当前位置: 仪器信息网 > 行业主题 > >

磷化氢传感器

仪器信息网磷化氢传感器专题为您提供2024年最新磷化氢传感器价格报价、厂家品牌的相关信息, 包括磷化氢传感器参数、型号等,不管是国产,还是进口品牌的磷化氢传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磷化氢传感器相关的耗材配件、试剂标物,还有磷化氢传感器相关的最新资讯、资料,以及磷化氢传感器相关的解决方案。

磷化氢传感器相关的资讯

  • 工业安全新守护者:深度解析英国Alphasense硫化氢传感器的良好性能
    在工业化浪潮汹涌向前的今天,安全生产已成为企业持续发展的基石,特别是在面对如化工、石油天然气开采、污水处理等高风险行业时,对有毒有害气体的有效监控显得尤为重要。其中,硫化氢(H₂ S)作为一种剧毒且易燃易爆的气体,其精准监测直接关系到生产安全与员工健康。在此背景下,英国Alphasense公司推出的硫化氢传感器,凭借其良好的技术实力与稳定性,正逐步成为工业安全领域的一颗璀璨明星。以下是对该传感器的全面剖析,揭示其在守护工业安全中的独特价值。外观与耐用性的双重保障英国Alphasense硫化氢传感器,外观设计紧凑而精致,内部结构坚固耐用,专为严苛的工业环境而生。其外壳精选耐腐蚀、耐高温材料打造,无论是潮湿、多尘、极端温度还是其他恶劣条件,都能确保传感器稳定如一地运行。同时,传感器达到高标准的防水防尘等级,进一步巩固了其在恶劣环境中的耐用性和可靠性,让安全监测无惧挑战。较高精度监测技术的核心优势技术的先进性是英国Alphasense硫化氢传感器脱颖而出的关键。该传感器采用先进的电化学或电化学红外吸收技术,这两种技术各有千秋,共同铸就了传感器的高精度监测能力。电化学传感器配套报警仪凭借其快速的响应速度和高度灵敏性,能够迅速捕捉空气中硫化氢浓度的细微变化;而电化学红外吸收传感器则凭借其对特定红外波长的精准识别,实现了更为稳定和抗干扰的测量结果。无论是哪种技术路线,英国Alphasense配套报警仪都确保了测量数据的准确无误,为安全生产提供了坚实的数据支撑。智能化功能引领未来趋势在智能化浪潮的推动下,英国Alphasense硫化氢传感器也不甘落后。传感器内置高性能微处理器,不仅能够实时分析数据、自动校准误差,还具备强大的报警功能。一旦监测到硫化氢浓度超标,传感器将立即触发声光报警,确保操作人员能够迅速响应并采取措施。此外,传感器配套报警仪还可支持远程监控和数据传输功能,用户可以通过智能手机APP或电脑软件随时随地查看监测数据,实现对生产现场的远程管理和实时监控。这种智能化功能不仅提升了工作效率,也为企业的安全管理带来了前所未有的便捷性。广泛应用展现非凡实力英国Alphasense硫化氢传感器的良好性能已经得到了市场的广泛认可和应用。在石油天然气行业,传感器配套报警仪被广泛应用于钻井平台、油气管道等关键区域,有效预防了因硫化氢泄漏而引发的安全事故;在化工生产领域,传感器更是成为了有毒有害气体监测的得力助手,保障了工人的生命安全;此外,在污水处理、垃圾填埋等环保领域,传感器也发挥了重要作用,为环保部门提供了准确可靠的数据支持。这些成功案例充分证明了英国Alphasense硫化氢传感器在工业安全领域的非凡实力和广泛应用前景。英国Alphasense硫化氢传感器以其高精度监测技术、智能化功能以及广泛的应用领域,成为了工业安全领域的新守护者。它不仅提升了企业的安全生产水平,也为人员的生命安全和环境的健康保驾护航。
  • 英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选
    在当今这个快速发展的时代,环境保护已经成为全球共同关注的焦点。而环保监测,作为确保环境质量的重要手段,其意义愈发凸显。在众多环境污染物中,氯化氢(HCl)因其强烈的腐蚀性和对生态环境可能造成的严重损害,成为环保监测中不可忽视的对象。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。例如,氯化氢进入大气后,会形成酸雨,对植被和建筑物造成损害;进入水体后,会改变水体的酸碱度,影响水生生物的生存;进入土壤后,会破坏土壤结构,影响农作物的生长。评估环境质量:通过对环境中氯化氢浓度的监测和测试,可以直观地了解环境质量状况,为环保决策提供科学依据。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选预警和防控:当氯化氢浓度超过一定阈值时,环保监测系统可以发出预警,提醒相关部门及时采取措施进行防控,防止环境污染事件的发生。指导治理:通过对氯化氢来源的追踪和分析,可以指导相关部门采取针对性的治理措施,减少氯化氢的排放,改善环境质量。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选评估治理效果:在采取治理措施后,通过再次对环境中氯化氢浓度的监测和测试,可以评估治理效果,为后续的环保工作提供参考。随着全球环境问题的日益严重,环保监测的重要性愈发凸显。在众多环境污染物中,氯化氢(HCl)因其对生态环境可能造成的严重损害而备受关注。因此,对氯化氢进行准确、高效的监测成为环保工作中不可或缺的一环。英国Alphasense公司推出的氯化氢传感器HCL-A1(或类似型号HCL-D4),为环保监测提供了强有力的技术支持。氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。通过对氯化氢的监测和测试,可以评估环境质量、预警和防控环境污染、指导治理以及评估治理效果。这对于保护我们共同的家园——地球具有重要意义。英国Alphasense作为气体传感器领域的佼佼者,其推出的氯化氢传感器HCL-A1(或类似型号HCL-D4)具有以下特点:高灵敏度:该传感器具有较高的灵敏度,能够快速响应环境中的氯化氢浓度变化。快速响应:响应时间短,能够迅速捕捉到氯化氢的排放情况,为预警和防控提供及时信息。高分辨率:传感器具有较高的分辨率,能够精确测量出环境中氯化氢的浓度,为评估环境质量提供准确数据。稳定性好:传感器采用先进的技术和材料,具有良好的稳定性和可靠性,能够在恶劣环境下长时间稳定运行。电化学盐酸气体传感器氯化氢气体传感器HCL-D4的主要参数如下:灵敏度:100~200nA/ppm,这意味着传感器对氯化氢浓度变化具有高度的敏感性。响应时间:≤250s,传感器能够迅速响应并捕捉到氯化氢的排放情况。分辨率:0.1ppm,传感器能够精确测量出环境中氯化氢的浓度。尺寸:Φ14.5*8.3,小巧的尺寸使得传感器易于集成到各种气体检测仪中。零点:3ppm,传感器在零浓度时的输出值较低,保证了测量的准确性。测量范围:50ppm,适用于大多数环保监测场景。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选过载:100ppm,当环境中氯化氢浓度超过此值时,传感器将停止工作以保护自身。负载电阻:10~33Ω,这是传感器工作时所需的电阻范围。环保监测中氯化氢测试的重要性不言而喻。英国Alphasense氯化氢传感器HCL-A1(或类似型号HCL-D4)以其高灵敏度、快速响应、高分辨率和稳定性好等特点,为环保监测提供了强有力的技术支持。通过配备该传感器的气体检测仪可以实时监测环境中氯化氢的浓度变化,为评估环境质量、预警和防控环境污染、指导治理以及评估治理效果提供准确、及时的数据支持。更多英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选英国Alphasense传感器、英国Alphasense阿尔法传感器、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • “疏水分子筛”助力安光所研发抗湿型高性能硫化氢传感器
    近日,安光所利用“疏水分子筛”研发抗湿型高性能硫化氢(H2S)传感器,相关成果以“基于Pt锚定CuCrO2(铜铬氧)的高性能H2S气体传感器”,“PDMS(聚二甲基硅氧烷)膜在抗湿、高选择H2S气体传感器中的双重功能”为题,分别发表于ACS Applied Materials & Interfaces和Chemical Communication杂志上。   H2S是一种无色、易燃易爆、有强腐蚀性的剧毒气体,广泛存在于石化、天然气、矿井、下水道、养殖场、废水处理厂、垃圾填埋场等半封闭和高湿度场所。近年来,半导体型H2S传感器取得了长足的进展,包括铜铁矿、氧化锌(ZnO)、氧化铜(CuO)在内的多种氧化物在干燥空气中都对H2S具有较高的响应。然而,传感器在实际使用时必须暴露在湿度环境中,环境中的水汽是一种强干扰性气体,且水汽(湿度)随时间、地点、季节、天气等因素急剧变化,这给传感器的浓度标定带来了较大干扰。此外,H2S是一种强腐蚀性气体,且腐蚀性随湿度增加而增大,导致传感器在高湿度环境下快速腐蚀中毒、寿命大幅缩短,成为传感器走向实际应用的一个重要挑战。   为解决上述问题,安光所激光中心孟钢研究员团队在前期基于Pt单原子敏化CuCrO2的高灵敏H2S传感器基础上,通过热蒸发法在CuCrO2敏感层上蒸镀了一层基于聚二甲基硅氧烷(PDMS)的疏水、透气薄膜。PDMS性质稳定、本征疏水,可有效隔绝环境中水汽的侵入,减弱环境湿度对传感器的影响,同时显著提升传感器在湿度环境中的长期稳定性;此外,PDMS膜中大量微孔可有效阻挡甲硫醇分子(结构、性质同H2S极相似,直径略大),充当“分子筛”的作用,进一步提升了传感器对H2S的选择性,实现了“一石二鸟”的功效。基于PDMS包覆CuCrO2的H2S传感器,工作温度较低(100 ℃)、湿度影响小、响应高(50%相对湿度下对5 ppm H2S的响应高达151)、选择性高、长期稳定性好,为H2S传感器在石化、天然气等领域的实际应用奠定了重要基础。   以上研究工作由中科院国际合作及安徽光机所所长基金等项目资助。
  • 在线式四合一气体远程控制器
    ET-04型,列在线式多参数气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, 具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。同时将数据远程传输有:在线检测和无线传输功能特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一在线检测-四种气体前三种都是按照客户自行挑选的,第四种的气体是标配好的二氧化碳。如想变成在线式的,请看ET-08型在线式气体检测远程传输系统 主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:二氧化碳传感器寿命是7年,其他传感器寿命为30个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右,另外配充电器4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH 可以任意选择四种传感器,组成四合一气体分析仪,第四种定是二氧化碳检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒国内诚招各地区总代理商,有意向请来电咨询江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com
  • 城市雾霾四合一气体检测质量
    城市雾霾严重,空气质量堪忧。金坛亿通的四合一气体检测仪帮您检测空气质量!ET-04型,列在线式多参数气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, 具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。同时将数据远程传输 有:在线检测和无线传输功能特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一在线检测-四种气体前三种都是按照客户自行挑选的,第四种的气体是标配好的二氧化碳。如想变成在线式的,请看ET-08型在线式气体检测远程传输系统主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:二氧化碳传感器寿命是7年,其他传感器寿命为30个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右,另外配充电器4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH可以任意选择四种传感器检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒
  • 拉萨81套中标气体类的检测仪,实力所在
    在拉萨中标气体检测仪产品 ,每种81套,真正的实力,真正的优惠价,最低价!!!!ET系列气体检测仪ET系列气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, ET具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:24个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH7:尺寸:180mm(长)× 110mm(宽)× 80mm(厚)8:重量:1Kg(带充电器) 可以任意选择四种传感器,组成四合一气体分析仪检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路180号电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com
  • 第11届全国化学传感器学术会议日程
    第十一届全国化学传感器学术会议第三轮通知  各位参会代表:  2011年是国际化学年。好消息!金秋时节,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议定于10月22-25日在湖南长沙市芙蓉华天大酒店召开。现将有关与会的具体安排通知如下:  一、大会学术安排  10月22日:全天报到  10月23日:大会开幕式,大会报告  10月24日:大会报告,闭幕式  10月25日:代表离会或参加考察  二、大会报告安排  1、陈洪渊 院士 南京大学 细胞图案化与细胞传感研究  2、张玉奎 院士 中科院大连化学物理研究所 色谱分离与蛋白质组学的最新研究进展  3、庄乾坤 国家自然科学基金委员会 (NSFC) 国家自然基金委分析化学学科发展战略与项目资助情况  4、杨秀荣 中科院长春应用化学研究所 双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子  5、周飞艨 加利福尼亚州州立大学洛杉矶分校,中南大学电化学和光谱学方法用于生命体系中动态过程研究  6、王柯敏 湖南大学 基于氧化石墨烯的DNA聚合酶检测新方法  7、周道民、章宗穰 美国Second-Sight公司,上海师范大学 生物医学植入器件的刺激电极和传感电极  8、陶农建 Arizona State University,USA Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications  9、鞠熀先 南京大学 纳米生物传感新策略  10、钟传健 State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes  11、庞代文 武汉大学 量子点标记多靶单病毒示踪研究流感病毒侵染动态过程  12、谭蔚泓 湖南大学 生物传感的基石:分子识别  三、会务安排  1. 报到  报到时间:10月22日8:00—22:00, 会议代表在报到处确认注册后,领取代表证、会议指南、论文集、就餐券、纪念品等。  报到地点:芙蓉华天大酒店,地址:长沙市湖南省 芙蓉区五一大道176号  电话:(0731)84401888。  2. 住宿  会议期间与会人员住宿费用自理,住宿费标准:芙蓉华天大酒店单人间,标准间:268元/间 银河大酒店双标间:160元/天,豪华双标:200元/天。  四、会议注册  与会代表的食宿统一安排,差旅、住宿费用自理。注册费包括资料费、会务费和餐费等,报到时以现金交付。会议代表每位900元(在读研究生代表每位600元,注册时请出示学生证件)。  五、会议日程安排  请见本通知附件及会议网站,如有疏漏、问题或希望调整,望及时反馈,谢谢!  六、会议联系方式  会议主页(http://huiyi114.cn)  联系人:吴海龙 庞新宇  联系方式:0731-88821848 传真:073188821848  E-mail:cbsc@hnu.edu.cn  七、会议考察  会议协助旅行社安排三条考察线路,费用自理。  八、友情提示  1. 由于参会代表较多,会务组无法安排接送,对此我们深表歉意。  2. 提供交通信息如下:  (1)、从火车站乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟   (2)、从高铁火车站乘148路公交车至终点火车站,乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟 打出租车约25-30元。  (3)、从机场乘坐机场大巴到终点站:民航大酒店,步行横穿五一路人行通道即到。打出租车约70元。  中国分析仪器学会化学传感器专业委员会  第十一届全国化学传感器学术会议组委会  2011年10月 10日第十一届全国化学传感器学术会议会 议 程 序 初 步 安 排2011年10月22日 星期六 全天 报到注册时间内容地点08:00-22:00注册芙蓉华天大酒店18:30-晚餐 (自助餐) 21:00-学术委员会会议 2011年10月23日 星期天 上午时间内容地点07:00-早餐 08:20-08:50会议开幕式主持人:章宗穰 芙蓉华天大酒店---华天全厅08:50-09:20合影酒店正门前 主持人:杨秀荣、王柯敏时间类型报告人单位报告题目09:20-09:45PL1陈洪渊 院士南京大学细胞图案化与细胞传感研究09:45-10:10PL2张玉奎 院士中科院大连化学物理研究所色谱分离与蛋白质组学的最新研究进展10:10-10:35PL3庄乾坤国家自然科学基金委员会 (NSFC)国家自然基金委分析化学学科发展战略与项目资助情况10:35-11:00PL4杨秀荣中科院长春应用化学研究所双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子11:00-11:25PL5周飞艨加利福尼亚州州立大学洛杉矶分校,中南大学电化学和光谱学方法进行生命体系中的动态过程研究11:25-11:50PL6王柯敏湖南大学基于氧化石墨烯的DNA聚合酶检测新方法11:50-12:15PL7周道民、章宗穰美国Second-Sight公司,上海师范大学生物医学植入器件的刺激电极和传感电极 12:10-午餐 (自助餐) 14:00-18:00报展 I(尺寸为 高120厘米、宽90厘米) 2011年10月23日 星期天 下午第一分会场: 主持人:李根喜、于聪时间类型报告人单位报告题目14:00-14:20IL1李根喜南京大学基于蛋白质电化学研制的若干生物传感器14:20-14:40IL2于 聪中国科学院长春应用化学研究所核酸诱导的小分子探针的集聚及自组装14:40-15:00IL3郑建斌西北大学生物电化学与生物传感器的研究15:00-15:20IL4王进义西北农林科技大学微流控芯片细胞分析15:20-15:30OP1贾能勤上海师范大学基于有序介孔材料的生物传感应用15:30-15:40OP2李钟卉南京大学基于蛋白质芯片的雌激素受体药物多靶点筛选方法15:40-15:50OP3赵伟洁浙江大学基于多孔硅光子晶体的微流控体系实现细胞的实时非标记分析15:50-16:00OP4赖国松湖北师范学院基于银沉积电化学溶出分析的高灵敏多通道免疫传感 16:00-16:10茶歇 主持人:叶邦策、袁若时间类型报告人单位报告题目16:10-16:30IL5袁 若西南大学电化学蛋白质生物传感器的研究16:30-16:50IL6叶邦策华东理工大学生物纳米传感器设计及在生化分析中的应用16:50-17:10IL7胡乃非北京师范大学可开关的生物电催化与生物传感17:10-17:20OP5董俊萍上海大学基于硅钼酸柱撑水滑石复合材料的电化学传感器研究17:20-17:30OP6李珏瑜浙江大学HA修饰对细胞捕获的影响17:30-17:40OP7甘 峰中山大学基于镍纳米线的过氧化氢传感器的研究17:40-17:50OP8汪庆祥漳州师范学院基于一步电沉积壳聚糖-ZrO2-CeO2复合膜的DNA电化学传感器17:50-18:00OP9陈建平漳州师范学院基于富勒烯衍生物修饰玻碳电极的电化学免疫传感器18:00-18:10OP10李周敏南京大学基于纳米银生物探针的IgE可视化检测方法的研究 第二分会场: 主持人:由天艳、朱俊杰时间类型报告人单位报告题目14:00-14:20IL8朱俊杰南京大学量子点功能化与电化学生物传感14:20-14:40IL9蒋兴宇国家纳米科学中心基于微纳尺度技术传感器的应用研究14:40-15:00IL10许丹科南京大学生物微阵列芯片检测新方法的研究15:00:15:20IL11由天艳中国科学院长春应用化学研究所电纺碳纳米纤维及其复合材料在电分析化学中的应用15:20-15:30OP11刘清君浙江大学中华蜜蜂化学感受蛋白阻抗传感器的研究15:30-15:40OP12孙兆辉华侨大学基于石墨烯增敏的印迹电化学传感器的制备15:40-15:50OP13荆 莉华东师范大学基于链接反应的碳纳米管功能化及其应用15:50-16:00OP14曹 忠长沙理工大学钆掺杂纳米二氧化钛修饰平板金电极测定火腿肠中微量亚硝酸根 16:00-16:10茶歇 主持人:施国跃、王坤时间类型报告人单位报告题目16:10-16:30IL12牛 利中国科学院长春应用化学研究所石墨烯纳米组分电化学传感器应用16:30-16:50IL13王 坤江苏大学基于介孔TiO2修饰电极实现多巴胺的选择性测定16:50-17:10IL14施国跃华东师范大学新型复合纳米材料的电催化行为研究及其在活体分析中的应用17:10-17:20OP15吴 硕大连理工大学虾中4-己基间苯二酚的高灵敏电化学检测17:20-17:30OP16崔 亮厦门大学基于变构探针设计的荧光偏振技术用于小分子的高灵敏检测17:30-17:40OP17彭 晖华东师范大学PEDOT修饰的微通道硅电极用于多巴胺、抗坏血酸及尿酸的同时测定17:40-17:50OP18孙芳洁大连理工大学基于YSZ和Au敏感电极的混合电位型NO2传感器的特性17:50-18:00OP19赵 路南京师范大学氯霉素复合分子印迹膜的制备及电化学研究18:00-18:10OP20羊小海湖南大学一种基于G四聚体自身猝灭能力的新型单标记DNA探针用于Hg2+及半胱氨酸的检测 第三分会场: 地址:主持人:杨黄浩、屠一锋时间类型报告人单位报告题目14:00-14:20IL15王振新中国科学院长春应用化学研究所功能化金纳米粒子的合成与应用14:20-14:40IL16何治柯武汉大学规模合成水溶性低毒量子点用于疾病诊断及可视化检测14:40-15:00IL17杨黄浩福州大学基于切刻内切酶的荧光型核酸适体传感器用于放大检测蛋白质15:00-15:20IL18屠一锋苏州大学 基于纳米增敏电化学发光的氧传感技术15:20-15:30OP21姜大为华东师范大学氮掺杂二氧化钛/石墨烯复合材料的制备及其光催化性能的研究15:30-15:40OP22王 颖南京大学一种新颖的基于银纳米粒子荧光增强的适配体传感器15:40-15:50OP23张 妍福州大学多壁碳纳米管表面茶碱印迹材料的制备与吸附性能15:50-16:00OP24代 昭天津工业大学固相有机合成对基于无机纳米材料的荧光DNA探针微结构的控制作用 16:00-16:10茶歇 主持人:冯锋、赵睿时间类型报告人单位报告题目16:10-16:30IL19赵 睿中国科学院化学研究所以石英晶体微天平研究尿液中三聚氰胺与三聚氰酸层层自组装相互作用16:30-16:50IL20徐静娟南京大学新型电致化学发光生物传感器研究16:50-17:10IL21冯 锋山西大同大学基于表面等离子体共振技术用鸡蛋黄抗体IgY测定转铁蛋白17:10-17:20OP25姜 晖东南大学CdSe纳米颗粒的电化学发光动力学及其检测应用17:20-17:30OP26李 慧南京大学聚合纳米银荧光探针检测人IgE的新方法17:30-17:40OP27李 娟福州大学以氧化石墨烯为平台研究多肽和蛋白质的相互作用17:40-17:50OP28王 荣上海师范大学基于TPAA载体的Fe3+离子选择性电极研究17:50-18:00OP29陈荣生武汉科技大学核壳结构TiO2/C纳米纤维阵列的制备、微观结构及电化学行为18:00-18:10OP30杨海峰上海师范大学钯纳米粒子修饰电极对过氧化氢电催化性能研究 时间内容地点14:00-18:00报展 I(尺寸为 高120厘米、宽90厘米) 18:30-20:00欢迎晚宴 20:30-专业委员会和刊物编委会联席会议 2011年10月24日 星期一 上午时间内容 地点07:00-早餐 8:00-12:00报展 II (尺寸为 高120厘米、宽90厘米) 第一分会场: 地址:主持人:双少敏、张文时间类型报告人单位报告题目08:00-08:20IL22张 文华东师范大学双酶传感器对大鼠血清与腹腔巨噬细胞内葡萄糖和胆固醇的同时检测08:20-08:40IL23双少敏山西大学基于酶固定的新型抗坏血酸传感器的研究08:40-09:00IL24王利兵湖南出入境检验检疫局一种测定双酚A的弛豫开关免疫传感器09:00-09:20IL25王升富湖北大学电化学生物传感器用于Fenton反应产生羟自由基对蛋白质损伤的监测研究09:20-09:30OP31刘文娟山西大学基于酶固定的新型抗坏血酸传感器的研究09:30-09:40OP32韩根亮甘肃省科学院传感技术研究所碳纳米管增强的谷氨酸生物传感器09:40-09:50OP33艾仕云山东农业大学基于石墨烯-纳米金-锁核酸修饰的分子信标及酶催化放大反应的电化学microRNA传感器的设计09:50-10:00OP34李 臻浙江大学用于微生物快速检测的微通道免疫分析芯片 10:00-10:10茶歇 主持人:夏兴华、何品刚时间类型报告人单位报告题目10:10-10:30IL26夏兴华南京大学生物分子的界面行为及生物传感 10:30-10:50IL27杨小弟南京理工大学石墨烯和碳纳米管修饰电极间接测定生物体液中的铝10:50-11:10IL28何品刚华东师范大学基于重氮功能化直立碳纳米管阵列的核酸适配体传感器的制备及其应用于凝血酶的检测11:10-11:20OP35丁应涛漳州师范学院基于靛蓝胭脂红为杂交指示剂的高选择性电化学DNA传感器11:20-11:30OP36胡涌刚华中农业大学伪狂犬病毒抗体磁性免疫传感器的研制11:30-11:40OP37刘志敏河南工业大学基于石墨烯-纳米金复合物的乙酰胆碱酯酶生物传感器于马拉硫磷的测定11:40-11:50OP38高峰安徽师范大学A DNA Sensor Based on FRET between Fluorescent Silica Nanoparticles and Gold Nanoparticles11:50-12:00OP39张旋漳州师范学院空心球状CeO2–ZrO2–壳聚糖在金电极表面的一步电沉积及DNA传感分析应用12:00-12:10OP40嵇海宁等湖南大学基于纳米金颗粒增强/猝灭荧光效应的多目标物检测及其逻辑门操作 第二分会场: 地址:主持人:刘松琴、李景虹时间类型报告人单位报告题目08:00-08:20IL29李景虹清华大学石墨烯的电化学传感器研究08:20-08:40IL30刘松琴东南大学掺氮碳空心微球制备及其电催化性质08:40-09:00IL31胡文平中国科学院化学研究所自组装纳米材料与纳米器件/分子器件的研究?09:00-09:20IL32宋世平中国科学院上海应用物理研究所生物传感器与生物芯片在现代分子诊断学中的应用?09:20-09:30OP41陈旭北京化工大学新型石墨纳米材料修饰电极电化学生物传感研究09:30-09:40OP42何婧琳长沙理工大学结合金纳米的层层自组装膜用于致癌基因c-myc蛋白的检测09:40-09:50OP43丁亚平上海大学基于石墨烯氧化钴萘酚膜修饰玻碳电极的L-色氨酸电流型传感器09:50-10:00OP44杨园园西南大学基于聚甲基丙烯酸-聚咔唑杂化型分子印迹聚合物的手性电化学传感器 10:00-10:10茶歇 主持人:杜丹、杨荣华时间类型报告人单位报告题目10:10-10:30IL33杨荣华湖南大学茎部可控核酸探针设计策略10:30-10:50IL34徐国宝中国科学院长春应用化学研究所三联吡啶钌电化学发光免疫分析和核酸测定?10:50-11:10IL35杜丹华中师范大学磷化蛋白phospho-p5315的电化学免疫传感器11:10-11:20OP45龚静鸣华中师范大学纳米增效型固相提取剂在典型环境污染物的净化和电化学检测中的应用11:20-11:30OP46华亮上海师范大学碳纳米管复合材料修饰电极对芦丁和抗坏血酸的同时检测11:30-11:40OP47王海霞山西大学基于β-环糊精接枝的磁性纳米共聚物修饰电极对色氨酸的化学传感器研究11:40-11:50OP48费俊杰湘潭大学葡萄糖氧化酶在-环糊精共价键修饰SWCNTs/CTAB复合膜中的直接电化学及电催化11:50-12:00OP49亓秀娟福州大学一种简单、快速、高灵敏检测痕量铜离子传感器的研制12:00-12:10OP50马嘉悦等湖南大学基于大孔/中空碳球修饰玻碳电极的硝基苯高灵敏电化学传感研究 第三分会场: 地址:主持人:杨朝勇、赵书林时间类型报告人单位报告题目08:00-08:20IL36杨朝勇厦门大学An Agarose Droplet Microfluidic Approach for Highly Efficient Single Molecule mplification and Its Application to Aptamer Selection08:20-08:40IL37赵书林广西师范大学基于CdTe/CdS量子点与金纳米粒子的荧光共振能量转移测定三聚氰胺08:40-09:00IL38肖丹四川大学金纳米颗粒的绿色制备及其在生物传感器中的应用09:00-09:20IL39李向军中国科学院研究生院表面等离子共振法研究β淀粉样蛋白和金属离子相互作用09:20-09:30OP51秦利霞华东理工大学CdTe/ZnS 量子点的表面修饰及在细胞中的应用09:30-09:40OP52徐章润东北大学PDMS气动喷射混合器用于微流控芯片量子点合成09:40-09:50OP53卢丽敏江西农业大学基于电聚合荧光素的高灵敏度和高选择性亚硝酸盐电化学传感器的研究09:50-10:00OP54张海娟浙江大学基于离子液体修饰的多孔硅光学气体传感器 10:00-10:10茶歇 主持人:谢青季、卢小泉时间类型报告人单位报告题目10:10-10:30IL40卢小泉西北师范大学Photoelectrochemical Study Based On The Functionalized-Metalporphyrin10:30–10:50IL41谢青季湖南师范大学生物传感和生物燃料电池研究10:50-11:10IL42徐景坤江西科技师范学院基于导电高分子复合材料的抗坏血酸氧化酶电化学生物传感器的开发和农业应用11:10-11:20OP55汪海燕华东理工大学基于纳米通道传感技术对老年痴呆症致病蛋白的结构特性研究11:20-11:30OP56马 巍华东理工大学选择性识别糖-蛋白作用的荧光传感器11:30-11:40OP57余 刚湖南大学交流电沉积自组装金铂和金钯合金纳米线及传感性能11:40-11:50OP5, 8邬建敏浙江大学基于多孔硅的光学传感器研究11:50-12:00OP59魏广芬山东工商学院基于压缩传感的气体传感器检测技术新框架12:00-12:10OP60张晓兵湖南大学新型荧光化学生物探针研究 12:10-午餐(自助餐) 时间内容地点8:00-12:00报展II (尺寸为 高120厘米、宽90厘米) 2011年10月24日 星期一 下午 主持人:谭蔚泓、鞠熀先时间类型报告人单位报告题目15:00-15:25PL8陶农建Arizona StateUniversity,USAPlasmonic-Based Electrochemical Current and Impedance Imaging and Applications15:25-15:50PL9鞠熀先南京大学纳米生物传感新策略15:50-16:15PL10钟传健State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes 16:15-16:40PL11庞代文武汉大学量子点标记多靶单病毒示踪研究流感病毒侵染动态过程16:40-17:05PL12谭蔚泓湖南大学生物传感的基石:分子识别 17:05-18:00会议闭幕式主持人:吴海龙总结、颁奖、下一届代表发言 18:30-晚餐 (自助餐) 2011年10月25日 星期二 全天时间内容地点06:20-早餐 市外考察: 7:00 出发选项项目备注1.市外考察I韶山 (1天)详见会议网站2.市外考察II凤凰 (2天)详见会议网站3.市外考察III张家界 (3天)详见会议网站4.市内考察长沙市内 附件:报展目录.doc
  • 江苏苏美达仪器设备有限公司关于倒置显微镜等设备的招标公告
    江苏苏美达仪器设备有限公司受南通出入境检验检疫局委托,根据《中华人民共和国政府采购法》等有关规定,现对倒置显微镜等设备进行公开招标,欢迎合格的供应商前来投标。  项目名称:倒置显微镜等设备  项目编号:1749-1640SUMEC220D  项目联系方式:  项目联系人:洪玫  项目联系电话:025-84531290  采购单位联系方式:  采购单位:南通出入境检验检疫局  地址:江苏省南通市崇川区崇川路102号  联系方式:戴小程0513-68588590  代理机构联系方式:  代理机构:江苏苏美达仪器设备有限公司  代理机构联系人:崔媛媛、曹坡  代理机构地址: 025-84532581,84532535  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:分包号产 品 名 称数量简要技术要求用途预算 (人民币/万元)1倒置显微镜1符合人体工程学的可以调整角度的双目观察镜筒...机场快速检疫查验8.5数码生物体视镜1高分辨率体视光学成像系统...机场快速检疫查验16.4高灵敏度制冷CCD1冷CCD制冷系统:低于环境温度18℃或以上...实验室检疫鉴定12.82分散机1转速控制精度10rpm...农产品检测10电熔融炉1工作及加热方式:全自动样品熔融混匀、电加热...实验室设备正常更新423梯度PCR仪1加热块模式:0.2 ml专用合金...分子检测12酸纯化装置1在蒸馏至近干时,TFM? PTFE和近干的液体都不会吸收很大的红外辐射,可防止装置因过热而损坏...适用于痕量分析中超纯酸的制备,保证ICP、ICP-MS、AAS在检测中不受杂质干扰,以达到满意的检测数值。94硫酰氟残留红外分析仪1精度:± 1ppm(0-10ppm)...对熏蒸其他(硫酰氟)残留浓度检测8.8红外水份测定仪1采用第二代环形卤素灯及镀金辐射体加热单元,更快捷、均匀的加热样品...成份检测8A级化学防护服(含正压呼吸器)1防化手套:连接设计独特,无需任何工具可轻松更换...化学有害因子现场处置个人防护5手持式化学探测器1能够对探测化学制剂进行定性定量检测,配有显示屏并可实时显示探测化学战剂的详细种类、具体名称、浓度数值范围...主要用于海港或空港口岸环境中化学战剂(CWA)气体的监测,如神经性毒剂、H类糜烂性毒剂以及血液性毒性气体和其他种类的学化学物质,特别是在突发事件处置中用以化学有害因子的监测与排查,为应急处置和人员防护提供依据。20溴甲烷气体残留检测仪1软件: 报警方式:具有视觉、振动和声音(95 分贝)...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。2.85多样品自动浓缩仪1单个样品的体积范围:0.5-30mL...实验室仪器设备正常更新19全自动凝胶成像系统1采用CCD摄像头实时采集图象,采集状况可在电脑屏幕上直接观察并控制...卫生检疫设备正常更新12药品柜1柜体材质 镀锌钢板,涂有抗酸碱的环氧树脂涂层...检疫鉴定3低温冰箱1无CFC聚氨酯发泡,超厚保温层,保温效果好...植检检疫样品、试剂保存46便携式溴甲烷气体检测仪(低浓度)1检测范围: 0-200/0-2000ppm...口岸核生化防护设备1.45杂草检测图像采集设备1EF 24-105mm f/4L IS USM红圈防抖镜头,EF100mm f/2.8L IS USM微距镜头...杂草检测图像采集1.95便携式磷化氢高浓度检测仪1重量:不超过250克...口岸核生化防护设备1.5便携式溴甲烷熏蒸气体检测仪(高浓度)1提供现场实时检测溴甲烷气体的浓度和温度、对数据即时保存和打印的功能...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98手持式磷化氢气体检测仪(低浓度)1检测气体:空气中的磷化氢检测范围:0~10ppm分辨率:0.01ppm 产品类型:扩散式电化学有毒气体检测仪,带数据存储...熏蒸过程中,检测是否有溴甲烷、磷化氢气体泄漏;熏蒸散气后,检测溴甲烷、磷化氢的残留量。1.98  二、投标人的资格要求:  1、符合《中华人民共和国政府采购法》第二十二条的规定 1)具有独立承担民事责任的能力 2)具有良好的商业信誉和健全的财务会计制度 3)具有履行合同所必需的设备和专业技术能力 4)有依法缴纳税收和社会保障资金的良好记录 5)参加政府采购活动前三年内,在经营活动中没有重大违法记录 6)法律、行政法规规定的其他条件。 2、投标人的具体资质要求: 2.1 投标人营业执照(副本复印件)。 2.2 法人代表授权书(原件)及法定代表人、投标人授权代表身份证明材料。 2.3 若投标人不是投标产品制造商的,投标人必须具有下列授权文件之一: a.制造商出具的授权函正本 b.制造商的国内全资子公司出具的授权函正本 c.制造商对授权的区域代理商出具的授权函复印件及该区域代理商出具的授权函正 本 d.投标人取得的产品代理证书复印件(正本备查)。 2.4 银行出具的资信证书(复印件)(开标前三个月内)。 2.5 参加政府采购活动近三年内,在经营活动中没有重大违法记录(提供承诺书,格 式自拟)或提供检察机关出具的行贿犯罪档案查询结果告知函。 2.6 投标人资格证明。 2.7 投标人需要提供近三个月内任意一个月的依法缴纳税收和社会保障资金的记录。 2.8 本次采购均接受进口产品投标。  三、招标文件的发售时间及地点等:  预算金额:202.16 万元(人民币)  时间:2016年07月05日 17:30 至 2016年07月12日 17:30(双休日及法定节假日除外)  地点:江苏苏美达仪器设备有限公司,南京市长江路198号5楼。  招标文件售价:¥800.0 元,本公告包含的招标文件售价总和  招标文件获取方式:当面购买或邮购,每包800元人民币,售后不退 国内邮购须另加50元人民币。  四、投标截止时间:2016年07月27日 09:00  五、开标时间:2016年07月27日 09:00  六、开标地点:  南京市长江路198号苏美达大厦二楼开标大厅  七、其它补充事宜  公告期限:自发布之日起公告期限为5个工作日  八、采购项目需要落实的政府采购政策:  本项目执行《政府采购促进中小企业发展暂行办法》(财库〔2011〕181号),工业和信息化部、国家统计局、国家发展和改革委员会、财政部《关于印发中小企业划型标准规定的通知》(工信部联企业〔2011〕300号)等政府采购文件。
  • 科学家研制出黑磷光纤传感器
    p  近日,中国科学院深圳先进技术研究院研究员吕建成、喻学锋与英国班戈大学教授陈险峰等合作,成功研制出首个基于黑磷的光纤化学传感器,实现对重金属离子的超灵敏检测。br//pp  倾斜光纤光栅是一种新型的光纤器件,大角度倾斜光栅结构能够将纤芯光学基模前向耦合到光纤包层,在特定的波长形成一系列离散的谐振峰,光的耦合将随着外界媒质折射率等的变化而变化。因此,倾斜光纤光栅是非常适合作为传感应用的光子器件。黑磷是近年来广受关注的一种具有直接带隙二维半导体材料,具有独特的二维平面结构、超高的比表面积、众多的活性位点,以及从可见到红外广阔的光谱响应范围,在光学检测方面展现出巨大的应用前景。br/  该研究中,研究团队首次将黑磷和倾斜光纤光栅相结合,揭示了黑磷纳米层独特的光学调制作用,借助于倾斜光栅这种独特的光学结构,构建成新型的超灵敏化学传感器。本研究发展了一种原位层叠的修饰技术,将黑磷纳米片高效地附着在光纤器件表面,不同厚度的黑磷纳米层展现出对光信号独特的调制性。利用这一特性,该黑磷光纤传感器能够在亚ppb浓度水平检测到重金属铅离子,具有超高的灵敏度、超低的检测限,以及广阔的浓度检测范围。黑磷新型光纤传感器的成功研发,将为化学和生物传感提供一个优越的光学检测平台,从而推动黑磷化学生物传感器的应用研究进程。br/  相关研究成果发表于Sensors and Actuators B: Chemical。该研究得到了国家自然科学基金、欧盟“第七框架计划”等的资助。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/4ba34206-8377-4380-a6fe-692cf085a316.jpg" title="1.jpg" style="width: 600px height: 326px " width="600" vspace="0" hspace="0" height="326" border="0"//ppstrong图.a):黑磷倾斜光纤光栅器件及其光学调制示意图,b):重金属离子检测的实验步骤,c):不同重金属离子浓度下TM模式共振的光谱图,d):不同重金属离子浓度下光谱的共振强度图。/strong/p
  • 特价优惠——美国RAE,美国英思科;气体检测仪
    美国华瑞气体检测仪北京宏昌信科技有限公司 欢迎致电咨询:010-52745610 联系人:张经理www.hcxin.net促销产品:Pgm7340/pgm-7340PPB 泵吸式VOC检测仪Pgm7240/pgm-7240 PPB 泵吸式VOC检测仪Pgm7320/pgm-7320挥发性有机气体VOC检测仪Pgm7600/pgm-7600挥发性有机气体VOC检测仪Pgm7300/pgm-7300泵吸式VOC检测仪Pgm7200/pgm-7200泵吸式苯蒸汽检测仪Pgm3000/pgm-3000密闭空间复合气体检测仪pgm7800/pgm-7800密闭空间复合气体检测仪pgm7840/pgm-7840五合一气体检测仪pgm50q/pgm-50q四合一密闭空建、pgm50/pgm-50复合气体检测仪pgm54/pgm-54五合一气体检测仪/二氧化碳检测仪pgm2400/pgm-2400四合一气体检测仪pgm2000/pgm-2000四合一密闭空间检测仪pgm1600/pgm-1600可燃气体检测仪pgm1700/pgm-1700氧气/一氧化碳/硫化氢检测仪pgm1100/pgm-1100氧气检测仪(O2)pgm1110/pgm-1110一氧化碳检测仪(CO)pgm1120/8pgm-1120硫化氢检测仪(H2S)pgm1190/pgm-1190氯气检测仪(CL2)pgm1130/pgm-1130二氧化硫检测仪(SO2)pgm1140/pgm-1140一氧化氮检测仪(NO)pgm1150/pgm-1150二氧化氮检测仪(NO2)pgm1170/pgm-1170氰化氢检测仪(HCN)pgm1187/pgm-1187二氧化氯检测仪(CLO2)pgm1189/pgm-1189氯气检测仪(CL2)pgm1191/pgm-1191氨气检测仪(NH3)pgm1192/pgm-1192磷化氢检测仪(PH3)sp1102/sp-1102可燃气体检测器sp1104/sp-1104有毒气体检测器sp2102/sp-2102可燃气体检测仪sp2104/sp-2104有毒气体检测仪sp3104/sp-3104有毒气体检测仪sp3101/sp-3101氧气检测仪sp4101/sp-4101氧气检测器sp4102/sp-4102可燃气体检测器sp4104/sp-4104有毒气检测器sp1003/sp-1003控制器T40-CO气体检测器T40-H2S气体检测器T82单气体报警器GasBadge Pro气体检测仪M40-LEL气体检测器M40-O2气体检测器M40-LEL,H2S气体检测器M40-LEL,O2气体检测器M40-LEL,O2,CO气体检测器M40-LEL,O2,H2S气体检测器M40-LEL,O2,CO,H2S气体检测器LTX312-LEL,O2,CO气体检测仪MDU420-甲烷气体检测仪CDU440-CO2 气体检测仪iTRANS? -可燃气体(在线)iTRANS? -可燃气体(远程)iTRANS-可燃气体(双传感器)TLV FALCON有机气体TVOC检测仪TLV PANTHER气体检测仪GasBadge Pro二氧化硫(SO2)气体检测仪GasBadge Pro一氧化碳(CO)气体检测仪ITX 可燃气和甲醇二合一气体检测仪iTX多气体检测仪
  • 67项电子特气标准盘点
    特种气体是用途有别于一般气体的气体,是一个笼统的概念。它在纯度、品种、性能方面都是严格按照一定规格进行生产和使用的。一般认为,特种气体是由电子气体、高纯石油化工气体和标准混合气体所组成。另外,在半导体制造业中,气体还可以分为大宗气体和电子气体,大宗气体是指集中供应且用量较大的气体,如N2、H2、O2、Ar、He 等。电子气体主要是半导体制造的每一个过程如外延生长、离子注入、掺杂、刻蚀清洗、掩蔽膜生成所用到的各种化学气体,如高纯SiH4、PH3、AsH3、B2H6、N2O、NH3、SF6、NF3、CF4、BCI3、BF3、HCI、CI2等,又可称为电子特种气体。电子特种气体是超大规模集成电路、平板显示器件、化合物半导体器件、太阳能电池、光纤等电子工业生产不可或缺的原材料,它们主要应用于薄膜、刻蚀、掺杂、气相沉积、扩散等工艺。电子工业服务的电子气品种繁多,用途五花八门。各类半导体用电子气体标准主要由全国半导体设备和材料标准化技术委员会气体分技术委员会制定。为不断推动电子特气产业发展,国家出台了各种相关标准。仪器信息网特对电子特气相关标准规范进行盘。本次盘点涉及国际标准和国家标准两类,涉及国际标准40项,国家标准27项,共计67项标准。详情如下,国际标准计划号项目名称制修订计划下达日期项目状态20204890-T-469电子特气 一氧化氮制订2020/12/28正在起草20204889-T-469电子特气 六氯乙硅烷制订2020/12/28正在起草20200854-T-469电子特气 三氟化氮修订2020/3/6正在批准20200797-T-469电子特气 三氯化硼修订2020/3/6正在批准20192162-T-469电子特气 氨修订2019/7/12正在审查20192161-T-469电子特气 磷化氢修订2019/7/12正在审查20184308-T-469电子特气 六氟丁二烯制订2018/12/29正在批准20184306-T-469电子工业用二氯硅烷制订2018/12/29已发布20184310-T-469电子工业用四氯化硅制订2018/12/29已发布20184309-T-469电子特气 氟甲烷制订2018/12/29正在批准20132258-T-469电子工业用气体 六氟乙烷制订2014/1/26已发布20132259-T-469电子工业用气体 三氟甲烷制订2014/1/26已发布20132260-T-469电子工业用气体中金属含量的测定 电感耦合等离子体质谱法制订2014/1/26已发布20132255-T-469半导体制造用气体处理指南制订2014/1/26已发布20132257-T-469电子工业用气体 硅烷修订2014/1/26已发布20132256-T-469电子工业用气体 丙烯制订2014/1/26已发布20120270-T-469电子工业用气体 八氟丙烷制订2012/10/12已发布20120271-T-469电子工业用气体 锗烷制订2012/10/12已发布20110736-T-469电子工业用气体 四氟化硅制订2011/12/14已发布20111284-T-469电子工业用气体 高纯氯修订2011/12/14已发布20110735-T-469电子工业用气体 六氟化钨制订2011/12/14已发布20111285-T-469电子工业用气体 氯化氢修订2011/12/14已发布20101283-T-469电子工业用气体 六氟化硫修订2010/12/17已发布20091223-T-469电子工业用气体 八氟环丁烷制订2009/12/15正在审查20091224-T-469电子工业用气体 四氟化碳制订2009/12/15正在审查20081120-T-469电子工业用气体 砷化氢制订2008/11/3已发布20081121-T-469电子工业用气体 硒化氢制订2008/11/3已发布20081119-T-469电子工业用气体 三氯化硼修订2008/11/3已发布20070017-T-469电子工业用气体 5N氯化氢制订2007/5/18已发布20062982-T-469电子工业用气体 磷化氢修订2005/12/30已发布20062406-T-469电子工业用气体 氦修订2005/12/30已发布20062405-T-469电子工业用气体 氢修订2005/12/30已发布20062408-T-469电子工业用气体 氩修订2005/12/30已发布20062751-T-469电子工业用气体 三氟化硼修订2005/12/30已发布20062752-T-469电子工业用气体 氧修订2005/12/30已发布20062749-T-469电子工业用气体 氧化亚氮修订2005/12/30已发布20062750-T-469电子工业用气体 氨修订2005/12/30已发布20062407-T-469电子工业用气体 氮修订2005/12/30已发布20064396-T-469电子工业用气体 硅烷(SiH4)修订2005/12/30已发布20051092-T-469电子工业用气体 三氟化氮制订2005/12/15已发布国家标准标准号标准中文名称发布日期实施日期标准状态GB/T 38866-2020电子工业用二氯硅烷2020/7/212021/2/1现行GB/T 38867-2020电子工业用四氯化硅2020/7/212021/2/1现行GB/T 34091-2017电子工业用气体 六氟乙烷2017/7/312017/11/1现行GB/T 34085-2017电子工业用气体 三氟甲烷2017/7/312017/11/1现行GB/T 15909-2017电子工业用气体 硅烷2017/5/312017/12/1现行GB/T 33774-2017电子工业用气体 丙烯2017/5/312017/12/1现行GB/T 32386-2015电子工业用气体 六氟化钨2015/12/312016/7/1现行GB/T 31986-2015电子工业用气体 八氟丙烷2015/9/112016/5/1现行GB/T 31987-2015电子工业用气体 锗烷2015/9/112016/5/1现行GB/T 31058-2014电子工业用气体 四氟化硅2014/12/222015/7/1现行GB/T 18867-2014电子工业用气体 六氟化硫2014/12/222015/7/1现行GB/T 14602-2014电子工业用气体 氯化氢2014/12/222015/7/1现行GB/T 18994-2014电子工业用气体 高纯氯2014/12/222015/7/1现行GB/T 26249-2010电子工业用气体 硒化氢2011/1/142011/5/1现行GB/T 26251-2010氟及氟氮混合气2011/1/142011/5/1现行GB/T 17874-2010电子工业用气体 三氯化硼2011/1/142011/5/1现行GB/T 26250-2010电子工业用气体 砷化氢2011/1/142011/5/1现行GB/T 14851-2009电子工业用气体 磷化氢2009/10/302010/5/1现行GB/T 14600-2009电子工业用气体 氧化亚氮2009/10/302010/5/1现行GB/T 14601-2009电子工业用气体 氨2009/10/302010/5/1现行GB/T 14603-2009电子工业用气体 三氟化硼2009/10/302010/5/1现行GB/T 16945-2009电子工业用气体 氩2009/10/302010/5/1现行GB/T 16944-2009电子工业用气体 氮2009/10/302010/5/1现行GB/T 14604-2009电子工业用气体 氧2009/10/302010/5/1现行GB/T 16942-2009电子工业用气体 氢2009/10/302010/5/1现行GB/T 16943-2009电子工业用气体 氦2009/10/302010/5/1现行GB/T 21287-2007电子工业用气体 三氟化氮2007/12/142008/7/1现行
  • 英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用
    在当今环境保护与工业安全备受关注的背景下,硫化氢(H2S)的有效检测与监控显得尤为重要。作为该领域的佼佼者,英国Alphasense公司凭借其良好的技术实力和创新精神,为市场提供了一系列高效、可靠的硫化氢检测方案。英肖仪器将从原理入手,深入剖析其核心技术,并探讨这些方案在多个领域的广泛应用。英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用原理探秘:科技引领,准确检测电化学传感器技术:英国Alphasense硫化氢检测方案的核心之一是电化学传感器。该技术利用化学反应将硫化氢气体转化为电信号,实现准确测量。其内部构造精密,包括工作电极、对电极和参比电极。当硫化氢气体接触到传感器表面时,与工作电极上的催化剂发生反应,产生与硫化氢浓度成正比的电流。电化学传感器以其响应速度快、灵敏度高的特点,在硫化氢检测领域占据重要地位。电化学红外吸收传感器技术:除了电化学传感器外,英国Alphasense还采用了先进的电化学红外吸收传感器技术。该技术利用硫化氢对特定红外波长的吸收特性进行检测。传感器内部集成了红外光源、红外检测器和气体室。红外光在通过气体室时被硫化氢吸收部分能量,剩余光被检测器接收并转化为电信号。通过计算入射光与出射光的强度差异,可精确测定硫化氢浓度。电化学红外吸收传感器具有更高的稳定性和抗干扰能力,适用于复杂环境下的高精度检测。应用场景:全面覆盖,准确守护石油化工行业:在石油化工领域,硫化氢是油气勘探、开采、运输和加工过程中常见的有害气体。英国Alphasense传感器及配套报警仪被广泛应用于钻井平台、油气管道、炼油厂等关键位置,实时监测硫化氢浓度,有效预防泄漏和爆炸事故的发生。污水处理与环保: 英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用在污水处理厂、垃圾填埋场等环保设施中,硫化氢的排放对环境质量构成威胁。英国Alphasense检测方案助力环保部门和企业实时监控硫化氢排放情况,确保环境质量达标,保护生态环境。农业与畜牧业:在沼气生产、畜禽养殖等农业领域,硫化氢也可能对生产环境和动物健康造成不利影响。英国Alphasense传感器能够及时发现并处理硫化氢超标问题,保障生产安全和动物福利。科研与教育:英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用在化学实验室、大学科研机构等场所,英国Alphasense硫化氢检测方案为学生和科研人员提供了一个安全、可靠的工作环境。它确保了教学和科研活动的顺利进行,促进了科学研究的深入发展。电化学硫化氢气体传感器H2S-D4详解主要参数:英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用测量范围:100ppm灵敏度:110~170nA/ppm响应时间:25s线性范围:0~20ppm,全量程线性度误差+/-6ppm过载:200ppm分辨率:0.2ppm尺寸:Φ14.5*8.3使用寿命:2年存储周期:6个月工作温度:-30~50°C工作湿度:15~90%RH负载电阻:10~47Ω主要特点:无过滤网设计:简化了维护流程,降低了使用成本。长寿命:传感器使用寿命长达2年,减少了更换频率和停机时间。英国Alphasense硫化氢检测方案以其科学准确的检测技术、高效稳定的工作性能和广泛覆盖的应用场景,在环境保护、工业安全等多个领域发挥着重要作用。它不仅是守护环境安全、保障工业生产和人员健康的重要工具,更是推动行业技术进步和创新发展的重要力量。更多英国Alphasense硫化氢检测方案深度解析:从核心技术到广泛应用英国Alphasense传感器、英国Alphasense阿尔法传感器、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • 如果硫化氢检测仪出现故障,应该如何处理?
    硫化氢检测仪是一种专门用于检测环境中硫化氢气体浓度的仪器,它通常用于一些可能存在硫化氢气体的场所,比如工业领域、化工生产、石油开采、污水处理、下水道、沼泽地等。那么如果硫化氢检测仪出现故障,应该如何处理呢?本文跟随逸云天小编一起了解下吧。  如果硫化氢检测仪出现故障,以下是一些常见的处理步骤:  1.查看说明书:首先,参考检测仪的用户手册或操作指南,查找有关故障排除的部分。手册可能提供特定故障的解决方法和步骤。  2.重新启动检测仪:有时,简单地重启检测仪可能解决一些临时故障。关闭并重新打开仪器,看看是否能够恢复正常工作。  3.检查电池和电源:确保检测仪的电池电量充足,或者检查电源连接是否正常。低电量或不稳定的电源可能导致故障。  4.清洁传感器:传感器的污染或堵塞可能影响检测准确性。按照厂家的指导,清洁或更换传感器。  5.校准检测仪:校准不正确可能导致错误的读数。尝试进行校准操作,根据手册中的说明进行校准。  6.联系厂家技术支持:如果以上步骤无法解决问题,及时联系检测仪的厂家或供应商的技术支持团队。他们可以提供更专业的故障诊断和修复建议。  7.不要自行修理:除非你有相关的技术知识和经验,否则不建议自行尝试拆卸或修理检测仪。不当的操作可能会进一步损坏设备或导致安全问题。  综上所述,相关信息就分享到这里,希望这篇文章能帮助到大家。  应用场景:  1、密闭设备: 如船舱、贮罐、车载槽罐、反应塔、冷藏箱、管道、烟道、锅炉等   地下有限空间: 如地下管道、地下室、地下仓库、废井、地窖、污水池、沼气池、化粪池、下水道等   地上有限空间: 如储藏室、酒糟池、发酵池、垃圾站、温室、冷库、粮仓、料仓等。  广泛应用于:石油、化工、燃气输配、仓储、市政燃气、消防、环保、冶金、生化医药、能源电力等行业得到了广泛的应用,并得到广大客户的一致**。
  • 泰国食药委公布大米药残标准
    据泰国《世界日报》7月18日消息,对于民间组织抽样化验发现曼谷市面上的大米样本有化学药品残留超标问题,卫生部食品与药品委员会昨天(17日)首次响应公布大米化学残留含量标准,规定大米中残留的3种化学物质包括甲基溴、磷化氢和氟化硫的含量不可超过百万分之50。  食药委员会副秘书长实暖表示,该委员会在昨天的会议中提议,卫生部在本周内批准第2分含毒素食物部级法规草案,以完善和提高使用化学药物熏蒸大米的规定和标准。  在卫生部长签署批准出台该部级法规后,大米中3种化学物质残留包括甲基溴、磷化氢和氟化硫的含量不可超过百万分之50的规定将立即生效,而这也将与国际食品标准相关规定相符合,只是一直以来泰国没有按照该国际规定执行。  实暖还强调,残留在大米中的甲基溴并不危险,消费者在食用大米后也不会造成癌症,该物质只被利用在熏米驱除害虫而已,不会给大米造成污染,也不会给消费者带来影响,实际上该物质给熏米工人的影响更大。目前国际上包括泰国正准备取消使用甲基溴熏米,因为发现甲基溴会破坏大气臭氧层。  实暖指出,大米中残留的甲基溴在淘米和煮饭过程中会减少高达86%,因此,食药委员会再次向广大消费者重申,国内市场上销售的大米完全可以放心食用。
  • 化学传感器研究热度不减——13th SCCS分会场报告摘录之一
    p  strong仪器信息网讯/strong 2017年11月6日,第十三届全国化学传感器学术会议(13th SCCS)在广西桂林成功召开。6日下午,漓江瀑布大酒店会议厅迎来四个分会场的同时开幕,50个邀请报告、41个口头报告将于两天内在这里次第上演。仪器信息网摘录部分精彩报告,以飨读者。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/abc31f7b-e1e6-4d29-948f-dc2fc8fb8cea.jpg" title="IMG_0675_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong13th SCCS分会场速递/strong/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/cc310345-38dc-4f41-943f-b0c7c629e3a0.jpg" title="肖丹.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong报告题目:几种化学传感器研究进展/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong报告人:四川大学 肖丹/strong/span/pp  团队开展了电容耦合非接触式电导检测器(C4D)研究,设计了双激励的电容耦合非接触式电导检测器(DIC4D) 研究了离子选择性电极测量的电子集成多电极检测电路(EIMES),获得了响应斜率的增加 利用静电纺丝聚苯胺微管纤维制备了葡萄糖传感器 设计了气体 pH 电极测量装置,直接测定空气和烟气的 pH 值 合成了 HBI 衍生物 HSA 荧光探针,测定了血清中 HSA 的含量 合成了电致化学发光试剂用于细胞液中 GSH 的检测 设计了自增强的电致化学发光试剂用于钴离子的测定 制备了耐磨且持续稳定的电致化学发光玻碳电极 利用生物质的电致化学发光进行了强碱体系的测试。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f6ec847b-4866-41e8-a653-5134741e2982.jpg" title="杨海峰.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:基于拉曼探针构筑的生物化学传感/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:上海师范大学 杨海峰/span/strong/pp  团队合成系列 SERS 纳米复合材料(磁性或多孔),通过表面功能化,构筑拉曼探针,利用磁场富集分离或表面反应选择性富集目标分子,来提高检测灵敏度,实现体液中生物标志物和病毒等快速拉曼分析。合成金/磁网 SERS 探针,利用小型拉曼光谱仪,可以快速定量检测尿液中腺苷,有望用于肺癌早期诊断。在金或银纳米粒子表面,进行功能化,制备高选择性拉曼探针,也可高灵敏检测 RNA 型高致病性流感病毒、尿路感染标志物亚硝酸根、神经递质多巴胺、结肠癌标志物等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/a294b462-adaa-4e10-aed8-8b81fbef077d.jpg" title="王赪胤.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:自驱动自传感微悬臂传感器/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:扬州大学 王赪胤/span/strong/pp  团队利用 PVDF 压电材料的自激、自感特性作为自制微悬臂传感器的加工材料,结合集成电路强大的信号处理、运算分析能力,首次探索出一套不需外加驱动器(自驱动)同时又可实现自我感知外界信号(自传感)的微悬臂传感器“读出系统”。对传感器表面进行功能化修饰,将抗体固定到传感器的金表面,利用固定化的分子识别物质和分析物之间的免疫反应,将抗原和抗体之间特异性结合的信息转换为可检测的电压信号。与传统的方法相比,方法具有成本低廉、样品使用量少、响应速度快、可便携化、适用于现场检测等诸多优点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/e3fbde69-749d-46dd-a9e7-fe85f9b0e78a.jpg" title="王桦.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:金银纳米功能材料的制备及其化学生物传感应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:曲阜师范大学 王桦/span/strong/pp  团队采用蛋白质(酶)、肽、明胶等生物基质,通过一锅式生物矿化超分子自组装途径,合成了一系列特异光电特性的金银纳米功能材料,用以构建了一些化学与生物光电传感技术。如以谷胱甘肽合成强荧光银纳米材料,开发了一种基于醇溶剂效应的化学传感技术 建立了microRNA 的电化学传感技术 基于超分子自组装途径合成三聚氰胺银纳米材料用以修饰电极 设计了一种锁核酸修饰的探针用以结合纳米孔蛋白,构建了一种高选择性检测 microRNA 及其单碱基错配的传感技术等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/02effc8e-22a5-4b2e-b3ec-c525226f3474.jpg" title="王文.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:声表面波化学传感器研究进展/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:中国科学院声学研究所 王文/span/strong/pp  基于敏感膜式的SAW化学传感技术体积小、功耗低、响应快,特别是适合于小型化单兵毒害气体快速检测与报警应用。基于冷凝吸附原理的SAW化学传感器灵敏度高(ppb级)、可检测气体组分多(多大数百种),并可很好的解决交叉干扰问题,符合复杂大气背景条件下的便携式气体成分分析应用要求。报告人从上述传感器敏感机理及物理功能结构两方面出发,结合实验室研究成果,介绍SAW化学传感器的研究进展及应用现状,并分析其未来发展趋势。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2a3c7273-2371-4377-ba67-bad3d264fe0a.jpg" title="曹忠.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:基于二氧化锡中空微球的硫化氢气体传感器研究与应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:长沙理工大学 曹忠/span/strong/pp  团队通过以氨基酚醛树脂球作模板制备中空微球(HMS)结构的二氧化锡,从而制成一种新型薄膜式硫化氢传感器。实验表明,二氧化锡中空微球对硫化氢气体表现出良好的气敏特性。在最佳工作温度200℃时,所制作的传感器对硫化氢的灵敏度高,响应快,线性范围为0.2~100 ppm,检出限达到 0.1086ppm,且不受环境湿度、温度的影响,具有良好的重现性和选择性。该技术可在养殖场连续工作 10 个月以上,适于远程无线监测,在环境保护领域有潜在的应用价值。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6de0f32b-2011-4e24-8ca0-64ea5aff39f1.jpg" title="刘继锋.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:Zn 2+ 离子诱导的多肽自组装行为及其检测应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:天津科技大学 刘继锋/span/strong/pp  团队将特异性结合锌离子的小肽片段和拉曼报告分子 4-MBA 通过 Au-S 键结合到纳米金表面,构建了一种 Au-肽探针,实现体外对Zn 2+ 的检测,具有较高灵敏度和较好的特异性,并通过拉曼成像技术,实现了对细胞内 Zn 2+ 分布的检测,此外还发现了由 Zn 2+ 诱导的探针有序的组装形貌,为此类探针在今后食品安全以及生物医学等方面的检测提供了理论基础和方法。/p
  • 荧光增强传感器可追踪组织深处分子 有助于癌症诊断或监测
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。  科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。  为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。  这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。  但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。  当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。  这种传感器还可以用于检测肿瘤细胞死亡的分子特征。  除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。  研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 大连化物所提出基于功能化纸基比色传感器的农残快检新策略
    近日,中科院大连化学物理研究所化学传感器研究组(106组)冯亮研究员团队在纸基光化学传感器的信号放大研发中取得新进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔的应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。本工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。相关研究成果以“Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是中科院大连化学物理研究所106组博士研究生王枫雅。上述工作得到中科院科研装备研制等项目的资助。
  • 大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
    近日,中国科学院大连化学物理研究所研究员冯亮团队在纸基光化学传感器的信号放大研发中取得进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。   纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。该工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。   冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。   相关研究成果以Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor为题发表在《分析化学》(Analytical Chemistry)上。大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
  • 石墨烯生物传感器:中国SCI发文量全球第一
    石墨烯,是当前世界上最薄、最轻、最硬、导电性最好而且拥有强大灵活性的纳米材料。它的强大能力常常令人咋舌。一块1厘米厚的石墨烯板,能够让一头5吨重的成年大象稳稳站在上面 用石墨烯做的手机电池,一秒内就能把电充满 以石墨烯为材料的平板电脑,可以随意折叠成手机大小放在口袋里。在电子、航天军工、新能源新材料等领域也有着广泛应用。  11月25日,在中科院文献情报中心产业情报研究中心主办的第20期《产业技术情报》发布会上,研究人员详细梳理了石墨烯在超级电容器和生物传感器方面的应用情况,首次将两个发布主题聚焦于同一领域,并基于权威数据库分析,对两者未来的发展趋势作出研判。  石墨烯超级电容器技术:中国处于快速增长期  当今能源及环境问题日趋严重,以新能源电动汽车为代表的绿色交通工具的发展需求越来越大。而解决其制动能量回收系统的问题是产业发展的关键之一,因此产业对兼顾高能量密度与高功率密度的电化学储能器件的需求越来越迫切。与此同时,超级电容器因具备使用寿命长、充电时间短等优点,被赋予较大期待。石墨烯超级电容器主要研究领域包括:用于电极材料的过渡金属氧化物、活化煤以及氮掺杂石墨烯、集电器表面等方面,涉及技术包括氧化石墨烯单体、过度金属氧化物、氮掺杂、煤活化等。  随着2004年英国曼彻斯特大学物理学家发现石墨烯的分离制备方法,石墨烯在超级电容器中的应用也逐渐开始迅速发展,专利年发表数量快速增长,于 2012年达到峰值每年280项。目前相关技术专利平均在每年250项左右。中国的石墨烯超级电容器领域技术的发展2009年起迅猛增长,年申请量迅速超过每年100项,于2012年达到峰值,此后基本保持在每年120项以上,处于快速增长期。  记者发现,在石墨烯超级电容器技术专利权人排名中,前25名专利权人中数量最多的是来自中国的机构(17家)。排名前5位的依次是:海洋王照明科技股份有限公司、中国科学院、韩国三星公司、美国Nanotek仪器公司和浙江大学。  “从产业技术情报发布的内容来看,我们国家在石墨烯领域的论文和专利的数量还是比较可观的,这些数据充分反映了我们国家的科技活力。”清华大学化工系教授骞伟中说。  他介绍,目前石墨烯的主要制造市场和应用市场均在中国,国内的众多机构在该领域进行了专利布局。北京和江苏已分别成为国家石墨烯发展和研发较为集中的地区,未来5年到10年这些地区还将在石墨烯领域进行大力布局。  “从产业化角度来看,目前石墨烯电容器领域技术更多地集中在高校实验室,离产业化还有一段路要走。我们国家应推动高校和企业的衔接,大力推动石墨烯电容器的产业化发展。”骞伟中建议。  石墨烯生物传感器:中国SCI发文量位列第一  石墨烯因其特殊的纳米结构,优良的光学、电学等特性以及良好的生物相容性,迅速成为生物传感器研究中的热点材料,并成功检测多种生物小分子、DNA、酶、蛋白质以及细胞等。  “生物传感器是生命分析化学及生物医学领域中的重要研究方向,已广泛应用于临床疾病诊断和治疗研究。但石墨烯生物传感器目前处于实验室阶段,还未实现产业化。”国家纳米科学中心博士研究生史济东说。  据中科院文献情报中心研究人员介绍,石墨烯用于生物传感器领域研究的重点集中在以下两个方面:一是石墨烯电化学生物传感器,包括安倍型传感器、电化学发光型和场效应晶体管型等,涉及酶传感器(用于检测过氧化氢、葡萄糖、抗坏血酸、多巴胺、尿酸等)、免疫传感器(用于检测病毒、细菌、癌症标志物等)、DNA传感器、蛋白质传感器等 二是石墨烯光学生物传感器,包括荧光传感器和基于共振能量转移传感器。  石墨烯用于生物传感器领域的SCI论文发文年代分布呈现出如下特征:2005 年至2009年发文量相对较少,年发文量不超过100篇,主要来自美国和中国,研究进展相对缓慢,处于技术孕育期 随着2010年英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫因在石墨烯材料方面的研究获得诺贝尔物理学奖,全球石墨烯用于生物传感器领域的SCI发文量增长趋势逐渐明显,其中 2015 年SCI发文量突破了2300篇,相关技术进入快速成长阶段。  统计数据显示,全球共有85个国家和地区开展了石墨烯用于生物传感器的相关研究,其中中国、美国、印度等10个国家和地区在石墨烯用于生物传感器领域的SCI发文量占总量的81.61%。其中中国在该研究中占有明显优势,发文量占全部论文的47.76% 位居第2位的是美国,发文量占全部论文的 9.39%。  在高被引论文方面,石墨烯用于生物传感器领域的SCI论文属于ESI高被引论文有345篇,来自35个国家和地区。其中ESI高被引论文主要来自中国(176篇)、美国(86篇)、新加坡(39篇)、韩国(23篇)和印度(15篇)。  值得一提的是,前10位ESI高被引SCI论文中,有6篇发文来自中国福州大学、中科院长春应用化学研究所、清华大学和中科院上海应用物理研究所4家机构,可以看出中国在该技术领域拥有一定的技术优势。
  • 2012年物联网技术研发及产业化专项申报开始
    国家发展改革委办公厅关于组织实施2012年物联网技术研发及产业化专项的通知国务院有关部门、直属机构办公厅(室),各省、自治区、直辖市及计划单列市、新疆生产建设兵团发展改革委(局),有关中央管理企业:  为加快引导和推动我国物联网产业发展,根据有关工作部署,2012年我委将组织实施物联网技术研发及产业化专项。现就有关事项通知如下:  一、专项目标  结合国民经济和社会发展的重大需求,以重点领域的物联网应用示范为依托,着力突破制约我国物联网发展的关键核心技术,为物联网规模化发展提供有效的产业支撑 制定基础共性技术标准,完善物联网标准体系,着力解决我国物联网应用的互联互通问题 依托已有基础,建设公共服务平台,着力解决检测认证和标识管理问题 加强产业自主创新能力建设,着力培育发展一批物联网技术研发和产品设备制造优势企业。  二、支持重点和要求  重点依托交通、公共安全、农业、林业、环保、家居、医疗、工业生产、电力、物流等10个领域我委已启动的国家物联网应用示范工程,统筹推进物联网关键技术研发及产业化、标准体系和公共服务平台建设,着力突破核心关键技术,完善产业链,为重点领域物联网应用示范提供有效支撑。  (一)关键技术研发及产业化  1、低成本、低功耗、微型化、高可靠性智能传感终端。  一是专用及多用途感知设备,如:集成加速度/温湿度/光感等传感技术、RFID技术及定位技术的智能终端;基于环保监测、森林资源安全监管、油气供应、粮食储运监管、电网管理、食品质量安全监控等物联网应用、并支持多种通信传输方式(如TD-SCDMA等第三代移动通信技术)的远程监控智能终端等。  二是传感器件,如:精度在±0.02%以内的低成本压力/应力光电传感器、高灵敏度GMR/TMR磁性传感器、CCD/CMOS图像传感器、精度在±0.2℃以内的数字温度传感器、精度在±3%以内的数字湿度传感器、快速响应电化学气体传感器等通用传感器,以及粉尘传感器、PM2.5细粒子传感器、磷化氢传感器、烟雾传感器等基于自主核心技术的专用传感器。  三是用于传感器/传感终端的专用芯片,如:基于CMOS工艺、支持多协议处理单元、接收灵敏度优于 -70dBm且输出功率大于23dBm的超高频RFID读写设备芯片;基于CMOS工艺、激活灵敏度优于-14dBm、存储器不小于2Kb且芯片面积不大于0.25mm2的超高频RFID标签芯片;基于CMOS工艺、接收灵敏度优于 -100dBm、输出功率在-10~3dBm范围、最大功耗为25mA且支持消耗电流小于5µ A的低功耗监听模式的微波频段RFID标签/读写器芯片;基于CMOS工艺的压力/加速度/陀螺仪微机电系统专用芯片等。  2、智能仪表。集传感器、微处理器、智能控制和通信技术为一体的智能化、网络化仪器仪表等。  3、网络传输设备。物物通信技术和传感器网络通信产品,如:自组织通信网络、无线传感网设备,基于TD-SCDMA技术的M2M通信模块等。  4、信息处理产品。物联网海量信息分析与处理、分布式文件系统、实时数据库、智能视频图像处理、大规模并行计算、数据挖掘、可视化数据展现、智能决策控制以及基于物联网感知层与传感层间数据接入中间件(包括物联网传感节点标识定位、底层解析软件)等。  (二)基础共性技术标准研究制定  重点支持物联网应用示范亟需的基础共性技术国家标准的研究制定,包括:标识与解析、智能传感器接口、中间件、信息安全、测试方法等。  (三)公共服务平台建设  1、检测认证公共服务平台。以现有第三方评测服务实验室(平台)为基础,整合相关优势资源,构建涵盖物联网标准与知识产权信息查询、标准符合性验证,及物联网智能传感终端、智能仪表等产品检测与认证、解决方案测评等功能的物联网公共服务平台。  2、标识管理公共服务平台。以提高物联网标识管理和规划能力,促进物联网应用跨行业、跨平台、规模化发展为目的,研究提出物联网标识管理体系,进一步加强物联网标识管理与服务系统建设,建立物联网统一标识管理和公共服务平台。  三、申报要求  (一)项目主管部门应根据投资体制改革精神和《国家高技术产业发展项目管理暂行办法》的有关规定,按照专项实施重点的要求,结合本单位、本地区实际情况,认真做好项目组织和备案工作,组织编写项目资金申请报告(编制要点见附件一)并协调落实项目建设资金、环保、土地、规划等相关建设条件。  (二)项目主管部门应对资金申请报告及相关附件(如银行贷款承诺、自有资金证明等)进行认真核实,并负责对其真实性予以确认。  (三)关键技术研发及产业化类项目,承担单位原则上应为企业法人,研发产品需面向国家发展改革委已启动的国家物联网应用示范工程应用,重点支持与应用示范工程主管部门或牵头实施单位签订合作协议的项目 公共服务平台建设类项目,承担单位原则上为行业内具有相应工作基础的企事业单位 基础共性技术标准研究项目,由国家标准化管理委员会牵头实施申报。  (四)各单位应具有较强的技术开发、资金筹措、项目实施能力,以及较好的资信等级 在制定建设方案时,严格控制征地、新增建筑面积和投资规模。  (五)为加强高技术产业发展项目管理工作,本次专项继续采取纸质材料申报和网上申报并行的组织实施方式。  请项目主管部门于2012年5月31日前,将项目的资金申请报告和有关附件、项目及项目单位基本情况表(见附件二)、项目的备案材料等一式两份(同时须附各项目简介及所有项目汇总表的电子文本)报送我委高技术产业司。  同时,请项目主管部门登陆国家发展改革委高技术产业发展项目管理系统http://ndrc.jhgl.org/xxcyh,履行相关网上申报手续。纸质材料申报和网上申报的截止时间相同,项目信息应完全一致,未履行网上申报手续的项目将不予受理。  (六)在项目主管部门申报的基础上,我委将按照公正、公平的原则,组织专家评审,择优支持。  特此通知。  国家发展改革委办公厅  二〇一二年五月十五日
  • 第十一届全国化学传感器学术会议分会场报告摘录二
    仪器信息网讯 2011年10月23日,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议在湖南长沙市芙蓉华天大酒店成功召开。此次会议盛况超前,学术报告及参会人员都超过预期。本次会议最后统计共包括了11个大会报告,42个分会邀请报告,58个口头报告,以及100多篇论文报展。  2011年10月23日下午,第二分会场,湘园厅。 会议现场朱俊杰教授(南京大学)报告题目:量子点功能化与电化学生物传感  朱俊杰教授在报告中介绍了课题组近期在量子点的组装、功能化和电化学生物传感等方面的研究工作。主要内容:构建了核壳型结构的CdSeTe/ZnS量子点,表现出很强的电致化学发光(ECL)行为;制备了石墨烯-CdSe复合材料并构建ECL生物传感器,主要应用于人免疫球蛋白的检测;发展了石墨烯-金点ECL生物传感器并将其用于过氧化氢的检测;构建了同时检测两种心脏标志物的电化学免疫传感器用于cTnI和CRP的测定;制备核壳结构的SiO2@ CdTe量子点纳米复合物,构建了新型的凝集素功能化的纳米探针等。蒋兴宇教授(国家纳米科学中心)报告题目:基于微纳尺度技术传感器的应用研究  蒋兴宇教授在报告中主要介绍了微纳尺度材料和技术的应用研究。将功能化的纳米材料与微流控技术相结合,可降低检出限,缩短反应时间。主要研究内容:基于金纳米颗粒表面修饰螺吡喃分子用于水相中铜离子的检测;正电荷修饰的金纳米颗粒高灵敏度的检测水相中的汞离子等。蒋教授在报告中还提到,希望将这类基于颜色变化的离子检测方法与芯片技术结合,实现芯片上的分析。许丹科教授(南京大学)报告题目:生物微阵列芯片检测新方法的研究  许丹科教授在报告中介绍了课题组在生物微阵列芯片检测新方法的特点,并介绍了课题组相关工作。许教授课题组建立了基于纳米银的电化学阵列芯片检测新方法,并开展了四种病毒DNA片段的同时电化学检测方法。在蛋白质微阵列检测方法的研究中,制备了金属荧光增强机制的新型生物探针,降低了检测限。此外该课题组还将纳米银生物检测探针成功应用于可视化蛋白芯片的检测方法中,建立了一种基于蛋白质微阵列的药物多靶点筛选方法。由天艳研究员(中国科学院长春应用化学研究所)报告题目:电纺碳纳米纤维及其复合材料在电分析化学中的应用  由天艳研究员在报告中主要介绍了采用静电纺丝技术与热处理方法制备的碳纳米纤维及其复合材料在电分析化学中的应用。主要介绍了以下三个方面的内容:电纺碳纳米纤维在电化学传感器中的应用;电纺Pd纳米粒子/碳纳米纤维复合材料在电分析中的应用;电纺Ni纳米粒子/碳纳米纤维复合材料在无酶传感器中的应用。刘清君副教授(浙江大学)报告题目:中华蜜蜂化学感受蛋白阻抗传感器的研究  刘清君副教授主要介绍了中华蜜蜂CSP3阻抗传感器的原理及特点。可以利用此传感器测量环境中的微量配体物质,并可用来检测不同昆虫的化学感受蛋白与不同物质间的反应,便于对化学感受蛋白进行更深入的研究。这对于阐明昆虫与环境化学信息联系规律及昆虫行为本质原因等具有重要的理论和实践意义。  此外,来自南京大学的夏兴华教授等也在本会场做了精彩的报告。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 大连化物所提出基于功能化纸基比色传感器的病毒检测新策略
    近日,大连化物所化学传感器研究组(106组)冯亮研究员团队与蛋白质折叠化学生物学创新特区研究组(02T5组)刘宇研究员团队合作在病毒核酸快速检测研究中取得新进展。团队发展了一种低成本、快速和便携式病毒检测策略,该策略依赖蛋白功能化修饰的纸基对荧光信号的生物正交富集,辅以实验室自制的微型DNA加热装置和手持荧光检测仪,可以实现对病毒核酸阴阳性的快速区分。   实时荧光定量PCR(qPCR)以及一些恒温扩增检测手段(RPA、LAMP等)在病毒检测的准确性和灵敏度方面都具有很大的优势,然而,其操作高度依赖昂贵的分析仪器和训练有素的工作人员,极大阻碍了在发展中国家以及资源有限地区的应用。纸基比色传感器以其成本低廉,构建简单,检测快速等优势引起研究者们的广泛关注。 本工作中,合作团队提出一种基于功能化纸基比色传感器的病毒检测新策略,通过在纸基上修饰以TR512多肽为核心的融合蛋白,创新性的将TR512多肽与Texas red荧光团之间的生物正交化学反应,转化为功能化纸基上的信号放大,并将该功能化纸基与自制的微型扩增加热装置和手持式荧光检测仪相结合,实现了对预扩增核酸溶液的生物正交富集,提高了检测灵敏度,极大缩短了检测周期。团队将该策略成功应用于不同的病毒核酸(HBV、ASFV、HPV16、HPV18等)阳性序列的检测中,以及乙肝病毒核酸(HBV)实际样品的检测中。   冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建富含苯基的硅胶溶胶凝胶微孔通道,实现三氯杀螨醇农药残留的微量检测(Food Chem.,2022);通过物理包埋方法在纸纤维表面包埋显色剂形成三点纸基检测阵列,实现自来水中Cu2+,Fe2+,Cl-的同时快速检测(Sens. Actuators B: Chem.,2019)。   相关研究成果以“A Novel Virus Detection Strategy Enabled by TR512-Peptide-Based Bioorthogonal Capture and Enrichment of Preamplified Nucleic Acid”为题,发表在《分析化学》(Anal. Chem.)上。该工作的第一作者是106组博士研究生朱明珍。上述工作得到中科院科研装备研制等项目的资助。
  • 第十三届全国化学传感器学术会议会议指南(大会日程安排)
    第十三届全国化学传感器学术会议  会议指南  (初稿)  主办单位:中国仪器仪表学会分析仪器分会化学传感器专业委员会  承办单位:桂林电子科技大学(材料科学与工程学院)  西南大学(化学化工学院)  协办单位:湖南大学化学生物传感与计量学国家重点实验室  上海师范大学  江苏电分析仪器有限公司  广西师范大学  桂林理工大学等  2017年11月  广西桂林  组织机构  大会学术委员会和组织委员会  学术委员会  顾问:汪尔康院士、姚守拙院士、陈洪渊院士、张玉奎院士、程京院士、董绍俊院士、杨秀荣院士、谭蔚泓院士、马立人教授  主席:俞汝勤院士  副主席:吴海龙章宗穰王柯敏沈国励鞠熀先庞代文  委员(以拼音为序):  曹忠关亚风范清杰何品刚胡效亚黄杉生蒋健晖晋卫军鞠熀先  孔继烈李根喜李景虹陆祖宏卢小泉毛兰群缪煜清牛利庞代文  邱建丁邵元华沈国励孙立贤王建秀王利兵王柯敏王荣魏琴  吴国强吴海龙吴荣坤吴霞琴吴旭明夏兴华肖丹谢青季徐静娟  羊小海杨海峰杨黄皓杨荣华叶邦策殷传新由天艳袁若张晓兵  庄乾坤  组织委员会  主席:孙立贤周怀营  副主席:吴海龙袁若杨海峰吴荣坤徐华蕊徐芬王仲民马传国  委员:褚海亮邹勇进向翠丽张焕芝张坚苗蕾闫二虎彭洪亮黄鹏儒  秘书:于芳韦思跃  参会须知  尊敬的来宾:  欢迎您参加“第十三届全国化学传感器学术会议”。祝您在参会期间工作顺利,身心愉快,敬请注意以下事项:  1.本会议指南为参会代表们提供了本次会议的相关信息,供参会时参考。未尽事宜、日程与议程变更及临时活动,请留意会场临时通知。  2.出席会议各项活动时,请佩戴代表证。  3.请在会场内关闭手机等通讯工具,会场禁止吸烟、大声喧哗。  4.会议代表凭会务组统一分发的餐券在指点地点用餐。餐券只能在会议指定的时间和地点使用,餐券遗失不补,结余不退。如自行安排餐饮,费用自理。  5.参加会议各项活动请量力而行,并注意随身财物安全。  6.遇有紧急情况或特殊问题,可与会务组工作人员联系:工作人员联系方式工作职责褚海亮13367739152报到现场闫二虎13788589330会场韦思跃13649430852接待/住宿张焕芝18877317790墙报/展台/奖状夏永鹏15507838038餐饮于芳15907884599收费和收据发票   交通信息  1.起点:桂林两江国际机场——漓江大瀑布酒店(约1小时30分钟/30.4公里)  乘坐机场大巴在民航大厦站下车,在安新小区北口站换乘2路在漓江剧院站下车,步行420米至漓江大瀑布酒店。(备注:机场打车费用约130元)  2.起点:桂林北站——漓江大瀑布酒店  乘坐100路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约25元)  3.起点:桂林西站——漓江大瀑布酒店  乘坐22路在十字街(解放西路)站下车,步行1000米至漓江大瀑布酒店。(备注:打车费用约45元)  4.起点:桂林站——漓江大瀑布酒店  乘坐11路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约15元)  5.起点:桂林汽车客运总站——漓江大瀑布酒店  乘坐10/11路在阳桥站下车,步行430米至漓江大瀑布酒店。(备注:打车费用约10元)  6.杉湖大酒店与漓江大瀑布酒店紧挨着,步行3~5分钟。  一、会议基本事项  会期:2017年11月5日—8日  报到时间:2017年11月5日08:00——22:00  会议开始时间:2017年11月6日上午08:30  地点:桂林漓江大瀑布酒店  早餐用餐地点:桂林漓江大瀑布酒店和杉湖大酒店  午餐、晚餐用餐地点:2017年11月6日晚宴设在漓江大瀑布酒店2楼中堂  其他时间午餐、晚餐均在好吃堡自助餐餐厅(凭餐卷)  (漓江大瀑布酒店出门左转往前走100米)  开幕式及大会报告会场:桂林漓江大瀑布酒店(3楼银河厅)  第一分会场:(3楼银河厅)  第二分会场:(4楼漓江厅)  第三分会场:(12楼独秀厅)  第四分会场:(12楼清湘书屋)  墙报及仪器展览时间:2017年11月5日10:30-18:30  2017年11月6日08:30-18:30  2017年11月7日08:30-18:00  (特别是6日的17:30-18:20,第一批墙报作者必须参与)  7日的13:50-14:30,第二批墙报作者必须参与)  地点:2楼中堂  墙报分两批展示(会务组提供材料,协助张贴墙报):  第一批墙报(P1-P73)参会者报道后马上张贴,展览时间为11月5日和6日,11月6日晚上6点之前撤下   第二批墙报(P74-P145)参会者于11月6日晚上8点之前张贴好,展览时间为11月6日和7日,7日晚上6点之前撤下。  二、会议议程(初步安排)2017年11月5日星期日全天报到注册时间内容地点08:00-23:00注册桂林漓江大瀑布酒店大堂18:00-20:00晚餐(自助餐)好吃堡自助餐餐厅21:00-会议学术委员会扩大会议地点:2楼象山厅圆桌会议2017年11月6日星期一上午主会场地点:3楼银河厅时间内容08:30-08:50会议开幕式开幕式议程主持:孙立贤教授1.桂林电子科技大学校领导致欢迎辞;2.化学传感器专业委员会主任致辞;3.中国仪器仪表学会分析仪器分会领导讲话;4.桂林电子科技大学材料科学与工程学院院长致辞08:50-09:10合影及茶歇大会报告主持人:俞汝勤、汪尔康时间类型报告人单位报告题目09:10-09:40PL01汪尔康中国科学院长春应用化学研究所水质检测生物化学需氧量(BOD)研究09:40-10:10PL02董绍俊中国科学院长春应用化学研究所基于新型能源的自供能生物电化学传感器10:10-10:40PL03俞汝勤湖南大学化学计量学与传感技术促推分析化学数学化、信息化及研究范式转换10:40-11:05PL04鞠熀先南京大学生物传感中的信号放大策略11:05-11:30PL05袁若西南大学电致化学发光生物传感器构建新方法进展11:30-11:55PL06樊春海中国科学院上海应用物理研究所DNA纳米结构与生物传感器12:00-午餐2017年11月6日星期一报展、仪器展8:30-18:30第一批墙报展2楼中堂8:30-18:30仪器展3楼银河厅门口走廊分组报告2017年11月6日星期一下午第一分会场:地点:3楼银河厅主持人:杨海峰、肖丹时间类型报告人单位报告题目14:00-14:20IL01肖丹四川大学几种化学传感器研究进展14:20-14:40IL02杨海峰上海师范大学基于拉曼探针构筑的生物化学传感14:40-15:00IL03翟艳玲青岛大学荧光光谱电化学器件构建及在分析传感中的应用15:00-15:20IL04王宗花青岛大学新型比率电化学传感器的构建及其在生化分析中的应用研究15:20-15:30OP01杨盛(杨荣华)长沙理工大学细胞自助式原位信号放大与超灵敏荧光成像分析15:30-15:40OP02戚鹏中国科学院海洋研究所腐蚀微生物快速检测技术的开发及评价15:40-15:50OP03陈玉凤湖南大学化学调控凝胶的形成:构建仿生细胞外基质的三维人工细胞成像平台15:00-16:00茶歇主持人:黄昊文、吴再生时间类型报告人单位报告题目16:00-16:20IL05黄昊文湖南科技大学基于金纳米簇模拟酶构建高灵敏度可视化分析检测乳腺癌抗原的生物传感方法16:20-16:40IL06吴再生福州大学核酸探针与分子诊断16:40-17:00IL07叶邦策(尹斌成)华东理工大学DNA分子机器及生物成像分析17:00-17:10OP04李春艳湘潭大学近红外碱性磷酸酶荧光探的构建及生物成像研究17:10-17:20OP05曹宇扬州大学多级孔Cu-BTC超灵敏传感器用于非电活性有机磷农药检测17:30-18:20第一批报展集中参观讨论时间主持人:袁若张晓兵要求报展作者站在报展前与与会代表面对面集中讨论,同时评比优秀墙报奖(各10)第二分会场:地点:4楼漓江厅主持人:陈卓、王赪胤时间类型报告人单位报告题目14:00-14:20IL08陈卓湖南大学基于石墨纳米囊的拉曼生化分析14:20-14:40IL09周翠松四川大学皮摩尔级单碱基错配的可视化识别14:40-15:00IL10王赪胤扬州大学自驱动自传感微悬臂传感器15:00:15:20IL11陈时洪西南大学基于功能化聚芴衍生物的超灵敏电致化学发光传感器检测Cu2+15:20-15:30OP06刘剑波湖南大学基于三棱柱DNA纳米结构的多目标检测及其级联酶固定研究15:30-15:40OP07张培盛湖南科技大学高选择性荧光探针设计及生物成像研究15:40-15:50OP08刘松杨湖南大学红细胞膜包被的团聚体颗粒作为微反应器用于NO的催化产生15:50-16:00茶歇主持人:朱志、王建秀时间类型报告人单位报告题目16:00-16:20IL12朱志厦门大学生物传感的信号转化与放大新策略16:20-16:40IL13王建秀(衣馨瑶)中南大学卟啉抑制β淀粉样蛋白聚集的SPR研究16:40-17:00IL14苏磊北京科技大学荧光金纳米簇的刻蚀化学及分析新方法研究17:00-17:10OP09吴国强深圳市凯特生物医疗电子科技有限公司临床电解质分析用标准物质的研制及应用17:10-17:20OP10邵娜北京师范大学银纳米颗粒比色法用于碱性磷酸酶及卵巢癌肿瘤标志物的检测17:30-18:20第一批墙报面对面交流第三分会场:地点:12楼独秀厅主持人:王桦、刘宇明时间类型报告人单位报告题目14:00-14:20IL15王桦曲阜师范大学金银纳米功能材料的制备及其化学生物传感应用14:20-14:40IL16刘宇明北京卫星环境工程研究所碳纳米管气体传感器在火星大气探测中的潜在应用14:40-15:00IL17王文中国科学院声学研究所声表面波化学传感器研究进展15:00-15:20IL18孟子晖北京理工大学功能化光子晶体检测有机磷的研究15:20-15:30OP11周建华中山大学Plasmonicbiosensingbasedonwell-definedmetalnanostrucutres15:30-15:40OP12吴一萍上海师范大学金纳米花的可控合成、组装、敏化和SERS检测应用15:40-15:50OP13努尔古丽· 喀日新疆大学卟啉及其络合物在光波导传感器中的应用15:50-16:00茶歇主持人:汪正、余堃时间类型报告人单位报告题目16:00-16:20IL19汪正中国科学院上海硅酸盐研究所液体阴极辉光放电光谱用于元素分析研究16:20-16:40IL20余堃中国工程物理研究化工材料研究所钯镍合金薄膜型氢传感器研究16:40-17:00IL21袁智勤北京化工大学荧光贵金属纳米簇制备及其分析应用17:00-17:10OP14漆奇北京艾立特科技有限公司功能材料特性分析的标准化研究17:10-17:20OP15曹成河西学院含腙氟离子检测试剂的开发与性能研究17:30-18:20第一批墙报面对面交流第四分会场:地点:12楼清香书屋主持人:曹忠由天艳时间类型报告人单位报告题目14:00-14:20IL22曹忠长沙理工大学基于二氧化锡中空微球的硫化氢气体传感器研究与应用14:20-14:40IL23由天艳江苏大学基于碳纳米点复合材料的传感器研究及应用14:40-15:00IL24邓健秋桂林电子科技大学高倍率长循环寿命的钠离子电池电极材料15:00-15:20IL25黄磊上海师范大学印制式气体传感器的研究进展15:20-15:30OP16陈佳中国科学院兰州化学物理研究所基于功能化核酸的光学传感新方法用于几种生物标志物的检测15:30-15:40OP17杨治庆中国科学院海洋研究所基于纳米金功能化BiOI薄膜的信号抑制光电传感器检测硫酸盐还原菌15:40-15:50OP18王佳明新疆大学四苯基卟啉锰光波导气体传感器在气体检测方面的应用15:50-16:00茶歇主持人:杨占军、刘万卉时间类型报告人单位报告题目16:00-16:20IL26刘万卉烟台大学智能制剂与化学生物传感16:20-16:40IL27刘继锋天津科技大学多肽自组装结构在生物催化与分子识别中的应用16:40-17:00IL28杨占军扬州大学无标记化学发光免疫分析新方法研究17:00-17:10OP19张如月石河子大学基于纳米多孔金膜和环糊精的双信号电化学传感器用于双酚A测定17:10-17:20OP20王银芳上海师范大学基于铂镍纳米立方体-鲁米诺纳米复合材料的电化学发光免疫传感器17:30-18:20第一批墙报面对面交流时间内容地点18:30-20:30晚宴2楼中堂20:30-22:00化学传感器专业委员会和刊物编委会联席会议2楼象山厅分组报告2017年11月7日星期二上午第一分会场:地点:3楼银河厅主持人:李平、魏琴时间类型报告人单位报告题目08:00-08:20IL29魏琴济南大学功能化纳米界面的组装及其在传感与能源催化领域的应用08:20-08:40IL30李平山东师范大学活体内活性氧的荧光成像研究08:40-09:00IL31谭亮湖南师范大学血管内皮细胞损伤标志物的多方法检测09:00-09:20IL32王旭东复旦大学Fully-reversiblehydrogenperoxideopticalsensorwithfastresponse09:20-09:30OP21王新锋中国工程物理研究院化工材料研究所钯合金氢气传感器定量关系研究09:30-09:40OP22王丹丹上海中医药大学ABioluminescentSensorRevealsthatCarboxylesterase1isaNovelEndoplasmicReticulum-derivedBiomarkerforLiverInjury09:40-09:50OP23郑来宝中国科学院海洋研究所基于对巯基苯硼酸功能化银纳米粒子的比色传感器及其在微生物检测中的应用09:50-10:00OP24许钬福州大学临床疾病的早期诊断的新方法10:00-10:10茶歇主持人:谢青季、黄行九时间类型报告人单位报告题目10:10-10:30IL33谢青季湖南师范大学基于电子转移短程效应的高敏电分析10:30-10:50IL34黄行九中国科学院合肥物质科学研究院纳米环境电分析化学中的晶面效应10:50-11:10IL35刘英菊华南农业大学基于纳米生物双重模拟酶的免疫传感器对微囊藻毒素的检测11:10-11:20OP25严正权曲阜师范大学可视性阳离子比色传感材料及其功能化试纸的设计制备与应用11:20-11:30OP26胡校兵上海第二工业大学Disposableelectrochemicalaptasensorbasedoncarbonnanotubes-V2O5-chitosannanocompositefordetectionofciprofloxacin11:30-11:40OP27陈建湖南科技大学基于FRET机制的荧光纳米粒子传感器11:40-11:50OP28张雨上海师范大学可见光驱动检测多巴胺的纳米Au/P25复合材料光电化学传感器12:00-午餐第二分会场:地点:4楼漓江厅主持人:陈显平、杨大驰时间类型报告人单位报告题目08:00-08:20IL36陈显平重庆大学Multi-scaleModellingBasedSelectionof2DGermaniumMonosulfideChemicalsensors08:20-08:40IL37杨大驰南开大学电化学法设计铜钯纳米拓扑结构提高氢气传感器的稳定性和气敏性08:40-09:00IL38刘锴清华大学基于二氧化钒相变的新型驱动器件09:00-09:20IL39葛广波上海中医药大学Isoform-specificenzymmaticbiosensors:designstrategiesandbiomedicalapplications09:20-09:30OP29李雪萌中山大学生物医学学院金纳米棒-二硫化钨复合结构在氨气检测上的应用初探09:30-09:40OP30韩海涛中国科学院烟台海岸带研究所基于功能纳米材料的海岸带水体不同形态铁电化学传感器09:40-09:50OP31冯德芬广西民族大学基于MOFs@CdS和SiO2@Au复合物之间能量转移的增强型敌百虫电致化学发光传感器09:50-10:00OP32邹立伟上海中医药大学Ahighlyselectivenear-infraredfluorescentprobetodetectdipeptidylpeptidaseIVinlivingsystems10:00-10:10茶歇主持人:张友玉、王家海时间类型报告人单位报告题目10:10-10:30IL40王家海广州大学纳米孔传感器10:30-10:50IL41张友玉湖南师范大学纳米探针在生物分析中的应用10:50-11:10IL42杨光明红河学院表面分子印迹聚合的制备与应用11:10-11:20OP33张丙青湖北工程学院基于TiO2光阳极的无酶葡萄糖光电化学传感器的研究11:20-11:30OP34姜晖东南大学电位敏感和电位分辨型纳米电化学发光传感器11:30-11:40OP35蔡光旭山东卓越生物技术股份有限公司离子选择性电极的微型化和集成化11:40-11:50OP36张姣陕西科技大学液晶型非标记免疫传感器检测天蚕素B12:00-午餐第三分会场地点:12楼独秀厅主持人:只金芳、魏琴时间类型报告人单位报告题目08:00-08:20IL43只金芳中科院理化技术研究所基于微生物的电化学传感器的水体生物毒性检测技术的开发08:20-08:40IL44薛中华西北师范大学生命相关重要离子和分子的可视化及电化学传感08:40-09:00IL45万逸海南大学基于丙酮酸激酶与便携式荧光仪超灵敏检测微生物09:00-09:20IL46黄晋湖南大学核酶探针用于细胞内传感09:20-09:30OP37付菲西南大学基于肽聚糖稳定的金纳米颗粒的等离子共振光散射检测溶菌酶09:30-09:40OP38王鹏山东卓越生物技术股份有限公司手持式血气分析仪测试芯片的研制09:40-09:50OP39李雨晴长沙理工大学基于三角形金纳米片的复合膜修饰电极高灵敏检测L-色氨酸09:50-10:00OP40李圣凯西南大学基于双倍输出的目标物转换策略以MoS2纳米花作为模拟过氧化无酶构建ECL适体传感器检测MUC110:00-10:10茶歇主持人:陈卫、何治柯时间类型报告人单位报告题目10:10-10:30IL47陈卫中国科学院长春应用化学研究所三维碳-金属氧化物复合材料气体传感性能研究10:30-10:50IL48何治柯武汉大学一步法合成Rox-DNA功能化CdZnTeSQDs及其在葡萄糖可视化检测中的应用10:50-11:10IL49汪洪武肇庆学院新型碳材料-电化学传感器的研制及应用11:10-11:20OP41陈丽英仪器信息网互联网+仪器助力化学分析学科发展11:20-11:30OP42卢莹安徽农业大学基于交流阻抗技术的可再生型核酸适配体电化学传感器的研究11:30-11:40OP43曾卫佳西南大学Hemin为电化学可再生共反应促进剂用于构建高灵敏电致化学发光传感器12:00-午餐2017年11月7日星期二报展、仪器展13:50-14:30第二批报展集中参观讨论时间主持人:袁若张晓兵要求报展作者站在报展前与与会代表面对面集中讨论,同时评比优秀墙报奖(各10)2017年11月7日星期二下午大会报告及闭幕式主持人:卢小泉、樊春海地点:3楼银河厅时间类型报告人单位报告题目14:40-15:05PL07卢小泉西北师范大学卟啉及纳米材料的电化学研究15:05-15:30PL08孙立贤桂林电子科技大学功能材料与化学传感器15:30-15:55PL09逯乐慧中科院长春应化所有机纳米探针的设计及应用15:55-16:20PL10张晓兵湖南大学高性能荧光生物成像探针的研究16:20-16:45PL11牛利中科院长春应化所电化学传感及分析仪器设计16:45-17:10PL12吴海龙湖南大学高阶化学传感与复杂体系精准定量17:10-17:30茶歇17:30-会议闭幕式主持人:吴海龙1.化学传感器杂志执行主编讲话;2.会议优秀论文和优秀报展论文颁奖;3.会议总结(组委会);4.下一届会议承办单位代表发言18:30-晚餐2017年11月8日星期三全天时间内容地点:06:30-早餐  报展目录  报展:  2017年11月6日8:30-18:30  2017年11月7日8:30-14:30  (特别是6日17:30-18:20和7日13:50-14:30,所有墙报作者都必须参与)  地点:2楼中堂  主持人:袁若张晓兵编号题目第一作者通讯作者作者单位P1钯纳米粒装饰硅纳米线及其氢气传感器的应用高敏KoreaAdvancedInstituteofScienceandTechnologyP2基于多孔碳纳米微球构建4-氨基苯酚电化学传感器李阳王海波信阳师范学院P3项链状纳米粒子在饮料检测中的应用向媛杨海峰上海师范大学P4基于电纺丝修饰CuO葡萄糖传感器徐汀文颖上海师范大学P5高粘、柔性SERS条以及快速检测应用汪丹王丰,杨海峰上海师范大学P6离子液体辅助的二氧化锡为基底制备的平面钙钛矿膜用于无标记的光电化学传感器裴建英吴一萍,杨海峰上海师范大学P7基于聚合物纳米粒子修饰碳纳米管构建化学传感器与性能研究许升刘晓亚江南大学P8基于金/无规共聚物组装体系的分子印迹传感涂层赵伟刘晓亚江南大学P9磁珠辅助的催化发夹组装和双供体荧光共振能量转移用于核酸检测羊小海湖南大学P10热线半导体型传感器气敏响应机理研究高健高健郑州大学P11Determinationofcatechinsbasedonnitrogendopedgraphene/Au@Ptcore-shellnanomaterialsmodified陈显兰红河学院P12一种集核酸提取、等温扩增、结果判读的一体化A群轮状病毒快速诊断纸芯片叶辛方雪恩,孔继烈复旦大学P13垂直定向ZnO纳米棒阵列的制备及表征蒋建朋蒋建朋西安邮电大学P14基于聚左旋多巴/MWCNTs复合材料构建电化学传感器的研究卫志强杨晖河南科技大学P15鳞状细胞癌抗原和癌胚抗原在免疫层析分析装置上的同时检测刘燕毛勋西北大学P16基于酶促金属化信号放大的碱性磷酸酶液晶生物传感器字琴江周川华云南大学P17基于三维多孔类石墨烯的对乙酰氨基酚和对氨基苯酚电化学检测冯岩龙郭慢丽华南师范大学P18快速响应的双光子荧光探针用于细胞内内源性甲醛成像辛芳云敬静,张小玲北京理工大学P19NiO/ZnOp-n结酶生物传感用于海水有机磷检测赵明岗赵明岗中国海洋大学P20基于目标循环及核酸纳米结构信号放大的miRNA非标记电化学测定熊梅赵晶瑾广西师范大学P21基于解磷定/二硫化钼量子点的电化学传感器用于有机磷的检测尹文青彭娟宁夏大学P22基于Ir/MnO2标记型前列腺特异性抗原免疫传感器的研制马玉洪杨云慧云南师范大学P23DetectionofFourTetracyclineVeterinaryDrugsinMilkBasedonFluorescentAptasensorandCatalyticHairpinAssemblyReaction周琛YongxinLi四川大学华西公共卫生学院P24基于石墨烯量子点构建银离子的比率传感平台雷翠华朱树芸曲阜师范大学P25α-取代丙烯酸酯模板分子工程用于多硫化氢快速荧光成像郭敬儒杨盛,杨荣华长沙理工大学P26基于二硫化钼量子点荧光共振能量转移检测有机磷张慧佳彭娟宁夏大学P27基于7,7,8,8-四氰基喹啉甲烷与氧化石墨烯的谷胱甘肽电化学传感研究袁柏青袁柏青安阳师范学院P28一种用于高效光动力治疗的硅基纳米材料王荣贵陈惠,孔继烈复旦大学P29硫化铅纳米晶基电化学发光免疫传感高灵敏检测甲胎蛋白沙海峰贾能勤上海师范大学P30基于二氧化钛-石墨烯纳米复合物的光电化学适体传感器测定土霉素封科军封科军惠州学院P31DNA纳米机器构建及其分析应用郑姣何治柯武汉大学P32近红外成像介导的协同光动力学/化学癌症治疗的前药设计刘红文张晓兵湖南大学P33海胆状氧化酶活性钴酸镍微球的制备及其比色检测对苯二酚的应用宋亚文赵明岗,陈守刚中国海洋大学P34基于酶致碱式碳酸铜矿化的高灵敏比色免疫分析黎波赖国松湖北师范大学P35多壁碳纳米管和金纳米粒子修饰的辛基酚可抛式传感器的制备及应用李海玉张庆中国检验检疫科学研究院P36脱嘌呤/脱嘧啶核酸内切酶1活性的简便灵敏免标记荧光检测李雪君张亮亮广西师范大学P37表面等离子体共振铝纳米锥阵列及其生物传感应用张力周建华中山大学P38基于BSA-AuNCs/AChE高灵敏度荧光传感器检测有机磷农药罗庆娇邱萍南昌大学P39双亲聚合物改性碳纳米管在亚硝酸盐检测的应用朱晓洁刘晓亚江南大学P40基于片状Fe:TiO2复合Bi2S3纳米材料的光电适配体传感器检测卡那霉素陈全友谭学才广西民族大学P41金三角-量子点复合物在心肌肌钙蛋白I检测的应用王瑛姝婷周建华中山大学P42聚L-甲硫氨酸修饰电极测定碘刘旭孙登明,高慧淮北师范大学P43基于卟啉近红外光谱结合化学计量学方法快速判别33种茶叶原产地尹桥波付海燕中南民族大学P44磁珠辅助的催化发夹组装和双供体荧光共振能量转移用于DNA的检测方红梅羊小海,王柯敏湖南大学P45一种快速检测苯硫酚的近红外荧光探针及其应用高倩曾荣今湖南科技大学P46可视化生物传感器用于环境污染物的快速检测分析陈俊华陈俊华广东省生态环境技术研究所P47凝集素微阵列芯片在活细胞表面糖基化合物靶标筛选中的应用田荣荣ZhenxinWang中国科学院长春应用化学研究所P48AnenhancednonenzymaticelectrochemicalglucosesensorbasedonPddopedCumodifiedelectrode李崭虹Zhi-GangZhu上海第二工业大学P49Polyacrylamide-PhyticAcid-PolydopamineConductingPorousHydrogelforEfficientRemovalofWater-SolubleDyes赵珍LinaMa,ZhenxinWang中国科学院长春应用化学研究所P50基于3D石墨烯-普鲁士蓝构建的电化学尿酸传感器李鹏威贾能勤上海师范大学P51基于二氧化锡和还原氧化石墨烯纳米复合材料传感器对SF6分解产物的气敏特性研究褚继峰杨爱军西安交通大学P52一种基于双波长快速区分和检测GSH与Cys/Hcy的荧光探针杨贇山曾荣今湖南科技大学P53碳量子点荧光探针及其对丙酮的选择性检测赛丽曼黄磊上海师范大学P54基于无定型配位聚合物的近红外碱性磷酸酶纳米荧光探针的构建周东叶李春艳湘潭大学P55基于氟硼吡咯的近红外半胱氨酸荧光探针的构建江文丽李春艳湘潭大学P56介孔纳米金修饰的高灵敏拉曼免疫探针黄亚齐林大杰,王舜温州大学P57金纳米颗粒催化增长增强表面等离子体共振用于microRNA的高灵敏检测聂文艳王青,王柯敏湖南大学P58血红蛋白的电化学检测侯嘉婷韩国成桂林电子科技大学P59基于多孔纳米花结构的Co3O4葡萄糖电化学传感器胡婧婷胡婧婷国网吉林省电力有限公司电力科学研究院P60基于局域表面等离子体共振的表面增强紫外可见吸收光谱探索王阳阳周建华中山大学P61基于金纳米颗粒的裂开型脱氧核酶探针用于细胞内microRNA的放大检测吴亚楠黄晋,王柯敏湖南大学P62基于金/银合金的比率型SERS纳米探针用于细胞内一氧化氮的成像分析司艳美李继山湖南大学P63双通道电化学分析系统对β-淀粉蛋白寡聚体和纤维丝的同步测定于妍妍于妍妍徐州医科大学P64类石墨烯碳材料修饰玻碳电极用于亚硝酸盐的高灵敏安培检测杨玫郭慢丽华南师范大学P65一种新型咔唑席夫碱荧光探针的制备及高效识别铝离子(Ⅲ)的性能研究张献张献齐鲁工业大学P66光子晶体水凝胶传感器陈千山吴朝阳湖南大学P67基于功能核酸的液晶生物传感研究蒋婷婷吴朝阳湖南大学P68葫芦脲与叠氮基共功能化石墨烯用于构建超灵敏电致点击化学传感器韦天香韦天香,戴志晖南京师范大学P69化学计量学辅助液相色谱全扫描质谱同时检测奶粉中多种雌激素孙小东吴海龙湖南大学P70基于聚亚甲基蓝颗粒的唾液隐血可逆检测罗崇岱周建华中山大学P71基于多功能血红素/G-四链体纳米线的电化学生物传感器检测铅离子卿敏袁若,张进西南大学P72比率型双光子荧光纳米探针用于细胞内pH检测于欣艳李继山湖南大学P73微波辅助制备碳量子点荧光及其应用于茶多酚含量的检测吴春莲韦庆益华南理工大学P74基于Ag/Au核壳纳米颗粒修饰单壁碳纳米管的比率型SERS探针用于细胞内核酸内切酶的检测分析覃小洁李继山湖南大学P75氧化石墨烯/金纳米颗粒/四苯基卟啉纳米复合材料用于镉离子电化学传感器的构建刘静李继山湖南大学P76SilverNanoclusterswithEnhancedFluorescenceandSpecificionRecognitionTriggeredbyAlcoholSolvents:AHighlySelectiveFluorimetricStrategyforIodideIonsinUrine冯路平HuaWang曲阜师范大学P77MesoporousSilver?MelamineNanowiresFormedbyControlledSupermolecularSelf-Assembly:ASelectiveSolid-StateElectroanalysisforProbingMultipleSulfidesinHyperhalineMediathroughtheSpecificSulfide?ChlorideReplacementReactions刘敏HuaWang曲阜师范大学P78基于交替三线性分解的二阶标准加入法建模液相色谱-质谱数据用于检测血浆中抗癌药:克服基质干扰和基质效应胡勇吴海龙湖南大学P79LC-MS结合二阶校正方法快速测定面膜中非法添加的15种糖皮质激素龙婉君吴海龙湖南大学P80三维荧光结合二阶校正方法测定辣椒中三种罗丹明类染料的含量常月月吴海龙湖南大学P81化学计量学辅助HPLC-DAD快速测定蜂胶中十八种多酚类物质刘倩吴海龙湖南大学P82可实时再生的共反应促进剂控制增强苝四甲酸/过硫酸根体系用于电化学发光分析雷燕梅袁若西南大学P83HPLC-DAD结合二阶校正方法同时测定中成药保健品中非法添加的11种非甾体抗炎药王童吴海龙,俞汝勤湖南大学P84基于炔基的比率型SERS纳米传感器用于活细胞和组织中Caspase-3的检测吕梦李继山湖南大学P85化学计量学辅助HPLC-DAD策略用于同时定量分析中药川穹的中6种活性成分肖蓉吴海龙湖南大学P86生物素化抗体-无机盐杂化纳米花三维ELISA用于甲胎蛋白的快速高效检测刘宇澄何治柯武汉大学P87基于SBA-15/氧化苏木精/青霉素酶/nafion修饰玻碳电极的青霉素电化学传感器罗晴谭学才广西民族大学P88Ag纳米粒子/壳聚糖/石墨烯修饰电极与HIV相互作用的研究弓巧娟弓巧娟运城学院P89基于ATP促进目标物循环的新型荧光检测法检测MicroRNA-21文智斌袁若,柴雅琴西南大学P90基于功能化β环糊精—二茂铁主客体识别复合物构建电致化学发光传感器谢西月袁亚利,袁若西南大学P91基于DNA酶剪切循环驱动的DNA镊子来构建高效酶级联放大的可再生传感器寇贝贝袁亚利,袁若西南大学P92基于p型硫化铅量子点猝灭富勒烯-纳米金包二硫化钼构建光致电化学传感器李孟洁袁若,柴雅琴西南大学P93Fully-reversiblehydrogenperoxideopticalsensorwithfastresponse丁龙江Xu-dongWang复旦大学P94基于卟啉锰同时作为猝灭剂和模拟酶构建光致电化学适体传感器黄廖静袁亚利,袁若西南大学P95Anactivity-basednear-infraredfluorescentprobefornativehumanalbuminanditsbio-imagingapplicationinlivingcells金强葛广波上海中医药大学P96一步法构建基于分子印迹-丝网印刷电极的可抛式农残快检传感器刘江李迎春哈尔滨工业大学(深圳)P97生物质炭基NiCo2O4的制备及室温下NH3气敏性研究吕贺史克英黑龙江大学P98级联放大的高灵敏CEA荧光适体传感器研究杨文婷许文菊西南大学P99基于Ni3N-Co3N纳米棒阵列的葡萄糖电化学传感器尤超熊小莉四川师范大学P100基于红绿蓝模型的金纳米团簇可视化检测汞离子邓文清熊小莉,黄科四川师范大学P101金团簇纸片氢化物发生-顶空固相萃取荧光可视化测锌代蕊黄科,熊小莉四川师范大学P102非标记型荧光和电化学生物传感器用于鸟嘌呤及其衍生物的检测陈敬华陈敬华福建医科大学P103液相色谱-单级质谱结合数学分离用于食品中8种塑化剂的同时绿色定量分析方焕吴海龙湖南大学P104荧光素@ZIF-8复合材料的比率荧光传感器用于铜离子的检测刘楠汪莉江西师范大学P105COFs@罗丹明-B复合材料的比率荧光传感器检测银离子蔡可莹宋永海江西师范大学P106人血清白蛋白-染料结合的荧光自助放大策略用于血清中前列腺特异性抗原的检测齐鹏邹振,杨荣华长沙理工大学P107基于3D氮掺杂石墨泡沫构建的无支撑电化学传感器用于检测H2O2和葡萄糖张玉李迎春石河子大学,哈尔滨工业大学(深圳)P108基于Ce@ZnO中空微球修饰的光纤气体传感器用于室温下丙酮气体的检测张路李迎春哈尔滨工业大学(深圳)P109P110多孔分层Co3O4/CuO纳米片的合成及其室温NOx气敏特性研究刘思宇李丽,史克英黑龙江大学P111电化学传感器中引入肖特基势垒:一种构建电化学传感器的新策略王兴涛赵明岗,陈守刚中国海洋大学P112石墨烯量子点-核酸适体生物传感器的制备及其用于癌胚抗原检测研究文为文为,王升富湖北大学P113Au修饰SnO2超薄纳米片的水热法合成及其低温甲醛气敏性能张乐喜张乐喜,别利剑天津理工大学P114钌硅纳米粒子表面增强的分子印迹电化学发光传感器超灵敏检测伏马菌素B1张修华张修华,王升富湖北大学P115基于铜纳米簇和核酸外切酶信号放大的电化学适体传感器用于miRNA21的超灵敏检测王升富王升富湖北大学P116构建新型双光子比率型荧光探用于快速检测SO2衍生物杨晓光杨盛,杨荣华长沙理工大学P117杂交链式反应的生物条形码放大技术检测CEA吴媛晋晓勇宁夏大学P118基于银片和上转换纳米颗粒间能量转移原理检测鱼精蛋白和胰蛋白酶陈洪雨张友玉湖南师范大学P119光电化学检测用无定型a-MoSx/RGO异质膜宋文波宋文波吉林大学P120一种脂滴定位的聚集发光荧光探针对碱性磷酸酶的检测以及成像应用李雅倩李海涛湖南师范大学P121卤键在分子识别中的应用李丽丽晋卫军北京师范大学P122化学修饰的DNA荧光探针用于乳腺癌细胞中miRNA-21的检测和抑制李静黄晋*,王柯敏*湖南大学P123基于碳点及I-的类酶催化反应构建双信号传感器用于尿样中I-的检测王海燕张友玉湖南师范大学P124氧化镁/中空碳球复合材料的制备及CO2吸附性能研究焦成丽江河清中国科学院青岛生物能源与过程研究所P125运用CCD荧光传感技术对DNA在2D界面上的游走过程进行跟踪与监测闫安杜民,李春艳福建医科大学P126基于P型BiOCl/TiO2复合材料的光电化学传感器检测毒死蜱罗燕妮谭学才广西民族大学P127基于染料-钴纳米片的荧光传感器用于焦磷酸根检测与细胞成像黄伟涛黄伟涛湖南师范大学P128银-分子印迹微球的制备及在表面增强拉曼散射中的应用任晓慧李欣哈尔滨工业大学P129食用农产品质量安全在线检测传感器黄家怿黄家怿广东省现代农业装备研究所P130离子液体功能单体的分子印迹荧光传感器与2,4,6-三氯苯酚选择性识别研究卢星李蕾浙江师范大学,嘉兴学院P131制备碳量子点-分子印迹复合材料分析硝磺草酮陈立钢陈立钢东北林业大学P132基于双发射碲化镉量子点介孔分子印迹聚合物的比率型荧光探针用于三聚氰胺的可视化检测张靓陈立钢东北林业大学P133制备碳化氮分子印迹复合材料检测奶粉中金霉素王尚书陈立钢东北林业大学P134分子印迹-碳量子点荧光探针的制备其对蜂蜜中土霉素的检测刘浩驰丁兰吉林大学P135氮氧化物化学电阻气体传感器进展与讨论赵将赵将国民核生化灾害防护国家重点实验室P136ApH-resolvedcolorimetricbiosensor:thenewdimensionformultipletargetsdetection郝楠KunWang江苏大学P137基于纳米金/碳量子点的荧光适体传感器用于ATP检测刘帅王慰郑州轻工业学院P138基于碳量子点和核酸适体的多巴胺检测传感器魏星姜利英郑州轻工业学院P139荧光素/铜纳米簇复合物比例荧光探针用于比率和可视化检测盐酸吗啉王本乾桂日军,王宗花青岛大学P140一种基于双金属和氧化石墨烯/硫堇复合物生物传感用于尿酸的测定高小惠桂日军,王宗花青岛大学P141用于L-组氨酸检测的酶扩增DNA-铜纳米簇荧光探针研究王星星何婧琳,曹忠长沙理工大学P142基于蚀刻引发电化学发光恢复构建氰化物传感器冯莹莹池毓务福州大学P143基于铜离子调控纳米金氮化碳复合物蚀刻与发光性能的电致化学发光传感器吴海山池毓务福州大学P144碳量子点纳米荧光探针的制备及其在细胞色素c成像分析中的应用研究张海娟邱洪灯中科院兰州化物所P145肿瘤标志物化学传感分析及药物运输的研究郭英姝张书圣临沂大学第十三届全国化学传感器学术会议会议指南20171025-chl(1).pdf
  • 英国Alphasense光离子PID传感器:环保监测领域的创新之选
    随着工业化和现代化的快速发展,环境污染问题日益凸显,环保监测成为了保障生态安全和可持续发展的重要手段。在众多环保监测设备中,PID(Photo Ionization Detector,光离子化检测器)传感器以其独特的技术优势,在环保监测领域发挥着至关重要的作用。英国Alphasense光离子PID传感器:环保监测领域的创新之选一、PID传感器的工作原理与特点PID传感器是一种基于紫外线光电离技术的气体检测器,它能够测量极低浓度的挥发性有机化合物(VOCs)。当PID传感器工作时,紫外线光源会发出特定波长的光,使通过检测器的气体分子发生电离,产生微小的电流。这种电流与气体浓度成正比,通过测量电流大小,PID传感器可以准确计算出气体浓度。PID传感器具有灵敏度高、响应速度快、测量范围广等特点。它能够检测ppb(十亿分之一)级别的VOCs浓度,对于一些有毒有害的有机物质,如苯、甲苯、二甲苯等,PID传感器能够迅速做出反应,为环保监测提供及时准确的数据支持。二、PID传感器在环保监测领域的应用室内空气质量监测:PID传感器可用于检测室内空气中的VOCs浓度,评估室内空气质量。在装修、家具制造等行业中,PID传感器可以帮助企业了解生产过程中产生的有害气体浓度,从而采取相应的措施降低污染排放。工业园区废气排放监测:工业园区是环境污染的主要来源之一。PID传感器可以实时监测废气排放口的气体浓度,判断废气是否符合排放标准。对于超标排放的企业,环保部门可以及时采取措施进行整改。机动车尾气检测:机动车尾气是城市空气污染的重要来源。PID传感器可用于机动车尾气检测站,实时监测车辆尾气中的VOCs浓度。通过对尾气排放的严格监管,可以有效减少机动车对环境的污染。应急监测与事故处理:在环境污染事故发生时,PID传感器能够迅速响应,提供及时准确的数据支持。通过监测事故现场的气体浓度变化,环保部门可以制定有效的应急处理方案,减少事故对环境和人体健康的影响。三、PID传感器在环保监测领域的重要性英国Alphasense光离子PID传感器:环保监测领域的创新之选提高监测精度:PID传感器具有极高的灵敏度和准确性,能够准确的测量极低浓度的VOCs。这对于及时发现和处理环境污染问题具有重要意义。促进环保管理:PID传感器在环保监测领域的应用,有助于企业了解自身生产过程中的污染排放情况,促进企业加强环保管理,降低污染排放。同时,环保部门可以通过PID传感器实时监测企业废气排放情况,确保企业遵守环保法规。英国Alphasense光离子PID传感器:环保监测领域的创新之选 保障生态安全:PID传感器在环保监测领域的应用,有助于及时发现和处理环境污染问题,减少污染物对环境和人体健康的影响。这对于维护生态安全和可持续发展具有重要意义。随着全球环境问题的日益严重,环保监测成为了维护生态平衡和人类健康的重要手段。在这一领域中,传感器技术发挥着至关重要的作用,其中英国Alphasense公司的光离子PID传感器更是以其较高精度、高灵敏度的特性,成为了环保监测领域的佼佼者。PID(Photo Ionization Detector)光离子气体传感器,特别是Alphasense的PID-A1型号,以其大量程(50ppb-4000ppm)和高灵敏度,在VOCs(挥发性有机物)的检测中展现出了良好的性能。VOCs作为大气污染物的重要来源,不仅影响空气质量,还对人体健康造成直接威胁。因此,准确、快速地监测VOCs的浓度对于预防和控制空气污染至关重要。PID-A1传感器采用了光电离子探测技术,通过测量气体分子在紫外光照射下产生的电离电流来检测气体的浓度。这种技术具有响应速度快、灵敏度高、选择性好等优点,能够实时、准确地反映VOCs的浓度变化。同时,该传感器还具备熄灯诊断功能,能够及时发现并修复潜在的故障,确保监测数据的准确性和可靠性。在环保监测领域,英国Alphasense的PID传感器被广泛应用于空气质量监测站、工业排放口、泄漏监测等多个场景。通过将PID-A1传感器集成到气体检测仪中,可以实现对VOCs的实时监测和数据分析,为环保部门提供准确的数据支持,帮助他们制定有效的污染治理措施。此外,随着技术的不断发展和应用的不断拓展,PID传感器在未来环保监测工作中将发挥更加重要的作用。例如,通过与物联网、大数据等技术的结合,可以实现对多个监测点的远程监控和数据共享,提高监测效率和数据利用率。同时,随着传感器技术的不断进步,PID传感器的性能也将得到进一步提升,为环保监测提供更加准确、可靠的技术支持。英国Alphasense的光离子PID传感器在环保监测领域发挥着重要作用。其高精度、高灵敏度的特性使其成为有害物质早期危险报警、泄漏监测等不可缺少的实用工具。更多英国Alphasense光离子PID传感器:环保监测领域的创新之选、英国Alphasense传感器、英国Alphasense阿尔法传感器、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • 应用案例 | Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP
    近日,来自山西大学激光光谱研究所、光学协同创新中心,-巴里大学和巴里理工大学跨校物理系波利森斯实验室的联合研究团队发表了《Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP》论文。二甲基甲基膦酸酯(DMMP)被广泛认为是最具代表性的模拟物,已开发并广泛用于DMMP检测的各种气体分析技术。气相色谱(GC)和质谱(MS)分析可以高敏感地鉴定不同的有机磷化合物,但它们在原位监测方面具有几个缺点,包括昂贵和耗时。此外,色谱分析必须由熟练的人员在专门的实验室中进行,不适合小型化。相比,光声光谱(PAS)是DMMP气体水平监测最有前景的技术之一,因为它具有高灵敏度、选择性和快速响应的优势。作为PAS的一种变体,石英增强光声光谱(QEPAS)技术自2002年首次报道以来迅速发展,其中超窄带石英调谐叉(QTF)与两个作为锐利共振声学换能器的声学微共振器(AmRs)在声学上耦合,用于检测声音信号,而不是传统的宽带麦克风。与体积超过10 cm3的传统光声池相比,小体积的QTF更有利于DMMP检测设备的小型化和快速响应。此外,QEPAS技术的显著特点是激发波长的独立性,这意味着可以使用相同的光谱声学器测量具有不同特征吸收光谱的痕量气体。DMMP在9–11.5 µ m的中红外区域显示出强烈的光吸收特征,因此使用高性能中红外量子级联激光器(QCLs)可以在理论上实现高灵敏度的检测。然而,中红外QCL输出光束通常具有较大的发散角,这使得将中红外激光束耦合到具有300微米叉间距的QTF中成为巨大的挑战,因为任何误散射光束击中QTF都会产生大的背景信号。在本研究中,我们展示了种基于定制T型QTF和中红外量子级联激光器(QCL)的小型化集成QEPAS DMMP传感器。T型QTF的叉间距为0.8毫米,具有约15,000的高品质因数,避免了由误散射光引起的背景信号,从而在ppb水平上获得最佳检测限。通过使用掺入DMMP的真实室外空气对传感器进行测试,以验证其有效性。实验部分:检测波长和光学激发源的选择强有力的靶向吸收带对于DMMP检测至关重要,因为实际应用需要具有亚百万分之一灵敏度的传感装置。由于其高输出功率、紧凑性和窄的光谱线宽,QCLs在中红外光谱区域已成为最多功能的半导体激发源。考虑到激发波长和激光源的大小,宁波海尔欣光电科技有限公司为该实验提供了一个发射波长为9.5 µ m,线宽为2 MHz的QCL激光器(QC-Qube 200831-AC712)作为DMMP-QEPAS传感器的激发源,其输出功率稳定性2%,一个具有极低电流噪声和温漂的QCL激光器驱动电路(QC750-Touch&trade ),在室温下操作,以稳定发射波长。通过激光驱动电路将QCL的温度设定为25.5℃。如图2所示,所使用的QCL激光器的输出波长是驱动电流的函数,并且其波长调谐范围落在所选吸收带中(图1中的绿色框区域)。图2中绘制了QCL激光器的平均功率与驱动电流之间的线性关系,表现出良好的线性关系。此外,该激光源的小尺寸是一个显著特点,外部尺寸约为300 cm3(65 × 65 × 70 mm3),使激光源能够实现紧凑的气体传感器。Fig. 1. Absorption spectra of 1-ppm DMMP/N2 gas mixture (red) obtained by the FTIR spectrometer and absorption spectra of 300-ppm H2O (blue) and 5- ppm CO2 (orange) based on HITRAN database. Inset: DMMP absorption band in the range of 1040–1065 cm&minus 1 and wavelength tuning range of the used QCL laser.Fig. 2. QCL emission wavelength and output optical power as a function of driving current in amplitude modulation operating mode with a duty cycle of 50 %. QCL laser: HealthyPhoton, QC-Qube QCL laser driving circuit:: Healthy Photon, QC750-Touch&trade 结论基于QEPAS的传感器由于其波长独立性具有很高的多功能性,这使得通过替换激光源可以检测各种神经毒剂。在本研究中,首次开发了一种紧凑尺寸和可靠性能的ppb级QEPAS DMMP传感器。选择了9.56 µ m的激发波长,这是最强的DMMP吸收带,不受H2O和CO2的干扰。优化了主要系统参数,包括激光激发功率、气体压力和调制频率。最终,在0至1.5 ppm范围内验证了传感器的线性,并在300毫秒的积分时间下实现了6 ppb的最低检测限。我们使用真实室外空气作为载气检测了500 ppb的DMMP,并获得了与以零气作为载气时相同的信号幅度,从而验证了传感器的高选择性。参考Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork, Sensors & Actuators: B. Chemical 390 (2023) 133937, https://doi.org/10.1016/j.snb.2023.133937
  • 生态环境部发布《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》等4项国家生态环境标准
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氧化碳和氯化氢连续监测技术规范》等4项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年4月22日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646263  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)  3.《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》编制说明  4.环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)  5.《环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)》编制说明  6.环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)  7.《环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)》编制说明  8.水质 水温的测定 传感器法(征求意见稿)  9.《水质 水温的测定 传感器法(征求意见稿)》编制说明  生态环境部办公厅  2024年3月18日  (此件社会公开)
  • “100家实验室”专题:访南京大学污染控制与资源化研究国家重点实验室
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第三十七站:南京大学污染控制与资源化研究国家重点实验室。    污染控制与资源化研究国家重点实验室位于长江三角洲,依托同济大学、南京大学环境科学与工程学科群,涵盖两校环境工程、环境科学、市政工程3个国家重点学科和7个博士点。1989年经国家计委批准,于1991年正式开始建设,1995年通过国家验收并正式对外开放。  2000年4月、2005年4月,实验室两次通过国家评估(B级)。实验室学术委员会由环境科学与工程学科领域著名专家学者15人组成,郝吉明院士为现任学术委员会主任。 实验室充分发挥南京大学和同济大学理工结合的优势,主要研究方向包括污染物的环境行为与生态效应,水体污染控制理论与技术,固体废物处理与资源化,环境修复与流域污染控制。  南京大学污染控制与资源化研究国家重点实验室  污染控制与资源化研究国家重点实验室南京大学部分(以下简称实验室),现有工作人员36人。其中中科院院士1名,工程院院士1名,杰出青年基金获得者2名,教授28人,优秀中青年骨干5人。实验室对外设立开放课题,每年由学术委员会批准的开放课题达8项左右。目前,结合实验室的研究方向和仪器设备条件,优先资助典型污染物的环境化学行为及生态安全研究、水污染控制与资源化研究、环境修复研究、环境调控与区域环境管理等研究领域,并将逐步加大对外开放的程度。实验室仪器设备管理负责人冯建昉高工热情接待了仪器信息网的到访人员。并详细介绍了实验室的建设和实验室仪器等情况。  在仪器管理方面,实验室实行“持证上岗”的管理办法,冯老师介绍说每年研究生一年级的学生都会学习《现代环境分析分析技术与实验》这门课程,课程结束后,每个人可以选取自己需要使用的仪器,参加培训,考试合格持证上岗。  参观南京大学污染控制与资源化研究国家重点实验室  实验室的分析仪器主要有气质联用仪、液质联用仪、高效液相色谱仪、气相色谱仪、离子色谱仪、总有机碳测定仪、原子吸收分光光度计、快速溶剂萃取仪等。  在气质联用仪实验室我们看到四台赛默飞世尔科技公司不同时期的仪器。冯老师介绍说1999年购买气质联用仪时,仪器的品牌还是菲尼根,2005年购买的仪器属于赛默飞世尔科技与菲尼根共同的产品,而2007年和2009年购买仪器时,赛默飞世尔科技已经完成了对菲尼根的收购,仪器品牌就完全是赛默飞世尔科技了。四台不同时期的仪器一起见证了赛默飞世尔科技公司的品牌整合战略发展之路,虽然品牌名称更换了,但是良好的质量保证了产品对用户持久的吸引力。  菲尼根GCQ气质联用仪(GC/MSn)  Thermo Trace PolarisQ 气质联用仪(GC/MSn)  Thermo Trace DSQ II气质联用仪(GC/MS)  赛默飞世尔科技TSQ Quantum GC三重四级杆气质联用仪(GC/MS/MS)  冯老师介绍说虽然一台仪器的价格在二十几万美元,每年仅常规的维护费用就至少在两万元左右,但是仪器的质量比较稳定,而且软件的功能也很全面。另外,维护费用的高低与分析样品量和样品前处理是密切相关的,如果只是科研中做有机污染物的痕量分析,仪器的维护量就较少,但是如果做常量污染物检测,由于样品数量、来源及复杂性等原因,其维护费用和工作量就比较大。所以样品进行色质联用分析时,其前处理手段是极其重要的,这不仅仅是影响维护费用和工作量,而是关系到其数据可靠性。而实验室的液质联用仪主要用来做农残分析、或大分子有机污染物降解产物的定性分析。  Agilent 1200高效液相色谱仪(HPLC)  液相色谱、气相色谱仪器以安捷伦的产品为主。冯老师还特别介绍了实验室里的一台气相色谱仪,这台仪器是专门用来测定磷化氢的,同时实验室还在研究开发磷化氢的前处理系统,冯老师说这个研究已经做了七八年了,目前计划与厂家合作,将该系统商品化,考虑到市场应用前景,还在不断研究改进,希望可以适用于更多的物质,如硫化氢、二氧化碳等。  用于开发前处理系统的气相色谱仪  除了环境分析仪器,实验室里还有许多生物分析仪器,如脉冲场电泳、可见/紫外凝胶成像仪、基因突变检测系统、梯度PCR仪、超声细胞破碎仪、蛋白电泳、核酸电泳、金相显微镜等。  BIO-RAD 凝胶成像系统  南京先欧生物科技有限公司XO-650超声波细胞粉碎机  据冯老师介绍,由于目前实验室场地有限,不能购买太多的仪器,今年下半年实验室将要搬到南京大学仙林校区,到时候将会根据需要购置相应的仪器。  相信在先进仪器装备的保障下,污染控制与资源化研究国家重点实验室会有更多更好的科技成果!  附录1:南京大学污染控制与资源化研究国家重点实验室  http://hjxy.nju.edu.cn/skl/  附录2:同济大学污染控制与资源化研究国家重点实验室  http://envirolab.tongji.edu.cn/Pollution/index.jsp
  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 机器人与人工智能在检验检测行业中的应用
    p  科技是推动社会发展核心驱动力,人类社会也随着一轮又一轮的科技革命,逐渐迈向更为智能化的时代。在检验检测行业,人工智能和机器人技术同样是促进产业实现转型升级的有效推动力。/pp  近年来,机器人的核心技术突破明显。以往,传统工业机器人主要依从一系列控制指令完成任务,随着人工智能技术在感知、人机交互、行动控制、智能决策等领域的发展,机器人在也逐步升级。例如通过机器人视觉能够让分拣机器人更精确的识别,传感系统可以感知周边环境等。/pp  根据国家统计局的数据显示,上半年我国工业机器人产量7.4万套,同比增长23.9%。自2013年以来,我国就已经成为全球最大的机器人市场。据OFR近期公布的数据显示,2017年全球工业机器人销量达38.7万台,同比增长31%,其中中国销量13.8万台,同比增长58%,较去年提高6个百分点。全球工业机器人销量的绝对值中,一半的增长来自中国。预计到2020年,中国服务机器人年销售额将超过300亿元。随着人工智能等先进技术的快速发展,机器人迅速从工业领域向服务行业渗透,服务机器人展现出比工业机器人更为广阔的市场空间。/pp  此外,人工智能也正以前所未有的速度向前发展。全球顶尖的IT和互联网公司都加大了对人工智能领域的投入,报告Google、FaceBook、微软等跨国企业。我国把“人工智能”一词也写入了国家“十三五”规划纲要,人工智能进入爆发式增长的拐点。/pp  那么,机器人与人工智能与检验检测行业有什么必然联系呢?从发展现状来看,我国的检验检测市场化机制正在形成,国内第三方检测也逐步放开,一切都呈现出渐入佳境的趋势。但与此同时,相关人士也发现,检验检测行业的集中度较低,国有、外资、民营检测机构三分市场,检验检测行业亟需通过机制改革和技术创新进行资源整合,劳动密集型、自动化、智能化和标准化程度也有待进一步提高。/pp  随着劳动力价格的上涨,中国制造业的“人口红利”正在不断消失,同时,技术进步和产业升级导致“机器”成本逐渐降低,“机器换人”已经成为一种新的发展趋势。SGS等知名检测机构已经陆续开发了基于机器人的智能化检测系统。例如在集装箱检验检疫熏蒸处理上,基于智能移动机器人平台能够取代人力完成溴甲烷、磷化氢、乙酸乙酯等熏蒸剂的投放、浓度检测、环境残留检测等工作,把作业人员从有毒有害危险及恶劣的环境中解放出来。/pp  在人工智能与检验检测行业的结合上,人们利用VR、AR、MR等技术形成全新的检验检测培训认证体系。基于人工智能全新模式的检验检测培训认证模式将为检验检测行业带来前所未有的发展契机,在观察性学习、操作性学习、社会性学习和研究性学习中都具有广阔的应用前景 建立深度学习,模拟人脑进行分析学习的神经网络,提高检验检测的科学性和一致性 “区块链+检验检测”技术,进一步深化检验检测监管模式,节约信息传递成本,提升检验检测公信力。2018年,中国检科院与京东集团联合打造区块链防伪平台,用技术对燕窝实施全面流程追溯,实现进口燕窝产品从源头到国内经销环节的全流程可追溯。同年,上海机场检验检疫局为推动进口消费品检验监管模式创新,构建的区块链数据平台成功落地,通过区块链数据平台,工作时间至少可以缩短3天。/pp  据IHS预测,2020年全球潜在检验检测服务业市场规模将超过200亿欧元。广阔的市场前景更凸显了引领行业走向智能化的必要性。通过机器人操作提高检测准确度和效率,借助智能化延伸第三方检测的价值链条,为相关行业决策提供第一手资料,都将有力促进行业的变革和崛起。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制