当前位置: 仪器信息网 > 行业主题 > >

纳米级测量仪

仪器信息网纳米级测量仪专题为您提供2024年最新纳米级测量仪价格报价、厂家品牌的相关信息, 包括纳米级测量仪参数、型号等,不管是国产,还是进口品牌的纳米级测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米级测量仪相关的耗材配件、试剂标物,还有纳米级测量仪相关的最新资讯、资料,以及纳米级测量仪相关的解决方案。

纳米级测量仪相关的资讯

  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 跨尺度微纳米测量仪的开发和应用重大仪器专项启动
    3月20日,国家重大科学仪器设备开发专项&ldquo 跨尺度微纳米测量仪的开发和应用&rdquo 项目首次工作会议在市计测院举行。国家质检总局科技司副处长谢正文主持会议,清华大学院士金国藩、同济大学院士李同保、上海理工大学院士庄松林,国家质检总局科技司副司长王越薇、市质监局总工程师陆敏、市科委处长过浩敏等专家和领导出席会议。  会上,项目总体组、技术专家组、项目监理组、用户委员会和项目管理办公室宣布成立。会议报告了项目及任务实施方案,介绍了项目管理办法,并由专家现场进行了技术点评和项目管理点评。  王越薇对项目推进提出了具体工作要求。她要求项目所有单位本着为国家产业发展负责的精神,对项目予以高度重视。牵头单位要围绕总体目标,做细做实项目推进计划,项目各参与单位必须按时保质完成分目标,确保项目顺利推进。她要求加强项目的过程管理,制定并落实各项管理制度,对项目推进中出现的问题,要协调解决,必要时召开专题会议,并且做好包括基础数据、过程记录在内的档案管理。她还要求加强项目的财务管理,牵头单位和各参与单位都要重视财务管理,尤其要提高国家级重大项目的财务管理水平,确保项目经费的使用符合财务管理要求。最后,王越薇长还代表国家质检总局科技司表示,将尽全力做好项目实施单位与国家科技部的桥梁工作。  会上,陆敏要求市计测院勇于创新,集中力量确保项目顺利实施,并通过科研项目促进科研管理水平和能力的提高。  过浩敏感谢国家质检总局对项目的支持,肯定了重大专项对上海市创建具有国际影响力的科创中心的重要意义,并表示市科委将尽全力做好项目实施的地方配套服务工作。  &ldquo 跨尺度微纳米测量仪的开发与应用&rdquo 项目以我国近年来多项创新技术及市计测院科研成果为基础,突破我国在微纳米检测技术领域检测方法集成开发的诸多技术瓶颈,旨在攻克宏微联动多轴驱动和多测头集成、基于原子沉积光栅的纳米量值溯源等关键技术,研制用于计量、工业生产、产品检测中微形貌和几何尺寸测量的微纳米测量仪,并构建跨尺度、高精度微纳米测量与研发平台,为我国国防、航空航天、半导体制造业、微机电产业、大气污染物防治等领域提供有效的纳米计量技术支持和保障,提升我国高新技术产业中微纳米尺寸定量化测量的技术水平。  在国家质检总局的组织和指导下,项目经过近两年半时间的筹备和酝酿,于2014年10月获得国家科技部批准立项。项目牵头单位为上海计测工程设备监理有限公司,第一技术支撑单位为市计测院,16家参加单位涉及清华大学、上海交通大学、复旦大学、同济大学等国内顶级高校,以及中国工程物理研究院、国家纳米中心、中国科学院等国内顶尖研究机构。  项目研究过程中,将以产业需求为牵引,以实际应用为导向,注重基于国际先进技术基础上的集成创新和工程化、产业化开发,着力挖掘科研成果转化的潜力,提高我国微纳米测量科学仪器设备的自主创新能力和自我装备水平,并促进产、学、研、用的结合。项目完成后,将形成具有完全自主知识产权的仪器产品、附件、服务、标准等成果,能够填补国内空白,挑战国外仪器在相关领域的权威地位,促进纳米科技与经济紧密结合、科技创新与产业发展紧密融合,更树立国家在纳米制造、微电子、新型材料、超精密加工制造等领域的国际权威地位与话语权。
  • 央视走进中图仪器丨从纳米到百米的精密测量仪,18年打磨硬核科技“尺”
    12月6日晚间,央视财经频道《经济信息联播》栏目“专精特新 制造强国”系列节目报道深圳市中图仪器股份有限公司。本期专精特新高人:18年用心打磨15把硬核科技“尺”,从纳米到百米,从接触式到非接触式。铸光为尺,见微知著,不断拓展工业测量领域全尺寸链条。几何尺寸测量的精度,直接决定了工业制造的高度。不论小如芯片,还是大如飞机,精密测量仪器,就像量体裁衣时裁缝的尺子。深圳一家专精特新企业里有一位高人,研发出了能测量从1纳米到1百米的工业“尺子”。马俊杰从业18年来,虽然只做了15台测量仪,但每一台都独具特色。其中测量最快的一台,叫闪测仪。深圳中图仪器股份有限公司董事长 马俊杰:我手上拿的就是手机上一块精密的结构件,几秒测量,几百个尺寸直接显示出来,而且达到了微米级的精度。马俊杰毕业于清华大学精密仪器专业,后在研究所工作期间,他发现实验室里的精密仪器全都来自国外,这让他产生了创业做国产几何测量仪的想法。这台指示表检测仪,是马俊杰当年研发出的第一款精密测量仪器。但这些都还不是精度最高的“尺子”。这枚看似光滑的晶圆,放在显微测量仪下,表面变得错落有致起来,经过测量,高度差仅有6.1纳米。但它还将被切割成更小的方块,才能使用。深圳中图仪器股份有限公司董事长 马俊杰:这台仪器它的精度非常高,达到了0.1纳米的分辨率,半导体领域已经大量使用。这家企业的测量绝活可不止于微小领域。马俊杰的团队潜心研究6年,研发出可测百米尺寸的激光跟踪仪,解决了大型、超大型工件或装置的高精度测量问题。深圳中图仪器股份有限公司副总经理 张和君:这是一架飞机模型,关键部件测量精度必须控制在0.1毫米至0.2毫米之间,飞机的装配才能保证严丝合缝。激光跟踪仪是唯一同时具有微米级别测量精度,和百米工作空间的高性能光电仪器。
  • 精确测量纳米级物体温度有新招
    日常生活中通常是用温度计接触物体来测量其温度,然而,测量比人发丝的宽度要小1000倍的纳米级物体的温度,却是一个非常棘手的任务。现在,英国埃克塞特大学和伦敦大学学院的研究小组开发出一种方法,可在纳米级物体的表面温度与周围环境有所不同时,通过分析它们在空气中紧张的运动即布朗运动,来准确测量其温度。该研究成果发表在最新一期的《自然· 纳米技术》上。  1827年,苏格兰植物学家罗伯特· 布朗发现水中的花粉及其他悬浮的微小颗粒不停地做不规则的曲线运动,称为布朗运动。人们长期都不解其中原理。50年后,J· 德耳索提出,这些微小颗粒是受到周围分子的不平衡碰撞而导致的运动。这在后来得到爱因斯坦的研究证明。布朗运动也就成为分子运动论和统计力学发展的基础。  当温度升高,液体分子的运动越剧烈,同一瞬间来自各个不同方向的液体分子对颗粒撞击力就越大,小颗粒的运动状态改变也就越快。故温度越高,布朗运动越明显。由此,该研究小组发现,纳米级物体的表面温度可以通过分析其布朗运动而确定。  埃克塞特大学天文学系量子信息理论家珍妮特· 安德斯博士说:&ldquo 这种运动是由与空气碰撞的分子引发的。研究发现这种碰撞的影响携带了物体表面温度的信息,通过观察其布朗运动,可识别这些信息和推断温度。&rdquo   据每日科学网、物理学家组织网近日报道,研究人员捕获在激光束中的玻璃纳米球,令其悬浮在空气中后加热至融化,借此观察这些纳米级物体的升温。这种技术甚至可以辨别穿过微小球体表面的不同温度。  伦敦大学学院詹姆斯· 米伦博士说:&ldquo 在纳米尺度,与空气碰撞的分子有很大的不同。通过测量纳米粒子和周围空气之间能量如何转移,我们学到了很多。&rdquo   对于许多纳米技术设备,精确了解其温度尤为必要,因为它们的运作在很大程度上依赖于温度。这项发现也有助于目前正努力把大的物体引入量子叠加态的研究。未来其可进一步影响大气中气溶胶的研究,并为控制环境平衡过程的研究打开了一扇门。
  • 第3届测量仪器国际会议暨第13届精密工程测量与仪器国际会议成功举行
    第3届高端测量仪器国际论坛暨第13届精密工程测量与仪器国际会议(IFMI & ISPEMI 2024)于2024年8月8日至10日在山东青岛成功举办。本会议由国际测量与仪器委员会、中国计量测试学会、中国仪器仪表学会共同发起,中国工程院信息与电子工程学部指导,哈尔滨工业大学主办,中国计量测试学会计量仪器专业委员会、北京信息科技大学、中国石油大学(华东)、海克斯康制造智能技术(青岛)有限公司联合承办。本会议的目的是,邀请各国精密工程测量与仪器领域的高层科学家、专家与业界领袖,就国际精密工程测量与仪器领域面临的重大机遇、重大科学问题和关键技术问题进行研讨,交流国际精密工程测量与仪器领域取得的重大进展;特别是,根据世界新一轮科技革命与产业变革的前沿发展趋势,判断未来5年和10年精密工程测量与仪器技术的发展方向和技术路线;同时,推测未来5年和10年全球各领域对精密工程测量与仪器的需求,判断国际精密工程测量与仪器产业发展趋势;进而提出促进世界高端测量仪器科学研究与产业发展的建议,共同促进世界范围内高端测量仪器技术的发展。中国工程院院士、哈尔滨工业大学精密仪器工程研究院院长谭久彬教授担任大会主席并致辞。谭久彬院士指出:“随着超精密工程、精准医疗、智能制造和原子级制造,以及物联网、大数据、云计算、人工智能和智慧城市等领域不断发生革命性突破,精密工程测量与仪器技术必然迎来前所未有的巨大挑战和发展机遇。近年来,至少有三件大事将对精密测量和仪器技术的发展走势产生至关重要的影响。一是2018年国际计量大会正式通过了一项具有里程碑意义的重要决议,即7个国际基本计量单位均由自然常数来定义,并于2019年5.20国际计量日正式实施。这件事带来的直接好处是,标准量值传递链将实现扁平化和去中心化,这将导致国际测量体系与各国的国家测量体系发生革命性的变化。二是数字化制造、网络化制造和智能化制造发展得非常迅速,加上国际计量单位定义常数化、计量量子化发展双重趋势的作用下,精密测量仪器将产生新的形态;三是原子级制造的兴起将导致精密测量仪器技术成体系的创新。上述三件大事必将导致国际仪器产业体系的重大变革。”谭久彬院士担任大会主席并致辞大会现场中国计量测试学会副理事长兼秘书长马爱文先生、中国仪器仪表学会副理事长兼秘书长张彤先生、中国石油大学(华东)校长助理于连栋教授参加大会并在开幕式上致辞。中国计量测试学会秘书长马爱文在大会开幕式致辞中国仪器仪表学会副理事长兼秘书长张彤在大会开幕式致辞中国石油大学(华东)校长助理于连栋在大会开幕式致辞本次会议分为主论坛大会报告、分论坛研讨和圆桌论坛3部分。共有来自中国、美国、英国、德国、日本、韩国、加拿大、澳大利亚、俄罗斯、白俄罗斯、塞尔维亚、比利时、新加坡等13个国家和地区的280余位专家出席本次盛会,10900余名科技工作者和研究生观看了会议直播。大会特邀中国工程院院士、中国科学院长春光学精密机械与物理研究所所长张学军研究员,德国工程院院士Ö mer Sahin Ganiyusufoglu教授、白俄罗斯国家科学院主席团第一副主席Sergey Antonovich Chizhik院士、美国密歇根大学Steven Cundiff教授、韩国科学技术院Seung-Woo Kim教授、德国联邦物理技术研究院Jens Flügge教授、中国计量科学研究院原院长方向研究员、美国加州大学洛杉矶分校Mona Jarrahi教授、海克斯康制造智能技术研究院首席专家王慧珍女士等国际著名专家做大会主旨报告。张学军院士的主题演讲题为《机器人辅助的超精密非球面及自由曲面光学抛光》,提出了一种以机器人系统为中心的新型抛光方法,将确定性抛光技术(如计算机控制光学表面抛光和离子束整形)与机器人平台协同集成,形成了一种灵活、经济、高效的多轴抛光设备,在中型非球面和自由曲面光学元件制造中实现了亚纳米精度,同时大幅度降低了生产成本,可满足新一代高端制造装备制造、前沿科学实验所需的高端光学元件大规模生产需求。张学军院士发表主题演讲Ö mer Sahin Ganiyusufoglu院士的主题演讲《智能装备与在线测试》着重探讨了从大规模生产向创新驱动的高质量产业快速转型的发展趋势。在这一过程中,智能机器和智能制造技术扮演着至关重要的角色,这些技术能够通过在线测量和在线测试实现自动化的过程优化。他强调,传感器是信息数据获取的关键,并通过人工智能(AI)使装备“智能化”。Ganiyusufoglu院士通过汽车行业的若干实例详细介绍了从传统大规模生产向智能制造转型的过程。Ö mer Sahin Ganiyusufoglu院士发表主题演讲Mona Jarrahi教授在其题为《太赫兹技术的新前沿》的主题演讲中,介绍了一种新型高性能光电导太赫兹源,利用等离子体纳米天线实现了创纪录的太赫兹辐射输出,功率达到数毫瓦级,比现有技术提高了三个数量级,成功应用于太赫兹探测器、超光谱焦平面阵列和量子级探测灵敏度的外差光谱仪,使其在宽太赫兹频带和室温条件下的检测能力大幅提升。该技术突破为医疗成像、诊断、大气监测、制药质量控制和安全监测等领域带来了新的机遇,具有广阔的应用潜力。Mona Jarrahi教授在线发表主题演讲Seung-Woo Kim教授的主题演讲《基于梳状激光的光频率产生技术用于精密测量和仪器》,探讨了超短激光脉冲及其频率梳在现代计量学中的革命性应用。他指出,频率梳作为一种“频率标尺”,能够与微波原子钟或光钟稳定联结,产生超稳定的光频率,从而促进干涉测量和飞行时间测量等领域的技术突破。Kim教授进一步介绍了这种光频合成技术在自由空间相干通信、频率传输、光谱学以及太赫兹波生成等领域的应用。他还展望了频率梳技术未来在计量学和仪器制造领域的广泛应用前景,并提出了相关的技术挑战和解决方案。Seung-Woo Kim教授发表主题演讲Steven Cundiff教授的主题演讲《优化频率梳用于多梳光谱》集中讨论了双梳光谱技术的优势与挑战。双梳光谱是一种光学傅里叶变换光谱技术,通过使用两个略有不同重复频率的频率梳,实现无需移动部件的扫描延迟。Steven Cundiff教授指出,虽然双梳光谱在光谱分辨率、信噪比和采集时间方面表现优异,但也存在诸如光谱范围与采集时间之间的难以兼顾的问题。他提出,通过使用重复频率接近倍数关系的两个梳子,可以改善光谱分辨率,减少对信噪比的影响。此外,通过相位调制技术可以在不降低信噪比的情况下缩短采集时间,满足非线性光谱学中的高脉冲能量需求。 Steven Cundiff教授发表主题演讲Sergey Antonovich Chizhik院士的发表了《原子力显微镜在微机械装置表征中的应用》的主题演讲,讨论了原子力显微镜(AFM)在微机电系统(MEMS)纳米级结构和材料性能表征方面的应用。Chizhik院士介绍了一系列自主开发的AFM设备和方法,及其在电子学和生物细胞研究中的应用,展示了包括纳米层析成像、静态与动态力谱学、纳米钻探以及振荡摩擦测量等技术的创新性应用。他还讨论了这些方法在生物细胞研究中的特殊应用,并展望了AFM在MEMS表征中的广阔应用前景。Sergey Antonovich Chizhik院士发表主题演讲方向研究员在主题演讲《计量数字化转型的机遇与挑战》中,详细探讨了数字化时代对计量学的深远影响。自2018年国际单位制(SI)重新定义以来,计量领域进入了数字时代,所有SI单位都基于物理学的基本定律和常数进行了定义。方向研究员介绍了数字化计量的转型过程,特别是国际计量委员会(CIPM)在推动全球数字化计量框架方面的努力,并探讨了未来计量技术和测量仪器发展面临的机遇和挑战。他强调,随着全球数字化转型的加速,计量学的数字化变革将继续深刻影响各个行业,推动工程测量技术的进一步创新和发展。方向研究员发表主题演讲Jens Flügge教授的主题演讲《干涉仪在测量系统中的集成》探讨了干涉仪在高精度测量中的广泛应用。Jens Flügge教授介绍了激光干涉仪的设计方案及其在不同测量系统中的应用,包括PTB纳米比长仪、用于硅晶格参数测定的光学/X射线干涉仪,以及用于干涉仪校准的真空比较仪等。他详细介绍了上述装备的设计、优化过程及其实际测量案例,展示了在降低测量不确定度和提高测量精度方面的创新性解决方案,阐明了干涉仪技术在计量领域的重要性和应用前景。 Jens Flügge教授在线发表主题演讲王慧珍首席专家的主题演讲《智能计量技术深度赋能制造业高质量发展》重点介绍了现代几何计量技术的最新进展,及其在高端制造业中的应用。人工智能(AI)、多传感器技术和测量数据再利用相融合,实现了制造过程的优化和提高生产效率。她展示了智能几何计量系统提升生产精度和质量控制水平的典型案例,探讨了未来智能计量技术的发展趋势和挑战。她认为,随着先进制造业对高精度、高效生产需求的不断增长,智能几何计量系统将在提升制造业整体质量和竞争力方面发挥越来越重要的作用。王慧珍女士发表主题演讲分论坛分为10个分会场,共计63个分论坛邀请报告。分论坛的专家学者们结合测量仪器技术与精密工程各个分支方向,交流了目前本领域存在的重大科学问题与关键技术问题、具有发展优势的新的技术路线和近期重大研究进展与突破;探讨了因学科交叉衍生出的新原理、新技术和新方向;并对该领域未来10-15年的发展趋势与特点、新的应用背景和可能产生的新突破进行了探索与研判。除主论坛、分论坛的学术交流与研讨外,会议还以圆桌论坛形式进行战略研讨。圆桌论坛邀请测量仪器领域的著名专家学者与企业家参加了研讨。圆桌论坛围绕“面向高端装备制造的高端测量仪器发展战略”为主题展开讨论。与会专家学者与企业家首先就我国当前国家测量体系和仪器产业体系对先进制造支撑能力的现状及存在的问题,未来10-15年仪器领域重大应用场景战略需求、前沿仪器技术、发展趋势、全景路线图,全制造链、全产业链和全生命周期测量仪器体系建设框架构建,嵌入式、芯片化、微型化、小型化的计量标准体系与实时精度调控体系构建,仪器学科发展战略和创新领军人才培养体系,精密仪器产业体系构建、发展趋势研判、仪器产业布局构想等热点问题展开了热烈讨论,并达成了初步共识。
  • 日立分析仪器推出全新FT160 XRF镀层分析仪:针对微电子纳米级镀层
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2月25日,日立高新技术公司(TSE:8036)的全资子公司日立分析仪器(HitachiHigh-Tech Analytical Science)推出strongspan style="text-indent: 2em color: rgb(0, 112, 192) "新型FT160XRF光谱仪/span/strong,该分析仪提供三种基座配置选择方案用于纳米级镀层分析。日立分析仪器主要致力于分析和测量仪器的制造和销售。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 451px height: 301px " src="https://img1.17img.cn/17img/images/202002/uepic/c29354c7-1547-456d-ac6a-6c7087db5a33.jpg" title="日立新品.png" alt="日立新品.png" width="451" height="301" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "FT/spanspan style="color: rgb(0, 176, 240) text-indent: 0em "160 XRF镀层分析仪/span/pp style="text-indent: 2em "随着新型FT160系列在日本率先推出,日立分析仪器目前已在中国、北美、欧洲、中东和非洲销售FT160系列镀层分析仪并提供相关服务。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "日立推出的该款最新一代镀层分析仪旨在应对测量小型部件上的超薄镀层所带来的挑战。/spanFT160是一种台式EDXRF(能量色散x射线荧光)分析仪,配有强大的软件和硬件,能实现高样品处理量,且任何操作员均能获取高质量结果。由于FT160系列专为在生产质量控制中发挥关键作用而设计,span style="color: rgb(0, 112, 192) "因此其可在半导体、电路板和电子元件市场中被广泛应用/span。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋/strong/spanstrong测量纳米级的镀层/strong/pp style="text-indent: 2em "FT160配置高端部件,可以提供精细结构上的超薄镀层的元素分析。毛细管聚焦光学镜能聚焦直径小于30μm的X射线束,从而在样品上集中更大强度且其可测量的部件尺寸小于传统准直器可测量的部件尺寸。高灵敏度、高分辨率日立分析仪器硅漂移探测器(SDD)充分利用光学系统测量微电子和半导体上的纳米级镀层。高精度样品台和具备数字变焦功能的高清摄像头可快速定位样件,以提高样品处理量。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "日立分析仪器产品经理Matt Kreiner表示/span:“在之前产品的成功基础上所推出的FT160能提供重新设计的照明布置以提高零件的可视性并便于定位,且新的配置选择方案可确保特定应用的最佳性能并为繁忙的测试实验室提供新的紧凑型基座配置要素。该产品系列硬件和分析能力的不断发展使我们的客户更容易在快速发展的微电子领域控制生产。FT160是对我们镀层仪器综合系列的补充,这归功于日立45多年的XRF镀层分析仪的开发经验。”/pp style="text-indent: 2em "FT160系列现已允许订购。可通过点击文末a href="https://www.instrument.com.cn/netshow/SH104100/product.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "日立分析仪器厂商展位/span/a联系日立分析仪器。/pp style="text-align: left text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋/strong/spanstrong关于日立分析仪器/strong/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 354px height: 80px " src="https://img1.17img.cn/17img/images/202002/uepic/db00c146-e659-42ad-b762-773a6727b57f.jpg" title="00.png" alt="00.png" width="354" height="80" border="0" vspace="0"//pp style="text-align: left text-indent: 2em "日立分析仪器是日立高新技术集团于2017年7月创立的全球性公司。其总部位于英国牛津,其在芬兰、德国和中国从事研发和装配业务并在全球多个国家开展销售和支持业务。其产品系列包括:/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span FT160、FT110和X-Strata微焦斑XRF光谱仪,能测量单层和多层镀层(包括合金层)的镀层厚度,可成为质量控制或过程控制程序以及研究实验室的专用分析仪。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span EA1000、EA6000和HM1000 RoHS(有害物质限制指令)分析仪适用于RoHS 1和RoHS 2测试,使用便捷,能够很好适应限制指令的变化。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span DSC7000X、DSC7020、NEXT STA、STA7000、TMA7100、TMA7300和DMA7100系列热分析仪已经过优化,可检测最小反应并使其可视化,同时具有坚固耐用、可靠且易于使用的特点。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span EA8000 x射线颗粒污染物分析仪用于锂离子电池生产中快速有效的质量控制。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span Lab-X5000和X-Supreme8000台式XRF光谱仪可为石油、木材处理、水泥、矿物、采矿和塑料等多种行业提供质量保证和过程控制服务。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span OE750、PMI-MASTER、FOUNDRY-MASTER和TEST-MASTER系列分析仪被世界各地的行业用于进行快速和精确的金属分析。该仪器采用直读光谱分析技术,可测定所有重要元素,能提供低检测限和高精度,包括钢中的碳和几乎所有金属中所有技术相关的主要和痕量元素。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span X-MET8000手持式光谱仪被成千上万的企业用于通过XRF精密技术进行简单、快速和无损的合金分析、废金属分拣和金属牌号筛选。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "□/span 采用LIBS激光技术的Vulcan手持式光谱仪只需一秒即可识别金属合金,是世界上分析速度最快的分析仪之一。这对需要处理大量金属的企业而言非常有利。/ppbr//p
  • 几何量精密测量仪器企业中图仪器冲刺IPO
    “专精特新”小巨人企业中图仪器对资本市场发起冲刺。  公开信息显示,10月21日,深圳市中图仪器股份有限公司(简称“中图仪器”)与中信建投(601066)签署上市辅导协议。成立于2005年的中图仪器致力于精密测量、计量检测等仪器设备的研发、生产和销售。去年国家工业和信息化部公示了第三批专精特新“小巨人”企业名单,中图仪器顺利入选。  自2005年成立以来,中图仪器逐步聚集了来自清华、西安交大、哈工大等高校毕业生带头的工程师队伍,从小仪器到大品种,持续推动国内精密测量技术创新与进步。  中图仪器重点发展高端精密、超精密几何量检测仪器,提供一维、二维、三维的尺寸测量产品。中图仪器在精密轮廓扫描技术、精密测量传感器、激光干涉测量、微纳米运动设计、显微三维形貌重建、大尺寸三维空间测量、智能机器视觉测量、精密光栅导轨测控等众多技术领域形成了独特的研发设计、制造优势,已具备从纳米到百米为用户提供专业的精密测量仪器和测量解决方案的能力,大部分产品达到国际先进水平。  目前,中图仪器的产品已广泛应用于计量质量检测机构、汽车、航空航天、机械制造、半导体加工、3C电子等行业,部分产品达到国际先进水平,参与制定了多项国家标准。  中图仪器在深圳市南山区智园科技园拥有现代化的办公场地,在深圳市宝安区创新新世界产业园拥有仪器设备精密加工、装配检测的专业生产制造基地。发展至今,中图仪器的销售和服务网点遍及三十多个省、市、自治区,海外市场快速成长,营销网络日逐完善。  公开报道显示,多年来中图仪器的研发投入占销售额的25%以上,高于行业10%的平均水平。截至2021年10月31日,公司已拥有99项专利及软件著作权,参与制定3项ISO标准,主导或参与制定10余项国内或行业标准。  辅导文件显示,马俊杰为中图仪器控股股东,直接及间接持有公司股权比例为36.28%。企查查显示,中图仪器自2016年起经历多轮融资,参投机构包括壹海汇资本、方广资本、架桥资本、海量资本和深创投等。  据了解,在我国高端几何量仪器领域被蔡司、海克斯康、三丰、ZYGO等国际著名品牌全面占据的情况下,中图仪器研制的闪测仪、激光跟踪仪、激光干涉仪、光学3D表面轮廓仪、测长机等多款精密测量仪器逐步达到进口仪器性能水平,以较低成本较高性能服务于我国计量质量检测机构、汽车、航空航天、机械制造、半导体加工、3C电子等行业领域,推动行业国产替代,同时市场占有率攀升。
  • 量子点问鼎诺奖 | 滨松量子产率测量仪助力量子点测量研究
    图1 来源:诺贝尔奖委员会官网。北京时间10月4日17时45分,有着“理科综合奖”之称的诺贝尔化学奖揭晓。瑞典皇家科学院决定将2023年诺贝尔化学奖授予美国科学家Moungi G.Bawendi、Louis E Brus,俄罗斯科学家Alexei l.Ekimov ,以表彰他们对量子点的发现和研究。该奖项的授予充分表明了量子点技术在科学领域中的又一重要突破。 01量子点是一种纳米级半导体发光材料,通过施加一定的电场或光压,这些纳米半导体就会发出特定频率的光,而发出光的频率会随着半导体的尺寸的改变而变化。因此,我们通过控制它们的尺寸和形状,就可以控制其发出的光的颜色(如图2),从而获得独特的光学和电子特性(如图2)。 图2 量子点荧光随尺寸的变化示例。 由于量子点丰富的物理化学性质,吸引了很多学者投身其中,目前已经形成了很多重要的前沿技术。除了我们熟知的已经商业化的量子点液晶显示以外,量子点还可以用于未来显示、光伏发电、高性能激光光源应用、单光子光源应用以及作为荧光探针用于生物成像等。 02 作为一种独特的纳米材料,在量子点的研究中,首先会关注其光谱特征和量子产率;在一些情况下,电致发光效率和荧光寿命也是需要被测量的参数。 #宽广的光谱测量 在生物荧光探针等应用的量子点研究中,不仅需要测量可见光区的光谱,还可能需要测量近红外红外光的光谱。 图3 从可见到近红外连续光谱测量的双探测器方案。为了契合这样的需要,滨松Quantaurus-QY plus中不仅配备了高灵敏度高信噪比背照式CCD探测器(探测范围从紫外至约1100nm的近红外,如图3上左),而且配备了专门用于近红外波段的InGaAs探测器(从850nm至1650nm,如图3上右)。作为在光电行业深耕细作几十年,光探测器产品线非常宽广的技术型公司,滨松在Quantaurus系列产品中均选用了自产的探测器。并基于对探测器的深刻理解与定制,开发出了特有的“光谱无缝缝合”技术,使得通过可见光探测器和近红外探测器所得到的光谱能够衔接在一起(如图3),从而使用户可以在350-1650nm的范围内,横跨可见及近红外区域得到完整且精准的光谱和真实的量子产率数值。(如图4) 图4 文献案例:横跨可见到红外的光谱测量。500nm左右的峰为吸收光谱,1300nm左右的峰为发射光谱。(N. Hasebe, et al. Anal. Chem.&ensp 87&ensp (2015), 2360)。 #精准的量子产率测量滨松量子产率测试仪对上至100%,下至1%以下的量子产率都具有非常准确的测量能力(如图5)。 图5 滨松量子效率分析仪对一些标准样品的测试值与文献值的对比(K. Suzuki, et al. Phys. Chem. Chem. Phys. 11 (2009), 9850)。 为了得到精确的结果,除了在硬件方面精益求精,滨松也一直在研究量子产率测量中的各种误差来源。比如对于许多量子点,激发光谱和发射光谱会有所重叠(如图6);这意味着量子点发出的荧光有可能被自身再次吸收——这种自吸收(reabsorption)现象会导致量子产率的测量值低于真实值,而且越浓的溶液低估得越厉害(如图7)。图6 几种量子点的吸收及发射光谱。实线为吸收光谱,多点连线为发射光谱;蓝绿黑红对应着量子点尺寸从小到大。(U. Resch-Genger, et al. Nat. Methods 5 (2008), 763)。 针对这种低估量子产率的可能,滨松运用了对应的自动测量流程及算法(K. Suzuki, et al. Phys. Chem. Chem. Phys.&ensp 11&ensp (2009), 9850)保证得到最为准确的量子产率读数(如图7)。 图7 自吸收(Reabsorption)校正结果示例(K. Suzuki, et al. Phys. Chem. Chem. Phys. 11 (2009), 9850)。#滨松量子产率测量仪Quantaurus-QY plus
  • 科众精密-分享接触角测量仪在材料科学中的应用
    科众精密是一家专业生产接触角测量仪的公司。在材料科学领域中,接触角测量仪具有非常广泛的应用,下面我们来介绍一下接触角测量仪在材料科学中的应用。接触角是指液体和固体接触面上的夹角,是表征液体在固体表面上的吸附、润湿、渗透和浸润特性的重要指标。接触角测量仪通过测量液滴在固体表面上的接触角来研究固体表面的性质和液体在固体表面上的相互作用。具体应用如下:表面能测量:接触角测量仪可以测量固体表面的表面能,即表面自由能。表面自由能是表征固体表面化学性质的重要参数,它可以用来预测液体在固体表面上的吸附、润湿、渗透和浸润等特性。表面改性:接触角测量仪可以研究表面改性技术对固体表面的影响。例如,通过在固体表面引入特定化学官能团,可以改善其润湿性能和耐水性能,从而改善其在液体介质中的应用性能。涂层材料研究:接触角测量仪可以用来研究涂层材料的润湿性能和耐腐蚀性能。例如,通过测量涂层表面的接触角,可以评估其抗水、抗油和抗化学腐蚀性能。纳米材料研究:接触角测量仪可以用来研究纳米材料的润湿性能和表面性质。由于纳米材料表面积大,表面性质较为特殊,因此接触角测量仪可以提供非常有价值的研究数据。界面现象研究:接触角测量仪可以用来研究液体和固体界面上的各种现象,例如界面张力、表面扩散和相互作用力等。这些研究数据对于理解物质的分子结构和表面性质具有非常重要的意义。综上所述,接触角测量仪在材料科学中具有非常广泛。
  • 精工盈司推出高性能X射线荧光镀层厚度测量仪SFT9500X系列
    高精度测量极微小部位的金属薄膜厚度 精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。本公司于12月19日开始销售可高精度测量电镀・ 蒸镀等极微小部位的纳米级别的镀层厚度测量仪「SFT9500X系列」。出货时间预定为2012年2月上旬。 高性能X射线荧光镀层厚度测量仪 「SFT9550X」 要对半导体、电子部件、印刷电路板中所使用的电镀・ 蒸镀等金属薄膜的膜厚・ 组成进行测量管理,就必须确保功能、品质及成本。特别是近年来随着电子仪器的高功能化、小型化的发展,连接器和导线架等电子部件也逐渐微细化了。与此同时,电镀・ 蒸镀等金属薄膜厚度的测量也要求达到几十微米的极微小部位测量以及达到纳米等级的精度。 「SFT9500X系列」通过新型X射线聚光系统(毛细管)和X射线源的组合,可达到照射直径30μmφ的高能量X射线束照射。以往的X射线荧光膜厚仪由于照射强度不足而无法获得足够的精度,而「SFT9500X系列」则可以对导线架、连接器、柔性线路板等的极微小部位进行准确、迅速的测量。 SIINT于1978年在世界上率先推出了台式X射线膜厚仪,而后在日本国内及世界各地进行广泛销售,得到了顾客很高的评价。此次推出的「SFT9500X系列」是一款凝聚了长期积累起来的X射线微小部位测量技术的高性能X射线荧光膜厚仪。今后将在电子零部件、金属材料、镀层加工等领域进行销售,对电子仪器的性能・ 品质的提高作出贡献。 【SFT9500X系列的主要特征】1. 极微小部位的薄膜・ 多层膜测量通过采用新型的毛细管(X射线聚光系统)和X射线源,把与以往机型(SFT9500)同等强度的X射线聚集在30μmφ的极微小范围。因此,不会改变测量精度即可测量几十微米等级的微小范围。同时,也可对几十纳米等级的Au/Pd/Ni/Cu多镀层的各层膜厚进行高精度测量。 2.扫描测量通过微小光束对样品进行XY扫描,可把样品的镀层厚度分布和特定元素的含量分布输出为二维扫描图像数据,更方便进行简单快速的观察。 3. 异物分析通过高能量微小光束和高计数率检测器的组合,可进行微小异物的定性分析。利用CCD摄像头选定样品的异物部分并照射X射线,通过与正常部分的能谱差进行异物的定性分析(Al~U)。 【SFT9500X系列的主要产品规格】 SFT9500XSFT9550X样品台尺寸(宽)×(长) 175×240 mm330×420 mm样品台移动量(X)×(Y)×(Z) 150×220×150 mm300×400×50 mm被测样品尺寸(最大)(宽)×(长)×(厚度) 500×400×145 mm820×630×45 mmX 射 线 源空冷式小型X射线管(最大50kV,1mA)检 测 器Vortex半导体检测器(无需液氮)照 射 直 径最小30μmφ样 口 观 察CCD摄像头(附变焦功能)样 品 对 焦激光点滤 波 器Au极薄膜测量用滤波器操 作 部电脑、19英寸液晶显示器测 量 软 件薄膜FP法、薄膜検量線法选 配能谱匹配软件、红色显示灯、打印机测 量 功 能自动测量、中心搜索数 据 处 理Microsoft Excel、Microsoft Word(配备统计处理;测量数据、平均值、最大・ 最小值、CV值、Cpk值等测量结果报告制作(包含样品图像))安 全 功 能样品室门安全锁、仪器诊断功能 【价格】 1,650万日元~(不含税) 【出货开始时间】 2012年2月上旬 【销售目标台数】 50台(2012年度)    Microsoft是美国 Microsoft Corporation在美国及其它国家的登记商标或者商标。 以上本产品的咨询方式中国:精工盈司电子科技(上海)有限公司TEL:021-50273533FAX:021-50273733MAIL:sales@siint.com.cn日本:【媒体宣传】精工电子有限公司综合企划本部 秘书广告部 井尾、森TEL:043-211-1185【客户】精工电子纳米科技有限公司分析营业部 营业三科TEL: 052-935-8595MAIL:info@siint.co.jp
  • 纳米级量子传感器实现高清成像
    日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。(a)六方氮化硼中的硼空位缺陷。空位充当用于磁场测量的原子大小的量子传感器,对磁场敏感,像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光。通过分析响应微波的光致发光强度的变化,研究人员可测量每个传感器点的磁场。图片来源:东京大学研究团队研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 几何尺寸测量仪
    产品名称:几何尺寸测量仪产品品牌:EVM-G系列产品简介:本系列是一款高精度影像测量仪,结合传统光学与影像技术并配备功能完备的2.5D测量软件。可将以往用肉眼在传统显微镜下观察到的影像传输到电脑中作各种量测,并将测量结果存入电脑中以便日后存档或发送电子邮件。其操作简单、性价比高、精确度高、测量方便、功能齐全、稳定可靠。适用于产品检测、工程开发、品质管理。在机械加工、精密电子、模具制造、塑料橡胶、五金零件等行业都有广泛使用。产品参数:u 变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率40X~400X连续可调,物方视场:10.6-1.6mm,按客户要求选配不同倍率物镜。u 摄像机:配备低照度SONY机芯1/3′彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。可以升级选配1/2′CMOS130万像素摄像机。u 底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。u 光栅尺:仪器平台带有高精度光栅尺(X,Y,Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。u 光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。u 导轨:双层工作平台设计,配备高精度滚动导轨,精度高,移动平稳轻松。u 丝杆:X,Y轴工作台均使用无牙光杆摩擦传动,避免了丝杆传动的间隙,灵敏度大大提高,亦可切换快速移动,提高工作效率。 工作台仪器型号EVM-1510GEVM-2010GEVM-2515GEVM-3020GEVM-4030G金属台尺寸(mm)354×228404×228450×280500×330606×466玻璃台尺寸(mm)210×160260×160306×196350×280450×350运动行程(mm)150×100200×100250×150300×200400×300仪器重量(kg)100110120140240外型尺寸L*W*H756×540×860670×660×950720×950×1020 影像测量仪是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个设备的主体。它能快速读取光学尺的位移数值,通过建立在空间几何基础上的软件模块运算,瞬间得出所要的结果;并在屏幕上产生图形,供操作员进行图影对照,从而能够直观地分辨测量结果可能存在的偏差。影像测量仪是一种由高解析度CCD彩色镜头、连续变倍物镜、彩色显示器、视频十字线显示器、精密光栅尺、多功能数据处理器、数据测量软件与高精密工作台结构组成的高精度光学影像测量仪器。仪器特点采用彩色CCD摄像机;变焦距物镜与十字线发生器作为测量瞄准系统;由二维平面工作台、光栅尺与数据箱组成数字测量及数据处理系统;仪器具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;与电脑连接后,采用专门测量软件可对测量图形进行处理。仪器适用于以二维平面测量为目的的一切应用领域。这些领域有:机械、电子、模具、注塑、五金、橡胶、低压电器,磁性材料、精密五金、精密冲压、接插件、连接器、端子、手机、家电、计算机(电脑)、液晶电视(LCD)、印刷电路板(线路板、PCB)、汽车、医疗器械、钟表、螺丝、弹簧、仪器仪表、齿轮、凸轮、螺纹、半径样板、螺纹样板、电线电缆、刀具、轴承、筛网、试验筛、水泥筛、网板(钢网、SMT模板)等。ISO国际标准编辑影响影像测量仪精度的因素主要有精度指示、结构原理、测量方法、日常不注意维护等。 中国1994年实行了国际《坐标测量的验收检测和复检测量》的实施。具体内容如下:第1部分:测量线性尺寸的坐标测量机 第2部分:配置转台轴线为第四轴的坐标测量机 第3部分:扫描测量型坐标测量机 第4部分:多探针探测系统的坐标测量机 第5部分:计算高斯辅助要素的误差评定。 在测量空间的任意7种不同的方位,测量一组5种尺寸的量块,每种量块长度分别测量3次所有测量结果必须在规定的MPEE值范围内。允许探测误差(MPEP):25点测量精密标准球,探测点分布均匀。允许探测误差MPEP值为所有测量半径的值。ISO 10360-3 (2000) “配置转台轴线为第四轴的坐标测量机” :对于配备了转台的测量机来说,测量机的测量误差在这部分进行了定义。主要包含三个指标:径向四轴误差(FR)、切向四轴误差(FT)、轴向四轴误差(FA)。ISO 10360-4 (2003) “扫描测量型坐标测量机” :这个部分适用于具有连续扫描功能的坐标测量机。它描述了在扫描模式下的测量误差。大多数测量机制造商定义了"在THP情况下的空间扫描探测误差"。在THP之外,标准还定义了在THN、TLP和TLN情况下的扫描探测误差。 沿标准球上4条确定的路径进行扫描。允许扫描探测误差MPETHP值为所有扫描半径的差值。THP说明了沿已知路径在密度的点上的扫描特性。注:THP的说明必须包括总的测量时间,例如:THP = 1.5um (扫描时间是72 秒)。ISO 10360-4 进一步说明了以下各项定义:TLP: 沿已知路径,以低密度点的方式扫描。THN: 沿未知路径,以高密度点的方式扫描。TLN: 沿未知路径,以低密度点的方式扫描。几何尺寸测量仪工作原理影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。全自动影像测量仪编辑全自动影像测量仪,是在数字化影像测量仪(又名CNC影像仪)基础上发展起来的人工智能型现代光学非接触测量仪器。其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标扫描测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更的测量需要,解决制造业发展中又一个瓶颈技术。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现点哪走哪的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。全自动影像测量仪有着友好的人机界面,支持多重选择和学习修正。全自动影像测量仪性能使其在各种精密电子、晶圆科技、刀具、塑胶、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。选购方法编辑有许多客户都在为如何挑选影像测量仪的型号品牌所困扰,其实最担心就是影像测量仪的质量和售后。国内影像测量仪的生产商大部分都集中在广东地区,研发的软件功能大部分相似,客户可以不用担心,挑选一款能够满足需要测量的产品行程就行了。根据需要来选择要不要自动或者手动,手动的就比较便宜,全自动的大概要比手动贵一倍左右。挑选影像测量仪最重要看显像是不是清晰,以及精度是否达标(一般精度选择标准为公差带全距的1/3~1/8)。将所能捕捉到的图象通过数据线传输到电脑的数据采集卡中,之后由软件在电脑显示器上成像,由操作人员用鼠标在电脑上进行快速的测量。有的生产商为了节约成本可能会采用国产的,造价比较低,效果就稍微差点。常见故障及原因编辑故障1)蓝屏;2)主机和光栅尺、数据转换盒接触不良造成无数据显示;3)透射、表面光源不亮;4)二次元打不开;5)全自动影像测量仪开机找不到原点或无法运动。原因由于返厂维修周期长,价格昂贵,最重要的是耽误了客户的正常的工作。造成问题出现的原因很多,但无外乎以下原因:1)操作软件文件丢失或CCD视频线接触不良;2)光栅尺或数据转换盒损坏;3)电源板损坏;4)加密狗损坏或影像测量仪软件操作系统崩溃。以上问题可能是只出现一个,也有可能几个问题一起出现。软件种类编辑二次元测量仪软件在国内市场中种类比较多,从功能上划分主要有以下两种:  二次元测量仪测量软件与基本影像仪测量软件类似,其功能特点主要以十字线感应取点,功能比较简单,对一般简单的产品二维尺寸测量都可以满足,无需进行像素校正即可直接进行检测,但对使用人员的操作上要求比较高,认为判断误差影响比较大,在早期二次元测量软件中使用广泛。  2.5D影像测量仪在影像测量领域我们经常可以听到二次元、2.5次元、三次元等各种不同的概念,所谓的二次元即为二维尺寸检测仪器,2.5次元在影像测量领域中是在二维与三维之间的一种测量解决方案,定义是在二次元影像测量仪的基础上多加光学影像和接触探针测量功能,在测量二维平面长宽角度等尺寸外如果需要进行光学辅助测高的话提供了一个比较好的解决方案。仪器优点编辑1、装配2个可调的光源系统,不仅观测到工件轮廓,而且对于不透明的工件的表面形状也可以测量。2、使用冷光源系统,可以避免容易变形的工件在测量是因为热而变形所产生的误差。3、工件可以随意放置。4、仪器操作容易掌握。5、测量方便,只需要用鼠标操作。6、Z轴方向加探针传感器后可以做2.5D的测量。测量功能编辑1、多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;2、组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;3、坐标平移和坐标摆正,提高测量效率;4、聚集指令,同一种工件批量测量更加方便快捷,提高测量效率;5、测量数据直接输入到AutoCAD中,成为完整的工程图;6、测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca等各种参数;7、多种语言界面切换;8、记录用户程序、编辑指令、教导执行;9、大地图导航功能、刀模具专用立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头;10、可选购接触式探针测量,软件可以自由实现探针/影像相互转换,用于接触式测量不规则的产品,如椭圆、弧度 、平面度等尺寸;也可以直接用探针打点然后导入到逆向工程软件做进一步处理!11、影像测量仪还可以检测圆形物体的圆度、直线度、以及弧度;12、平面度检测:通过激光测头来检测工件平面度;13、针对齿轮的专业测量功能14、针对全国各大计量院所用试验筛的专项测量功能15、图纸与实测数据的比对功能维护保养编辑1、仪器应放在清洁干燥的室内(室温20℃±5℃,湿度低于60%),避免光学零件表面污损、金属零件生锈、尘埃杂物落入运动导轨,影响仪器性能。2、仪器使用完毕,工作面应随时擦干净,再罩上防尘套。3、仪器的传动机构及运动导轨应定期上润滑油,使机构运动顺畅,保持良好的使用状态。4、工作台玻璃及油漆表面脏了,可以用中性清洁剂与清水擦干净。绝不能用有机溶剂擦拭油漆表面,否则,会使油漆表面失去光泽。5、仪器LED光源使用寿命很长,但当有灯泡烧坏时,请通知厂商,由专业人员为您更换。6、仪器精密部件,如影像系统、工作台、光学尺以及Z轴传动机构等均需精密调校,所有调节螺丝与紧固螺丝均已固定,客户请勿自行拆卸,如有问题请通知厂商解决。7、软件已对工作台与光学尺的误差进行了精确补偿,请勿自行更改。否则,会产生错误的测量结果。8、仪器所有电气接插件、一般不要拔下,如已拔掉,则必须按标记正确插回并拧紧螺丝。不正确的接插、轻则影响仪器功能,重则可能损坏系统。测量方式编辑1、物件被测面的垂直测量2、压线相切测量3、高精度大倍率测量4、轮廓影像柔和光测量5、圆及圆弧均匀取点测量精密影像测绘仪测量软件简介:绘图功能:可绘制点、线、圆、弧、样条曲线、垂直线、平行线等,并将图形输入到AutoCAD中,实现逆向工程得到1:1的工程图。自动测绘:可自动测绘如:圆、椭圆、直线、弧等图形。具有自动寻边、自动捕捉、自动成图、自动去毛边等功能,减少了人为误差。测量标注:可测量工件表面的任意几何尺寸,不同高度的角度、宽度、直径、半径、圆心距等尺寸,并可在实时影像中标注尺寸。SPC统计分析软件:提供了一系列的管制图及多种类型的图表表示方法,使品管工作更方便,大大提升了品质管理的效率。报表功能:用户可轻易地将测量结果输出至WORD、EXCEL中去,自动生成检测报告,超差数值自动改变颜色,特别适合批量检测。鸟瞰功能:可察看工件的整体图形及每个尺寸对应的编号,直观的反应出当前的绘图位置,并可任意移动、缩放工件图。实时对比:可把标准的DXF工程图调入测量软件中与工件对比,从而快速检测出工程图和实际工件的差距,适合检测比较复杂的工件。拍照功能:可将当前影像及所标注尺寸同时以JPEG或BMP格式拍照存档,并可调入到测量软件中与实际工件做对比。光学玻璃:光学玻璃为国家计量局检验通过之标准件,可检验X、Y轴向的垂直度,设定比例尺,使测量数据与实际相符合。客户坐标:测量时无需摆正工件或夹具定位,用户可根据自己的需要设置客户坐标(工件坐标),方便、省时提高了工作效率。精密影像测绘仪仪器特点:经济型影像式精密测绘仪VMS系列结合传统光学与数字科技,具有强大的软件功能,可将以往用肉眼在传统显微镜下所观察到的影像将其数字化,并将其储存入计算机中作各式量测、绘图再可将所得之资料储存于计算机中,以便日后存盘或电子邮件的发送。该仪器适用于以二座标测量为目的一切应用领域如:品质检测、工程开发、绘图等用途。在机械、模具、刀具、塑胶、电子、仪表等行业广泛使用。变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率:40X~400X,可按客户要求选配不同倍率物镜。摄像机:配备低照度SONY机芯1/3”彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。光栅尺:仪器平台带有高精密光栅尺(X、Y、Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。导轨:双层工作平台设计,配备高精度滚动导轨,精度高、移动平稳轻松。丝杆:X、Y轴工作台均使用无牙光杆磨擦传动,避免了丝杆传动的背隙,灵敏度大大提高,亦可切换快速移动提高工作效率。
  • 探索科学界的接触角精密测量:标准型接触角测量仪详解
    标准型接触角测量仪是一种用于测量液滴在固体表面上的接触角的设备。这种仪器通常被广泛应用于表面科学、材料科学、生物医学和工程等领域。以下是标准型接触角测量仪的一些特点和应用。特点:精准测量: 标准型接触角测量仪具有高精度的测量系统,可以准确测量液滴在固体表面上的接触角,提供可靠的实验数据。多功能性: 这些仪器通常具有多种测量模式,可以适应不同液体、固体和环境条件下的接触角测量需求。自动化和数字化: 现代的标准型接触角测量仪通常配备自动化控制和数字化数据采集系统,提高了测量效率和数据准确性。多样性样品: 这些仪器能够适应不同类型和形状的样品,包括平面表面、纤维、薄膜等,使其在多种应用中具有灵活性。环境控制: 一些高级的标准型接触角测量仪具有温湿度控制系统,允许在特定环境条件下进行测量,模拟实际应用中的多样性环境。应用领域:材料科学: 用于评估材料表面的润湿性能,指导新材料的设计和优化。表面科学: 提供对表面相互作用的深入理解,用于研究表面性质和界面现象。生物医学: 在生物医学领域中,用于研究细胞-材料相互作用、生物材料的设计和医疗器械的优化。工程应用: 在涂层技术、润滑、纳米技术等工程应用中,用于改善材料性能和产品设计。环境科学: 用于研究液体在不同表面上的行为,例如在水处理和环境监测中的应用。标准型接触角测量仪的广泛应用使其成为科学研究和工程领域中不可或缺的实验工具之一。
  • 科学家发明DNA温度计 未来将实现纳米级温度监控
    Vallée-Bélisle等人用DNA制造出了温度计,用于纳米级别的测温。这些纳米级温度计极大地帮助人们了解在微观世界中温度是如何存在的。  本周《纳米通讯》上发表了一项新的研究成果,蒙特利尔大学的研究者利用DNA发明了一种温度计。这种人工编码的DNA,大小只有头发的1/20000。这种温度计可以测量微观环境的温度,这将极大地加深了人们对自然和纳米技术的了解。  60年前,科学家发现DNA是存储人类遗传信息的关键生物分子,DNA双链在受热的时候会解开(这个过程称为解链)。Alexis Vallée-Bélisle教授说:“近年来生化学家发现,蛋白质和RNA等生物分子在生物体内也会随着温度的变化而发生状态的改变。我们的团队受此启发,制造了各种编码的DNA温度计,这些DNA可以在特定的温度下解链,这样就实现了温度的测量。”  使用DNA作为温度计最主要的好处就是结构简单、可以人工编码。David Gareau是这篇论文的第一作者,他解释说:“DNA中包含了4中脱氧核苷酸:ATGC,其中A和T配对,G和C配对。碱基之间是由氢键连接的,AT之间有两个氢键,GC之间有三个氢键。所以当GC配对在DNA中比例较大时,解链就需要更多的能量。利用这样的结构特点,我们可以制造出在特定温度条件下解链的DNA。”另一位作者Arnaud Desrosiers补充说:“为了能看到这些微观的变化,我们在这些DNA结构中加上荧光标记,这样我们就制造出了长度仅有5纳米的温度计。”  因为DNA温度计的发明,纳米科技向我们敞开了新的大门,而且这帮助我们更深层次地了解分子生物学。“现在生物学中仍然有很多亟待解决的问题。比如,我们知道人体的正常体温是37.5℃,但是我们不清楚在细胞内温度是否更高。”这一团队正在研究的问题就是,在细胞高速生产分子时,是否会过热。“相信在不久的将来,我们可以将这一研究成果应用于电子设备,从而实现纳米级别的温度监控。”
  • 纳米级磁共振成像仪“出世”
    美国IBM公司研究中心和斯坦福大学纳米探索中心的科学家们共同开发出一种磁共振成像仪(MRI),其分辨率要比常规MRI高出1亿倍。发表在《美国国家科学院院报》的这项研究成果,标志着为在纳米级研究复杂3D结构提供分子生物学和纳米技术工具方面迈出了重大一步。 通过将MRI的分辨率扩展到如此精细的程度,科学家们已经开发出一种显微镜,随着技术的进一步发展,该显微镜最终也许足以揭示蛋白质的结构和相互作用,为个性化医疗和靶标药物的开发取得更新进展铺平道路。该成就也将对从蛋白质到集成电路等材料研究产生影响,此类材料的研究对详细了解原子结构至关重要。 IBM研究中心战略与运营副总裁马克戴恩表示,该项技术有望提供非侵入的方式来展示诸如蛋白质等生物结构的三维细节,将给人们观察病毒、细菌、蛋白及其他生物分子的方法带来革命性变化。 这项成果的取得得益于一种称为磁共振力显微镜(MRFM)技术,该技术依赖于超细磁力的探测,除了高分辨率,该成像技术还有更进一步的化学特性优势,可“看到”表面下的东西。而且与电子显微镜不同的是,该技术不会对敏感的生物材料造成破坏。 十多年来,IBM科学家在MRFM领域一直占据着领军的地位。现在,IBM领导的研究小组已大幅提升了MRFM的灵敏度,并将其与先进的三维图像重建技术相结合,这使得他们首次能揭示纳米尺寸生物体的MRI。该技术应用于烟草花叶病毒样本时,获得的分辨率可低至4纳米(烟草花叶病毒的宽为18纳米)。 该新技术与使用梯度和成像线圈的常规MRI不同。研究人员使用MRFM来检测置于显微悬臂下样品的微小磁力,这个悬臂是一个状如跳板的薄硅片。当样本氢原子中的磁自旋与周围纳米级磁尖发生作用时,激光干涉就可跟踪悬臂的运动。对磁尖进行三维扫描,就可对悬臂的震动进行分析,从而建立起一个三维图像。 IBM研究中心纳米技术部主任丹?路加尔说,作为医疗成像领域众所周知的有力工具,MRI显微能力一直非常有限,而纳米MRI技术能够展现出个别蛋白质分子与分子化合物的内部结构,这是人们了解生物功能的关键。研究人员接下来将努力增强MRFM的灵敏度,希望能在半导体或是医学领域,显示单个分子与原子的影像。
  • 自支撑纳米级碳膜的制备研究
    成果名称自支撑纳米级碳膜的制备研究单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:在低能核物理、激光核物理、原子核化学试验等科研工作中,都需要用到自支撑薄膜作为靶膜、剥离膜或X 射线过滤器,这些膜的厚度范围覆盖几十纳米到几十微米。因此自支撑薄膜的制备成为这些实验成功与否的关键问题之一,这方面的研究已经成为核科学技术、材料科学与物理学的研究热点。此外,随着近年来激光驱动离子加速的兴起,人们发现激光轰击固体靶可以有效地加速质子到很高的能量(例如100MeV质子),从而可以提供一种台面大小的装置,用于取代体积庞大的常规离子加速器。这不仅对高能物理加速器具有重要意义,还可以显著降低癌症治疗等应用型加速器的体积和造价,而纳米级薄膜正是激光驱动粒子加速的关键元件。2011年,北京大学物理学院颜学庆教授申请的&ldquo 自支撑纳米级碳膜的制备研究&rdquo 项目获得第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用阴极弧沉积方法在平面硅、玻璃和载波片上成功制备了厚度可以精确控制的纳米级碳膜,精确度达到(± 1nm)。该碳膜能够与基底分离,并被放到带孔的金属模板上。此外,课题组还为其将要开展的激光离子加速实验和串列加速器研究提供了厚度小于10nm的固体靶材。目前相关工作已经顺利结束,此项工作的成果已经申请了专利并有相关论文发表,课题组研制的自支撑薄膜将在低能核物理、激光核物理、原子核化学试验和激光驱动离子加速等科学研究中进行推广。2012年,该项目获得了科技部国家重大科学仪器设备开发专项支持。应用前景:不仅对高能物理加速器具有重要意义,还可以显著降低癌症治疗等应用型加速器的体积和造价,而纳米级薄膜正是激光驱动粒子加速的关键元件。知识产权及项目获奖情况:已申请专利。
  • 美国产品占主流——全国共享磁测量仪器盘点
    磁性测量是指对磁场和磁性材料进行测量,通过磁测量来测量其它物理量。 基本被测量包括磁通量Φ,磁感应强度B,磁场强度H,磁化强度M等。1785年,库仑发现电荷间和磁极间作用力的库仑定律和磁库仑定律,揭开了磁测量历史的序幕。1819---1820年奥斯特发现电流的磁效应以及安培等发现关于电流之间磁相互作用力的安培作用力定律,1831年法拉第发现关于变化磁通感生电动势的电磁感应定律,使人类对宏观磁现象有了全面而本质的认识,并导致1832年高斯单位制的开始形成,真正的磁测量才得以实现。由于高校的管理模式及制度,磁测量仪器大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对磁测量仪器的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不统计用于生物体的磁测量仪器,不完全统计分析仅供读者参考)。不同地区(省/市)仪器分布情况本次统计,共涉及磁测量仪器的总数量为301台,涉及26省(直辖市/自治区),144家单位。其中,北京市共享磁测量仪器数量最多达83台,占比28%,涉及29所高校、研究院所和企事业单位等,北京如此高的占比主要是由于其拥有数量众多的科研院所。仪器所属学科领域分布仪器所属类型分布从仪器所属学科领域分布可以看出,磁测量仪器主要用于物理学和材料科学研究。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域。结果显示,物理学和材料科学标签重合度很高。此外,地球科学领域的仪器占比也较高,达12%,排名第三,仪器其所属单位主要为地震、地质领域的科研院所。从仪器类型分布图中可以看出,磁测量仪器绝大部分被归类到了计量仪器和物性性能测试仪器。仪器所属单位性质分布那么这些仪器主要分布在哪些单位呢?统计结果表明,共享磁测量仪器主要分布于高校中,占比达61%,这一结果主要是因为共享仪器平台的仪器由高校上传所致,统计结果并不能体现出此类仪器的市场分布。此外,统计结果中的政府部门主要和海洋探测有关。磁测量仪器数量TOP8这些磁测量仪器主要品牌为Quantum Design和Lake Shore,均为美国品牌。Quantum Design公司是世界知名科学仪器制造商,其研发生产的一系列磁学测量系统及综合物性测量系统已成为全球先进的测量平台,广泛分布于世界上几乎所有材料、物理、化学、纳米等研究领域的尖端实验室。Lake Shore公司成立于1968年,位于美国俄亥俄州哥伦布市,是低温与磁场科研设备的国际领导者。主要产品包括:振动样品磁强计、低温真空探针台、霍尔效应测量系统、低温控温仪、低温传感器、高斯计、磁通计等。可以看出,目前我国高校院所的磁测量仪器仍以进口为主,国外品牌占主流。本次共享磁测量仪器盘点,涉及Quantum Design、Lake Shore、AGICO、Brockhaus、Oxford、2G、Durham、Marine Magnetics、MicroSence、ADE、中国计量技术开发总公司、Evico Magnetics、理研电子株式会社、Cryogenic、Princeton Measurements Corporation、安捷伦、岩崎通信机株式会社、NSG等七十多家厂商,呈现出二超多强局面。
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • 第3届测量仪器国际会议暨第13届精密工程测量与仪器国际会议通知
    IFMI & ISPEMI 2024 第3届测量仪器国际会议暨第13届精密工程测量与仪器国际会议会议发起单位国际测量与仪器委员会 (ICMI)中国计量测试学会 (CSM)中国仪器仪表学会 (CIS)指导单位中国工程院 信息与电子工程学部 (DIEE-CAE)会议主办国际测量与仪器委员会 (ICMI)哈尔滨工业大学 (HIT)会议承办中国计量测试学会 计量仪器专业委员会 (IC‐CSM)北京信息科技大学 (BISTU)中国石油大学(华东) (UPC)海克斯康制造智能技术(青岛)有限公司 (HEXAGON)会议网站http://www.ispemi-icmi.org.cn/ 名誉主席金国藩 教授,中国工程院院士,清华大学庄松林 教授,中国工程院院士,上海理工大学张钟华 教授,中国工程院院士,中国计量科学研究院叶声华 教授,中国工程院院士,天津大学周立伟 教授,中国工程院院士,北京理工大学大会主席主席谭久彬 教授,中国工程院院士,哈尔滨工业大学联合主席Kenneth Grattan 教授,英国皇家工程院院士,伦敦城市大学Tony Wilson 教授,英国皇家工程院院士,牛津大学Steven Cundiff 教授,美国物理学会和美国光学学会会士,密歇根大学 李得天 教授,中国工程院院士,兰州空间技术物理研究所Wei Gao 教授,日本工程院院士,日本东北大学程序委员会主席孙 彤 教授,英国皇家工程院院士,伦敦城市大学联合主席方 向 研究员,中国计量科学研究院Ahmed Abou-Zeid 教授,德国联邦物理技术研究院年夫顺 研究员,中国电子科技集团有限公司委员Harald Bosse 教授,德国联邦物理技术研究院Martin Booth 教授,英国牛津大学Richard Leach 教授,英国诺丁汉大学Jens Flügge 教授,德国联邦物理技术研究院Michael Krystek 教授,德国联邦物理技术研究院马爱文 秘书长,中国计量测试学会张 彤 秘书长,中国仪器仪表学会组织委员会主席刘 俭 教授,哈尔滨工业大学联合主席祝连庆 教授,北京信息科技大学于连栋 教授,中国石油大学(华东)隋占疆 院长,海克斯康制造智能技术(青岛)有限公司胡鹏程 教授,哈尔滨工业大学委员于连栋 教授,中国石油大学(华东)刘世元 教授,华中科技大学须 颖 教授,天津三英精密仪器股份有限公司华灯鑫 教授,西安理工大学杨甬英 教授,浙江大学郝 群 教授,长春理工大学王晓东 教授,大连理工大学赵维谦 教授,北京理工大学焦明星 教授,西安理工大学于瀛洁 教授,上海大学卢荣胜 教授,合肥工业大学徐 永 研究员,北京长城计量测试技术研究所刘志宏 研究员,北京东方计量测试研究所崔长彩 教授,中国计量大学杨 平 研究员,中国计量科学研究院吴金杰 研究员,中国计量科学研究院薛 梓 研究员,中国计量科学研究院韩 军 教授,西安工业大学陈本永 教授,浙江理工大学邾继贵 教授,天津大学段发阶 教授,天津大学梁雅军 研究员,北京航天计量测试技术研究所杨树明 教授,西安交通大学崔继文 教授,哈尔滨工业大学陆振刚 教授,哈尔滨工业大学崔俊宁 教授,哈尔滨工业大学赵慧洁 教授,北京航空航天大学韩 森 教授,上海理工大学文玉梅 教授,上海交通大学陶 卫 教授,上海交通大学贺 青 研究员,中国计量科学研究院刘晓军 教授,华中科技大学卢文龙 教授,华中科技大学孙晓刚 教授,哈尔滨工业大学高 伟 教授,哈尔滨工业大学刘永猛 教授,哈尔滨工业大学王伟波 教授,哈尔滨工业大学刘 杨 教授,哈尔滨工业大学赵 勃 教授,哈尔滨工业大学吴剑威 教授,哈尔滨工业大学付海金 教授,哈尔滨工业大学杨宏兴 教授,哈尔滨工业大学鲁云峰 研究员,中国计量科学研究院丁旭旻 教授,哈尔滨工业大学李星辉 副教授,清华-伯克利深圳学院杨睿韬 副教授,哈尔滨工业大学王赫岩 副教授,哈尔滨工业大学于 亮 副教授,哈尔滨工业大学秘书处秘书长胡鹏程 教授,哈尔滨工业大学副秘书长崔继文 教授,哈尔滨工业大学陆振刚 教授,哈尔滨工业大学崔俊宁 教授,哈尔滨工业大学王伟波 教授,哈尔滨工业大学会议主席谭久彬 院士中国工程院院士国家计量战略专家咨询委员会副主任国际测量与仪器委员会(ICMI)常务委员中国计量测试学会、中国仪器仪表学会副理事长哈尔滨工业大学精密仪器工程研究院院长超精密仪器及智能化工信部重点实验室主任大会报告专家Ö mer Sahin Ganiyusufoglu 院士德国工程院院士国际生产工程科学院企业会员主席青岛国际院士港产业发展顾问同济大学顾问教授南京航空航天大学荣誉教授2018年获中国政府友谊奖大会报告专家张学军 院士中国工程院院士中国科学院长春光学精密机械与物理研究所所长国际光学工程学会会士中国光学工程学会会士中国光学学会会士大会报告专家Steven Cundiff 教授美国密歇根大学讲席教授美国科学促进会会士美国光学学会会士美国物理学会会士电气电子工程师学会会士大会报告专家Sergey Antonovich Chizhik 院士白俄罗斯国家科学院院士白俄罗斯国家科学院主席团第一副主席白俄罗斯工程院院士大会报告专家Seung-Woo Kim 教授韩国科学技术院机械工程系主任,终身教授国际生产工程科学院院士韩国光学学会会士韩国机械工程学会会士大会报告专家方向 研究员国际标准化组织气体分析技术委员会主席中国仪器仪表学会副理事长中国计量测试学会副理事长中国物理学会质谱分会理事长大会报告专家Jens Flügge 教授德国联邦物理技术研究院5.2纳米计量处主任国际期刊Precision Engineering副主编欧洲计量联合研究项目负责人德国纳米比长基准装置负责人大会报告专家Mona Jarrahi 教授美国加州大学洛杉矶分校教授国际光学工程学会会士美国光学学会会士美国物理学会会士2021年IET A F哈维工程研究奖的获得者大会报告专家隋占疆 总裁海克斯康智能制造解决方案集团总裁兼技术学院执行院长国家计量专业技术委员会顾问委员山东省几何测量技术委员会副主任委员关键日期与地点摘要投稿截止(已延长):2024年7月25日提前注册截止日:2024年7月25日 (参会回执详见附件1)现场注册日:2024年8月8日会议召开:2024年8月9日(开幕式、大会报告)、10日(分会报告)会议地点:青岛胶州绿城喜来登酒店地址:中国山东省青岛市胶州市北京东路271号电话:+86 (0)532-82289999注册费参会人员:2300元/人; 7月25日及以前注册缴费优惠价:2000元/人在校学生:1800元/人; 7月25日及以前注册缴费优惠价:1500元/人酒店房间预订参会人员优惠价格:标准间/大床房:460元/晚(含早餐)因旅游旺季房间紧张,如需会务组统一预定房间,请务必于7月25日及以前将参会回执发送至会议官方邮箱ispemi-icmi@outlook.com,以便会务组和酒店方联络,为您预定房间。汇款账号账户名称:哈尔滨鸿驰会展服务有限公司账户号码:1689 8819 5070开户行:中国银行哈尔滨香坊支行请在汇款单附言处注明IFMI & ISPEMI 2024及参会人信息。会务组联系方式通信地址:黑龙江省哈尔滨市南岗区一匡街2号哈工大科学园3018邮箱电话/传真:0451-86402258网址:http://www.ispemi-icmi.org.cn/电子邮箱:ispemi-icmi@outlook.com参会回执请扫描二维码在线填写IFMI & ISPEMI 2024 参会回执.docx
  • 国仪计测发布计量型量子微波电场测量仪QuEM-I
    5月21日,2024量子精密测量赋能产业发展大会暨第三届量子科仪节在合肥高新区举行。国仪计测(深圳)量子科技有限公司重磅首发了自主研发的微波量子精密测量仪器——QuEM-I计量型微波量子场强测量仪(Metrology-grade Quantum Microwave E-field Meter),这是一款基于高激发态里德堡原子的全新微波量子精密测量仪器,在测量灵敏度、频率范围、不确定度以及计量溯源性方面具有独特的优势,可广泛应用于微波计量测试、电磁兼容、电磁环境监测、频谱分析及无线通信等领域。发布会现场仪器介绍QuEM-I 计量型微波电场测量仪(Metrology-grade Quantum Microwave E-field Meter)是一款基于高激发态里德堡原子的微波量子精密测量仪器。基于量子相干效应将微波电场直接溯源至基本物理常数普朗克常数(h = 6.62607015×10-34Js)和国际单位制(SI)基本单位频率。这种全新的量子测量仪器在测量灵敏度、频率范围、不确定度及溯源性方面具有独特的优势。技术优势01 碱金属原子固有能级频率标尺实现仪器自校准02 支持基于本地时钟或GNSS远程高精度频率溯源03 低电磁扰动光纤耦合原子探头 / 微波腔增强型原子探头(选件)04 支持国标GB/T 43735-2024多模式里德堡原子制备泵浦激光组合05 内置减隔振机构,光机电一体化高度集成,支持定制硬件调试接口06 友好操控界面,底层软件开放,提供不确定度分析模块应用场景&bull 无线电计量&bull 电磁兼容&bull 电磁环境检测&bull 频谱分析&bull 电磁成像&bull 无线通信&bull 雷达导航关于国仪计测(深圳)量子科技有限公司国仪计测(深圳)量子科技有限公司是中国计量科学研究院系列专利技术通过科技成果转化,与国仪量子技术(合肥)股份有限公司合作设立的科技型公司,成立于2022年,注册地位于国际科创中心城市深圳,公司专注量子计量测试科学仪器研发与推广,当前重点研发基于里德堡原子的量子微波测量科学仪器及其配套设备。
  • 新型纳米级激光发生器新型研发成功
    p style="line-height: 1.75em "  据美国劳伦斯伯克利国家实验室研究人员报告说,他们找到一种新的方法,可用于制作纳米尺度的线材以及色彩可调谐的纳米级激光发生器。/pp style="line-height: 1.75em "  这些线材最小直径200纳米,融入多种其他材料,能够发出明亮和稳定的激光,有望应用于光电子领域,实现数据传输等应用。/pp style="line-height: 1.75em "  这项研究由劳伦斯伯克利国家实验室研究员兼加利福尼亚大学伯克利分校化学教授杨培东主持。借助一种简单的化学浸渍溶剂工艺,研究人员让材料“自我组合”成纳米晶体、板材和线材。/pp style="line-height: 1.75em "  研究人员在美国《国家科学院学报》上发表论文介绍说,他们把一种含铅薄膜浸入含有铯、溴和氯的甲醇溶剂,再将溶剂加热至50摄氏度,所形成的含铯、铅和溴的晶体结构线材直径在200纳米至2300纳米之间,长度在2微米至40微米之间。/pp style="line-height: 1.75em "  杨培东说:“让人惊异的是,这其中的化学过程相当简单。”相比之下,如果以标准工艺制作纳米线材,需要昂贵的仪器和高温等苛刻条件,效果却未必理想。/pp style="line-height: 1.75em "  在激光实验中,纳米线材作为激光发生器被置于一块石英基底上,在另外一个激光发生器激发下发出光线。研究人员确认,接受单个脉冲持续时间极短(仅为1秒钟的10万万亿分之一)的可见紫色激光脉冲激发后,纳米级激光发生器发出的光线超过10亿个周期,显示出极为稳定的性能。/pp style="line-height: 1.75em "  按照杨培东的说法,这是据他所知迄今为止第一个完全以无机材料、即不含碳材料制作的纳米级激光发生器。而且实验表明,这种激光器发出的光线在一定范围内可调谐,包括可见绿光和蓝光等波段。/pp style="line-height: 1.75em "  借助透视电子显微镜,研究人员发现,纳米线材的晶体结构与天然生成的钙钛矿相似,类似于盐,易受空气中水分的侵蚀。针对这一缺陷,杨培东设想,可以用聚合物或其他材料涂覆纳米线材,保护它免受侵蚀。/pp style="line-height: 1.75em "  纳米级激光发生器所使用的这类纳米新材料,在开发新一代高效太阳能电池中同样显现应用前景。杨培东说,创制纳米级激光发生器有望为这些材料开拓一个全新前沿应用领域。/ppbr//p
  • 日本精工电子X射线荧光镀层厚度测量仪全新上市
    日本精工电子纳米科技有限公司最新推出X射线荧光镀层厚度测量仪的新机型[SFT-110]  通过自动定位功能,可简单迅速地测量镀层厚度。     日本精工电子有限公司的子公司精工电子纳米科技有限公司将在5月初推出配备自动定位功能的[X射线荧光镀层厚度测量仪SFT-110],使操作性进一步提高。  对半导体材料、电子元器件、汽车部件等的电镀、蒸镀等的金属薄膜和组成进行测量管理,可保证产品的功能及品质,降低成本。精工从1971年首次推出非接触、短时间内可进行高精度测量的X射线荧光镀层厚度测量仪以来,已经累计销售6000多台,得到了国内外镀层厚度、金属薄膜测量领域的高度关注和支持。  为了适应日益提高的镀层厚度测量需求,精工开发了配备有自动定位功能的X射线荧光镀层厚度测量仪SFT-110。通过自动定位功能,仅需把样品放置到样品台上,就可在数秒内对样品进行自动对焦。由此,无需进行以往的手动逐次对焦的操作,大大提高了样品测量的操作性。  近年来,随着检测零件的微小化,对微区的高精度测量的需求日益增多。SFT-110实现微区下的高灵敏度,即使在微小准直器(0.1、0.2mm)下,也能够大幅度提高膜厚测量的精度。并且,配备有新开发的薄膜FP法软件,即使没有厚度标准物质也可进行多达5层10元素的多镀层和合金膜的测量,可对应更广泛的应用需求。  精工今后还会通过X射线技术产品的开发,更多地支持制造业的品质管理及环境管制对应。[SFT-110的主要特征] 1. 通过自动定位功能提高操作性 测量样品时,以往需花费约10秒的样品对焦,现在3秒内即可完成,大大提高样品定位的操作性。 2. 微区膜厚测量精度提高 通过缩小与样品间的距离等,致使在微小准直器(0.1、0.2mm)下,也能够大幅度提高膜厚测量的精度。 3. 多达5层的多镀层测量 使用薄膜FP法软件,即使没有厚度标准片也可进行多达5层10元素的多镀层测量。 4. 广域观察系统(选配) 可从最大250×200mm的样品整体图像指定测量位置。 5. 对应大型印刷线路板(选配) 可对600×600mm的大型印刷线路板进行测量。 6. 低价位 与以往机型相比,既提高了功能性又降低20%以上的价格。[主要产品规格] 检测器: 比例计数管 X射线源: 空冷式小型X射线管 准直器: 0.1、0.2mmφ2种 样品观察: CCD摄像头 样品台移动量:250(X)×200(Y)mm 样品最大高度:150mm
  • 欧盟公布含汞测量仪器和含苯汞物品相关限令
    2012年9月19日,欧盟官方公报公布了欧委会第847/2012号条例,对REACH法规附录XVII中现有的18a(即汞限令)条进行修订。现行的汞限令禁止体温表和向公众销售的其它测量仪器使用汞。欧洲化学品管理局(ECHA)建议在工业和职业(包括卫生保健)用测量仪器中也限制使用汞。另外,新条例禁止此类含汞仪器于2014年4月10日后在欧盟上市。  新条例限制的测量仪器包括工业和职业用含汞气压计、湿度计、纳米计、血压计。受限含汞和使用汞的测量仪器列表可参见该条例。  最新的条例指出目前已经有无汞测量仪器,其与含汞测量仪器相比,健康和环境风险要低得多。因此,该条例希望限制含汞测量仪器。然而也有一些例外,比如用于某些环境下的血压计就被免于限制。同时,对于那些尚无可行替代产品的含汞产品,其使用也是不受限制的,例如孔隙率计、伏安测量法中使用的汞电极以及电容电压测量中使用的汞探头。  另外,2012年9月19日,《官方公报》公布了第848/2012号委员会条例,进一步修订REACH法规的附录XVII。与附录XVII限令相关的是,挪威已经准备了5种苯汞化合物的文献资料,强调有必要在欧盟范围内采取行动,避免和应对生产、使用、销售含此类物质混合物和物品所造成的健康和环境风险。  苯汞化合物专门用作聚氨酯系统的催化剂,用于涂料、黏合剂、密封剂、合成橡胶等领域。汞催化剂融入聚合物结构,并残留于最终物品,而其中的汞或苯汞化合物并非有目的释放。  欧委会认为,环境中上述物质对人类的暴露主要途径为食物。甲基水银作为苯汞化合物的降解产品,其在水产食物链中的生物放大作用明显,会对大量摄入鱼类的人群和野生生物造成较大影响。  REACH法规附录XVII现在对下列物质进行了限制:苯汞醋酸盐 苯汞丙酸盐、苯汞2-乙基已酸、苯汞辛酸、苯汞新癸酸。  “如果某物品或任何部件中含有一种或多种此类物质,且在物品或部件中的汞浓度等于或大于0.01%(以重量计),则自2017年10月10日起不得上市。”  第848/2012号条例并未给出任何豁免条款。因此,含有上述苯汞化合物的所有物品均将禁止在欧盟上市。该法规自其公布之日起20天后实施,并自2017年10月10日应用。
  • 布鲁克收购纳米红外光谱公司Anasys Instruments
    p  布鲁克于2018年4月17日,马萨诸塞州比勒利卡宣布收购Anasys Instruments公司,该公司是一家开发和制造纳米级红外光谱和热测量仪器的私营公司。这笔收购进一步扩充了布鲁克的拉曼和FTIR光谱仪以及纳米级表面科学仪器(如原子显微镜和白光干涉型三维显微镜)产品组合。该交易的财务细节未披露。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/75a82dbc-4e49-4d0b-8a77-059772df4391.jpg" title="微信图片_20180420132329.jpg"//pp  AnasysInstruments公司总部坐落于加利福尼亚州圣巴巴拉市,是基于纳米探针的热测量和红外测量领域的先行者。其业界领先的nanoIR™ 产品被一流学术和工业科学家、工程师应用于软质和硬质材料学和生命科学。最近,Anasys推出的10纳米分辨率nanoIR成像进一步提高了产品性能。/pp  布鲁克纳米集团总裁Mark R. Munch博士表示:“我们为这样的战略性高增长业务领域被纳入我们的纳米级显微和光谱测量产品组合而感到激动。由此产生的巨大的应用和技术协同效应将在未来使我们的客户获益匪浅。”/pp  Anasys创始人兼前CEO Roshan Shetty表示:“我们非常高兴能够有布鲁克这样的公司,带领我们的业务向新阶段发展。我们相信,我们在热测量和纳米级红外光谱测量领域所取得的独特开创性成果,将为布鲁克的创新仪器研究以及全球业务奠定基础。”/pp  strong关于Anasys Instruments公司/strong/pp  AnasysInstruments是纳米级、亚微米级和宏观光热红外光谱测量领域的全球领导企业。我们致力于提供创新型产品和解决方案,以纳米级的空间分辨率测量样品物理特性和化学特性在空间上的变化,可涵盖各种不同领域,包括:聚合物、二维材料、材料学、生命科学和微电子等。我们的目标是通过提供有效的解决方案,帮助研究人员明确前进方向,帮助工业界解决关键的工艺难题。/pp  strong关于布鲁克公司(NASDAQ: BRKR)/strong/pp  在超过55年的时间里,布鲁克始终致力于帮助科学家不断取得突破性进展,并开发出能够提高人类生活质量的全新应用。其高性能科学仪器以及极具价值的分析诊断解决方案使科学家能够在分子、细胞和微观层面上探索生命和材料。/pp  通过与客户紧密合作,布鲁克在生命科学分子研究、应用材料与制药行业应用、显微技术、纳米分析及工业应用领域中不断取得创新并显著提高了生产力,同时帮助客户取得成功。近年来,布鲁克还成为了细胞生物学、临床前成像、临床表型组学与蛋白质组学研究、临床微生物学及分子病理学研究领域的高性能系统供应商。/p
  • 家用PM2.5测量仪校准规范有望今年出台
    “室外的PM2.5浓度530μ g/m3,家里只有15μ g/m3,空气净化器效果很好。”北京的蔡女士一手拿着手机,上面显示的是北京市环境质量发布平台发布的北京空气中PM2.5浓度的最新数据 另一手拿着一台家用手持PM2.5测量仪,上面显示蔡女士家中PM2.5浓度的实时测量数值。“我们在购买空气净化器的同时,也在网上买了这款家用PM2.5测量仪,打开开关,显示屏上就能显示出家里空气中PM2.5的浓度,很方便。”  2016年冬天,雾霾侵袭了包括北京在内的中国多座北方城市,使用方便、价格适中的各种家用PM2.5测量仪也成了很多消费者追捧的对象。那么,家用PM2.5测量仪测得到底准不准?我国目前PM2.5测量仪是否拥有统一的国家校准规范?  测量仪进入寻常百姓家  在淘宝网上输入“PM2.5测量仪”,可搜索出检查官、阿格瑞斯、汉王等品牌共100多件商品,价格从90多元到上千元不等。在各产品的网页上,“超高精度专业仪器”“实时精准检测”等各种宣传广告语很是吸引眼球。商家都将PM2.5测量作为卖点,有的还称自己的产品能同时测量PM2.5、PM10、甲醛、苯等各种空气污染物。中国质量报记者看到,“激光检测法”是多数测量仪采用的测量方法。例如,汉王霾表N1的网页介绍说,“采用PM2.5激光检测设备,精确度可以达到0.01μ g/m3”。阿格瑞斯的一款测量仪网页上写着:“激光传感器是新一代技术,检测更快,更精准,媲美气象局发布的数据。”但也有商家宣称产品采用的是“半导体技术,测量准确率达99.5%。”这些产品由于体积小、便于操作,数据实时显示、可视性强,得到不少网友的肯定。  专业测量仪不用光散射法  青岛众瑞智能仪器有限公司是一家专业研发生产高端环境监测仪器及安全检测仪器的高新技术企业。该公司生产的专业PM2.5测量仪运用在我国环保监测领域。公司高级工程师何春雷告诉记者,测量PM2.5的方法主要有3种:β 射线吸收法、微量振荡天平法和光散射法。“无论是国内还是国外的环保和气象部门,都只采用前两种方法的测量仪器,光散射法并未得到相关部门的权威认可。”据介绍,目前我国环保、气象监测部门都制定了各自的关于PM2.5测量仪的行业标准,对仪器的精度指标、技术参数、测试方法都做出了规定。何春雷透露,一台专业的PM2.5测量仪售价至少十几万元,甚至上百万元。  2016年1月1日开始实施的《环境空气质量标准》,明确规定PM2.5测定的手工分析方法为重量法,自动分析方法为微量振荡天平法和β 射线法,而没有光散射法,也就是说,对专业的环保、气象测量来说,采用光散射法制造的仪器并不被认可。  中国计量科学研究院纳米新材料研究所高级工程师张文阁解释,对PM2.5测量来说,不同的测量方法、不同的测量环境都会影响测量准确度。采用光散射法制成的家用PM2.5测量仪在测量准确度上肯定无法与专业的测量仪相比较。“由于光散射法本身的缺陷,导致这些仪器的测量精度很难保证。”张文阁认为,网上销售的家用PM2.5测量仪不属于专业测试仪器,只能大概测一个数据,对空气质量做一个暂定量测试或者作出一个趋势性判断,离PM2.5的概念相差太远。“只能将其作为衡量空气是干净还是被污染的一个大致参考。”  专业校准规范有望今年出台  早在几年前,中国计量科学研究院就开始进行PM2.5测量溯源性及计量标准装置研究。因为要想获得准确可靠的PM2.5数值,必须保障测量仪本身计量性能的可靠。张文阁说,“PM2.5测量方法与仪器型号很多,但不同原理不同厂家仪器测量结果相差很大,需要准确校准与溯源。”几年以来,张文阁带领的团队以国际通用的重量法为基础,建立了PM2.5质量浓度测量仪国家计量标准。该计量标准与代表欧盟PM2.5最高环保计量水平进行了国际比对,比对结果证明我国的PM2.5测量各项技术指标均达到了等效一致。  “我们已经完成了《PM2.5质量浓度测量仪国家校准规范》的终审并已报批,规范有望2017年正式发布。”张文阁介绍,“我们正在进行PM2.5测量仪器在线校准方法和计量标准装置的研究,为提高国家PM2.5监测水平提供计量技术保障。”  不过,张文阁解释,他们的研究都是为环保、气象部门专业的测量仪服务,而网上售卖的家用测量仪并不在他们的研究范围之内。
  • 支撑碳达峰碳中和 山东将突破碳排放直接测量仪器、方法等
    山东省政府新闻办今天举行新闻发布会,省市场监管局等解读《关于贯彻落实计量发展规划(2021-2035年)的实施意见》。《实施意见》提出,加强省级计量科学研究机构能力建设。发布会上,有记者问到,在贯彻落实《实施意见》、提升计量能力方面,山东省计量科学研究院有哪些具体落实措施?山东省计量科学研究院理事长公茂龙回答时说,山东省计量科学研究院是唯一的省级依法设置法定计量检定机构,承担建立社会公用计量标准、开展计量科学技术研究、进行量值传递和溯源等工作。近年来,山东省计量科学研究院持续强化计量能力建设,积极服务市场计量检测需求,认真履行强制检定、型式评价等法定职责,年平均检测计量器具60多万台件,服务客户2万多家,保障量值准确可靠。现有社会公用计量标准401项,国家级型式评价实验室13个,资质能力居全国同行前列。围绕《实施意见》贯彻落实,重点开展以下工作:开展重大计量科技项目研发。聚焦计量科技前沿,开展太赫兹功率、光谱测量仪器等量值传递溯源技术和量子传感、微纳米等先进测量技术研究,推动太赫兹成像等先进技术在食品药品监测、生物医学成像和国防建设等领域的应用。支撑碳达峰碳中和目标实现,开展含碳产品热值计量、元素碳计量测试方法研究,重点突破碳排放直接测量仪器、测量方法及量值溯源技术。研发用于VOCs(挥发性有机物)、NOx(氮氧化物)等现场自动监测的便携式紫外差分吸收光谱仪,实现环境监测仪器的国产化替代。实施标准物质提升工程,研制成品油快检标准物质,以及有机污染物、微(纳)米尺度颗粒物、致病菌检测、传染病筛查等标准物质。提升服务市场的能力和水平。“十四五”期间,山东省计量科学研究院将以服务市场需求、保障法制计量为出发点,持续加强计量能力建设。一是突破“高精尖”计量检测难题,研制国际领先的30MN帕斯卡式液压力标准机,填补超大力值测量及量值溯源空白;研制低浓度颗粒物校准装置,解决颗粒物浓度检测仪器的溯源难题。二是保障大众健康与安全,建立生命体征模拟仪、呼吸机标准器、血液透析装置检测仪等标准装置。三是提升法制计量保障能力,新建非接触式眼压计、测听设备耳声阻抗/导纳测量仪器、三相组合互感器等计量检定装置。搭建计量科技创新载体。在已有省级重点实验室、工程研究中心、工程技术研究中心和国家级市场监管技术创新中心基础上,申请建设国家标准物质量值核查实验室,强化标准物质量值和不确定度水平核查,提升标准物质全寿命周期监管能力。打造智慧计量实验室,建立智能计量管理系统,提升计量数据系统化水平。
  • Analytical Chemistry封面文章 I 扫描电化学显微镜实现纳米级高分辨图像测试
    “根”本不一样的精彩——扫描电化学显微镜实现纳米级高分辨图像测试近日,天津大学纳米中心(TICNN)马雷教授课题组的在读博士生刘根利用自主研制的~50 nm探针和最小化应用电压方案,实现了扫描电化学纳米级别的成像,有效的解决了SECCM高分辨成像中液滴针尖的稳定性问题。其论文Topography Mapping with Scanning Electrochemical Cell Microscopy作为封面文章发表在Analytical Chemistry期刊上。△SECCM 纳米级高分辨图像扫描电化学显微镜能够能够同时实现样本被研究表面局部形貌和电化学信息获取,扫描探针与样本通过半月形微液滴接触,对样本形貌无损伤,无需脱水,固化、金属喷涂等复杂的预处理。还可以通过移液管向材料表面进行定量物质传送,因此SECCM在纳米材料沉积、电化学微传感器和电催化等方面有广泛的应用前景。△图为2022年帕克AFM奖学金获得者刘根与Park NX10原子力显微镜合照经过反复的测试与实验,该课题组利用自主研制的~50 nm直径探针及SECCM测试方案,最终得到了纳米级别的的高分辨率图像。同时也成功得到了~45 nm自组装单层金纳米颗粒的形貌和电化学产氢反应的活性图像。这项研究成果不仅能够在纳米尺度实现了SECCM的常规化测试,还能同时得到样品的形貌和电化学活性信息。该项研究成果为真正意义上的常规化测试迈出了坚实重要的一步,并极大扩展了SECCM在不同领域的应用。工欲善其事,必先利其器。Park NX 10在该研究起到了重要作用。“SECCM测试中使用的是50 nm左右的小探针,这意味着pA级别的小电流。而且多数时候,这一数值会小于1.0 pA。这对体系的稳定性有着极高的要求。而Park NX 10体系则很好的满足了这一需求。此外,Park AFM体系的z-方向位移台,可以稳定地运行0.1 μm/s的进针速度,提供0.1 nm的高分辨率,这均满足了SECCM测量中对硬件的极高要求,极大地增加了测试的可行性和成功率。”刘根同学介绍道。△2022年帕克AFM奖学金证书在此,Park表示将竭心为用户推出易于操作、测量精准、升级创新的AFM,助力科研。并预祝马雷教授及其课题组在未来可期的日子里取得更多优异的科研成果,为国家的纳米科技增光添彩!
  • 新型冰雪粒径测量仪和硬度测量仪助力“科技冬奥”
    高山滑雪最高时速达248km/h,滑雪赛道也需要“塑胶跑道”“更快,更高,更强”是奥林匹克的口号,充分反映了奥林匹克运动所倡导的不断进取、永不满足的奋斗精神。奥运会纪录的频频打破,不但有运动员的刻苦训练,教练员的辛勤指导,科技尤其是对于运动场地的科技提升也扮演了重要的角色。就拿大家熟悉的田径运动场而言,最初的跑道是煤渣跑道(相信很多70后、80后的老伙伴们都跑过吧),后来改成了人工合成的塑胶跑道,与煤渣跑道相比,其弹性好,吸震能力好,为运动员的发挥和成绩的提高提供了物质基础。在1968年的墨西哥奥运会上,在首次使用的塑胶跑道赛场上创造了诸多的奥林匹克纪录。2022年中国北京即将举行冬季奥林匹克运动会,中国提出了“科技冬奥”的概念,中国冰雪运动必须走科技创新之路。高山滑雪比赛是冬季奥运会的重要组成部分,被誉为“冬奥会皇冠上的明珠“。高山滑雪的观赏性强,危险性大,比赛时运动员最高时速可达到248km/h。高山滑雪比赛均采用冰状雪赛道。什么是冰状雪?所谓冰状雪,是指滑雪场的雪质形态,其表面有一层薄的硬冰壳,用于减小赛道表面对于滑雪板的摩擦力。可以说冰状雪赛道就是高山滑雪项目的塑胶跑道,其制作的质量对提高运动员的成绩及滑雪的舒适感,保护运动员的身体,延长运动寿命有着十分重要的作用。看似简单的冰状雪赛道,制作起来却大有讲究。冰状雪的制作过程十分复杂,目前采用的是向雪地内部注水的方案。但是注水的强度和注水的时间把握需要根据不同的赛道地点以及当时注水时的气温进行相应的调节,以保证冰状雪赛道既有一定的强度,又有足够的弹性,使得运动员能够在高速的高山滑雪比赛中舒畅的进行滑降、回转等比赛项目。与田径场塑胶跑道不同的是,每次比赛每一个运动员在进行高山滑雪比赛时,由于技术动作的需要,都或多或少的会对冰状雪的赛道产生一定损伤,为了保证比赛的公平性,前后出发的滑雪运动员的赛道雪质状态需要保证一致,因此冰状雪赛道还需要有一定的厚度以及均匀性。研制新型冰状雪测量仪器,保障赛道质量既然冰状雪赛道有如此多的要求,那么过去是如何判断冰状雪赛道的雪质的呢?主要是采用人工判断的方法,即找一些有经验的裁判员用探针安装在电钻上进行触探工作,通过触探工作反馈的手感判断冰状雪赛道的建造质量。这种带有一定“盲盒”性质的判断工作往往会显得很不透明,也不利于这项运动的推广。助力2022北京冬奥会,依托科技部国家重点研发计划“科技冬奥”重点专项2020的“不同气候条件下冰状雪赛道制作关键技术”项目,中国科学院南京天文光学技术研究所南极团队和中国气象科学研究院共同合作研发了用于判断冰状雪赛道质量的冰雪粒径测量仪和冰雪硬度测量仪,其目的在于将冰状雪质量的人工主观判断,变成清晰可见的客观物理数据,通过对这些物理数据的科学分析,结合有经验的运动员的滑雪体验,掌握不同地点,不同天气条件下冰状雪赛道的制作方法。主要有如下两种仪器:冰雪粒径自动测量仪和冰雪硬度自动测量仪。积雪颗粒的形状及大小是影响雪的力学性质的主要因素,不同大小雪粒之间在自然状态下空隙不断变小,雪中含有的空气降低,使得雪粒间的化学键合力增强,从而影响雪的硬度。那么如何测量积雪的颗粒呢,科研人员采用漫散射原理:近红外光经过粗糙的表面会被无规律的向各个方向反射,会造成光强度减弱,光减弱的大小跟表面的粗糙相关,而积雪表面的粗糙程度是由粒径决定的。通过测量光减弱的比例间接的测量出冰雪的颗粒大小。冰雪粒径自动测量仪测量注水雪样雪的硬度测试是反映冰雪强度的重要指标之一,冰雪硬度测量仪的原理是通过电机带动滑轨驱动探头打入冰状雪赛道内部,并读取探头受到的反作用力的大小来判断冰雪的硬度条件。该方法的好处是可以做到基本无损的对赛道进行冰雪硬度的测量,不影响赛道的后续使用,并且可以通过读取力和冰状雪深度的曲线了解冰状雪赛道的均匀性。针对高山滑雪的赛场坡度较陡,人工攀爬十分困难,科研人员在仪器的便携性上做了特殊的设计,设计了一款折叠式的硬度测量仪,方便携带,可以从坡顶沿雪道一直测量到坡底,实现了仪器的“就地展开”和“指哪测哪”的功能。冰雪硬度测量仪现场工作照片2020年11月-2021年3月,抓住冬奥会举办前的最后一个冬季的机遇,在冬奥会举办地北京延庆、河北张家口以及黑龙江哈尔滨亚布力冬季体育训练基地对不同气候条件、不同注水强度的冰状雪赛道,使用研制的冰雪粒径自动测量仪和冰雪硬度自动测量仪进行了粒径及冰雪硬度测试,获得了不同深度冰雪粒径的变化图以及不同深度的冰雪硬度的曲线图。冰状雪赛道压强-深度关系图该项目的首席科学家,中科院西北研究院冰冻圈科学国家重点实验室副主任王飞腾研究员认为“雪粒径及硬度计等新型冰雪仪器的研究,将过去以人工经验为主的冰状雪赛道状态判断变为了客观、清晰的科学指标,为冰状雪赛道制作标准的透明化提供了参考依据”。项目攻关团队的带头人,国际冰冻圈科学协会副主席,中国气象科学研究院丁明虎研究员认为“雪粒径和硬度计的设计充分考虑了不同于自然雪的人工造雪的特殊情况,仪器在项目工作中表现优异,性能稳定,可靠性高。”未来将在南极天文台发挥作用冰雪强度、硬度的测量不仅可以应用于滑雪相关的体育运动中,在未来的极地工程建设上也能发挥作用。遥远的南极虽然不是适合人类居住的地方,但是却有着良好的天文观测条件。根据2020年在 Nature 上发表的一篇文章,证明昆仑站所在的冰穹A地区的光学天文观测条件优于已知的其他任何地面台址。这项研究成果确认了昆仑站有珍贵的天文观测台址资源,为我国进一步开展南极天文研究奠定了科学的基础。但是如何在南极地区安装大型望远镜又有很多实际的困难,其中之一就是普通的大型望远镜的基墩都是直接安装在地球的基岩上,这样基墩比较扎实稳固,能保证望远镜在观测时不会因为地基不稳产生晃动,但是冰穹A地区的冰大约有4000m那么厚,相当于1500层楼房那么高,如果再想将望远镜基墩打入基岩显然难以做到。那么大型望远镜如何能够平稳的伫立在南极浮动的冰盖上呢?这就需要科学家们对冰穹A地区的冰雪进行特殊的加固处理,使其能够满足基墩的设计要求。在加固处理完后,我们的雪粒径和硬度测量仪就可以对加固后的冰雪强度进行测量,通过科学的数据检验其是否能够满足南极大型望远镜的需求。
  • 精确到纳米!国产高端数字化激光干涉仪冲破超精密测量技术“封锁线”
    南极天文望远镜、空间引力波探测装置、极大规模集成电路制造装备、光刻机… … 这一系列关键装备的加工制造,都需要依靠超高精度的测量仪器对大量光学元件的各项参数进行测量。以往,超精密测量技术受到国外封锁,成为制约高端装备制造发展的瓶颈问题。近日,由上海理工大学光电学院庄松林院士领衔的韩森教授团队与苏州慧利仪器有限责任公司共建联合实验室所研发的国产化高端产品——数字化激光干涉仪进展顺利。据介绍,该项目研究成果技术难度大、创新性强,取得了多项自主知识产权,部分产品填补国内空白,PV值测量等核心指标及相关技术达到国际领先水平。有装备制造的地方就需要精密的测量仪器“简单来说,干涉仪就是将激光分为两束,照射至需要测量的器件上,再汇合产生干涉,从而精确地测量出被测件表面的形貌误差,包括平面、球面、柱面或者自由曲面。”韩森向科技日报记者介绍,数字化干涉检测技术是结合光学干涉测量原理与计算机技术、能够实现纳米精度的非接触式测量技术,是超精密光学计量、国家大科学装置及工程、高端工业检测领域最重要的手段之一。中国装备制造要实现突破,首先要解决制造质量问题,其核心关键就是超精密测量能力。“有装备制造尤其是高端装备制造的地方,就需要精密的测量仪器,国内精密测量仪器不能照搬国外的那一套,我们必须把核心技术掌握在自己手中。”韩森说道。团队针对中国高端检测仪器和技术的需求,系统性地开展了模块化激光干涉仪设计以及应用的关键技术的研究与攻关。他们首先基于模块化设计思路开发了激光干涉仪的核心关键部件和测量软件,形成了多种型号高精密数字化激光干涉仪;接着在满足高精度相对测量基础上提出绝对检测算法和闭环自检技术,使平面面形检测精度提高5倍。在双重身份中缩短创新与市场的距离技术创新到市场,还有多远的路需要走?“最后一公里”是科技成果转化的普遍难题。“早在2018年,上理工就与苏州慧利仪器有限责任公司共建联合实验室,以人为纽带,让高校教授长期深度对接产业,更有利于盘活一系列资源。”韩森表示,在“大学教授”和“创业者”的双重身份下,高校的基础创新与企业的技术实践紧密绑定,提高了科研成果转化率和使用效益。目前,项目成果完成了数字化激光干涉仪的工程化,研制出多种口径的商业化检测仪器,实现“产学研用”的完美结合。相关产品及技术已经在国家计量单位、国家大科学装置及工程、高精密光学机械加工行业等多家企事业单位进行推广应用,有助于提升中国高端检测仪器在市场的占有率,推动高精密检测技术发展。项目团队还参与起草国家行业标准、国家平晶检测规程和数字式球面干涉仪校准规范工作,填补国内空白。项目授权发明专利5项、实用新型专利5项,发表论文10余篇,荣获中国产学研创新成果一等奖、日内瓦发明展特别金奖等多个奖项。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制