当前位置: 仪器信息网 > 行业主题 > >

显微高速像仪

仪器信息网显微高速像仪专题为您提供2024年最新显微高速像仪价格报价、厂家品牌的相关信息, 包括显微高速像仪参数、型号等,不管是国产,还是进口品牌的显微高速像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微高速像仪相关的耗材配件、试剂标物,还有显微高速像仪相关的最新资讯、资料,以及显微高速像仪相关的解决方案。

显微高速像仪相关的仪器

  • 高速扫描电子显微镜 HEM6000HEM6000是一款可实现跨尺度大规模样品成像的高速扫描电子显微镜。采用高亮度大束流电子枪、高速电子偏转系统、高压样品台减速、动态光轴、浸没式电磁复合物镜等技术,实现了高速图像采集和成像,同时保证了纳米级分辨率。面向应用场景的自动化操作流程设计,使得大面积的高分辨率图像采集工作更高效、更智能。成像速度可达常规场发射扫描电镜的5倍以上。 产品优势 高速自动化 全自动上下样流程和采图作业,综合成像速度优于常规场发射扫描电镜的5倍大场低畸变跟随扫描场动态变化的光轴,实现了更低的场边缘畸变低压高分辨 样品台减速技术,实现低落点电压,同时保证高分辨率应用领域应用案例大规模成像规格书 关键参数 分辨率 1.3nm @ 3 kV,SE;2.2 nm @ 1 kV,SE; 1.9nm @ 3 kV,BSE;3.3 nm @ 1 kV,BSE;加速电压 100 V~6 kV(减速模式) 6 kV~30 kV(非减速模式) 放大倍率 66~1,000,000x 电子枪类型 高亮度肖特基场发射电子枪 物镜类型 浸没式电磁复合物镜 样品装载系统 真空系统 全自动控制,无油真空系统 样品监控 样品仓监控水平摄像头 ; 换样仓监控垂直摄像头样品最大尺寸 直径4英寸 样品台 类型 电机驱动3轴样品台(*可选配压电驱动样品台) 行程 X、Y轴:110mm;Z轴:28mm;重复定位精度 X轴:±0.6 um;Y轴:±0.3 um 换样方式 全自动控制 换样时间 <15 min 换样仓清洗 全自动控制等离子清洗系统 图像采集与处理 驻点时间 10 ns/pixel 图像采集速度 2*100 M pixel/s 图像大小 8K*8K 探测器和扩展 标配 镜筒内混合电子探测器 选配低角度背散射电子探测器 镜筒内高角度背散射电子探测器 压电驱动样品台 高分辨大场模式样品仓等离子清洗系统 6英寸样品装载系统主动减震台 AI降噪;大图拼接;三维重构 软件 语言 中文 操作系统 Windows 导航 光学导航、手势快捷导航 自动功能 自动样品识别、自动选区拍摄、自动亮度对比度、自动聚焦、自动像散服务扫描电子显微镜实验室 我们在合肥、无锡、广州和上海设有扫描电子显微镜实验室,实验室配备多名电镜技术专家和高级电镜应用工程师,提供包含电 镜应用技术开发、样品拍摄在内的多种服务。主要应用领域有锂电池、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物医药等。 实验室依托国仪量子电镜产品,在电镜应用领域开展具有自主知识产权的科研项目,致力于实现科学研究和人才培养的目标。与此同时,实验室也为有电镜应用需求的科研院所、大专院校、企事业单位提供优质的服务。
    留言咨询
  • 随着现代生命科学不断发展,越来越多的科研人员将研究的目光从细胞器,细胞层面转移的器官层面。近年来类器官以及针对整个器官组织的研究越来越多。高速动态扫描光片成像系统FSLight就是为科研人员提供针对整体器官组织样品、类器官以及斑马鱼研究的成像系统。研发团队来自于广州实验室,具有完全的知识产权。性能方面,FSLight采用独特的动态锥光扫描系统,可以同时实现高分辨、大视野、高速成像。fslight轴向分辨率可达2μm,光腰宽度可达1cm,最大可支持5cm样品成像。产品技术介绍独特的单光源双侧实时动态锥光扫描技术能够在实现大范围动态扫描的同时维持在合理的成像分辨率。这项技术具备专门设计扫描光片激发物镜,能够兼具大尺度扫描所需的消色散以及双侧照明,并将光腰尺寸缩小到2um左右。此外动态锥光扫描系统具备自动RI校准系统,对于不同RI的溶液进行光路校准,有效避免由于不同溶液造成的成像瑕疵。借助于光片显微镜,脑科学可应用于全脑神经、血管等结构三维高精度成像,用于神经退行性疾病、脑栓塞等研究;神经科学可以研究神经元神经传导途径及修复再生能力;呼吸科学可以用于呼吸系统致病及肺损伤机制、免疫应答及药物筛选研究;肿瘤学可以用于肿瘤微环境,转移,侵袭及药物筛选;免疫学科也可以更完整的研究淋巴系统的发育过程;骨科学可以用于骨骼修复与骨再生相关研究;发育科学可以用于研究模型动物各个阶段的组织与器官的发育和功能。技术特点:1. 高速:超高速采集,采集时间仅和相机采集速度有关;采集过程中自动高速追焦2. 高质量:2 μm 均匀光片;独特的偏照减少遮挡物的影响;光强高、低散光3. 高细节成像:具备合理的1 mm光腰长度;自动切换物镜,实现定位→观测→细节观测,一气呵成4. 细节优化:扫描过程中无需移动样品,对软样品十分友好;5. 自动校正:自动RI校准系统,用户可随时根据溶液RI修改光腰位置应用案例:
    留言咨询
  • ——国际领先的画幅式显微高速成像光谱仪技术简介: M185是基于显微高速高光谱成像技术的国际领先产品,能够与显微镜无缝对接并瞬间获得在整个视场范围内精确的微观样品高光谱图像;其融合了高光谱数据的精确性和快照成像的高速性,工作方式与操作流程类似于常见的显微数码成像。 M185采用的独特的画幅式成像技术,采集到的高光谱图像数据具有较高的光谱分辨率;由于其可在1/1000秒内得到整个高光谱立方体,因此可以获得动态光谱图像,如果您对基于高光谱成像技术的高速动力学、荧光信号或细胞变化检测等领域感兴趣,此款光谱仪能最大程度上满足您的科研需求。 仪器特点:仪器特点主要应用※ 可见-近红外画幅式成像※ 高光谱影像显微测量※ 速度达1/1000秒※ 快速测量无运动伪影※ 无缝对接显微镜※ 人性化的数据测量软件※ 细胞检测 ※ 医学成像※ 矿物丰度 ※ 物种分类※ 疾病监测 ※ 生物成像※ 细胞复原 ※ 病害监测 M185 通过先进的Snapshot技术建立了时间、空间与光谱分辨率之间的平衡。与传统的推扫式高光谱成像技术不同,其采用无需任何移动部件的画幅式成像技术,可在1/1000秒内获取整个高光谱立方体数据。 M185可与显微镜无缝对接,能够满足基于高光谱成像技术的高速动力学、荧光信号或细胞变化检测等领域的研究需求。 M185配套软件可批量进行光谱输出、高光谱图像分类等功能;开源程序接口与SDK可进行二次应用开发。 技术参数:光谱特性光谱范围450~950nm采样间隔4nm光谱分辨率8nm @ 532nm光谱通道数125硬件特性探测器尺寸100万像素×2探测器Si CCD数字分辨率12 bit测量时间0.1-1000 ms通讯接口2×GigE高光谱成像速度20 Cubes/s动态范围[dB]Typ.68光谱输出2500 Spectra / Cube镜头接口C-mount软件含SDK物理特性外界环境干燥/非冷凝操作温度-10 - 50 °C重量500 g电源DC 12 V, 15 W产地:德国
    留言咨询
  • 高速气动显微注射仪为满足苛刻的应用,如药物注入病原体例如成年果蝇,需要一个功能齐全的、快速的注射系统。TRITECH RESEARCH的minj-fly高速气动进样器™ 就能实现这个功能。在基本的显微注射中,一个微小的针尖空心针充满液体,戳到目标,然后临时加压,注入一些液体到目标内。确定注射量的变量是压力,时间,液体的粘度,和直径的针开口。一个简单的,完成这个实际系统的是我们的minj-1微量注射器™ (标准模式)或我们的minj-d全数字多™ 压力注射器;。而minj-1,及其系列配件,帮助许多科学家通过显微注射,完成了实验和程序,实现了更高的复杂程度,准确性和重复性,能更好地实现与minj-d搭配。但有些实验需要更快的反应时间,比如10毫秒,用我们的minj-fly就可以做到这一点。
    留言咨询
  • FPGA双核处理器 采用创新FPGA双核处理器,内置FPGA1高清图像品质处理器和FPGA2图像输出控制器,确保了高品质图像高速真实重现。CMOS图像传感器 1600万高清像素,强大的细节表现力,图像细节不缺失。USB3.0芯片 最新的USB3.0规范,5Gb/s极速传输数据,高效实用。 1600万高清像素 DigiRetina16拥有1600万高像素,拍照或录制视频两相宜,保证画质清晰,色彩明艳。精准的色彩还原力 DigiRetina16配置了专业的双核图像处理器,能高精准还原色彩,使图像更为锐利,同时它拥有高动态记录影像能力,能快速捕捉每一个珍贵瞬间。 强大的细节表现力 DigiRetina16选择了最新的1600万像素CMOS图像传感器,有更强大的细节表现力,弥补了传统小分辨率传感器拍照时清晰度不足及细节损失较大的缺陷。该款相机在放大倍率20倍以下的显微成像中,也可以获得分辨率优异的影像画面。 惊人的弱光表现力 强大的硬件binning技术和3D降噪技术,令DigiRetina16有惊人的弱光表现力,即使是低光或弱光也无法阻挡它对出色画面的极致苛求。超宽的色温调整范围 DigiRetina16还配置了高端科学相机才有的1800-10000K大范围的色温选择及调节控制功能,改善传统机型由于白平衡效果不佳造成的判断误差,满足不同样本、不同光源的观察需求,将图像真实展现,无需专业编辑也能获得惊艳的视觉效果。高速的数据传输能力 DigiRetina16内置USB3.0芯片,能高速传输数据,畅快浏览图像,更独有原始数据输出技术,数据无压缩,影像品质更高。产品参数产品型号DigiRetina16芯片类型CMOS芯片尺寸1/2.33"图像处理器内置图像处理器图像传输控制高速FPGA+高速DDR像素大小1.335μmx1.335μm分辨率4608x3542/2304x1728/1600x1200/1280x960帧率5fps@16MP/25fps@4MP/30fps@2MP/30fps@0.8MP扫描模式逐行扫描曝光时间1ms-999ms曝光模式手动/自动白平衡手动/自动色温控制1800K-10000K降噪实时3D降噪设置白平衡、曝光时间、增益、降噪、伽马、宽动态等PC软件Tcapture操作温度范围0-60℃操作湿度范围45%-85%兼容系统Windows/MAC/OSX光学接口标准C接口数据接口USB3.0,兼容USB2.0
    留言咨询
  • HORIBA Scientific从事光学研发200年,其中拉曼光谱仪的研发与制造长达60多年,凭借法国长期以来的光学设计人才优势与全心全意为客户服务的企业理念,HORIBA Scientific不断地拉曼光谱技术的发展,2019年LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪应运而生。LabRAM Odyssey同时适用于光谱和成像,具有800mm焦长的高光谱分辨率低杂散光光谱仪保证光谱数据的准确性和重复性,一系列针对拉曼光谱成像的新技术引入,大地提升了LabRAM Odyssey的拉曼光谱成像的质量和速度,新型成像算法可以在纷繁复杂的大数据中提炼出有用的光谱信息。独特的高效率反射式共焦光路,配合连续可调共焦针孔,满足全光谱范围200-2200nm抑制杂散光,三维空间滤波,无需任何人工调节工作,全自动化共焦设计保证客户快速准确地获得高信噪比光谱和成像。LabRAM Odyssey继承了LabRAM HR Evolution的全部优点,扩展性强使得每一台LabRAM Odyssey都是一台定制化的显微拉曼光谱系统,尤其满足分析测试平台样品种类多,测试条件变化多,测试速度要求快速准确等需求。LabRAM Odyssey创新性地引入全反射概念,从物镜,耦合光路,光谱仪均采用反射镜组成,从仪器基础设计出发实现真正意义上的消色差,提出紫外灵敏度测试指标,满足全光谱范围内的高灵敏度测试要求。LabRAM Odyssey具有多种特色全新技术,等待您的发掘!1多激发波长 支持深紫外到近红外全波段 自由光路耦合或光纤耦合 支持多达4路全自动切换激发波长2双共焦耦合系统 全反射式共焦光路 消色差,全光谱覆盖 三维空间滤波 全自动切换双共焦光路 内置真实存在的机械共焦针孔,非狭缝虚拟3800mm焦长光谱仪 低杂散光适合弱信号长时间曝光 消色差像散,采用超环面镜,平场校正 全光谱覆盖,光谱仪内无透镜 超高光谱分辨率,低至0.35cm-14高灵敏探测器提供多达4个探测器的耦合接口,满足稳态和瞬态光谱的测试要求超快速共焦成像&bull DuoScanTM成像技术:基于kHz振镜扫描技术,实现物镜+样品双重固定,激光光斑扫描样品表面,具有宽光谱、超快速、高稳定、时间分辨等特点。&bull SWIFTTM模块:是将LabRAM Odyssey的高光通量及优化的检测器-平台同步相结合,以实现超快速共焦拉曼成像。即使采集一个宏观尺度的高分辨成像也可在几秒内完成。&bull Repetitive SWIFTTM信噪比增强快速成像技术:实现持续改进成像信噪比,无需多次重复寻找实验条件。&bull SWIFTTM XR多窗口扩展快速成像技术:同时实现高光谱分辨率和宽光谱范围成像,采用HORIBA独有的多窗口拼接技术,自动拼接多次快速成像,实现高分辨光谱和宽光谱范围的完美统一。高空间分辨率真正针孔共焦技术,区别于简单的狭缝共焦,实现三维空间滤波,高杂散光抑制率,空间分辨率可达250nm独特的全反射式共焦技术,全光谱消色差,支持200-2100nm光谱测量高光谱分辨率800mm焦长的单级光谱仪,使得 LabRAM Odyssey成为市场上光谱分辨率较高的单级拉曼光谱仪。800mm的焦长使得精细样品信息,如:结晶度、多晶型、应力、氢键和其它谱带形状的特征分析变得简单化。高光谱分辨率+高重复性,使得苛刻的实验成为了可能,保证拉曼峰位频移的数据可靠性,和低的系统误差引入。从紫外到近红外全光谱检测LabRAM Odyssey是一款深紫外到近红外全光谱覆盖的消色差高分辨光谱仪,使用多激光及多探测器,检测范围可达200nm~2100nm。实现近红外区域的光致发光测试,包括带隙检测、重组机理监测和材料质量控制。不受样品和分析环境的限制HORIBA Scientific可为您提供拉曼优化研究级光学显微镜。开放式显微镜在物镜下方提供自由空间,适合放置各种大附件,如液氦冷台、催化样品池及自设计特殊样品池等。透射拉曼附件可提供样品整体分析,适合不透明/浑浊的材料,如药片含量的一致性或多晶型。SuperHead光纤探头可实现远程测量,进行原位反应监测或在线分析。超低波数模块HORIBA Scientific 的 LabRAM Odyssey 可使低波数检测低至 3.5 cm-1*。新一代的体布拉格光栅具有非常窄的谱带宽度,以确保单级拉曼光谱仪中超低波数的简单方便、快速高灵敏度检测前沿应用生命科学LabRAM Odyssey为生命科学提供了新的表征方法。如:疾病诊断、皮肤分析、细胞筛选、化妆品、微生物、蛋白质研究、药物交互作用及其它。药物拉曼光谱的高信息含量可以帮助研究人员和质控人员更深入地了解原材料及产品的性能及质量。如:活性药物成分(API)和赋形剂成像和表征、晶型鉴定、相态检测、药物逆向工程、药物一致性评价等。二维材料LabRAM Odyssey提供全部的二维材料光谱表征技术,包括拉曼光谱及成像,光致发光光谱及成像,反射光谱及成像,光电流成像,二次或多次谐波及成像,低温、高压、强磁场等端条件下二维材料的光谱及成像。半导体半导体材料的拉曼和光致发光(PL)研究可为专家提供成分组成及各成分属性的重要信息。如:压力/张力检测、合金成分、超薄覆盖层表征、刻蚀芯片结构成像、带隙分析等。技术指标光谱仪光谱仪焦长800mm光谱分辨率0.35cm-1 - 0.65cm-1重复性±0.02cm-1光谱仪设计方式非对称反射式,全光谱范围消色差校像散光谱采集模式包括单窗口信号采集(同时谱),多窗口连续信号采集(宽光谱快速无缝接谱),多窗口断续信号采集(高低阈值一次采集)和连续扫描信号采集(大范围平滑光谱)共焦共焦方式机械针孔共焦(三维空间滤波) 激光光路:固定尺寸针孔 拉曼光路:10-1000μm连续可调针孔共焦光路内置2个共焦光路,自动切换 独立优化可见光路400-700nm和消色差反射光路:200-2100nm激光光路激光光路独立优化,多支持6路自动切换滤光片切换支持4路自动切换滤光片角度调节软件控制自动低波数50cm-1(可见);150cm-1(紫外);10cm-1(可选)成像XYZ自动平台步进10nm(开环),步进50nm(闭环)闭环反馈精度50nm振镜扫描50nm步进,kHz扫描频率实时聚焦支持三种反馈模式:激光,白光和拉曼信号强度反馈表面粗糙样品成像EasyNav表面形貌ViewSharpTM自动化激发波长支持4路激发波长全自动切换,含紫外光路准直内置红光光源光路准直器自动校准软件控制自动校准其他远程自动优化,自动批处理,自动曝光,自动荧光校正等
    留言咨询
  • MULTIPURPOSE HIGH-SPEED PRECISION MICROSCOPIC MEASUREMENT IMAGING CAMERA (VEGA)多用途高速精密显微测量成像相机(VEGA)采用索尼高性能彩色CMOS芯片,结合设计者精密的算法程序,为显微成像使用者提供色彩还原逼真,分辨率高(3264x1836),预览速度快捷,面对多种应用场景都能轻松胜任的强劲性能。本相机同时具备以下两项功能:l具有HDMI 性能的相机:可不经过电脑连接,相机可直接于HDMI显示器(带HDMI输入的高清电视,高清显示器或与本相机配套,可安装在显微镜第三目光口的11英寸高清显示器),通过无线装置,对相机进行工作控制,指令相机进行拍照/录像(调节成像参数),测量及计算。测量及计算结果(成像图片上显示或EXCEL表格格式显示)可直接保存在相机内部记忆体内,方便用户调出到电脑使用。以上性能,归功于相机内置的CPU与相应成像测量计算软件系统。这种硬件配置,极大限度地减少了显微镜与成像系统(常规的显微镜+相机+电脑)所占用的空间,尤其适用于超净工作台内或实验室空间有限的场景;l常规USB接口的相机:相机可通过USB数据线与电脑主机的USB插口连接,在电脑主机安装了相机配套的图文分析处理软件后,通过电脑对相机进行工作控制。所获得的成像与测量计算信息,保存在电脑主机中用户指定的路径中;描述 美国LABOMED-莱博迈科研及医用显微镜系列产品
    留言咨询
  • NanoRacer 高速原子力显微镜NanoRacer高速原子力显微镜标志着量化成像能力的一次重大飞跃。在纳米分辨率下对动态生物过程进行实时的可视化从未如今天这般简单。NanoRacer为生命科学应用打开了一个新世界,充满令人兴奋的全新可能,使研究人员能够以一种迄今为止不可能的方式深入理解复杂的生物系统和分子机制。非同凡响50帧每秒与5000行每秒小悬臂具有进行最低力成像和最小样品损伤的能力。最高的扫描速度适用于先进力图描绘。自动化易于使用、直观操作、快速得到结果尖端工程技术,卓越的性能和稳定性。完全自动化设置。最先进的数据分析。前沿原子缺陷级分辨率 实时可视化动态生物过程,分辨率达纳米级。理解复杂的生物系统和分子动力学。FEATURES高速AFM的新篇章:分子动力学实时观测,每秒50帧和真正的每秒5000行DNA折纸纳米结构包含在云母上的5个生物素结合位点,通过在具有链环的内部以每秒50帧和5000行/秒的速度成像在液体中存在链环. 点击图像观看视频。NanoRacer为生命科学应用打开了新的激动人心的可能性,使研究人员能够以前所未有的方式深入了解复杂的生物系统和分子机制: l 单分子结合行为l 二维蛋白质组装中的动态过程l 酶活性监测l 蛋白质结构的组装和解离过程l DNA折纸组装l 蛋白质/蛋白质相互作用l 马达蛋白和膜运输动力学l 病毒和细菌形态和动态过程云母上包含5个生物素结合位点的DNA折纸纳米结构,于具有链霉亲和素存在的流体中在闭环下以每秒50帧和每秒5000条线进行成像“许多生物分子中仍然隐藏着许多未被探索的秘密,为了揭示它们的功能活动中的未知之处,需要直接观察单个分子。NanoRacer是商业上最快的高速AFM,可以实时直接观察分子。它集成了许多创新的想法,易于操作和高性能,我最大的愿望是许多研究人员将使用NanoRacer实现他们的目标并取得令人兴奋的发现。”日本金泽大学纳米生命科学研究所(WPI-NanoLSI)Toshio Ando教授出色的分辨率,卓越的稳定性,令人瞩目的准确性Atomic resolution of calcite crystal step edge, imaged in fluid, 3D topography 15 × 9 nm² [1], zoom 4 × 4 nm² [2]成像原子缺陷和亚分子分辨率现在已成为常规。NanoRacer拥有商业AFM系统中最低的噪声水平,这要归功于每个轴的高精度电子和增强精度定位传感器。NanoRacer反映了Bruker的BioAFM团队在将技术进步与稳定性、灵敏度和易用性相结合方面的开创性工作。在液体中拍摄的方解石晶体台阶边的原子分辨率,3D拓扑图为15×9nm² [1],缩放图为4×4nm² [2]小型悬臂和最低力量,以减少样品损伤红外激光光热激发选项,可进行清洁的悬臂驱动,易于设置,最小化对脆弱样品的干扰 先进算法支持扫描控制和反馈 最小化力漂移,以进行长期实验 最高带宽数字电子,以最低噪音实现最佳性能 顶尖高速功率放大器,实现完美的扫描驱动 在所有轴上进行闭环扫描,以最低水平噪声,实现最高精度。在闭环的云母加PLO上,于液体中拍摄到的单个DNA分子。序列[4] + [5]被以50帧/秒的速度拍摄。点击图像观看视频。Individual DNA molecules imaged in fluid on mica+PLO in closed loop. Sequences [4] + [5] are imaged at 50 frames/sec. Click on the image to watch the video.发现全新的用户体验-一个为方便而设计的完整系统轻松的样品和探针加载可搬运的样品载体,方便在工作台上进行样品制备几分钟内完成探针更换无需校准,采用闭环扫描器设计轻松导航通过集成摄像头以查找样品上感兴趣的区域通过直接注射进行流体交换全新设计的三口液体池用于光热激发NanoRacer标志着高速AFM的新篇章,将复杂、耗时的操作归于过去。该设计考虑到用户需求,因此具有坚固可靠的设计和许多新功能,即使是对AFM新手来说,也很容易使用。所有组件都设计成方便处理,从样品准备到完全电动和自动光学对准。简化的处理使数据收集变得容易,结果也很快。短的数据收集时间对于获得活性单分子样品的动态结果至关重要。 自动化悬臂对准 优化漂移补偿 自动光热激光对准选项 内置自动对焦相机 自动校准悬臂弹簧常数Seamless handling for preparation and imaging with the transportable sample scanner. Prepare the sample conveniently on the bench and load into the NanoRacer to image.Key Features 最高成像速度可达50帧,每秒真正的5000行/秒,分辨率出色 直观易用的V7软件 新开发的高速头和扫描单元 自动化悬臂对准 坚固的同心设计,稳定性极高 针对小型和中型悬臂进行优化 尖端的电子学技术 可选配Bruker独有的PeakForce Tapping技术
    留言咨询
  • 徕卡DMi8倒置显微镜DMi8 S 高速成像平台DMi8 显微镜配有从手动到电动的各种组件,可完全自由配置,让您创建满足研究和预算需求的理想成像系统。详细信息DMi8 显微镜DMi8 显微镜配有从手动到电动的各种组件,可完全自由配置,让您创建满足研究和预算需求的理想成像系统。它具备天生的灵活性,您可添加已被证实的同类理想选件 (如 DIC),用于未染色的标本以及进行智能自动化。对于长时间成像,可使用带自适应调焦控制和闭环调焦的卓越调焦控制系统。了解更多关于 DMi8 显微镜的信息Alessandro Esposito 博士,和记/ MRC 研究中心,英国剑桥大学适用于高级宽场研究的 DMi8 S从发现和分析单个分子开始,到了解和治疗人类健康问题取得突破,下一个科学发现的关键在于找到缺失的连接数据的环节。DMi8 S 是用于高级宽场研究的完整解决方案。新型 DMi8 S 平台增加了ge命性的高速控制、Infinity TIRF 和 Infinity 光操作系统模块,加上优良的软件功能,扩展了 DMi8 显微镜的灵活性,得到终极的高级活细胞成像解决方案。“DMi8 S 是一种多功能用户友好型系统,具备超高清晰度、光操作和光遗传学等特性,让生物医学研究员在探测细胞内的分子机制时如虎添翼。”看得更多 – 观察面积增大到 10,000倍从一张张图像搜索转变为看到样本的整个图像。软件模块 LAS X Navigator 就像是细胞的 GPS,为您开辟一条通往高质量数据的清晰路线图。创建样本的概览图,立即识别重要细节。然后使用载玻片、培养皿和多孔板模板,自动设置高分辨率图像摄取。经忽视的更多关联。 斑马鱼幼鱼。来源:Ravindra Peravali, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany.找到您的答案不管您关注的是哪种实验,LAS X Navigator 始终是 DMi8 S 平台上通往所有应用的关键。生成实时概览图创建螺旋扫描,搜索当前位置的邻近区域在标本夹模板中显示图像,进行快速定向在相同工作空间中使用任何放大倍率、相机、检测器和反差方法定义高分辨率扫描或多孔板成像项目的无限多个区域和位置快速缩放标本通过鼠标单击即可移动到载物台上的任何位置看得更快 – 实验速度加快5倍配有 LAS X Synapse 高级同步快速板的 DMi8 S 成像解决方案消除了系统组件间的瓶颈,从而大大加快了成像速度。通过集成的实时控制器,直接与所有硬件组件、相机和外围设备关联,您可以毫秒级的精度控制您的整个系统。将多位置载物台实验与高速外部荧光转换功能相结合,发挥市场上配合高精度载物台控制的快速滤片转盘的优势。间歇摄取实验时间最高缩短5倍意味着您不但可以节省时间,还能获得更多细节。不管实验中使用了哪种仪器组件,系统都将以最高可能的速度运行。 使用 DMi8 S 更快速地成像。标准实验在LAS X Synapse 控制前后总时间对比。DMi8 S 可更高效地处理数据,帮助您实现较高的摄取速度。精确控制现在对于专业的活细胞应用,您可在系统中添加附加设备,使用第三方设备进行精确定时和控制,制定可完全高速控制的实验。DMi8 S 平台配有 LAS X Synapse 高级同步快速板,可自由指定连接方式,创建快速图像序列,分析由第三方设备提供的生物体对外部刺激物的响应。定义数字和模拟信号,独立于图像摄取,以准确的定时和完全的再现性设置触发器信号。看到隐藏信息 – 在一个实验中进行光激活、光消融和光漂白在 DMi8 S 平台上添加 Infinity TIRF 和 Infinity 光操作系统,大程度增加系统的多功能性。您可使用 5 个激光器,在一个长时间成像实验中执行超高分辨率、TIRF 等多个光操作任务。 在执行高要求任务 (如 FRAP 或光消融) 的同时,可执行光敏感应用,如光遗传学或光转化任务。使用全自动、超高分辨率的 Infinity TIRF 分析膜动力学,进一步融合技术。Leica DMi8 的构建始终以灵活性为指导原则。DMi8 显微镜显微镜有多达两个无限远光路接口,可作为添加荧光设备的接入点,从而轻松调整,以此来适应从简单荧光成像到精密的超高分辨率应用。这种创新设计大大方便了高级应用中附加荧光光源和激光系统的集成,例如:FRAP光转化光消融光遗传学及更多DMi8 – 宽场成像的模块化DMi8 模块的研究型显微镜是 DMi8 S 系统的核心。显微镜配有从手动到电动的各种组件,可完全自由配置,让您创建满足研究和预算需求的理想成像系统。 另外,如果您的研究发生变更,也可以随时调整或升级系统。每台 DMi8 显微镜都可配备多达两个的无限远光路接口,以便直接访问荧光光路径,添加最新的荧光技术,例如, Infinity 光操作系统或 Infinity TIRF。联系我们,了解如何使用最新的 DMi8 S 平台选件升级您的 DMi8传统 16mm 视场 (虚线) 与 19mm 视场的对比。彩叶草叶子。去卷积自体荧光针对 sCMOS进行 优化每台 DMi8 标配适合所有摄像头端口的 19mm 视场 (FOV)。使用任何对比度方法配置您的系统,添加精密的方法 (如 TIRF),使用不会影响光学质量的最新成像技术 (如最尖端的大幅面 sCMOS 相机)。在每张图像中摄取更多细节此外,可通过目镜,经由大达 25 mm 的 FOV 看到更多细节。 (使用 Leica DFC9000 GT sCMOS 相机在 Leica DMi8 显微镜上摄取的图像)徕卡自适应调焦控制只需单击一次按钮,具有 LED 光束辅助功能的徕卡自适应调焦控制 (AFC) 即可自动实时维持对焦。节省时间,确保您的间歇成像摄取不受实验条件变化的影响。徕卡自适应调焦控制的工作原理智能自动化当更改对比度方法时,显微镜可根据该方法自动调整照明设置、等焦面、亮度和光圈位置。通过新型 LAS X Synapse 实时控制器,智能自动化更进一步。标准实验运行速度最多快了 5 倍,使用最新相机技术,集成第三方触发的组件。让每一个组件尽可能都以很高的速度和谐工作。Leica DMi8 调焦驱动器DMi8 系统的一大特色为以 20 nm 的重定位精度实现闭环调焦。在增大的 12 mm 调焦行程的基础上,选择闭环调焦,实现多点间歇摄取实验的高再现性。 Leica DMi8 调焦驱动器的12 mm 行程。无限远光路接口连接器,加上完整的光机设计文档,开启了 Leica DMi8 光路径,方便您添加任意附件。定制化只需连接到无限远光路接口连接器,就能将 Thorlabs Cage 系统或 Linos Microbench 或 Nanobench 组件直接添加到 Leica DMi8。荧光成像DMi8 具有许多荧光创新特性。对于高速成像,可使用外部荧光转换功能或专利型自动荧光照明强度管理系统 (FIM),实现快速、准确地荧光成像。对于标准应用,可通过 RFID 自动识别轻松安装荧光滤块。自动荧光照明强度管理系统Leica Application Suite X (LAS X) 是所有徕卡显微镜公共的软件平台。它集成了徕卡显微系统的共聚焦、宽场、体视、超高分辨率和光片成像仪器为一体。LAS X 软件用户有更多的时间用于研究成像任务十分直观从基本的归档到高级生命科学研究 – LAS X 引领您直接进入绚丽的成像世界!了解关于 LAS X 生命科学显微镜软件的更多信息高速图像采集领域的重大突破高速线性电动载物台以超乎想象的速度提供精确的定位,例如在 40 倍物镜下每秒定位 5 个位置。 振动传感器可确保载物台在图像采集过程中完全静止。 最终结果是:即使以最快图像采集速度,显微镜也能在成像的最佳时机拍摄到清晰的图像。 该性能的巨大提升源于优化了图像采集与载物台移动之间的同步。Quantum 载物台的优势:以小于 ±1 µ m 绝对精度高速定位随时手动移动载物台同时保持追踪载玻片的准确位置查看整个载玻片的高速采集
    留言咨询
  • 产品详情日本RIBM 超高速视频级原子力显微镜HS-AFM 超高速视频级原子力显微镜(Sample-Scanning High-Speed Atomic Force Microscope ,HS-AFM SS-NEX)是由日本 Kanazawa 大学 Prof. Ando 教授团队历经数十年研发而成的,也是世界上第一台可以达到视频级成像的商业化原子力显微镜。 相较于目前市场上的原子力显微镜成像设备,HS-AFM突破了 “扫描成像速慢”的限制,扫描速度最高可达 20 frame/s,并且有 4 种扫描台可供选择。样品无需特殊固定染色,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。液体环境下直接检测,超快速动态成像,分辨率为纳米水平。探针小,适用于生物样品;悬臂探针共振频率高,弹簧系数小,避免了对生物样品等的损伤。悬臂探针可自动漂移校准,适用于长时间观测。采用动态PID控制,高速扫描时仍可获得清晰的图像。XY轴分辨率2nm;Z轴分辨率0.5nm。 超高速视频级原子力显微镜HS-AFM推出至今,全球已有80多位用户,发表 SCI 文章 200 余篇,包括Science, Nature, Cell 等顶级杂志。 HS-AFM超高速视频级原子力显微镜应用案例: 1.Video imaging of walking myosin V 实时观察myosin V蛋白的运动 N. Kodera et al. Nature 468, 72 (2010). Kanazawa University 2.Real-space and real-time dynamics of CRISPR-Cas9 实时显示CRISPR基因编辑 Mikihiro et al. Nature Communications, (2017). Kanazawa University3. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale Miyagi A, et al. Nature Nanotechnology (2016)4. IgGs are made for walking on bacterial and viral surfaces J Preiner, et al. Nature Communications(2014)5. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells Mikihiro Shibata, et al. Scientific Reports(2015)6. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin Shibata M, et al. Nature Nanotechnology (2010)7. Tuning crystallization pathways through sequence engineering of biomimetic polymers Xiang Ma, et al. Nature Materials (2017)8. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures Yuki Suzuki, et al. Nature Communications(2015) HS-AFM超高速视频级原子力显微镜设备规格及配置参数: 基本参数: SS-NEX 型可选配置:
    留言咨询
  • RAMAN-11是由日本Nanophoton公司推出的新一代快速、高精度、面扫描激光拉曼彩色成像系统。作为三代Raman系统的RAMAN-11,则具备的快速、高分辨率成像的特点。相对于原来的传统而言,RAMAN-11的成像速度是其他常规Raman系统的300-600倍,一般在几分钟之内即可获取样品高分率的拉曼图像.是一款具有高速、高分辨率成像功能的拉曼显微镜。创新性技术--实现高速、高分辨率拉曼成像激光束扫描 &bull 高速扫描成为可能 &bull 利用光束扫描的无震动和无漂移特点,成像更为清晰多光谱同步测量 &bull 高速、高分辨率拉曼成像通过采用线形拉曼散射光获得, 每一条扫描线都含有400个立的光谱线形照明 &bull RAMAN-11采用线性照明,产生线形RAMAN散射光 &bull Nanophoton发展了一套特殊的光学系统,确保光强的均匀分布狭缝聚焦 &bull 共聚焦光学系统实现高分辨率拉曼成像 &bull 同一共聚焦光学系统用于快速拉曼成像 RAMAN-11系统应用案例快速区分单层与多层石墨烯激光源:532nm,物镜:100X,NA=0.9,光谱数:67,600(400*169),测量时间:5分30秒通过RAMAN-11可以对不同层数的石墨烯快速成像。以350纳米的高空间分辨率,仅用5分钟的测量时间即可识别从单层到四层的石墨烯及其分布。更多信息......高灵敏度:Si四峰的测量 良好的共聚焦光学设计保证了对焦 外空气信号的高效抑制,并使弱的 硅四峰信号也能被探测到。 高分辨率:传统拉曼系统的5.7倍在100X物镜下,RAMAN-11 的激光斑点尺寸为:350nm*500nm,是传统拉曼的1/5.7,因此在同样的样品上可以得到更加详细的信息,能够为纳米尺寸下的物质鉴别、分布等分析提供更加准确的结果材料应力分布图像分辨率:320(x)× 400(y)=128,000 Spectra,成像时间:16分钟。通过RAMAN-11可以探测到晶体结构的扭曲,如硅材料等。硅的Raman峰位于520cm-1。硅单晶中由于应力的作用,会造成晶格结构的偏离与扭曲。左图通过测量Raman峰的偏离,进而给出了硅单晶表面应力的分布。更多信息......无损伤材料组分剖面分析图像分辨率:300(x)× 120(z)=36,000 Spectra,成像时间:8 分钟上图是通过RAMAN-11的无损探测技术,对多层膜进行的深度剖析。通过联用共聚焦光学系统与面扫描技术,可以成功地探测到深度图像。更多信息......超导材料中组分分布图像分辨率:265(x)× 400(y)=106,000 Spectra,成像时间:120分钟 左图是RAMAN-11探测到的超导样品中各种材料的分布:R: Gd123/a/b oriented;G: CeO2;B: Gd123;C: Gd123/underdoped;Y: NiFe2O4 更多信息......结晶度分析图像分辨率:320(x)× 400(y)=128,000 Spectra,成像时间:27分钟。上图表示由于离子的注入而导致的结晶度的变化。结晶度可以通过Raman峰宽来进行衡量,这是由于二者之间存在一定的关联。结晶度好的样品,其Raman峰比较细窄。更多信息......材料表面各种组分的分布图像分辨率:150(x)× 400(y)=60,000 Spectra;成像时间:5分钟。左图是Raman-11给出的皮肤上某种有机物质的分布图像;相比而言,常规的光学显微镜则没有这种能力(右图)。更多信息......药品组分分析图像分辨率:400(x)× 220(y)=88,000 Spectra,成像时间:11分钟。RAMAN-11以给出药品中,不同组分的分布图像。这些组分通常是以多晶的形式存在,通过RAMAN-11的无损探测技术,可以将这些组分和每种颗粒的大小确定下来。更多信息......
    留言咨询
  • Horiba 高速高分辨显微共焦拉曼光谱仪LabRAM Odyssey紫外/可见/近红外分光光度计UH5700支持从紫外区到近红外区的广范围波长区域的固体,液体样品测定。它采用全新的数据处理软件,操作起来更加简便。超快速共焦成像DuoScanT成像技术、Repetitive SWIFTM信噪比增强快速成像技术、SWIFTIM XR多窗口扩展快速成像技术、MultiPoints坐标系标记技术、NavSharpM实时自动聚焦技术、ViewSharpM三维表面形貌技术、3D Volume第二代三维表面及体成像技术高空间分辨率真正针孔共焦技术,区别于简单的狭缝共焦,实现三维空间滤波,高杂散光抑制率,空间分辨率可达250nm独特的全反射式共焦技术,全光谱消色差,支持200-2100nm光谱测量高光谱分辨率800mm焦长的单级光谱仪,使得 LabRAM Odyssey成为市场上光谱分辨率最高的单级拉曼光谱仪。800mm的焦长使得精细样品信息,如:结晶度、多晶型、应力、氢键和其它谱带形状的特征分析变得简单化。超强功能LabRAM Odyssey首次提出紫外灵敏度测试指标,满足全光谱范围内的高灵敏度测试要求。• 低至250nm的显微拉曼成像空间分辨率• 800mm焦长光谱仪:实现0. 35cm1极致光谱分辨率• 真正针孔共焦设计:实现衍射极限的空间分辨率,横向分辨可达250nm• 超环面镜平场成像:支持多达4种光谱扫描模式,包括特色的多窗口无缝接谱模式• 高灵敏度+低杂散光:同时支持强信号的超短曝光(<1ms)和极弱信号的长时间曝光• 高分辨成像:成像步进优于50nm,最低可达10nm• 高稳定性:±0. 02cm1的系统误差规格项目内容光谱仪焦长800mm光谱分辨率0.35cm-1-0.65cm-1重复性±0.02cm-1低波数50cm-1(可见);150cm-1(紫外);
    留言咨询
  • 显微镜摄像头 400-860-5168转2042
    图森H-674ICE280万像素冷CCD显微镜摄像头最近浏览过的商品显微成像CCD相机 高速弱光显微成像教学...千万像素工业相机 280万像素黑白半导... 图森ICX-674ICE280万像素冷CCD显微镜摄像头
    留言咨询
  • HORIBA Scientific从事光学研发200年,其中拉曼光谱仪的研发与制造长达60多年,凭借法国长期以来的光学设计人才优势与全心全意为客户服务的企业理念,HORIBA Scientific不断地拉曼光谱技术的发展,2019年LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪应运而生。LabRAM Odyssey同时适用于光谱和成像,具有800mm焦长的高光谱分辨率低杂散光光谱仪保证光谱数据的准确性和重复性,一系列针对拉曼光谱成像的新技术引入,大地提升了LabRAM Odyssey的拉曼光谱成像的质量和速度,新型成像算法可以在纷繁复杂的大数据中提炼出有用的光谱信息。独特的高效率反射式共焦光路,配合连续可调共焦针孔,满足全光谱范围200-2200nm抑制杂散光,三维空间滤波,无需任何人工调节工作,全自动化共焦设计保证客户快速准确地获得高信噪比光谱和成像。LabRAM Odyssey继承了LabRAM HR Evolution的全部优点,扩展性强使得每一台LabRAM Odyssey都是一台定制化的显微拉曼光谱系统,尤其满足分析测试平台样品种类多,测试条件变化多,测试速度要求快速准确等需求。LabRAM Odyssey创新性地引入全反射概念,从物镜,耦合光路,光谱仪均采用反射镜组成,从仪器基础设计出发实现真正意义上的消色差,提出紫外灵敏度测试指标,满足全光谱范围内的高灵敏度测试要求。LabRAM Odyssey具有多种特色全新技术,等待您的发掘!1多激发波长 支持深紫外到近红外全波段 自由光路耦合或光纤耦合 支持多达4路全自动切换激发波长2双共焦耦合系统 全反射式共焦光路 消色差,全光谱覆盖 三维空间滤波 全自动切换双共焦光路 内置真实存在的机械共焦针孔,非狭缝虚拟3800mm焦长光谱仪 低杂散光适合弱信号长时间曝光 消色差像散,采用超环面镜,平场校正 全光谱覆盖,光谱仪内无透镜 超高光谱分辨率,低至0.35cm-14高灵敏探测器提供多达4个探测器的耦合接口,满足稳态和瞬态光谱的测试要求超快速共焦成像&bull DuoScanTM成像技术:基于kHz振镜扫描技术,实现物镜+样品双重固定,激光光斑扫描样品表面,具有宽光谱、超快速、高稳定、时间分辨等特点。&bull SWIFTTM模块:是将LabRAM Odyssey的高光通量及优化的检测器-平台同步相结合,以实现超快速共焦拉曼成像。即使采集一个宏观尺度的高分辨成像也可在几秒内完成。&bull Repetitive SWIFTTM信噪比增强快速成像技术:实现持续改进成像信噪比,无需多次重复寻找实验条件。&bull SWIFTTM XR多窗口扩展快速成像技术:同时实现高光谱分辨率和宽光谱范围成像,采用HORIBA独有的多窗口拼接技术,自动拼接多次快速成像,实现高分辨光谱和宽光谱范围的完美统一。高空间分辨率真正针孔共焦技术,区别于简单的狭缝共焦,实现三维空间滤波,高杂散光抑制率,空间分辨率可达250nm独特的全反射式共焦技术,全光谱消色差,支持200-2100nm光谱测量高光谱分辨率800mm焦长的单级光谱仪,使得 LabRAM Odyssey成为市场上光谱分辨率较高的单级拉曼光谱仪。800mm的焦长使得精细样品信息,如:结晶度、多晶型、应力、氢键和其它谱带形状的特征分析变得简单化。高光谱分辨率+高重复性,使得苛刻的实验成为了可能,保证拉曼峰位频移的数据可靠性,和低的系统误差引入。从紫外到近红外全光谱检测LabRAM Odyssey是一款深紫外到近红外全光谱覆盖的消色差高分辨光谱仪,使用多激光及多探测器,检测范围可达200nm~2100nm。实现近红外区域的光致发光测试,包括带隙检测、重组机理监测和材料质量控制。不受样品和分析环境的限制HORIBA Scientific可为您提供拉曼优化研究级光学显微镜。开放式显微镜在物镜下方提供自由空间,适合放置各种大附件,如液氦冷台、催化样品池及自设计特殊样品池等。透射拉曼附件可提供样品整体分析,适合不透明/浑浊的材料,如药片含量的一致性或多晶型。SuperHead光纤探头可实现远程测量,进行原位反应监测或在线分析。超低波数模块HORIBA Scientific 的 LabRAM Odyssey 可使低波数检测低至 3.5 cm-1*。新一代的体布拉格光栅具有非常窄的谱带宽度,以确保单级拉曼光谱仪中超低波数的简单方便、快速高灵敏度检测前沿应用生命科学LabRAM Odyssey为生命科学提供了新的表征方法。如:疾病诊断、皮肤分析、细胞筛选、化妆品、微生物、蛋白质研究、药物交互作用及其它。药物拉曼光谱的高信息含量可以帮助研究人员和质控人员更深入地了解原材料及产品的性能及质量。如:活性药物成分(API)和赋形剂成像和表征、晶型鉴定、相态检测、药物逆向工程、药物一致性评价等。二维材料LabRAM Odyssey提供全部的二维材料光谱表征技术,包括拉曼光谱及成像,光致发光光谱及成像,反射光谱及成像,光电流成像,二次或多次谐波及成像,低温、高压、强磁场等端条件下二维材料的光谱及成像。半导体半导体材料的拉曼和光致发光(PL)研究可为专家提供成分组成及各成分属性的重要信息。如:压力/张力检测、合金成分、超薄覆盖层表征、刻蚀芯片结构成像、带隙分析等。技术指标光谱仪光谱仪焦长800mm光谱分辨率0.35cm-1 - 0.65cm-1重复性±0.02cm-1光谱仪设计方式非对称反射式,全光谱范围消色差校像散光谱采集模式包括单窗口信号采集(同时谱),多窗口连续信号采集(宽光谱快速无缝接谱),多窗口断续信号采集(高低阈值一次采集)和连续扫描信号采集(大范围平滑光谱)共焦共焦方式机械针孔共焦(三维空间滤波) 激光光路:固定尺寸针孔 拉曼光路:10-1000μm连续可调针孔共焦光路内置2个共焦光路,自动切换 独立优化可见光路400-700nm和消色差反射光路:200-2100nm激光光路激光光路独立优化,多支持6路自动切换滤光片切换支持4路自动切换滤光片角度调节软件控制自动低波数50cm-1(可见);150cm-1(紫外);10cm-1(可选)成像XYZ自动平台步进10nm(开环),步进50nm(闭环)闭环反馈精度50nm振镜扫描50nm步进,kHz扫描频率实时聚焦支持三种反馈模式:激光,白光和拉曼信号强度反馈表面粗糙样品成像EasyNav表面形貌ViewSharpTM自动化激发波长支持4路激发波长全自动切换,含紫外光路准直内置红光光源光路准直器自动校准软件控制自动校准其他远程自动优化,自动批处理,自动曝光,自动荧光校正等
    留言咨询
  • 2020年7月30日布鲁克推出了ZUI新一代超高速原子力显微镜NanoRacer。NanoRacer凭借其50帧/秒的超高速成像,实现了真正意义上视频级成像速度下单个生物分子的动态观察。NanoRacer的革新性的技术突破,在AFM发展史上树立了新的里程碑。布鲁克BioAFM研发团队与生命科学领域的专家紧密合作,使NanoRacer不仅拥有超高扫描速率与原子级别分辨率,而且拥有杰出的易用性,使得对单分子动态过程的捕捉变得十分便捷,为深入理解生物物理、生物化学、分子生物学、病毒学以及生物医学等领域的单分子动态过程提供了强大工具。全新的NanoRacer采用了新的架构结合更低噪音、更高稳定性的Vortis&trade 2控制器,全新的驱动算法与力控制算法,可以在超高速下获取高分辨的生物样品信息。新系统整合了基于工作流程的V7操作软件,直观的用户界面与流程化、自动化的设置使得研究人员可以专注于自己的实验,加速高端研究的产出能效。SpecificationsMaximum scan speed of up to 50 frames/sec with 100 ×100 nm2 scan range and 10 k pixelsAtomic defect resolution in closed-loopDesigned for medium to small sized cantilevers for lowest forces and highest scan speedsUltra-low noise cantilever-deflection detection systemIR cantilever-deflection detection light source with small spot sizeOptional photothermal cantilever drive. 730 nm wavelength ensures minimal sample interaction compared to blue-light excitationHighest detector bandwidth of 8 MHz for high speed signal captureAutomated laser and detector alignmentScanner unit 2 × 2 × 1.5 μm3 scan rangeSensor noise level 0.09 nm RMS in xy0.04 nm RMS sensor noise level in zHighest resonance frequency for z axis of 180 kHzTypical sample size 4 mm diameterControl electronicsVortis 2 Speed controller: State-of-the-art, digital controller with lowest noise levels and highest flexibilityNewly designed, high-voltage power amplifier drives the scanner unit New workflow-based V7 SPMControl softwareTrue multi-user platform, ideal for imaging facilitiesUser-programmable softwareAutoAlignment and setupAdvanced feedback algorithmsFully automated sensitivity and spring constant calibration using thermal noise or Sader methodImproved ForceWatch&trade and TipSaver&trade mode for force spectroscopy and imagingAdvanced spectroscopy modes, e.g. various force clamp modes or ramp designsPowerful Data Processing (DP) with full functionality for data export, fitting, filtering, edge detection, 3D rendering, FFT, cross section, etc.Powerful batch processing of force curves and images, including WLC, FJC, step-fitting, JKR, DMT model and other analyses
    留言咨询
  • 显微镜摄像头 MD50 400-860-5168转3899
    MD50-2 数码成像装置可以连接到任何标准的三目生物显微镜、体视显微镜、金相显微镜上,拍摄数码显微图象,它具有传输速度快,色彩还原好,图象清晰,存储方便能优点,可以广泛的应用于工业品管、教学研究、材料分析、临床检验,机器视觉等领域。MD50可以使你原本繁杂的工作变的轻松、有趣和高效。数码成像系统MD50-2特点:高速USB2.0接口,可达480Mb/s;真正的500万像素彩色CMOS逐行扫描图像传感器,无压缩、无插补;动态范围大,支持静态的图像捕捉(JPG、BMP);即插即用,无需外接电源;支持标准C-MOUNT镜头及各类定制镜头, 坚固耐用的铝合金外壳。产品参数图像设备1/2.5"彩色500万CMOS灵敏度1.4V/lux-sec(550nm)分辨率2592*1944有效像素,色深12bit光谱响应400nm~1000nm像素点尺寸2.2μm*2.2μm数据接口USB2.0(480Mbit/sec)帧率5fps @2592*1944 12fps @1280*960电源DC 5V ± 5%20fps @640*480 17fps @1024*768电流≈100 mA快门电子快门白平衡自动/手动 一键白平衡信噪比44dB自动曝光控制10μs–32s,自动曝光扫描方式逐行软件功能图像显示、图像拍摄、录像工作温度-30°C~70°C应用场合显微成像、普通图像采集、微距成像等
    留言咨询
  • 显微镜摄像头MHS2100 400-860-5168转5067
    显微镜摄像头MHS2100是我司一款采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机,是新一代科学CMOS相机,其有效像素2100万,质量稳定,图像清晰,高帧率。不仅提供了强大的即插即用支持,操作简便快捷,同时自带强大的成像软件,本款显微镜摄像头不仅可以匹配我司显微镜,也可以灵活匹配其他国产和进口采用无限远光路系统的显微镜品牌型号。可用于生物工业的普通明场、弱光、强荧光,病理分析等领域,性能稳定,性价比高,是您进行实验室教学、医疗工业等领域的又一不俗之选。配置参数:产品型号MHS2100有效像素2100万芯片尺寸1.1"数据接口USB3.0像元尺寸2.74μm×2.74μm分辨率和帧率17.5@4496x449664.4@2240x224064.4@1120x1120光谱响应范围380-650nm (有红外截止滤光片情况下)白平衡ROI 白平衡/手动Temp-Tint调整色彩还原技术Ultra-Fine TM颜色处理引擎捕获与控制APINative C/C++, C#/VB.Net, DirectShow, Twain和Labview记录方式图像和视频采集软件Minghui1.0制冷方式*自然冷却相机工作环境工作温度(摄氏度)-10~ 50贮存温度(摄氏度)-20~ 60工作湿度30~80%RH贮存湿度10~60%RH供电电源相机通过USB接口供电软件运行环境操作系统Microsoft WindowsXP/ Vista / 7 / 8 /10(32 & 64 位)计算机配置CPU:Intel Core 2 2.8GHz或更高内存:2GB或更大USB接口: USB3.0高速接口或USB2.0接口显示器:17”或以上CD-ROM
    留言咨询
  • 显微镜摄像头 MD30 400-860-5168转3899
    MD30-2 数码成像装置可以连接到任何标准的三目生物显微镜、体视显微镜、金相显微镜上,拍摄数码显微图象,它具有传输速度快,色彩还原好,图象清晰,存储方便能优点,可以广泛的应用于工业品管、教学研究、材料分析、临床检验,机器视觉等领域。MD30-2可以使你原本繁杂的工作变的轻松、有趣和高效。数码成像系统MD30-2特点:高速USB2.0接口,可达480Mb/s;真正的300万像素彩色CMOS逐行扫描图像传感器,无压缩、无插补;动态范围大,支持静态的图像捕捉(JPG、BMP);即插即用,无需外接电源;支持标准C-MOUNT镜头及各类定制镜头, 坚固耐用的铝合金外壳。拍摄图象清晰度高,色彩还原好,曝光时间、白平衡、对比度、亮度、饱和度及色度等多参数软件自动控制。安装使用操作简单,通过USB2.0接口,不需要额外的采集设备,即插即用,即可获得实时的无压缩数码图象,明美操作软件界面简洁,图象采集所见即所得。具有动态录像功能,其压缩格式极其方便存储。产品参数图像设备1/2"彩色300万cmos灵敏度1V/lux-sec(550nm)分辨率2,048* 1,536 有效像素,色深10bit光谱响应400nm~1000nm像素点尺寸3.2μm*3.2μm数据接口USB2.0(480Mbit/sec)帧率8fps @ 2048*1536电源DC 5V ± 5%40fps @ 640*480 15fps @ 1024*768电流≈200 mA快门电子快门白平衡自动/手动 一键白平衡信噪比43 dB自动曝光控制10μs–32s,自动曝光扫描方式逐行软件功能图像显示、图像拍摄、录像工作温度0°C ~ 60°C应用场合显微成像、普通图像采集、微距成像等
    留言咨询
  • 显微镜摄像头MHS900 400-860-5168转5067
    仪器介绍:显微镜相机CMOS相机MHS900广州明慧显微镜相机CMOS相机MHS900是一款采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机,是新一代科学CMOS相机,其有效像素900万,质量稳定,图像清晰,高帧率。支持即插即用,操作简便快捷,同时自带强大的成像软件,本款显微镜相机可以灵活匹配其他国产和进口显微镜品牌,灵活匹配国产和进口各个品牌显微镜,例如奥林巴斯、尼康、蔡司、徕卡、耐可视、麦克奥迪、凤凰、基恩士等品牌。可用于生物工业的强荧光,明场等观察,病理分析等领域。荧光显微镜摄像头MHS900仪器参数:广州明慧显微镜相机CMOS相机MHS900技术参数:产品型号MHS900 有效像素900万芯片尺寸1"数据接口USB3.0像元尺寸3.45μmx3.45μm分辨率和帧率34@4096x2160;60@2048x1080光谱响应范围380-650nm (有红外截止滤光片情况下)白平衡ROI 白平衡/手动Temp-Tint调整色彩还原技术Ultra-Fine TM颜色处理引擎捕获与控制APINative C/C++, C#/VB.广州明慧Net, DirectShow, Twain和Labview记录方式图像和视频制冷方式*自然冷却相机工作环境工作温度(摄氏度)-10~ 50贮存温度(摄氏度)-20~ 60工作湿度30~80%RH贮存湿度10~60%RH供电电源相机通过USB接口供电软件运行环境操作系统Microsoft WindowsXP/ Vista / 7 / 8 /10(32 & 64 位)计算机配置CPU:Intel Core 2 2.8GHz或更高内存:2GB或更大USB接口: USB3.0高速接口或USB2.0接口显示器:17”或以上CD-ROM仪器应用:广泛的应用领域相机采用背照式传感器,质量稳定,图像清晰,USB3.0数据传输接口,超高帧率,可用于病理分析,强荧光,病理分析等对色彩要求高的领域。应用于以下领域显微拍摄:暗场,微分干涉 (DIC) 显微镜;活体细胞成像,细胞或组织病理学检测,细胞学;缺陷分析,半导体检测,精密测量;微光荧光成像,GFP 或 RFP 分析,荧光原位杂交(FISH);荧光共振能量转移显微镜,全内反射荧光显微镜,实时共聚焦显微镜,失效性分析。
    留言咨询
  • 徕卡DFC295显微摄像头 400-860-5168转2066
    产品名称:徕卡MC170HD显微摄像头型 号:MC170HD品 牌:德国徕卡Leica产品类别:显微镜数码摄像系统徕卡MC170 HD显微镜数码图像分析软件500万像素的 HD 显微镜摄像头 Leica MC170 HD带有C型接口的显微镜数码摄像头,能够提供全高清晰的实时成像,最高速度可达30fps,并具备500万像素的标准捕捉分辨率。它能够为所有的显微镜应用程序产生全彩静态图像和全高清的影片片段。 可在不需要 PC 的情况下单独使用摄像头或通过 USB 连接线连接。在单独模式中,可通过无线遥控器发出所有的摄像头命令,能够使您方便地设定白平衡设置、捕捉图像、展示捕捉图像画廊、显示在实时或捕捉图片上的覆盖数据等。 在 PC 模式中,摄像头能够与 LAS 和它的许多扩展模块(例如,交互式测量或焦点扩展)完全兼容。徕卡MC170 HD显微镜摄像头为您带来的优势独立式操作无需 PC 的独立式操作 - 可在几秒内捕捉500万像素的静态图像或全高清的影片片段,并直接储存在可取出的 SD 卡上。无线遥控器通过无线遥控器设定所有的摄像头参数,仅仅只需按一个键便可捕捉/查看图像或影片片段。快速实时图像最高速度达每秒30帧的全高清分辨率(1920x1080)动态实时图像 - 可方便地安装显微样品或分享实时视频,以便对显微结构进行讨论。强大的徕卡软件能够通过 USB2 连接线连接到任何 PC 或笔记本电脑上,与强大的徕卡应用程序套装(LAS)完全兼容,具有对图片进行附加分析、存档或测量的功能。高质量的数码成像优质的彩色图像质量,具有在实时或捕捉图像上面添加准星、比例尺或任何用户规定的图像数据的功能。2年质量保证由于产品的高可靠性和Leica的高质量标准,我们乐于为此摄像头提供2年的质量保证。徕卡ICC50HD显微摄像头徕卡MC120HD显微摄像头徕卡MC170HD高清显微摄像头徕卡DFC295显微摄像头徕卡DFC345FX显微摄像头徕卡DFC450显微摄像头徕卡DMC2900显微摄像头徕卡EC3显微摄像头徕卡DFC310FX显微摄像系统徕卡IC80HD体视显微镜用摄像头徕卡DFC495显微摄像系统徕卡DFC365FX显微摄像系统徕卡DFC3000G显微摄像系统徕卡DFC550显微镜数码摄像系统 徕卡DM750M金相显微镜徕卡DM1750M金相显微镜徕卡DM2700M金相显微镜徕卡DMI3000M倒置金相显微镜徕卡DM4000M半自动金相显微镜徕卡DMILM倒置金相显微镜徕卡DM750P偏光显微镜徕卡DM2500P偏光显微镜徕卡DM2700P透反射偏光显微镜徕卡DMLP偏光显微镜徕卡DM4500P偏光显微镜徕卡S4E体视显微镜徕卡M50体视显微镜徕卡M60体视显微镜徕卡S6体视显微镜徕卡M80立体显微镜徕卡S8APO立体显微镜徕卡M125立体显微镜徕卡M165C立体显微镜徕卡M205体视显微镜徕卡EZ4HD数码一体化立体显微镜徕卡DM4000B生物显微镜徕卡Multiviews多人共览显微镜徕卡DM6000B生物显微镜徕卡DM5000B生物显微镜徕卡DM3000生物显微镜徕卡DM2500生物显微镜徕卡DM2000生物显微镜徕卡DM1000生物显微镜徕卡DM750生物显微镜徕卡DM500生物显微镜徕卡DMIL倒置生物显微镜徕卡DMIL LED倒置显微镜徕卡DMI3000B倒置生物显微镜徕卡DMI4000B倒置生物显微镜徕卡DMI6000B全自动研究级倒置显微镜徕卡DFC550显微镜数码摄像系统 北京显微镜,天津显微镜,重庆显微镜,吉林显微镜,辽宁显微镜,新疆显微镜,西藏显微镜,甘肃显微镜,宁夏显微镜,陕西显微镜,山西显微镜,河北显微镜,山东显微镜,河南显微镜,安徽显微镜,湖北显微镜,四川显微镜,湖南显微镜,云南显微镜,江西显微镜,贵州显微镜,内蒙古显微镜,青海显微镜,浙江显微镜,福建显微镜,江苏显微镜,海南显微镜,广西显微镜,广东显微镜,黑龙江显微镜,显微镜摄像头,300万、500万、900万、1200万显微镜摄像头,显微镜数码图像分析软件,显微镜数码成像分析系统,徕卡DFC295显微镜数码摄像系统,徕卡DFC295显微镜数码照相,徕卡DFC295显微镜摄像头,徕卡DFC295显微镜数码图像分析软件,徕卡DFC295显微镜数码成像分析系统,
    留言咨询
  • 徕卡MC170HD显微摄像头 400-860-5168转2066
    产品名称:徕卡MC170HD显微摄像头型 号:MC170HD品 牌:德国徕卡Leica产品类别:显微镜数码摄像系统徕卡MC170 HD显微镜数码图像分析软件500万像素的 HD 显微镜摄像头 Leica MC170 HD带有C型接口的显微镜数码摄像头,能够提供全高清晰的实时成像,最高速度可达30fps,并具备500万像素的标准捕捉分辨率。它能够为所有的显微镜应用程序产生全彩静态图像和全高清的影片片段。 可在不需要 PC 的情况下单独使用摄像头或通过 USB 连接线连接。在单独模式中,可通过无线遥控器发出所有的摄像头命令,能够使您方便地设定白平衡设置、捕捉图像、展示捕捉图像画廊、显示在实时或捕捉图片上的覆盖数据等。 在 PC 模式中,摄像头能够与 LAS 和它的许多扩展模块(例如,交互式测量或焦点扩展)完全兼容。徕卡MC170 HD显微镜摄像头为您带来的优势独立式操作无需 PC 的独立式操作 - 可在几秒内捕捉500万像素的静态图像或全高清的影片片段,并直接储存在可取出的 SD 卡上。无线遥控器通过无线遥控器设定所有的摄像头参数,仅仅只需按一个键便可捕捉/查看图像或影片片段。快速实时图像最高速度达每秒30帧的全高清分辨率(1920x1080)动态实时图像 - 可方便地安装显微样品或分享实时视频,以便对显微结构进行讨论。强大的徕卡软件能够通过 USB2 连接线连接到任何 PC 或笔记本电脑上,与强大的徕卡应用程序套装(LAS)完全兼容,具有对图片进行附加分析、存档或测量的功能。高质量的数码成像优质的彩色图像质量,具有在实时或捕捉图像上面添加准星、比例尺或任何用户规定的图像数据的功能。2年质量保证由于产品的高可靠性和Leica的高质量标准,我们乐于为此摄像头提供2年的质量保证。徕卡ICC50HD显微摄像头徕卡MC120HD显微摄像头徕卡MC170HD高清显微摄像头徕卡DFC295显微摄像头徕卡DFC345FX显微摄像头徕卡DFC450显微摄像头徕卡DMC2900显微摄像头徕卡EC3显微摄像头徕卡DFC310FX显微摄像系统徕卡IC80HD体视显微镜用摄像头徕卡DFC495显微摄像系统徕卡DFC365FX显微摄像系统徕卡DFC3000G显微摄像系统徕卡DFC550显微镜数码摄像系统 徕卡DM750M金相显微镜徕卡DM1750M金相显微镜徕卡DM2700M金相显微镜徕卡DMI3000M倒置金相显微镜徕卡DM4000M半自动金相显微镜徕卡DMILM倒置金相显微镜徕卡DM750P偏光显微镜徕卡DM2500P偏光显微镜徕卡DM2700P透反射偏光显微镜徕卡DMLP偏光显微镜徕卡DM4500P偏光显微镜徕卡S4E体视显微镜徕卡M50体视显微镜徕卡M60体视显微镜徕卡S6体视显微镜徕卡M80立体显微镜徕卡S8APO立体显微镜徕卡M125立体显微镜徕卡M165C立体显微镜徕卡M205体视显微镜徕卡EZ4HD数码一体化立体显微镜徕卡DM4000B生物显微镜徕卡Multiviews多人共览显微镜徕卡DM6000B生物显微镜徕卡DM5000B生物显微镜徕卡DM3000生物显微镜徕卡DM2500生物显微镜徕卡DM2000生物显微镜徕卡DM1000生物显微镜徕卡DM750生物显微镜徕卡DM500生物显微镜徕卡DMIL倒置生物显微镜徕卡DMIL LED倒置显微镜徕卡DMI3000B倒置生物显微镜徕卡DMI4000B倒置生物显微镜徕卡DMI6000B全自动研究级倒置显微镜徕卡DFC550显微镜数码摄像系统 北京显微镜,天津显微镜,重庆显微镜,吉林显微镜,辽宁显微镜,新疆显微镜,西藏显微镜,甘肃显微镜,宁夏显微镜,陕西显微镜,山西显微镜,河北显微镜,山东显微镜,河南显微镜,安徽显微镜,湖北显微镜,四川显微镜,湖南显微镜,云南显微镜,江西显微镜,贵州显微镜,内蒙古显微镜,青海显微镜,浙江显微镜,福建显微镜,江苏显微镜,海南显微镜,广西显微镜,广东显微镜,黑龙江显微镜
    留言咨询
  • 显微镜摄像头MHD2000显微镜摄像头CMOS相机 MHD2000是我司一款采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机,是新一代科学CMOS相机,其有效像素2000万,质量稳定,图像清晰,高帧率。不仅提供了强大的即插即用支持,操作简便快捷,同时自带强大的成像软件,本款显微镜摄像头不仅可以匹配我司显微镜,也可以灵活匹配其他国产和进口采用无限远光路系统的显微镜品牌型号。MHD2000具有高分辨率、高对比度和颜色还原准确的特点,高分辨率,高帧率,接近目镜的色彩表现,是液基细胞分析、免疫组化、骨髓细胞,精子分析总体图片质量要求高的理想摄像系统。广州明慧显微镜摄像头CMOS相机 MHD2000技术参数:产品型号MHD2000有效像素2000万芯片尺寸1"数据接口USB3.0像元尺寸2.4μm × 2.4μm分辨率和帧率15@5440x364850@2736x182460@1824x1216光谱响应范围380-650nm (有红外截止滤光片情况下)白平衡ROI 白平衡/手动Temp-Tint调整色彩还原技术Ultra-Fine TM颜色处理引擎捕获与控制APINative C/C++, C#/VB.Net, DirectShow, Twain和Labview记录方式图像和视频制冷方式*自然冷却相机工作环境工作温度(摄氏度)-10~ 50贮存温度(摄氏度)-20~ 60工作湿度30~80%RH贮存湿度10~60%RH供电电源相机通过USB接口供电软件运行环境操作系统Microsoft WindowsXP/ Vista / 7 / 8 /10(32 & 64 位)计算机配置CPU:Intel Core 2 2.8GHz 或更高内存:2GB或更大USB接口: USB3.0高速接口或USB2.0接口显示器:17”或以上CD-ROM
    留言咨询
  • 显微镜摄像头MHD800 400-860-5168转5067
    仪器介绍:显微镜摄像头CMOS相机MHD800是我司一款采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机,是新一代科学CMOS相机,其有效像素830万,质量稳定,图像清晰,高帧率。不仅提供了强大的即插即用支持,操作简便快捷,同时自带强大的成像软件,本款显微镜摄像头不仅可以匹配我司显微镜,也可以灵活匹配其他国产和进口采用无限远光路系统的显微镜品牌型号。可用于病理分析,强荧光,明场等观察,性能稳定,性价比高,是您进行实验室教学、医疗工业等领域的又一不俗之选。仪器参数:显微镜摄像头CMOS相机MHD800技术参数:产品型号MHD800 有效像素830万芯片尺寸1/1.2"数据传输USB3.0像元尺寸2.4μm × 2.4μm分辨率和帧率45@3840x216070@1920x1080光谱响应范围380-650nm (有红外截止滤光片情况下)白平衡ROI 白平衡/手动Temp-Tint调整色彩还原技术Ultra-Fine TM颜色处理引擎捕获与控制APINative C/C++, C#/VB. 1111111Net, DirectShow, Twain和Labview记录方式图像和视频制冷方式*自然冷却相机工作环境工作温度(摄氏度)-10~ 50贮存温度(摄氏度)-20~ 60工作湿度30~80%RH贮存湿度10~60%RH供电电源相机通过USB接口供电软件运行环境操作系统Microsoft WindowsXP/ Vista / 7 / 8 /10(32 & 64 位)计算机配置CPU:Intel Core 2 2.8GHz 或更高内存:2GB或更大USB接口: USB3.0高速接口或USB2.0接口显示器:17”或以上CD-ROM仪器应用:显微镜相机CMOS相机MHD800可用于病理分析,强荧光,明场等观察。
    留言咨询
  • 徕卡EC3显微摄像头 400-860-5168转2066
    产品名称:徕卡EC3显微摄像系统型 号:EC3品 牌:德国徕卡Leica产品类别:显微镜摄像头徕卡EC3显微镜数码图像分析系统高速数码彩色摄象机为基本学院和大学课程 Leica EC3徕卡EC3 数码彩色摄象机有板有3.1百万象素, 高解析度成象功能是理想给基本学院和大学教学用。 渐进式扫描, 实时图象多达15 fps 容许容易的对焦, 变倍, 和样品设定. 自动的控制帮助设定参数给曝光时间, 伽玛, 饱和度, 和阴影。 注解如文本和刻度尺可以被添加来创建呈现或实验室报告. EC3容许容易的连接到所有的显微镜有C-型接头埠和所有的计算机有USB2埠。 徕卡EC3显微镜摄像头为您带来的优势 310百万象素彩色感应器310百万象素彩色CMOS感应器 – 便利地采集高解析度图象给基本学院和大学课程应用实时图象实时图象多达 15 帧/秒 – 容许图象可被调节和直接地在电脑屏幕中对焦自动的控制自动的控制 – 帮助容易地设置摄象机参数.C-型接头C-型接头 – 容许便利的装固到大部分的 Leica 显微镜徕卡ICC50HD显微摄像头徕卡MC120HD显微摄像头徕卡MC170HD高清显微摄像头徕卡DFC295显微摄像头徕卡DFC345FX显微摄像头徕卡DFC450显微摄像头徕卡DMC2900显微摄像头徕卡EC3显微摄像头徕卡DFC310FX显微摄像系统徕卡IC80HD体视显微镜用摄像头徕卡DFC495显微摄像系统徕卡DFC365FX显微摄像系统徕卡DFC3000G显微摄像系统徕卡DFC550显微镜数码摄像系统 徕卡DM750M金相显微镜徕卡DM1750M金相显微镜徕卡DM2700M金相显微镜徕卡DMI3000M倒置金相显微镜徕卡DM4000M半自动金相显微镜徕卡DMILM倒置金相显微镜徕卡DM750P偏光显微镜徕卡DM2500P偏光显微镜徕卡DM2700P透反射偏光显微镜徕卡DMLP偏光显微镜徕卡DM4500P偏光显微镜徕卡S4E体视显微镜徕卡M50体视显微镜徕卡M60体视显微镜徕卡S6体视显微镜徕卡M80立体显微镜徕卡S8APO立体显微镜徕卡M125立体显微镜徕卡M165C立体显微镜徕卡M205体视显微镜徕卡EZ4HD数码一体化立体显微镜徕卡DM4000B生物显微镜徕卡Multiviews多人共览显微镜徕卡DM6000B生物显微镜徕卡DM5000B生物显微镜徕卡DM3000生物显微镜徕卡DM2500生物显微镜徕卡DM2000生物显微镜徕卡DM1000生物显微镜徕卡DM750生物显微镜徕卡DM500生物显微镜徕卡DMIL倒置生物显微镜徕卡DMIL LED倒置显微镜徕卡DMI3000B倒置生物显微镜徕卡DMI4000B倒置生物显微镜徕卡DMI6000B全自动研究级倒置显微镜徕卡DFC550显微镜数码摄像系统 北京显微镜,天津显微镜,重庆显微镜,吉林显微镜,辽宁显微镜,新疆显微镜,西藏显微镜,甘肃显微镜,宁夏显微镜,陕西显微镜,山西显微镜,河北显微镜,山东显微镜,河南显微镜,安徽显微镜,湖北显微镜,四川显微镜,湖南显微镜,云南显微镜,江西显微镜,贵州显微镜,内蒙古显微镜,青海显微镜,浙江显微镜,福建显微镜,江苏显微镜,海南显微镜,广西显微镜,广东显微镜,黑龙江显微镜,显微镜摄像头,300万、500万、900万、1200万显微镜摄像头,显微镜数码图像分析软件,显微镜数码成像分析系统,徕卡EC3显微镜数码摄像系统,徕卡EC3显微镜数码照相,徕卡EC3显微镜摄像头,徕卡EC3显微镜数码图像分析软件,徕卡EC3显微镜数码成像分析系统,
    留言咨询
  • 微流控高速成像系统PG-HSV 系列简介微流控技术拥有快速分析处理等特点,因而不断促进许多空间微型化和试剂微量化的新技术的发展。微流控技术在时间和空间维度上的微型化,使得微流控芯片内的实验过程已经快到传统标准摄像机无法完整捕捉,因此,高速高分辨率且使用方便的显微镜成像系统逐步备受关注,将有效提高微流控实验研究的质量。PreciGenome高速成像系统是微流控研究人员的得力工具,集成触摸显示屏,帧率可达 38000FPS,拥有 3种照明模式,快门时间低至 1μs,非常适用于微流控实验中的流体观察、图像拍摄和视频录制。产品特色:即插即用式显微镜系统,集成高速 CMOS 成像传感器帧率可达 38000FPS,全分辨率 1280*1024 下帧率 1050FPS高品质光学部件,高分辨率成像,微流控实验清晰可见高放大倍率变焦,适用于 mm 到μm 级尺度观察3 种照明,适配绝大多数应用曝光时间低至 1μs,微颗粒(液滴、细胞流动等)成像频率达 MHz兼容 PreciGenome PG-MFC 高精密压力控制器,可通过 PG-MFC 高精密压力控制器触发相机成像或录像集成触摸显示屏,也可连接显示器(HDMI 接口),使用简单可靠附加功能支持定制,如荧光检测、更高倍放大等更多产品详情,请联系哲本仪器:
    留言咨询
  • 高速像增强器 400-860-5168转2831
    高速像增强器HiCATT高速像增强相机附件(HiCATT)是专为高速相机使用的像增强器。高速像增强器HiCATT增加了您的相机的灵敏度,并使低光成像帧率高达1MHz(10MHz@burst)。高速像增强器HiCATT的技术扩展了高速相机的动态范围。在弱光下,即使是单个光子也能被探测到。而在高光水平下,高速像增强器HiCATT可以通过极短的曝光(低至3 ns)来防止过度曝光。这些短曝光产生快速移动物体的清晰图像。高速像增强器HiCATT产品特点:一百万fps高速成像——HiCATT将您的高速相机升级到下一个性能水平。它将入射光的强度提高到每秒1 000 000次。3ns超短曝光——门控图像增强器使曝光时间降低到3ns。在如此短的曝光时间,运动模糊完全消除,以确保清晰的图像。50%QE高灵敏增强器——您可以从各种各样的高灵敏度图像增强器中选择,以匹配您应用的光谱需求。图像增强器图像增强器可以增强入射光的强度。通过将光子转换成电子,再转换成光子,可以显著增加光的强度。图像增强器的另一个特点是它可以作为一个超快的快门。匹配您的相机HiCATT和TRiCATT的中继光学将图像增强器的输出投射到相机的传感器上。联系我们,为您的相机和应用确定蕞佳配置的图像增强器直径和中继光学。光电阴极光电阴极是像增强器的入口。这就是入射光子转换成电子的地方。光电阴极材料的量子效率指定了这种转换对每个波长的效率。荧光剂图像增强器的输出包含一层磷光材料。在电子撞击时,荧光屏会发光。根据磷光体的类型,发射光的强度会下降得更快。高速像增强器HiCATT应用:燃烧研究各地的研究人员都在他们的燃烧研究中使用高速像增强器HiCATT,包括OH*激光诱导荧光(LIF)和化学发光。为了避免运动模糊和看到详细的结构,需要非常短的曝光时间。这降低了每次曝光过程中检测到的光强度。HiCATT增强了光线强度,以确保在高帧率下获得清晰的图像。图片显示了三段蓝色气体火焰。图A是一个有规律的记录,显示了蓝色气体火焰的一般形状。但由于曝光时间过长,细节丢失了。图像B是用高速相机(1000帧每秒,1毫秒曝光时间)记录的,以减少运动模糊。图像是暗淡和模糊的,但它比图像A显示较少的运动模糊。图C显示的是在15微秒的曝光下,2000 fps下火焰的样子。高速像增强器HiCATT消除了运动模糊,同时增强了入射光的强度,保留了更多图像细节。高速像增强器HiCATT其它应用汽车工业的超慢动作燃烧研究,等离子体物理研究中的时间分辨成像,显微镜中的动态现象,激光诱导荧光(LIF),微流体研究中流体的时间分辨成像,光漂白后荧光恢复(FRAP),许多其他工业或科学领域的微光高速成像应用蕞新用户论文:1. Mach 4 Flow Velocimetry with 100-kHz PLEET and PIV in AEDC/AFRL Tunnel D2. Simultaneous OH, CH2O and flow field imaging of near blowoff dynamics3. Meteorite Ablation and High-Speed Emission Spectra in Plasma Wind Tunnel4. Ultraviolet Laser Absorption Imaging of High-Speed Flows in a Shock Tube5. Megahertz-rate Femtosecond Laser Activation and Sensing of Hydroxyl for Velocimetry in a Rotating Detonation Combustor Exhaust更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • 超高速视频级原子力显微镜—HS-AFM 原子力显微镜(Atomic Force Microscope,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。原子力显微镜可以测量材料物理性质、力学性能、磁学性能、热学性能、电学性能等方面的一些特征信息,但在扫描成像速度上一直存在局限性,太慢的扫描速度导致原子力显微镜无法捕捉到分子间的相互作用过程和一些快速的分子动态变化。 超高速视频级原子力显微镜(High-Speed Atomic Force Microscope,HS-AFM)由日本 Kanazawa 大学 Prof. Ando 教授团队研发,日本RIBM公司(生体分子计测研究所株式会社,Research Institute of Biomolecule Metrology Co., Ltd)商业化的产品,可以达到视频级成像的商业化原子力显微镜。HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够在液体环境下超快速动态成像,分辨率为纳米水平。样品无需特殊固定,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。超高速视频级原子力显微镜HS-AFM主要有两种型号,SS-NEX样品扫描(Sample-Scanning HS-AFM)以及PS-NEX探针扫描(Probe-Scanning HS-AFM)。推出至今,全球已有100多位用户,发表 SCI 文章 300 余篇,包括Science, Nature, Cell 等顶级杂志。 相较于目前市场上的原子力显微镜成像设备,HS-AFM突破了 “扫描成像速慢”的限制,扫描速度高可达 20 frame/s,并且有 4 种扫描台可供选择。样品无需特殊固定染色,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。液体环境下直接检测,超快速动态成像,分辨率为纳米水平。探针小,适用于生物样品;悬臂探针共振频率高,弹簧系数小,避免了对生物样品等的损伤。悬臂探针可自动漂移校准,适用于长时间观测。采用动态PID控制,高速扫描时仍可获得清晰的图像。XY轴分辨率2nm;Z轴分辨率0.5nm。HS-AFM不仅拥有超高扫描速率与原子级别分辨率,而且具有操作的简易性,使得对单分子动态过程的捕捉变得十分方便,为科研工作者研所和理解生物物理、生物化学、分子生物学、病毒学以及生物医学等领域的单分子动态过程提供了一款强大的工具。全新的HS-AFM采用了新的高频微悬臂架构,更低噪音、更高稳定性的2控制器,高速扫描器,缓冲防震设计,主动阻尼,动态PID,驱动算法优化,多种前沿技术,可以实现在超高速下获取高分辨的生物样品信息。新系统整合了基于工作流程的操作软件,直观的用户界面与流程化、自动化的设置使得研究人员可以专注于实验设计,不需要复杂的操作和条件设置,快速获取数据,加速研究的产出。 日本RIBM公司的超高速视频级原子力显微镜HS-AFM的创新点:★ 高频微悬臂弹性系数: 0.1 N/m 曲率半径: 10 nm 共振频率: 400-600kHz in liquid★ 高速扫描台20 frames/s. (Standard scanner)★ 缓冲防震+主动阻尼+动态PID+算法优化缓冲防震主动阻尼动态PID控制:可自动改变反馈增益,保证了HS-AFM在高速扫描条件下仍可获得清晰的图像探针自动漂移校准,适用于长时间样品观测 日本RIBM公司的超高速视频级原子力显微镜HS-AFM的的应用领域: 从单分子到单细胞,都可直接观测 1、肌动蛋白 2、CRISPR-Cas9 3、膜联蛋白 4、IgG 5、活细胞 6、细菌视紫红质 7、DNA纳米结构 8、仿生聚合物 日本RIBM公司的超高速视频级原子力显微镜HS-AFM的视频案例 1:IgG在溶液中观察到抗体(IgG)。IgG呈"Y"形,两个Fab区区分清晰。由于锚定能力较弱,IgG保持其抗原结合能力。 2:Plasmid DNA传统AFM在没有强锚定的情况下,DNA分子图像出现摆动。然而,强锚定可能会削弱真实的结构和行为。HS-AFM能清晰显示质粒的结构和运动,无强锚定。 3:DNA内切酶的消化:DNase IDNA酶I是一种随机消化DNA的核酸内切酶。视频中的箭头表示DNase I消化DNA的部分。请参考从DNA末端消化的核酸外切酶Bal31的视频。 4:DNA外切酶消化:Bal31Bal31是一种从DNA链末端消化DNA的核酸外切酶。视频显示Bal31的活性沿着DNA移动,并逐渐从DNA链的末端消化。最后,DNA分子被完全消化,但环状DNA未被消化。高光点是Bal31分子,它们与DNA的不同位置结合。 5:DNA聚合酶的DNA延伸:Phi29双链DNA(黄色)随着时间的推移而拉长。单链λDNA作为模具固定在基板上。由于从随机六聚体引物(Red)结合到λDNA模体,phi29聚合酶(Black)以dNTP为底物合成互补DNA。 6:链亲和素2D晶体中的点缺陷成功地观察到点缺陷在晶体中的扩散。从图像上看,两个单空位缺陷的轨迹跟踪相对于晶格的两个轴是明显的各向异性的。 日本RIBM公司的超高速视频级原子力显微镜HS-AFM的文献列表 TitleJournalBiophysical reviews top five: atomic force microscopy in biophysicsBiophysical ReviewsReconstruction of Three-Dimensional Conformations of BacterialClpB from High-Speed Atomic-Force-Microscopy ImagesFrontiers in MolecularBiosciencesA facile combinatorial approach to construct a ratiometric fluorescentsensor: application for the real-time sensing of cellular pH changesChemical ScienceDNA Nanotechnology to Disclose Molecular Events at the Nanoscaleand Mesoscale LevelsSpringer NatureQuantitative description of a contractile macromolecular machineScience AdvancesDynamic Assembly/Disassembly of Staphylococcus aureus FtsZVisualized by High-Speed Atomic Force MicroscopyInternational Journal ofMolecular Sciences 2021, Vol. 22, Page 1697Localization atomic force microscopyNature 2021 594:7863Movements of mycoplasma mobile gliding machinery detected byhigh-speed atomic force microscopymBioAn ultra-wide scanner for large-area high-speed atomic forcemicroscopy with megapixel resolutionScientific Reports 2021 11:1A molecularly engineered, broad-spectrum anti-coronavirus lectininhibits SARS-CoV-2 and MERS-CoV infection in vivoResearch SquareInfluenza virus ribonucleoprotein complex formation occurs in thenucleolusbioRxivTardigrade Secretory-Abundant Heat-Soluble Protein Has a Flexibleβ-Barrel Structure in Solution and Keeps This Structure inDehydrationJournal of Physical Chemistry BUltrastructure of influenza virus ribonucleoprotein complexes duringviral RNA synthesisCommunications Biology onA facile combinatorial approach to construct a ratiometric fluorescentsensor: application for the real-time sensing of cellular pH changesChemical ScienceDeformation of microtubules regulates translocation dynamics ofkinesinScience AdvancesUnraveling the host-selective toxic interaction of cassiicolin with lipidmembranes and its cytotoxicitybioRxivNanostructure and thermoresponsiveness of poly( N -isopropylmethacrylamide)-based hydrogel microspheres prepared via aqueous free radical precipitation polymerizationRSC AdvancesJRAB/MICAL-L2 undergoes liquid–liquid phase separation to formtubular recycling endosomesCommunications Biology 20214:1Correlation of membrane protein conformational and functionaldynamicsNature Communications 202112:1Non-close-packed arrangement of soft elastomer microspheres onsolid substratesRSC AdvancesFolding RNA–Protein Complex into Designed NanostructuresMethods in Molecular BiologyA glutamine sensor that directly activates TORC1Communications Biology 20214:1Architecture of zero-latency ultrafast amplitude detector for high-speed atomic force microscopyApplied Physics LettersCorrelative AFM and fluorescence imaging demonstrate nanoscalemembrane remodeling and ring-like and tubular structure formation by septinsNanoscaleDesiccation-induced fibrous condensation of CAHS protein from ananhydrobiotic tardigradebioRxivConstruction of ferritin hydrogels utilizing subunit–subunitinteractionsPLOS ONEMonomeric α-synuclein (αS) inhibits amyloidogenesis of humanprion protein (hPrP) by forming a stable αS-hPrP hetero-dimer.PrionInfluence of protein adsorption on aggregation in prefilled syringesJournal of PharmaceuticalSciencesDynamic mechanisms of CRISPR interference by Escherichia coliCRISPR-Cas3bioRxivAn RNA Triangle with Six Ribozyme Units Can Promote a Trans-Splicing Reaction through Trimerization of Unit Ribozyme DimersApplied SciencesFaster high-speed atomic force microscopy for imaging ofbiomolecular processesRev. Sci. InstrumTitle: Identification of lectin receptors for conserved SARS-CoV-2glycosylation sitesbioRxivStructural and dynamics analysis of intrinsically disordered proteinsby high-speed atomic force microscopyNature NanotechnologyMillisecond Conformational Dynamics of Skeletal Myosin II PowerStroke Studied by High-Speed Atomic Force MicroscopyACS NanoHigh-Speed Atomic Force Microscopy Reveals SpatiotemporalDynamics of Histone Protein H2A Involution by DNA InchwormingThe Journal of PhysicalChemistry LettersNanostructures, Thermoresponsiveness, and Assembly Mechanismof Hydrogel Microspheres during Aqueous Free-Radical Precipitation PolymerizationLangmuirChained structure of dimeric F 1-like ATPase in Mycoplasma mobilegliding machinery 4bioRxivLipid Membrane Interaction of Peptide/DNA Complexes Designed forGene DeliveryLangmuirHigh-Speed Atomic Force Microscopy to Study Myosin MotilityAdvances in ExperimentalMedicine and BiologySingle-molecule level dynamic observation of disassembly of theapo-ferritin cage in solutionPhysical Chemistry ChemicalPhysicsAtomic Force Microscopy of Biomembranes : A Tool for Studying theDynamic Behavior of Membrane ProteinsNew Techniques for StudyingBiomembranesAdenosine leakage from perforin-burst extracellular vesicles inhibitsperforin secretion by cytotoxic T-lymphocytesPLOS ONEHigh-Speed Atomic Force Microscopy Reveals the StructuralDynamics of the Amyloid-β and Amylin Aggregation PathwaysInternational Journal ofMolecular Sciences 2020, Vol. 21, Page 4287Molecular mechanism of the recognition of bacterially cleavedimmunoglobulin by the immune regulatory receptor LILRA2Journal of Biological ChemistryBiological physics by high-speed atomic force microscopyPhilosophical Transactions ofthe Royal Society A: Mathematical, Physical and Engineering SciencesViral RNA recognition by LGP2 and MDA5, and activation of signalingthrough step-by-step conformational changesNucleic Acids ResearchKey Nucleation Stages and Associated Molecular Determinants andProcesses in pH-Induced Formation of Amyloid Beta Oligomers as Revealed by High-Speed AFMbioRxivNovel Babesia bovis exported proteins that modify properties ofinfected red blood cellsPLoS PathogensDNA origami demonstrate the unique stimulatory power of singlepMHCs as T-cell antigensProceedings of the NationalAcademy of SciencesStructural insights into the mechanism of rhodopsinphosphodiesteraseNature CommunicationsStructural insights into the mechanism of rhodopsinphosphodiesteraseNature CommunicationsHigh-Speed AFM Reveals Molecular Dynamics of Human Influenza AHemagglutinin and Its Interaction with ExosomesNano LettersDNA Ring Motif with Flexible JointsMicromachinesNanopores: a versatile tool to study protein dynamicsEssays in BiochemistryGeometrical Characterization of Glass Nanopipettes with Sub-10 nmPore Diameter by Transmission Electron MicroscopyAnalytical ChemistryCarbon nanotube porin diffusion in mixed composition supportedlipid bilayersScientific ReportsOne-Step Calibration of AFM in LiquidFrontiers in PhysicsNanoscale interaction of RecG with mobile fork DNANanoscale AdvancesConvergent evolution of processivity in bacterial and fungalcellulasesProceedings of the NationalAcademy of SciencesConvergent evolution of processivity in bacterial and fungalcellulasesProceedings of the NationalAcademy of Sciences of the United States of AmericaInteraction of the motor protein SecA and the bacterial proteintranslocation channel SecYEG in the absence of ATPNanoscale AdvancesNanoreporter of an Enzymatic Suicide Inactivation PathwayNano LettersHigh-speed atomic force microscopy highlights new molecularmechanism of daptomycin actionNature CommunicationsDirect visualization of the conformational change of FUS/TLS uponbinding to promoter-associated non-coding RNAChemical CommunicationsThermoresponsive Micellar Assembly Constructed from a HexamericHemoprotein Modified with Poly(N-isopropylacrylamide) toward an Artificial Light-Harvesting SystemJournal of the AmericanChemical SocietySchizorhodopsins: A family of rhodopsins from Asgard archaea thatfunction as light-driven inward H + pumpsScience AdvancesTwo-State Exchange Dynamics in Membrane-EmbeddedOligosaccharyltransferase Observed in Real-Time by High-Speed AFMJournal of Molecular BiologyThermoresponsive structural changes of single poly(N-isopropylacrylamide) hydrogel microspheres under densely packed conditions on a solid substratePolymer JournalHigh-Speed Atomic Force Microscopy Reveals Factors Affecting theProcessivity of Chitinases during Interfacial Enzymatic Hydrolysis of Crystalline ChitinACS CatalysisRad50 zinc hook functions as a constitutive dimerization moduleinterchangeable with SMC hingeNature CommunicationsAssembly mechanism of a supramolecular MS-ring complex toinitiate bacterial flagellar biogenesis in vibrio speciesJournal of BacteriologyStructural Dynamics of a Protein Domain Relevant to the Water-Oxidizing Complex in Photosystem II as Visualized by High-Speed Atomic Force MicroscopyJournal of Physical Chemistry BRecent advances in bioimaging with high-speed atomic forcemicroscopyBiophysical ReviewsDynamic behavior of an artificial protein needle contacting amembrane observed by high-speed atomic force microscopyNanoscaleEnhanced enzymatic activity exerted by a packed assembly of asingle type of enzymeChemical ScienceHigh Speed AFM and NanoInfrared Spectroscopy Investigation of Aβ1–42 Peptide Variants and Their Interaction WithPOPC/SM/Chol/GM1 Model MembranesFrontiers in MolecularBiosciencesThe hierarchical assembly of septins revealed by high-speed AFMNature CommunicationsMillisecond dynamics of an unlabeled amino acid transporterNature CommunicationsAtg9 is a lipid scramblase that mediates autophagosomal membraneexpansionNature Structural & MolecularBiologyA Simplified Cluster Analysis of Electron Track Structure forEstimating Complex DNA Damage YieldsInternational Journal ofMolecular SciencesSupramolecular tholos-like architecture constituted by archaealproteins without functional annotationScientific ReportsStudies on the impellers generating force in muscleBiophysical ReviewsDiversity of physical properties of bacterial extracellular membranevesicles revealed through atomic force microscopy phase imagingNanoscaleHigh-Speed AFM Reveals Molecular Dynamics of Human Influenza AHemagglutinin and Its Interaction with ExosomesNano LettersDNA density-dependent uptake of DNA origami-based two-or three-dimensional nanostructures by immune cellsNanoscaleSpatiotemporally tracking of nano-biofilaments inside the nuclearpore complex coreBiomaterialsHigh-speed atomic force microscopy directly visualizesconformational dynamics of the HIV Vif protein in complex with three host proteinsJournal of Biological ChemistrySelf- and Cross-Seeding on α-Synuclein Fibril Growth Kinetics andStructure Observed by High-Speed Atomic Force MicroscopyACS NanoLiquidity Is a Critical Determinant for Selective Autophagy of ProteinCondensatesMolecular CellCapturing transient antibody conformations with DNA origamiepitopesNature CommunicationsBiophysics in Kanazawa UniversityBiophysical ReviewsDynamics of oligomer and amyloid fibril formation by yeast prionSup35 observed by high-speed atomic force microscopyProceedings of the NationalAcademy of SciencesAnnexin-V stabilizes membrane defects by inducing lipid phasetransitionNature CommunicationsStructure and mechanism of bactericidal mammalian perforin-2, anancient agent of innate immunityScience AdvancesAtomic Force Microscopy Visualizes Mobility of PhotosyntheticProteins in Grana Thylakoid MembranesBiophysical JournalConstruction of a Hexameric Hemoprotein Sheet and DirectObservation of Dynamic Processes of Its FormationChemistry LettersSingle-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescensJournal of Biological ChemistryDirect observation and analysis of TET-mediated oxidationprocesses in a DNA origami nanochipNucleic Acids ResearchOn-membrane dynamic interplay between anti-GM1 IgG antibodiesand complement component C1qInternational Journal ofMolecular SciencesZwitterionic Polypeptides: Chemoenzymatic Synthesis and LooseningFunction for Cellulose CrystalsBiomacromolecules
    留言咨询
  • 高清荧光显微镜摄像头MHC600MHC600是我司一款超高性能的USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片,其有效像素600万,质量稳定,图像清晰,高帧率。不仅提供了强大的即插即用支持,操作简便快捷,同时自带强大的成像软件,本款显微镜摄像头不仅可以匹配我司显微镜,也可以灵活匹配其他国产和进口采用无限远光路系统的显微镜品牌型号。成像光谱从可见光扩展到近红外光,传感器接收弥散光,大幅降低传感器的噪声,在黑暗的环境下也可得到高亮度的照片。用于弱光或荧光图像的拍摄与分析,用于病理分析等对色彩要求高的领域,性能稳定,性价比高,是您进行实验室教学、医疗工业等领域的又一不俗之选。产品展示:显微镜相机CCD相机 MHC600技术参数:产品型号MHC600 有效像素600万芯片尺寸1"数据接口USB3.0像元尺寸4.54μmx4.54μm分辨率和帧率7.5@2748x220014@2748x1092光谱响应范围380-650nm (有红外截止滤光片情况下)白平衡ROI 白平衡/手动Temp-Tint调整色彩还原技术Ultra-Fine TM颜色处理引擎捕获与控制APINative C/C++, C#/VB.广州明慧Net, DirectShow, Twain和Labview记录方式图像和视频制冷方式*自然冷却相机工作环境工作温度(摄氏度)-10~ 50贮存温度(摄氏度)-20~ 60工作湿度30~80%RH贮存湿度10~60%RH供电电源相机通过USB接口供电软件运行环境操作系统Microsoft WindowsXP/ Vista / 7 / 8 /10(32 & 64 位)计算机配置CPU:Intel Core 2 2.8GHz 或更高内存:2GB或更大USB接口: USB3.0高速接口或USB2.0接口显示器:17”或以上CD-ROM明慧科技 荧光相机 CCD相机 徕卡蔡司显微镜相机 MHC600 国产
    留言咨询
  • 徕卡DMC2900显微摄像头 400-860-5168转2066
    产品名称:徕卡DMC2900显微摄像头型 号:DMC2900品 牌:德国徕卡Leica产品类别:显微镜数码摄像系统徕卡DMC2900显微镜数码图像分析软件使用USB 3.0节省时间的显微镜专用摄像头 Leica DMC2900徕卡DMC2900是一款可由USB3.0传送数据,具有三百一十万像素传感器的数码摄像头。 它是一款理想适用于标准明场显微技术日常研究,生命科学和工业应用的工具.可理想地在很短时间内对可见显微结构进行抓图,文档记录和分析彩色图像等。 它的USB3.0连接界面和可靠的三百一十万CMOS传感器允许以每秒30帧的速度传送活图。 徕卡应用软件包(LAS)提供优异的着色和快速图形处理尤其当抓取多幅马赛克模式或景深扩展模式.摄像头完全与LAS基本软件及附加功能软件相匹配。徕卡DMC2900显微镜摄像头为您带来的优势 USB 3.0节省时间高速获取您的图片 - USB 3.0连接界面将为您提供高速快达每秒30帧的高清动态活图。这会将让您设置设备和对焦样品非常方便。使用您的笔记本USB 3.0接口使摄像头可以同时兼容笔记本和台式机。锁定螺丝确保了摄像头牢固与笔记本连接,您甚至可以在移动笔记本的同时依然稳定获取电源和数据的传输。摄像头可以向下兼容USB2.0。进步的色彩处理摄像头使用了强大的CIE-Lab 色彩引擎,因此可以提供实时稳定高清活图画质 -同样适用于阴影校正和提升活图锐度。理想的分辨率摄像头可靠的CMOS彩色传感器提供三百一十万像素 - 当显微镜进入高倍或超高倍放大范围时最通用推荐的分辨率。一个可拆卸的紫外/红外滤色片提供了对传感器的光照和防尘保护。方便的图像处理该摄像头与徕卡LAS应用软件完全匹配,可以进行图像抓取,处理,分析和归档。尤其是进行图像拼接和多层对焦的过程中,取图速度非常快。LAS AF应用于明场图像该摄像头完全适用于LAS AF,推荐用于高端生命科学研究中宽场显微系统。它同样可以扩展使用额外的客户需要的软件包。三百一十万像素的CMOS传感器徕卡DMC2900数码USB3.0显微摄像头高级徕卡荧光应用软件LAS AF是高端生命科学研究用的便利软件平台优良的色彩还原性可以使用DMC2900在DM750P上抓取偏光图象适用笔记本电脑DMC2900摄像头可以与任何笔记本电脑的USB 2.0或3.0接口相连徕卡ICC50HD显微摄像头徕卡MC120HD显微摄像头徕卡MC170HD高清显微摄像头徕卡DFC295显微摄像头徕卡DFC345FX显微摄像头徕卡DFC450显微摄像头徕卡DMC2900显微摄像头徕卡EC3显微摄像头徕卡DFC310FX显微摄像系统徕卡IC80HD体视显微镜用摄像头徕卡DFC495显微摄像系统徕卡DFC365FX显微摄像系统徕卡DFC3000G显微摄像系统徕卡DFC550显微镜数码摄像系统 徕卡DM750M金相显微镜徕卡DM1750M金相显微镜徕卡DM2700M金相显微镜徕卡DMI3000M倒置金相显微镜徕卡DM4000M半自动金相显微镜徕卡DMILM倒置金相显微镜徕卡DM750P偏光显微镜徕卡DM2500P偏光显微镜徕卡DM2700P透反射偏光显微镜徕卡DMLP偏光显微镜徕卡DM4500P偏光显微镜徕卡S4E体视显微镜徕卡M50体视显微镜徕卡M60体视显微镜徕卡S6体视显微镜徕卡M80立体显微镜徕卡S8APO立体显微镜徕卡M125立体显微镜徕卡M165C立体显微镜徕卡M205体视显微镜徕卡EZ4HD数码一体化立体显微镜徕卡DM4000B生物显微镜徕卡Multiviews多人共览显微镜徕卡DM6000B生物显微镜徕卡DM5000B生物显微镜徕卡DM3000生物显微镜徕卡DM2500生物显微镜徕卡DM2000生物显微镜徕卡DM1000生物显微镜徕卡DM750生物显微镜徕卡DM500生物显微镜徕卡DMIL倒置生物显微镜徕卡DMIL LED倒置显微镜徕卡DMI3000B倒置生物显微镜徕卡DMI4000B倒置生物显微镜徕卡DMI6000B全自动研究级倒置显微镜徕卡DFC550显微镜数码摄像系统 北京显微镜,天津显微镜,重庆显微镜,吉林显微镜,辽宁显微镜,新疆显微镜,西藏显微镜,甘肃显微镜,宁夏显微镜,陕西显微镜,山西显微镜,河北显微镜,山东显微镜,河南显微镜,安徽显微镜,湖北显微镜,四川显微镜,湖南显微镜,云南显微镜,江西显微镜,贵州显微镜,内蒙古显微镜,青海显微镜,浙江显微镜,福建显微镜,江苏显微镜,海南显微镜,广西显微镜,广东显微镜,黑龙江显微镜,显微镜摄像头,300万、500万、900万、1200万显微镜摄像头,显微镜数码图像分析软件,显微镜数码成像分析系统,徕卡DMC2900显微镜数码摄像系统,徕卡DMC2900显微镜数码照相,徕卡DMC2900显微镜摄像头,徕卡DMC2900显微镜数码图像分析软件,徕卡DMC2900显微镜数码成像分析系统,
    留言咨询
  • 显微镜摄像头MHD2100 400-860-5168转5067
    显微镜摄像头MHD2100是一款采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机,是新一代科学CMOS相机,其有效像素2100万,质量稳定,图像清晰,高帧率。不仅提供了强大的即插即用支持,操作简便快捷,同时自带强大的成像软件,本款显微镜摄像头不仅可以匹配我司显微镜,也可以灵活匹配其他国产和进口采用无限远光路系统的显微镜品牌型号。MHD2100具有高分辨率、高对比度和颜色还原准确的特点,高分辨率,高帧率,接近目镜的色彩表现,是液基细胞分析、免疫组化、骨髓细胞,精子分析总体图片质量要求高的理想摄像系统。产品型号MHD2100有效像素2100万芯片尺寸4/3"数据接口USB3.0像元尺寸3.3μm×3.3μm分辨率和帧率17@5280x3954;17@3952x3952;56@2640x1976;67@1760x1316;192@584x438光谱响应范围380-650nm (有红外截止滤光片情况下)白平衡ROI 白平衡/手动Temp-Tint调整色彩还原技术Ultra-Fine TM颜色处理引擎捕获与控制APINative C/C++, C#/VB.Net, DirectShow, Twain和Labview记录方式图像和视频采集软件Minghui1.0制冷方式*自然冷却相机工作环境工作温度(摄氏度)-10~ 50贮存温度(摄氏度)-20~ 60工作湿度30~80%RH贮存湿度10~60%RH供电电源相机通过USB接口供电软件运行环境操作系统Microsoft WindowsXP/ Vista / 7 / 8 /10(32 & 64 位)计算机配置CPU:Intel Core 2 2.8GHz 或更高内存:2GB或更大USB接口: USB3.0高速接口或USB2.0接口显示器:17”或以上CD-ROM
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制