,有机房电梯的驱动主机停止装置、电梯轿厢上行超速保护装置监测功能在定期检验或自行检测时,可以不做要求。2. 关于轿厢内铭牌及标识。载货电梯(含改造后的)轿厢内铭牌上不标注乘客人数,其他信息按照新版检规中第A1.2.6.7条第(1)项的要求标注。3. 关于应急救援试验。在定期检验或自行检测时,可以在空载工况下进行。4. 关于新装电梯带载检验项目。电梯制造单位应当强化安装质量控制,加强安装过程的监控或指导,依法做好相关校验和调试,确保在安装竣工自检时,限速器—安全钳联动试验、曳引能力试验、制动性能试验、制停距离试验、附加制动器试验等项目有效实施。检验机构开展上述带载检验项目,要与施工单位安装竣工自检合并进行。5. 关于125%额定载重量制动试验年份。检验机构、检测单位应以最近一次试验所在年份为基准,确定后续进行该试验的年份,每6年进行一次。6. 关于阻挡装置。相邻平行布置并且共用外盖板的宽度大于125mm的自动扶梯或者自动人行道应设置符合要求的阻挡装置。工作中遇到的问题,请及时报市场监管总局特种设备局。附件:《特种设备使用标志》式样[align=right]市场监管总局[/align] 2024年3月15日[align=center][/align][size=14px][color=#707d8a][ 来源:国家市场监督管理总局 ][/color][/size][size=14px][color=#707d8a][i]编辑:张圣斌[/i][/color][/size][list][/list]

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 市场监管总局关于进一步做好《电梯监督检验和定期检验规则》《电梯自行检测规则》实施工作的通知

    [align=center][size=25px]市场监管总局关于进一步做好《电梯监督[/size][size=25px]检验和[/size][size=25px]定期检验规则》《电梯自行检测规则》实施工作的通知[/size][/align][font=宋体][size=18px]各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委),有关单位: 《电梯监督检验和定期检验规则》(TSG T7001—2023,以下称新版检规)和《电梯自行检测规则》(TSG T7008—2023,以下称检测规则)已由市场监管总局2023年第14号公告发布,于2023年4月2日起施行,过渡期为1年。为确保新版检规和检测规则更好实施,结合过渡期内各地工作进展情况,现就有关事项通知如下。 一、加大政策支持力度,促进检测工作顺利实施 各地市场监管部门要切实做好新版检规和检测规则的贯彻实施,充分调动电梯使用、生产单位积极性,鼓励电梯使用、维保单位开展自行检测,落实安全主体责任。 (一)规范检测准入条件。 满足检测规则第2.2条要求的检测单位,即可从事电梯自行检测工作,不得新增任何限制条件或设置任何事前审批环节。按照《特种设备检验检测机构核准规则》(TSG Z7001—2004)核准的具有电梯定期检验TD1资质的甲类综合检验机构,在2025年12月31日前可从事电梯检测工作。 (二)明确免征地区或单位检测主体。 对于免征特种设备检验费用的地区或单位,电梯使用单位满足检测规则的条件即可开展自行检测,也可委托向其提供电梯维护保养服务的单位或者经核准的特种设备检测、检验机构开展;检验机构可以同时承担电梯检验和电梯检测工作,但不得以任何形式收取检测费用。 (三)推进电梯检测数据联通。 检测单位要按照当地市场监管部门要求,及时传递、报告或者公示电梯自行检测信息。各地市场监管部门要积极应用电梯等特种设备安全监管平台,为检测单位传递、报告自行检测信息提供便利,确保电梯检验检测方式调整有序平稳过渡。 (四)强化检测结果应用。 电梯自行检测工作由维保单位承担的,如果自行检测项目及其内容能够覆盖《电梯维护保养规则》(TSG T5002—2017)中第五条第(九)项所述的年度自行检查项目及其内容,维保单位可不再单独进行本年度的自行检查工作。电梯变更使用单位时,原使用单位(或产权单位)可以持上一年度的电梯自行检测报告办理。 二、加强事中事后监管,保障检验检测工作质量 各地市场监管部门要深入推进电梯安全筑底行动,加强对检验机构、检测单位和检验、检测行为的监督检查,提高检验、检测工作质量。 (一)强化退出机制。 对违反法律法规、不按照安全技术规范进行检验、检测的,依法依规严肃查处,并将处理结果向社会公开,积极营造依法施检、公平公正的电梯检验检测行业氛围。 (二)提升合规管理水平。 督促检验机构完善管理制度,优化内部工作流程,主动公示检验程序和收费标准,建立客户回访制度,增强服务意识,提升服务效能和满意度。 (三)严厉查处超期不检测行为。 检查发现到期不检测的电梯,应当依照《中华人民共和国特种设备安全法》第十五条相关规定,下达特种设备安全监察指令书,逾期不予整改的,依据《特种设备安全监督检查办法》(国家市场监督管理总局令第57号)第三十六条进行处理。 三、细化具体实施要求,提升检验检测规则可操作性 (一)规范检验检测工作程序。 1、落实音像记录要求。对于新版检规中要求进行音像记录的试验项目,检验机构及人员应当保证其记录内容的唯一性、完整性和可追溯性。对于检验的全过程进行不间断视频和音频记录的,则无需再对相关试验项目单独进行音像记录。同时,检验机构应当做好音像记录的存储和管理工作。对于使用场所涉密或者其他不宜进行音像记录的,使用单位应当向检验机构出具书面说明,经检验机构确认后,检验人员可以不对相应的试验过程进行音像记录。 2、换发《特种设备使用标志》。检验机构应当依据新版检规和检测规则,出具或换发《特种设备使用标志》(式样见附件),且不得以任何形式收取费用。如在检验(检测)周期内,使用单位更换电梯维保单位的,使用单位应当凭《电梯自行检测符合性声明》和相应的维保合同原件,到最近一次实施检验的检验机构换取标志。 3、明确检验检测实施月份。对于未按新版检规检验过的电梯,经与使用单位沟通确认,可以将最近一次《特种设备使用标志》的“下次检验日期”所在的月份作为后期定期检验或自行检测的实施月份。 (二)规范检验检测技术要求。 1、关于驱动主机停止装置与上行超速保护装置试验。如未按照新版检规进行过监督检验的,有机房电梯的驱动主机停止装置、电梯轿厢上行超速保护装置监测功能在定期检验或自行检测时,可以不做要求。 2、关于轿厢内铭牌及标识。载货电梯(含改造后的)轿厢内铭牌上不标注乘客人数,其他信息按照新版检规中第A1.2.6.7条第(1)项的要求标注。 3、关于应急救援试验。在定期检验或自行检测时,可以在空载工况下进行。 4、关于新装电梯带载检验项目。电梯制造单位应当强化安装质量控制,加强安装过程的监控或指导,依法做好相关校验和调试,确保在安装竣工自检时,限速器—安全钳联动试验、曳引能力试验、制动性能试验、制停距离试验、附加制动器试验等项目有效实施。检验机构开展上述带载检验项目,要与施工单位安装竣工自检合并进行。 5、关于125%额定载重量制动试验年份。检验机构、检测单位应以最近一次试验所在年份为基准,确定后续进行该试验的年份,每6年进行一次。 6、关于阻挡装置。相邻平行布置并且共用外盖板的宽度大于125 mm的自动扶梯或者自动人行道应设置符合要求的阻挡装置。 工作中遇到的问题,请及时报市场监管总局特种设备局。 市场监管总局 2024年3月15日[/size][/font]

  • 半导体晶片温度控制中制冷原理说明

    半导体晶片温度控制是目前针对半导体行业所推出的控温设备,无锡冠亚半导体晶片温度控制采用全密闭循环系统进行制冷加热,制冷加热的温度不同,型号也是不同,同时,在选择的时候,也需要注意制冷原理。  半导体晶片温度控制制冷系统运行中是使用某种工质的状态转变,从较低温度的热源汲取必需的热量Q0,通过一个消费功W的积蓄过程,向较热带度的热源发出热量Qk。在这一过程中,由能量守恒取 Qk=Q0 + W。为了实现半导体晶片温度控制能量迁移,之初强制有使制冷剂能达到比低温环境介质更低的温度的过程,并连续不断地从被冷却物体汲取热量,在制冷技巧的界线内,实现这一过程有下述几种根基步骤:相变制冷:使用液体在低温下的蒸发过程或固体在低温下的消溶或升华过程向被冷却物体汲取热量。平常空调器都是这种制冷步骤。气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热可以制冷。气体涡流制冷:高压气体通过涡流管膨胀后可以分别为热、冷两股气流,使用凉气流的复热过程可以制冷。热电制冷:令直流电通过半导体热电堆,可以在一端发生冷效应,在另一端发生热效应。  半导体晶片温度控制在运行过程中,高温时没有导热介质蒸发出来,而且不需要加压的情况下就可以实现-80~190度、-70~220度、-88~170度、-55~250度、-30~300度连续控温。半导体晶片温度控制的原理和功能对使用人员来说有诸多优势: 因为只有膨胀腔体内的导热介质才和空气中的氧气接触(而且膨胀箱的温度在常温到60度之间),可以达到降低导热介质被氧化和吸收空气中水分的风险。  半导体晶片温度控制中制冷原理上如上所示,用户在操作半导体晶片温度控制的时候,需要注意其制冷的原理,在了解之后更好的运行半导体晶片温度控制。

  • 总局74号令中关于电梯安全员是否需要电梯管理员证,市场监管总局回复

    总局74号《特种设备使用单位落实使用安全主体责任监督管理规定》中第六章电梯中,要求电梯使用单位设立电梯安全员,对电梯安全员的工作职责进行了明确。想向贵局咨询下,电梯安全员是否有强制资质要求,是否必须要有特种设备作业人员证中的电梯管理员证书,谢谢。[align=center][img]https://xgzlyhd.samr.gov.cn/gjjly/img/fd-a-avator.png[/img][/align][b]回复部门: 特种设备安全监察局[/b][color=#999999][back=transparent]时间:2023-08-09[/back][/color]谢谢您的提问! 一是关于安全总监和安全员的具体实施要求,请查阅《市场监管总局办公厅关于开展“特种设备企业主体责任推进年”活动的通知》(市监特设发〔2023〕33号)附件的《关于实施两个规定若干问题的说明》。 二是相应电梯安全管理员配备相关要求(专职或兼职),请查阅《特种设备使用管理规则》(TSG 08-2017)第2.4.2.2.2项。同时,依据《质检总局办公厅关于实施中若干问题的通知》(质检办特函〔2017〕1015号),使用单位配备的兼职安全管理人员不要求取得特种设备安全管理人员资格证书。

  • 拼装电梯不能成为下一个“毒奶粉”

    拼装电梯”,又是一个让人感到可怕的名词,一如地沟油、毒奶粉,直接威胁人们的生命安全。11月27日新华社“新华视点”曝光了杭州萧山区存在一个报废电梯回收、翻新、贩卖的利益链,而“拼装电梯”居然得到当地质检部门——杭州市特种设备检测院萧山工作站(下称杭州特检院萧山站)出具的“合格报告”。更值得注意的是,早在今年8月,当地电视台就曝光了“拼装电梯”问题,但至今我们还没有看到严厉的问责或强力的纠正措施——产业链没有被捣毁,更没有人被绳之以法。今年4月25日,维修工祖江在维修某公司的电梯时,被电梯夹住后死亡。杭州市质监局调查发现:该电梯竟是一台拼装电梯,早在2006年就报废了。但这台电梯经过拼装后,于同年又获得杭州特检院萧山站出具的合格报告,重新上岗了,此后4年中,该站一直为该电梯出具合格报告,最近一次验收日期为2010年8月。更可怕的是,拼装电梯并非个案。杭州市质监局发现萧山区竟有67台疑似拼装电梯。电梯和高压锅炉等一样,属“特种设备”。按国务院《特种设备安全监察条例》,其生产、安装、调适都有严格的准入、批准、验收程序,且质监部门每年都要强制年检。但在萧山地区,违法翻新、贩卖报废电梯却形成地下产业链。监管部门非但没当好“门神”把“小鬼”赶走,反而为拼装电梯做了背书。比如,今年7月萧山一家企业被告知:自己用的是非法拼装电梯。杭州市特种设备检测院罗列了10个不合格指标:“无松闸扳手”、“无应急照明”等。然而这台电梯此前的验收、年检正是特检院下辖的萧山站所做。10个不合格指标,尤其“无应急照明”等,是一眼就能看出的问题,之前的年检报告是怎么做出来的?难怪该企业负责人说:“特检院连续5年给我们出具了合格报告,现在却说这个电梯是非法的,这太荒唐了!”杭州市质监局官员表示:“涉嫌违规检测的检验人员已经被停职,有关部门正在对他进行调查,目前尚无结果。”从“4·25”事故算起,已过了7个月;从今年8月钱江都市频道曝光萧山的拼装电梯算起,已过去3个月。这么明显的问题,就是查不清吗?法定检验人员屡犯“低级错误”,把各部件生产编号不一致的电梯“检验”成合格,原因何在?事实上,电梯惊魂已成为今年萧山人的梦魇。据报道,从今年1月1日起至8月19日,萧山消防中队共实施电梯救援43起。颇有讽刺意味的是,就在去年4月12日《萧山日报》上,质监工作人员还信誓旦旦表示:“我区的电梯事故发生频率并不高,由于电梯自身的质量问题引起的人员伤亡更是少见”;“萧山尚未进入住宅电梯故障高发期”。然而电梯故障高发期真的来了,岂止是杭州,岂止是浙江。上世纪80年代开始,电梯在我国大量使用,最早一批电梯已服役20多年,有不少处于报废期;随着大规模旧城改造,大批电梯被拆卸。如果对报废电梯监管失控,任其进入黑色产业链,摇身变为拼装电梯重新上岗,势必严重威胁公众安全。相比之下,奥的斯自动扶梯的设计缺陷等问题,只能算是小巫见大巫。当年“非法拼装车”由于监管不力而泛滥成灾,其恶劣影响至今尚未完全消退,拼装电梯绝不能步其后尘。

  • 正压和负压控制技术在离体肺通气装置中的应用

    正压和负压控制技术在离体肺通气装置中的应用

    [size=16px][color=#339999][b]摘要:模拟肺呼吸过程的离体肺通气控制新方法——真空压力(正负压)法,目前还停留在理论层面的文献报道,还未见到这种方法的仪器化内容和细节。本文基于这种新方法提出了仪器化实现的具体解决方案,解决方案的核心内容是采用了正负压调节器和具有远程设定点功能的高精度PID控制器,由此可实现离体肺内部正压的恒定控制以及离体肺外部负压的周期性波动控制。此解决方案具有很强的灵活性、适用性和拓展性,可进行真空压力宽工作范围内的任意定点和多种波形的设置和控制,便于通气过程中各种实验参数的探索和优化。[/b][/color][/size][align=center] [img=离体肺通气装置中真空和压力控制的解决方案,600,385]https://ng1.17img.cn/bbsfiles/images/2023/06/202306290956065298_5355_3221506_3.jpg!w690x443.jpg[/img][/align][b][size=18px][color=#339999]1. 离体肺正负压通气方法及需解决的问题[/color][/size][/b][size=16px] 肺移植是有效的治疗方法之一,供体肺在进行移植手术之前可能需要进行离体灌注和通气以恢复或保持其功能,或评估或评价它们的用于移植的质量或适宜性。对于供体肺的离体通气,常见的传统的机械通气技术是利用正压施加到气管支气管树上,由此在气管支气管树和肺泡之间形成压差,从而使得气流在压差驱动下进入肺泡。[/size][size=16px] 有些文献报道了采用负压进行离体通气的方法,即在离体肺周围形成低于大气压的真空负压,使离体肺自然充满一个大气压左右的通气气体,通过真空负压的变化来形成肺呼吸。也有文献报道了采用正压和负压(真空和压力)相结合的不同通气方法,如图1所示,即通过内部正压和外部负压之间的变化来引起肺呼吸。这种正负压通气方法的最大优点是通过调节离体肺气道内的正压能有效的防止肺泡萎陷。[/size][align=center][size=16px][color=#339999][b][img=01.离体肺真空压力通气方法示意图,300,406]https://ng1.17img.cn/bbsfiles/images/2023/06/202306290956399204_1288_3221506_3.jpg!w493x668.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 离体肺真空压力通气方法示意图[/b][/color][/size][/align][size=16px] 目前文献所报道的离体肺真空压力通气过程是:离体肺放置在密闭腔室内,将通气气体加载到肺的气道上并使腔室(肺周围)形成真空。在调节通气压力以维持肺气管处于恒定不变正压的同时,离体肺周围的真空度在一个较低水平和一个较高水平之间进行周期性变化以引起肺呼吸。 然而,这种离体肺正负压通气方法并未详细报道具体实施细节,而且在实施过程中还需解决以下几方面的问题:[/size][size=16px] (1)如何实现正压和负压的独立控制,特别是如何在仪器化方面得到实现。[/size][size=16px] (2)在临床应用之前要进行实验室阶段的通过过程和参数探索,要求正负压力可调节。[/size][size=16px] (3)负压过程要求实现周期性波动且可控,需要实现负压波形周期和幅值的设定和控制。[/size][size=16px] 为了解决上述离体肺通气方法中的正负压控制问题,本文提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 正负压离体肺通气控制系统结构如图2所示,通气控制的具体步骤如下:[/size][size=16px] (1)首先对放置在密闭腔室内的离体肺加载正压气体,在离体肺气管内形成正压。正压压力大小可通过手动调节旋钮或真空压力控制器按键进行实时设置,也可通过上位机软件进行设置,真空压力控制器驱动正压调节器将来自高压气源的气体压力恒定控制在设定值上。[/size][size=16px] (2)开启真空泵进行抽真空,为离体肺所处的密闭腔室提供真空源。通过周期信号发生器的按键或软件设置负压波动周期和幅值大小,真空压力控制器驱动负压调节器按照所设置的周期和幅值大小对密闭腔室内的真空度进行控制,并形成准确的周期性负压变化波。[/size][align=center][size=16px][color=#339999][b][img=用于离体肺通气的真空压力控制装置结构示意图,650,404]https://ng1.17img.cn/bbsfiles/images/2023/06/202306290956585893_3785_3221506_3.jpg!w690x429.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 用于离体肺通气的真空压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在此解决方案中采用了两个关键部件,它们的主要特点如下:[/size][size=16px] (1)正负压力调节器:正负压力调节器是一种集成了真空压力传感器、高速电磁阀和PID控制器的气体气压控制器件,可在表压-80kPa至1000kPa范围内实现真空压力准确控制。真空压力控制设定值可通过外部电压信号进行设定,可在几十毫秒的时间内将真空压力快速控制达到设定值并恒定不变。正负压力调节器的这种工作范围和高速响应速度,非常适合离体肺通气过程中的真空压力控制,特别是能满足周期性负压变化对控制精度和速度的要求。[/size][size=16px] (2)真空压力控制器:真空压力控制器是一种多功能高精度的PID调节器。高精度特性是通过24位AD、16位DA、双精度浮点运算和0.01%最小输出百分比的软硬件指标来实现,多功能特性是在普通PID调节器基本功能的基础上还具有远程设定点、串级控制和比值控制等其他高级功能,远程设定点功能特别适用于各种周期性波形控制和设定值的手动调节。另外,此真空压力控制器具有标准MODBUS通讯协议的RS485接口和随机软件,通过上位计算机和运行软件可以直接操控和运行控制器,非常便于快速搭建离体肺正负压通气装置而无需编写软件程序。[/size][size=16px] 需要说明的是,本解决方案仅介绍了如何工程实现正负压自动精密控制的关键细节,其他离体肺通气过程中的一些常规性相关细节并未提及,如流量测量和过滤等内容,但在实际过程中要加上这些内容。[/size][size=16px] 另外,此解决方案也可以根据实验室具体试验过程的需要进行以下两方面的拓展:[/size][size=16px] (1)在靠近离体肺气管的一端增加独立的压力传感器。此传感器可与正压调节器和真空压力控制器构成闭环控制回路,这样可以更准确的监测和控制离体肺的内部压力,避免使用正压调节器内部压力传感器的精度不够以及因气管较长所引起的压力不准确问题。[/size][size=16px] (2)在密闭容器的顶盖上增加独立的真空度传感器。同样,此真空度传感器与负压调节器和真空压力控制器构成闭环控制回路,这样可以更准确的监测和控制离体肺外部的负压变化,避免使用负压调节器内部负压传感器的精度不够以及因真空管路较长所引起的真空度不准问题。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过上述解决方案,可通过离体肺正负压通气过程的自动控制来模拟肺的呼吸过程,解决方案具有如下特点:[/size][size=16px] (1)实现了准确和高速的正负压全自动控制,可有效防止肺泡萎陷现象的出现。[/size][size=16px] (2)正压工作范围和设定值可手动或程序调节并实现自动控制,具有很强的灵活性和适用性,适合研究过程中的各种实验参数探索。[/size][size=16px] (3)同样,负压工作范围和变化波形可手动或程序设置并实现自动控制,并具有很强的灵活性和适用性,便于研究过程中的各种实验参数探索。[/size][size=16px] (4)此解决方案具有一定的拓展性,如可拓展应用到离体肺的灌注过程控制。[/size][size=16px][/size][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 地球到月球的太空电梯

    太空电梯的原理并不复杂,基本上就是一条长长的缆绳一端固定在地球上,另一端固定在地球同步轨道的平衡物(如大型卫星或空间站)上。在引力和向心加速度的相互作用下,缆绳被绷紧,太空电梯将利用太阳能或激光能沿缆绳上下运动。  首先,要在大洋中建造一个漂浮的平台,这个平台要位于一个暴风雨、闪电和巨浪较少的海域,还要远离飞机的航线和卫星的轨道。太空电梯必须能防雷击,否则它将容易被斩断。据设计,太空电梯将重达20吨,整个外形很像一个圆球下面系一根长达10万千米缆索来充当太空电梯上下的轨道。  将履带轨道固定在缆绳的两端,并且依靠从地面发射的激光转换成的电能作为动力加以推动。它将建造成为管状的通道,沿轨道来回运行时,可以将航天器、各种货物和乘客带入太空。一  简言之,要先发射卷有缆索的卫星或空间站,让缆索的一端借助重物坠回地面,最终与地球上的平台相连接,同时,另一端在位于外太空的卫星或空间站上展开。地球自转时,太空电梯缆索就会产生向上的离心力,而地球的重力将缆索往下拉,这样缆索就平衡了。  乘人的太空电梯是加压的密封舱。如要发射卫星,当卫星由太空电梯送到地球静止轨道高度时,自然就获得了沿静止轨道运行所需要的速度3.08千米/秒,而不需要另外加速就成为地球静止卫星。发射低轨道卫星时可使卫星沿太空电梯上升,到达预定高度时就离开太空电梯。这时卫星已经获得一定的切向速度,再补充一定速度就行了。如果加大补充速度,就可以使卫星脱离地球,飞向行星际空间。  目前,俄罗斯、美国和日本等国都在研制太空电梯。建造太空电梯的最大障碍来自缆索的建造。它必须非常轻和极其牢固,并能够经受住大气层内外向它袭来的任何物体的撞击。从理论上计算,制作缆索的材料强度必须达到钢铁的约180倍。随着纳米技术的发展,科学家不断开发出质量轻、强度高的碳纳米管纤维材料,现有的此类纤维材料强度已经达到了所需强度的约1/4,这使修建太空电梯逐渐成为可能。

  • 真空热重分析仪多种气体低气压高精度控制解决方案

    真空热重分析仪多种气体低气压高精度控制解决方案

    [align=center][size=16px] [img=真空热重分析仪多种气体低气压高精度控制解决方案,550,383]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170921522574_4489_3221506_3.jpg!w690x481.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:针对目前国内外各种真空热重分析仪普遍不具备低压压力精密控制能力,无法进行不同真空气氛环境下材料热重分析的问题,并根据用户提出的热重分析仪真空度精密控制技术改造要求,本文提出了技术改造解决方案。解决方案基于动态平衡法采用了上游和下游控制方式,通过配备的多路进气混合装置、高精度电容真空计、电控针阀和双通道PID真空压力控制器,可实现热重分析仪在10Pa~100kPa范围内多种气体气氛下的真空度精密控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]==========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 热重分析(Thermogravimetric Analysis,TG或TGA)是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组分。而真空热重分析(Vac-TGA)则是在普通热重分析中增加了真空变量,允许在低至1Pa的绝对压力条件下对样品进行分析,适用于在使用中需要减压条件的客户应用。真空热重分析技术用于解决在工作中遇到低气压的专业化检测分析,Vac-TGA还可以实现更准确地观察薄膜、复合材料、环氧树脂等材料的挥发物、降解和排气等情况。[/size][size=16px] 真空热重分析仪一般都配备真空密闭的炉体和精确控制保护气和吹扫气流量的气体质量流量控制器(MFC),为TG与FTIR或[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]等联用提供了便利。密闭系统的真空度最高可达1Pa(绝对压力),一般都包括两路吹扫气和一路保护气,由此可进行各种气氛环境下的热重分析,如惰性、氧化性、还原性、静态和动态气氛环境。[/size][size=16px] 目前常见的真空热重分析仪只能实现抽真空功能,普遍无法对密闭炉体内的气体压力进行准确控制,只有最先进的磁悬浮热重分析仪具有压力控制功能,但也仅适用于大于一个大气压的高压控制,其结构如图1所示,还是无法对低于一个大气压的低压环境进行调节控制,无法提供低压环境的模拟。[/size][align=center][size=16px][color=#339999][b][img=国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图,450,464]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170923427525_9766_3221506_3.jpg!w690x712.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 由于现有真空热重分析仪无法提供低压环境的真空控制,客户希望能对现有V-TGA进行技术改造,增加真空度控制功能,以对高原地区低氧、低气压条件下的煤燃烧过程开展研究。[/size][size=16px] 为了彻底真空热重分析仪的真空压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节热重分析仪的进气和排气流量,使内部气压快速达到动态平衡状态而恒定在设定真空度上,为热重分析仪提供可任意设定低气压值的精密控制,本文将提出以下技术改造实施方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 首先,根据客户要求以及今后真空热重分析仪的低压应用,本解决方案拟达到的指标如下:[/size][size=16px] (1)真空度控制范围:10Pa~100kPa(绝对压力)。[/size][size=16px] (2)真空度控制精度:±1%(读数)。[/size][size=16px] (3)气氛:真空、单一气体和多种气体混合。[/size][size=16px] 为达到上述技术指标,解决方案设计的热重分析仪真空压力控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=真空热重分析仪低气压精密控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170924200752_5900_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热重分析仪低气压精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,为了实现10Pa~100kPa全量程内的真空度控制,控制系统的具体内容如下:[/size][size=16px] (1)配备了两只电容真空计,量程分别是10Torr和1000Torr,精度都为读数的±0.2%。[/size][size=16px] (2)采用了动态平衡法进行控制,其中在真空度10Pa~1kPa范围内采用上游(进气端)控制模式,而在1kPa~100kPa真空度范围内采用下游(排气端)控制模式。[/size][size=16px] (3)上游控制模式:上游控制模式是固定排气流量(真空泵全开,电动针阀2固定某一开度),通过自动调节电动针阀1开度来改变进气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施上游控制模式的闭环控制回路包括10Torr真空计1、电动针阀1和真空压力控制器的第一通道,如图2中的蓝色虚线所示。[/size][size=16px] (4)下游控制模式:下游控制模式是固定进气流量(电动针阀1固定某一开度),通过自动调节电动针阀2开度来改变排气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施下游控制模式的闭环控制回路包括1000Torr真空计2、电动针阀2和真空压力控制器的第二通道,如图2中的红色虚线所示。[/size][size=16px] (5)双通道真空压力控制器:所配备的VPC2021-2真空压力控制器具有两路独立的PID控制通道,与相应的真空计和电动针阀配合可组成上游和下游控制回路。在进行上游自动控制过程中,上游控制回路进行自动PID控制,而下游控制回路设置为手动控制并设定固定输出值以使得电控针阀2的开度固定。在进行下游自动控制过程中,下游控制回路进行自动PID控制,而上游控制回路设置为手动控制并设定固定输出值以使得电控针阀1的开度固定。[/size][size=16px] (6)电动针阀:所配备的NCNV系列电动针阀是一种步进电机驱动的高速针型阀,可在一秒时间内完成从关到开的高速线性变化,具有很好的线性度和重复性精度,具有极低的磁滞,可采用模拟信号(0-10V、4-20mA)和RS485进行控制,可对小流量气体流量进行精密调节。[/size][size=16px] (7)进气装置:图2所示的控制系统进气装置可实现多种气体的精密配比混合,每种气体的流量通过气体质量流量控制器进行调节和控制,多路气体在混气罐内进行混合,混合后的气体作为进入真空热重分析仪的进气。[/size][size=16px] (8)控制精度:由于整个控制系统采用了高精度的真空计、电动针阀和PID控制器,可实现全量程的真空度精密控制,考核试验结果证明控制可轻松达到±1%读数的高精度。[/size][size=16px] (9)控制软件:双通道真空压力控制器配备有计算机控制软件,通过控制器上的RS485通讯接口,计算机可远程操作真空压力控制器实现控制运行、参数设置和过程参数的采集、存储和曲线显示。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 本解决方案彻底解决了真空热重分析仪中存在的真空度精密控制问题,在满足用户所提的真空热重分析仪技术改造要求之外,本解决方案还具有以下优势和特点:[/size][size=16px] (1)本解决方案具有很强的实用性,并经过了试验考核和大量应用,按照解决方案可很快完成真空热重分析仪高精度真空压力控制系统的搭建和技术改造,无需对热重分析仪进行改动。[/size][size=16px] (2)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同范围和不同规格型号真空热重分析仪的真空压力控制,可满足各种真空热重分析仪的多种低气压控制需求。[/size][size=16px] (3)本解决方案可以通过增减高压气源来实现不同气体气氛环境的低压控制,也可进行多种气体混合后的低压控制,具有很大的灵活性。[/size][size=16px] (4)本解决方案还为后续的热重分析仪与其他热分析联用留有接口,如可以通过在排气端增加微小流量可变泄漏阀实现与质谱仪的联用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 光声谱仪器中光声池的高精度气体压力控制解决方案

    光声谱仪器中光声池的高精度气体压力控制解决方案

    [align=center][size=16px][img=石英增强光声光谱和光热光谱技术中的高精密压力控制解决方案,600,393]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130940541042_934_3221506_3.jpg!w690x452.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,但在目前的光声和光谱研究中,对气体样品池内压力控制技术的报道极为简单,甚至很多都是错误的,根本无法实现高精度调节和控制,为此本文提出了可工程化实现的解决方案。基于动态平衡法控制介绍,解决方案采用了高精度真空计、气体流量计、电动针阀和双通道真空压力控制器等,可实现气体样品池的进气流量和真空压力的自动精密控制,并适用于多种气体。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 光声法是基于光声效应的一种光谱技术,气体分子吸收特定波长的调制光辐射能量,由振动基态跃迁到激发态,然后通过快速的辐射跃迁或者无辐射跃迁过程回到基态。 气体分子通过无辐射跃迁过程回到基态会产生热能,导致气体温度的变化,相应地引起气体压强的变化,从而产生声波信号,信号的强弱与入射光强和气体吸收大小成正比,检测声音信号即可间接测定气体浓度。在光声法中气体既是被检气体,又是吸收光辐射的探测器,利用同一光声池检测装置,只要改变光源的波长即可对多种气体进行检测。[/size][size=16px] 随着技术的发展出现了许多新型光声光谱检测技术,但光声池始终是所有光声光谱检测仪器中的核心部件,注入光声池内的被检气体压力是影响光声法测量精度的关键因素之一,主要体现在以下两个方面:[/size][size=16px] (1)气体压力的稳定性对测量精度的影响[1,2]。[/size][size=16px] (2)不同气体和浓度的光声法测量过程中,在一个最佳气体压力下时测量精度最高[3]。[/size][size=16px] 由此可见,光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,而在光声池压力控制的所有文献报道中,有些仅简单描述了压力控制基本原理,有些所描述的压力控制方法和装置根本无法实现高精度调节和控制。[/size][size=16px] 如文献[3]采用石英增强光声和光热光谱技术测量痕量一氧化碳气体含量的报道中,仅介绍了光声池进样气体方式和压力控制的原理,整个装置和压力控制结构的简单描述如图1所示,图中所示的光声池压力控制尽管包括了真空泵、针阀、压力传感器和压力控制系统(PCS),但压力控制系统的布置位置并不一定正确,既没有明确具体技术细节,也没有显示出压力控制的自动化能力和控制精度能达到什么水平。同样,许多多其他光声法测试技术的研究报道也多是如此简单介绍,并未看到光声池压力控制的详细文献报道。[/size][align=center][size=16px][color=#339999][b][img=文献[3]光声和光热谱检测系统结构示意图,600,527]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130942538680_3779_3221506_3.jpg!w690x607.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 文献[3]光声和光热谱检测系统结构示意图[/b][/color][/size][/align][size=16px] 在河北大学的发明专利CN111595786B“基于光声效应的气体检测系统及方法”中提出了一种详细的光声池内部压力控制方法[4],其结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=文献[4]基于光声效应检测系统的结构示意图,690,447]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943224524_1783_3221506_3.jpg!w690x447.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 专利[4]基于光声效应检测系统的结构示意图[/b][/color][/size][/align][size=16px] 在图2所示的光声池压力控制系统中,光声池上设有供气体进入的进气口,进气口通过导管与?30℃的冷肼预浓缩装置相连通,可以去除待测气体中水分的干扰,达到一定的浓缩效果。在光声池上还设有供气体排出的出气口、控制腔体内气压的压力监测口以及压力控制口。在进气口、出气口和压力控制口处均设有单向阀,在出气口和压力控制口处均设有真空泵。在压力监测口设有气体压力传感器,气体压力传感器连接单片机,单片机控制继电器以及一个抽气系统,当腔体内的气压未达到所设置的目标值时,压力传感器传出电信号到控制系统中的单片机来控制继电器闭合,使电机转动,抽气系统运行,保持腔内部的气压值为设定好的目标值,当腔内的气压达到设定目标值时该抽气系统不工作。[/size][size=16px] 由此可见,尽管专利[4]中采用了单片机进行压力的自动控制,但所描述的抽气系统控制是一种最简单的开关式控制方式,这种控制方式在控制精度的稳定性很差,往往会使光声池内的实际压力在设定值上下出现较大波动现象。[/size][size=16px] 另外,这种开关模式在控制过程中存在很大的滞后性,当传感器测量到压力值大于或小于设定值时才发出关闭或启动抽气电机信号,这势必带来控制延迟。而且对于小容积内的气压控制,目前已很少采用调节真空泵转速或开关式真空泵技术,这是因为会很容易影响真空泵寿命。[/size][size=16px] 为了彻底解决光声光谱和光热光谱技术中气体样品池的压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节气体样品池的进气和排气流量,使它们能快速达到动态平衡状态,本文将提出以下详细且可工程化实现的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 从研究文献所报道的光声光热法气体池内压力控制中,可以得出以下几项技术指标要求:[/size][size=16px] (1)气体池有一进气口和排气后,其中排气口连接真空泵,真空泵提供负压使样品气体通过进气口流入样品池,样品池的这种结构和气体取样方式则说明样品池内的压力一般应该是一个大气压上下的微负压或微正压,即样品池内的气体压力在500~1000Torr的绝对压力范围内,且要小于进气口压力。[/size][size=16px] (2)在文献[3]中报道了对最佳压力的测试研究,得到的最佳压力为600Torr。由此可见,针对不同气体的光声和光热法测试中,需要根据不同气体样品池的结构和具体被测气体寻找到最佳压力值,由此可保证最佳的测试精度。[/size][size=16px] (3)在文献[2,3]中,涉及到了多种气体混合和进气流量的控制,由此可说明在某些光声和光热法测试中需要具备对进气流量的调节,这也就是说,对于气体样品池而言,既要能调节进气流量,还要能调节气体压力且稳定控制。[/size][size=16px] 针对光声光谱和光热光谱技术中气体样品池的压力精密控制问题,特别是实现上述技术指标和功能,本解决方案所设计的气体样品池压力和进气流量控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=光声池气体压力和流量控制系统结构图,690,314]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943461767_8516_3221506_3.jpg!w690x314.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 光声池气体压力和进气流量控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个控制系统主要包含以下几方面的内容:[/size][size=16px] (1)压力控制模式:由于光声池内的压力需要在500~1000Torr的绝对压力范围进行调节和控制,因此解决方案中采用了动态平衡法中的下游控制模式,即恒定进气流量,通过调节排气流量的大小以达到不同的动态平衡,由此来实现不同气体压力的精密控制。进气形式如图3所示可以是单独一种气体,也可以是多种气体混合,各种气体可以通过气体质量流量控制器(MFC)进行流量的精密控制,各路气体进入一个混气罐进行混合后,再注入光声池内。气体的注入则通过排气端真空泵所提供的负压与进气端正压所形成的压力差来实现。[/size][size=16px] (2)压力控制回路:如图3中的蓝色箭头线所示,压力控制回路由1000Torr量程的电容真空计、NCNV-20型电动针阀和VPC2021-2型压力流量控制器组成,其中真空计检测光声池的真空压力并传输给控制器,控制器将传感器数据与压力设定值比较并经过PID计算,输出控制信号给排气电动针阀,实现压力自动恒定控制。[/size][size=16px] (3)流量控制回路:如图3中的红色箭头线所示,流量控制回路由气体流量计、NCNV-120电动针阀和VPC2021-2型压力流量控制器组成,其中控制器通过手动控制方式直接输出控制信号来调节进气电动针阀的开度,使得流量计达到希望值,由此可始终恒定进气流量保持不变。[/size][size=16px] 由此可见,通过图3所示的解决方案控制系统可实现光声池压力和进气流量的独立调节和控制,这种实现的关键部件是电控针阀和双通道压力流量控制器,电控针阀可以快速精密的调节进气和排气流量,而双通道压力流量控制器可直接连接真空计和流量计,实现高精度的真空压力和流量的测量,控制精度能小于读数的±1%,同时还能进行自动PID控制和手动恒定输出控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对现有文献所报道的光声池压力控制方法进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,并经过了试验考核,按照解决方案可很快的搭建起光声池压力控制系统。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,可满足光声法和光热法中对样品池气体压力的各种控制要求。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同样品气体的测量,也可进行多种气体混合后的测试,具有很大的灵活性。[/size][size=16px] (4)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了光谱设备的搭建和测试研究。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] 陈伟根,刘冰洁,胡金星,等.微弱气体光声光谱监测光声信号影响因素分析[J].重庆大学学报:自然科学版, 2011(2):7-13.[/size][size=16px][2] 张佳薇,谈志强,李明宝,等.气体流量对石英增强型光声光谱检测精度的影响[J].科学技术与工程, 2022(003):022.[/size][size=16px][3] Pinto D , Moser H , Waclawek J P ,et al.Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy[J].Photoacoustics, 2021, 22:100244.DOI:10.1016/j.pacs.2021.100244.[/size][size=16px][4] 娄存广,刘秀玲,王鑫,等.基于光声效应的气体检测系统及方法:CN202010511763.8[P]. CN111595786B[2023-11-10].[/size][size=16px][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 【求助】光学异构体中的非对映异构体杂质控制

    [size=3][b]请问在对手性化合物(RS)原料药进行光学纯度控制中,用手性柱对其杂质对映异构体(SR)进行控制,而用普通的C18柱对非对应异构体(RR+SS)进行控制,但此RR与SS在C18上是重合的,这样可以吗?前提是该四个异构体无法在手性柱的一个流动相体系中出现,所以才出此下策。[/b][/size]

  • 市场监管总局关于进一步做好《电梯监督检验和定期检验规则》《电梯自行检测规则》实施工作的通知

    [font=仿宋_GB2312]各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委),有关单位:[/font][font=仿宋_GB2312] 《电梯[/font][font=仿宋_GB2312]监督检验和定期检验规则》([font=&]TSG T7[/font][/font]001[font=仿宋_GB2312]—[font=&]2023[/font],以下称新版检规)和《电梯自行检测规则》([font=&]TSG T7008[/font]—[font=&]2023[/font],以下称检测规则)已由市场监管总局[font=&]2023[/font]年第[font=&]14[/font]号公告发布,于[font=&]2023[/font]年[font=&]4[/font]月[font=&]2[/font]日起施行,过渡期为[font=&]1[/font]年。为确保新版检规和检测规则更好实施,结[/font][font=仿宋_GB2312]合过渡期内各地工作进展情况,现就有关事项通知如下。[/font][font=黑体] 一、加大政策支持力度,促进检测工作顺利实施[/font][font=仿宋_GB2312] 各地市场监管部门要切实做好新版检规和检测规则的贯彻实施,充分调动电梯使用、生产单位积极性,鼓励电梯使用、维保单位开展自行检测,落实安全主体责任。[/font][font=楷体_GB2312] (一)规范检测准入条件。[/font][font=仿宋_GB2312] 满足检测规则第[font=&]2.2[/font]条要求的检测单位,即可从事电梯自行检测工作,不得新增任何限制条件或设置任何事前审批环节。按照《特种设备检验检测机构核准规则》([font=&]TSG Z7001[/font]—[font=&]2004[/font])核准的具有电梯定期检验[font=&]TD1[/font]资质的甲类综合检验机构,在[font=&]2025[/font]年[font=&]12[/font]月[font=&]31[/font]日前可从事电梯检测工作。[/font][font=楷体_GB2312] (二)明确免征地区或单位检测主体。[/font][font=仿宋_GB2312] 对于免征特种设备检验费用的地区或单位,电梯使用单位满足检测规则的条件即可开展自行检测,也可委托向其提供电梯维护保养服务的单位或者经核准的特种设备检测、检验机构开展;检验机构可以同时承担电梯检验和电梯检测工作,但不得以任何形式收取检测费用。[/font][font=楷体_GB2312] (三)推进电梯检测数据联通。[/font][font=仿宋_GB2312] 检测单位要按照当地市场监管部门要求,及时传递、报告或者公示电梯自行检测信息。各地市场监管部门要积极应用电梯等特种设备安全监管平台,为检测单位传递、报告自行检测信息提供便利,确保电梯检验检测方式调整有序平稳过渡。[/font][font=楷体_GB2312] (四)强化检测结果应用。[/font][font=仿宋_GB2312] 电梯自行检测工作由维保单位承担的,如果自行检测项目及其内容能够覆盖《电梯维护保养规则》([font=&]TSG T5002[/font]—[font=&]2017[/font])中第五条第(九)项所述的年度自行检查项目及其内容,维保单位可不再单独进行本年度的自行检查工作。电梯变更使用单位时,原使用单位(或产权单位)可以持上一年度的电梯自行检测报告办理。[/font][font=黑体] 二、加强事中事后监管,保障检验检测工作质量[/font][font=仿宋_GB2312]各地市场监管部门要深入推进电梯安全筑底行动,加强对检验机构、检测单位和检验、检测行为的监督检查,提高检验、检测工作质量。[/font][font=楷体_GB2312] (一)强化退出机制。[/font][font=仿宋_GB2312]对违反法律法规、不按照安全技术规范进行检验、检测的,依法依规严肃查处,并将处理结果向社会公开,积极营造依法施检、公平公正的电梯检验检测行业氛围。[/font][font=楷体_GB2312] (二)提升合规管理水平。[/font][font=仿宋_GB2312]督促检验机构完善管理制度,优化内部工作流程,主动公示检验程序和收费标准,建立客户回访制度,增强服务意识,提升服务效能和满意度。[/font][font=楷体_GB2312] (三)严厉查处超期不检测行为。[/font][font=仿宋_GB2312]检查发现到期不检测的电梯,应当依照《中华人民共和国特种设备安全法》第十五条相关规定,下达特种设备安全监察指令书,逾期不予整改的,依据《特种设备安全监督检查办法》(国家市场监督管理总局令第[font=&]57[/font]号)第三十六条进行处理。[/font][font=黑体] 三、细化具体实施要求,提升检验检测规则可操作性 [/font][font=楷体_GB2312] (一)规范检验检测工作程序。[/font][font=仿宋_GB2312][font=&] 1.[/font] 落实音像记录要求。对于新版检规中要求进行音像记录的试验项目,检验机构及人员应当保证其记录内容的唯一性、完整性和可追溯性。对于检验的全过程进行不间断视频和音频记录的,则无需再对相关试验项目单独进行音像记录。同时,检验机构应当做好音像记录的存储和管理工作。对于使用场所涉密或者其他不宜进行音像记录的,使用单位应当向检验机构出具书面说明,经检验机构确认后,检验人员可以不对相应的试验过程进行音像记录。[/font][font=仿宋_GB2312][font=&] 2.[/font] 换发《特[/font][font=仿宋_GB2312]种设备使用标志》。检验机构应当依据新版检规和检测规则,出具或换发《特种设备使用标志》(式样见附件),且不得以任何形式收取费用。如在检验(检测)周期内,使用单位更换电梯维保单位的,使用单位应当凭《电梯自行检测符合性声明》[/font][font=仿宋_GB2312]和相应的维保合同原件,到最近一次实施检验的检验机构换取标志。[/font][font=仿宋_GB2312][font=&] 3.[/font] 明确检验检测实施月份。对于未按新版检规检验过的电梯,经与使用单位沟通确认,可以将最近一次《特种设备使用标志》的“下次检验日期”所在的月份作为后期定期检验或自行检测的实施月份。[/font][font=楷体_GB2312] (二)规范检验检测技术要求。[/font][font=仿宋_GB2312][font=&]1. [/font]关于驱动主机停止装置与上行超速保护装置试验。如未按照新版检规进行过监督检验的,有机房电梯的驱动主机停止装置、电梯[/font][font=仿宋_GB2312]轿厢上行超速保护装置监测功能[/font][font=仿宋_GB2312]在定期检验或自行检测时,可以不做要求。[/font][font=仿宋_GB2312][font=&] 2.[/font] 关于轿厢内铭牌及标识。载货电梯(含改造后的)轿厢内铭牌上不标注乘客人数,其他信息按照新版检规中第[font=&]A1.2.6.7[/font]条第([font=&]1[/font])项的要求标注。[/font][font=仿宋_GB2312][color=#ff0000][/color][/font][font=仿宋_GB2312][font=&] 3.[/font] 关于应急救援试验。在定期检验或自行检测时,可以在空载工况下进行。[/font][font=仿宋_GB2312][font=&] 4.[/font] 关于新装电梯带载检验项目。电梯制造单位应当强化安装质量控制,加强安装过程的监控或指导,依法做好相关校验和调试,确保在安装竣工自检时,限速器—安全钳联动试验、曳引能力试验、制动性能试验、制停距离试验、附加制动器试验等项目有效实施。检验机构开展上述带载检验项目,要与施工单位安装竣工自检合并进行。[/font][font=仿宋_GB2312][font=&] 5.[/font] 关于[font=&]125%[/font]额定载重量制动试验年份。检验机构、检测单位应以最近一次试验所在年份为基准,确定后续进行该试验的年份,每[font=&]6[/font]年进行一次。[/font][font=仿宋_GB2312][font=&] 6.[/font] 关于阻挡装置。相邻平行布置并且共用外盖板的宽度大于[font=&]125mm[/font]的自动扶梯或者自动人行道应设置符合要求的阻挡装置。[/font][font=仿宋_GB2312] 工作中遇到的问题,请及时报市场监管总局特种设备局。[/font][font=仿宋_GB2312] 附件:《特种设备使用标志》式样[/font][font=仿宋_GB2312] [/font][font=仿宋_GB2312] [/font][font=仿宋_GB2312] [/font][align=right][font=仿宋_GB2312]市场监管总局 [/font][/align][align=right][font=仿宋_GB2312] [/font][font=&]2024[/font][font=仿宋_GB2312]年[/font]3[font=仿宋_GB2312]月[/font]15[font=仿宋_GB2312]日[/font][/align][align=right][font=仿宋_GB2312][/font][/align][font=仿宋_GB2312] (此件公开发布)[/font][list][/list][list][*]附件下载[*][/list][list][*][url=https://www.samr.gov.cn/cms_files/filemanager/1647978232/attach/20241/c2bb0afc6f404983a9a0defa9ff89e54.doc?fileName=%E9%99%84%E4%BB%B6.doc]附件.doc[/url][/list]

  • 半导体低温工艺中制冷系统的压力和温度准确控制解决方案

    半导体低温工艺中制冷系统的压力和温度准确控制解决方案

    [color=#990000]摘要:针对半导体低温工艺中制冷系统在高压防护和温度控制中存在的问题,本文将提出一种更简便有效的解决方案。解决方案的核心是在晶片托盘上并联一个流量可调旁路,使制冷剂在流入晶片托盘之前进行部分短路。即通过旁路流量的变化调节流出晶片托盘的制冷剂压力,一方面保证制冷剂低压工作状态,另一方面实现晶片温度的高精度控制。[/color][align=center]~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b] 随着新一代半导体工艺技术的发展,如低温刻蚀和沉积,需要晶片达到更低的温度。更低温度的实现目前可选的技术途径一般是采用循环流体介质直接作用在晶片卡盘,而介质可以是单一制冷剂(如液氮)和混合制冷剂。目前,更具有应用前景的是使用混合制冷剂的自复叠混合工质低温制冷技术,但在半导体低温工艺的具体应用中,需要处理好以下两方面的问题: (1)当制冷系统连接到晶片托盘后,混合工质就在一个容积固定管路内循环运行。在压缩机启动初期,整个系统基本处于较高温度,系统内大部分工质为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],随着制冷温度的降低,除压缩机和冷凝器外的其他部件内的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]工质含量逐渐增加,当制冷温度达到最低时,系统内的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]工质含量达到最高。由于气液两相工质的比容相差较大,不同相态的工质通过节流单元的能力不同,工质间的沸点也不同,所以在制冷系统启动初期,通过节流单元的几乎全部为气态工质,压缩机的排气压力也将会很高。而在半导体工艺设备中,半导体晶片托盘及其回路部件的最大工作压力通常在1~1.4MPa范围内,那么在低温制冷过程中,冷却剂压力可能会超过晶片托盘冷却回路的最大操作压力而造成系统损坏。因此,要在晶片制冷系统中增加低温压力控制装置,避免出现高压问题,保证制冷系统在整个运行过程中制冷剂压力符合要求。 (2)晶片冷却温度是半导体低温工艺的一项重要技术参数,晶片冷却过程中的低温温度要求按照设定值进行准确控制。尽管大多数低温制冷系统都具有温度控制功能,可通过外部温度传感器、调节回路和控制器组成的闭环回路实现低温温度控制,调节回路基本都是通过调节制冷剂流量和膨胀方式,有些则通过辅助加热方式进行温度控制,但这些温控方式普遍结构复杂且控温精度不高,特别是在多个晶片同时冷却的半导体设备中这些问题更是突出。 针对上述半导体低温工艺中制冷系统在压力和温度控制中存在的问题,本文将提出一种更简便有效的解决方案。解决方案的核心是在晶片托盘上并联一个流量可调旁路,使制冷剂在流入晶片托盘之前进行部分短路。即通过旁路流量的变化调节流出晶片托盘的制冷剂压力,一方面保证制冷剂低压工作状态,另一方面实现晶片温度的高精度控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 对于半导体低温工艺中的晶片托盘进行冷却,一般所采用的技术方案是直接将自复叠混合工质制冷机与晶片托盘连接,其结构如图1所示。这种方案在温度控制时是在晶片托盘上安装温度传感器,并与控制器连接进行温度控制,但这种方案存在压力过高和温度控制不准确的问题。[align=center][color=#33ccff][size=14px][b][img=半导体晶片低温冷却实施方案示意图,400,235]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900279759_748_3221506_3.jpg!w690x406.jpg[/img][/b][/size][/color][/align][align=center][b][color=#990000]图1 半导体晶片低温冷却常规方案[/color][/b][/align][align=center][size=14px][b][img=半导体晶片低温冷却改进后方案,400,240]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900037860_9891_3221506_3.jpg!w690x414.jpg[/img][/b][/size][/align][b][/b][align=center][b][color=#990000]图2 半导体晶片低温冷却改进后方案[/color][/b][/align] 本文提出的改进方案如图2所示,为了使冷却过程中的混合工质压力始终处于安全工作范围,在图1所示的冷却管路上增加了一个短接旁路,通过一个调节阀控制此旁路中的工质流量可以降低晶片卡盘及其管路的内部压力达到安全范围。同时,此旁路调节阀具有高精度动态精密调节能力,可使晶片卡盘内部的制冷剂压力波动非常小而实现更准确的温度控制,由此可在制冷机现有温度控制能力的基础上,降低压力波动和提高温度稳定性。具体实施方案如图3所示。[align=center][size=14px][b][color=#33ccff][img=半导体晶片低温冷却实施方案示意图,690,266]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900506941_8802_3221506_3.jpg!w690x266.jpg[/img][/color][/b][/size][/align][align=center][b][color=#990000]图3 半导体晶片低温冷却系统压力和温度精密控制方案示意图[/color][/b][/align] 在图3所示的解决方案中,采用了以下几个控制部件: (1)气动调节阀:此气动调节阀也称之为背压阀,即通过较小的气体压力来驱动较大压力下流体介质中阀门的开度变化。通过此低温调节阀开度变化来改变旁路流量进而实现压力调节。 (2)先导阀:先导阀是一个低压气体压力调节阀,可对表压(如0.6MPa)的进气压力进行高精度减压调节,调节控制信号为模拟量(如4~20mA或0-10V),由此来驱动气动调节阀。 (3)传感器:晶片低温冷却系统包含了压力和温度传感器,以分别检测晶片冷却剂回路中的压力和晶片温度,并将检测信号传输给双通道PID控制器。压力传感器可根据实际需要布置在制冷剂管路中的不同位置,以提供合理和准确的压力监测。 (4)双通道控制器:此双通道控制器是具有两路独立控制通道且具有很高精度的PID控制器,一路通道与压力传感器和先导阀构成压力控制回路,另一通道与温度传感器和制冷机构成温度控制回路。 总之,通过这种增加旁路并进行压力精密调节的解决方案,即可满足降低制冷剂压力提供安全防护功能,又可以提高晶片温度控制精度,是一种可用于晶片低温工艺的更优化方案。[align=center]~~~~~~~~~~~~~~[/align]

  • 体外循环术中灌注流量的高精度自动控制解决方案

    体外循环术中灌注流量的高精度自动控制解决方案

    [align=center][size=16px][img=体外循环术中灌注流量的高精度自动控制,600,415]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271116037597_5912_3221506_3.jpg!w690x478.jpg[/img][/size][/align][size=16px][color=#990000][b]摘要:在目前的体外循环手术过程中,需要灌注师快速而精确地操作使得血液流速调节到期望的目标值。基于国外文献报道的血流量自动控制方法和装置,本文提出了技术改进且国产化解决方案。通过本解决方案中增加的国产系列电控夹管阀、电控针阀和具有远程设定值功能的超高精度PID控制器,可以使得体外循环过程中的静脉和动脉血流量控制真正实现高精度的自动化控制,在满足临床应用和研究需求的同时,可降低灌注师的操作难度和医疗事故。[/b][/color][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 体外循环(CPB)设备在心脏手术期间临时替代心肺功能,以维持体循环。心脏体外循环手术时,需要将手术病人静脉血从体内引出,通过体外循环机氧合后回输至体内动脉管道、静脉回流管、左心房引流管、心内吸引管、普通吸引管等管道,并维持血流量、静脉储库水平、氧气浓度、氧气血流量和血液温度,其中对血液流速的控制要求非常高,稍有错误就会导致循环障碍和大量空气栓塞,从而导致严重的医疗事故。[/size][size=16px] 在CPB具体操作过程中,需要灌注师快速而精确地操作三个装置(静脉侧阻隔器、动脉侧阻隔器和离心泵)来将血液流速调节到期望的目标值,不正确的操作会导致气栓并改变静脉储血水平而导致意外的血压波动,从而将患者置于危险之中。因此,需要开发一种有助于自动调节血液流速的装置以提高自动化控制水平和降低灌注师工作强度,为此文献[1]提出了一种体外循环过程中动脉侧血流量的自动控制方法和控制装置,其结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=体外循环血流量自动控制结构示意图,650,351]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271117325921_65_3221506_3.jpg!w584x316.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 体外循环血流量自动控制装置结构示意图[/b][/color][/size][/align][size=16px] 尽管文献[1]提出了一种体外循环过程中动脉侧血流量的自动控制方法和相应装置,但距离真正的临床应用还有一定差距,这些差距主要体现在以下几个方面:[/size][size=16px] (1)尽管文献[1]给出了静脉侧和动脉侧血流量调节用的手动和自动阻隔器的具体型号,但我们并未在阻隔器厂家官网上查到相应型号阻隔器的具体产品和相应技术参数。因此,为了真正实现临床应用还需进一步明确阻隔器产品,甚至是国产化替代。[/size][size=16px] (2)动脉侧血流量自动控制的目的是要自动调节动脉侧血流量的变化始终要与静脉侧血流量的变化保持快速同步和相同,但文献[1]给出的控制模型和控制策略过于复杂,较难真正的工程化实现。[/size][size=16px] 针对文献[1]技术方案存在的上述缺陷,本文提出了可真正实现临床应用的解决方案,能很好的解决上述问题,并可完全采用国产化相关产品予以实现。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 基于文献[1]所述的动脉侧血流量自动控制技术方案,我们进行了改进,并进一步明确和细化了相关所用部件,改进后的自动控制装置结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=改进后的体外循环血流量自动控制结构示意图,650,311]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271118025749_1493_3221506_3.jpg!w690x331.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 改进后的体外循环血流量自动控制结构示意图[/b][/color][/size][/align][size=16px] 解决方案的改进内容之一是采用国产的电控夹管阀来代替文献[1]中所用的阻隔器,这种电控夹管阀可以通过0~10V的直流电压信号来改变加持力以调节管路导通口径的大小,从而实现对管路中的流体流量进行调节。由此可见,这种电控夹管阀可以很方便的被用来进行静脉侧和动脉侧血流量的手动或自动调节。[/size][size=16px] 尽管电控夹管阀和自动阻隔器可以用来对体外循环系统中的血流量进行调节,但存在的问题是会带来的非线性,这种非线性会对自动控制精度带来严重影响,这也是文献[1]控制模型非常复杂的主要原因。文献[2]对这种非线性进行了研究和描述,发现操作值与开度之间呈指数关系。[/size][size=16px] 为了解决管夹形式所带来的非线性问题,解决方案提出的改进内容之二是采用NCNV系列的电控针阀。NCNV系列电控针阀具有非常高的线性度,且具有快速的响应速度以及不同的孔径尺寸,常用于气体和液体介质的真空、压力和流量的精密调节。尽管采用电控针阀可以很好的解决夹管阀非线性所带来的控制精度问题,但电控针阀存在的重要问题是针阀需要接触所调节的流体介质,不能像夹管阀那样与流体介质不发生接触。[/size][size=16px] 为真正使动脉侧血流量能快速与静脉侧血流量保持同步和相同,本解决方案提出的重大改进是采用具有远程设定点功能的VPC2021系列高精度PID控制器,控制器的具体特性和功能如下:[/size][size=16px] (1)具有两个输入信号接收通道,其中主输入通道接收动脉侧流量计信号,并由主控输出通道输出控制信号对动脉侧电控夹管阀/针阀进行调节;而辅助输入通道接收静脉侧流量计信号,此接收到的静脉侧流量信号则作为动脉侧流量控制的设定值。通过这种辅助输入通道的这种远程设定值功能,可使得动脉侧的流量控制始终以静脉侧的流量为跟踪控制目标。[/size][size=16px] (2)控制器具有超高的测量精度和控制精度,其中24位AD、16位DA和0.01%最小输出百分比,并采用了无超调的PID控制模式,这非常适用于体外循环装置中的高精度血液流量控制。[/size][size=16px] (3)控制器具有RS485通讯接口,并执行标准的MODBUS协议。控制器自带测控软件,在计算机上运行软件可实现控制器参数设置、驱动运行、过程参数的采集、曲线显示和存储,无需再进行程序编写就可组成软硬件控制系统用于临床应用和研究。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 通过本解决方案中增加的国产系列电控夹管阀、电控针阀和具有远程设定值功能超高精度PID控制器,可以使得体外循环过程中的静脉和动脉血流量控制真正实现高精度的自动化控制,在满足临床应用和研究需求的同时,降低医疗事故和灌注师的操作难度。[/size][size=18px][color=#990000][b]4. 参考文献[/b][/color][/size][size=16px][1] Takahashi H, Kinoshita T, Soh Z, et al. Automatic control of blood flow rate on the arterial-line side during cardiopulmonary bypass[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021: 5011-5014.[/size][size=16px][2] Takahashi H, Soh Z, Tsuji T. Steady-state model of pressure-flow characteristics modulated by occluders in cardiopulmonary bypass systems[J]. IEEE Access, 2020, 8: 220962-220972.[/size][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    [size=14px][color=#cc0000]  摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px]  各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px]  低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px]  中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px]  等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px]  为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px]  针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px]  具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px]  丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px]  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)电源供电:DC 9~24V。[/size][size=14px]  (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px]  安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px]  在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px]  另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px]  上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px]  同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px]  [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]

  • 软管夹管阀在流体介质高精度压力和流量控制中的应用

    软管夹管阀在流体介质高精度压力和流量控制中的应用

    [align=center][b][img=采用夹管阀实现无菌流体系统中的高精度压力和流量控制解决方案,690,450]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181658154269_9598_3221506_3.jpg!w690x450.jpg[/img][/b][/align][size=16px][b][color=#000066][/color][color=#339999]摘要:针对卫生和无菌流体系统中柔性管路内的压力和流量控制,本文介绍了采用电控夹管阀的高精度控制解决方案。解决方案基于反馈控制原理,采用压力传感器或流量传感器进行测量并反馈给程序控制器,控制器驱动夹管阀来改变柔性管路的内径从而实现高精度控制。尽管解决方案只介绍了最基本的夹管阀闭环控制回路,但这种简单控制可以进行多种组合以适用于多种流体介质的压力流量控制。本文同时也介绍了夹管阀应用的局限性和改进方法。[/color][/b][/size][align=center][size=16px][color=#339999][b]=======================[/b][/color][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 夹管阀是一种打开或关闭流体路径,而阀体不会与流动介质接触的阀门,也就是流体管路内径的控制依赖于弹性管路外部的挤压压力。夹管阀主体内部不会接触到流体,仅有管路内部会接触流经的液体或气体,可确保流体不会受到污染,且能保持夹管阀的清洁,因此适合做为生物加工、食品工业、饮料工业、剂量系统、自动贩卖机、血液处理/分析、实验室分析、冲洗程序需无菌的生物制药等设备的阀门。与其他闸阀或活塞阀相比,使用夹管阀的主要优点是让阀体不会与腐蚀性流动介质接触,因此无论在使用寿命或卫生方面都更持久、干净。[/size][size=16px] 在夹管阀的实际应用中,往往是通过改变夹管阀挤压压力来调节软管的开度,以控制管路内[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]介质的输送流量与流速,同时也相应的改变了软管内部的背压压力。夹管阀只是作为一个调节流量和压力的执行器件,还无法进行管路内部压力和流量的闭环自动控制。[/size][size=16px] 为了采用夹管阀实现无菌流体系统中的压力和流量控制,特别是实现高精度的自动控制,本文将介绍一种闭环控制解决方案及其一些具体应用案例。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了高精度的控制流体介质管路中的压力和流量,本解决方案提出的控制系统如图1所示。解决方案设计的控制系统是一种最基本的控制结构,可以根据实际应用情况进行各种组合。[/size][size=16px] 图1所示的控制系统主要由泵、压力传感器、流量传感器、夹管阀、程序控制器和柔性管材组成,其各组件的功能如下:[/size][size=16px] (1)泵:主要用来驱动流体在柔性管路内流动,相当于一个进液源。[/size][size=16px] (2)压力传感器:测量柔性管路内流动液体的压力,并输出相应的压力测量信号。[/size][size=16px] (3)流量传感器:测量柔性管路内流动液体的流量,并输出相应的流量测量信号。[/size][size=16px] (4)夹管阀:夹管阀采用的是电控式夹管阀,可灵活调节挤压压力,对应最大可夹软管外径7mm,软管壁厚范围0.5~2mm,夹紧留隙调节为0.5~2mm。夹管阀可方便地调节运动滑块的初始位置,灵活适用不同壁厚尺寸的软管。24V直流供电,控制信号为0~5V或0-20mA。[/size][size=16px] (5)程序控制器:程序控制器采用的是VPC2021系列多功能超高精度PID真空压力程序调节器,可接入真空、压力、流量、温度和张力等47种传感器信号,具有串级控制、分程控制、比值控制等高级控制功能,具有控制程序功能和外部设定点功能,具有24位AD、16位DA和0.01%最小输出百分比。控制器自动计算机软件,可由计算机进行远程参数设置和运行操作。[/size][align=center][size=16px][color=#339999][b][img=夹管阀流体压力和流量闭环控制系统结构示意图,600,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181700229428_1520_3221506_3.jpg!w690x341.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 夹管阀流体压力和流量精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 解决方案中的压力和流量控制系统的工作过程是进液通过泵的驱动使流体介质在柔性管道内流动,压力或流量传感器采集相应的压力或流量信号并传输给程序控制器,控制器根据设定值进行比较后输出控制信号驱动夹管阀动作,使管路内的压力或流量准确达到设定值。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 尽管上述夹管阀具有高精度的压力和流量的控制能力和响应速度快的特点,但由于夹管阀会改变柔性管路的内径大小,使得管路内部的背压增大,而这种压力的增大必须要在软管的可承受范围之内,否则很容易造成软管的爆裂或接口爆开。因此,更安全可靠的压力和流量控制方式是不使用夹管阀,而是直接控制进液压力,通过改变进液压力来调节管路内的介质压力和流量。这种进液压力调节有以下三种控制方式:[/size][size=16px] (1)采用转速可调节式泵来改变进液压压力。[/size][size=16px] (2)采用注射泵来改变进液压力和流速。[/size][size=16px] (3)采用进液容器顶部气压控制方式的压力控制器,同时连接外部压力或流量传感器形成闭环控制回路,以改变液池顶部加载压力实现压力和流量的自动控制。[/size][size=16px] 上述的三种控制方式中,顶部气压控制方式的技术优势最为明显,同样可以实现高精度的压力和流量控制,特别是可以应用到微小流量的快速和超高精度控制。[/size][size=16px] 另外,对于微流控芯片技术中所用的微小流量控制,往往会使用到小于1mm的很细软管,这些微细软管内的压力和流量控制则可能不太适合采用夹管阀,这时更适合采用注射泵或压力控制器形式。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 怎么应对冷热一体控制机安装故障?

    冷热一体控制机在安装的时候需要注意一些小的问题,多注意冷热一体控制机的性能,以正确的安装的状态来进行安装,那么,冷热一体控制机怎么应对安装故障呢?  由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出,因此应尽可能采用热电极较细、保护管直径较小的热电偶。在测温环境许可时,甚至可将保护管取去。  冷热一体控制机在使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管,在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。  由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。为了准确的测量温度,应当选择时间常数小的热电偶,时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,冷热一体控制机绝缘变差而引入的误差。  冷热一体控制机保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。  冷热一体控制机以上的安装故障,尽量避免为好,降低冷热一体控制机的出错率,节约企业运行成本。

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 油炸工艺中的真空、正压和高压压力控制解决方案

    油炸工艺中的真空、正压和高压压力控制解决方案

    [size=16px][color=#339999]摘要:针对食品油炸过程中涉及到的真空、正压和高压三种压力场控制需求,本文提出了相应的解决方案。解决方案基于动态平衡法控制原理,采用真空压力控制器、电动针阀、电动球阀、电气比例阀、背压阀和真空泵的搭配组合,分别实现真空负压控制、正压控制和超高压控制,可有效保证油炸食物品质,更便于油炸参数和新技术的开发。依据解决方案所构成的真空压力控制系统即可单独构成油炸设备的控制单元,也可配套集成到中央控制系统。[/color][/size][align=center][size=16px][img=油炸设备中的真空、正压和高压三种压力场控制的解决方案,500,376]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291411304643_3469_3221506_3.jpg!w690x520.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. [/color][/size][size=18px][color=#339999]油炸过程中的压力场控制问题[/color][/size][/b][size=16px] 油炸是以油为传热介质的最流行的食品加工方法之一,是一个典型的高温传热传质过程。油炸食品由于美味而广受欢迎,但油炸食品往往对人体健康造成很大影响。为此,现有和今后的油炸技术都在基于物理场(温度场、压力场、电磁场和声场等)的单独或协同应用技术,以减少油炸食品对健康的负担以及提高油炸食品的生产效率和质量。[/size][size=16px] 油炸与其他加热烹饪方法一样,首先要能形成一定的温度场才能使食物致熟,但为了能提供更健康的油炸食物,往往会需要进行相应的压力等其他物理场的控制。尽管现在有很多其他油炸新技术,但健康油炸过程的两个核心指标还是温度和压力,这是因为压力往往会决定温度高低。众所周知,水的沸点与外界压力有关。当施加的压力降低(或增加)时,水的沸点降低(或增加),这就是基于压力场油炸技术和改变油炸温度的基本原理。[/size][size=16px] 随着科技的进不许,真空油炸(减压)或压力油炸(加压)正在取代常压油炸技术,提高油炸产品的效率和质量。另外,高压加工(HPP)作为预处理技术的应用已经显示出在油炸水果和蔬菜中具有巨大的商业利用潜力,具有更快的水分去除率和更少的质量退化。下面将分别介绍油炸技术中的这三种压力场控制方法以及需解决的技术问题。[/size][size=16px][color=#339999][b]1.1 真空油炸(低压或减压)[/b][/color][/size][size=16px] 真空油炸被定义为在低于大气压下进行的深度油炸过程,典型的真空油炸装置如图1所示[1]。由于真空下水的沸点降低,食物中的水分可以在相对较低的温度下除去,这使得真空油炸具有保留热敏性营养物的显著特征。同时,由于低温和真空下的低氧含量,脂肪氧化和美拉德反应也受到显著抑制。此外,真空油炸水果和蔬菜更好地保留了天然颜色,包含更高的亮度、更低的红色和更低的黄色,这可能与更少的非酶褐变反应有关。[/size][align=center][size=16px][color=#339999][b][img=01.典型真空油炸装置示意图,650,355]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291415539393_8671_3221506_3.jpg!w690x377.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 典型真空油炸装置示意图[1][/b][/color][/size][/align][size=16px] 此外,由于在最初的减压步骤中实现了更少的气泡和更均匀的微观表面结构,因此在油炸产品中实现了更好的保存纹理。[/size][size=16px] 真空油炸的另一个优势是油炸后的离心步骤,同时保持负压,这大大有助于减少最终产品的吸油量。在真空条件下,油炸材料的结构保持膨胀和松散的形状,孔隙中的压力随着热传递和水蒸发速率的降低而保持,这抑制了油被临时毛细压力吸收到外壳中。同时,在油炸篮从油中提起后立即进行离心,大部分附着在表面的油被离心力去除,从表面渗透到多孔结构的油最终减少,从而使最终产品具有较少的吸油量。因此,真空油炸的商业应用已经被许多具有低脂肪生产要求的食品工业所采用,特别是水果和蔬菜。[/size][size=16px] 然而,由于相对较低的温度,真空油炸延长了某些产品的油炸时间,因此较长的加工周期和较高的能耗成为其应用的明显障碍。因此近年来,人们尝试了创新的预处理方法和电磁加热技术,以降低油炸时间和能耗并提高真空油炸产品的整体质量属性。[/size][size=16px] 另外,尽管目前真空油炸技术和设备已经比较成熟,但有个关键技术问题则很少涉及,那就是如何准确控制真空度来满足不同食品的油炸需要,使得油炸食品具有更高的品质和重复性。[/size][size=16px][color=#339999][b]1.2 压力油炸[/b][/color][/size][size=16px] 压力油炸是通过食物自然释放的水分在油炸锅内产生足够压力的过程。水的沸点由于油炸锅中的高压(通常高于大气压)而升高,这导致食物中的水分更好地保留。大量研究表明,压力油炸主要应用于肉、鱼和家禽产品,以有效地减少加工时间并生产具有优良质地的油炸产品,在2bar压力下,压力油炸的传热系数几乎是常压油炸的两倍,与常压油炸相比,压力油炸鸡肉的油炸时间减少了近50%。就压力油炸过程中的结构变化而言,由于加剧的水分梯度,促进了外壳表面的形成,并增加了孔隙率,导致油炸产品的脆性质地和多孔外观。据报道,炸鸡的多汁性、嫩度和颜色得到了极大改善,并且与开放式油炸相比,还发现了更脆的外壳。此外,据报道,压力油炸产品的吸油率因水分保留而降低,同时压力油炸鸡肉中的中性脂肪含量减少了10.0%,碳水化合物含量增加了18.9%,而蛋白质含量没有发现显著差异,压力油炸鸡肉中游离脂肪酸和硫代巴比妥酸的含量分别降低了75.6%和26.2%,这意味着油炸鸡肉中的脂肪质量得到了极大改善。[/size][size=16px] 压力油炸在一些即食食品加工情况下有广泛的应用,如餐馆、超市、便利店、熟食店、学校、医院和其他商业餐饮经营。氮气被选择用作油炸锅中的压力产生源,以产生在保湿和质地方面质量更好的油炸产品。然而,由于繁琐的操作过程和较少的油炸食品量,其在工业生产中的应用受到限制,因此当用于大规模生产水平时,有必要探索合适的油炸条件或连续生产方法,以实现更高的加工效率。[/size][size=16px] 同样,在压力油炸中也同样很少涉及如何准确控制压力来满足不同食品的油炸需要。[/size][size=16px][color=#339999][b]1.3 高压加工预处理[/b][/color][/size][size=16px] 高压加工也称为高静水压或高静压(远高于100MPa),是食品加工中的一种新兴技术。这种最初用作非热保存的技术被发现有利于在油炸过程中获得高质量转移率,因为它对部分细胞渗透性的改变有影响。同时,油炸前的高压加工预处理被确定为通过抑制酶促和非酶促反应的发生而对油炸产品的颜色产生积极影响。[/size][size=16px] 值得注意的是,在100MPa较低压力下提交的油炸食品明显轻于200和300MPa较高压力下处理的油炸食品。压力造成的组织破坏增加了多酚氧化酶与其底物的接触,并没有完全使酶失活。有研究报道,高压加工预处理有助于减少油炸时间,增加油炸蔬菜和水果的硬度,这可能与细胞壁的物理损伤有关,导致细胞破裂和随后的水分渗出。此外,高压加工预处理能够保留水果和蔬菜的营养和感官特性,因为它对与其颜色和风味相关的化合物的共价键影响有限,同时能更好地保持最终油炸产品的酚类物质含量和抗氧化能力,而这种效应甚至可以在储存过程中有效维持。然而,据报道,高压加工预处理油炸会使得有些水果和蔬菜的吸油量增加,这可能与较高的渗透率有关,这有助于油炸物容纳更多的油。因此,适当的减油技术可以与高压加工预处理相结合,以保证其作为提高油炸产品效率和质量的有效策略。[/size][size=16px][color=#339999][b]1.4 问题的提出[/b][/color][/size][size=16px] 从上述三种不同压力形式的油炸方法介绍可以看出,压力场的控制会涉及到低压、正压和高压三个压力区间,但很少有报道涉及到详细的压力控制方法和相关仪器,而压力的准确控制会涉及到具体油炸产品品种和相应的油炸温度,为此本文将提出详细的真空压力控制解决方案。[/size][size=18px][color=#339999][b]2. 真空压力控制原理[/b][/color][/size][size=16px] 从上述油炸过程中所需的压力场可以看出,以绝对压力形式来描述,其相应的真空压力范围为0.005 ~ 300MPa。为了在如此宽泛的压力范围内实现压力控制,本文将采用动态平衡控制方法,其基本原理如图2所示。此原理的特点是既能进行全量程范围的真空压力控制,也可以进行某段区间内的单独控制。[/size][align=center][size=16px][color=#339999][b][img=02.油炸装置真空压力控制原理示意图,550,238]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291416216769_231_3221506_3.jpg!w690x299.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 油炸过程真空压力控制原理示意图[/b][/color][/size][/align][size=16px] 按照图2所示的动态平衡法真空压力控制原理,油炸过程中的真空压力控制主要分三部分:[/size][size=16px] (1)负压区间控制:在控制真空负压时,由进气排气阀门、真空泵、传感器和控制器组成闭环控制回路,高压气源提供压力不高的工作气体。在具体控制过程中,真空压力控制器根据传感器采集信号与设定值进行比较,控制器输出两路信号分别用于固定进气阀门开度和调节排气阀门开度,通过自动调节进出气流量达到动态平衡来实现负压区间全量程的真空度准确控制。[/size][size=16px] (2)正压区间控制:在低于7MPa范围内的正压控制时,由高压气源、进气阀、传感器和控制器组成闭环控制回路。进气阀门直接采用电气比例阀,比例阀对高于7MPa的高压气源进行减压控制,而真空压力控制器根据压力传感器与设定值比较后输出信号对比例阀进行自动调节。[/size][size=16px] (3)超高压区间控制:对于7~300MPa范围内的超高压控制,进气阀门需要采用电气比例阀和背压阀的组合形式。背压阀对超高压进气进行减压来控制控制油渣罐内的超高压力,电气比例阀作为先导阀来调节背压阀,真空压力控制器根据压力传感器与设定值比较后输出信号对比例阀进行自动调节。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 根据前述的油炸装置真空压力控制原理以及三个不同真空压力范围的控制方法,本文提出了三个相应的具体解决方案。[/size][size=16px][color=#339999][b]3.1 真空负压控制解决方案[/b][/color][/size][size=16px] 基于图1所示的油炸装置结构,真空负压控制的解决方案具体如图3所示。[/size][align=center][size=16px][color=#339999][b][img=03.油炸装置真空负压控制系统结构示意图,550,238]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291416416718_3794_3221506_3.jpg!w690x299.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 油炸装置真空负压控制系统结构示意图[/b][/color][/size][/align][size=16px] 方案中采用了电动针阀进行进气流量调节,采用电动球阀进行排列流量调节,真空计为1000Torr量程的薄膜电容规。在油炸装置中对选用的电动针阀和电动球阀有较高的要求,一方面是要有较好的真空密封性能,更重要的是还要具有较快的调节速度,以便能对油炸过程中温度变化以及水分蒸发造成的气压突变进行快速调节。[/size][size=16px] 另外,所用的电动针阀和球阀较适用于小尺寸的油炸罐体,对于较大规格的油炸罐体,可以考虑采用具有相同性能的进气电动球阀和排气电动蝶阀,以满足大尺寸腔体对大流量进气和排气的需要。[/size][size=16px] 解决方案中的另一个重要内容是真空压力控制器,这里的控制器是一个高精度通用型的双通道PID控制器,两个独立通道分别用于电动针阀和电动球阀开度的控制。另外,此真空压力控制器具有通讯接口和配套的计算机软件,可通过上位机编程进行控制,也可能用计算机直接运行软件进行控制操作。[/size][size=16px][color=#339999][b]3.2 正压控制解决方案[/b][/color][/size][size=16px] 同样基于图1所示的油炸装置结构,7MPa以下正压控制的解决方案具体如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.油炸装置7MPa以下压力控制系统结构示意图,500,246]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291417152373_4414_3221506_3.jpg!w690x340.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 油炸装置7MPa以下正压控制系统结构示意图[/b][/color][/size][/align][size=16px] 方案中采用了电气比例阀直接对油炸罐压力进行控制,即对高压气源的压力进行减压后输送到油炸罐。电气比例阀的控制则采用了真空压力控制器,同样,也可以采用上位机和计算机直接对电气比例阀进行控制。[/size][size=16px] 方案中需要注意的是,电气比例阀仅能满足小尺寸油炸罐内的压力控制,针对较大尺寸的油炸罐,则需要在电气比例阀后面增加流量放大器,以对大尺寸罐体内的压力快速响应和控制。[/size][size=16px][color=#339999][b]3.3 超高压控制解决方案[/b][/color][/size][size=16px] 同样基于图1所示的油炸装置结构,超高压控制的解决方案具体如图5所示。[/size][align=center][size=16px][color=#339999][b][img=05.油炸装置超高压300MPa压力控制系统结构示意图,500,317]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291417342442_4888_3221506_3.jpg!w690x438.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图5 油炸装置超高压控制系统结构示意图[/b][/color][/size][/align][size=16px] 图5中的解决方案与图4所示的正压控制解决方案类似,这里的电气比例阀是作为先导阀来驱动背压阀,背压阀则对输入的超高压气源进行减压以实现油炸罐内的超高压控制。[/size][size=16px] 在此方案中需要采用两路气源,一路气源用于驱动电气比例阀,另一路气源作为油炸罐的工作气源。[/size][size=16px] 油炸罐的超高压力自动控制也采用了真空压力控制器,控制器根据压力传感器信号来控制电气比例阀,电气比例阀驱动背压阀,由此实现对背压阀的间接控制。同样,也可以采用上位机和计算机直接对背压阀进行控制操作。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 采用真空压力控制器、电动针阀、电动球阀、电气比例阀、背压阀和真空泵的自动化控制解决方案,可以实现食品油炸过程中的真空压力准确控制,提高油炸食品的质量和口感。[/size][size=16px] 解决方案的另外一个特点是可以采用灵活的组合,实现不同范围的真空压力控制,可满足不同压力场要求的油炸设备,也可满足不同尺寸大小的油炸罐真空压力控制需要。[/size][size=16px] 解决方案具有很强的可扩展性和灵活性,在实现真空压力控制的同时,真空压力控制器还可以拓展应用到油炸过程中的温度和其他参数的控制,控制器的小巧尺寸和通讯功能可方便的集成在油炸装置的控制系统中,也可单独构成中央控制单元。[/size][size=18px][color=#339999][b]5. 参考文献[/b][/color][/size][size=16px][1] Andrees-Bello, A., P. Garc?a-Segovia, and J. Mart?nez-Monzo. 2011. Vacuum frying: An alternative to obtain high-quality dried products. Food Engineering Reviews 3 (2):63–78.[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~[/align][size=16px][/size][size=16px][/size][size=16px][/size]

  • 真空度控制技术在气相色谱仪微量气体负压进样系统中的应用

    真空度控制技术在气相色谱仪微量气体负压进样系统中的应用

    [b][color=#339999][font='微软雅黑',sans-serif]摘要:针对目前大多数气相色谱仪负压进样系统中存在的无法控制微量进样和真空度无法准确控制的问题,本文在发明专利“[/font]CN111239308A [font='微软雅黑',sans-serif]一种在线高真空负压气体进样系统及方法”基础上提出了改进的解决方案。解决方案通过采用电容真空计、皮拉尼真空计、电控针阀和双通道真空度控制器组成的控制装置,可实现高真空范围内的任意设定点下的真空度快速和精密控制,使在线负压形式的微量气体进样方法真正能转化为实用的工程化仪器。[/font][/color][/b][color=#339999][/color][align=center][b][img=真空度控制技术在气相色谱仪微量进样系统中的应用,690,363]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201509012640_9289_3221506_3.jpg!w690x363.jpg[/img][/b][/align][size=18px][color=#339999][b]1. [font='微软雅黑',sans-serif]问题的提出[/font][/b][/color][/size] 现有的气相色谱仪分析气体样品时,均采用正压进样、常压进样或者持续负压抽样,这种进样的方式,对样品需要总量远大于进样分析实际消耗量,这些进样方式往往不能满足科研机构或院校的分析需求。特别是在微量样品情况下,在样品具有放射性、有毒情况下,若采用上述常规进样方式,样品进样量过多,不仅不能很好的进样分析,污染环境、危害人体健康,还会因为空气干扰造成数据不准确,所以需要一种在线负压微量气体进样方法及系统来解决上述问题。[font='微软雅黑',sans-serif] 为了实现气相色谱仪的高真空微量气体进样,很多机构开展了大量研究工作,比较典型的是常州磐诺仪器有限公司提出的专利“[/font][font=&]CN111239308A [/font][font='微软雅黑',sans-serif]一种在线高真空负压气体进样系统及方法”,其工作原理是以定量环为中间载体对样品进行微量提取和输送,具体过程分为三个步骤:先将定量环抽取高真空,然后通过压差将样品气体吸入定量环,最终将定量环中的样品气体送入外接的色谱柱中进行分析。三个步骤的具体细节如下:[/font][font='微软雅黑',sans-serif] ([/font][font=&]1[/font][font='微软雅黑',sans-serif])定量环真空抽取和控制:两个六通阀全都处于关闭状态,整个气路处于图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示结构,此时定量环处于真空抽取状态,真空回路如图中红线所示,控制定量环内的真空度达到设定值并稳定。样品进气和载气则处于图中蓝线和黄线所示的各自独立气路状态。[/font][align=center][font='微软雅黑',sans-serif][color=#339999][b][/b][/color][/font][/align][align=center][color=#339999][b][img=01.六通阀V1关闭、六通阀V2关闭状态下定量环抽真空结构示意图,660,227]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201510594003_9946_3221506_3.jpg!w690x238.jpg[/img][/b][/color][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]关闭、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]关闭状态下定量环抽真空结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif] ([/font]2[font='微软雅黑',sans-serif])定量环提取气体样品:使六通阀[/font]V1[font='微软雅黑',sans-serif]打开和六通阀[/font]V2[font='微软雅黑',sans-serif]仍处于关闭,整个气路处于图[/font]2[font='微软雅黑',sans-serif]所示结构,此时在压差作用下样品气体进入定量环,提取气路如图中蓝线所示。真空回路和载气回路则处于图中蓝线和黄线所示的各自独立气路状态。[/font][align=center][b][color=#339999][img=02.六通阀V1打开、六通阀V2关闭状态下定量环进样结构示意图,660,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201511221616_9654_3221506_3.jpg!w690x236.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]打开、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]关闭状态下定量环进样结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif] ([/font]3[font='微软雅黑',sans-serif])定量环输送气体样品:使六通阀[/font]V1[font='微软雅黑',sans-serif]关闭和打开六通阀[/font]V2[font='微软雅黑',sans-serif],整个气路处于图[/font]3[font='微软雅黑',sans-serif]所示结构,此时在载气作用下定量环内的样品气体输送到外部色谱柱,样品输送气路如图中黄线所示。真空回路和样品气体加载回路则处于图中红线和蓝线所示的各自独立气路状态。[/font][align=center][b][color=#339999][img=03.六通阀V1关闭、六通阀V2打开状态下定量环中样品送入色谱柱结构示意图,660,226]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201511432359_1275_3221506_3.jpg!w690x237.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]3 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]关闭、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]打开状态下定量环中样品送入色谱柱结构示意图[/font][/color][/b][/align] 通过上述负压气体进样系统结构和工作过程可以看出,管路中的真空度并未采取任何控制措施,仅是通过真空泵来进行抽气,在实际应用中仅靠简单的真空泵抽取很难快速达到真空度稳定状态,这使得定量环的进气压差并不稳定和重复性差,势必会造成进样量的严重误差。为了解决此问题,本文提出了相应的解决方案,通过增加真空度控制装置使得定量环的每次进样都压差都保持准确恒定,从而使这种负压进样方法真正达到实用要求。[b][size=18px][color=#339999]2. [font='微软雅黑',sans-serif]解决方案[/font][/color][/size][/b][font='微软雅黑',sans-serif] 在气相色谱仪气体样品进样系统中,一般要求定量环真空度要具有达到绝对压力为[/font]1Pa[font='微软雅黑',sans-serif]的高真空,并在高真空范围内任意设定点下能实现恒定控制,由此来实现每次进样或重复性检测进样时具有很好的重复性。为此,本文提出了如下解决方案的真空度精密控制装置,真空度控制装置结构如图[/font]4[font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=04.负压气体进样系统及其真空度控制装置结构示意图,660,256]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201512027904_9758_3221506_3.jpg!w690x268.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]4 [/font][font='微软雅黑',sans-serif]负压进样系统及其高真空度控制装置结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][/font][font='微软雅黑',sans-serif] 在图[/font][font=&]4[/font][font='微软雅黑',sans-serif]所示的高真空度控制装置中,采用了动态平衡控制方法,即控制进气和排气流量达到某个平衡状态来实现不同真空度的准确恒定控制。由此,在控制装置中分别在进气和排气端配置了相应的电控针阀,分别用于调节进气和排气流量。电控针阀具有小于[/font][font=&]2%[/font][font='微软雅黑',sans-serif]的线性度,重复精度可达到[/font][font=&]0.1%[/font][font='微软雅黑',sans-serif],非常适用于气体进样系统的微小空间的真空度控制。[/font][font='微软雅黑',sans-serif] 为了在高真空范围内进行测量,装置中配备了一只精度可达[/font][font=&]0.25%[/font][font='微软雅黑',sans-serif]、量程为[/font][font=&]1Torr[/font][font='微软雅黑',sans-serif]的电容真空计。为了保证控制精度,装置中配备了一个高精度真空度控制器,控制器具有[/font][font=&]24[/font][font='微软雅黑',sans-serif]位[/font][font=&]AD[/font][font='微软雅黑',sans-serif]、[/font][font=&]16[/font][font='微软雅黑',sans-serif]位[/font][font=&]DA[/font][font='微软雅黑',sans-serif]和[/font][font=&]0.01%[/font][font='微软雅黑',sans-serif]最小输出百分比。[/font][font='微软雅黑',sans-serif] 通过上述硬件配置可以很容易的实现小于[/font][font=&]1%[/font][font='微软雅黑',sans-serif]的真空度控制精度。另外,为了监测真空泵抽气过程的真空度变化,装置中还串接了一个测量精度较差的皮拉尼真空计,以用来监测管路中气压从一个大气压到高真空的变化过程。为此,真空度控制器特意配备了一个双通道控制器,第一通道接电容真空计用来进行高真空度区间的控制,第二通道连接皮拉尼计用来进行全负压区间的监测。此真空度控制器具有[/font][font=&]RS485[/font][font='微软雅黑',sans-serif]通讯接口和相应的随机控制软件,可外接计算机进行远程调控。[/font][b][size=18px][color=#339999]3. [font='微软雅黑',sans-serif]总结[/font][/color][/size][/b] 综上所述,通过此解决方案所使用的真空计、电控针阀和真空度控制器,可很方便的按照设定值对定量环中的真空度进行快速和准确控制,可有效保证微量气体进样的准确和快捷,另外所用的各个部件体积小巧,结合六通阀和其他管路部件,很容易集成为独立的负压气体进样系统。[align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px]’[/size][/align][align=center][size=16px][/size][/align]

  • 统计过程控制在测量结果质量控制中的应用

    根据ISO/IEC17025:2017《检测和校准实验室能力的通用要求》、JJF1069-2016《法定计量检定机构考核规范》和JJF1033-2017《计量标准考核规范》的要求,实验室除了按管理体系的要求进行内部审核和过程控制外,还必须运用统计过程控制的方法对测量结果的质量进行控制,即用技术手段及时发现测量结果的变异或失控。 作为测量的结果——数据,它与其他产品的质量一样具有变异性。影响变异的因素有人、机、料、法、环、测、抽、样等因素。但这种变异同样符合随机现象的统计规律。因此,可以使用统计过程控制方法对测量结果的数据进行控制。但是由于实际被测物的变动性不易掌握,为了区分由检测本身带来的变异,就必须有一种性能稳定、可靠的样品或其他物品作为核查标准,通过对核查标准长期重复的测量来监控测量过程的稳定性。 可根据休哈特控制图原理,通过作控制图来对检测质量进行控制,及时发现质量的变异,及时寻找原因采取纠正措施,使质量得到控制。

  • 电梯钢丝绳的润滑防锈

    电梯钢丝绳的润滑防锈

    [font='汉仪书宋二简'][size=12px][color=#231f20]近些年,小机房和无机房电梯大量应用,在节省[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]土建成本降低能源消耗方面效果显著,但同时低功耗永磁同步曳引机的使用带来了曳引轮直径的减小。绳径偏小在一定程度上降低了钢丝绳的耐腐蚀能力,使得钢丝绳锈蚀更易发生。严重的锈蚀会造成钢丝绳截面积减小和力学性能降低,引起钢丝绳疲劳寿命缩短;锈蚀在钢丝表面产生的蚀坑,会形成疲劳源,引起钢丝绳断丝、断股出现,引发钢丝绳脆性断裂等安全事故。[/color][/size][/font][align=center][font='calibri'][size=13px]钢丝绳润滑防锈的原因[/size][/font][/align][img]https://ng1.17img.cn/bbsfiles/images/2022/08/202208061441100751_676_5650439_3.jpeg[/img][align=left][font='汉仪书宋二简'][size=12px][color=#231f20]对电梯钢丝绳及时润滑维护不仅能起到防锈作用,有研究显示对钢丝绳进行系统维护润滑,使之经常处于良好的润滑状态,其使用寿命可延长2~3倍。做好钢丝绳润滑维护不但可以避免安全事故发生,还能有效降低电梯运行成本。钢丝绳的[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]润滑[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]防锈[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]从电梯钢丝绳防锈实践来看,润滑防锈是应用最[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]广的方式。润滑不但起防锈作用,还会减轻钢丝绳内部磨损。因此,无论是麻芯钢丝绳还是钢芯钢丝绳,无论钢丝绳表面是否镀锌,是否加入合金元素,在制造期间都应对钢丝、绳股进行涂润滑油。[/color][/size][/font][/align][align=center][font='calibri'][size=13px]影响钢丝绳润滑防锈的几个因素[/size][/font][/align][align=left][font='汉仪书宋二简'][size=12px][color=#231f20]在我国中低速电梯当中,麻芯钢丝绳因其造价较低[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]并具有挠性好、抗冲击、储油丰富等特点而得到广泛应用。钢丝绳麻芯内存储的润滑脂在很长时间内对钢丝绳形成防锈保护。润滑脂的自身性能、钢丝绳的涂油工艺、具体使用环境等,都会影响到钢丝绳的防锈能力。[/color][/size][/font][/align][align=center][font='calibri'][size=13px]润滑脂需要具备的性能[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/08/202208061441103886_8709_5650439_3.png[/img][/align]电梯钢丝绳润滑脂除润滑、防锈的作用外,还应能起到增摩作用,具有一定的高低温性能,良好的附着能力等。同时应能长久保持性能稳定,确保润滑脂高温不滴淌,低温不脆裂,高速不甩脱。[align=center][font='calibri'][size=13px]润滑脂的选择 [/size][/font][/align][align=left][font='汉仪书宋二简'][size=12px][color=#231f20]当钢丝绳出现润滑缺失时,应选用专门的钢丝[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]绳维护润滑脂进行涂油。根据加涂方式不同,电梯钢丝绳润滑脂可分为钢丝绳表面脂、钢丝绳麻芯脂和钢丝绳维护用脂。表面脂和麻芯脂一般在钢丝绳制造时使用,维护用脂则用于日常保养。由于麻芯脂在钢丝绳运行过程中会缓慢地渗透到外层钢丝,表面脂和麻芯脂还应具有一定的兼容性。有些厂家在生产表面脂的同时也生产对应麻芯脂,既保证了麻芯脂的性能,也保证了麻芯脂被挤出与表面脂混合后性能不受到影响。国外有些厂家,表面脂和麻芯脂使用相同的润滑脂。也有文章建议将钢丝绳表面脂作为维护用脂,加热后对钢丝绳上油。与表面脂相比,维护用脂无须加热,在清洁钢丝绳后可直接刷涂,[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]更为便捷[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]。[/color][/size][/font][/align][align=center][font='calibri'][size=13px]钢丝绳润滑时机[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/08/202208061441108231_8089_5650439_3.jpeg[/img][/align][align=left][font='汉仪书宋二简'][size=12px][color=#231f20]除了参考相关标准对钢丝绳定期润滑保[/color][/size][/font][font='汉仪书宋二简'][size=12px][color=#231f20]养外,还要结合实际检验把握润滑时机。一是“看”,观察钢丝绳表面是否出现油垢或锈蚀,曳引轮周围是否存在脱落油垢或轻微锈粉。由于钢丝绳较长,轻微的锈蚀往往难以直接发现,当钢丝绳绕过曳引轮时锈粉可能脱落。二是“摸”,停梯后用手直接触摸钢丝绳表面,感受其是否光滑。电梯钢丝绳润滑脂具有增摩作用,正常情况下触摸钢丝绳表面有粘手或涩手感。若缺乏润滑则钢丝绳表面会发干或比较光滑。应综合两种方法,判断润滑时机。[/color][/size][/font][/align][align=center][font='calibri'][size=13px]钢丝绳涂油工艺[/size][/font][/align][align=left][font='汉仪书宋二简'][size=12px][color=#231f20]为提高润滑脂对钢丝绳的润滑质量,还应合理的安排钢丝绳涂油工艺,以确保钢丝绳涂油的均匀性和理想的含油率。从工艺过程来看主要体现在麻芯的涂油和钢丝绳的涂油两个方面。钢丝绳麻芯涂油工艺中,为了控制麻芯的含油率不能采用整根麻芯浸油的方式,而是仅对部分纱条上油来满足要求。[/color][/size][/font][/align][align=left][font='汉仪书宋二简'][size=12px][color=#231f20]钢丝绳涂油工艺中,为使油脂能均匀地涂覆在钢丝绳上。常用的涂油方法有:钢丝成捻前淋油、钢丝捻股后淋油、合绳股淋油、钢丝绳淋油或几种方法组合使用。其中,合股时淋油能使组股钢丝得到充分润滑,钢丝绳性能更具优势。在国外,无论对捻制股是否再采用其他涂油方式,在合股工序淋油是必须的润滑工艺。[/color][/size][/font][/align]

  • 胶体金读数仪温度控制

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]胶体金读数仪温度控制,胶体金读数仪在温度控制方面有着特定的要求,这主要是因为胶体金卡免疫反应对温度十分敏感,反应速度与温度成正比。在不同的温度下,同样的样本测量结果可能会有所差异。因此,为了确保测量分析结果的可靠性和重复性,胶体金读数仪通常具备内置的温度控制功能。具体来说,一些胶体金读数仪如河南冠宇仪器有限公司生产的金标读卡仪,就具备内置37℃恒温控制测量的功能。这种设计可以确保在进行胶体金卡免疫反应时,反应环境温度保持稳定,从而减小因温度波动带来的测量误差。此外,对于胶体金读数仪的贮存温度也有一定要求。一般来说,胶体金读数仪的贮存温度范围在-20℃至55℃之间,以确保仪器在存放期间不受极端温度影响而损坏或性能下降。在使用胶体金读数仪时,除了要注意仪器的温度控制外,还需要注意其他环境因素对测量结果的影响。例如,湿度、无腐蚀性气体和通风良好的场所也是保证仪器正常运行和测量结果准确性的重要因素。综上所述,胶体金读数仪在温度控制方面有着严格的要求,通过内置恒温控制功能和合理的贮存温度范围,可以确保测量结果的可靠性和重复性。同时,在使用过程中还需要注意其他环境因素的影响,以保证仪器的正常运行和测量结果的准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407041006162715_1109_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【转帖】实验室质量管理体系中的文件控制

    目前我国许多大型的医学实验室通过了实验室质量体系认证,中小型实验室由于水平限制,认证的条件不具备,多是按照IS015189“医学实验室一质量和能力的专用要求”建立了自己实验室的质量管理体系。由于质量体系首先是建立在“过程方法模式”上⋯,是一个文件化的过程,所以文件的编写过程和管理过程实际上是“文件化的质量管理体系”建立和完善的过程。文件控制是为了保证每一个人拥有最新、有效的版本。如何保持文件现行有效,如何避免管理体系文件难于操作、僵化失效,是必须高度关注的问题。为此医学实验室应当充分识别质量体系的所有过程,分析每个过程的输入、输出、所需资源及相关活动,以文件化的形式进行管理,推动质量体系的持续改进 。笔者就实验室文件控制的管理实践做一交流。体系建立时的文件控制编写:体系中质量手册应由实验室主管编写,程序文件由相关部门的负责人编写,作业指导书和记录由熟悉试验项目的工作人员编写。编写前必须进行充分的培训。审核:实验室主管负责对质量手册的审核,部门负责人对程序文件进行审核,授权人员对作业指导书和记录审核。文件审核要考虑到适宜性、有效性和充分性。审核后文件的编号、流水号、版本号、修订次数等校对无误后,按部门登录于《内部文件~览表》中。批准:文件正式开始运行前,应得到实验室主管或有关授权人员的批准。发放:应根据工作需要确定文件的发放范围、数量进行发放,并填写文件发放与回收记录》。要确保在相应场所,都应有现行的、经过授权的文件版本。每份文件的批准页面加盖“受控”印章后发行。

  • 电梯技术资料标准

    1. GB/T 10058-2009 电梯技术条件2. GB/T 10059-2009 电梯试验方法3. GB/T 10060-2011 电梯安装验收规范4. GB/T 12974-2012 交流电梯电动机通用技术条件5. GB/T 18775-2009 电梯、自动扶梯和自动人行道维修规范6. GB/T 20900-2007 电梯、自动扶梯和自动人行道 风险评价和降低的方法7. GB/T 21739-2008 家用电梯制造与安装规范8. GB/T 22562-2008 电梯T型导轨9. GB/T 24474-2009 电梯乘运质量测量10. GB/T 24475-2009 电梯远程报警系统11. GB/T 24476-2009 电梯、自动扶梯和自动人行道数据监视和记录规范12. GB/T 24477-2009 适用于残障人员的电梯附加要求13. GB/T 24478-2009 电梯曳引机14. GB/T 24479-2009 火灾情况下的电梯特性15. GB/T 24480-2009 电梯层门耐火试验16. GB/T 24807-2009 电磁兼容 电梯、自动扶梯和自动人行道的产品系列标准 发射

  • JJF1069讲座之四:文件控制及记录控制中的注意事项

    JJF1069讲座之四:文件控制及记录控制中的注意事项

    [b]JJF1069讲座之四:文件控制及记录控制中的注意事项[font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#888888]作者简介————[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#888888][img=,200,250]https://ng1.17img.cn/bbsfiles/images/2021/04/202104181413589775_4336_1626275_3.jpg!w200x250.jpg[/img][/color][/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=15px][font=-apple-system, BlinkMacSystemFont, &]作者简介————[/font][/size][/font][size=14px][color=#888888]于宝良,高级工程师,全国振动冲击转速计量技术委员会委员,第一批法定计量检定机构国家级考评员,计量标准国家一级考评员。[/color][/size][size=14px][color=#888888] 2002年以来,作为考评员,参加了近20个省、地市级计量技术机构、国家计量站的法定计量检定机构考核及监督检查。2013年以来,作为考评组长,组织了对10个地市级计量技术机构的法定计量检定机构考核及监督检查。[/color][/size][size=14px][color=#888888] 2013年,作为授课老师,为北京市培训了30多名省级法定计量检定机构考评员,对北京市所有区县计量技术机构及授权计量站宣贯了2012版法定计量检定机构考核规范[/color]。[/size][size=14px][/size][size=16px][b][color=#ab1942]一、文件控制[/color][/b][/size][size=15px][/size][b][size=15px]1.文件在质量管理体系中的作用[/size][/b][size=15px][/size][size=15px] 文件是过程控制的依据,也是进行各种质量、技术活动的依据,还是向客户提供产品满足要求的证据文件。[/size][size=15px]文件对于质量管理体系的建立、实施、保持、改进是至关重要的。[/size][b][size=15px]2.文件控制的含义[/size][/b][size=15px][/size][size=15px] 文件控制是指对文件的编制、批准、发放、使用、评审、修改、再次批准、标识、必要时回收和作废等全过程活动的管理。[/size][b][size=15px]3.文件控制的目的[/size][/b][size=15px][/size][size=15px] 对文件实施控制的目的,是确保现行文件适宜、充分、清晰,且是有效版本,防止误用作废文件。[/size][size=15px]为此,应从编写、审批、发布、使用、作废、更改、更新以及保管八个环节,对文件实施全过程的控制。[/size][b][size=15px]4.考核规范对文件控制的要求[/size][/b][size=15px][/size][size=15px] JJF1069-2012《法定计量检定机构考核规范》5.4条款对文件控制做了如下要求:[/size][size=15px]机构应控制管理体系所要求的所有文件(内部制定或来自外部的),诸如法律法规、规章、其他规范性文件、检定规程、校准规范、检测(检验)规则或方法、抽样方案、标准以及图纸、软件、规范、指导书和手册等。[/size][size=15px]记录是一种特殊类型的文件,应依据5.5的要求进行控制;[/size][size=15px]计量检定、校准和检测数据应依据7.3.8的要求进行控制。[/size][b][size=15px]应编制形成文件的程序,以规定以下方面所需的控制:[/size][/b][size=15px][/size][size=15px]a)为使文件是充分与适宜的,文件发布前得到批准。[/size][size=15px]b)必要时对文件进行评审与更新,并再次批准。[/size][size=15px]c)确保文件的更改和现行修订状态得到识别。[/size][size=15px]修订应予以控制,除非有别的特殊决定,应由原审查和批准人员审查和批准方可。[/size][size=15px]这种人员须能利用适当的背景信息作为其审查和批准的依据。[/size][size=15px]d)确保在使用处可获得适用文件的有效版本。[/size][size=15px]e)确保文件保持清晰、易于识别。[/size][size=15px]f)确保机构所确定的策划和运行管理体系所需的外来文件得到识别,并控制其分发。[/size][size=15px]g)防止作废文件的非预期使用,如果出于某种目的而保留作废文件时,对这些文件进行适当的标识。[/size][b][size=15px]5.现场考核中文件控制存在的主要问题[/size][/b][size=15px][/size][size=15px](1)文件控制程序[/size][size=15px] 有的机构制定的文件控制程序,机械地照搬JJF1069-2012的要素要求,没有根据机构自身的工作性质及特点,对机构使用的文件进行清晰分类,有针对性地制定控制方法,致使文件控制程序可操作性差。[/size][size=15px](2)缺少体系有效运行应有的文件[/size][size=15px] 有的机构明显缺少体系有效运行应有的文件。[/size][size=15px]机构层面的,如缺少“原始记录编制作业指导书”文件,造成机构各实验室编制的原始记录信息、格式等不一致,甚至缺少一些必需的信息。[/size][size=15px]实验室层面的,如缺少“期间核查作业指导书”文件,造成同一项计量标准,不同的人员进行期间核查的方法、记录、结果表达不一致。[/size][size=15px](3)文件的适宜性[/size][size=15px] 有的机构制定体系文件的出发点只是应付考核,既没有对文件定期评审的规定,也没有支持进行定期评审的记录。[/size][size=15px]如在对机构进行监督检查时发现,从上次考核到监督检查两年多的时间内,体系文件没有任何修订,个别机构体系文件甚至在两次机构考核的五年间都没有任何修改。[/size][size=15px](4)外来文件[/size][size=15px] 外来文件,特别是检定规程、校准规范,是保证法定计量检定机构检定、校准工作质量的重要文件。[/size][size=15px]有的机构没有专人负责外来文件的更新,造成近年的考核、检查中,时常发现使用过期技术文件的情况。[/size][size=15px](5)文件控制[/size][size=15px] 文件控制存在的最普遍的问题是检定、校准原始记录的控制。[/size][size=15px]检定、校准原始记录的控制,正确做法应该是:[/size][size=15px]a实验室计量标准负责人组织相关人员依据机构体系文件及检定规程或校准规范编制原始记录。[/size][size=15px]b机构质量管理部门组织相关人员对原始记录进行审核。[/size][size=15px]c机构质量管理部门对审核通过的原始记录备案并允许印刷使用。[/size][size=15px]d实验室需要对已经备案的原始记录进行修订时,应向机构质量管理部门提出修改申请,批准后再按a、b、c的规定进行修订。[/size][size=15px] 考核过程中发现,有的机构检定、校准原始记录由实验室自行编制使用,缺少审核、备案、批准使用等环节的控制,造成检定、校准原始记录不符合考核规范及检定规程、校准规范的要求。[/size][b]二、记录控制[/b][size=15px][/size][b][size=15px]1.记录控制在质量管理体系中的作用[/size][/b][size=15px][/size][size=15px] 记录是指阐明所取得的结果,或提供完成活动证据的文件。[/size][size=15px]记录控制在质量管理体系中的作用为可用于为可追溯性提供文件,并提供验证、预防措施和纠正措施的证据。[/size][b][size=15px]2.在质量管理体系中记录的分类[/size][/b][size=15px][/size][size=15px]《考核规范》将记录分成两种:[/size][size=15px](1)质量记录[/size][size=15px] 考核规范中的质量记录主要是(但不限于)以下几种:[/size][size=15px]a质量管理体系活动记录,包括质量监督员监督检查记录,质量管理部门定期、不定期监督检查记录等。[/size][size=15px]b人员培训考核记录,包括人员培训考核计划、培训考核过程记录、培训考核结果评价记录。[/size][size=15px]c纠正措施记录。[/size][size=15px]d预防措施记录。[/size][size=15px]e内部审核记录,包括内部审核计划、内部审核实施过程记录、内部审核报告。[/size][size=15px]f管理评审记录,包括管理评审计划、管理评审实施过程记录、管理评审报告。[/size][size=15px](2)技术记录[/size][size=15px] 考核规范中的技术记录主要是(但不限于)以下几种:[/size][size=15px]a检定、校准、检测活动的原始记录。[/size][size=15px]b计量标准稳定性、重复性考核记录。[/size][size=15px]c计量标准期间核查记录。[/size][size=15px]d计量标准器溯源证书确认记录。[/size][size=15px]e检定规程、校准规范更新确认记录。[/size][size=15px]f已签发的检定证书、校准证书、检测报告的复制件。[/size][b][size=15px]3.考核规范对记录控制的要求[/size][/b][size=15px][/size][size=15px] JJF1069-2012之5.5条款对记录控制做了如下要求:[/size][size=15px]为提供符合要求及管理体系有效运行的证据而建立的记录,包括质量记录和技术记录,应得到控制。[/size][b][size=15px]需要注意的是:[/size][/b][size=15px][/size][size=15px](1)质量记录应包括来自内部审核和管理评审的报告及纠正措施和预防措施的记录等。[/size][size=15px](2)技术记录是进行检定、校准和检测所得数据和信息的积累,它们表明检定、校准和检测是否达到了规定的质量或规定的过程参数。[/size][size=15px]技术记录可包括表格,合同,工作单,工作手册,核查表,工作笔记,控制图,外部和内部的检定证书、校准证书和检测报告,顾客信函和反馈意见。[/size][size=15px] 机构应制定形成文件的程序,以规定以下方面所需的控制:[/size][size=15px]a)记录的识别、收集、索引、存取、存档、存放、维护和清理。[/size][size=15px]b)记录应真实可信、清晰明了,并以便于存取的方式存放和保存在具有防止损坏、变质、丢失等适宜环境的设施中,并应规定记录的保存期。[/size][size=15px]c)所有记录应予以安全保护和保密。[/size][size=15px]d)保护和备份以电子形式存储的记录,并防止未经授权的侵入或修改。[/size][b][size=15px]4.现场考核中记录控制存在的主要问题[/size][/b][size=15px][/size][size=15px](1)质量记录形式化[/size][size=15px] 如质量监督员、质量管理部门质量监督检查记录,只规定每次监督检查应检查多少份证书及记录,缺少针对人员、设施、方法、测量设备、过程、环境条件等的检查内容,也缺少对检查中发现的不符合及纠正措施的描述。[/size][size=15px](2)检定校准记录不符合检定规程或校准规范的要求[/size][size=15px] 国家计量检定规程及校准规范,一般在附录中规定了检定或校准的原始记录内页格式。[/size][size=15px]国家计量检定规程及校准规范是由国家该领域的权威专家制定,检定规程及校准规范规定的原始记录内容应该更符合该项目检定或校准的要求。[/size][size=15px]有的机构编制的原始记录没有采用检定规程或校准规范规定的原始记录内页格式。[/size][size=15px](3)检定校准共用一份记录[/size][size=15px] 对同一个既开展检定,也开展校准的项目,有的机构共用一份原始记录。[/size][size=15px]JJF1011-2011《通用计量术语及定义》中规定,检定是查明和确认测量仪器符合法定要求的活动,它包括检查、加标记和/或出具检定证书。[/size][size=15px]校准是在规定条件下的一组操作,其第一步是确定由测量标准提供的量值与相应示值之间的关系,第二步则是用此信息确定由示值获得测量结果的关系,这里测量标准提供的量值与相应示值都具有测量不确定度。[/size][size=15px]由检定和校准的定义可知,检定和校准的方法、过程、结果表达均不同。[/size][size=15px]因此,检定/校准共用一份记录显然是不合适的。[/size][size=15px](4)校准记录缺少不确定度评定信息[/size][size=15px] 有的机构在校准的原始记录中没有任何不确定度评定的信息,而在校准证书中却给出了扩展不确定度;[/size][size=15px]有的机构在校准的原始记录中只给出扩展不确定度,而缺少获得扩展不确定度的标准不确定度分量、合成标准不确定度的信息。[/size][size=15px](5)期间核查记录使用检定或校准记录[/size][size=15px] 期间核查是指为保持对测量设备检定或校准状态的可信度,在两次检定或校准之间进行的核查。[/size][size=15px]期间核查不是测量设备的再检定或校准,因此,期间核查应有符合期间核查特点的单独的原始记录。[/size][size=15px]但是,有的机构期间核查记录仍使用检定或校准记录。[/size][size=15px](6)计量标准稳定性、重复性考核记录不符合JJF1033-2016的规定[/size][size=15px] JJF1033-2016《计量标准考核规范》对计量标准稳定性、重复性考核记录的格式、内容有明确的规定,有的机构计量标准稳定性、重复性考核记录没有采用JJF1033-2016的规定。[/size][size=15px](7)计量标准器溯源证书确认记录[/size][size=15px] 计量标准器溯源证书确认记录,应对溯源证书中给出的测量范围、准确度等级/最大允许误差/不确定度等计量特性,与检定规程或校准规范中规定的相应指标进行比对,并对比对结果进行评价。[/size][size=15px]有的机构的计量标准器溯源证书确认记录内容不全面,起不到证书确认的目的。[/size][align=center][size=14px][color=#888888]END[/color][/size][/align][align=center][img=图片]https://mmbiz.qpic.cn/mmbiz_gif/Zpzl0bhgT4mSsm8MXFpicUykAzbdia9yhquhxyVcPLPJ52yNIS5AOlKbdZfu00hFucweic6lBl2o41pkdCYTFrAyA/640?wx_fmt=gif&tp=webp&wxfrom=5&wx_lazy=1[/img][/align][align=center][size=14px][color=#888888]本文刊发于《中国计量》杂志2019年第4期[/color][/size][/align][align=center][size=14px][color=#888888]作者:[/color][/size][size=14px][color=#888888]北京市计量检测科学研究院?于宝良[/color][/size][/align][font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#888888]作者简介————[/color][/size][/font]

  • 混合气体微间隙模拟放电装置中的真空压力控制解决方案

    混合气体微间隙模拟放电装置中的真空压力控制解决方案

    [size=16px][color=#990000][b]摘要:针对微间隙气体放电特性分析中需要对不同真空压力进行精密控制的要求,本文提出了相应的解决方案。解决方案采用了双路调节技术,由真空计、电控针阀和真空压力控制器组成进气和排气控制回路,可实现真空度1Pa~101kPa全量程范围内优于±1%的控制精度。同时,此解决方案适用于多种气体混合后的真空压力控制,还可进行更高真空度、更高正压压力和增加湿度等环境变量控制的拓展,更广泛适用于各种气体放电特性研究。[/b][/color][/size][align=center][size=16px][color=#990000][b]==========================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 微间隙气体放电是一种电极距离在微米或纳米量级的放电形式,由于电极距离极小,微间隙放电通常表现出不同于传统规模放电的击穿特性,从而导致低电压击穿的风险。此外,微间隙放电过程中所产生的微等离子体具有高压稳定性、非热平衡、高电子密度、高激发效率等优点,在工业和生活中有着广泛的应用。总之,微间隙气体放电特性的研究引起了的极大关注。[/size][size=16px] 在微间隙气体放电特性研究中,微间隙中气体的种类和真空压力是重要的环境条件。最近有客户对这种微间隙中的气体种类,特别是对真空压力的精密控制提出了明确要求,其目的是研究不同气体和不同真空压力下微间隙的气体放电特性。为此本文提出了微间隙气体压力的精密控制解决方案,以实现微间隙气体放电特性分析过程中的全量程的真空压力高精度自动控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案是在原有的微间隙气体放电特性测试设备上增加高精度真空控制系统,以实现在绝对压力1Pa~101kPa范围内的精密控制,全量程真空度控制精度小于±1%。整个装置的结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=微间隙气体放电试验装置及其真空压力控制系统,650,411]https://ng1.17img.cn/bbsfiles/images/2023/09/202309221532063298_6848_3221506_3.jpg!w690x437.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 微间隙气体放电试验装置及其真空压力控制系统[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统主要由气源、混气罐、电控针阀、真空计、真空压力控制器和真空泵组成,其功能和性能指标如下:[/size][size=16px] (1)气源:气源主要由高压气瓶提供,可采用不同气体的气瓶实现气体混合,以实现混合气体环境下的微间隙气体放电性能研究。混合气体中的各种气体比例可以通过相应的气体质量流量控制器进行调节。当然,也可以采用单一气体,如果是气体是空气可采用气泵作为气源。[/size][size=16px] (2)混气罐:提供气体的充分混合,混气罐内的压力要高于一个大气压。[/size][size=16px] (3)电控针阀:解决方案中采用了两个NCNV系列的电控针阀,电控针阀采用步进电机高速调节并具有极好的调节精度和线性度,全开和全闭动作时间小于1秒。一个电控针阀用于调节进气流量,以进行低压高真空范围内的控制;另一个针阀用于调节排气流量,以进行高压低真空范围内的控制。在实际应用中可根据真空腔体尺寸大小选择不同孔径的电控针阀,更大的真空腔体排气时可将排气用电控针阀更换为电控球阀,以提高排气流量和真空度调节控制速度。[/size][size=16px] (4)真空计:解决方案中采用了两个电容真空计,一个真空计的最大量程为10Torr,另一个真空计的最大量程为1000Torr,由此两真空计可覆盖整个真空度范围。选择电容真空计是因为这种真空计具有较高的测量精度和信号的线性输出,在全量程任意真空度点上的测量精度都可以保证小于0.25%。当然,真空计也可以选择全量程型的皮拉尼计,但其测量精度只能达到15%,且信号输出呈现严重的非线性,会严重影响真空度控制精度。[/size][size=16px] (5)真空压力控制器:为了保证全量程范围的真空度控制精度,选择了VPC2021-2型号的双通道真空压力控制器,每个通道与对应的真空计和针阀组成独立的闭环控制回路,其中一个通道用于控制高真空,另一个通道用于控制低真空。此双通道真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,结合电容真空计和电控针阀可实现全真空度范围优于±1%的控制精度。另外,此控制器具有PID自整定功能和自带计算机软件,便于进行过程参数的设置、运行、显示和存储。[/size][size=16px] (6)真空泵:由于需要采用微机械装置进行精密位移调节,真空泵选用干泵以避免对真空腔室内部件的污染。在具体应用中需根据真空腔体的大小和真空度范围选择相应抽速的干泵。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本文针对微间隙气体放电特性分析中所需的真空压力精密控制要求,提出了全量程真空压力高精度的解决方案,可完全满足客户在微间隙气体放电特性研究中需要。另外,此解决方案还具有很强的可拓展性和适用性,主要有:[/size][size=16px] (1)还可进行多种气体混合气氛条件下的真空度精密控制。[/size][size=16px] (2)除了上述低压真空度范围内的精密控制之外,还可进行量程的扩展,如向高真空和超高真空方向拓展,如向高压一个大气压的正压方向拓展。[/size][size=16px] (3)除了气体气氛环境的精密控制之外,还可增加湿度等环境变量的精密控制。[/size][size=16px] 总之,本解决方案可推广应用到多种环境变量的自动控制中,以满足各种形式和规格的气体放电特性的研究和分析。[/size][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 环境空气中氟化物测定质量控制-空白控制图

    环境空气中氟化物测量的方法确认与质量控制《环境空气 氟化物的测定 滤膜采样离子选择电极法》发布于2009年9月,于2009年11月1日正式实施,标准中有如下规定:8.2 现场空白8.2.1 以浸渍后的空白滤膜代替样品,带到现场,与样品在相同的条件下保存,运输,直至送交实验室分析,运输过程中应注意防止沾污。8.2.2 将现场空白和实验室空白滤膜的测量结果相对照,若现场空白与实验室空白相差过大,需查找原因,重新采样。8.2.3 要求每次采样至少做 2 个现场空白。由于8.2.2规定不明确,我做以下补充:绘制空白滤膜质量控制图,当滤膜电位超过控制线时即判为样品作废。一、按照标准要求每天检测2个浸渍空白滤膜的电位,连续检测10个工作日,检测结果如下:序号12345678910电位 (mV)-323.7-323.6-325.8-324.4-325.6-323.5-323.6-323.5-323.8-325.7序号11121314151617[fo

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制