当前位置: 仪器信息网 > 行业主题 > >

纳粒粒径谱仪

仪器信息网纳粒粒径谱仪专题为您提供2024年最新纳粒粒径谱仪价格报价、厂家品牌的相关信息, 包括纳粒粒径谱仪参数、型号等,不管是国产,还是进口品牌的纳粒粒径谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳粒粒径谱仪相关的耗材配件、试剂标物,还有纳粒粒径谱仪相关的最新资讯、资料,以及纳粒粒径谱仪相关的解决方案。

纳粒粒径谱仪相关的资讯

  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 从专利申请文献统计看近百年颗粒粒径检测技术演进
    p  strong编者按/strong:让PM2.5无所遁形的颗粒粒径检测技术,已被广泛应用于工业、化学、环境安全等诸多领域。本文作者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/8421654c-8b9f-40df-adeb-ff1dbf5948e4.jpg" title="00.jpg"//pp  2011年底,美国驻华大使馆在新浪微博的官方账号发出一条微博:“北京空气质量指数439,PM2.5细颗粒浓度408.0,空气有毒害??”该微博随即在国内引发了对PM2.5(细颗粒物)的强烈关注,最终PM2.5被纳入到常规空气质量监测体系中。事实上,让PM2.5无所遁形的就是颗粒粒径检测技术,其已被广泛应用于工业、化学、环境安全等诸多领域。笔者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号 G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp  strong各项技术并行发展/strong/pp  颗粒粒径或粒度分布的检测方法种类繁多,按照测量原理主要有7类技术分支,包括:筛分法、沉降法、显微图像法、光散射法、电阻法、静电法和超声法。笔者对各技术分支的专利申请量进行统计发现,光散射法的专利申请量最高,其早在20世纪70年代就进入人们的视线,是目前最先进、应用最广的一种颗粒测量技术。此外,排名第二的是显微镜法,尤其是电子显微镜图像分析技术是当前比较流行的分析手段,该方法优势明显,除了可得到颗粒的粒径,还可以对颗粒的结构、形状和表面形貌有一定的直观认识和了解。然后分别是沉降法和筛分法,这两种方法是测量颗粒粒径的传统方法,工艺过程简单、成本较低,且操作便捷、装置结构简单。/pp  在颗粒粒径检测技术演进的过程中,主要的发展趋势有2个方面:检测精确度的提高及检测对象的扩展。上世纪 40年代以前,业内主要是采用筛分法、沉降法和显微镜法。其中筛分法最早的专利出现在1933年,公开号为GB402402A 沉降法则是基于 Stokes重力沉降公式来测定粒径,沉降法的专利早期以国外专利申请为主。显微镜法是唯一可直接观测单个或混合颗粒形状、粒度和分布的方法,早期国内相关专利申请较少,从2010年才开始出现激增态势。此外,将显微镜法和其他粒度测试方法结合于一体的装置,是当前显微镜法的研究热点,如上海理工大学公开号为CN102207443A、CN102207444A的专利申请,就是利用传感器件将多种颗粒粒度测量方法融合在一起。/pp  随着计算机、电子和激光等技术的快速发展,20世纪70年代起,颗粒粒径检测逐渐开始实现检测对象的多元化,光散射颗粒粒度测量仪受到市场欢迎。光散射技术的思想最早由前苏联学者Mandelshtam于1926年提出,随后其应用逐步扩展至界面和胶体科学等领域,并开发出了荧光相关光谱法、X射线光子相关光谱法、动态光散射显微术等。近年来,对动态光散射仪器的应用需求明显增长,相关技术研究主要集中在对动态光散射仪器的局部结构改进和采用各种新技术改造传统装置以扩展新应用等方面。/pp  对于电阻法和基于电阻法发展起来的静电法和超声法,其理论基础的发展目前已趋于成熟。其中电阻法最早为美国Coulter公司创始人Wallace H. Coulter于1953年发明,随后Coulter公司将其商品化,开发出库尔特计数器,Coulter公司此后不断对电阻法进行深入研究,其生产的 Multisizer I全自动粒度分析仪仍是目前较为先进的颗粒测量多功能仪器。而其他公司和个人对于电阻法、静电法和超声法的研究,在1980年之后得到迅速发展,大量相关的专利都是基于Coulter公司技术的改进而来。/pp  总体而言,虽然不同检测方法均有其各自的特点和适应的颗粒类型,各技术之间呈现并行发展的趋势,但整体上呈现出向更快速、更准确以及更加便捷检测的方向发展,各分支的专利申请量也均呈现出上升趋势。/pp strong 两家公司平分秋色/strong/pp  笔者分析了排名靠前的主要申请人的核心专利数量和企业综合实力,发现在颗粒粒径检测领域,a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100646/"span style="color: rgb(0, 176, 240) "英国马尔文仪器有限公司/span/a(下称马尔文公司)和a style="text-decoration: underline color: rgb(0, 176, 240) " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100336/"span style="color: rgb(0, 176, 240) "美国贝克曼库尔特公司/span/aspan style="text-decoration: underline color: rgb(0, 176, 240) "(/span下称贝克曼公司)呈现平分秋色的竞争态势。/pp  马尔文公司成立于1963年,早在20世纪80年代,该公司便进行了颗粒粒径测量仪器的技术研发,其最早的研究方向是基于激光技术测定颗粒粒径。随后,该公司研发了利用超声法测量颗粒粒径的相关技术,相关专利包括US5121629A、GB9801667D0、WO2010/041082A2等。在 1980年到2010年间,马尔文公司在颗粒粒径检测的几个主要技术分支上均保持了稳定的专利申请量,在光散射法和超声法检测两个分支的专利申请量最大。/pp  马尔文公司在超声测量方面的主要产品为Ultrasizer MSV超声测量仪,该仪器可根据颗粒粒径与声波衰减之间的关系计算出颗粒粒度分布,同时还可以测出体系的固含量。随后,该公司在初代产品的基础上进行改进,开发出了探头式超声粒度测量仪。近年来,马尔文公司发展迅速,从专利申请分布来看,自2010年至今,该公司提交了50余件关于激光粒度分析的专利申请,这表明该公司可能欲向高精密仪器方向转型。/pp  贝克曼公司于1997年成立,现已成为世界最大的颗粒分析仪器公司,其于1953年制造出了世界上第一台颗粒粒度分析仪,并于1965年对该产品提交了专利申请NL6505468A。/pp  1983年贝克曼公司就进入了中国市场,并在北京、上海等地设立了代表处,此后不断完善专利战略,迅速占领了国内外市场。2000年之后,贝克曼公司进入超声颗粒测量领域,获得了一系列专利权,如公开号为WO0057774A1、US2006001875A1等。2000年至2012年,贝克曼公司在颗粒粒度检测的四个主要分支领域均进行了专利布局,其开发了基于电阻原理的Multisizer 3系列粒度分析仪,基于光脉冲原理的HIAC系列液体颗粒检测仪,基于光脉冲和库尔特原理的Multisizer 4e系列粒度分析仪,以及融合了超声与光散射原理的DelsaMax Pro粒径分析仪和DelsaMax CORE系列产品。其最新的DelsaMax Pro系列产品与马尔文公司的Zetasizer Nano系列产品采用的技术都结合了声学和光学颗粒检测技术,可见两家公司在该领域的竞争态势比较激烈。/pp  笔者认为,今后颗粒粒径检测领域的技术发展将更注重提高测量精度和对颗粒特性的多方面测定等方面,将不同颗粒粒径检测技术进行融合以提高检测性能将成为未来专利布局的热点。(詹雪)/pp(本文仅代表作者个人观点)/p
  • 【热点应用】Zetasizer精准表征慢病毒载体 (LV) 颗粒粒径及滴度
    本文摘要本文通过介绍马尔文帕纳科纳米粒度及电位仪Zetasizer Ultra用于慢病毒载体颗粒粒径及载体滴度表征的实验设置及检测结果。让您快速实现慢病毒载体(LV)关键质量属性的评估。慢病毒载体(Lentiviral vector, LV)是在HIV-1病毒基础上改造而成的病毒载体系统,可以将外源基因或外源的shRNA有效地整合到宿主染色体上,从而达到持久性表达目的序列的效果。可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果。对于一些较难转染的细胞, 如原代细胞、干细胞、不分化的细胞等,使用慢病毒载体,能大大提高目的基因或目的shRNA的转导效率,且目的基因或目的shRNA整合到宿主细胞基因组的几率大大增加,能够比较方便快捷地实现目的基因或目的shRNA的长期、稳定表达。(部分内容来自百度百科)所以,在体外实验及体内实验的研究中慢病毒载体(LV)与腺病毒(Ad)和腺相关病毒(AAV)同为主流的病毒载体系统。其颗粒粒径约为90-120nm。在慢病毒载体(LV)的生产工艺中,有无团聚体 (aggregate),以及载体滴度(titer)的高低是重点考察的关键质量属性(CQAs)。Zetasizer Ultra纳米粒度仪通过对LV颗粒的粒径及载体滴度的表征,快速实现CQAs的测量。Zetasizer Ultra 纳米粒度电位仪实验方法设定使用Zetasizer Ultra-Red以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定。样品测试体积为20µ L,LV折射率、吸收率分别设置为1.45和0.001。分析结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们对LV粒度大小及分布进行表征(图1) 。图中有两个粒径分布峰,分别位于106.4以及430.6nm,这说明体系中除了LV单体,还有团聚体产生。图1 LV样品的光强粒径分布图图2 LV样品的载体滴度此外,除了基于MADLS技术得到的颗粒的准确粒径分布图,我们还得到对应尺寸的载体滴度信息(图2)。可以看到LV单体的颗粒浓度约1x1012个颗粒/mL,团聚体颗粒浓度约为1x1010个颗粒/mL,仅为单体的1%。单体和聚集体浓度相差较大的情况下,Zetasizer仍可很好的区分单体和聚集体。点击拓展阅读:Zetasizer用于rAAV颗粒粒径及衣壳滴度
  • 【AAV热点应用】Zetasizer精准表征rAAV颗粒粒径及衣壳滴度
    rAAV腺相关病毒载体表征腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一。其直径约为20-26nm,含有4.7kb左右的线状单链DNA。重组腺相关病毒载体(recombination AAV, rAAV)则是在非致病的野生型AAV基础上改造而成的,因其具有:安全性高、免疫原性低;宿主细胞范围广(对分裂细胞和非分裂细胞均具有感染能力);体内表达时间长;血清型众多,且具有组织特异性等特点被广泛用于基因治疗、疫苗等研究、应用领域[1]。在rAAV的生产工艺中,有无团聚体(aggregate),以及衣壳滴度(titer)的高低是重点考察的关键质量属性(CQAs)[2],Zetasizer纳米粒度仪通过对rAAV颗粒的粒径及衣壳滴度的表征,快速实现该CQAs的鉴定。纳米粒度电位仪马尔文帕纳科 Zetasizer Ultra01材料和方法将两种不同生产批次的rAAV分别用缓冲液稀释至合适的浓度,利用Zetasizer Ultra-Red (Malvern Panalytical Ltd.)以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定[3]。样品测试体积为20 µL,rAAV折射率、吸收率分别设置为1.45和0.001,缓冲液的散射光强度测定为80 kcps。02结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们分别对两种批次的rAAV粒度大小及分布进行表征(图1、3)。可以看到,批次1的rAAV只有一个粒径分布峰,其值大小为28.2 nm,说明体系中没有团聚体产生,而批次2的rAAV则呈现出3个粒径分布峰,分别位于28.2、150.9以及430.6 nm,这说明体系中除了rAAV单体,还有团聚体产生。此外,基于MADLS技术得到的颗粒的准确粒径分布图,我们还能得到对应尺寸的衣壳滴度(图2、4)。图1,批次1 rAA的光强粒径分布图图2,批次1的衣壳滴度图3,批次2 rAA的光强粒径分布图图4,批次2的衣壳滴度参考文献1. Mendell J R, Al-Zaidy S A, Rodino-Klapac L R, et al. Current Clinical Applications of in vivo Gene Therapy with AAVs. Molecular Therapy, 2021, 29 (2), 464-488.2. Gimpel A L, Katsikis G, Sha S, et al. Analytical Methods for Process and Product Characterization of Recombinant Adeno-Associated Virus-based Gene Therapies. Molecular Therapy — Methods & Clinical Development, 2021, 20, 740-754.3. Cole L, Fernandes D, Hussain M T, et al. Characterization of Recombinant Adeno-Associated Viruses (rAAVs) for Gene Therapy Using Orthogonal Techniques. Pharmaceutics, 2021, 13, 586.
  • GRIMM发布1纳米粒径谱仪新品
    GRIMM气溶胶科技公司颗粒物粒径检测下限可达: 1.1 nm融合了Airmodus专利的纳米颗粒增大技术(PSM)和GRIMM 的扫描电迁移率粒径谱技术(SMPS+C)从1纳米至1微米完整测量 特点从1.1 纳米开始测量颗粒物的粒径分布融合了Airmodus 专利PSM技术和GRIMM SMPS+CAirmodus 专利的纳米颗粒增大技术(PSM)技术可使SMPS测量到最小的纳米颗粒和团簇2级CPC凝聚长大技术(二甘醇和正丁醇)为测量1纳米颗粒优化了DMA气路系统DMA可以选择扫描模式,步进模式或单一粒径筛分三种模式Airmodus PSM-A10 纳米颗粒增长器,第一级检测器工作溶液:二甘醇50%粒径检出限:1.5 纳米 (镍铬颗粒)采样流量:2.5 升/分钟真空要求:100—350 mbar NTP压缩气源要求:1.5—2.5 bar NTP, 除油/除水/除颗粒电源要求:100-240 VAC 50/60 Hz, 280 W通讯接口:USB或RS-232外观尺寸:29*45*46.5 cm重量:17 kg GRIMM 5417 CPC工作溶液:正丁醇50%粒径检出限:4 纳米 (氧化钨颗粒)采样流量:0.3升/分钟或0.6 升/分钟采样泵:内置检测浓度:单颗粒模式:1.5*10^5个/cm3,光度计模式:10^7个/cm3响应时间:T10—90 3s电源要求:90-264 VAC 47--63 Hz, 80--130 W通讯接口:USB,RS-232,模拟脉冲外观尺寸:40*25*29cm重量:12.4 kg 分级器DMA模式: GRIMM 维也纳型S-DMA或M-DMA,L-DMA粒径筛分范围:1.1—55纳米(10升/分钟鞘气流速 S-DMA) 2.8---155纳米(10升/分钟鞘气流速 M-DMA)粒径分辨率:步进模式: 45—255通道,可调 扫描模式:64通道每10倍粒径,对数间距 PSMPS数据输出:颗粒物数量浓度/粒径分布进样湿度:0—95%RH,非凝结采样压力:600—1050 mbar工作温度:15—30 oC工作湿度:0—95%RH,非凝结创新点:颗粒物粒径检测下限可达: 1.1 nm融合了Airmodus专利的纳米颗粒增大技术(PSM)和GRIMM 的扫描电迁移率粒径谱技术(SMPS+C)从1纳米至1微米完整测量1纳米粒径谱仪
  • 北大学者研制便携传感器 粒径分辨率达10纳米
    p 大气中超细颗粒物的检测首次有了低成本便携式利器。近日,北京大学物理学院肖云峰研究员和龚旗煌院士带领的课题组,成功制备了基于纳米光纤阵列的全光传感器,新传感器的单颗粒粒径分辨率首次达到10纳米。/pp 颗粒物的高灵敏传感检测在环境监控、国家安全和生化研究等方面具有重要意义。基于光学方法的传感技术具有非物理接触、易于操作且灵敏度高等优势,故而传统光纤传感器已在高灵敏检测领域“大显身手”。/pp 肖云峰对科技日报记者解释:“国际学术界研究表明,当光纤直径减小至光波长量级时,光纤外部产生显著的倏逝场(尺度约在百纳米量级),其对周围环境的微弱变化极为敏感,因此,可利用颗粒物在倏逝场中的散射效应,实现对超细颗粒物的传感与尺寸分布测量。”/pp 据肖云峰介绍,在新研究中,他们首先精确地计算了散射效率与散射体尺寸和光纤直径的关系,预测了纳米光纤传感器的最优几何尺寸和探测极限;随后进行了高灵敏度的纳米光纤阵列的设计和制备,并通过优化光纤模式,实现了单个标准聚苯乙烯纳米颗粒的传感和测量,粒径分辨率达10纳米。/pp 课题组利用这一传感器对2015年和2016年北京冬季大气细颗粒物进行了持续监测,直接获得了百纳米尺度细颗粒物的粒径分布信息及实时演化图,以此数据为基础计算得到的细颗粒物质量浓度数据与官方公布的数据趋势符合良好,展示了此成果具有较高的应用价值。/pp 龚旗煌院士说:“与其他传感器相比,纳米光纤型传感不仅精度高,且成本低、操作简单、便于携带,可快速精准地检测出大气中的超细颗粒物,有望为环境保护和雾霾形成机理研究提供一种新的工具。”/pp 这项成果发表在重要光学期刊《光:科学与应用》上,研究得到了国家自然科学基金委、科技部等的支持/p
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 / 3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 使用BeNano 90检测UV色浆粒径
    UV色浆是有机或者无机颗粒和分散液形成的分散体系,广泛应用于油墨、涂料,可进行印刷和喷涂,具有较好施工性、高光泽、干燥速度快、低污染、墨层丰满平整、美观、流平性佳、附着力优良、柔韧性好、表面耐抗性好、耐划伤、抗化学性好等特点。UV色浆在紫外光照射下会固化。UV色浆的发展趋势是使用极细纳米颗粒。纳米级颗粒UV色浆具有分散性好,光泽度更高,色彩鲜艳,更好的固化性能等特点。在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 90 Zeta纳米粒度电位仪检测了分散在乙酸乙酯中的不同颜色的UV色浆的粒径和Zeta电位信息。原理和设备采用丹东百特公司的BeNano 90 Zeta纳米粒度电位仪进行测试。仪器使用波长671nm,功率50mW激光器作为光源。动态光散射光路收集90°散射光,通过相关计算得到原始相关曲线信号,进而推导出颗粒的布朗运动速度,由斯托克斯爱因斯坦方程得到颗粒的粒径和粒径分布信息。样品制备和测试条件一共检测了6个纳米色浆样品,颜色分别为红、蓝、黄、黑、白颜色。其中白色色浆有两个样品,其中一个为进口白色浆。色浆的原始浓度较高,使用乙酸乙酯(折射率1.37,粘度0.426 cp@25℃)进行分散。稀释倍数为1000-10000倍直至色浆透明。通过BeNano 90 Zeta内置的温度控制系统将测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论图1. 动态光散射检测UV浆料的相关曲线和粒径分布(上)图1. 动态光散射检测UV浆料的相关曲线和粒径分布(下)通过使用动态光散射技术,得到了UV浆料的粒径和粒径分布。可以看出所有六个样品的光强分布为一个粒径峰,没有团聚物峰。通过表1中的结果可以看出,所有浆料中的颗粒均为纳米级颗粒,不同颜色的浆料的平均粒径在100 – 300nm范围内,多次重复性测试的标准偏差均较小,说明样品分散均匀。 PDI值均超过了0.08说明所有浆料样品中的颗粒粒径具有一定的分布。可以注意到,白色浆和进口白色浆的平均粒径非常接近,而且白色浆的PDI甚至小于进口白色浆,说明通过工艺控制国产白色浆从颗粒大小和分布的角度已经达到进口白色浆水平。表1. 6次重复性测试粒径和PDI结果
  • 百特邀您相聚上海CPhI 、 P-MEC China展共同分享原辅料及相关制剂的粒径检测解决方案
    原辅料及相关制剂的粒径大小对于药物性能和一致性评价至关重要。不论是固体口服、悬液、注射甚至吸入制剂,药物颗粒的大小及分布对于制剂工艺和过程都会产生重大影响。虽然对于药物颗粒粒径的检测早已引入到药典相关通则中,但由于原辅料及制剂本身的种类繁多,性质差别巨大,因此对于一款具体的原辅料或者制剂,到底是用干法还是湿法分散?该如何保证将药物团聚颗粒“打开”而又不“打碎”原始颗粒?粒度检测的方法学该如何来做?却是大家面临的一个挑战。CPhI& P-MEC China & LABWorld China 作为全球制药行业垂直产业链首屈一指的专业贸易交流盛会目前已囊括原料药、精细化工与中间体、辅料、制剂、生物制药、实验室仪器等在内的13大模块。2018年6月20-22日再次于上海新国际博览中心掀起一股强劲的医药新风。作为本届LABWorld China展同期举办的InnoLAB系列主题沙龙活动,集结众多来自业内领先企业的实验室及制药专家。此次特邀丹东百特技术大咖李雪冰博士将于6月20日15:15-16:15在N1馆N1B80会议室和大家共同分享原辅料及相关制剂粒径检测经验。机会难得,不容错过!请牢记这个时间地点6月20日15:15-16:15N1馆N1B80会议室!想要了解如何对原辅料、中药微粉、蛋白、脂质体及纳米制剂等的进行粒径检测,药用辅料功能性指标测试该选择何种方法甚至何种仪器来检测?测试标准是如何要求的?快来上海新国际展览中心N1馆 N1E13号展位,丹东百特和您共同面对这些挑战!
  • HORIBA发布新品纳米颗粒追踪粒径分析仪
    p style="text-align: justify text-indent: 2em "strong仪器信息网讯/strong 近日仪器信息网从HORIBA处获悉,HORIBA新品纳米粒度仪ViewSizer 3000已于2020年正式在中国上市。该产品是一款全新的多光源纳米颗粒追踪粒径分析仪,能同时给出颗粒的粒径分布和数量浓度信息,不仅能测量单分散样品的粒径,也能准确测量多分散性样品和多峰样品技术。该新品研发的技术来源于HORIBA刚刚于2019年收购的美国MANTA仪器公司。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/b3456bab-739e-4784-ac6e-f9ee64da138a.jpg" title="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" alt="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg"//pp style="text-align: center text-indent: 0em "strongViewSizer 3000 多光源纳米颗粒追踪粒径分析仪/strong/pp style="text-align: justify text-indent: 2em "据了解,目前市面上可以进行单颗粒追踪的主要有两种技术,一种是ICP-MS,另外一种就是纳米颗粒跟踪分析技术(NTA),ViewSizer 3000正是一款采用了NTA技术的纳米颗粒追踪粒径分析仪。/pp style="text-align: justify text-indent: 2em "据HORIBA粒度表征应用工程师肖婷介绍,与普通的动态光散射纳米粒度仪相比,ViewSizer 3000具备如下三大优点:/pp style="text-align: justify text-indent: 2em "第一,仪器同时配备三种不同波长的激光光源,因而能够准确测量多分散性样品和多峰样品的粒径。/pp style="text-align: justify text-indent: 2em "第二,测量样品粒径分布的同时,能给出样品的数量浓度信息,并提供颗粒运动的视频,满足用户的可视化需求。/pp style="text-align: justify text-indent: 2em "第三,仪器可配置荧光功能模块,利用此功能可以扣除样品荧光的干扰,也可进行荧光标记,进一步测试各组分颗粒的粒径和数量浓度。/pp style="text-align: justify text-indent: 2em "ViewSizer 3000当前主要目标用户群为高校、研究所用户,肖婷表示,该仪器特别适合做生命科学和纳米材料方向的应用研究。在生命科学方向,ViewSizer 3000的荧光功能模块将发挥很大作用,通过荧光标记能得到各组分的粒径和数量浓度。而在纳米材料领域,该仪器能带来宽粒径分布的样品和多峰样品测量。/pp style="text-align:center"a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/cb5743d2-5345-4ce6-9a26-eab372832a55.jpg" title="640_300.jpg" alt="640_300.jpg"//a/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 110px " src="https://img1.17img.cn/17img/images/202004/uepic/c823118b-54b9-4f5f-b995-34a69862bcfd.jpg" title="微信图片_20200330103948.png" alt="微信图片_20200330103948.png" width="75" height="110" border="0" vspace="0"/想了解ViewSizer 3000更多信息?4月9日-10日,仪器信息网将联合中国颗粒学会举办首届“颗粒研究应用与检测分析”主题网络大会。HORIBA粒度表征应用工程师肖婷也将在4月10日10:00-10:30带来《纳米颗粒追踪粒径分析技术的特点及应用》的精彩报告,重点讲解ViewSizer 3000的更多性能特点和应用方案。欢迎大家报名参会。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong免费报名渠道:span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "点击进入/span/spanstrong style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "首届“颗粒研究应用与检测分析”主题网络大会/a官网/span/strong,点击“我要参会”,报名即可。/p
  • 美国麦克新型颗粒粒形分析仪面世
    美国麦克公司推出颗粒分析新产品:Particle Insight颗粒粒形分析仪  Particle Insight 是一台先进的颗粒粒形分析仪,不仅分析颗粒的粒径,还可以分析选择不同形状的分布区,捕获图像后即刻进行分析,这对分析原材料是非常重要的。此外,Particle Insight能够最终提供多达28种不同的颗粒形状参数,为用户提供了灵活的形状参数来量化颗粒,对最终产品可产生非常关键的影响。  Particle Insight 的另一个重要特点是对无论是水相的还是有机溶液相的所有样品都能进行实时分析,瞬间给出分析结果,快速、即时反馈实验进程。  Particle Insight 广泛适用于工业、生物、地质领域,测量颗粒范围为0.8-300μm。其独特设计的循环抽样模块和光学元件可在很短的时间内统计有效的测量数据,这一特点在以质量控制为目的的许多制造工艺领域是必不可少的。  美国麦克公司现有的三款颗粒分析仪器,分别采用不同的颗粒分析原理,对颗粒粒度及数量进行分析,极大的满足了不及类型用户的需求  Saturn DigiSizer 5200 全自动激光粒度分析仪,采用全米氏(Mie)散射定律,并配有专利技术的样品处理单元(liquid sample handling unit,LSHU)对所分析的样品进行制备。其粒径分析范围为0.02微米至2000微米。由于此仪器配备多达130万个检测元素的专利高精度航天级 CCD检测器,因此Saturn DigiSizer 5200 是目前世界上最先进的全自动激光粒度分析仪。仪器的操作软件为先进的“Windows”软件,可以提供多种多样的数据和图形报告。Saturn DigiSizer 5200适合于各种材料的颗粒大小及分布的分析研究。  SediGraph Ⅲ 5120 全自动Χ-光透射沉降粒度分析仪,是一台集高精度、良好的重复性和快速分析于一身的全自动粒度分析仪。该仪器采用沉降式原理,粒径分析范围为300微米至0.1微米,仪器的操作软件为先进的“Windows”软件。SediGraph Ⅲ 5120可以提供多至十一种分析报告,适合于各种无机材料颗粒大小的分析研究,尤其是非金属矿物,如:高岭土、重钙、轻钙、粘土、泥浆等材料的分析,是高岭土,重钙,轻钙粒径的标准分析仪器。  Elzone II 5390全自动颗粒尺寸与颗粒计数分析仪,是一台快速、准确、具有良好重现性的颗粒大小及颗粒计数分析仪。该仪器采用电敏感区原理作为颗粒分析方法。 可用于分析各种有机和无机颗粒,典型的应用领域包括生物细胞、研磨剂、乳剂、调色剂和墨水、颜料。 与其他检测方法不同的是,运用电敏感区原理可分析不同光学性质,密度,颜色和形状的样品混合物时,Elzone II 5390可实现对样品颗粒的尺寸、数量和浓度的快速准确测量,其测试范围为1200微米至0.4微米。仪器软件采用先进的“Windows”视窗软件,符合中国用户的电脑操作习惯。  Particle Insight 颗粒粒形分析仪的推出,丰富了美国麦克公司颗粒分析仪器,为用户提供更加全面的颗粒分析服务。目前,北京DEMO实验中心有各种颗粒分析仪器,诚挚欢迎广大用户参观测样。详细情况可拨打样品分析DEMO实验中心电话:010-51906026 、010-68489403 如果您需要更详细的资料,请向美国麦克公司中国区办事处索取。 美国麦克仪器公司 地址:北京市海淀区紫竹院路31号华澳中心嘉慧苑1025室[100089] 电话:010-68489371,68489372 传真:010-68489371 E-Mail:miczhuhz@yahoo.com.cn,micling@yahoo.com.cn -------------------------------------------------------------------------------- 美国麦克仪器公司上海办事处 地址:上海市静安区新闸路831号丽都新贵15-M[200041] 电话:021-62179208,021-62179180 传真:021-62179180 E-Mail:zhuhongzhen@mic-instrument.com.cn sales@mic-instrument.com.cn -------------------------------------------------------------------------------- 美国麦克仪器公司广州办事处 地址:广州市天河区中山大道华景路华晖街四号沁馥佳苑B3-1301[510630] 电话:020-85560307,020-85560317 传真:020-85560317 E-Mail:fanrun@mic-instrument.com.cn
  • 德国RETSCH(莱驰)多功能粒径及形态分析仪诚招各地代理商
    德国Retsch(莱驰)是基于分析样品前处理以及为固体颗粒粒径分析提供解决方案的世界级仪器制造商。Retsch产品在钢铁、农业、地质、生物医药、烟草、冶金、化工、食品、科研院校、电子电器、质检、商检、能源等各个领域拥有广泛的客户基础!为了满足人们对颗粒粒度粒形越来越高的测试要求,莱驰公司在中国市场隆重推出:Camsizer 多功能粒径及形态分析仪器。 Camsizer 多功能粒径及形态分析仪是全球唯一一台用干法测量颗粒粒度,并且可以同时分析粒径大小、粒径分布、颗粒个数、球形度、透明度、表面积等多个参数的仪器。传统粒度仪由于取样量小、重现性差,样品不具代表性无法得到准确结果; 而传统的筛分技术测试时间长且不能进行计数,只能得到颗粒的大概大小。Camsizer采用动态数字成像技术,利用专利的双镜头设计,实现对样品颗粒图像的实时捕捉、储存和处理。Camsizer是综合现代颗粒分析技术、功能最卓越、适用范围最广的完美仪器,带给您无与伦比的完美体验! Camsizer特征参数 测量范围: 10µ m~30mm 分析数据:颗粒大小、颗粒分布、形状、透明度、个数、球形度、表面积等 样品进样:自动进样系统 测量时间:约3分钟(视样品性质和进样量决定) 测量方式:干法、双镜头、动态测量 适用样品:食品(盐,糖,咖啡&hellip )、塑料、催化剂、研磨剂、玻璃、药物、建筑材料(水泥,沙...)、耐火材料、陶瓷、矿石、肥料、金属粉末、标准样品等等 适用行业:工厂实验室、研究机构、标准物鉴定、化工企业、材料、岩矿勘探等各行各业,可对生产线进行在线监控,是最理想的产品质量控制设备和工艺优化的必备辅助仪器。 欲了解更多资料请与德国Retsch (莱驰)中国总部联系: 电话:021-61506045/61506046 邮箱:info@retsch.cn 传真:021-61506047 网站:www.retsch.cn
  • 研发、品控、运输的多面手,为什么粒径测量为众多行业所采用?
    如今粒度测量成为很多行业必不可少的分析方法,不仅因为颗粒特性会直接影响生产过程,也会影响产品的最终性质。现阶段有很多测量粒径的方法,为用户进一步了解样品的性质提供帮助。水泥的沉降性,巧克力的口感,癌细胞的有效靶向性,油漆的遮盖能力之间有何共性?无论是水泥颗粒,可可脂液滴,脂质体药物制剂还是色素颗粒,他们都受颗粒特性的强烈影响。微米技术,纳米技术并不是现代发明,这些技术对人类手工制品的性质有深远的影响。过去的几十年来,微米,纳米颗粒粒径测量的手段日渐丰富,这让我们得以改善生产工艺,运输条件,储存条件,有效期等,甚至是决定产品的最终性质。动态光散射技术和激光衍射技术如今被广泛应用于纳米颗粒和微米颗粒粒径测量。粒径测量广泛应用于各行各业,比如:食品饮料,制药,化工,建筑行业等。食品行业:许多食品在生产过程中,都会以一种形态体现,可以是悬浮液,粉末或乳剂。对于粉末样品,颗粒大小影响体积密度,从而影响粉末流动性;同样,在悬浮液样品中,颗粒大小对剪切黏度有影响,这反过来又会影响原材料的泵送,混合和运输。咖啡粉和牛奶的颗粒可能会影响咖啡的口感,同样颗粒大小也会影响食品的储存和稳定性。如果颗粒大小没有控制好,对于粉末样品来说就可能会结块,对于乳剂样品来说(牛奶),就有可能变质了。颗粒大小也会强烈影响食物的外观,质地和口感,人类舌头能够分辨出几微米的颗粒,因此食物颗粒大小的调整,会影响人们对食物的接受程度。制药工业:粒度是制药过程中的一个关键工艺参数,应用于粉末状活性药物成分(API),乳液,靶向药物等。输液以及注射剂中的粒度分析是安全静脉注射应用中的重要参数。对于粉末状原料药来说,药物的溶解速度以及生物利用度主要受粒度影响。这尤其影响机体中某种药物成分需要被控制或缓释的情形。给药后药物在机体内的分布,沉降,吸收率等也与颗粒大小有关,当针对靶向细胞用药时(比如癌细胞,内皮细胞等),这一点尤其重要,因为不同的靶向细胞对不同粒径颗粒吸收效果不同。脂质体是由磷脂双分子层组成的小泡状颗粒,被广泛用于靶向药物制剂,因此囊泡的大小起至关重要的作用,且具有明显的动态光散射的样品特性,过去几年,许多类似的囊泡(被称为外泌体),作为癌症靶向治疗的候选药物,已经引起了人类极大关注。另外,正如其他行业,颗粒大小也会影响药物粉末,颗粒悬浮液和乳剂的流动性,影响运输包装,配方性能等。油漆和涂料:在光学性能方面,颜料粒径影响颜料的色强,比如已知颜料与另一种颜料混合后的效果。此外他还会影响涂料散射光纤的方式,这对涂料的遮盖力和表面光洁度(亮面,哑光等)都有影响。由于涂料是含颗粒液体,其流变性能不仅仅取决于颗粒浓度,还取决于颗粒形状和大小。因此,颗粒大小对于预测涂料在运输,储存和应用过程中的流动行为非常重要。颜料颗粒与基质的相互作用决定了颜料乳液的稳定性,这样,颗粒大小也会影响颜料的保质期。建筑材料:粒度测量的另外一个应用方向为建筑材料的生产过程。例如在水泥生产过程中,研磨是一个非常耗能的过程,缩小粒度分布有助于节约能源,控制成本。混凝土的粒度测量需要坚固且易于清洗的仪器,除此以外,粒度对最终产品的性能也有很大的影响。粒径分布与其化学成分和比表面积一样,是影响水泥水化曲线和硬化强度的主要因素。具体来说,平均粒径的减小,会导致凝结时间缩短,早期硬化强度提高,相反,随着水泥逐渐老化,较粗颗粒逐渐发挥重要作用,粒径分布宽度也决定了水泥等建筑材料的填料密度和吸水量。总结:从以上示例中可以发现,众多行业都会涉及粒度测量,这将影响生产过程乃至最终产品性质。在众多测量技术中,应用动态光散射原理的安东帕Litesizer系列纳米粒度仪,以及应用激光衍射原理的PSA系列微米粒度仪能够有效帮助用户了解样品特性及其行为。
  • 喜讯!微纳公司通过纳米颗粒粒度测试能力的认证!
    根据行业需求,我司参与了“中国合格评定国家认可委员会(CNAS)”与北京粉体技术协会联合组织开展的“纳米颗粒的粒度分析”能力认证项目,我司在全国及国外各大实验室中脱颖而出,在颗粒的粒度分析检测项目中获得中国合格评定国家认可委员会(CNAS)的能力认证。 这次能力认证的成功,证明了我司在纳米颗粒粒度检测方面达到国际先进水平。
  • TSI推出新一代Scanning Mobility Particle Sizer(SMPS)扫描电迁移率粒径谱仪,可测量粒径范围低至1nm
    精确测量仪器领域的全球领导者TSI公司宣布推出该款新型1nm Scanning Mobility Particle Sizer(SMPS)扫描电迁移率粒径谱仪。 TSI的SMPS扫描电迁移率粒径谱仪被广泛应用于测量1微米以下的气溶胶粒径分布的标准。和3777型纳米增强仪和3086型差分静电迁移率分析仪配套使用,SMPS粒径谱仪能够测量纳米的粒径范围扩展至1nm。 当整合到SMPS扫描电迁移率粒径谱仪中后,3777型1nm纳米增强仪让研究者能够以高分辨率并且快速地测量纳米级气溶胶的数量浓度和粒径。3777型纳米增强仪,和TSI的3086型 1nm-DMA差分静电迁移率分析仪已经被最优化,能够将散逸损失降至最低,且能够和SMPS粒径谱仪整合,测量1nm到50nm的粒径,并且能够与3081A型长差分静电迁移率分析仪配套使用测量1nm到1 μm的粒径。 “该款1nm 凝聚粒子计数器让研究者能够在气体到颗粒转换过程边界进行测量,”TSI颗粒物测量仪器的高级全球产品经理Jürgen Spielvogel如是说。应用包括材料科学研究、大气和气候研究、基础气溶胶研究、颗粒物成核与生长研究以及其他各类研究。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 技术干货 | 如何同时快速检测每个纳米颗粒的元素和粒径信息
    纳米材料,由于尺寸在1~100纳米范围,其微观尺度赋予其独特的光、电、磁、机械和光学等特性。纳米技术是一个快速发展的新兴领域,其发展和前景也给科学家和工程师们带来了许多巨大的挑战。纳米颗粒正在被应用于众多材料和产品之中,如涂料(用于塑料、玻璃和布料等)、遮光剂、抗菌绷带和服装、MRI 造影剂、生物医学元素标签和燃料添加剂等等。然而,纳米颗粒的元素组成、颗粒数量、粒径和粒径分布的同步快速表征同样也是难题。对于无机纳米颗粒,最为满足上述特点的技术就是在单颗粒模式下应用电感耦合等离子体质谱分析法,即单颗粒ICP-MS。ICP-MS 测量溶解样品和单纳米颗粒分析的响应信号如图1 所示。在分析溶解态元素时,产生的信号基本上属于稳态信号,测量单纳米颗粒时,产生的信号是非连续信号。四极杆作为检测器,工作时在各质荷比(m/z)停留一段时间,然后移动到下一质荷比(m/z);各质荷比(m/z)的分析时间被称作“驻留时间”,即工作时间。在各驻留时间的测量完成之后,执行下一次测量之前,通过一定时间进行电子器件的稳定。该时间段被称作“稳定时间”,即暂停和处理时间。当单颗粒的离子云进入四级杆后,如果单颗粒(“信号”峰)的离子云落在驻留时间窗口之外,则可能无法被检测到,如图3a 所示。当单颗粒的离子云落入驻留时间窗口内时,可以检测到该离子云,如图3b 所示。当快速连续检测到多个颗粒时,所得到的信号是一系列峰,各个峰都来自于某一颗粒,具体如图3c 所示。在单颗粒ICP-MS 中,瞬态数据的采集速度由两个参数组成:驻留时间和稳定时间。十分重要的是,ICP-MS 采集信号所需的驻留时间少于颗粒瞬态时间,从而避免因部分颗粒合并、颗粒重合和团聚/ 聚集产生的错误信号。稳定时间越短,颗粒遗漏的可能性就越小。最理想的情况是一秒钟内可进行10,000 次测量,不存在稳定时间,所有时间皆用于寻找纳米颗粒(图5c)。快速连续数据采集的另一个好处是可以从单个颗粒获得多个数据点,从而消除颗粒遗漏,或仅检测到颗粒部分离子云的情况。驻留时间越短,对单颗粒离子云采集的数据点越多,获得的峰型更加准确。珀金埃尔默公司NexION系列ICP-MS,最短驻留时间可达10 μs,单质量数据采集能力可达100000点每秒。配合专业的 Syngistix™ 软件,无需更多数据处理即可获得样品的颗粒浓度,尺寸及分布等信息,是进行单颗粒ICP-MS实验的首选。想要了解更多详情,请扫描二维码下载完整的资料和仪器信息。
  • TSI公司将举办《粒径谱仪在灰霾观测中的应用》讲座会
    美国TSI公司将于2010-9-21在广州举办《粒径谱仪在灰霾观测中的应用》讲座会 美国TSI亚太公司北京代表处 美国TSI公司将于2010年9月21日在广州举办《粒径谱仪在灰霾观测中的应用》讲座会。我们将邀请华南环境科学研究所和中国气象局热带海洋研究所专家一起研讨珠三角地区的灰霾问题以及TSI的粒径谱仪和浊度仪在灰霾观测中的应用结果。 1. 讲座日期 : 2010-9-21 9:00-16:30 2. 讲座地点:广州润都饭店 广州天河区黄埔大道300号 (86-20)85538388  3. 日程安排: 9:00—9:30 来宾 签到 9:30—10:10 TSI 仪器在气象变化观测中的应用 10:20—11:00 TSI 仪器在灰霾检测中的应用 11:00—11:15 茶歇 11:15—11:50 介绍新型大气气溶胶计数器 12:00—13:30 午餐时间 13:30—14:10 TSI 粒径谱仪和浊度仪在中国气象局热带海洋研究所的应用及TDMA研究 14:20—15:00 TSI粒径谱仪和浊度仪在华南环境科学研究所的应用 15:10—16:30 华南环境科学研究所实验室参观 欢迎大家前来参加我们的技术讲座并聆听我们的各位专家的演讲。 TSI北京代表处 电话: 8610-82515688 传真: 8610-82515699 邮箱: tsibeijing @tsi.com
  • 麦克仪器发布全自动亚筛分粒径分析仪MIC SAS II新品
    Micromeritics全自动费氏粒径测试仪(MIC SAS II)易于使用的全自动数据记录功能MIC SAS II全自动亚筛分粒径分析仪,对Fisher Model95 SubsieveSizer (FSSS)进行升级,采用全自动操作,并可得到电子记录的数据,极大改善了FSSS的性能。MIC SAS II生成的“Fisher number”结果与前代产品(FSSS)一致。几十年来,空气渗透技术和FSSS已经成为许多工业的行业基准,因此许多仍在使用历史数据和旧的质量控制标准的领域,都要求新旧仪器的测试数据必须具备可比性和可重复性。Features and Benefits 产品特点和优势设置方法快速简单按步骤进行参数设置,确保无任何参数遗漏全自动分析样品压实和压力的稳定性全部由电脑控制,采集的数据具有高重复性安全性可通过密码保护将样品信息测试信息与用户ID绑定,避免未经授权的任何操作和参数修改实时数据显示可以在获取数据时查看数据简化方法开发Fisher Mapping利用使用者自定义的Fisher相关图得到优化数据相关一致性定制化报告生成自动创建使用者logo和风格的PDF报告卓越的控制软件SAS控制软件创建了仪器操作、数据采集、处理和报告以及系统集成的世界标准全新直观式触摸屏操作强大直观式触摸式用户界面,提高效率,能够轻松创建和检索SOPs符合ASTM标准完全符合ASTM B330-12和C721-14标准,用于测试铝、二氧化硅、金属粉末以及相关化合物的粒径What is Air-Permeability Particle Sizing?空气渗透法测试颗粒粒径空气渗透技术是已经很好地应用到测量粉体样品的比表面积(SSA)。使用该技术测定的SSA数据已经应用在多个行业广泛,例如制药、金属涂料、颜料和地质等行业MIC SAS II利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定SSA和平均粒径。Specifications产品规格尺寸与重量高度:55cm宽度:50cm长度:38cm重量:28kg创新点:1、全自动操作SAS II 是对Fisher Model 95 Subsieve Sizer (FSSS)进行升级,采用全自动操作,并可得到电子记录的数据,极大改善了FSSS的性能。 2、快速便捷设置方法快速简单,按步骤进行参数设置,确保无任何参数遗漏,数据实时显示,可以在获取数据时查看数据,简化方法开发。 3、全新直观式触摸屏操作 强大直观式触摸式用户界面,提高效率,能够轻松创建和检索SOPs全自动亚筛分粒径分析仪MIC SAS II
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 无锡中科光电获德国GRIMM粒径谱仪区域总代授权
    2016年2月,无锡中科光电技术有限公司与德国GRIMM气溶胶科技公司(以下简称GRIMM)签署产品书面授权证书,明确无锡中科光电技术有限公司为德国GRIMM粒径谱仪(11-E,164,180,365,665,765,SMPS+C等多种型号)在中国江苏省、浙江省、安徽省、福建省以及上海地区的官方授权经销。GRIMM粒径谱仪,可实时测量多个通道的颗粒物粒径分布,并且能够同时得到PM10、PM2.5、PM1、TC值,满足了用户希望同时快速测量多个PM值的测量需求。 (一)产品系列 根据不同的应用条件,GRIMM粒径谱仪具有多种型号,包括EDM180机柜安装式、EDM164移动式全天候式、EDM365户外全天候式、11E手持式、EDM665宽范围气溶胶粒径谱仪、EDM765小型一体化观测站等多种系列。 (二) 产品特点和优势 GRIMM粒径谱仪所有的产品均采用同样的专利光散射测量单元以确保不同型号产品的一致性,并具有独特的技术优势: 多通道粒径测量,可同时测量PM10、PM2.5、PM1、TC值; 维护量低,无消耗品; 可远程控制和察看数据 ; 时间分辨率高; 结构紧凑; 无放射源; 低能耗。 (三) 产品软件和数据 GRIMM粒径谱仪应用软件,基于LabView开发,具有强大的数据展示和处理功能,可通过图形与表格的形式展示多种复杂的数据信息,包括颗粒物全谱粒径分布、超细粒子数浓度、PAH浓度或SVC浓度等。 无锡中科光电技术有限公司作为德国GRIMM粒径谱仪代理商,结合自身专家团队,将为您提供最优秀的产品、最优质的服务以及最佳的解决方案。
  • 岛津携纳米粒径分析装置IG-1000参加2010中国颗粒学会盛会
    2010中国颗粒学会盛会于8月15日-18日在西安举行,这是国内颗粒分析行业最重要的学术会议,颗粒分析专家和年轻学者汇聚一堂,交流各自学术研究成果。作为分析仪器界最大供应商之一,颗粒分析仪器的知名专业生产厂商,岛津公司盛装出席,展出了岛津公司最新的纳米粒径分析装置IG-1000。会议上还通过报告的形式将岛津公司颗粒分析的最新技术和应用进展与与会专家学者进行了分享汇报。用户在岛津展台前就颗粒分析技术问题进行交流 此次会议上岛津的单纳米分析装置IG-1000备受关注。IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术,为此IG-1000获得了2009 Pittcon大奖,这是全球分析仪器界对于岛津公司先进粒度分析技术的充分肯定。 岛津公司纳米分析技术专家安国玉经理向与会的各位专家学者详细介绍了岛津IG-1000在纳米分析行业的最新应用以及IG-1000的测定优势所在。与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。IG-1000测定结果可以与其他纳米粒子测定手段如TEM和SEM等所得结果吻合。IG-1000的方便可靠之处还在于,可利用原始数据(衍射光强度对时间的变化)来进行测定结果的可靠性验证。 岛津公司纳米分析专家安国玉经理在进行IG-1000的报告 此次会议上岛津公司粒度分析仪器应用工程师冯旭先生也就其在卫生陶瓷洁具分析中的应用方法开发结果与各位进行了分享。卫生陶瓷洁具行业涉及到多种粉体原料的分析测试,粉体材料的粒径会影响到最终产品的外观美观度和耐用度,因为粉体原料的粒径分析至关重要,所以岛津公司近期就如何使用粒度分析仪器得到准确的结果进行了研究并与颗粒分析工作者进行分享。 岛津公司粒度分析仪器应用工程师冯旭先生在作报告 岛津公司粒度测定装置种类齐全,单一纳米粒径的新产品IG-1000可以与岛津其他多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。
  • 我国首次拍摄到不同粒径石墨发光
    中国科学家在保证石墨完整性基础上获取其发光现象,并拍摄到不同粒径的发光“光谱图”,这在世界纳米碳材料领域尚属首次。不同大小石墨碎片在一定光照下发出不同颜色的光  在苏州近日举行的第四届新型金刚石与纳米碳材料国际学术研讨会上,苏州大学功能纳米与软物质研究院教授康振辉介绍了其领衔团队的最新研究成果——《水溶性的荧光碳量子点和催化剂设计》,该成果即将在国际顶尖杂志《德国应用化学》上发表。  据介绍,量子点是近年发展起来的一种新型荧光探针,与传统有机荧光染料相比,具有优良的光谱性能。康振辉表示,传统有机荧光染料分子,通常采用不同波长的光来分别激发产生不同颜色 而碳量子点发射光谱与粒径大小有关,通过调整其粒径大小,可以发出不同颜色的荧光,从而使不同生物分子标记、区分、识别变得更加容易,在生物化学、细胞生物学、分子生物学等研究领域显示出广阔的应用前景。  2009年,英国剑桥大学的费拉里等人通过氧电浆轰击首次观察到单层石墨片发光现象,但其原理是打断了部分碳原子之间的键结,利用石墨氧化后表面的缺陷而获得发光效果。康振辉团队的研究成果在此基础上更进一步。  “我们在保证石墨完整性前提下获取发光现象,并拍摄到不同粒径的发光‘光谱图’,这在世界纳米碳材料领域还是第一次。”康振辉说,他的研究团队将石墨切割成4纳米以下的碎片,给予一定光线照射即可发光,粒径不同发光也不同。如,1.2纳米发蓝光,3纳米则发红光。  此外,康振辉团队的研究成果还揭示出另一发现:“纳米级”石墨碎片具有“上转换”特性,能吸收长波长将之转换成短波长,实现低能向高能的聚变,将之与其他材料配合制成催化剂可以吸收“全光谱”太阳光。  康振辉介绍,一般催化剂只吸收4%的太阳光,其余96%则被浪费掉 而石墨碳粒子能与100%的阳光作用,催化效果大幅提升,在污水处理、环境净化等方面具有极强的应用性。
  • GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪
    2012年5月新推出GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪(德国GRIMM气溶胶技术公司研制生产)。该系列监测仪采用激光散射原理,可同时获得环境大气中PM10、PM2.5、PM1的质量浓度值,并可下载0.25 ~ 32 um范围的31个粒径通道数浓度值。EDM180型在线环境颗粒物/气溶胶粒径谱仪,符合欧洲标准EN 12341 (PM10) 和EN 14907 (PM2.5),并获得美国EPA认证(PM2.5,认证号:EQPM-0311-195)。EDM180型粒径谱仪是目前唯一通过按重量参考认证的光学系统的环境颗粒物监测仪(PM10和PM2.5)。并成为仅有的一款通过认证的能够同时在线监测PM10和PM2.5的分析仪。
  • 纳米流式检测技术,粒径表征媲美透射电镜——访厦门大学颜晓梅教授
    仪器信息网讯 厦门大学颜晓梅教授团队于2014年9月研制成功第一台纳米流式检测仪原型机,2015年10月第四代原型机研制成功,2016年1月中旬在北京计量科学研究院进行第一次试用,2016年6月第一代科研级纳米流式检测仪完美亮相CYTO 2016国际流式学术大会,2016年10月专业版软件NF Profession 1.0研发成功。纳米流式技术发展处于什么阶段?纳米流式技术成果商业化过程有哪些故事?国产仪器自主创新存在哪些痛点和不足?近期,仪器信息网在ACCSI2021现场特别采访了厦门大学颜晓梅教授,请她就上述问题进行了分享。三年实现快速成果转化,粒径表征媲美透射电镜目前,流式细胞仪在生命科学、临床医学等领域是重要的分析检测工具之一。据颜晓梅教授介绍,纳米流式检测技术是基于流式细胞技术,将检测下限推进到纳米尺度。颜晓梅教授团队首创性地结合瑞利散射和鞘流单分子荧光检测技术,研发成功具有自主知识产权的纳米流式检测技术,实现单个纳米颗粒(7-500 nm)以及外泌体、病毒、细菌、亚细胞器等天然生物纳米颗粒的粒径及其分布、颗粒浓度、和生物化学性状的高通量多参数同时表征。该技术的粒径表征分辨率媲美透射电镜,检测速率高达每分钟上万个颗粒,同时兼备电子显微镜难以实现的生物化学性状分析功能,填补了国际空白。项目团队积极推进技术产业化,成立了厦门福流生物科技有限公司,仅用3年时间就将“纳米流式检测技术”研发成果转化为“中国智造”。 厦门福流生物 纳米流式检测仪点击查看参数详情科学仪器研发平台离不开交叉学科人才培养在采访中,颜晓梅教授强调了复合型科研人才的培养对于国产科学仪器的发展至关重要,科学仪器研制的过程通常是创新技术密集(光、声、电等技术)、管理复杂的活动,需要不同学科的交叉融合,尤其成果转化过程也需要金融、市场等背景支持。因此培养兼具科研、工程和管理能力的复合型人才对于国产科学仪器成果转化具有推动作用。提高纳米医药业核心竞争力,纳米流式未来可期据颜晓梅教授介绍,纳米流式检测技术不仅应用于传统的生命科学、临床医学领域,还在食品药品安全以及能源材料等领域发挥重要作用。并且纳米流式检测仪产业化项目技术密集、附加值高、成长空间大、带动作用强,是纳米医药业核心竞争力的集中体现。 据悉,厦门福流生物科技有限公司生产的纳米流式检测仪目前已经出口到全球顶尖的医疗机构、科研单位和高科技企业,如梅奥诊所(Mayo Clinic,2018年全美排名榜首的医院)、美国德州大学安德森癌症中心(MD Anderson Cancer Center,全球排名第一的肿瘤科研与临床研究机构)、约翰霍普金斯医学院、美国国立卫生研究院(NIH)、外泌体诊断和治疗应用开发领军企业Codiak Biosciences公司、瑞士联邦理工学院(欧陆第一理工大学)、诺和诺德(世界领先的生物制药公司)、瑞典哥德堡大学、德国马尔堡大学、悉尼大学、台湾大学、复旦大学等。
  • 美国TSI公司空气动力学粒径谱仪获评“2014科学仪器行业最受关注仪器”
    2015年4月22日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2015 (第九届)中国科学仪器发展年会(ACCSI 2015)在北京京仪大酒店召开,会议主题为&ldquo 创新创造价值&rdquo , 出席会议人数达800余位。作为ACCSI 2015的&ldquo 重头戏&rdquo ,年会主办方颁布了多项产品奖项。其中,TSI公司的空气动力学粒径谱仪(APS-3321)获得&ldquo 2014科学仪器行业最受关注仪器&rdquo 大奖。 TSI3321型空气动力学粒径谱仪 (APS) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。 APS 粒径谱仪使用取得专利(美国专利号5561515)的双峰光学系统,具有无与伦比的粒径检测精度。它还包括新设计的喷嘴结构和改进的信号处理。因此,它具有更大的小粒径检测效率、提高的质量分布精确度并有效消除错误背景计数。 TSI公司的空气动力学粒径谱仪(APS-3321)可广泛用于各类相关科学研究和实际应用,如究吸入毒理学,给药研究,大气研究,环境空气监测,室内空气质量监测,滤料和空气清洁器测试,气溶胶特性测试和粉尘粒径检测等。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 大咖交流 | 谱育科技与中科院共同探讨ICP-MS在单颗粒、纳微塑料领域的应用
    纳米颗粒和微塑料随着纳米颗粒和微塑料在生态环境中广泛存在,甚至在人体内也已经发现了微塑料的痕迹,其对生态环境和人体健康潜在的影响关注度越来越高。2022年,生态环境部将微塑料被纳为四大新污染物之一,如何在各类复杂的赋存介质、赋存基体中进行纳米颗粒与微塑料的精确表征吸引了环境化学、材料化学、分析化学等诸多领域学者的关注。由于ICP-MS(ICP-Q-MS、ICP-MS/MS、ICP-Q-TOF-MS等)对瞬态信号具有优异的检测能力,基于亚毫秒级驻留时间下的SP-ICP-MS分析技术,可以获得样品中目标粒子的等效球体尺寸、粒径分布、颗粒数量等关键信息,使得其在对纳米颗粒物和微塑料表征中的应用潜力获得了业内广泛关注。协同交流,技术探讨作为国产ICP质谱技术研发应用的代表性企业之一,谱育科技针对ICP-MS在单颗粒及微塑料领域的应用也开展了深入研究。应中国科学院生态环境研究中心谭志强老师研究员团队邀请,谱育科技无机质谱售前产品经理高尔乐博士与应用研究副经理吴智威博士携团队,就ICP-MSMS、ICP-Q-TOF在单颗粒分析、纳微塑料领域系列解决方案,通过线上线下多次与谭志强研究员团队人员及相关受邀专家学者展开深入交流。谱育科技ICP质谱团队与中国科学院生态环境研究中心谭志强研究员团队交流现场会议上,吴智威博士就ICP-Q-MS、ICP-MS/MS、ICP-Q-TOF-MS在单颗粒、微塑料领域中的技术优势与应用潜力进行了详细的介绍,并展示了最新的应用案例示范。双方就相关应用以及前处理、分析方法等展开了充分交流。谭志强老师指出,针对SP-ICP-MS技术中颗粒响应阈值判断方式、离散信号处理技术、连续颗粒信号判别与处理方法,谱育科技所进行的针对性研究让人印象深刻,希望日后可以进一步合作。目前,谭志强老师团队已使用谱育科技 SUPEC 7000型ICP-MS开展自然水体、植物组织、土壤提取液等样品中的金属/非金属及其氧化物细颗粒的精确表征,从而研究金属/非金属及其氧化物细颗粒在土壤-作物系统中的迁移转化;同时也将其与自行搭建的中空纤维流场流分离装置/电场流分离装置联用,进行准确的细颗粒识别表征。▲ 吴智威博士与同学们展开深入探讨谱育科技ICP-MS分析应用通常ICP-MS可以对单颗粒及微塑料的粒径及浓度进行表征,但进行数据处理时,业内较常使用单一的传输效率(如只使用颗粒粒径传输效率或颗粒浓度传输效率)对测试数据同时进行颗粒粒径与颗粒数量的数据校正处理,而最新研究表明这种数据处理方式容易引入额外的误差。对此谱育科技提供了全新的颗粒粒径与颗粒数量独立的二维校准方法,可彻底避免由于传输效率不一致带来的系统误差。此外,谱育科技SP-ICP-MS技术具备单次样品采集事件≥30min (1800万数据量)的功能,还特别开放了高斯、泊松、自定义等多种颗粒信号筛选算法,并提供包括颗粒事件长度、颗粒间隔系数等新兴校正系数的处理功能,分析化学家可根据应用研究需求,选择最为合适的算法处理参数与颗粒校正方法,从而得到可靠、精准的分析结果。▲ 颗粒粒径与颗粒数量独立的二维校准方法SUPEC 7000系列ICP质谱分析不同粒径、不同浓度的单颗粒结果如下:▲ 不同粒径Au-Nano的信号(左)/粒径(右)-频次分布图厚积薄发,技术引领谱育科技深耕质谱领域超15年,先后发布多款质谱产品。其中可应用于单颗粒与微塑料领域的ICP质谱,包括以下三款系列产品:单四极杆ICP-MS可满足一般基质下的单颗粒及微塑料的表征分析;三重四极杆ICP-MS/MS使得超痕量元素分析的方法开发不再单纯地高度依赖仪器硬件的绝对性能(如灵敏度、质量分辨能力、丰度灵敏度等),而是可依赖分析化学科学家的科研思维,以严谨可控的化学分辨的方式,优雅、巧妙地完成分析方法学的研究与开发,有效解决如Si、Ti、S等存在诸多质谱干扰的单颗粒表征分析;四极杆飞行时间串联质谱ICP-Q-TOF-MS不同于四极杆“顺序扫描”,其可在几微秒或者几十微秒就可记录一个完整的质谱,这使得分析工作者们不再局限于单次只能获得单颗粒或微塑料中1~2种元素信息,而是可单次获得所有元素信息,以此进行更为全面、深入的研究,如标记不同稀土元素的塑料,探究其在土壤环境的迁移,转化,相互作用;多元素指纹更精准地识别微塑料以及追溯污染来源等。
  • 清华蒋靖坤研究组:研发便携式气溶胶粒径谱仪,适用于大气网格化监测
    研究背景气溶胶对人体健康、气候变化及空气质量都有显著的影响,一个关键影响因素是其粒径。在进行相关研究时,需要以高时空分辨率的气溶胶粒径分布数据为基础,这些数据需要通过组建高密度的监测网络获取。扫描电迁移率粒径谱仪 (SMPS) 是一种常用的粒径分布测量仪器,通过对气溶胶进行荷电、筛分、计数来获得粒径分布。其结果准确,但是价格昂贵、尺寸较大,不适用于高密度的组网监测。已有仪器公司开发出了商业化的便携式 SMPS,但在提升了便携性的同时也牺牲了其结果的准确度。这种便携式 SMPS 的不确定度通常来源于使用单极荷电器对气溶胶进行荷电,这种荷电器因其尺寸小、荷电效率高而在便携式 SMPS 中常用,但也同时有荷电分布不稳定的缺点,而荷电分布正是获得准确粒径分布的重要参数。近日,清华大学蒋靖坤教授研究组展示了一种能够降低荷电过程带来的不确定度的新测量方法,包括使用大气天然离子对气溶胶的荷电和同时测量带正电和带负电的气溶胶粒径分布,将新方法应用于一台商用的便携式SMPS 以减少单极荷电器带来的不确定度。通过使用这种新的测量方法,研究组提高了便携式 SMPS 的性能,同时进一步减小了其尺寸,使其更适合于建立大气网格化监测设施。该文章题为 “Improving the performance of portable aerosol size spectrometers for building dense monitoring networks” (《研发适用于大气网格化监测的便携式气溶胶粒径谱仪》),发表在期刊 Environmental Science: Atmospheres 上。论文详情本工作中,研究人员通过对一台商业化的便携式 SMPS 进行改造,实现了新方法的应用。该台便携式 SMPS 原本通过单极人工荷电器调节气溶胶的荷电分布,并测量带正电的气溶胶粒径分布,结合荷电分布反演得到全部气溶胶(带正电+带负电+不带电)的粒径分布,这也是大多数 SMPS 的常用方法。而大气中有天然离子在调节着气溶胶的荷电分布,即使不使用人工荷电器,同时测量带正电和带负电的气溶胶粒径分布就可以获知这一荷电分布,并用于数据反演,这一新方法已被应用于 SMPS 上并证明了可靠性。在本工作中,通过去掉便携式 SMPS 上单极荷电器进而使用天然大气离子荷电,并将原本的单极高压电源替换为双极高压电源,使新方法可以被应用于这台仪器。为了检验改造后的仪器性能,研究人员使用了大气气溶胶和室内气溶胶进行测试,并将改进前后的粒径谱仪测量结果与一套参考粒径谱仪的测量结果进行了比较。比较的指标包括分粒径段数浓度、几何平均粒径、几何标准偏差等刻画粒径分布的重要参数,改进后的仪器与参考仪器具有更好的一致性。图 1. 改造前后便携式 SMPS 与参考 SMPS 不同参数的对比,(a) 改造后, (b) 改造前总结展望在选择应用于高密度组网监测的粒径分布测量仪器时,一大挑战是在测量结果的准确性与仪器的便携性和易于维护之间找到一定平衡。现有的商用便携式 SMPS 具有很大的应用潜力,它们已经成功地将尺寸缩小到合理的范围,但是其常用的单极荷电器对测量结果造成了较大不确定性。在本工作中,研究人员展示了新测量方法在便携式 SMPS 中的应用,通过利用天然大气离子荷电和测量两个极性的带电气溶胶,改造后的仪器更紧凑,也可以获得更准确的结果。新方法的应用使便携式 SMPS 更接近于建立密集监测网络的理想仪器,未来也可以被应用于职业暴露监测、机载测量等应用场景。论文信息Improving the performance of portable aerosol size spectrometers for building dense monitoring networksYiran Li, Jiming Hao and Jingkun Jiang*Environ. Sci.: Atmos., 2023https://doi.org/10.1039/D2EA00163B 作者介绍李怡然 清华大学博士研究生第一作者,博士研究生,指导教师为郝吉明院士和蒋靖坤教授,主要研究方向为双极气溶胶电迁移率粒径谱仪研发与应用。郝吉明 清华大学教授合作作者,清华大学环境学院教授,中国工程院院士、美国工程院外籍院士。主要研究领域为能源与环境、大气污染控制工程。主持全国酸沉降控制规划与对策研究,为确定我国酸雨防治对策起到了主导作用。建立了城市机动车污染控制规划方法,推动我国机动车污染控制的进程。深入开展大气复合污染特征、成因及控制策略研究,发展了特大城市空气质量改善的理论与技术方法,推动我国区域性大气复合污染的联防联控。蒋靖坤 清华大学教授通讯作者,清华大学环境学院教授,清华大学科研院副院长、环境学院副院长和环境模拟与污染控制国家重点联合实验室副主任。从事气溶胶测量和颗粒物成因研究。承担了国家重点研发计划、基金委重大项目、国家重大科研仪器设备研制专项等任务。发表 SCI 论文 180 余篇,授权发明专利 10 余项。入选教育部长江学者特聘教授,获国际气溶胶领域 Smoluchowski Award 和亚洲青年气溶胶科学家奖。任 Aerosol Science and Technology 副主编和 ES&T Letters 编委。
  • Phenomenex在中国推出Kinetex 5um 粒径的核-壳色谱柱
    p style="text-align: center "strong更大的粒径为HPLC与制备LC提供更卓越的性能表现/strong/pp  分析科学产品制造的全球领导者Phenomenex近期宣布在中国为其现有的Kinetex 核-壳色谱柱产品线增添粒径为5um的色谱柱颗粒。Kinetex 5um作为Kinetex核-壳家族粒径最大的色谱柱颗粒,将提供比全多孔3um和5um色谱柱更高的柱效,同时不会导致柱压升高。事实上,相较于相同粒径的全多孔色谱柱,全新的Kinetex 5um颗粒平均能提高90%的柱效,而且几乎不需额外的方法开发,即可在通用的HPLC系统上实现显著的性能提高。分析工作者在使用传统全多孔色谱柱的任何反相HPLC方法中,直接使用Kinetex色谱柱进行轻松替代。/pp style="text-align: center "img style="width: 600px height: 206px " title="KNX 5um.png" src="http://img1.17img.cn/17img/images/201507/insimg/2b4d3a53-e7a6-4a88-b40a-4f81b08dcc27.jpg" width="600" vspace="0" hspace="0" height="206" border="0"//pp  “无论是科研院所、食品检验还是临床研究,全多孔5um与3um色谱柱均是实验室里最常用的两款色谱柱”Phenomenex公司品牌主管Simon Lomas评论道,“Kinetex 5um 核-壳柱能够让色谱分析工作者在5um压力下使HPLC方法达到3um或者更高柱效。”/pp  利用Kinetex 5um核- 壳技术,可立即让您现有的3um和5um HPLC分析法在分离度、效率和灵敏度上获得显著提升。Kinetex核-壳颗粒共有4种不同粒径(1.3um、1.7um、2,6um与5um)可供选择,给予您HPLC、UHPLC至制备LC的全面可扩展性。此外,Phenomenex专门为小规模制备纯化的分析工作者研制了由Axia?专利技术填装的制备型Kinetex 5um色谱柱。Lomas解释道, “由Axia技术填装的Kinetex 核-壳色谱柱能够为制药与天然制品领域的研发人员提供更好的性能优势,并且Kinetex核-壳颗粒不仅适用于UHPLC和HPLC的分析,更可全面扩展应用于制备纯化。”/pp  Phenomenex研制的核-壳色谱柱在为您提高柱效的同时,并不会为您带来巨额的经费开支。Kinetex核-壳技术能够在任何LC或HPLC系统中发挥超高性能,相较传统全多孔色谱柱,Kinetex色谱柱不仅性能显著提高、分析时间大大减少,而且能大幅降低实验室的溶剂消耗量并提高样品通量。/pp  对于传统的全多孔颗粒而言,流速越高会使得柱效降低、分离度和灵敏度减弱,导致分析时间的延长。Kinetex核-壳技术实现了更高的灵敏度和分离度,线性速度和耐压范围更宽,而检测与定量限值也得到显著降低。/pp  strong关于Phenomenex/strong/pp  Phenomenex是全球领先的科技企业,是化学分析领域的技术领导者。Phenomenex一直致力于为制药、工业、临床、环境、食品等行业的实验室以及政府与高校的研究人员研发最新的科技产品,为他们提供创新实用的分析纯化解决方案。Phenomenex的核心技术包括液相色谱柱、气相色谱柱、样品制备、散装纯化色谱填料产品、色谱配件和设备。/p
  • 纳米粒度分析仪的原理及应用
    梓梦科技纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制