当前位置: 仪器信息网 > 行业主题 > >

显微高速像仪

仪器信息网显微高速像仪专题为您提供2024年最新显微高速像仪价格报价、厂家品牌的相关信息, 包括显微高速像仪参数、型号等,不管是国产,还是进口品牌的显微高速像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微高速像仪相关的耗材配件、试剂标物,还有显微高速像仪相关的最新资讯、资料,以及显微高速像仪相关的解决方案。

显微高速像仪相关的资讯

  • PreciGenome发布微流体高速显微摄像系统新品
    产品介绍:微流控研究持续促进新技术的萌芽和发展,这些新技术所需的理化物质和空间更少,而分析处理过程更快。由于时间和空间尺度的缩小使得微流控事件变化太快,以至于无法使用标准像机进行分析。高速显微系统具有高速、高分辨率成像的特点,可显著提高微流控实验的研究质量。PreciGenome高速成像系统使研究人员能够以足够高的速度捕获图像,从而能够观测微流体研究中流体作用的细节。 PreciGenome高速摄像机分辨率可自行调节,最高可以达到38,000 帧/秒。产品特点:u 集成高速相机的显微镜系统,即插即用u 140万像素高速摄像,可达1050帧/秒,低分辨率下高达38000帧/秒u 高品质光学组件,高分辨率成像,高清观测微流控实验u 具有高倍率放大和缩小功能,覆盖毫米到微米尺寸u 三种照明类型,适用于大多数应用u 曝光时间低至1微秒,可对高达 MHz 频率流动的液滴、颗粒或细胞成像u 可通过PG-MFC流控仪进行控制u 自带操控触摸屏,也可通过HDMI外接显示器,可靠便捷u 可根据客户要求集成设计,如荧光检测、高倍放大等技术参数:技术参数PG-HSV-MPG-HSV-M-X(客户定制)放大倍数0.94X-6.0X,手动调节可选更高放大倍数照明系统环形光,同轴照明,背光照明,亮度调节旋钮客户定制工作距离36mm(标准),36-37mm(手动调节)客户定制分辨率和摄像速率1028*1024@1050fps, 1280*96@11110fps, 640*96@21600fps,更低分辨率下可高达38000fps1028*1024@1050fps, 1280*96@11110fps, 640*96@21600fps,更低分辨率下可高达38000fps视频格式H.264, cinemaDNG RawH.264, cinemaDNG Raw相机内存16GB高达32GB显示屏5英寸触摸屏,可通过HDMI外接显示器5英寸触摸屏,可通过HDMI外接显示器成像组件1.3兆像素单色摄影机,6.6um像素CMOS传感器可选彩色相机快门全局电子快门,1us-1s全局电子快门,1us-1s动态范围56 dB56 dB色位深度12-bit12-bit输入/输出控制触发器输入,亦可通过PG-MFC流控仪来控制客户定制其他接口SD卡,HDMI接口,USB接口SD卡,HDMI接口,USB接口XYZ移动范围X: 100mm, Y: 100mm Z: 25mm, 10um分辨率客户定制创新点:PreciGenome高速成像系统使研究人员能够以足够高的速度捕获图像,从而能够观测微流体研究中流体作用的细节。 PreciGenome高速摄像机具有140万像素,可达1050帧/秒,低分辨率下高达38000帧/秒。此系统具有高倍率放大和缩小功能,覆盖毫米到微米尺寸,曝光时间低至1微秒,可对高达 MHz 频率流动的液滴、颗粒或细胞成像。高速显微摄像系统自带操控触摸屏,也可通过HDMI外接显示器,可靠便捷。微流体高速显微摄像系统
  • PreciGenome发布微流体高速显微摄像系统新品
    PreciGenome微流控高速成像系统PG-HSV功能图解触摸屏UI简洁友好:外接显示器使用,连接简单简介PreciGenome微流控高速成像系统由美国PreciGenome公司研制,专为微流控芯片流体观测与成像录制而设计,其采用倒置方式观察芯片,调节XYZ轴位移平台方便观测芯片不同区域,调焦简单方便,并拥有3种照明模式(环形光源,同轴照明和背光照明),仪器右侧就是亮度调节旋钮,使用方便,并集成了触摸显示屏,可脱离显示器(有HDMI接口,支持外接显示器),直接在5寸触摸屏上进行芯片观测,视频录制等操作。此外,此系统快门时间低至1μs,帧率可达38000FPS,拥有高倍放大倍率,可选单色与彩色款,同时支持定制,非常适用于微流控实验中的流体观察、图像拍摄和视频录制,是微流控研究人员的得力工具。产品特色即插即用式显微镜系统,集成高速CMOS成像传感器帧率可达38000FPS,全分辨率1280*1024下帧率 1050FPS高品质光学部件,高分辨率成像,保证微流控实验清晰可见高放大倍率变焦,适用于mm到μm级尺度观察3种照明,适配绝大多数应用曝光时间低至1μs,微颗粒(液滴、细胞流动等)成像频率达MHz兼容PreciGenome PG-MFC流控仪,可通过PG-MFC流控仪触发相机成像或录像集成触摸显示屏,也可连接显示器(HDMI接口),使用简单可靠附加功能支持定制,如荧光检测、更高倍放大等规格参数技术参数\型号PG-HSV-MPG-HSV-M-X(定制)放大倍率0.94X-6.0X;手动调节更高放大倍率,可选照明环形光源;同轴照明;背光照明;亮度调节旋钮客户定制物距/mm36(参数)36-37(手动调节)客户定制分辨率&帧率1280*1024 @ 1050fps;1280*96 @ 11110fps640*96 @ 21600fps;可达38000fps视频格式H.264, cinemaDNG Raw相机内存16GB32GB显示屏5寸触摸屏,可通过HDMI接口外接显示器成像设备130万单色相机CMOS传感器6.6μm像距可选彩色相机快门电子全局快门,1μs至1s动态范围56dB色彩深度12-bitIO控制触发输入可通过PG-MFC控制可定制其它接口SD卡,HDMI,USBXYZ轴位移范围X: 100mm;Y: 100mm;Z: 25mm精度为10μm可定制相关产品触屏版PG-MFC高精密压力控制器简版双通道PG-MFC-light高精密压力控制器液滴制备系统FAQs常见问答1. 高速成像系统帧率是多少?答:可达38000FPS,1280*1024 分辨率下帧率为1050FPS。 2. 高速成像系统哪些功能支持定制?答:照明(荧光),放大倍率,IO接口,XYZ轴位移平台还有物距,都支持定制。 3. 高速成像系统可以外接显示器吗?答:当然可以,通过HDMI接口连接显示器即可。Datasheet请在此网页顶部品牌介绍处下载样本。创新点:PreciGenome高速成像系统使研究人员能够以足够高的速度捕获图像,从而能够观测微流体研究中流体作用的细节。 PreciGenome高速摄像机具有140万像素,可达1050帧/秒,低分辨率下高达38000帧/秒。此系统具有高倍率放大和缩小功能,覆盖毫米到微米尺寸,曝光时间低至1微秒,可对高达 MHz 频率流动的液滴、颗粒或细胞成像。高速显微摄像系统自带操控触摸屏,也可通过HDMI外接显示器,可靠便捷。微流体高速显微摄像系统
  • 370万!清华大学高速双光子显微镜采购项目
    项目编号:清设招第2022214号项目名称:清华大学高速双光子显微镜采购项目预算金额:370.0000000 万元(人民币)最高限价(如有):370.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高速双光子显微镜1套是设备用途介绍:1)可以进行小型动物如小鼠、大鼠等的活体成像及结合行为学的相关成像;2)实现更深的、低热损伤、高信噪比的活体成像,以保证斑马鱼、果蝇、小鼠等小型动物的长时程、反复成像;3)支持在清醒小动物中进行光遗传实验和成像同步、行为和在体成像实验同步;4)能够实现活体或活细胞超高速、超敏感成像,如血流、离子浓度、钙火花检测等快速变化的应用。简要技术指标 :龙门型正置荧光显微镜系统 :① 电动激发块转盘≥7孔,无需拆卸可更换激发块,内置电动光闸;配置蓝紫、绿、GFP激发块;② 具有压电陶瓷快速电动Z模块。2) 双光子光路及光路自动调节系统:① 光轴自动校正模块,≥3轴可调,激光光斑位置X、Y位移和X、Y倾斜角度θX,θY中≥3个参量均能独立自动调节;② 具有深焦观察模式,激光光束自动调整模块,可以在高分辨率和高成像深度模式之间自主选择,不少于五档可调。3)清醒小动物电生理同步设备:① ANALOG模拟信号输入≥4通道,TTL数字信号输入≥6通道,TTL数字信号输出≥5通道。与双光子显微镜为同一品牌的数模转换控制系统,触发控制能通过双光子软件界面统一控制,不需调用第三方控制软件;4)同步光刺激及光遗传系统:① 固体可见光激光器通过激光整合器整合,由光纤导入,通过AOTF进行0.1-100%强度控制和快速开关。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。
  • 香港大学成功研发超高速显微镜,捕捉脑电波信号,助力研究脑退化
    香港大学近日宣布,该校研究团队成功研发一款超高速显微镜,能有效捕捉脑电波信号,为脑退化等脑疾病的研究提供线索。据新华社报道,港大携手美国加州大学伯克利分校团队开发的“双光子荧光显微镜”,能捕捉神经元之间的电子讯号和化学物质传递。团队成功在实验中记录一只活体老鼠脑部神经元所产生在毫秒间闪现的电脉冲讯号。该显微镜采用了由港大团队研发的超高速激光扫描技术,以一对平行的反射镜产生一排激光脉冲,速度比目前的激光扫描技术快至少1000倍。在实验中,研究人员利用高速显微镜将扫描激光投射在小鼠脑部,为小鼠大脑皮层进行每秒1000至3000次的二维扫描影像。率领研究团队的电机电子工程系副教授及生物医学工程课程总监谢坚文介绍,目前有不同类型的技术能捕捉脑电波信号,包括将电极植入脑部,直接量度脑部电压,但创伤性大;磁力共振和传统光学显微镜则速度较慢。港大这项新技术的优点是创伤性低,而且能精确定位个别神经元,以毫秒为单位追踪它们的激发路径。谢坚文表示,这项新科技能侦测活脑中单一神经元在毫秒间的活动变化。团队希望在未来1至2年将技术进一步提升,探索更深层脑部的结构,更全面了解大脑功能。该研究成果已在学术期刊《自然方法》(Nature Methods)上发表。
  • 清华大学330万元采购单光子自适应高速三维显微成像系统,仅限国产
    8月24日,清华大学公开招标购买1套单光子自适应高速三维显微成像系统,预算330万元,仅限国产。  项目编号:清设招第2021172号  项目名称:单光子自适应高速三维显微成像系统  预算金额:330.0000000 万元(人民币)  采购需求:包号名称数量是否允许进口产品投标采购预算(人民币)01单光子自适应高速三维显微成像系统1套否330万元  设备用途介绍:实验需要对在体活细胞进行清晰地大范围亚细胞结构动力学过程观测,比如细胞器间的相互作用、胚胎发育过程、神经响应等等,必须能够高速获取大范围的三维荧光信号。  单光子自适应高速三维显微成像系统的成像方式极大的提高了成像速度及有效的解决了系统及样品的像差问题,同时大大降低了激光对样品的损伤,能够实现更长时间的活体观察,其图片能观察细微的差别,分辨亚细胞水平动力学及结构,成像质量非常高。  简要技术指标 :  1)基本配置:系统由以下主要模块组成  倒置荧光显微镜   多波段激光器   数据采集系统   图像处理系统。  2)技术要求:  系统分辨率:XY小于250nm,Z小于400nm   图像采集系统:支持活体哺乳动物三维图像采集   图像处理系统:专业处理器i9 10920,内存不小于128GB,固态硬盘不小于10T,显卡Nvidia RTX2080TI。  合同履行期限:交货时间:合同签订后5个月内  本项目( 不接受 )联合体投标。 开标时间:2021年09月14日 09点00分(北京时间)
  • 348万!中国人民大学仪器分析测试平台建设-高速共聚焦显微镜等设备购置项目
    项目编号:2241STC21928/01-02项目名称:中国人民大学仪器分析测试平台建设-高速共聚焦显微镜等设备购置项目预算金额:348.0000000 万元(人民币)采购需求:包号标的名称数量分包最高限价(万元)交货(实施)地点简要技术需求或服务要求01高速共聚焦显微镜等设备购置项目一批290中国人民大学理工楼采购1套高速共聚焦显微镜(激光器:系统激光器应覆盖可见光及紫外光,各激光器单独分立;独立AOTF等)、1台超高速数字示波器(采集通道数:4等)、1台时间相关单光子计数仪(时间分辨率:4ps等)、1台循环制备高效液相色谱(输液方式:二联往复式双柱塞泵等),详见第四章《采购需求书》。02电化学工作站等设备购置项目一批58中国人民大学理工楼采购1台电化学工作站1(恒电位电位控制范围:±10V等)、1台电化学工作站2(电位范围: -5V~5V等)、1台多道选通器(提供标准的电化学四电极架构,支持最多控制64个电解池,单次选通一个等)、2台旋转蒸发器(仪器主机升降模式:电动升降,马达升降行程140mm等)、4台干式涡旋真空泵(峰值抽速:6.2 m3/h)、2台隔膜真空泵(最大抽速:≥2.0 m3/h等)、20台磁力加热搅拌器1(最大兼容烧瓶:500mL多口烧瓶等)、4台磁力加热搅拌器2(最大搅拌量:1.5L)、4台电子天平(称重量程:220g等),详见第四章《采购需求书》。注:投标人可以对本项目中的一个包进行投标,也可同时对多个包进行投标,但必须针对每一包中的所有内容进行投标,不允许拆分投标。 合同履行期限:2022年12月30日前完成到货安装调试及部署实施并达到验收合格标准;并提供自项目终验合格之日起1年的质保。本项目( 不接受 )联合体投标。
  • 让诊断不再需要活检 —高速3D显微镜可实时观察活组织细胞
    美国哥伦比亚大学工程团队开发了一种技术,可实现活体内的实时成像并取代传统的活检。在28日的《自然生物医学工程》上发表的一篇论文中,研究人员描述了一种高速3D显微镜MediSCAPE,其能捕获组织结构的图像,以指导外科医生定位肿瘤及其边界,而无需活体取样分析病理结果。哥伦比亚大学生物医学工程和放射学教授、该研究的资深作者伊丽莎白希尔曼称,活检需要从体内切取小块组织,然后用简单的显微镜观察,因此可能需要几天时间才能得到诊断结果。希尔曼团队希望能直接捕获组织图像而不用切出样本。“这种技术可以让医生实时反馈他们正在查看的组织类型,无需长时间等待。”她解释道,这将让医生就如何最好地切除肿瘤并确保没有留下任何东西做出明智的决定。此外,对于珍贵的组织,如大脑、脊髓、神经、眼睛和面部等,切取组织还可能错过重要的疾病区域。希尔曼一直在开发用于神经科学研究的新型显微镜,这些显微镜可非常快速地捕捉活体样本的3D图像。此次,该团队通过观察小鼠肾脏对他们的显微镜进行了测试。他们观察到的结构很像标准组织学所得到的结构。最重要的是,过程中并没有添加任何染料。研究人员看到的一切都是组织中的自然荧光,而这些荧光通常太弱而无法看到。即使研究人员以足够快的速度进行整体3D成像,实时漫游,扫描组织的不同区域,MediSCAPE也能非常高效地显示出这些微弱的信号。研究人员甚至可将获得的体积拼接在一起,并将数据转化为组织的大型3D展示,这样病理学家就可像一整盒组织学幻灯片一样使用它。该团队展示了MediSCAPE在广泛应用中的强大功能,从分析小鼠胰腺癌到对人体移植器官(如肾脏)的非破坏性快速评估。研究人员认为,通过对体内的活组织进行成像,可获得比无生命的活检样本更多的信息。他们发现,实际上可看到通过组织的血流,并看到缺血和再灌注的细胞水平效应(切断肾脏的血液供应,然后让它回流)。该团队的最后一个关键步骤是将希尔曼实验室中标准SCAPE显微镜的大尺寸缩小为适合手术室并可供外科医生在人体中使用的系统。
  • 210万!上海交通大学高速激光全内反射荧光显微镜成像系统采购项目
    项目编号:1069-224Z20224671(项目编号:招设2022A00206)项目名称:上海交通大学高速激光全内反射荧光显微镜成像系统采购项目预算金额:210.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期1高速激光全内反射荧光显微镜成像系统1套电动聚焦机构:备有粗微调转换旋钮(最小调焦精度:≤10nm),行程10.5mm,物镜离开 / 回复按键和记忆回位按键,最大移动速度:3mm/秒。收到信用证后180天内交货合同履行期限:收到信用证后180天内交货本项目( 不接受 )联合体投标。
  • 布鲁克发布Bruker超高速原子力显微镜nanoracer新品
    2020年7月30日布鲁克推出了ZUI新一代超高速原子力显微镜NanoRacer。NanoRacer凭借其50帧/秒的超高速成像,实现了真正意义上视频级成像速度下单个生物分子的动态观察。NanoRacer的革新性的技术突破,在AFM发展史上树立了新的里程碑。布鲁克BioAFM研发团队与生命科学领域的专家紧密合作,使NanoRacer不仅拥有超高扫描速率与原子级别分辨率,而且拥有杰出的易用性,使得对单分子动态过程的捕捉变得十分便捷,为深入理解生物物理、生物化学、分子生物学、病毒学以及生物医学等领域的单分子动态过程提供了强大工具。全新的NanoRacer采用了新的架构结合更低噪音、更高稳定性的Vortis™ 2控制器,全新的驱动算法与力控制算法,可以在超高速下获取高分辨的生物样品信息。新系统整合了基于工作流程的V7操作软件,直观的用户界面与流程化、自动化的设置使得研究人员可以专注于自己的实验,加速高端研究的产出能效。SpecificationsMaximum scan speed of up to 50 frames/sec with 100 ×100 nm2 scan range and 10 k pixelsAtomic defect resolution in closed-loopDesigned for medium to small sized cantilevers for lowest forces and highest scan speedsUltra-low noise cantilever-deflection detection systemIR cantilever-deflection detection light source with small spot sizeOptional photothermal cantilever drive. 730 nm wavelength ensures minimal sample interaction compared to blue-light excitationHighest detector bandwidth of 8 MHz for high speed signal captureAutomated laser and detector alignmentScanner unit 2 × 2 × 1.5 μm3 scan rangeSensor noise level 0.09 nm RMS in xy0.04 nm RMS sensor noise level in zHighest resonance frequency for z axis of 180 kHzTypical sample size 4 mm diameterControl electronicsVortis 2 Speed controller: State-of-the-art, digital controller with lowest noise levels and highest flexibilityNewly designed, high-voltage power amplifier drives the scanner unit New workflow-based V7 SPMControl softwareTrue multi-user platform, ideal for imaging facilities?User-programmable softwareAutoAlignment and setupAdvanced feedback algorithmsFully automated sensitivity and spring constant calibration using thermal noise or Sader methodImproved ForceWatch™ and TipSaver™ mode for force spectroscopy and imagingAdvanced spectroscopy modes, e.g. various force clamp modes or ramp designsPowerful Data Processing (DP) with full functionality for data export, fitting, filtering, edge detection, 3D rendering, FFT, cross section, etc.Powerful batch processing of force curves and images, including WLC, FJC, step-fitting, JKR, DMT model and other analyses创新点:最高配速50帧/秒,NanoRacer实现了真正意义上食品级成像速度下单个生物的动态观察。全新的NanoRacer采用了新的架构结合更低噪音/更稳定的Vortis控制器,全新的驱动算法与力控制算法,可以在超高速下获取高分辨的生物样品信息。Bruker超高速原子力显微镜nanoracer
  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 同济大学超高速视频级原子力显微镜评审结果公示
    一、项目编号:0811-234DSITC0218(招标文件编号:0811-234DSITC0218)二、项目名称:超高速视频级原子力显微镜三、中标(成交)信息供应商名称:北京佰司特贸易有限责任公司供应商地址:北京市朝阳区劲松三区甲302楼地上部分7层703B室中标(成交)金额:341.3341800(万元)四、主要标的信息序号供应商名称货物名称货物品牌货物型号货物数量货物单价(元)1北京佰司特贸易有限责任公司超高速视频级原子力显微镜RIBMSuper-Genie 125 等壹套3,413,341.80五、评审专家(单一来源采购人员)名单:周亚康,周力韦,师育新,葛元新,朱融融六、代理服务收费标准及金额:本项目代理费收费标准:本项目代理费收费标准:按照国家发改委1980号文件《招标代理服务费管理暂行办法》规定标准下浮33%收取,服务费金额不足8000元的,按8000元收取。本项目代理费总金额:2.7836330 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜1、本公告已于同日在机电产品招标投标电子交易平台、同济大学采购与招标网、中国招标投标公共服务平台同步发布。2、本项目为机电产品国际招标项目,公示截止时间以机电产品招标投标电子交易平台规定为准。3、本项目中标金额为CIP美元498,000.00,合同最终结算时以实际发生金额为准。4、如对本次评审结果有异议,请于评审结果公示截止时间前根据《机电产品国际招标投标实施办法(试行)》规定向上海东松医疗科技股份有限公司(地址:上海市宁波路1号11楼,邮编:200002, 联系电话:0086-21-63230480转8617、8408)提出异议,并将异议内容上传机电产品招标投标电子交易平台。九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市四平路1239号        联系方式:朱融融 021-66111701      2.采购代理机构信息名 称:上海东松医疗科技股份有限公司            地 址:中国上海市宁波路1号申华金融大厦11楼            联系方式:徐骁晨、高健 0086-21-63230480转8617、8408             3.项目联系方式项目联系人:徐骁晨、高健电 话:  0086-21-63230480转8617、8408
  • Biomedical Optics Express | 深圳先进院高速光声显微成像技术入选期刊亮点推荐
    近日,中国科学院深圳先进技术研究院生物医学光学与分子影像中心刘成波、郑炜团队合作,在生物医学光学领域旗舰期刊Biomedical Optics Express发表了题为“Video-rate high-resolution single-pixel nonscanning photoacoustic microscopy”的研究论文,报道了一种基于单像素非扫描方式的高速光声显微成像技术,在国际上率先实现了30帧/秒的三维动态光声显微成像,达到同类技术最快的成像速度。该论文被期刊遴选为编辑推荐(Editor' s Pick)亮点文章。助理研究员陈宁波、余佳、刘良检为论文共同第一作者,刘成波研究员、郑炜研究员为论文共同通讯作者。论文上线截图论文链接:https://doi.org/10.1364/BOE.459363光声显微成像具备高分辨、三维无标记成像等优势,被广泛用于活体生物组织结构和功能成像。传统光声显微成像技术主要依靠逐点扫描进行三维图像采集,受限于步进电机、光学振镜等扫描器件的扫描速度局限,传统光声显微技术的成像速度远低于视频帧率(30 Hz),难以满足生物体快速生理活动监测的需求。针对该问题,研究团队提出了一种基于单像素成像技术的高速非扫描光声显微成像(SPN-PAM)。该技术利用高速数字微镜(DMD)实现成像区域的结构光场照明,通过快速调制结构光场的傅里叶照明条纹,获取图像的变换域频谱信息,采用傅里叶频谱逆变换即可完成图像快速重建。 (a)SPN-PAM成像系统图;(b)SPN-PAM图像重建原理。SPN-PAM技术无需逐点扫描成像,克服了扫描器件对成像速度的限制,此外,该技术能够充分利用图像在变换域独特的频谱稀疏特征,对频谱信息进行大幅压缩采样。活体成像结果表明,在4.86%的超低采样率下,该方法仍能够保持良好的图像分辨率和信噪比,同时成像速度得到大幅提升。基于此,研究团队首次实现了视频帧率(≥30 Hz)的高分辨光声显微成像。 活体小鼠微血管网络SPN-PAM压缩成像结果凭借高时间和空间分辨率优势,SPN-PAM实现了小动物活体水平,对微血管尺度血流再灌注过程的动态监测,观察到了血流量和流速的瞬时变化,为血流动力学和组织代谢研究提供了一种潜在的有效手段。与此同时,SPN-PAM压缩成像还能够有效降低高速光声显微成像需要的激光剂量,提升成像安全性,为该技术进一步临床转化提供了可能。 活体小鼠微血管血流(左)及血流再灌注过程(右)动态监测该工作得到科技部重点研发计划,国家自然科学基金,中国科学院以及广东省重点实验室等项目支持。
  • 160万!清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目
    项目编号:BIECC-22ZB1133/清设招第20221251号项目名称:清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:该设备用于为生物样本研究的多光子显微镜系统提供激光光源,针对多光子显微成像, 提供(680 nm - 1300 nm)宽的波长调谐范围,全波长全自动调谐,适宜于各种生物活体成像,广泛应用于神经科学/光遗传学,胚胎学,免疫学等多个生物领域研究。具体要求详见第四章。包号名称数量01超宽调谐飞秒激光器1套合同履行期限:合同签订后120日内交货。本项目( 不接受 )联合体投标。
  • 布鲁克发布Bruker全自动高速X射线三维显微成像系统(Micro-CT新品
    仅需按下启动按钮即可启动 μCT 快速桌面解决方案!超高速度、优质图像SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。Push-Button-CT™ 让操作变得极为简单您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。灵活易用、功能全面除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μCT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置最佳参数。即使在分辨率低于 5 μm 的情况下,典型扫描时间也在15 分钟以内。无隐性成本:一款免维护的桌面 μCT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。特点:X射线源:涵盖各领域应用,从有机物到金属样品标称分辨率(最大放大倍数下的像素尺寸):检测样品极小的细节X射线探测器:3 MP (1,944 x 1,536)有效像素的CMOS平板探测器,高读取速度,高信噪比样品尺寸:适用于小-中等尺寸样品辐射安全:满足国际安全要求供电要求:标准插座,即插即用创新点:SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。Push-Button-CT™ 让操作变得极为简单您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。灵活易用、功能全面除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μ CT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置佳参数。即使在分辨率低于 5 μ m 的情况下,典型扫描时间也在15 分钟以内。无隐性成本:一款免维护的桌面 μ CT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。Bruker全自动高速X射线三维显微成像系统(Micro-CT
  • 品类先锋用户心声|湘仪GL-21M型高速离心机
    在科学仪器行业竞争日益激烈的现状下,为帮助仪器用户快速找出单品类仪器中的千里马or领头羊企业及产品,仪器信息网从2017年开始推出【品类先锋】服务,以“为用户推荐值得信赖的品牌及仪器”为核心宗旨,持续地挖掘、推荐细分领域的优质企业及仪器。为了帮助各位用户学习使用仪器的技巧,少走弯路多避坑,仪器社区特别发起“仪器使用心得”有奖征文活动。在本次活动中,用户积极分享了自身用过的仪器设备的使用心得,其中不乏对品类先锋仪器的使用分享。我们将摘取部分用户分享的品类先锋仪器使用心得体会,与读者共享。今日分享的是离心机品类先锋——湘仪用户心声,以下内容摘自“wlj0300”用户分享的使用心得:湘仪GL-21M型高速离心机使用心得为满足日益增多的农残检测任务的需求,单位于2017年购买了一台湖北湘仪实验室开发有限公司生产的GL—21M高速冷冻离心机。湖北湘仪实验室开发有限公司专业生产离心机已有四十多年,我国第一台超高速冷冻离心机和第一台高速冷冻离心机都诞生于湘仪。这台离心机外观整洁大方,操作方便。通过这几年的使用总结了一些该款离心机的优点和使用感受分享给大家。一、离心机优点 1、这款离心机拥有17款不同容量转子选择,其中配有4款连续流转子,已满足不同需求。 2、最高转速可达21000RPM,最大离心力可达47400xg。 3、采用进口环保压缩机组,保证制冷效果的同时满足环保要求。 4、微机控制,交流变频电机驱动,延长使用寿命。 5、噪音低、振动小。 6、可任意设定升降速时间、自动计算RCF值、制冷加热双路控温、离心效果达到最佳。 7、设有超速、超温、不平衡、门盖自锁等多种保护、确保人身机器安全等特点。二.离心机操作规程 1、向上拔墙上开关。 2、仪器右边靠墙处,向上推蓝色开关。 3、左手向下按仪器门盖右角,右手向外拉拉杆,轻轻将大盖子向上抬。 4、用右边抽屉里的铁扳手,拧开圆转子盖。 5、将大离心管直接放入,如果是小离心管应套黄色塑料套,离心管盖子要拧紧。 6、用铁扳手拧紧转子盖。 7、将大盖子轻轻向下盖,在红点处向下按听见卡嗒一声,说明离心机盖好了。 8、点启动。运行时间倒计时到零时,停止指示灯亮,当转速有数字时,才打开大盖子,用扳手拧松转子盖,取出离心管。 9、关机:将盖子向上打开,转子盖拧开放一遍,让离心机风干,向下拔仪器右边蓝色开关,再向下拔墙壁开关。 10、离心机每年要用润滑油润滑拉杆一次。三、建议通过这几年的使用,总体认为这台仪器的优点还是很多的,给厂家的一点建议是能否让工程师上门巡检,我们去年因为门板卡口的问题请工程师上门维修求一次,在维修中我们知道这个液压杆需要上油保养等一些维护知识,有好多多是我们以前忽略掉的。“wlj0300”用户在评论区补充道:湘仪的离心机价格便宜,不用换转子,好用,是国产好仪器。湘仪的离心机都上太空了,国产仪器的骄傲。好的,今天的分享就到这儿啦。欢迎大家参加仪器社区-“仪器心得”有奖征集活动,分享更多品类先锋仪器使用心得和建议,仪器信息网也将会把您的建议反馈至相关品类先锋企业。活动期间累计上传2篇(符合要求的文章)仪器使用心得者,奖励冬奥会纪念币1套or《液相色谱实战宝典》新书1本or《气相色谱实战宝典》新书1本。活动截止:2022年5月31日,详情见:https://bbs.instrument.com.cn/topic/7972320附:2022-2023年度品类先锋名录(排名不分先后)品类名客户名称紫外、紫外分光光度计、紫外可见分光光度计、UV上海元析仪器有限公司上海美谱达仪器有限公司北京普析通用仪器有限责任公司原子荧光光谱仪(AFS)北京海光仪器有限公司原子吸收光谱(AAS)北京普析通用仪器有限责任公司液质联用(LC-MS)赛默飞色谱与质谱液相色谱(LC)上海伍丰科学仪器有限公司华谱科仪(北京)科技有限公司热解析仪、热解吸仪、热脱附仪奥普乐科技集团(成都)有限公司北京中仪宇盛科技有限公司过程质谱/在线质谱上海舜宇恒平科学仪器有限公司气相色谱仪(GC)浙江福立分析仪器股份有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)北京宝德仪器有限公司离子色谱(IC)青岛盛瀚色谱技术有限公司激光拉曼光谱(RAMAN)HORIBA 科学仪器事业部红外光谱(IR、傅立叶)赛默飞世尔科技分子光谱核磁共振(NMR)布鲁克(北京)科技有限公司分子荧光光谱HORIBA 科学仪器事业部定氮仪、凯氏定氮仪、Dumas定氮仪艾力蒙塔贸易(上海)有限公司顶空进样器奥普乐科技集团(成都)有限公司吹扫捕集装置北京聚芯追风科技有限公司北京莱伯泰科仪器股份有限公司奥普乐科技集团(成都)有限公司PH计、酸度计上海仪电科学仪器股份有限公司(原上海精科雷磁)ICP-MS电感耦合等离子体质谱安捷伦科技(中国)有限公司ICP-AES/ICP-OES安捷伦科技(中国)有限公司自动电位滴定仪上海禾工科学仪器有限公司真空泵凯恩孚科技(上海)有限公司移液器、移液枪大龙兴创实验仪器(北京)股份公司研磨机、研磨仪、粉碎机、球磨机北京飞驰科学仪器有限公司北京格瑞德曼仪器设备有限公司蚂蚁源科学仪器(北京)有限公司旋转蒸发仪艾卡(广州)仪器设备有限公司(IKA 中国)洗瓶机/清洗机天津语瓶仪器技术有限公司美诺中国 Miele China微波消解仪培安有限公司上海屹尧仪器科技发展有限公司安东帕(上海)商贸有限公司北京莱伯泰科仪器股份有限公司天平德国赛多利斯集团平行真空蒸发仪天津市恒奥科技发展有限公司生物质谱广州禾信仪器股份有限公司离心机、实验室离心机湖南湘仪实验室仪器开发有限公司搅拌器、磁力搅拌器、电动搅拌器大龙兴创实验仪器(北京)股份公司废气/废水处理机四川优浦达科技有限公司电热消解仪、消化炉北京莱伯泰科仪器股份有限公司氮气发生器毕克气体仪器贸易(上海)有限公司纯水器、超纯水器、纯水机、超纯水机上海乐枫生物科技有限公司高锰酸盐指数测定仪(CODMn)上海北裕分析仪器股份有限公司TOC分析仪/总有机碳分析仪艾力蒙塔贸易(上海)有限公司上海元析仪器有限公司COD测定仪/COD快速测定仪连华科技BOD测定仪/BOD快速测定仪连华科技总磷测定仪/总氮测定仪/总磷总氮测定仪连华科技水质分析仪/多参数水质分析仪连华科技氨氮测定仪/氨氮分析仪连华科技甲烷/非甲烷烃检测仪青岛明华电子仪器有限公司激光粒度仪HORIBA 科学仪器事业部丹东百特仪器有限公司珠海欧美克仪器有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司贝士德仪器科技(北京)有限公司扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)Park帕克原子力显微镜扫描电镜(SEM)北京欧波同光学技术有限公司
  • 预算超15亿!10月高校255项光学显微镜采购意向汇总
    2000亿贴息贷款政策点燃了整个十月的仪器采购市场,数十个高校发布了采购意向,预算动辄过亿。本文汇总了本轮采购潮中光学显微镜的情况,供相关从业者参考。据不完全统计,本轮高校仪器采购意向,共有255项光学显微镜采购及相关项目,涉及30所高校,累计金额约15.3亿元(含少数整体采购项目中的其他仪器)。技术难度高、单台货值高的高端光学显微镜在本轮采购中成为“常见”需求货物。对255项采购意向进行梳理分析发现,共聚焦显微镜63台/套,预算约3亿元,其中双光子显微镜13台/套;超分辨显微镜27台/套,占比约1/10,预算约1.5亿,上述类别显微镜统计有重叠。光片显微镜13台/套,预算约8000万。以光学显微镜意向采购数量将29所高校排序,中山大学以70台/套居首,前五分别是中山大学(预算2亿元)、浙江大学(25台/套,预算1.17亿)、华南理工大学(22台/套,预算1.13亿元)、南京农业大学(20台/套,预算4976万)、清华大学(18台/套,预算7286万)。附表:各高校光学显微镜采购详情列表采购单位项目名称预算金额(万元)预计采购时间查看北京大学双光子扫描光遗传学显微镜500Nov-22意向原文北京大学多功能共聚焦显微拉曼成像系统300Dec-22意向原文北京大学多功能共聚焦显微拉曼成像系统298Dec-22意向原文北京理工大学压电力显微镜180Nov-22意向原文北京理工大学激光共聚焦荧光显微镜200Nov-22意向原文北京理工大学分析测试中心原位微区气氛系统采购项目290Dec-22意向原文北京理工大学分析测试中心冷冻传输系统和冷冻传输样品杆采购项目320Dec-22意向原文北京理工大学多功能超高分辨荧光分析与激光共聚焦系统970Nov-22意向原文北京师范大学珠海校区高分辨共聚焦拉曼成像系统采购项目476.93Dec-22意向原文北京师范大学正置荧光显微镜采购项目105Nov-22意向原文北京师范大学光片荧光显微镜采购项目580Nov-22意向原文复旦大学转盘式激光共聚焦显微镜675Dec-22意向原文复旦大学原位催化型XPS互联高空间分辨表征系统540Dec-22意向原文复旦大学复杂结构解析及电热功能原位分析高通量-高分辨表征平台580Dec-22意向原文复旦大学超高分辨率活细胞三维长时程成像系统877.5Dec-22意向原文复旦大学材料加工-原位加热-结构表征双束多功能综合平台360Dec-22意向原文广东农工商职业技术学院广东农工商职业技术学院化学品智能安全管理与实验教学中心设备建设项目372.9Nov-22意向原文哈尔滨工程大学全通道激光共聚焦显微镜800Dec-22意向原文哈尔滨工程大学傅里叶红外光谱/红外显微镜400Nov-22意向原文哈尔滨工程大学单光子计数共聚焦显微镜1500Nov-22意向原文哈尔滨工业大学离子/电子双束系统1400Nov-22意向原文哈尔滨工业大学多场耦合原位微纳米力学可视化测试系统1350Nov-22意向原文华北电力大学新能源高效转换与特性研究4400Dec-22意向原文华北电力大学新能源发电国家工程研究中心平台建设与设备更新4000Dec-22意向原文华北电力大学新能源电力系统国家重点实验室仪器设备升级更新项目7241.55Dec-22意向原文华北电力大学水利工程学科科学研究706.6Dec-22意向原文华北电力大学清洁高效燃煤发电关键技术与装备集成攻关大平台4272.25Dec-22意向原文华北电力大学氢能科学与工程学科及高水平科研平台建设5036.5Dec-22意向原文华北电力大学国家储能技术产教融合创新平台5000Dec-22意向原文华北电力大学电能转换与智慧用电教育部工程研究中心实验平台建设1889.4Dec-22意向原文华北电力大学材料科学与工程教学实验室规划、改造与建设630Nov-22意向原文华北电力大学(保定)光伏制储氢发电一体化技术研究平台340Nov-22意向原文华北电力大学(保定)多元多相燃料高效清洁混燃研究平台建设665Dec-22意向原文华南理工大学自旋科技研究院购置激光共聚焦荧光显微镜设备项目380Nov-22意向原文华南理工大学研究级倒置显微镜系统100Nov-22意向原文华南理工大学橡胶类冷冻扫描分析系统520Nov-22意向原文华南理工大学微纳米尺度红外光谱成像系统725Nov-22意向原文华南理工大学微纳光学成像工作站557Nov-22意向原文华南理工大学双转盘激光共聚焦高内涵系统550Nov-22意向原文华南理工大学双光子激光微纳加工系统480Nov-22意向原文华南理工大学双光子激光共聚焦显微镜1000Nov-22意向原文华南理工大学双光子激光共聚焦显微镜1000Nov-22意向原文华南理工大学生物医学科学与工程学院-扫描探针及激光共聚焦成像系统600Nov-22意向原文华南理工大学生物医学科学与工程学院-超高分辨率倒置荧光显微镜320Nov-22意向原文华南理工大学扫描隧道显微镜185Nov-22意向原文华南理工大学冷冻切片传输微加工系统585Nov-22意向原文华南理工大学冷冻切片传输微加工系统585Nov-22意向原文华南理工大学多势阱光镊操控系统190Nov-22意向原文华南理工大学电子增益探测正置光学显微系统160Nov-22意向原文华南理工大学单分子成像和捕获系统530Nov-22意向原文华南理工大学超快激子扩散四维成像显微镜1050Nov-22意向原文华南理工大学超高分辨率原位动态显微成像系统575Nov-22意向原文华南理工大学STED超分辨成像系统620Nov-22意向原文华南理工大学CSU转盘式扫描高速共聚焦成像380Nov-22意向原文华南理工大学3D单分子定位显微镜260Nov-22意向原文华中科技大学转盘共聚焦显微镜450Nov-22意向原文华中科技大学智能超灵敏活细胞超分辨显微镜450Nov-22意向原文华中科技大学近红外上转化共聚焦显微镜440Nov-22意向原文华中科技大学超高分辨激光共聚焦显微镜420Nov-22意向原文华中农业大学水生动物疫病专业实验室建设项目734.62Jan-23意向原文吉林大学双束拉曼一体化显微镜联用分析系统647.85Dec-22意向原文吉林大学全自动数字玻片扫描系统280Nov-22意向原文吉林大学激光差动共焦显微镜120Nov-22意向原文吉林大学活细胞工作站320Nov-22意向原文吉林大学多功能高分辨磁光克尔显微成像系统109Dec-22意向原文吉林大学倒置荧光显微成像及显微操作系统200Nov-22意向原文吉林大学超高分辨率激光共聚焦显微镜360Nov-22意向原文吉林大学超高分辨激光共聚焦显微镜315Nov-22意向原文吉林大学超分辨共聚焦扫描显微镜368Nov-22意向原文暨南大学粤港澳中枢神经再生研究院科研设备121.5Dec-22意向原文暨南大学暨南大学番禺校区药学院实验教学示范中心改善教学条件填平补缺建设项目200Dec-22意向原文暨南大学基础医学与公共卫生学院科研设备429Dec-22意向原文暨南大学光子技术研究院科研设备987.7Dec-22意向原文江南大学显微镜操作平台250Dec-22意向原文江南大学全自动3D全息无标记活细胞成像系统200Nov-22意向原文江南大学tirf全内返荧光显微镜180Jun-23意向原文兰州大学医学实验中心十人共览显微镜采购项目28Nov-22意向原文兰州大学生态学院研究级正置显微镜设备采购项目35Nov-22意向原文兰州大学生态学院基因编辑与显微注射平台设备采购项目38.6Nov-22意向原文兰州大学生态学院共聚焦扫描成像显微镜采购项目130Nov-22意向原文兰州大学生态学院倒置荧光显微镜设备采购项目22Nov-22意向原文兰州大学生命科学学院细胞、免疫及显微技术科教一体化平台-荧光相差显微成像系统采购项目126Nov-22意向原文兰州大学生命科学学院生物学野外实习科教一体化平台-农作物生长箱等设备采购项目85Nov-22意向原文兰州大学兰州大学中长期贷款项目投资估算表-拔尖创新人才培养平台60Nov-22意向原文兰州大学兰州大学生命科学学院红外相机等采购19.48Nov-22意向原文兰州大学兰州大学草地农业科技学院显微数码互动系统采购108Nov-22意向原文兰州大学基础医学院显微数码互动教学实验室采购项目192Nov-22意向原文兰州大学基础医学院显微数码互动教学实验室采购项目144Nov-22意向原文兰州大学基础医学院双光子激光共聚焦成像系统设备采购项目500Nov-22意向原文兰州大学核科学与技术学院+核材料制备装置120Dec-22意向原文兰州大学草业科学国家级实验教学示范中心一流草学人才培养平台建设项目43Nov-22意向原文南京大学高倍显微镜260Nov-22意向原文南京大学多功能可控环境扫描探针显微镜300Nov-22意向原文南京农业大学植物保护学院教学中心仪器设备采购项目680Nov-22意向原文南京农业大学荧光倒置显微镜48Nov-22意向原文南京农业大学眼科手术显微镜20Nov-22意向原文南京农业大学显微镜5Nov-22意向原文南京农业大学体视显微镜26Nov-22意向原文南京农业大学双光子激光共聚焦显微镜680Nov-22意向原文南京农业大学受激发射损耗显微镜620Nov-22意向原文南京农业大学生命科学学院植物生理实训平台采购项目45Nov-22意向原文南京农业大学人文与社会发展学院生物显微镜100Dec-22意向原文南京农业大学人文与社会发展学院金相显微镜100Dec-22意向原文南京农业大学全内反射荧光显微镜175Nov-22意向原文南京农业大学免疫荧光显微系统60Nov-22意向原文南京农业大学教务处、国家级实验教学中心显微互动系统采购项目383.7Nov-22意向原文南京农业大学激光片层扫描显微系统410Nov-22意向原文南京农业大学光电联用激光共聚焦显微镜400Nov-22意向原文南京农业大学高级正置显微镜(含成像系统)5Nov-22意向原文南京农业大学高光谱显微镜--显微平台220Nov-22意向原文南京农业大学动物科技学院显微镜等仪器采购项目248.9Nov-22意向原文南京农业大学动物科技学院显微操作系统等仪器采购项目249.66Nov-22意向原文南京农业大学Spinning disk激光共聚焦荧光显微镜500Nov-22意向原文南开大学激光共聚焦显微镜210Dec-22意向原文南开大学超分辨共聚焦显微镜468Dec-22意向原文清华大学智能超灵敏活细胞超分辨显微镜480Nov-22意向原文清华大学正置全样品双超分共振快速成像系统350Nov-22意向原文清华大学原位冷冻超分辨激光共聚焦系统400Nov-22意向原文清华大学连续光谱激光共聚焦显微镜650Nov-22意向原文清华大学快速超高分辨激光共聚焦显微镜450Nov-22意向原文清华大学激光共聚焦显微镜(更正)490Nov-22意向原文清华大学基于高通量成像筛选设备150Nov-22意向原文清华大学活细胞晶格激光片层扫描显微镜830Nov-22意向原文清华大学高通量切片扫描成像系统206Nov-22意向原文清华大学高通量快速转盘共聚焦成像分析系统350Nov-22意向原文清华大学高速双光子显微镜220Nov-22意向原文清华大学高分辨在体双光子激光扫描共聚焦成像系统680Nov-22意向原文清华大学高分辨率激光片层扫描显微成像系统490Nov-22意向原文清华大学高分辨率光片系统470Nov-22意向原文清华大学大组织样本激光片层扫描显微镜430Nov-22意向原文清华大学材料特征微区原位拉伸形貌分析仪150Nov-22意向原文清华大学白激光共聚焦显微镜490Nov-22意向原文山东大学自动活细胞成像系统180Nov-22意向原文山东大学显微高速摄像系统190Dec-22意向原文山东大学显微操作系统、倒置显微镜160Nov-22意向原文山东大学微流场测试系统190Dec-22意向原文山东大学激光扫描共聚焦显微镜195Dec-22意向原文山东大学光片显微成像系统580Nov-22意向原文山东大学单细胞荧光扫描显微镜120Dec-22意向原文山东大学表面共振显微镜400Nov-22意向原文山东大学FRET显微镜测定分析系统155Nov-22意向原文武汉大学显微成像光谱系统150Dec-22意向原文西安电子科技大学白激光共聚焦系统410Nov-22意向原文西北农林科技大学未来农业研究院平台建设项目1815Nov-22意向原文西北农林科技大学家畜生物学国家重点实验室培育建设项目2097.76Nov-22意向原文西南交通大学西南交通大学轨道结构材料响应细微观表征分析平台采购120Nov-22意向原文西南交通大学西南交通大学复杂环境路面材料耐久性能测试系统采购177Nov-22意向原文西南交通大学西南交通大学分析测试中心测试能力提升建设项目采购120Oct-22意向原文浙江大学自适应照明STED超高分辨显微镜1150Nov-22意向原文浙江大学智能超灵敏活细胞超分辨显微镜430Nov-22意向原文浙江大学线扫描激光共聚焦显微镜450Nov-22意向原文浙江大学微结构加工与成像系统138Oct-22意向原文浙江大学四轴光片显微成像系统480Nov-22意向原文浙江大学双光子显微镜系统300Nov-22意向原文浙江大学双光子显微镜530Nov-22意向原文浙江大学数码生物显微镜185.6Nov-22意向原文浙江大学全自动数字切片扫描仪220Dec-22意向原文浙江大学全光谱高分辨激光共聚焦成像系统500Nov-22意向原文浙江大学全功能扫描光电化学显微镜210Nov-22意向原文浙江大学全玻片高分辨数字扫描系统280Nov-22意向原文浙江大学晶格光片显微成像系统780Nov-22意向原文浙江大学激光共聚焦显微镜350Dec-22意向原文浙江大学活细胞转盘式共聚焦显微镜660Nov-22意向原文浙江大学共聚焦激光扫描显微镜315Nov-22意向原文浙江大学共聚焦激光扫描显微镜520Nov-22意向原文浙江大学高分辨全视野三维组织成像系统150Nov-22意向原文浙江大学高分辨激光共聚焦显微镜280Nov-22意向原文浙江大学多维度单分子超分辨表征系统600Nov-22意向原文浙江大学多维度单分子超分辨表征系统1214.65Nov-22意向原文浙江大学多功能化学成像系统1050Nov-22意向原文浙江大学单分子时间分辨共聚焦荧光显微系统(已有显微镜光谱系统更新)150Nov-22意向原文浙江大学超高分辨激光共聚焦显微镜520Dec-22意向原文浙江大学表面等离子体共振显微镜300Nov-22意向原文中国科学院脑科学与智能技术卓越创新中心高通量脑切片成像系统230Nov-22意向原文中国科学院宁波材料技术与工程研究所多光子共聚焦显微镜350Dec-22意向原文中国农业科学院蔬菜花卉研究所中国农业科学院蔬菜花卉研究所国家蔬菜种质资源中期库建设项目122Nov-22意向原文中国药科大学中国药科大学光片显微成像系统项目600Nov-22意向原文中国药科大学中国药科大学共聚焦显微镜项目500Nov-22意向原文中国药科大学中国药科大学超高分辨率激光共聚焦项目560Nov-22意向原文中国医学科学院病原生物学研究所开办费实验室设备购置第二包322.18Nov-22意向原文中华人民共和国济南机场海关口岸检疫查验能力提升项目20.5Nov-22意向原文中南大学中南大学医学精准诊断实验平台、高端医学影像实验平台、医学智能计算实验平台建设采购项目3000Nov-22意向原文中南大学中南大学湘雅医学院形态学平台科研设备采购项目18053Nov-22意向原文中南大学中南大学高水平公共卫生学院建设采购项目6600Nov-22意向原文中山大学自动换液成像培养设备680Dec-22意向原文中山大学中山医学院转盘共聚焦显微镜(倒置型)采购495Nov-22意向原文中山大学中山医学院在体双光子显微成像系统采购600Nov-22意向原文中山大学中山医学院荧光显微镜采购150Nov-22意向原文中山大学中山医学院荧光显微镜(3台)采购105Nov-22意向原文中山大学中山医学院荧光显微镜(2台)采购150Nov-22意向原文中山大学中山医学院数字化组织原位多组学分析系统采购450Nov-22意向原文中山大学中山医学院数控剪切流活细胞自动分析系统采购240Nov-22意向原文中山大学中山医学院实时无标记电阻细胞分析仪采购250Nov-22意向原文中山大学中山医学院全自动玻片扫描系统采购250Nov-22意向原文中山大学中山医学院晶格层光显微成像系统采购800Nov-22意向原文中山大学中山医学院激光共聚焦显微镜(正置型)采购320Nov-22意向原文中山大学中山医学院激光共聚焦显微镜(正置型)采购420Nov-22意向原文中山大学中山医学院激光共聚焦显微镜(全光谱)采购415Nov-22意向原文中山大学中山医学院高通量活细胞功能分析系统采购200Nov-22意向原文中山大学中山医学院高通量共聚焦活细胞成像系统采购490Nov-22意向原文中山大学中山医学院高分辨率荧光成像系统(正置型)采购120Nov-22意向原文中山大学中山医学院高分辨率荧光成像系统(倒置型)采购120Nov-22意向原文中山大学中山医学院高分辨率激光共聚焦显微镜(正置型)采购480Nov-22意向原文中山大学中山医学院高分辨率激光共聚焦显微镜(倒置型)采购480Nov-22意向原文中山大学中山医学院多维活细胞灌流成像系统采购120Nov-22意向原文中山大学中山医学院多光谱组织成像分析系统采购400Nov-22意向原文中山大学中山医学院倒置显微镜(2台)采购100Nov-22意向原文中山大学中山医学院大组织样本光片显微镜采购435Nov-22意向原文中山大学中山医学院超分辨率显微镜采购720Nov-22意向原文中山大学中山大学科研设备更新改造专项-切片扫描系统采购168Jun-23意向原文中山大学中山大学科研设备更新改造专项-活细胞功能分析系统采购190Jun-23意向原文中山大学中山大学科研设备更新改造专项-化学发光成像系统采购40Jun-23意向原文中山大学荧光斑点分析仪ELISPOT85Dec-22意向原文中山大学一体化荧光显微成像系统270Dec-22意向原文中山大学液体闪烁计数器90Dec-22意向原文中山大学药学院激光共聚焦显微镜233.7Nov-22意向原文中山大学显微注射系统55Dec-22意向原文中山大学显微注射系统85Jun-23意向原文中山大学先进能源学院荧光显微镜采购项目120Nov-22意向原文中山大学先进能源学院 扫描电化学显微镜130Nov-22意向原文中山大学细胞荧光成像系统90Jun-23意向原文中山大学细胞无损实时监测系统100Dec-22意向原文中山大学生物医学工程学院激光共聚焦显微镜(正置型)采购项目275Nov-22意向原文中山大学生命科学学院全自动数字玻片扫描系统采购项目210Nov-22意向原文中山大学生命科学学院晶格层光显微镜采购项目980Nov-22意向原文中山大学全自动细胞荧光显微成像90Dec-22意向原文中山大学全自动外泌体提取纯化系统60Dec-22意向原文中山大学全自动活细胞荧光成像系统75Dec-22意向原文中山大学全自动高分辨快速成像系统采购152Nov-22意向原文中山大学全光谱成像及组织微环境定量分析系统440Jun-23意向原文中山大学脑片膜片钳系统(含钙成像)195Jun-23意向原文中山大学膜蛋白结晶工作站150Dec-22意向原文中山大学明场玻片扫描系统50Jun-23意向原文中山大学理学院聚焦离子束-电子束系统采购项目925Nov-22意向原文中山大学昆虫自动监测系统采购120Nov-22意向原文中山大学集成电路学院金相显微镜采购80Nov-22意向原文中山大学集成电路学院高精度光学显微镜采购84Nov-22意向原文中山大学集成电路学院操作显微镜采购12Nov-22意向原文中山大学激光共聚焦显微镜采购260Nov-22意向原文中山大学激光共聚焦显微镜260Dec-22意向原文中山大学激光共聚焦显微镜700Nov-22意向原文中山大学化学学院压电力显微镜采购项目300Mar-23意向原文中山大学化学学院形状测量激光显微系统采购项目120Feb-23意向原文中山大学化学学院扫描俄歇纳米探针采购项目750Nov-22意向原文中山大学化学学院多功能显微发光光谱测试系统采购项目150Dec-22意向原文中山大学共聚焦显微镜采购182Nov-22意向原文中山大学高内涵成像分析系统400Dec-22意向原文中山大学高分辨率激光共聚焦显微镜580Dec-22意向原文中山大学多功能激光成像仪220Dec-22意向原文中山大学超声波扫描显微镜采购项目141Nov-22意向原文中山大学超景深视频显微镜70Dec-22意向原文中山大学超高分辨率激光共聚焦显微镜500Nov-22意向原文中山大学超分辨率显微镜650Dec-22意向原文中山大学测试中心显微微区荧光寿命成像系统采购项目98Nov-22意向原文
  • 高速电镜新品!国仪量子推出高速扫描电镜HEM6000
    仪器信息网讯 8月8日,国仪量子官宣推出一款专为大规模成像而生的新产品——高速扫描电子显微镜HEM6000。高速扫描电子显微镜HEM6000在大规模成像场景中,常规扫描电镜成像速度和自动化程度都无法满足应用需求。例如,在芯片结构成像应用中,需要在几周内完成数百平方毫米区域的连续拍摄;在人类脑图谱研究中,需要对百亿级神经元进行高分辨成像。对于此类场景,常规扫描电镜效率严重不足,为解决客户痛点,国仪量子推出此款专为大规模成像而生的新产品——高速扫描电子显微镜HEM6000。产品亮点HEM6000是一款可实现跨尺度大规模样品成像的高速扫描电子显微镜。采用高亮度大束流电子枪、高速电子偏转系统、高压样品台减速、动态光轴、浸没式电磁复合物镜等技术,实现了高速图像采集和成像,同时保证了纳米级分辨率。面向应用场景的自动化操作流程设计,使得大面积的高分辨率图像采集工作更高效、更智能。成像速度可达常规场发射扫描电镜的5倍以上。可广泛应用于半导体工业、生命科学、材料科学、地质科学等领域。图像采集速度:10 ns/pixel,2*100 M pixel/s加速电压:100 V~6 kV(减速模式);6 kV~30 kV(非减速模式)分辨率:1.3 nm@3 kV,SE;2.2 nm@1 kV,SE视场大小:最大视场1*1 mm2,高分辨微畸变视场32*32 um2样品台精度:重复定位精度:X ±0.6 um;Y ±0.3 um产品优势高速自动化:全自动上下样流程和采图作业,综合成像速度优于常规场发射扫描电镜的5倍;大场低畸变:跟随扫描场动态变化的光轴,实现了更低的场边缘畸变;低压高分辨:样品台减速技术,实现低落点电压,同时保证高分辨率。应用案例
  • “慧眼”观微—成像质谱显微镜iMScope QT开箱测评
    成像质谱显微镜iMScope QT作为岛津近年来高端质谱领域发布的重磅新产品,融合光学显微镜、MALDI和Q-TOF的显微质谱成像技术很让人期待!成像质谱显微技术研究物质的空间分布具有显著优势,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息,在医学、药学、农业食品、公共安全、资源环境、工业等领域有着广泛的应用前景。 下面小编就给大家带来一份iMScope QT的详细图文测评报告,相信大家看过之后,对这款产品一定有了更深入的了解。 开箱初见 坐着飞机悄然落地实验室的大家伙终于迎来了开箱时刻,百闻不如一见,一起来体验一下吧!iMScope QT和MS-9030合体过程 岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope QT),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置四极杆飞行时间质谱仪(Q-TOF)。 将光学显微镜和质谱仪整合成一体,既可观察得到高分辨率的形态图像,又可以对特定分子进行鉴定和可视化分布分析,可将两种不同检测原理的图像进行重叠分析,为成像分析提供了全新的工具。 镜质合璧,还原真实 作为一台搭载了光学显微镜的质谱成像仪,两种不同检测原理的图像如何进行采集,图像重叠分析时又会碰撞出怎样的火花呢? 在下图中是从光学图像中选择肝门静脉进行质谱成像分析,可以清晰观察到肝门静脉周边的血脂和脂质的分布。 多角度测评环节正式开始 下面请随着小编从分辨率、扫描速度、灵敏度等几个角度进行测评。 空间分辨率“高清镜头”下的微观世界 作为一款搭载了光学成像镜头和质谱成像功能的仪器,iMScope QT的光学显微镜物镜最大可达到40倍率又结合质谱成像显微镜5μm空间分辨率,究竟能够将研究视野深入到什么样的微观水平呢?小编拿来了大家关注的亚细胞水平的组织器官,看看iMScope QT能观察到微观世界哪些变化。 以槲皮素为例,iMScope QT成功观察到其在肝脏部位的细胞水平分布,分析结果表明药物主要分布在细胞间质,充分显示了成像质谱显微镜分析亚细胞水平的可靠性。高空间分辨率对于药物动态分析、安全性评估和毒性机制的阐明,以及视网膜和皮肤等特殊组织的分析中都具有重要意义。 扫描速度快速制图“小能手” iMScope QT这款产品拥有超高质谱空间分辨率给细胞水平上的研究带来便利,但是小编担心如果没有快速的扫描速度作保障,在大面积样本成像时会消耗很长的时间才能完成分析。带着疑虑,小编准备了小鼠全脑切片(14ⅹ7mm),空间分辨率采用20 μm,扫描区域245000pix,2.6小时后我们获得一张高清晰度小鼠脑成像图。与同类质谱成像产品比,iMScope QT能够高速、高效地采集到高清晰度的质谱成像图。 小鼠脑成像质谱图 灵敏度“火眼金睛”看切片 质谱成像中高灵敏度分析也是至关重要的,尤其在药物代谢研究中对低浓度代谢物分布的研究。iMScope QT在硬件性能上较之前作了较大提升,后端Q-TOF型LCMS-9030的接入提高了质谱检测的灵敏度。在本次开机测评中,小编分析了给药后的大鼠肺中抗心律失常药物胺碘酮及其代谢物的分析,明确了药理学研究中的发现是胺碘酮副作用引起。给药后的大鼠肺部病理切片分析发现坏死区域质谱成像发现抗心律失常药物胺碘酮及其代谢物在坏死区域的分布,明确了药理学研究中的发现是胺碘酮副作用引起。 系统扩展性成像定位分析与液质分析的完美兼容 cope QT不仅局限在成像分析,成像单元支持移动分开和组装使用,小编实验室就是将已有LCMS-9030的Q-TOF单元与成像单元连接后使用,确实可以实现质谱成像分析和LCMS-9030的兼用系统,既可以用于准确定性定量分析,也可以完成可靠的定位分析。 结语 整体而言,成像质谱显微镜iMScope QT将光学显微镜和质谱仪整合成一体既可观察到高分辨率的形态图像,为成像分析提供了全新的工具。在拥有高空间分辨率同时,还能高速扫描,高效获得高质量成像数据。同时还能保持系统的拓展性,通过一台仪器即可获得LC-MS的定性、定量信息和质谱成像的位置信息。期待iMScope QT能够为国内相关科研工作者们的研究带来帮助,落地开花结出硕果。 撰稿人:宋玉玲
  • 【21年经验分享】看原子力显微镜大显身手!
    表面分析技术包括飞行时间二次离子质谱,扫描探针显微镜,X射线光电子能谱等技术,在生物医药的生产和研发过程中,对于药物,细胞等表面和一定深度的成份信息的表征具有非常重要的意义,也是生物医药领域必不可少的分析表征手段。基于此,仪器信息网网络讲堂将于2022年9月23日举办“表面分析技术在生物医药领域的应用”网络研讨会,特邀5位专家带来精彩分享,聚焦AFM、XPS等最新应用进展!为相关从业人员搭建沟通和交流的平台,促进相关仪器技术及应用的发展。日程全览,点击报名时间专家09:30韩东(国家纳米科学中心 研究员)主要研究方向:纳米生物医学成像与表征、生命复杂流体与管理、生物力药理学。《生物型原子力显微镜表面分析技术在活体样品上的应用》报告摘要:21年经验,纯干货分享!纳米成像表征技术的源头应用与适应性改造生物活体纳米成像、表征设备功能群针对关键科学问题的新手段、新技术研发关于细胞的力学模型10:00樊友杰(布鲁克 应用工程师)《高速原子力显微镜在生物表面表征中的应用》报告摘要:快速原子力的发展克服了传统原子力速度上的局限,高空间分辨率的同时在毫秒尺度上研究生化动力学过程成为可能。介绍商业化的视频级速度的生物弄原子力显微镜在生物样品领域里的成像,在使用非常小的作用力同时得到亚分子级结构的分辨率。介绍快扫型原子力在探索不同的天然和人工聚合物动力学过程的一些实例,还有原位研究细胞膜表面的动力学过程,及二维光敏蛋白质晶体细菌视紫红质的动态过程。介绍JPK最新的力学成像模式“定量成像模式(QI™ )”Bruker生物弄原子力的全针尖扫描模式可以从结构上非常好地与现代主流倒置显微镜进行无缝偶合。10:30王化斌(中科院重庆绿色智能技术研究院 研究中心主任/研究员)中国科学院首批岗位特聘研究员,重庆市高分辨三维动态成像检测工程技术研究中心主任;长期从事光谱、成像及力学方面的研究工作。《原子力显微镜在生物样品成像和力学测量中的应用》报告摘要:介绍原子力显微的不同成像模式及应用实例分享原子力显微镜不同力学分析技术及应用情况11:00蔡斯琪(岛津企业管理(中国)有限公司 产品专员)《XPS表面分析技术在生物医药领域中的应用》报告摘要:X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在生物材料及医疗器械等领域的应用,旨在让科研工作者对XPS表面分析技术在生物医用领域的应用有所了解。11:30周江涛(苏黎世联邦理工学院 助理研究员)主要研究兴趣有原子力显微镜及相关显微成像分析技术,在生物纳米纤维材料的形成机理和应用的研究。《原子力显微镜在成像及与光热谐振结合的微纳表面化学分析技术》报告摘要:简要原子力显微镜的原理及应用示例重点介绍原子力显微镜与可见/红外光结合的光热谐振技术,以及他们在纳米尺度的高灵敏度表面化学结构分析点击图片,即可免费参会,和嘉宾线上互动!
  • 1113万!济南微生态生物医学省实验室超高速全光谱流式细胞分选仪等多种仪器设备采购项目
    一、项目基本情况1.项目编号:0627-24041041866项目名称:济南微生态生物医学省实验室仪器设备(十)采购项目预算金额:935.000000 万元(人民币)最高限价(如有):935.000000 万元(人民币)采购需求:序号设备名称数量主要技术参数1超高速全光谱流式细胞分选仪(允许进口)1台详见招标文件合同履行期限:①进口产品(境外供货):合同签订且货物免表办理完毕之日起2个月内完成供货安装,并通过验收。②进口产品(国内供货)或国产产品:接到采购人通知之日起30天内完成供货安装,并通过验收。本项目( 不接受 )联合体投标。2.项目编号:0627-24041021847项目名称:济南微生态生物医学省实验室仪器设备(九)采购项目采购方式:竞争性磋商预算金额:178.000000 万元(人民币)最高限价(如有):178.000000 万元(人民币)采购需求:包号 标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)1冷藏冷冻箱、4度冰箱、正置显微镜、倒置荧光显微镜、无目镜倒置显微镜、脱色摇床、3D脱色摇床、真空离心浓缩仪、二氧化碳培养箱、万分之一天平、超声清洗仪、组织研磨仪、真空干燥箱、旋涂仪、蛋白电泳系统等多种仪器设备(本项目允许进口)详见竞争性磋商文件详见竞争性磋商文件178 合同履行期限:①进口产品(境外供货):合同签订且货物免表办理完毕之日起2个月内完成供货安装,并通过验收。②进口产品(国内供货)或国产产品:接到采购人通知之日起30天内完成供货安装,并通过验收。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年08月22日 至 2024年08月28日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:山东招标股份有限公司(济南市文化西路13号海辰大厦A座1105室)方式:凡有意参加本次采购的投标人必须在获取招标文件的期限内联系代理机构,并将营业执照副本、法定代表人身份证明或法定代表人授权委托书及身份证,以上证件须原件的扫描件及信用中国相关截图、中国政府采购网相关截图、授权代表联系方式送到邮箱sdtc4@163.com,(联系人:高晓光 13173016677)。说明:代理机构审核上述资料无误后,将招标文件发送至报名邮箱;如需要纸质招标文件,请持上述资料前往现场领购。收款单位:山东招标股份有限公司 开户银行:中国银行股份有限公司济南文化路支行 账号:227305483177 本项目实行资格后审,获取招标文件成功不代表资格后审的通过。售价:¥400.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:济南微生态生物医学省实验室     地址:山东省济南市槐荫区城市之光西座        联系方式:陈主任 0531-81789600      2.采购代理机构信息名 称:山东招标股份有限公司            地 址:济南市文化西路13号A座1105室            联系方式:高晓光 0531-81917645            3.项目联系方式项目联系人:高晓光电 话:  0531-81917645
  • 如何选择一台适合自己的显微镜——总有一款ECHO显微镜适合你
    导读经过前面的几期学习,相信大家对显微镜的基础知识已经有了足够的了解,自信心提的满满的吆!接下来就可以根据实际需求来选择对应的显微镜了。让我们一起走进ECHO显微镜的世界,挑选一台属于你的显微镜吧。荧光电动显微镜—RevolveECHO显微镜颠覆了大家对显微镜的认知,是对传统显微镜设计的重新思考,是真正意义上的设计一体化和操控显示一体化,易学易用,使枯燥的实验变得简单有趣。高分辨率3D成像,获得最佳成像效果Revolve显微镜采用实时反卷积(DHR),增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率。自动Z轴配合实时反卷积(DHR)功能,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现3D高分辨成像。正倒置一体,一机两用Revolve显微镜既可以正置观察,也可以倒置观察,在正置和倒置之间自由转换。使用户不再因为样品的不同而分别购置正置和倒置两类显微镜,一机实现切片、培养皿、培养瓶和多孔板等多种样本类型的观察需求。在降低设备成本的同时,也节约了空间。试问:我还需要纠结选择买正置还是倒置吗,当然是都要喽。智能化操作,高效便捷Revolve显微镜采用自动荧光的方式,可以快速捕捉荧光信号,避免荧光淬灭。自动双相机系统保证了明场和荧光条件下都可以获得最好的观察效果。智能化的软件使操作变得更加简单。明场显微镜—Rebel随着Revolve的问世,ECHO显微镜的设计理念深受用户的喜欢,但是对于没有荧光需求的用户,一款正倒置兼备的Rebel足矣。自动细胞计数软件,无需特殊耗材Rebel为满足更多的用户需求,特别开发了自动细胞计数软件。区别于市场上的细胞自动计数仪,Rebel兼具显微镜与计数功能于一身。不再需要特殊的观察耗材,可使用玻片、培养皿、培养瓶等耗材进行细胞自动计数。高效便捷的网络共享方式Rebel还具有非常高效便捷的网络共享方式,通过WIFI、Internet等多种通讯方式,可以实现实时实验教学、病例分享和多人会诊。全电动显微镜—Revolution针对更高级别用户需求,ECHO又推出了Revolve进阶版Revolution,正倒置一体化设计,带来更多应用场景;双相机系统保证了确保效果最优;实时反卷积功能配合高速Z-stacking功能,提高荧光检测的分辨率。独特的触屏控制XY自动载物台功能,便于观察样品的定位;对于大样品扫描成像,电动载物台和Hyperscan功能结合,使扫描速度提升了一倍。对于活细胞的观察,活细胞工作站和多功能智能化联动,保证了活细胞长时间的观察。最后,我们一起来看一下ECHO显微镜下的微观世界吧。看到这样一台成像质量好,操作简单,适用范围广的显微镜,有没有心动呀,想不想体验一下操作极简,体验极佳的显微镜呀,想不想让我们珍贵的实验样本也有一个如此美轮美奂的瞬间,那就赶紧联系我们,申请试用吧,三款产品,总有一个适合你的吆!
  • 中科院分子细胞卓越中心高工涂溢晖:光片显微成像技术应用心得及经验分享
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心细胞分析技术平台高级技术主管涂溢晖撰写,涂老师对光片显微镜的成像特点、难点、解决方法以及应用范围进行了详细的阐述。以下为供稿内容:显微镜自从300多年前发明以来,因其制样相对简单、观察参数多、可活体成像等特点成为生命科学领域不可或缺的研究工具。而近百年来理论和技术的飞速发展,使得显微镜成像的质量、空间分辨率和时间分辨率都有很大的提升。宽场显微镜光路简单、成像便捷,使用最广泛,但因非焦平面的光干扰而图像信噪比较差。激光共聚焦扫描显微镜加入了共轭的针孔,过滤掉了非焦平面的信号而大大提升图像的信噪比、提高分辨率,但因其是点扫描成像,成像速度大大降低,而且因为物镜工作距离和数值孔径的制约,成像深度一般也只有200微米左右。双光子显微镜因红外激光穿透力的提升,虽然可将成像深度扩展到1毫米,但光毒性和光漂白作用非常大。要做到在组织细胞水平上大尺度大视野的成像,目前光片显微镜是一个不错的选择。光片显微镜与上述传统显微镜在光路上有很大的区别(图1),传统显微镜激发和发射在同一个方向上,而光片显微镜采用正交光路设计,即从样品侧面照射激发样品荧光,成像物镜与照明物镜成90度正交,互相垂直。样品受激发的层面即成像层面,不存在离焦信号,提高了图像的信噪比,通过移动光束或样品快速获取全样品的荧光信号,减少对样品的光毒性和光漂白。为了保证照明光路的均匀,通常使用两个照明物镜进行双侧照明,采用sCOMS成像,提高量子效率和成像速度。图1. 宽场显微镜与光片显微镜光路示意图目前实现光片的技术主要有高斯扫描光束、贝塞尔光束和晶格光束。高斯扫描光束利用扫描振镜的高速运动将点状光束形成“虚拟”片状光源。贝塞尔光束是一种非衍射光束,在一定距离内几乎没有衍射,经过散射后,形变失真很小。相比高斯光束,它能形成更薄的光片。晶格光片可以理解为结构照明的贝塞尔光束,它既保持了光片空间上的薄度,又利用结构照明提高空间分辨率。生物样品要想做到大尺度、深层次的成像,只有光路上的改进是不够的,生物样品之所以无法做到深度成像,另一个很重要的原因就是生物样品结构多、成分复杂,且任何一个组分都能吸收光和散射光,这就导致激发光和发射光都还无法穿透较厚的样品就被吸收或散射掉了。因此,要想进行深层次的生物样品成像,须将样品进行透明化处理,即用化学试剂将样品中的脂质、水分、色素等物质去除,从而使样品达到透明状态,内部的折射率尽量均一,减少光的吸收和散射。目前常用的透明化方法有有机溶剂和水溶剂两种方法。有机溶剂透明化方法即疏水透明化方法,一般先用脱水试剂去除水分和一部分脂质,再用有机溶剂去除脂质,最后浸入折射率匹配液中,以获得均匀的折射率。常用的方法有iDISCO和PEGASOS等,以上方法透明化程度高,用时较短,与蛋白质的折射率更匹配,缺点是样品有一定程度的固缩,有机试剂会引起荧光蛋白淬灭或保护性较差,有毒性且会挥发。水溶试剂透明化方法即亲水透明化方法,一般用除垢剂将样品中的脂质去除,再匹配折射率。常用的方法有CUBIC,该方法对荧光蛋白保护性较好,价格便宜,试剂相对更安全,但用时较长,样品有轻度的膨大。科学家们又利用其膨大样品的特性,筛选出既能保持样品结构又能将其膨大数倍之大的CUBIC-X的方法,将更多细节暴露在显微镜下并得以清晰成像。水凝胶包埋透明化方法,如CLARITY、PACT、SHIELD等方法应用较少,它对荧光蛋白保护性好,但用时较长,需要专用设备。生物样品的抗体标记一般在透明化之前。常规带荧光的生物样品可以首选水溶性试剂进行透明化处理,结构致密或坚硬的组织用有机溶剂透明化效果可能更好。在成像过程中如果需要用胶水固定样品的话,且样品的体积又很微小,可以用低熔点琼脂糖进行包埋。对本身较透明的样品或经过透明化的样品,在光片显微镜上可以进行大视野、大尺度、深层次、亚细胞水平的荧光成像,成像广度和深度都可达到厘米级。光片显微镜在神经学、发育学、肿瘤学等生命科学领域都有广泛应用。光片显微镜虽然能对透明化的整个组织甚至小动物进行细胞水平的整体荧光成像,获取得到很多以前无法获得的图像,但是在实际应用中仍存在一些问题。首先,因为透明化试剂多种多样,每种的折射率都不一样,所以每次更换成像物镜或换新的透明化试剂,都需要调节光路以匹配相应的折射率,以达到最佳的成像效果。成像用透明化试剂必须干净无杂无气泡。其次,成像质量仍然受限于成像物镜NA值,要想提高成像分辨率,必须用高NA的物镜,但这样物镜的工作距离和景深就小,会带来成像深度的降低。样品虽然透明或经过了透明化处理,组织样品的荧光强度仍然会随着离成像物镜距离的增加而衰减,从而形成近物镜的样品荧光相对较强,远离物镜的荧光相对较弱。那么在满足目标细胞、结构清晰成像的情况下,可以考虑减少样品的厚度,或是通过双物镜成像或旋转样品多次成像,使成像质量得到提升,但是荧光衰减的现象仍然无法完全避免。再次,透明化使用的有机试剂的毒性和对物镜的潜在危害需要考虑在内。最后,就是光片显微镜成像的数据庞大,单个文件从几十GB到TB级,这就给后期的运算处理带来很大的挑战。在今后的应用中,无毒化、渗透迅速、对蛋白保护性好的透明化试剂的开发将可以缩短样品处理等待时间、保护表达的蛋白以及实验人员的健康。对于庞大数据的后期处理算法的改进与优化,将减少数据存储占用空间、缩短实验数据处理时间,提升用户的使用体验感,最终拓展该技术在生命科学领域、临床精准诊断领域等的应用前景。作者简介涂溢晖,高级工程师,现任中国科学院分子细胞科学卓越创新中心细胞分析技术平台高级技术主管。2004年加入中科院生物化学和细胞生物学研究所细胞分析技术平台,致力于细胞分析新技术新方法的开发及应用推广、大型仪器运行维护及技术服务的共享和显微成像、流式专业人才的培养,到目前完成了三个中科院功能开发项目。
  • 鑫图实时图像拼接和实时景深融合功能将免费为MIchrome显微摄像头用户开放
    搭载MIchrome 5 Pro相机的显微镜在移动载物台的数秒钟时间,如同手机全景摄影一样,完成了显微视频图像到全景拼接的整个过程。 不论4倍、10倍,还是40倍,横轴、纵轴,还是任意角度,MIchrome 5 Pro都能快速准确拼接。 轻快、顺畅、省心! 这样的体验来源于鑫图全新计算成像软件——Mosaic 2.0,不仅提供实时自动拼接功能,还同时提供实时景深融合(EDF)。 得益于鑫图自研的智能拼接算法模型结构,以及大量的显微图像训练和应用测试,Mosaic 2.0 不仅不会出现传统进口软件错拼的尴尬局面,而且和动辄数千美元的定价不同, Mosaic2.0完全向MIchrome 5 Pro用户免费开放。 技术发展到如今高度整合的程度,显微摄像头,尤其是旗舰级别的显微摄像头远不是简单的CMOS芯片、传输控制单片机、成像软件等硬件组合到一起再固定到显微镜接口上那么简单。以鑫图MIchrome 5 Pro为例,鑫图就做了这一技术的原型机,但直到2018年8月,带着智能算法的MIchrome 5 Pro才最终与用户见面。MIchrome 5 Pro的整个方案分为四层,算法、应用、软件层和硬件层。 “鑫图光电的核心竞争力其实是在最上两层,视觉的应用层以及核心的算法能力层。” 鑫图光电高级研发经理赵泽宇博士在发布会上提到,上文提到的实时图像拼接正是集中于这两个层面。 在MIchrome 5 Pro的这套显微成像解决方案中,实际上也涵盖了硬件和软件方面,承担核心图像处理功能的“ISP”就是其中创新意义的典型。 ISP也叫“图像处理引擎”,是目前苹果、华为、谷歌等手机行业一众大佬的竞争天王山所在,谁拿下品质更高的ISP,谁就能向消费者展示一个更精彩的世界。显微成像应用中,这个结合了自动白平衡、自动曝光、高动态范围等复杂算法的处理引擎拥有同样的重要性。 然而日益巨大的ISP算法处理量会让CPU不堪重负,传统方案往往不得不对图像质量进行让步或者导致传输速率急剧下降。 如何开发出更高质量的显微成像ISP,成为各个厂家面临的关键问题。 针对这一问题,作为科学成像领导者的鑫图光电,日前提出了全新的FPGA芯片端全ISP解决方案,创新地将显微行业首个自研ISP集成到28纳米工艺的FPGA芯片中,利用FPGA芯片巨大的并行处理能力完成图像的高速处理,并发布了基于该技术的MIchrome 5 Pro——这款姗姗来迟的显微相机。 可以预见的是,在信息量成十倍百倍增加的显微成像中,计算成像带来的优势将被更多的用户感受到。实时拼接和实时景深融合只是智能显微成像新模式的冰山一角,而鑫图此次发布的MIchrome 5 Pro,针对显微成像从硬件到ISP和算法的一揽子解决方案,作为先锋将居功至伟。产品型号 MIchrome 5 Pro MIchrome 20 MIchrome 6芯片型号 IMX264LQR-C IMX183CQJ-J IMX178LQJ-C芯片尺寸 2/3" 1" 1/1.8"快门方式 Global Rolling Rolling分辨率5MP20MP6.3MP 帧率 35fps@ 15fps@ 40fps
  • 精彩亮相,国货崛起!致真精密仪器成功发布原子力显微镜系列产品!
    5月24 - 26日,在首届“科学仪器开发者大会”上,致真精密仪器自主研发的原子力显微镜系列产品重磅发布!此次发布的产品包括多功能原子力显微镜(AtomicaPrecision)、晶圆级原子力显微镜(Wafer Mapper-M)。该产品稳定性强、可拓展性良好、提供定制服务;可拓展横向力显微镜、静电力显微镜、磁力显微镜、扫描开尔文探针显微镜、刻蚀和纳米操作等。该产品作为高速、高精度微观形貌表征及综合物性分析工具,可以为高端科研与企业生产研发提供更多的选择与助力。“精彩花絮致真精密仪器携新品亮相展位,莅临的嘉宾们在现场通过亲自参与操作,快速了解产品的核心卖点。体验结束后,表示新产品在性能、操作便捷性等方面都有较好的感受,非常期待未来能够与致真精密仪器展开更深入的合作。致真精密仪器董事长兼首席技术官张学莹博士在大会上作了《高精度扫描探针显微镜的研制和应用》的报告,从原子力显微镜系列新品的开发背景、相关核心技术、多物性分析应用和市场前景等方面对新品进行全面讲解,详细展示了产品在纳米结构高清成像、液下生物细胞成像、高清磁畴(斯格明子)成像、铁电畴成像等方面的精彩效果,引起现场专家学者的浓厚兴趣,获得高度关注。“产品介绍致真精密仪器科研级原子力显微镜AtomicaPrecision产品介绍利用微悬臂探针结构对导体、半导体、绝缘品等固体材料进行三维样貌表征,纵向噪音水平低至0.03 nm(开环),可实现样品表面单个原子层结构形貌图像绘制。可以测量表面的弹性、塑性、硬度、黏着力、磁性、电极化等性质,还可以在真空,大气或溶液下工作,在材料研究中获得了广泛的使用。设备亮点● 多种工作模式● 适配环境:空气、液相● 多功能配置● 稳定性强● 可拓展性良好典型案例晶圆级原子力显微镜Wafer Mapper-M产品介绍利用微悬臂探针结构可对导体、半导体、绝缘品等固体材料进行三维样貌表征。样品台兼容12寸晶圆,电动样品定位台与光学图像相结合,可在300X300mm区域实现1μm的定位精度,激光对准,探针逼近和扫描参数调整完全自动化操作。可用于产线,对晶圆粗糙度进行精密测试。设备亮点● 多种工作模式● 适配环境:空气、液相● 可旋转式扫描头● 多功能配置● 稳定性强、可拓展性良好典型案例在新质生产力与大规模设备更新的推动下,国产替代的呼声愈发高涨,已成为行业发展不可逆转的潮流,致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代,通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。致真精密仪器拥有强大的自主研发和创新能力,产品稳定精良,多次助力中国科研工作者取得高水平科研成果。我们希望与更多优秀科研工作者合作,持续提供更加专业的技术服务和完善的行业解决方案!欢迎联系我们!除此之外,我们还可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 先进生物显微技术知多少?目前最新!首次!唯一!
    生物显微成像作为观察微观世界的主要手段,近些年来技术突飞猛进。生物显微技术在分子机制基础研究、药物靶点发现、疾病诊断中都有重要应用。荧光显微、共聚焦显微、电子显微、光片显微等生物显微技术的进步极大的促进了生命科学事业的发展。 本次直播将由来自北大、西安交大、中科院及四大仪器厂商的11位专家为我们全方位地介绍显微技术在生命科学领域的新应用及创新性进展,从超分辨显微成像方法到高速原子力显微镜,从三维显微成像技术到冷冻电镜,将理论与实践相结合,为您带来一场显微盛宴,诚邀您的出席,定不负您的期待!会议时间:8月10日 9:00-16:00会议日程:报名占位时间报告题目报告嘉宾9:00下一代的活细胞超分辨率成像-新原理,新应用陈良怡(北京大学)9:30液体环境下对生物高分子的高分辨三维观测陈强(岛津企业管理(中国)有限公司)10:00基于高速原子力显微镜的生物物理研究焦放(中国科学院物理研究所)10:3050 fps新速度:NanoRacer视频级AFM助力分子动力学研究王鑫(布鲁克纳米表面测量部)11:00高速大视场彩色三维显微成像技术及应用雷铭(西安交通大学)11:30多模态结构光超分辨显微镜技术开发与应用李栋(中国科学院生物物理研究所)13:30基于流式光片的毫米级样品高通量三维成像李辉(中国科学院苏州生物医学工程技术研究所)14:00日立电子显微镜在生物医学领域的解决方案王勐(日立科学仪器(北京)有限公司)14:30冷冻光电关联成像技术在原位结构生物学中的应用李硕果(中国科学院生物物理研究所)15:00冷冻电子断层扫描在生命科学领域的最新应用与进展陈晨(赛默飞世尔科技)15:30电镜技术在生物学中的发展与应用孔妤(中国科学院脑科学与智能技术卓越创新中心)部分报告摘要:《下一代的活细胞超分辨率成像-新原理,新应用》报名占位【摘要】 这里我们将介绍发明的三种活细胞超分辨率成像方法。第一,用于活细胞长期超分辨成像的海森结构光超分辨率显微镜。第二,稀疏解卷积方法首次实现计算超分辨率成像,也是推动现有活细胞荧光显微镜的时空分辨率极限的通用工具。第三,荧光-无标记相位双模态超分辨率显微镜SR-FACT (Super-Resolution Fluorescence Assisted diffraction Computation Tomography),在细胞生物学中广泛适用。《高速大视场彩色三维显微成像技术及应用》报名占位【摘要】 生物体表面色彩的不同色相、饱和度和明度在很大程度上反映了其微观结构和光学性质的不同。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,然点扫描显微成像技术的颜色通道十分有限,通常仅有三至四个,不能反映样品的全部色彩信息。研究团队开发了三维多视场成像技术,该技术是目前唯一的将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术。最大三维光切片速度100fps@1024×1024pixels。《基于流式光片的毫米级样品高通量三维成像》报名占位【摘要】 以毫米尺度的微小模式生物、类器官等为对象,进行发育、疾病机制以及药物筛选的研究不仅需要高分辨的三维成像,还需要对大量样品进行高通量的表征与统计分析。本报告将介绍基于流式和光片扫描的高通量三维活体成像技术与系统,对斑马鱼等微小模式动物根据尺寸、存活、是否成功标记荧光等的高速检测和分选,以及对分选后的样本法人高分辨全自动三维成像,从而实现根据大量样品三维图像的形态/功能特征进行统计分析。《冷冻光电关联成像技术在原位结构生物学中的应用》报名占位【摘要】 针对结构生物学原位生物大分子的高分辨率结构解析技术需求,依托生物成像中心自主研发的基于高真空冷台的冷冻光电关联成像系统HOPE,实现对目标区域的冷冻光镜-扫描电镜关联成像,导航聚焦离子束对目标区域进行减薄,获得包含目标物的200nm冷冻含水切片样品,助力高分辨率冷冻透射电镜的高效原位结构解析。 更多精彩欢迎参与直播,还可以和专家老师互动,获得现场答疑的机会哦! 点击报名吧!报名占位
  • 共聚焦和光片显微镜将继续成为光学显微技术基石——牛津仪器ANDOR谈高端光镜
    光学显微镜已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,为了满足蓬勃发展的生命科学领域不断产生的新的需求,光学显微镜在成像速度、成像深度、克服光毒性等许多方面也不断发展出新的技术。仪器信息网特别关注高端光学显微镜的技术发展和在生命科学领域的应用进展,并广泛向国内外高端光学显微镜企业约稿(投稿邮箱:lizk@instrument.com.cn),帮助广大用户了解相关技术与应用进展。本篇为牛津仪器ANDOR供稿,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,在生命科学等领域被广泛应用;2009年,联合推出sCMOS相机,被广泛应用于生命科学、材料科学、物理科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功;近日,ANDOR又推出了BC43台式共聚焦显微镜新产品,操作简便可帮助用户提高工作效率。跟随本文,全面了解这家成立32年的公司,其“一步一个脚印”的发展历程、他们对当前光学显微镜技术和应用现状的解读以及技术未来发展趋势的展望。仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。1989年的一个下午,爱尔兰岛东北部的贝尔法斯特女王大学物理系的Donal Denvir发现当时任何一款相机都无法满足实验检测的需求,他下定决心开始研制一台全真空密封的相机来支持自己的研究应用。新研制的相机经过Andor创始团队不断精心改进,成功应用于各种成像与光谱研究。Andor对显微镜技术的重大贡献是2002年推出了第一台EMCCD(电子倍增电荷耦合器件)相机iXon,这种超灵敏的相机带来了新的契机,能够检测在显微镜下观察的样品中的单分子荧光信号。2005年,ANDOR推出的Revolution活细胞成像系统,iXon与转盘技术的强大组合,大大改善了转盘共聚焦在高对比度活细胞显微成像中的效用,以及对活体样品进行三维成像的能力,赢得了行业用户的广泛关注。2012年,ANDOR将EMCCD现有帧率提升3倍,显著提高了产品性能,并帮助研究人员更多地了解生物样本的快速动态事件。2009年,ANDOR推出sCMOS相机Neo, 此后sCMOS成为使用最广泛的科学相机技术,并且广泛应用于显微镜领域。sCMOS提供了比之前更高的分辨率和更快的帧速率,因此促进了对细胞,特别是细胞内动态和细节的更深入了解。 这种sCMOS技术与EMCCD技术相辅相成,同一台显微镜下可以兼顾灵敏度或者分辨率和速度。同年,ANDOR在显微系列产品组合中增加了两个光刺激模块Mosaic和MicroPoint。Mosaic基于DMD方法,可以在亚细胞或更高分辨率下实现多个照明区域的精确定义。这个工具被用来对显微镜下观察的样品进行光活化、转换或漂白。 这些方法是进行亚细胞实验和了解蛋白质、亚细胞分隔和细胞器的时空行为的有力方法,或者在更大的范围内跟踪大群体中的单个细胞。 该技术发明之前,显微镜只是一种被动观察的工具,但现在可以在显微镜下主动研究细胞和系统生物学。 最近有研究显示,Mosaic与光遗传学相结合,可以成为一种特别有用的工具,这种方法可以促进信号和其他通路的特定光控制。 MicroPoint具有类似的优势,但可用于:(a) 炎症、伤口和愈合与发育的消融研究;(b) DNA损伤,创造DNA断裂的模型,这是细胞可能成为癌症的早期触发因素。这个模型被用来理解DNA修复如何在治疗中发挥作用。2010年,ANDOR收购了Bitplane,将高端三维图像可视化和分析软件Imaris纳入显微产品组合。 Imaris提供广泛的工具来分析一些研究领域的三维图像数据,包括细胞和发育生物学、神经科学、癌症研究和组织分析。2016年,ANDOR推出 Dragonfly,这是为研究人员提供的完整的显微成像解决方案。荣获行业大奖的Dragonfly 500通过转盘设计的改进(详见下文),并结合(a)TIRF(全内反射荧光显微镜),这是一种专门用于细胞膜成像的强大技术(如受体周转和囊泡对接);(b)基于激光的宽视场显微镜,用于微弱光的荧光成像;(c)用于超分辨率成像的光学器件(包含3D成像)。 Dragonfly使研究人员有能力在一台显微镜上对细胞进行比以往更详细的研究。Dragonfly在以下几个方面对现有的转盘技术进行了重大改进:(1)引入Borealis专利照明技术,在基于微透镜的转盘共聚焦显微镜中提供交叉视野照明。这使研究人员在更准确的图像分析、更高质量的大面积和样品拼接的蒙太奇成像中受益。(2)更好的信噪比,实现更高的对比度成像:使用价格较低的低功率激光器,或为dSTORM和DNA-PAINT超分辨率成像或基于图像的单细胞原位转录组学等技术提供更多功率。(3)更稳定的照明源,维护费用低。• 实时样品体积渲染,用户能够快速了解他们的实验进展,并对修改方案做出早期决定和结论。• 更低的仪器本底噪音使研究者能检测到更弱的荧光信号,观察到更细致的生物学现象。• 独特的转盘设计,在保持高速采集速度的同时,可以对样品进行更深入的成像(从数百微米到毫米尺度)。这也意味着转盘技术可以对大型固定样品进行成像,因此为组织成像以及斑马鱼和果蝇等大型模式生物的成像提供了一个高产的解决方案。2017年,ANDOR推出了SRRF-Stream+ ,这是一种超分辨率技术,可以轻松地添加到现有的相机中,或与Dragonfly等显微成像解决方案一起使用。这项技术打破了光学显微镜系统的自然分辨率限制,从200纳米下降到50纳米。现在,研究人员可以观察到他们以前看不到的结构,可以从图像中了解更多信息。 此外,SRRF-Stream+ 无需专门的光学设备或方法来执行,并且可以与几种不同的成像技术一起使用,因此,它可以为更多研究团体所用。2021年,岁末当下,ANDOR推出了BC43台式共聚焦显微镜。一个完整的转盘共聚焦解决方案被整合在如此一个不透光的小设备里。BC43操作非常直观和简单,即便是显微镜新手也能轻松掌握。BC43可以放在普通的实验台上,成为高效实验室工作流程的一部分。简单的操作流程和较少的维护需求使这款设备能够给用户带来非常高的工作效率。此外,BC43内含Dragonfly中的Borealis照明和一些新技术包括内置的一个新激光引擎以实现更小的占地面积。仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?我们公司目前推广和之前描述的显微成像产品是• 用于显微镜的灵敏科学相机EMCCD 和 sCMOS• Dragonfly系统• BC43台式转盘共聚焦显微镜• 激光耦合器• 用于显微镜的光刺激设备Mosaic和MicroPoint• 显微镜用的光谱仪和显微制冷机• 三维可视化分析软件Imaris• 超分辨技术SRRF-Stream+ (技术优势参考上述内容)仪器信息网:贵公司高端光学显微镜在生命科学研究中有哪些应用?目前Andor的转盘共聚焦显微镜灵敏度高、成像速度快、分辨率好,可进行3D+动态立体信息探索,在细胞生物学、发育生物学、肿瘤生物学、疾病与免疫学、微生物学、神经生物学、生物物理学等不同领域均表现卓越。细胞生物学家们借助Dragonfly探究细胞内精细的亚细胞结构如线粒体成像、细胞膜动态、细胞周期与分裂、微管动力学、胞内运输、囊泡运动。同时,作为研究发育和厚组织的利器,Dragonfly可以观测受精卵及早期胚胎发育、肢体形成、模式生物如(果蝇、线虫、斑马鱼)的完整生物体成像、类器官发育分化、血管及血流变化;在神经生物学和植物学等方向,借助高速特点可以进行单分子和钙成像,对于透明脑、体外培养的活组织及切片,三维成像和活体培养极为关键;肿瘤或疾病免疫方向的固定的大组织切片、石蜡切片、透明化组织、病原宿主的互作、受体循环与定位等;以及蛋白互作、单分子运动、内吞外排、膨胀显微镜、空间转录组多维成像等。仪器信息网:从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?未来光学显微镜的技术发展趋势如何?我们相信,任何有利于更快、更深、高对比度成像的技术都是可以看到需求继续增长的关键领域。 因此,共聚焦和光片显微镜将继续成为受欢迎的显微技术基石。我们将看到越来越多的研究会引入光操纵,从而更好地了解细胞内信号通路,以及细胞群体间(如神经细胞)如何相互沟通。Andor有几十年丰富的基础生物学研究,现在正是将这些知识转化为未来临床和社会经济相关问题解决方案的基础,包括植物生物学和动物生物学。这需要进行重大调整,将细胞层面的基础研究纳入多细胞、器官和整个生物体的范畴。未来显微镜在光学能力和提高生产力方面都需要扩大规模。为了支持对样品进行更深入的成像,特别是自从透明化组织的技术出现后,存在着补偿由于折射率不匹配而产生的光学畸变的挑战,以及其他来自样品的光学限制。这方面的潜在解决方案之一是使用自适应光学技术。目前有一些想法已经发表,但还有很多东西需要开发,并使之成为一个光学上高效和紧凑的解决方案,以获得良好的商业解决方案。此外,显微镜需要从 "专家 "技术转变为科学界更广泛、普适的技术。它可以为特定主题(如癌症)完整研究的一部分提供强大的支持。我们看到,对于越来越多的研究人员而言显微镜的使用是其工作流程和发表论文的关键环节。基于对此理解,我们历时达五年之久设计了一键成像的台式共聚焦BC43,将3D+成像融入到普通实验室的日常工作,减除了复杂操作和仪器放置的种种烦扰和顾虑。我们认为应该对图像采集和分析协同结合有所期待,分析可以用来帮助复杂的显微实验的自动化,使显微镜操作步骤实时适应正在研究的样品中发生的情况。通过Dragonfly及BC43结合Fusion和Imaris可以实现从样品图像采集到分析的无缝衔接,这种捕捉-分析相结合的工作流程将促进易用性,使更多的研究人员能够运用高级的显微成像方法。未来如果对一些典型的生物医药应用案例的参数进行提取优化,结合人机交互和机器学习的先进算法,帮助研究者进行实时获取批量数据特征,在观测过程中及时优化调整。疫情以来,越来越多的研究工作者采用线上办公形式,此外,设备过度占用日常科研本就繁忙用户或管理员的时间,亟需各种长时程高频使用的设备包括显微成像及分析趋向于在线自动化远程监测、控制。智能化的人机交互及不同端口多界面控制、物联网设备的稳定运转及报告反馈的联网尤为重要。利用AR、VR及远程全息投影等方式,也可针对设备使用、培训、考核进行更多方案的优化。Dragonfly作为某些平台中心和课题组的成像利器,常年全日无休稳定运转,也给了我们信心未来可以在无人值守及远程控制上进一步探索。如今,随着采集大量图像数据能力的提高,所有研究机构和公司,都面临的一个至关重要的问题:采集的数据在进行转移、存储和分析方面均存在瓶颈,耗费过多的金钱、时间、人力成本。此外,确保分析软件包能加载导入数据并进行有效地分析是一个需要持续关注的问题,需要开发团队对大数据有深层的理解并不懈改善算法和架构。对于大数据分析而言,存储和算力的高要求,不断优化系统配置可能难以覆盖爆炸式的增长,业内伙伴和用户的共同努力,有望能建立云端强大的数据转移、存储、分析体系,以分配更适合终端需求的相应资源,安全、高效、灵活的解决不同需求。在此过程中,如何更好的促进共享、保护隐私值得关注和讨论。仪器信息网:从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?基于对学术设计及对概念验证的大力投入,高端光学显微技术目前发展迅速,挑战在于如何将其精炼成易于商业化的、强大易用的解决方案,从而有助于探索一系列的科学问题和不同应用。这些解决方案的范围包括现有技术的持续进步,如用于体外实验用到的共聚焦和光片,也有越来越多的人需要使用当下这些技术和其他尚未建立的光学技术,以进一步提升对体内或在体实验模型的成像,后者是药物发现和其他疾病治疗转化医学领域的重要环节,需要实验设计和成像设备选型上在NIRⅠ、Ⅱ区的标记、照明、检测上有更多适配。应用方面,先进的科学研究机构、CRO公司和医学院基于平台和服务商的稳定支持,能够基于现有技术对系统进行改造,可以支撑更复杂的需求,如微流控装置或一些电磁场刺激及重力场变化。未来我们相信,更多涉及人类幸福健康的行业团队包括生命科学、医学、化学、材料学、半导体、农业、太空科学将利用光镜发现、验证自己的理论,并结合先进的技术如精细力学控制、3D打印等对目标物进行观测、改造。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?国产光学显微镜在中低端显微镜市场占领份额较多,如江西凤凰、麦克奥迪、永新光学等品牌,或作为高端品牌的元器件代工厂,厚积薄发,未来一定为国内光镜行业的发展奠定基础。目前主流的高端光镜主要依赖进口,欧美日品牌进入市场较早,占市场主导,国内高端显微镜目前在蓬勃发展,很多高等研究机构如清北、中科院生物物理所、苏州医工所、西安交大等和初创企业(多集中在粤港澳和江浙地区)都在进行研究及转化的突破创新,组建的成像系统多处于实验室技术打磨阶段或迈入市场不久,fMOST、LBS、 HiS-SIM已经开始被市场逐步接受,但其零部件还是进口为主,国产替代之路尚需长期努力和紧密合作。Andor也期望和国内外业内伙伴有更多合作,不论是元器件模块、显微成像系统、数据分析软件都可以多方协作,作为整体解决方案应对市场需求。对于商业化的显微镜而言,稳定、易用的高性能体验及使用场景的匹配是整个行业要不断精益求精的重要方向,自然会有市场越来越多的认可。仪器信息网:您认为,未来几年高端光学显微镜的热点市场需求有哪些?在未来几年,我们认为对高端光学显微镜的最热需求将集中在多维活细胞高速动态成像、超分辨成像、类器官研究、大型组织成像(透明化组织、活体组织体外培养)、单细胞原位空间转录组学领域、动物活体深层成像。基于应用的定制化显微成像系统开发将为学术研究、产业、商业提供绝佳的资源并富有成效进行循环利用。这些需求基于多维时空动态成像,联合先进的流式分析分选、高内涵、质谱成像和单细胞及转录组测序技术对物质代谢、基因和蛋白等的时空表达变化图谱进行同步解析,能够给研究工作带来前所未有的海量信息,透过更多跨领域合作和大数据共享分析,打破认知边界和信息壁垒,服务生命健康。不论是高端光学显微成像或其他高精度检测设备都需要合适的高速高灵敏度的CCD/sCMOS检测器,牛津仪器Andor作为科学相机厂家,已经在生命科学、物理科学的深耕多年,未来一定能够帮助更多的客户及合作伙伴们在光学显微及其他先进成像应用提供高质量的产品和全方位的服务。
  • 科学仪器变身家用玩具:可拍照的便携式显微镜
    只要拥有一款“魔镜”,手机也能秒变显微镜!27日,一款由兼具极客、创客双重身份的资深互联网高手彭仁诚率领团队研发出的“可拍照的便携式显微镜”正式开始网络众筹,众筹首日即破5万元大关。这款“魔镜”可轻松将手机变成200倍以上的显微镜,简单、便携,各种微生物形态清晰可见,能让孩子轻松享受科学乐趣,激发孩子对科学的好奇心和探索欲,因此而广受关注。  科学仪器变身“家用玩具”  彭仁诚所率领的一支集结大陆和台湾科技人才的研发团队研发出的“可拍照的便携式显微镜”,完全颠覆了大家对于显微镜的既定印象,使得“高大上”的科学仪器变成了随手可用的“家用玩具”。  彭仁诚告诉记者,首日网络众筹反响热烈出乎他的意料,他之所以选择开发“魔镜”展开自主创业之路,“为的是给孩子增加一双发现的眼睛,去发现从未见过的微观世界的奇妙,在趣味中获得知识,增长好奇心,让科学家的梦有机会成真”。  彭仁诚昨天在报社现场给记者展示了“魔镜”的用法,只需把魔镜夹在手机镜头上,把玻片放在载台上,并用附带的磁性夹具夹上,手机“秒变”高精度显微镜。  蚊子嘴巴竟然是细细长长可以90度弯曲的“长矛”,蝴蝶翅膀放大来看简直美呆了,苍蝇腿的腿毛竟然像钢针一样,水稻杆子里面竟然藏着一个个奥特曼……透过“魔镜”,记者立马看到一个新奇、全新的微观世界。  为小朋友打造微观“捷径”  除了网络众筹,从前天开始,珠海朋友圈里就被这只神奇的“魔镜”不断刷屏。网友“夏娃妈”告诉记者,爱科学的女儿看到这款“魔镜”肯定会高兴得尖叫,“我早就想在适当的时候给女儿买一个显微镜,但一想到显微镜的笨重和不易操作,就不免打退堂鼓,‘魔镜’了却了我的纠结,它即时为热爱科学的小朋友提供了一个窥视微观世界的‘捷径’。”  彭仁诚的朋友圈也被家长们的留言“挤爆”了。“没想到家长的反应这么热烈,我真担心需求太大,我们的团队一时供应不及。”彭仁诚告诉记者,“魔镜”的放大真实达到200倍以上,可以看到比头发丝细90倍的物体,这样的精度对镜头的生产工艺要求非常非常高,为了保证质量,由合作伙伴在台湾生产。  玻片是展现显微世界的关键部分。“魔镜”精心设计了昆虫翅膀、动物触角、植物茎、昆虫口器等9个种类,每张玻片边缘都进行了八面倒角处理,细心考虑到了小朋友的安全。  父爱满满,极客变身创客  熟悉彭仁诚的网友都知道,如此低调的极客却有着辉煌的履历——1999年进入亚洲仿真的核心技术团队的彭仁诚曾获得过珠海市科学技术进步奖,并曾担任过金山网络副总监、猎豹移动技术总监,是小有名气的互联网高手。  “虽然在企业里干得如鱼得水,但30多岁时,突然‘情怀’上身,希望能开创一番自己的事业。”据彭仁诚透露,他的此次创业之举是受6岁女儿的一个好奇发问激发,是饱含父爱的任性之举。  有一天,女儿被蚊子咬了,问他:“爸爸,蚊子嘴巴是怎么咬到我的呢?”他心中一动,女儿的求知是纯真和最直接的,他如何鼓励她的求知呢?“一个趣味性知识性的玩具,可能是一个非常好的向导,女儿的好奇发问激发了我研发‘魔镜’的创想。魔镜,是我们送给孩子的最好礼物,给孩子增加一双发现的眼睛。”  彭仁诚透露,从上周开始,他的团队已经开始在珠海市科技馆开设科技班,每周四至周六,结合魔镜的使用,对珠海的孩子进行微观世界的科普。他还专门开设了微信公众号“显微世界”,希望让更多的孩子爱上科学,受惠于科学。
  • 蔡司13年营收41.9亿欧元 显微镜业务下滑
    蔡司公司近日公布了2012/13财年的业务报告。蔡司在2012/13财年获得历史最高的收入,41.90亿欧元(去年同期:41.63亿欧元),利润为3.35亿欧元(息税前利润)(去年同期:4.20亿欧元),报告显示,蔡司在高速发展的经济体如中国和印度等增长迅速,而各业务中,工业计量业务成为蔡司的主要增长点。蔡司的显微镜业务本年度出现了下滑,原因是由于政府和公共部门投资的减少,为了可持续地减少对政府采购的依赖,蔡司显微镜业务部门将专注于扩大显微镜系统在工业领域的业务。  在中国,印度和拉丁美洲获得高增长  蔡司81%的收入来自直接销售(去年同期:79%),19%左右来自合作伙伴(去年同期:21%)。公司85%的业务来自德国以外(去年同期:85%)。在高速发展的经济体,如中国,印度和拉丁美洲,蔡司获得了特别高的增长,收入增加了11%。  在亚洲/太平洋地区(APAC)地区的营收增长了6%(货币调整后),达到7.96亿欧元(去年同期:欧元7.82亿),在美洲地区的营收总额为11.27亿欧元(去年同期:10.86十亿欧元),增加了百分之五(货币调整后)。  蔡司在欧洲,中东和非洲的经济区(EMEA)实现了2%的业务增长。总收入为14.52亿欧元(去年同期:14.26亿欧元) ,其中包括德国的5.12亿欧元,同比增长百分之五(去年同期:4.87亿欧元)。  有针对性的收购面向未来的技术  在2012/13财政年度,蔡司还通过对面向未来的技术有针对性的收购扩大了其产品组合,其中一个重要的投资是收购三维X射线显微镜制造商Xradia公司。通过此次收购,蔡司正在扩大其显微业务,并满足多式联运显微镜成像技术日益增长的需求。X射线显微镜将补充ZEISS光学显微镜和电子显微镜产品组合,使蔡司能提供材料和生命科学的交叉技术应用解决方案。  随着收购的三维在线测量解决方案供应商HGV Vosseler公司,蔡司增强了作为汽车行业解决方案供应商的地位,并在过程控制和车身结构检查领域扩充了产品线。  此外,蔡司收购了专门从事光电,并行数据处理和超精密工程的KLEO Halbleitertechnik公司60%的股权。蔡司这次收购是对面向未来的用于电子产品的生产制造过程的激光直写技术的投资。  研究与开发支出进一步增加  蔡司在2012/13财政年度投资4.11亿欧元用于其研究和开发活动,相当于大约10%的收入,并比去年同期(去年同期:3.90亿欧元,9%的收入)增加了5%。  蔡司集团研究及开发部门共有2,685名员工,相当于员工总数的约11% (去年同期:2,474名员工 百分之十)。为研发新技术和解决方案,蔡司建立了包括全球的一些知名大学和研究机构的网络。截至报告发布之日,蔡司在全球拥有5,863项专利,在22012/13财政年度申请了421项新专利(去年同期:396)。  在2012/13财政年度各业务部门的发展  半导体制造技术业务部门仍面临下滑的市场,收入9.34亿欧元,比去年同期下降了不到百分之三(去年同期:9.67亿欧元)。在2013年,下半年市场有略微的复苏,但半导体制造技术部门面临的最大挑战是面向未来的极紫外(EUV)光刻微芯片生产技术在稳定量产方面的进展。可用于量产芯片的EUV技术预计于2015/16财政年度推出。  在2012/13财政年度工业计量事业群增加7%收入,共5.28亿欧元(去年同期:4.95亿欧元)。工业计量业务在中国和北美非常成功,而德国和整个欧洲市场已显示出一个稳定的趋势,不过客户的服务需求仍然很高。  在2012/13财政年度显微镜事业群收入6.29亿欧元,比去年同期下降了3%(去年同期:6.5亿欧元)。这主要是由于政府和公共部门投入的减少,尤其是在美国和欧洲的许多地方。但是在高速发展的经济体,显微镜业务继续呈现大幅增长,并赢得市场份额。为了可持续地减少对政府采购预算的依赖,该事业群将专注于扩大显微镜系统的工业应用业务。  医疗技术业务集团比去年同期收入增长百分之五至10.32亿欧元(去年同期:9.84亿欧元),首次突破十亿大关,使得医疗技术业务集团成为目前在蔡司集团收入最高的业务部门。这一业务在各领域都有所增长,如眼外科和显微外科,人工晶状体的业务增长尤为强劲。  视力保健事业群收入8.41亿欧元,尽管市场环境艰难和业务缺乏有吸引力的利润空间,但仅略低于去年的数字(去年同期:8.60亿欧元),而且该业务集团中盈利明显增加,集团前几年发起的全球生产和分销网络的重组与现代化显示出了正效应,并对盈利和业务集团在2012/13财政年度的现金流作出了重大贡献。  相机镜头,运动光学和天文仪器设备的业务在2012/13财政年度加在一起共产生1.95亿欧元收入,比去年同期增长了将近10%(去年同期:1.78亿欧元)。翻译:魏昕
  • 普迈精医 | 您的荧光显微镜可以变身共聚焦了
    一台简单的倒置荧光显微镜,搭配CSIM 100单点扫描模块,就可以快速升级为共聚焦成像系统,实现高分辨率共聚焦成像。 对,是共聚焦,您没有看错!让您实验室的显微镜大-变-身!轻松获取高端大气上档次的照片!快来看看是如何实现的吧! CSIM 100是一款单点扫描模式的共聚焦产品,可通过C接口与任意品牌的荧光显微镜连接,将原有的宽场荧光成像方式升级为共聚焦成像方式,全面提升成像质量。Coherent OBIS激光器使用相干公司OBIS LX系列激光器,相比于普通的半导体激光器,在波长稳定性、功率稳定性、光束质量上有明显优势。可提供高质量、高品质的光源。优点:最多可同时配置4个激光器固体或半导体激光器长寿命,可达10000小时稳定性好,8小时功率变化<2%即开即用,操作方便Hamamatsu滨松PMT使用目前的新一代高性能产品:R10699多碱PMT,相比国外品牌的上一代共聚焦产品使用的R928,灵敏度提高超过一倍。可升级为磷砷hua镓(GaAsP),进一步提高了图像的信噪比: GaAsP 的量子效率达到45%。优点:高性能多碱PMT*光谱响应范围185nm~900nmQE 25%@500nm20%@600nm* 可升级为GaAsPSunny XY高速扫描振镜搭载Sunny XY高速扫描振镜后,单向扫描512*512成像速度可达4fps,适用于多细胞大视野的检测应用。*已经为zeiss OCT项目供货。优点:响应时间快重复精度高发热量低温度漂移小其它配件共聚焦/宽场切换接口接口可同时连接共聚焦和相机,可自由选择共聚焦成像或相机成像电动Z轴马达使手动显微镜实现自动调焦功能,实现XYZ三维扫描软件功能全中文界面,简单易用全软件控制完成多维图像采集,实现多通道扫描、时间序列和Z轴序列成像可在用户自定义的ROI(感兴趣区域)内进行成像、光漂白和光刺激全软件控制数据记录,支持成像参数管理导出支持多种图像输出格式
  • 新一代微型化双光子荧光显微镜研制成功
    p  膜生物学国家重点实验室(中国科学院动物研究所、清华大学、北京大学)程和平院士团队研制成功了新一代高速高分辨微型化双光子荧光显微镜,获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp  新一代微型化双光子荧光显微镜体积小,仅重2.2 克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量可与商品化大型台式双光子荧光显微镜相媲美,优于目前该领域内主导的、美国脑科学计划研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,具备多区域随机扫描和每秒1 万线的线扫描能力,首次采用了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)技术,解决了动物的活动和行为由于荧光传输光缆拖拽所干扰的难题。/pp  相关成果于2017年5 月29 日在线发表于自然杂志子刊Nature Methods和Protocol Exchange,已申请多项专利。新一代微型化双光子荧光显微成像系统的成功研制彰显了膜生物学国家重点实验室在生物医学成像领域先期布局的前瞻性。微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥重要作用。/pp/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制