当前位置: 仪器信息网 > 行业主题 > >

电解质检验仪

仪器信息网电解质检验仪专题为您提供2024年最新电解质检验仪价格报价、厂家品牌的相关信息, 包括电解质检验仪参数、型号等,不管是国产,还是进口品牌的电解质检验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电解质检验仪相关的耗材配件、试剂标物,还有电解质检验仪相关的最新资讯、资料,以及电解质检验仪相关的解决方案。

电解质检验仪相关的资讯

  • 院士团队固态电解质成果遭质疑 仪器大战佐证关键论点
    p  2019年1月25日,清华大学材料科学与工程学院南策文院士和李亮亮副研究员团队通过系统实验结合第一性原理计算,探究了一种新型的PVDF基固态电解质与锂金属阳极之间的界面,发现原位形成具有稳定、均匀镶嵌结构的纳米级界面层可以有效抑制锂枝晶的生长。研究成果以“Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes”为题发表在Advanced Materials上。/pp style="text-align: center "img width="500" height="215" title="Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" style="width: 500px height: 215px max-height: 100% max-width: 100% " alt="Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" src="https://img1.17img.cn/17img/images/202003/uepic/65f43a48-13ea-4629-b162-95b1cb55e798.jpg" border="0" vspace="0"//pp  意大利米兰-比科卡大学的Piercarlo Mustarelli教授团队对上述工作中“纯PVDF基固态电解质”这一概念提出质疑,他们认为不可能利用纯PVDF聚合物制备出无溶剂的锂离子导体固态电解质,而且由于DMF溶剂的存在,文中所报道的固态电解质实际上应该是凝胶电解质。相关评论以“Is It Possible to Obtain Solvent‐Free, Li+‐Conducting Solid Electrolytes Based on Pure PVdF? Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes””为题,于2020年2月27日在线发表在Advanced Materials上。/pp style="text-align: center "img width="500" height="209" title="Comment on Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" style="width: 500px height: 209px max-height: 100% max-width: 100% " alt="Comment on Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" src="https://img1.17img.cn/17img/images/202003/uepic/8d830fb1-9742-4479-b38c-d4a221db4e79.jpg" border="0" vspace="0"//pp  Piercarlo Mustarelli教授等人认为DMF沸点高达153℃,即便在真空条件下也不可能从聚合物基质中完全移除。而且,南策文院士团队的文章中并没有给出相应的热重表征数据来证实DMF已经被完全从PVDF电解质中移除。/pp  为验证这一说法,PiercarloMustarelli教授团队根据南院士文中的描述,采用同样的PVDF-LiFSI(3:2, w:w)电解质体系和DMF-THF(3:7, v:v)的溶剂体系进行研究,并且同样在80℃真空干燥20h。然而, 热失重曲线表明,即使是沸点相对较低的THF溶剂(66℃),经过上述处理后都没被完全除去。而且由于DMF的蒸发,曲线几乎呈线性下降趋势,甚至持续到250℃的高温都没能完成,说明PVDF电解质体系中至少含有13%以上的DMF溶剂。TGA曲线(Nsub2/sub氛围)同样证实,上述电解质体系中含有大约14%的溶剂残留。/pp style="text-align: center "img title="PVDF电解质薄膜的热重分析结果.jpg" style="max-width:100% max-height:100% " alt="PVDF电解质薄膜的热重分析结果.jpg" src="https://img1.17img.cn/17img/images/202003/uepic/b3bf7fa0-b712-4e4c-89e0-b6e4d0a51676.jpg"//pp style="text-align: center "PVDF电解质薄膜的热重分析结果/pp  同日,Advanced Materials在线发表了南策文院士与李亮亮副研究员团队正面回应上述质疑的文章,文中认为少量溶剂残留并不代表该电解质就一定是凝胶电解质,“含有自由溶剂分子”的才算是,而文中报道的PVDF电解质中不存在自由DMF溶剂分子,因此实质上是不含自由溶剂的固态电解质而非凝胶电解质。/pp style="text-align: center "img width="500" height="210" title="Response to Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" style="width: 500px height: 210px max-height: 100% max-width: 100% " alt="Response to Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" src="https://img1.17img.cn/17img/images/202003/uepic/8737b43e-c5f7-47e4-91c4-dd176f220965.jpg" border="0" vspace="0"//pp  南策文院士与李亮亮副研究员团队从自由溶剂存在形式、离子传导机制以及性能优越性等角度出发,针对质疑进行了正面回应:之前文章所报道的PVDF基固态电解质薄膜中确实存在着少量DMF溶剂的残留。气相色谱和固态核磁共振光谱结果证实,PVDF-LiClO4体系和PVDF-LiFSI体系中溶剂的残留量分别为13%和15%。然而,他们认为尽管有少量的溶剂残留,但是并不代表该电解质就一定是凝胶电解质。/pp  虽然文中报道的PVDF基电解质薄膜中有少量溶剂存在,但是其中溶剂并不是以自由分子的形式存在。由于大量吸收液体电解质,普通PVDF基凝胶电解质的溶剂含量通常超过50%,其中含有大量的自由溶剂分子。而我们所制备的电解质薄膜中溶剂含量(13%-15%)远低于凝胶电解质中的溶剂含量,更重要的是,薄膜中不存在自由DMF溶剂分子。拉曼光谱和红外光谱证实, PVDF基电解质薄膜中经过80℃长达12小时或20小时的真空干燥处理后检测不到自由DMF分子的拉曼或红外信号,这说明残留的DMF溶剂分子全部与Li+发生配位形成了[Li(DMF)x]+的离子复合物。因此,南策文院士团队认为,他们制备的PVDF基电解质中残留的DMF溶剂分子以键合态而非游离形式存在,与那些含有大量游离溶剂分子的普通凝胶电解质是不同的。/pp style="text-align: center "img title="PVDF基电解质膜与常规PVDF基凝胶电解质中溶剂含量对比.jpg" style="max-width:100% max-height:100% " alt="PVDF基电解质膜与常规PVDF基凝胶电解质中溶剂含量对比.jpg" src="https://img1.17img.cn/17img/images/202003/uepic/47a9676d-3ed0-4ae3-8f74-afd50a66dbd2.jpg"//pp style="text-align: center "南院士团队所制备的PVDF基电解质膜与常规PVDF基凝胶电解质中溶剂含量对比/pp style="text-align: center "img title="PVDF电解质薄膜中DMF溶剂分子的存在形式表征.jpg" style="max-width:100% max-height:100% " alt="PVDF电解质薄膜中DMF溶剂分子的存在形式表征.jpg" src="https://img1.17img.cn/17img/images/202003/uepic/768065f5-f623-4a00-9f31-34787388fc4b.jpg"//pp style="text-align: center "PVDF电解质薄膜中DMF溶剂分子的存在形式表征/pp  全固态型电解质是由锂盐和高分子基质络合而成,而凝胶型电解质则是由锂盐与液体塑化剂、溶剂等与聚合物基质形成稳定凝胶的电解质材料。毫无疑问,固态电解质是非溶剂体系,而凝胶电解质中含有大量的溶剂。那么,含有少量非游离溶剂残留且具有类固体机械性能的电解质属于固体电解质还是凝胶电解质呢?/ppbr//p
  • Nature子刊:原位拉曼光谱用于电解质演化捕捉
    在目前的电池研究工作中迫切需要改进的分析工具来识别锂离子电池的退化和失效机制。然而,了解并最终避免这些有害机制需要持续跟踪不同电池组件中的复杂电化学过程。为了达到这样的目的,剑桥大学Tijmen G. Euser教授团队报导了一种原位光谱方法,该方法能够在具有石墨阳极和LiNi0.8Mn0.1Co0.1O2阴极的锂离子电池的电化学循环过程中监测碳酸盐基液体电解质的化学性质。通过在实验室级别的软包电池内嵌入空心光纤探针,我们通过无背景拉曼光谱证明了液体电解质物质的演化。光谱测量的分析揭示了碳酸盐溶剂和电解质添加剂的比例随电池电压的变化,并在跟踪锂离子溶剂化动力学方面表现出极大的潜力。原位电解质监测可以促进研究复杂的化学途径和实际电池中化学物质之间的串扰现象。一个关键的例子是在没有初始碳酸亚乙烯酯(VC)的样品中出现了亚乙烯基拉曼谱带,这表明虽然亚乙烯基物质在阳极被消耗,但它们也在循环过程中通过碳酸亚乙酯(EC)氧化产生。本工作所提出的操作方法有助于更好地理解当前锂离子电池的局限性,并为研究不同电化学储能系统中的降解机制拓展了前景。原位拉曼如何表征电解质演化过程测试装置:图1. 具有空心光纤耦合拉曼分析设备的锂离子软包电池在拉曼装置中(图 1a),10-15 厘米长的空芯光纤的近端被封装在一个定制的微流体单元中,允许光线和流体进入光纤(图 1b, c)。纤维的远端安装并密封在软包电池的电极之间。使用两层单层PE聚合物隔膜(MTI)来避免纤维和电极之间的直接接触(图1d)。简化的空芯光纤(图 1c)经过优化,可在充满电解质时引导拉曼泵浦光和信号波长范围内的光。光纤的 36 µm 宽纤芯区域既可用作波导通道,又可用作微流体通道,其内部体积低至 30 nL/cm。自动注射泵用于根据需要从软包电池中取样和注入电解液。使用底部填充的 10x 0.3 NA 显微镜物镜将拉曼泵浦激光(785 nm 连续波,图 1a)发射到填充电解质的光纤芯中。拉曼信号沿光纤的长度产生,一部分以反向传播的光纤模式被捕获,并被引导回邻近的光纤端面。产生的拉曼光的 CCD 图像(图 1c 中的右侧图像)显示大部分拉曼光是在中空光纤芯内产生和引导的。每次光学测量后,电解质样品被注入回软包电池中。由于需要避免任何电池扰动,需要 22 分钟的单次采样间隔(在 C/10 C 速率下大约是完全放电时间的 4%)。定期重复采样以达到在较长时间内监测电解质的目的(典型的充电-放电形成周期需要超过 10 小时)。测试结果分析:图2. 空心光纤中的在线拉曼测量。(a) 从光纤端面发出的拉曼光(左,图像比例尺为 50 µm)和光谱色散图像(右) (b) 在连续样品渗透期间跟踪的拉曼光谱。红色虚线表示泵何时开启;t1-a表示样品流体到达纤芯的时间。 白色虚线表示泵何时关闭,然后是样品注射器的开关。水平实线表示获取 c 中所示光谱的时间 (c) 得到不同溶剂混合物的光谱。与电池化学相关的突出显示的拉曼谱带是 893 cm-1处的碳酸亚乙酯呼吸模式(深红色虚线)、740 cm-1处的 PF6 阴离子模式(绿色虚线)和以 1628 cm-1为中心的碳酸亚乙烯酯 -HC = CH- 谱带(不存在于这些溶液和光谱中)。阴影区域表示与锂溶剂化机制相关的 1700-1850 cm-1处的 EC 和 EMC 带, 插图 i 展示了由 IPA 的拉曼强度(819 cm-1)监测的样品交换时间和 EMC 骨架(~900 cm-1)模式(c中的箭头)。插图 ii 显示了 1700-1850 cm-1处的 EC 和 EMC 波段。纤维芯内的动态交换和拉曼光谱首先在没有软包电池的情况下针对一系列电解质成分和典型溶剂进行了非原位测试(图 2)。光谱仪 CCD 记录近端面图像和光谱分散的光纤图像(图 2a)。在整个实验过程中,以每个光谱 20 秒的积分时间连续记录光谱。为了能够同时监测多个拉曼波段,我们在光谱范围、分辨率和信号强度之间进行了最佳权衡(图 2b)。最初,纤维填充有异丙醇 (IPA),其拉曼光谱如图 2b-c 所示。更换注射器以交换样品,泵流速设置为 5 µL/min (0.083 µL/s) 以渗入纤维芯。一旦拉曼信号稳定,注射泵就会关闭。 样品交换后系统的流体稳定时间目前约为 400 秒(对应于约 33 µL 的流量,图 2c)。此处依次渗透到纤维中的样品是 IPA、碳酸甲乙酯 (EMC)、碳酸亚乙酯 (EC) 和 EMC 的 3:7 混合物,以及商用电池级液体电解质溶液 LP57(即 EC 中的 1.0 M LiPF:EMC 3:7 v/v)。对于每个样品,在 410 和 2182 cm-1 之间获取相对宽带的拉曼光谱(图 2c)。拉曼光谱清晰显示了各种电解质成分特征。 首先,在 LP57 电解质中可以清楚地看到 PF6- 阴离子拉曼谱带在 740 cm-1 处的光谱位置。PF6- 峰在 ~720 cm-1 处与 EC 骨架模式部分重叠。检测 PF6- 很有意义,因为它的分解是基于一种发生在 NMC811 等富镍正极的表面的降解机制。此外,PF6- 很容易与电解质分解反应中产生的水发生反应。 其次,893 cm-1 处的 EC 呼吸模式与分子的环结构完整性有关。最后,1700-1850 cm-1 之间的阴影(宽紫色)带对应于 EMC 和 EC/VC 中羰基(C = O)键的拉曼峰,其光谱位置随锂离子溶剂化动力学而变化。此外,还标记了(弱)光谱带在 1628 cm-1(灰色虚线)处的预期位置,这是由于亚乙烯基 –HC = CH 添加剂 VC 的振动。因此,通过在装置中使用低密度衍射光栅,我们可以同时监测许多重要的电解质成分。图3. 循环过程中的电池电解质拉曼光谱演变。(a) 在 LiNi0.8Co0.1Mn0.1O2(NMC811) - 石墨锂离子软包电池的形成周期期间操作拉曼光谱,其电解质包含 LP57 + 2 wt.% VC。将电池恒流充电至 4.3 V,恒电位保持在 4.3 V,然后放电 (b) 拉曼光谱演化显示电池电解质的一系列拉曼模式中空纤维嵌入由 LiNi0.8Co0.1Mn0.1O2 (NMC811) 阴极和石墨阳极组成的软包电池中,以监测其在循环期间电解质的化学变化。每个圆形电极的有效面积为 1.54 cm2(直径 14 mm),并被一层聚合物隔膜覆盖。HC 纤维放置在两个分隔层之间,以保护电极表面免受纤维的机械损伤(图 1d)。将电池密封并填充 100 µL LP57,并添加 2 wt.% VC。尽管 HC 纤维在两个隔膜之间产生了微小的间距,但总电极表面与电解质的体积比 (~15 cm2/mL) 仍然非常接近于研究环境中常规组装的软包电池。将电池恒流充电至 4.3 V,在 4.3 V 下恒电位保持 1 小时,最后以 C/10 (18.5 mA g-1NMC) 的循环速率放电至 3.5 V。为确保在纤维芯中进行完全的样品交换,每 22 分钟从电池中提取 24 µL 体积的微量样品(大约是内部纤维体积的 50 倍),通过纤维内拉曼光谱进行分析,然后重新注入软包电池。我们从EC分子从正极到负极的穿过隔膜的扩散时间(td)来监测电极过程。假设聚合物隔膜的曲折度为 2.5,液体扩散系数为 10-6 cm2/s,这导致分子从一个电极到另一个电极的扩散时间为 td = 445 s(~7 分钟)。与之前的实验一样,我们使用宽光谱窗口(640-2340 cm-1,粗光栅)同时跟踪一系列化学物质。在第一个电化学循环期间,拉曼光谱的演变被测量为电池电压(红色曲线)的函数,在此期间预计会由于 EEI 形成而发生许多化学变化(图 3a)。在 PF6-、EC 呼吸模式和 EMC 和 EC/VC 中的羰基 (C = O) 键的谱线中观察到清晰的特征,如图 2b 所示。此外,在~1628 cm-1 处检测到(弱)亚乙烯基-HC = CH-拉曼谱带。在整个循环过程中收集完整的拉曼光谱可以对电解质盐和溶剂及其相互作用进行详细分析。总结:循环过程中碳酸酯溶剂的C=O拉伸模式相关的拉曼光谱变化,以及亚乙烯基-(C=C)双键浓度的变化等信号都可以由原位拉曼装置检测得到。对这些信号的获取和分析有助于研究电解质中的溶剂和盐成分在电池循环中的变化,揭示电池性能降解的机理,对开发长寿命的电池系统具有非常重要的意义。参考文献:Ermanno Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 2022.DOI: 10.1038/s41467-022-29330-4
  • 上海硅酸盐所发展出基于层状结构电解质的固态氟离子电池
    固态氟离子电池(SSFIBs)是一种阴离子穿梭驱动、无碱金属的新兴储能体系,具有成本低、安全性好、能量密度大等潜在优势。相比于传统的阳离子穿梭电池(如碱金属离子电池、多价阳离子电池等),氟离子电池可避免负极枝晶生长以及多价离子迁移缓慢等问题,还具有潜在的高体积能量密度(理论达5000 Wh/L),但这一体系面临着高导氟离子电解质缺乏以及低温下(100150 ℃)表现出10-4 S/cm的高离子电导率,导致对应SSFIBs的可逆循环需要高温维持,限制了其应用场景。近年来出现的CsPbF3系列钙钛矿、MSnF4(M=Ba, Pb)等氟化物在室温下便可表现出较高的离子电导率,尤其在Sn(II)基氟化物中,Sn(II)的孤电子效应可诱导氟位缺陷或无序的形成,并伴随着静电排斥效应,利于氟离子的体相传输。然而,已报道的基于Sn(II)基电解质的SSFIBs由于潜在的体相分解或者界面衰退,即便在弱电流密度(10 mA/g)下也表现出不尽人意的电化学性能。中国科学院上海硅酸盐研究所研究员李驰麟带领的团队,首次设计了基于二维层状氟化物(KSn2F5)和界面改性策略的准固态氟离子电池。在接近室温(60 ℃)的条件下,该电池的初始放电容量达到442 mAh/g,即便循环70次后,仍有150 mAh/g的可逆容量。相关研究成果以Near-Room-Temperature Quasi-Solid-State F-Ion Batteries with High Conversion Reversibility Based on Layered Structured Electrolyte为题,发表在Advanced Energy Materials上。该工作利用机械化学法合成了具有层状结构和丰富氟空位的KSn2F5电解质。KSn2F5电解质由两层[SnF5]八面体层中间夹一层[KF6]八面体层的类”三明治”结构沿c轴方向堆叠而成,[KF6]八面体层和[SnF5]八面体层以共顶点的氟(F1)相连,而连接相邻[SnF5]八面体的氟位置(F2、F3、F4)只是被部分占据,且它们是氟离子迁移的主要位点。该电解质在室温下的离子电导率为2.32 x 10-5 S/cm,在60 ℃下的离子电导率可达10-4 S/cm,高于同温度下大多数报道的氟铈锎矿和萤石相氟化物。研究通过对载流子生成和迁移过程的热力学分析,发现高离子导电率得益于KSn2F5更高的载流子浓度和跳跃频率。通过痕量润湿剂(四丁基氟化铵盐)对电极-电解质界面进行修饰,可改善颗粒间接触,降低界面传质和电荷传递的能垒,促进氟离子界面传输。研究通过界面动力学分析,发现动力学参数与电解质离子电导率呈线性关系,表明氟离子电池的反应速率受控于固态电解质的体相离子电导率。因此,探索更高氟离子电导率的电解质并实施合理的界面工程对构建高性能的固态或准固态氟离子电池至关重要。以Sn/SnF2/C为负极和KSn2F5/C为正极的Sn/SnF2/C-KSn2F5-KSn2F5/C电池构架可评估KSn2F5固态电解质的电化学窗口,为-0.45 V到3.98 V(vs. Sn+SnF2)。研究分别以转换反应型氟化物CuF2为正极,金属Sn为负极,同时在正负极内部加入一定量KSn2F5作为氟离子配线,在负极端加入一定量SnF2以增加反应界面,以此构建出固态氟离子电池。研究对充放电后正极形貌及物相微结构的分析可以看出,放电过程中氟化铜发生脱氟反应而生成铜,铜的高迁移性使得放电产物呈现出无明显边界的团聚形貌;充电过程则对应氟化反应,颗粒的氟化阻碍了铜的迁移,促进了氟化铜颗粒的高度分散。充放电过程中的电化学研磨和纳米尺寸效应有助于复合电极在长期循环中保持电化学活性。该电池在较低温度(60 ℃)和较大电流密度(20 mA/g)下表现出可逆的转换反应循环,其充放电过电位仅为100 mV,这一基于层状电解质的氟离子电池的电化学性能在已报道的固态或准固态氟离子电池中处于优异水平。研究工作得到国家自然科学基金委员会和上海市科学技术委员会等的支持。KSn2F5固态电解质的合成与结构KSn2F5的离子-电子导电性能KSn2F5的离子-电子导电性能KSn2F5基对称电池的界面动力学分析准固态氟离子电池的构架和电化学性能CuF2正极放电和充电态的形貌和物相分析
  • 【前沿快讯】刀片式研磨机用于全固态电解质前驱体的制备
    全固态锂离子电池因为采用固体电解质,不含易燃、易挥发组分,彻底消除因漏液引发的电池冒烟、起火等安全隐患,被称为最安全的电池体系。固体电解质是全固态锂离子电池的核心部件,硫化物固体电解质因为高离子电导率、合适的电化学窗口以及较好的力学性能而受到广泛关注。目前,制备含硫固体电解质的方法一般采用振动球磨法长时间球磨混合前驱体原料后,再高温煅烧而获得。深圳大学田冰冰教授团队首次报道了一种创新的制备含硫固体电解质的方法:采用刀片式研磨机高速混合前驱体原料,仅需不到5分钟,即可进入煅烧步骤制得含硫固体电解质。通过此法制得的硫化物固体电解质离子电导率高达20 mS cm-1,组装成固态电池后测得在0.1C电流密度下,比容量达到165 mA h g-1,同时,具有良好的倍率性能和循环寿命。如下为文献[1]中提到的刀片式研磨机高速混合与传统球磨方法的优势对比:制备方法传统球磨高速研磨混合设备行星式球磨机高速刀片式研磨机混合方式球磨刀片研磨最大处理量50g500g转速180/360rpm10000-25000rpm耗时重复次数1-2h10-20次25s6次煅烧条件取10-20g置于密封石英管中460-555℃×16h取100-300g置于氧化铝坩埚中460-555℃×16h显然,采用高速刀片式研磨机混合前驱体,处理量增大了近十倍,且缩短了研磨时间,大大提高了制备效率。IKA Multidrive control研磨机是一款采用了德国先进制造工艺的高速刀片式研磨机,可满足各种需要高速研磨或高速混合的应用场景。 关于IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责为中国和蒙古国提供产品、技术和服务支持。
  • 材料晶格研究加速新型锂离子电池电解质发展
    p  研究人员表示,分析和设计新离子导体的新方法为可充电电池提供了关键部件。新方法的应用可能会加速高能锂电池以及其他能量存储和传输装置(如燃料电池)的发展。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/3477e76a-b550-4f8f-87c2-f756b0769936.jpg" title="201803300842364192.png"//pp  该图揭示了意向电池电解质材料Li 3 PO 4的晶格结构。 研究人员发现,声波能够穿过固体材料,通过声音振动可以揭示离子带电荷的原子或分子如何通过晶格移动 ,以及它们如何在电池中实际的工作原理。在该图中,氧原子显示为红色,紫色金字塔形状为磷酸盐(PO4)分子。 橙色和绿色的球体是锂的离子。/pp  新方法依赖于对振动通过锂离子导体晶格方式的理解。新方法与抑制离子迁移的方式相关联。这提供了一种方法来发现具有增强离子迁移性的新材料,允许快速充电和放电。同时,该方法还可以降低材料与电池电极的反应性,材料与电池电极的反应会缩短电池的使用寿命。更好的离子迁移率和低反应性这两个特性——往往是相互排斥的。/pp  这个新概念是由W.M领导的一个团队开发的。该团队包括Keck能源教授Yang Shao-Horn,研究生Sokseiha Muy,最近毕业的年仅17岁的博士John Bachman,研究科学家Livia Giordano以及麻省理工学院,橡树岭国家实验室以及东京和慕尼黑的其他9所院校人员。他们的研究结果在 Energy and Environmental Science杂志上报道。/pp  Shao-Horn说,新的设计原则已经有五年的时间了。最初的想法始于她和她的团队用来了解和控制催化水分解,并将其应用于离子传导 - 这一过程不仅是可充电电池的核心,而且也是其他应用的技术关键,如在燃料电池和海水淡化系统中的应用。当带有负电荷的电子从电池的一极流向另一极(从而为装置提供电力)时,正离子以另一种方式流过电解质或夹在这些极之间,以完成流动。/pp  典型地,电解质以液体形式存在时,溶解在有机液体中的锂盐是当今锂离子电池中常见的电解质。但该物质易燃,有时会导致这些电池着火。通过新方法寻找一个可靠的材料来取代锂盐将消除这个问题。/pp  Shao-Horn说,存在多种有前景的固体离子导体,在与锂离子电池的正极和负极接触相比都具有不稳定性的特点。因此,寻找既具有高离子电导率又具有稳定性的新的固体离子导体是至关重要的。但是,通过对许多不同的结构族和成分进行分类,找到最有前途的结构无疑是一项大海捞针的工作。这就是新的设计原则的用武之地。/pp  我们的想法是寻找离子电导率与液体相当的材料,但必须具有固体的长期稳定性。Shao-Horn说研究人员被问到“基本原则是什么”,“在一般的结构层次上,是什么设计原则来控制所需属性的”。研究人员回应理论分析和实验测量相结合的方法现在已经有了一些结果。/pp  该论文的第一作者Muy说:“我们意识到有很多材料可以被发现,但是没有理解或者共同的原则让我们能够合理化发现过程。我们想出了一个可以封装我们的理解并预测哪些材料将处于最佳状态的想法。”/pp  Shao-Horn 说,关键是要观察这些固体材料的晶格性质。这决定了诸如热波和声子之类的振动是如何通过材料的。这种观察结构的新方法最终证明能够准确地预测材料的实际性能。一旦你知道了某物质的振动频率,你就可以用它来预测新的化学性质或解释实验结果。/pp  研究人员观察到使用该模型确定的晶格特性与锂离子导体材料的导电性之间具有良好的相关性。她说,“我们做了一些实验来实验性地支持这个想法”,并发现结果非常吻合。/pp  他们特别发现,锂的振动频率本身可以通过调整晶格结构、使用化学取代或掺杂剂来微妙地改变原子的结构排列来进行微调。/pp  研究人员表示这个新概念现在可以提供一个强大的工具,用于开发新的性能更好的材料,从而可以大幅度提高可存储在给定尺寸或重量的电池中的功率量,并提高安全性。他们已经用这个新方法筛选出了一些新的材料。而且这些技术还可以适用于分析其他电化学过程的材料,如固体氧化物燃料电池,基于膜的脱盐系统或产生氧气的反应。/pp  该团队包括麻省理工学院的张浩勋, Douglas Abernathy,Dipanshu Bansal和Oak Ridge的Olivier Delaire 东京工业大学的Santoshi Hori和Ryoji Kanno 以及宝马集团位于慕尼黑的研究电池技术公司的Filippo Maglia,Saskia Lupart和Peter Lamp。这项工作得到了宝马,国家科学基金会和美国能源部的支持。/pp  文章来自azonano网站,原文题目为Design principles could point to better electrolytes for next-generation lithium batteries/ppbr//p
  • 可令锂电池更安全的新型聚合物电解质
    p style="text-align: center "/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201806/insimg/a9849a7c-1457-4d49-ab26-81b4bbc2cb08.jpg" title="A solid polymer electrolyte film that’s being utilized in lithium batteries.jpg" width="300" height="161" border="0" hspace="0" vspace="0" style="width: 300px height: 161px "//strong/pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong由Zhu博士领导的研究中锂电池上正在使用的固体聚合物电解质薄膜。/strong/span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong图片来源:阿克伦大学。/strong/span/pp  span style="color: rgb(255, 0, 0) "strong嵌入式医疗设备、无人驾驶飞行器、电动汽车/strong/spanstrong和span style="color: rgb(255, 0, 0) "其他类似产品/span的电源,对它们的性能至关重要。/strong/pp  那么,如果像锂电池这种能量储存装置没有如预期工作,会发生什么呢?一辆电动或混合动力汽车将无法使用,急需的生物医学器具会耽误病人的健康。/pp  这些都是聚合物科学教授Yu Zhu博士和其他科学家共同努力避免的后果。/pp  Zhu的研究小组的论文题目为strongi“一种超离子导体导电的,电化学稳定的双盐聚合物电解质”/i/strong,可以在《焦耳》,细胞出版社的前瞻性期刊上浏览,该刊物涵盖各个领域的能源研究。/pp  Zhu和他的研究团队发明了一种固体聚合物电解质,可用于锂离子电池,以替代现有的液体电解质,可提高锂电池的安全性和性能。/pp  Zhu谈到,strong由于电极的高界面电阻和低离子导电性,固体电解质并未在锂电池领域进行市场推广/strong。然而,Zhu和他的团队发现,span style="color: rgb(255, 0, 0) "室温条件下,一种双盐基聚合物固体电解质在锂电池电极材料和超离子导体导电性方面表现出优异的电化学稳定性/span。/pp  span style="color: rgb(31, 73, 125) "i“长期以来,人们一直考虑将固体电解质用于锂离子电池,因为它的阻燃性,高机械强度,可能会减轻电池故障造成的灾难。电池的安全性和能量密度是锂电池新兴应用领域的主要问题,比如在电动汽车中的使用。/i/span/ppspan style="color: rgb(31, 73, 125) "i  如果固态聚合物电解质得到成功开发,电池的能量密度将会翻倍,锂电池的安全问题也会被消除。这项研究为开发具有前景的锂电池用固体电解质奠定了强有力的基础。”/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "本文主要作者,Yu Zhu博士/span/pp  该研究团队已建立了一家名为span style="color: rgb(255, 0, 0) "Akron PolyEnergy/span的公司,该公司将进一步开发这种方法,并为未来的商业化目标制备一个大型原型样品。/pp  Zhu的研究生,span style="color: rgb(255, 0, 0) "Si Li/span和span style="color: rgb(255, 0, 0) "Yu-Ming Chen/span,是这项研究的主要作者。其他科学家还有研究生span style="color: rgb(255, 0, 0) "Wenfeng Liang,Yunfan Shaospan style="color: rgb(0, 0, 0) "和/spanKewei Liu/span,以及位于校内的国家高分子创新中心仪器科学家span style="color: rgb(255, 0, 0) "Zhorro Nikolov/span博士。/p
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
  • 活动回顾|东西分析参加第二届固态电解质技术与市场发展论坛暨第七届先进电池电解质/隔膜材料技术国际论坛
    2024年6月12-13日,第七届先进电池电解质/隔膜材料技术国际暨第二届固态电解质技术与市场发展论坛在苏州召开。东西分析携AA-7050型原子吸收分光光度计参加了此次活动。第七届先进电池电解质/隔膜材料技术国际论坛暨第二届固态电解质技术与市场发展论坛由中国化学与物理电源行业协会和中国电子科技集团公司第十八研究所共同主办,论坛上,来自各地的专家学者和企业代表围绕“提升锂电行业新质生产力”的主题,就固态电解质技术、先进电池电解质/隔膜材料技术等方面展开深入讨论。他们通过分享最新的研究成果、技术进展和市场趋势,为与会者带来前沿的学术报告和技术分享。东西分析展台前,参观交流的观众络绎不绝。此次东西分析展出的展品是AA-7050型原子吸收分光光度计。这款仪器以其精准度高、操作简便、功能强大等特点,赢得了参观者的一致好评。在展台前,工作人员以专业的态度,耐心地向每一位观众介绍这款仪器在电池领域应用中的实际案例和检测效果。电池,作为可再生能源发电体系中关键组件,肩负着推动全球可持续能源发展的重要使命。为确保电池材料及产品的安全可靠性,从电池原材料至电解质的每一个环节,均需经过严格的精确分析测试。这些测试可以全面评估电池的性能、寿命及安全性,为电池行业的稳健发展奠定基础。东西分析公司,依托其丰富的质谱、光谱、色谱等多条产品线,为电池行业提供了一套全方位的分析测试解决方案。这些方案可以进一步提升电池的性能和品质,从而推动电池行业的健康发展,为可持续能源事业贡献力量。仪器推荐电池材料中重金属检测推荐仪器适合分析电池材料中的重金属含量,满足《GB/T 11064.4-2013、GB/T 11064.5-2013、GB/T 11064.6-2013碳酸锂、单水氢氧化锂、氯化锂中钾量、钠量、钙量和镁量的测定 火焰原子吸收光谱法》、《YS/T 1472.4-2021 富锂锰基正极材料中锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体发射光谱法》等检测需求。电池材料中有机成分检测推荐仪器气相色谱质谱联用仪适用于分析电池电解液溶剂及相关原料中的有机成分,比如环状碳酸酯(PC、EC)、链状碳酸酯(DEC、DMC、EMC)及羧酸酯类(MF、MA、EA、MA、MP等)。电池材料检测及产品中气体检测推荐仪器气相色谱可用于电池产气分析,电池电解液原料纯度分析等,符合《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《HG∕T 5786-2021 工业用碳酸丙烯酯》等标准检测要求。电池材料中离子检测推荐仪器离子色谱适用于分析电池电解液溶剂及相关原料中的氟离子,氯离子,硫酸根等,满足《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《GB/T19282-2014 六氟磷酸锂的分析方法》等标准的检测需求。请点击下方链接,获取电池行业的全面解决方案实用干货|助力锂电行业,共迎科技未来
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 中国科大提出纳米胶束电解质新思路并用于高性能水系锌锰二次电池
    近日,中国科学技术大学闫立峰教授课题组通过利用两亲性甲基脲分子,设计了一种新型结构的水基纳米胶束电解质。这一工作打破了以往对于电解质连续溶剂相的认识,通过纳米胶束结构包裹了自由移动的离子,建立了局部/界面相互作用网络,通过金属离子的控制释放,有效地维持了离子的三维扩散形式和有利的界面成核反应,实现了金属枝晶和电极副反应的有效抑制。相关研究成果率先在锌-锰电池体系中得到了证实,并发表于化学专业知名期刊《美国化学会志》(Journal of the American Chemical Society)。   锌离子电池由于锌阳极的高理论比容量(820 mA h g-1)、高储量、成本低、氧化还原电位低(-0.762 V vs. SHE)等优势,被认为是下一代清洁能源存储的有前途的候选者。然而,锌离子电池的寿命受到锌阳极不可逆电化学反应的严重限制,如析氢反应(HER)、“死锌”的持续积累以及不受控制的枝晶生长等。同时,以二氧化锰为正极材料代表的一系列锌离子电池普遍具有低的工作电压(1.5 V)和难以匹配锌阳极的电极容量。如何通过电解质的设计优化来调控锌电池的电化学性能是至关重要的问题。   该文提出了一种独特的纳米胶束电解质设计思路,由ZnSO4、MnSO4和高浓度甲基脲(Mu)分子通过自组装策略构建,水溶剂环境被划分为亲水区和疏水区,阳离子和阴离子则被封装到纳米域中(图1)。纳米胶束阻断了连续的水基体相,打破了水分子之间氢键网络并在胶束内部和胶束/水界面上重构了局部氢键。此外,Mu分子参与了Zn2+/Mn2+离子的溶剂鞘结构,排斥了溶剂化水分子,降低了脱溶剂化能垒,抑制了水分解反应。更重要的是,Zn2+/Mn2+离子可以可控地从胶束团簇中释放出来,以三维扩散方式扩散并在电极表面均匀沉积。此外,在锌阳极表面一种新的固体电解质界面(SEI)保护层Znx(Mu)ySO4∙nH2O得以原位生成,以避免水分子持续渗入造成的锌腐蚀。 图1.胶束电解质的自组装示意图   动态光散射结果表明电解质A3Mu中存在约14nm左右的纳米胶束,核磁结果证实了胶束内部的多重氢键相互作用,DFT计算结果也表明Zn2+/Mn2+和Mu分子上的羰基和具有更强的结合能力,进而有利于进入到胶束内核中,减少溶剂鞘结构中的水分子数(图2)。此外,红外,拉曼光谱结果也识别到了SO42-阴离子扭曲的正四面体结构,可能是由于胶束内部拥挤的空间和电荷-偶极相互作用造成的,这些结果表明了胶束电解质的成功构建。 图2.胶束电解质的核磁,红外,拉曼以及结合能计算表征   得益于胶束电解质内部氢键的重构,电解质和碳布正极界面接触角降低,MnO2/Mn2+成核电位降低,同时由于Mn2+的控制释放特性,生成了反应可逆性更高,结构更加疏松的二氧化锰颗粒。在不同SOC状态下,非原位SEM,XPS,Raman, XRD等测试方法核实了高度可逆的二电子转化反应。利用二电子反应的锌锰电池显示出前所未有的高能量密度800.4 Wh kg-1(基于正极活性材料)以及高达1.87 V的放电电压(图3)。 图3.Zn||Mn 电池的电化学性能   中国科学技术大学化学与材料科学学院博士生邓永琦为该文章的第一作者,闫立峰教授为通讯作者。该研究得到了科技部、国家自然科学基金和中国科学技术大学的经费资助。
  • 中科大突破全固态锂电池电解质在性能和成本上的双重瓶颈
    全固态锂电池可以克服目前商业化锂离子电池在安全性上的严重缺陷,同时进一步提升能量密度,对新能源车和储能产业是一项颠覆性技术。但是,由于全固态锂电池的核心材料—固态电解质—难以兼顾性能和成本,目前该技术的产业化仍面临巨大阻碍。6月27日,中国科学技术大学的马骋教授报道了一种新型固态电解质,它的综合性能和目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,很适合产业化应用。该成果以“A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries”为题发表在国际著名学术期刊《Nature Communications》上。为了满足实际应用的需求,全固态锂电池的固态电解质至少需要同时具备三个条件:高离子电导率(室温下超过1毫西门子每厘米),良好的可变形性(250-350兆帕下实现90%以上致密),以及足够低廉的成本(低于50美元每公斤)。但是,目前被广泛研究的氧化物、硫化物、氯化物固态电解质都无法同时满足这些条件。氧化物作为脆性陶瓷,普遍不具备可变形性。硫化物和大部分氯化物则成本高昂,至少在200美元每公斤的量级。这些材料中唯一的例外是氯化锆锂,但是它的离子电导率却远低于1毫西门子每厘米。   此次研究中,马骋教授不再聚焦于上述氧化物、硫化物、氯化物中的任何一种,而是转向氧氯化物,设计并合成了一种新型固态电解质—氧氯化锆锂。这种材料具有很强的成本优势。如果以水合氢氧化锂、氯化锂、氯化锆进行合成,它的原材料成本仅为11.6美元每公斤,很好的满足了上述50美元每公斤的要求。而如果以水合氧氯化锆、氯化锂、氯化锆进行合成,氧氯化锆锂的成本可以进一步降低到约7美元每公斤,远低于目前最具成本优势的固态电解质氯化锆锂(10.78美元每公斤),并且不到硫化物和稀土基、铟基氯化物固态电解质的4%。在具备极强成本优势的同时,氧氯化锆锂的综合性能和目前最先进的硫化物、氯化物固态电解质相当。它的室温离子电导率高达2.42毫西门子每厘米,超过了应用所需要的1毫西门子每厘米。与此同时,它良好的可变形性使材料在300兆帕压力下能达到94.2%致密,也超过应用所需要的水平(250-350兆帕下90%以上致密)。由氧氯化锆锂和高镍三元正极组成的全固态电池展示了极为优异的性能:在12分钟快速充电的条件下,该电池仍然成功的在室温稳定循环2000圈以上。   氧氯化锆锂的发现,使固态电解质在性能、成本两方面同时实现了突破,对全固态锂电池的产业化具有重大意义。审稿人认为这一发现“很有新意和原创性”,并且认为氧氯化锆锂材料“很有前景”,“有益于固态电池技术的商业化”。
  • Nature Nanotechnology:冷冻电镜对固体-聚合物电解质界面表征
    固态锂金属电池在电动汽车应用中越来越受欢迎,因为它们用更安全的固态电解质代替易燃液体电解质,这种电解质还提供更高的能量密度和更好的抗锂枝晶形成的能力。固体聚合物电解质 (SPE) 因其可调节的机械性能和易于制造而成为极具前景的候选材料;然而,它们对锂金属的电化学不稳定性、中等的电导率和对Li/SPE中间相知之甚少阻碍了在实际电池中的广泛应用。特别是,与SPE相关的低库仑效率(CE)的起源仍然难以捉摸,因为关于它是否源于不利的界面反应或锂枝晶生长和死锂形成的争论仍在继续。在这项工作中,我们使用最先进的冷冻电镜成像和光谱技术来表征界面的结构和化学性质,和基于聚丙烯酸酯的SPE。与传统知识相反,我们发现由于沉积的锂枝晶与聚丙烯酸骨架和丁二腈增塑剂之间的持续反应,没有形成保护性界面。由于反应引起的体积变化,在锂枝晶内部形成了大量具有应力-腐蚀-开裂行为的裂纹。在此观察的基础上,我们利用液体电解质的知识引入添加剂工程,并证明使用氟代碳酸亚乙酯可以有效地保护Li表面免受腐蚀,从而产生致密堆积的Li0具有保形和稳定的固体电解质界面膜的圆顶。由于 1.01 mS cm-1的高室温离子电导率、0.57 的高迁移数和稳定的锂-电解质界面,这种改进的 SPE 提供了99%的优异锂电镀/剥离 CE 和 1,800 小时的稳定循环在 Li||Li 对称电池中(0.2 mA cm -2 , 1 mAh cm-2)。这种改进的阴极稳定性以及高阳极稳定性使得 Li||LiFePO4的循环寿命达到创纪录的 2,000 次循环,Li||LiCoO2全电池的循环寿命达到 400 次。使用基线 SN-SPE 电镀的含锂枝晶的 3D 形态和化学性质a、b、低温 HAADF-STEM 图像 ( a ) 和基于 HAADF-STEM 图像的低温断层扫描获得的代表性细丝的3D 重建 ( b )。c , a中细丝的 3D 横截面分析。d,来自不同区域的几种细丝的 EDS 图。结果表明,O、C、N、S 和 F 分布在整个灯丝的所有位置。e,灯丝的 EELS。在光谱中识别出 C、N 和 O 物种。a , b , 低温 HAADF-STEM 图像和 EDS 图:比例尺,指定区域的 3 μm ( a ) 和 4 μm ( b )。O、C、N、S和F在圆顶表面的富集表明形成了致密且均匀的SEI。c,镶嵌SEI的低温原子分辨率TEM图像,该镶嵌SEI由具有不同晶体取向的密集排列的纳米级域组成。(红色圆圈表示晶畴,红线表示晶格平面的取向。)d,SEI 内的 Li2O 纳米晶体的原子结构。晶面的晶格间距。纳米晶体由线和箭头表示。插图显示了盒装区域的快速傅里叶变换。FEC-SPE 衍生的 SEI 的化学成分和电化学性能溅射时间为 0 分钟和 10 分钟的 FEC-SPE 衍生 SEI 的a – c、 F 1 s ( a )、O 1 s ( b ) 和 C 1 s ( c ) XPS 光谱。LiF、Li 2 O和Li 2 CO 3被确定为SEI组分。d、e、XPS 定量分析源自 FEC-SPE ( d ) 和 SN-SPE ( e ) 的 SEI。FEC-SPE 衍生的 SEI 表现出更高的 F 含量和更高的 S 含量。F, 在 50 °C 下用原始锂金属测试的 FEC-SPE 的临界电流密度。Li||SPE||Li对称电池在升压电流密度下循环,在3.2 mA cm -2之前没有发生短路。充放电时间固定为0.5小时。g,在 PNNL 协议下测试的锂剥离/电镀 CE。h ,在0.1 mA cm -2、0.1 mAh cm -2和室温下循环Li||FEC-SPE||Li电池时的EIS演变。在循环 18 小时后实现了低且恒定的电荷转移电阻。制备的 SPE 在大面积容量条件下的 Li 沉积形态和电化学行为采用不同正极材料、面积容量和 N/P 比的 FEC-SPE 基全电池的室温性能a,Li||FEC-SPE||LFP 电池在 0.5C 下的循环稳定性。LFP 的面积质量负载为2 mg cm -2。b,Li||FEC-SPE||LFP 电池在 0.5C 循环下第 1、500、1000、1500 和 2000 次循环的充放电曲线。c – e,长期循环稳定性 ( c )、充放电曲线 ( d ) 和Li||FEC-SPE||LiCoO 2电池在 22 °C 下的倍率性能 ( e )。LiCoO 2面积负载为~5 mg cm -2。f,具有有限Li阳极(2 mAh cm -2)和LiCoO 2的低N/P比电池性能阴极(~5 mg cm -2)。电池在 22°C 和 0.5C 下循环。g ,具有商业高负载LiFePO4和NMC811阴极的FEC-SPE基固态电池在低N/P比条件下的循环性能。电池在 0.2C 和 22°C 下以 5 mAh cm -2的 Li作为阳极进行循环结论在这项工作中,我们发现了 Li 负极的降解机制。我们发现,由于缺乏稳定的 SEI,Li 负极会由于副反应和体积变化引起的应力腐蚀而降解。通过使用冷冻电镜成像和光谱技术,我们彻底研究了固体聚合物电解质和Li 负极之间的固体-电解质界面的结构和化学性质。以此表征为指导,我们通过增材工程成功开发了一种新型 SPE 来控制 SEI 的形成,并最终证明了新型 FEC-SPE 在全电池中的应用,实现了长循环寿命( 2,000 次循环)、高电流密度和高面积容量。我们发现,固体聚合物电解质中的 FEC 添加剂可产生主要包含无定形 F 相关物质的富 F SEI,这最终可以在提高 Li 0负极的可逆性方面发挥重要作用。这项工作还为固体聚合物电解质提供了一种设计策略,即通过添加剂工程控制 SEI。论文信息论文题目:Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries通讯作者:Ruoqian Lin,Xiao-Qing Yang ,Kang Xu & Huolin L. Xin通讯单位:美国纽约州厄普顿布鲁克海文国家实验室化学部,美国陆军研究实验室,美国加州大学尔湾分校
  • 中国科大全固态电池新突破 硫化物电解质成本降92%
    中国科学技术大学马骋教授团队开发了一种用于全固态电池的新型硫化物固态电解质,其原材料成本仅14.42美元每公斤,不到其它硫化物固态电解质原材料成本的8%。该成果近日发表在国际著名学术期刊《德国应用化学》(Angewandte Chemie International Edition)上。全固态电池有望克服锂离子电池难以兼顾续航和安全性的瓶颈,从而突破目前电池技术的玻璃天花板。固态电解质是成功构筑全固态电池的关键,性能优异的硫化物则被普遍认为最有希望实现全固态电池的实际应用。“日本丰田、韩国三星等知名企业,都在过去的十几年内对此类材料进行了大量的研发投入。”马骋说,但硫化物固态电解质的成本普遍超过195美元每公斤,远高于实现商业化所需要的50美元每公斤。这一问题的根源,在于硫化物固态电解质的合成需要使用大量昂贵的硫化锂(不低于650美元每公斤)。在此次研究中,马骋开发了一种不以硫化锂作为原料的硫化物固态电解质——氧硫化磷锂,该原材料成本仅14.42美元每公斤,具有很强的成本竞争力。据介绍,氧硫化磷锂保留了硫化物固态电解质独特优势。它和锂金属组成的对称电池能实现4200小时以上的室温稳定循环,而它和硅负极、高镍三元正极组成的全固态软包电池,在60℃下循环200次后,仍具有89.29%的容量保持率。马骋说:“我们的工作表明硫化物固态电解质的成本问题并非无解。氧硫化磷锂作为一种新材料,在性能上仍有望实现进一步提升,我们也在为此继续努力。”
  • 《电解质饮料(饮品)》团体标准征求意见稿发布!
    关于对《电解质饮料(饮品)》团体标准(征求意见稿)征求意见的函各有关单位、专家:近期中国饭店协会、中国食品工业协会联合牵头制订了《电解质饮料(饮品)》团体标准。工作启动后,起草工作组按照标准制订工作程序,组织完成了《电解质饮料(饮品)》团体标准的征求意见稿(见附件1)及编制说明(见附件2),现面向行业征求意见。征求意见时间为2024年2月9日–2024年3月8日。请按照附件3格式填写修改意见,于2024年3月8日前反馈至中国食品工业协会邮箱:cnfia@vip.163.com。《电解质饮料(饮品)》团体标准征求意见反馈表.docx《电解质饮料(饮品)》团体标准编制说明.pdf《电解质饮料(饮品)》团体标准征求意见稿.pdf中国食品工业协会标准化工作委员会 2024年2月9日
  • 我国科学家在水溶液电解质的锂离子电池研究方面取得重要进展
    在国家自然科学重点项目、杰出青年基金等资助下,复旦大学新能源研究院夏永姚教授课题组多年来一直从事锂离子嵌入化合物在水溶液电解质中特性的研究,近期在这一领域取得重要进展,最新研究成果发表在《Nature Chemistry》上(2010, 2,760-765)。  众所周知,相对于目前广泛用于摄像机、笔记本电脑、移动电话等移动通讯器件的有机电解质溶液锂离子电池,水溶液电解质的锂离子电池具有价格低廉,无环境污染,高安全性能等优点而倍受人们关注,但其循环性能差的问题一直未能解决。夏永姚研究组从理论和实验上证实,在水和氧气存在下,作为电池负极的电极材料会被氧气氧化是造成水系锂离子电池容量衰减的主要原因。他们通过消除氧(电池密封)和选择合适的电极材料,大幅提高了电池的循环性能。这种电池将来可望用于风力、太阳能发电等能量储存、智能电网峰谷调荷和短距离的电动公交车等。该研究成果发表后,得到包括Chemistry World,科技日报、科学时报等媒介的报道。
  • 用于锂金属电池的双功能添加剂——科学家使用四种不同的光束线来揭示锂金属电池在电解质添加剂存在下的行为全貌
    &bull Inara Aguiar美国能源部 (DOE) 布鲁克海文国家实验室的研究人员采用电解质添加剂来改善高能量密度锂金属电池的功能。通过在分隔电池阳极和阴极的电解液中添加硝酸铯,锂金属电池的充电速率显着提高,同时保持较长的循环寿命。锂金属电池具有锂金属阳极,而不是锂离子电池中存在的石墨阳极。“锂金属电池很有吸引力,因为它可以提供两倍于石墨阳极电池的能量密度,”布鲁克海文电化学储能小组的研究助理、最近发表在《自然通讯》上的论文的第一作者穆罕默德莫米努尔拉赫曼(Muhammad Mominur Rahman)解释说。“但还有很多挑战需要解决。”从左到右:布鲁克海文光束线科学家 Sanjit Ghose 与化学家 Enyuan Hu 和 Muhammad Mominur Rahman 在国家同步加速器光源 II X 射线粉末衍射光束线处。(图片来源:Jessica Rotkiewicz/布鲁克海文国家实验室)这些挑战之一是寻找能够形成有效界面的电解质。这种保护层可防止电池电极退化,是制造可与当今最先进的电池一样频繁充电和放电的锂金属电池的关键。“我们希望提高当前最先进的锂金属电池的充电速率,”拉赫曼解释道。“但我们还希望通过更具保护性的界面来稳定电池,以便它们的使用寿命更长。”电化学储能组首席研究员胡恩元和他的团队是 Battery500 联盟的成员,该联盟是多个国家实验室和大学的合作项目。该联盟的主要目标之一是制造能量密度为每公斤500瓦时的电池,这是当前锂离子电池能量密度的两倍多。通常,能够实现电池快速充电的电解质也可能与锂金属阳极发生反应。如果这些化学反应不受控制地进行,电解质就会分解并缩短电池的循环寿命。为了防止这种情况发生,布鲁克海文的科学家决定设计界面。先前的研究表明,铯添加剂可以稳定锂金属阳极。但为了提高充电速率同时保持电池循环寿命,阳极和阴极必须同时稳定。研究人员相信硝酸铯可以用于锂金属电池的这一目的。正如他们所假设的,正铯离子积聚在电池带负电的锂金属阳极侧,而负硝酸根离子则积聚在带正电的阴极上。四个光束线揭示电池行为为了更好地了解硝酸铯添加剂如何影响电解质组成和电池性能,科学家们在布鲁克海文实验室的美国能源部科学办公室用户设施国家同步加速器光源II(NSLS-II)使用了四条不同的光束线。先前的研究表明,铯添加剂可以稳定锂金属阳极。但为了提高充电速率同时保持电池循环寿命,阳极和阴极必须同时稳定。研究人员相信硝酸铯可以用于锂金属电池的这一目的。正如他们所假设的,正铯离子积聚在电池带负电的锂金属阳极侧,而负硝酸根离子则积聚在带正电的阴极上。 使用X射线粉末衍射(XPD)光束线的结果表明,硝酸铯添加剂增加了已知组分的存在,使界面更具保护性。值得注意的是,除了典型的晶体成分外,还鉴定出一种名为双(氟磺酰基)酰亚胺铯的化合物。拉赫曼强调:“这种间期成分以前从未被报道过。”。“但这不仅仅是我们的发现,”胡补充道。“这也是中间相所缺失的。”研究电池的科学家普遍认为氟化锂是良好界面的必要组成部分。令人惊讶的是,它不在那里。“我们不知道为什么它不在那里,”胡说。“但事实上,这种不含氟化锂的中间相能够实现长循环寿命和快速充电,这一事实激励我们重新审视目前对中间相的理解。”他们使用亚微米分辨率 X 射线光谱 (SRX) 光束线,定量分析了循环后电池电极及其各自界面上收集的化学元素。扫描 XRF 图像证实阳极界面相中存在的铯多于阴极界面相中的铯。硝酸铯添加剂还可以防止构成阴极的过渡金属的分解,有助于阴极和锂金属电池的整体稳定性。研究中还使用了快速 X 射线吸收和散射 (QAS) 以及原位和操作软 X 射线光谱 (IOS) 光束线,并对各个电极上存在的原子的化学和电子状态进行了详细分析。此外,在功能纳米材料中心(CFN)的材料合成和表征设施中进行的扫描电子显微镜实验表明,当将硝酸铯添加到电解质中时,电化学反应形成的锂均匀沉积,有助于电极的稳定。通过将两个用户设施的各种技术相结合,科学家们可以全面了解锂金属电池在硝酸铯添加剂的作用下的表现。拉赫曼说:“锂金属电池已经取得了长足的进步,但仍有很长的路要走。相间在仍需取得的进展中发挥着关键作用。”。“我们的工作为相间工程创造了新的机会,我希望这将激励其他人以不同的方式看待相间,从而加快锂金属电池的开发。”原始出版物Rahman, M.M., et al.: An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries. Nat Commun (2023) DOI: 10.1038/s41467-023-44282-z 作者简介 Inara Aguiar 是科学编辑和作家,拥有无机化学博士学位。在获得计算化学博士后,她开始担任化学、工程、生物工程和生物化学领域的科学编辑。她一直在多家科学出版商担任技术作家/编辑,最近作为自由职业者内容创作者加入 Wiley Analytical Science。文章来源:A dual-functional additive for fast charging and long cycle life of lithium metal batteries,Microscopy Electron and Ion Microscopy Light Microscopy ,WILEY, Analytical Science,9 February 2024供稿:符 斌
  • 中国检验检疫科学研究院120余万实时荧光定量PCR仪等设备采购项目
    1、项目编号:0747-2261SCCZA068项目名称:中国检验检疫科学研究院实时荧光定量PCR仪设备采购项目预算金额:47.6000000 万元(人民币)最高限价(如有):47.6000000 万元(人民币)采购需求:名称数量简要技术需求交货期是否接受进口产品实时荧光定量PCR仪1台可用于病原体定性/定量检测分析、基因表达分析、遗传基因检测、突变检测、高分辨率熔解曲线分析、基因分型分析等多种研究领域2个月否2、项目编号:0747-2261SCCZA065项目名称:中国检验检疫科学研究院全自动生化分析仪设备采购项目预算金额:85.0000000 万元(人民币)最高限价(如有):85.0000000 万元(人民币)采购需求:名称数量简要技术需求交货期是否接受进口产品全自动生化分析仪1台全自动生化分析仪自动完成加样、加试剂、去干扰、混合、预温、反应检测、清洗以及结果计算、显示和打印等功能,提高了工作效率,减少了测试误差,提高了测试结果的准确度与精密度。生化检测套餐12种:肝功能、肾功能、血脂、糖代谢、心血管、贫血、微量元素及电解质、炎症、特定蛋白、胰腺、药物监测等百余个项目。为临床提供更加全面的检测信息。1个月否合同履行期限:交货期:1个月本项目( 不接受 )联合体投标。
  • 【仪器清单】基层二级医院检验科仪器设备清单请收好
    一分钟带你了解医院分级医院分级是根据医院的规模大小、人员配备、硬件设施、科研能力来分的,分一级、二级和三级共三个大的等级,每个等级每级分甲、乙、丙三等,而三甲医院是最好的了,还会专门划分三级特甲。三级医院:主要指全国省市直属的市级大医院及医学院校的附属医院。二级医院:主要指一般市、县、医院及省辖市的区级医院,以及相当规模的工矿企事业单位的职工医院。一级医院:主要指直接为一定人口的社区提供预防、治疗、保健、康复服务的基层医院、卫生院。医院实行1000分制,900分以上评为三级甲等,750分至900分评为三级乙等。医院等级不搞终身制,实行动态管理。详情见视频:医院是怎么分级的?(源于腾讯视频)医院检验科仪器清单检验科是临床医学和基础医学之间的桥梁,包括临床化学、临床微生学、临床免疫学、血液学、体液学以及输血学等分支学科。检验科每天承担包括病房、门急诊病人、各类体检以及科研的各种人体和动物标本的检测工作。一般检验科按检查分组为:生化检查、免疫检查、微生物检查和临检检查项目。仪器信息网本期特别整理基层二级医院检验科仪器设备清单供大家了解,相应的仪器设备可登录仪器信息网相应仪器专场进行查看:(点击下方产品名称即可进入相应专场)实验室类别产品名称应用临检生化室药品冷藏箱低温存储低温冰箱低温存储血液分析仪血常规检测尿液分析仪尿常规检测电解质分析仪人体渗透压微量元素分析仪体内微量元素分析离心机样本不同成分分离水浴锅/水箱提供恒温环境显微镜血液细胞观察单道移液器微量液体移取纯水机为生化仪提供纯水免疫室低温冰箱试剂,样本存放药品冷藏箱试剂样本存放高压蒸汽设备仪器设备灭菌离心机血液成分分离移液器试剂样本移取电热恒温培养箱抗原抗体37℃孵育酶标仪抗原抗体检测洗板机酶标板清洗生物安全柜安全防护微生物室电子天平培养基称量显微镜微生物观察离心机样本成分分离移液器样本移取高压蒸汽设备清单培养基灭菌生物安全柜安全防护37℃孵育红外线/干热灭菌接种环灭菌生化培养箱微生物培养电热恒温培养箱二氧化碳培养箱厌氧培养箱低温冰箱菌株存储鼓风干燥箱灭菌后仪器设备干燥艾滋病(HIV)初筛室低温冰箱试剂,样本存放药品冷藏箱试剂样本存放高压蒸汽设备仪器设备灭菌离心机血液成分分离移液器试剂样本移取电热恒温培养箱抗原抗体37℃孵育酶标仪抗原抗体检测洗板机酶标板清洗生物安全柜安全防护PCR/分子生物室试剂制备区药品冷藏箱试剂存放超净工作台提供洁净环境电子天平化学品称量迷你离心机成分分离移液器试剂样本移取微量加样器试剂移取紫外消毒车实验室环境消毒混匀器试剂混合超纯水机配制试剂用PCR/分子生物室样本制备区低温冰箱酶类试剂检测样本存放-86℃低温冰箱存储生物样品药品冷藏箱药品冷藏箱生物安全柜安全防护迷你离心机血清血浆分离台式高速冷冻离心机核酸提取中成分分离金属浴提供恒温环境微量加样器试剂样本移取八道移液器PCR试剂加样微量分光光度计核酸浓度测定制冰机PCR加样时需低温环境PCR/分子生物室产物分子及扩增区荧光定量PCR仪DNA扩增及分析普通PCR仪DNA扩增及分析电泳槽/电泳仪DNA扩增后分析凝胶成像系统更多专业实验室仪器配置清单信息,欢迎关注仪器信息网......【Webinar预告】
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 480万!广州质检院检验检测仪器设备购置
    项目编号:0809-2241GZG13051项目名称:广州质检院检验检测仪器设备购置经费(4)采购方式:公开招标预算金额:4,811,400.00元采购需求:合同包1(广州质检院检验检测仪器设备购置经费(4)):合同包预算金额:4,811,400.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置防火门可靠性综合试验装置1(套)详见采购文件290,000.00-1-2其他试验仪器及装置防火门力学性能综合试验装置1(套)详见采购文件280,000.00-1-3其他试验仪器及装置防火闭门器试验装置1(套)详见采购文件280,000.00-1-4其他试验仪器及装置门窗物理综合试验装置1(套)详见采购文件280,000.00-1-5其他试验仪器及装置卷门机基本性能试验装置1(套)详见采购文件180,000.00-1-6其他试验仪器及装置家具用脚轮综合测试仪1(套)详见采购文件180,000.00-1-7其他试验仪器及装置抗震支吊架疲劳试验机1(套)详见采购文件700,000.00-1-8其他试验仪器及装置2000kN微机控制电液伺服万能试验机1(套)详见采购文件480,000.00-1-9其他试验仪器及装置快速双单元控制电位电解仪1(套)详见采购文件30,000.00-1-10其他试验仪器及装置智能交直流移动电源1(套)详见采购文件15,000.00-1-11其他试验仪器及装置空气氟化物/重金属采样器(增强型)1(套)详见采购文件30,000.00-1-12其他试验仪器及装置卤素水分测试仪1(套)详见采购文件20,000.00-1-13其他试验仪器及装置总迁移量恒重仪1(套)详见采购文件700,000.00-1-14其他试验仪器及装置水蒸气透过率测试仪1(套)详见采购文件713,000.00-1-15其他试验仪器及装置电导率仪1(套)详见采购文件10,000.00-1-16其他试验仪器及装置澄清度伞棚灯1(套)详见采购文件25,800.00-1-17其他试验仪器及装置石油产品运动粘度恒温浴+配套的冷却装置1(套)详见采购文件13,000.00-1-18其他试验仪器及装置纸尿裤吸收性能测试仪1(套)详见采购文件135,000.00-1-19其他试验仪器及装置标准杂质测定仪1(套)详见采购文件5,000.00-1-20其他试验仪器及装置防侧漏性能测试仪1(套)详见采购文件6,000.00-1-21其他试验仪器及装置包装产品耐电压测试仪1(套)详见采购文件7,000.00-1-22其他试验仪器及装置包装产品接地电阻测试仪1(套)详见采购文件2,900.00-1-23其他试验仪器及装置包装产品泄漏电流测试仪1(套)详见采购文件2,000.00-1-24其他试验仪器及装置锅具手柄抗扭强度试验机1(套)详见采购文件5,500.00-1-25其他试验仪器及装置手柄疲劳强度试验机1(套)详见采购文件10,500.00-1-26其他试验仪器及装置电脑测控瓦楞纸板厚度仪1(套)详见采购文件10,200.00-1-27其他试验仪器及装置复合底内凹量试验仪1(套)详见采购文件2,500.00-1-28其他试验仪器及装置锅身厚度测量仪1(套)详见采购文件2,500.00-1-29其他试验仪器及装置手柄结构试验仪1(套)详见采购文件3,500.00-1-30其他试验仪器及装置电子触屏式扭力计1(套)详见采购文件12,000.00-1-31其他试验仪器及装置氙灯老化机1(套)详见采购文件380,000.00-本合同包不接受联合体投标合同履行期限:合同签订后90个日历日内完成交货并通过验收
  • 预算9858万!河南省医疗器械检验所采购241台/套仪器
    4月29日,河南省医疗器械检验所河南省医疗器械检验检测能力项目发布公开招标公告。该项目总预算9857.86万元,采购液相色谱质谱联用仪、光学显微镜、傅立叶变换红外光谱仪、激光粒度仪、流式细胞仪等241台进口/国产仪器设备。一、项目基本情况1、项目编号:豫财招标采购-2021-3512、项目名称:河南省医疗器械检验所河南省医疗器械检验检测能力项目3、采购方式:公开招标4、预算金额:98,578,600.00元序号包号包名称包预算(元)1豫政采(2)20210460-1进口设备1包46000002豫政采(2)20210460-2进口设备2包35000003豫政采(2)20210460-3进口设备3包32000004豫政采(2)20210460-4进口设备4包41600005豫政采(2)20210460-5进口设备5包27000006豫政采(2)20210460-6进口设备6包42900007豫政采(2)20210460-10进口设备10包33500008豫政采(2)20210460-11进口设备11包39000009豫政采(2)20210460-12进口设备12包370350010豫政采(2)20210460-7进口设备7包277100011豫政采(2)20210460-8进口设备8包489000012豫政采(2)20210460-9进口设备9包181800013豫政采(2)20210460-13进口设备13包486000014豫政采(2)20210460-14进口设备14包321920015豫政采(2)20210460-15进口设备15包480000016豫政采(2)20210460-16进口设备16包414000017豫政采(2)20210460-17进口设备17包404100018豫政采(2)20210460-18进口设备18包408780019豫政采(2)20210460-19进口设备19包596000020豫政采(2)20210460-20进口设备20包1547000021豫政采(2)20210460-21国产设备21包83600022豫政采(2)20210460-22国产设备22包107289023豫政采(2)20210460-23国产设备23包380600024豫政采(2)20210460-24国产设备24包34032105、采购需求进口设备1包:高分辨液相色谱质谱联用仪1台,允许进口;进口设备2包:超高效液相高分辨质谱联用系统1台,允许进口;进口设备3包:基质辅助激光解析附电离飞行时间质谱仪1台,允许进口;进口设备4包:倒置显微镜(2)1台、光学显微镜1台、倒置显微镜1台、显微镜(解剖镜)1台、荧光显微镜1台、核型分析专用电动显微镜1台、原子力显微镜1台,允许进口;进口设备5包:气相色谱仪1台、气相色谱仪(2)1台、气相色谱质谱联用仪(三重四极杆)1台,允许进口;进口设备6包:电感耦合等离子体质谱(三重四级杆)1台、原子吸收分光光度计1台、电感耦合等离子体发射光谱(ICP)1台、原子吸收光谱仪1台,允许进口;进口设备7包:氨基酸分析仪1台、傅立叶变换红外光谱仪1台、紫外可见分光光度计1台、紫外分光光度计1台、离子色谱1台,允许进口;进口设备8包:XPS(X射线光电子能谱分析)1台、测汞仪1台,允许进口;进口设备9包:液体密度仪1台、阿贝折射仪1台、粘度计1台、磁力搅拌器2台、离心机(低温高速)1台、离心机1台、纯水-超纯水一体化系统2台、热重分析仪1台、电子天平(十万分之一)1台,允许进口;进口设备10包:激光粒度仪1台、总有机碳分析仪1台、XRD(X射线粉末衍射仪)1台,允许进口;进口设备11包:生化分析仪1台、全自动核酸电泳和片段回收系统1台、全自动蛋白质定量分析系统1台,允许进口;进口设备12包:流式细胞仪1台、玻璃器皿清洗消毒机1台、凝血分析仪1台、病理切片扫描仪1台,允许进口;进口设备13包:全自动ELISA工作站1台、单细胞多组学分析系统1台、活细胞成像分析系统1台,允许进口;进口设备14包:可编程分液泵2台、全自动生化分析仪1台、血栓弹力图仪1台、蛋白电泳仪1台、电解质分析仪1台、动物呼吸机1台、动物麻醉监护仪1台、全自动离子溅射仪1台、自动数字式测厚仪1台、气体质量流量控制器2台、可用于麻醉呼吸管路接头测量的塞规 、环规(15mm,22mm)2台、可用于麻醉呼吸管路接头测量的塞规 、环规(8.5mm,30mm)1台、垂直法燃烧性测试仪1台、法拉第筒电荷量测定仪1台、静电衰减测试仪1台,允许进口;进口设备15包:全自动医用PCR分析系统1台、基因分析仪1台、电泳仪1台、实时荧光定量PCR 1台、毛细管电泳仪1台,允许进口;进口设备16包:基因扩增仪1台、渗透压仪1台、高通量测序仪1台、阻湿态微生物穿透测试仪 1台、DNA序列分析仪1台、PCR扩增仪1台,允许进口;进口设备17包:数字PCR仪1台、蛋白电泳仪(2)1台、全自动密度制备和分离系统1台、全自动微生物基因鉴定系统1台,允许进口;进口设备18包:生物安全柜(2)3台、菌种保存箱1台、老化箱1台、恒温水浴摇床1台、离心机(低温高速)(2)1台、摇床(空气浴)1台、控温多用高速组织捣碎机1台、旋转培养器1台、控温摇床1台、多功能垂直混合器1台、混匀仪1台、移液器6台、洗板机(2)1台、高压灭菌器2台、鼓风干燥箱3台、二氧化碳培养箱1台、生物安全柜2台、酶标仪1台、细胞计数仪1台、洗板机1台、液氮罐1台、恒温恒湿培养箱4台、双人超净工作台4台,允许进口;进口设备19包电磁兼容类:电磁兼容瞬态抗扰度及谐波与电压闪烁测试系统1套,允许进口;进口设备20包电磁兼容类:10米法电磁兼容实验室测试系统(10m法电波暗室及屏蔽室)1套,允许进口。国产设备21包:热敷贴温度特性测试仪1台、口罩阻燃性能试验仪1台、口罩合成血液穿透试验仪1台、口罩阻力测试仪2台、医用防护服合成血液穿透实验仪1台、水蒸气透过率测试系统1台、医用手套不透水性能测试仪1台,不允许进口;国产设备22包:天平(电子天平)1台、天平(电子天平)3台、恒温摇床(空气浴)4台、医用低温冰箱2台、电热恒温振荡水槽1台、电子天平7台、磁力加热搅拌器4台,电解质分析仪1台、细胞组织破碎仪1台、均浆机1台、封口机1台、真空冷冻干燥箱1台、样品浓缩氮吹仪1台、快速式全自动洗瓶机2台,不允许进口;国产设备23包:恒温手术台2台、手术灯4台、可携式废液抽吸系统2台、小动物安乐死系统(不锈钢)1台、动物用麻醉机1台、骨钻2台、全自动AMES实验仪1台,动物手术台4台、细菌过滤效率分析仪1台、微型集菌仪1台、干化学血红蛋白分析仪1台、自动化菌落挑选系统1台、分子杂交箱1台、紫外交联仪1台、生物样品前处理仪1台、实验动物专用灭菌系统1台、动物饮用水在线灭菌设备1台、净化换笼工作站8台,不允许进口;国产设备24包:多功能空气消毒系统6台、快速笼盒清洗机2台、饮水瓶自动灌装机1台、大型在线消毒传递舱1台、垫料添加机2台、垫料收集台2台、不锈钢冲水式笼具14台,小动物解剖台3台、兔热原台2台、小鼠IVC 2台、大鼠IVC 2台、豚鼠架9台,不允许进口。二、获取招标文件1. 时间:2021年04月30日 至 2021年05月10日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2. 方式:有意参加本项目的供应商,请登录“河南省公共资源交易中心”网上,凭领取的企业身份认证锁(CA密钥)进行下载招标文件及资料。供应商未按规定在网上下载招标文件的,其投标将被拒绝。3. 售价:0元三、投标截止时间2021年05月25日09时00分(北京时间)四、联系方式1. 采购人信息名称:河南省医疗器械检验所联系人:张老师联系方式:0371-655667002. 采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司联系人:刘倩联系方式:0371-86656599
  • 2274万!中南大学湘雅医院检验科一批试剂采购项目
    一、项目基本情况项目编号:HNWY-2023307项目名称:中南大学湘雅医院检验科一批试剂入围遴选项目预算金额:2274.130000 万元(人民币)采购需求:包号目录号试剂名称产地预算单价限价(元/人份)使用科室入围数量11解脲脲原体(UU)核酸检测试剂盒(PCR-荧光探针法)国产16.15检验科2家2沙眼衣原体(CT)核酸检测试剂盒(PCR-荧光探针法)国产16.153淋球菌(NG)核酸检测试剂盒(PCR-荧光探针法)国产16.1521EB病毒核酸定量检测试剂盒(PCR-荧光探针法)国产15.22家2人巨细胞病毒核酸定量检测试剂盒(PCR-荧光探针法)国产15.231BK病毒核酸定量检测试剂盒(PCR-荧光探针)国产14.252家2JC病毒核酸定量检测试剂盒(PCR-荧光探针)国产14.2541人MTHFR基因多态性检测试剂盒(PCR-荧光探针法)国产1522家51人CYP2C9与VKORCI基因多态性检测试剂盒国产1802家2人CYP2C19基因分型检测试剂盒(PCR-荧光探针法)国产18061人乳头状瘤病毒(HPV)检测试剂盒(PCR荧光法)进口106.42家2人乳头状瘤病毒(HPV)检测试剂盒(PCR荧光法)进口106.43沙眼衣原体/淋球菌/解脲脲原体核酸检测试剂盒进口7571septin9基因甲基化检测试剂盒国产2852家81葡萄糖6磷酸脱氢酶基因突变检测试剂盒(基因芯片法)国产4202家91新型冠状病毒2019-nCoV核酸检测试剂盒(快检)国产3.51家2新型冠状病毒2019-nCoV核酸检测试剂盒(快检)国产3.5101新型冠状病毒2019-nCoV核酸检测试剂盒国产3.331家2核酸提取试剂盒(磁珠法)及附件国产0.95111人类SLC01B1和ApoE基因检测试剂盒国产2102家121苯丙氨酸羟化酶基因突变检测试剂盒(基因芯片法)国产3202家131CYP3A5基因检测国产2102家141血细胞分析用溶血剂进口0.351家2血细胞分析用溶血剂进口0.883血细胞分析用WNR染色液进口1.484血细胞分析用WDF染色液进口1.335血细胞分析用血红蛋白溶血剂进口0.366血细胞分析用稀释液国产0.587血细胞分析仪用清洗液进口11.4/ml8血液分析仪用质控品进口171/ml9血液分析仪用质控品进口171/ml10血液分析仪用质控品进口171/ml11血细胞分析用染色液&网织红染色液进口7.9212血细胞分析用稀释液进口1.33151流式管进口0.82/根1家2流式细胞仪质控品进口87.53/ml3细胞质控品进口43.764流式细胞分析用溶血剂进口6.565HLA-B27 FITC/HLA-B7-PE检测试剂盒进口36.48161血细胞分析用染色液试剂盒进口3.661家2血液分析仪用质控品进口101.79/ml3库尔特血细胞分析系统专用试剂-DxH清洗液进口0.074库尔特白细胞五分类试剂包进口0.965血细胞分析用溶血剂进口1.096血细胞分析用稀释液国产1.44171尿液干化学分析质控物(阴性)&阴性质控液国产3.68/ml1家2尿液干化学分析质控物(阳性)&阳性质控液国产3.68/ml3尿液分析试纸条国产1.18181瑞氏-姬姆萨染色液-B液国产0.081家2瑞氏-姬姆萨染色液-A液国产0.293瑞氏-姬姆萨染色液国产0.25191精子采样管&精子质量分析仪测量仓进口221家201大便隐血检测试剂盒(胶体金法)国产31家2粪便分析系统专用试剂包国产0.683粪便分析系统专用试剂包&粪便专用采集管国产2.66211大便隐血检测试剂盒(胶体金法)国产2.472家221便隐血检测试纸(胶体金免疫层析法)&便隐血试纸国产2.472家2310139群霍乱弧菌检测试剂盒(胶体金法)国产11.972家201群霍乱弧菌检测试剂盒(胶体金法)国产12.54241尿沉渣计数板进口7.131家2尿液分析试纸条(干化学法)进口1.62251C反应蛋白检测试剂盒(免疫比浊法)进口5.021家2IMMAGE免疫化学系统专用试剂-清洗液进口0.04/ml3κ轻链检测试剂盒(免疫比浊法)进口8.214λ轻链检测试剂盒(免疫比浊法)进口8.215补体C3检测试剂盒(免疫比浊法)进口3.196补体C4检测试剂盒(免疫比浊法)进口3.197缓冲液(BUF3)国产1.05/ml8缓冲液(BUFI)国产0.73/ml9抗链球菌溶血素O检测试剂盒(免疫比浊法)进口5.9310缓冲液(BUF2)进口1.96/ml11类风湿因子检测试剂盒(免疫比浊法)进口5.4712免疫球蛋白A检测试剂盒(免疫比浊法)进口4.113免疫球蛋白G检测试剂盒(免疫比浊法)进口4.114免疫球蛋白M检测试剂盒(免疫比浊法)进口4.115尿免疫球蛋白G检测试剂盒进口6.3816铜蓝蛋白检测试剂盒(免疫比浊法)进口11.0817微量白蛋白检测试剂盒(免疫比浊法)进口6.6518样本稀释液进口0.73/ml19转铁蛋白检测试剂盒(免疫比浊法)进口2.7420尿转铁蛋白检测试剂盒(免疫比浊法)进口5.47261C反应蛋白测定试剂盒(胶乳免疫比浊法)国产3.81家2κ-轻链检测试剂盒(免疫比浊法)国产8.123λ-轻链检测试剂盒(免疫比浊法)国产8.124补体C3测定试剂盒(免疫比浊法)国产2.895补体C4测定试剂盒(免疫比浊法)国产2.896抗链球菌溶血素O测定试剂盒(胶乳增强免疫比浊法)国产4.757类风湿因子测定试剂盒(胶乳增强免疫比浊法)国产4.758免疫球蛋白A测定试剂盒(免疫比浊法)国产3.439免疫球蛋白G测定试剂盒(免疫比浊法)国产3.4310免疫球蛋白M测定试剂盒(免疫比浊法)国产3.4311铜蓝蛋白检测试剂盒(免疫比浊法)国产9.0312尿微量白蛋白测定试剂盒(免疫比浊法)国产3.813转铁蛋白测定试剂盒(免疫比浊法)国产2.26271丙型肝炎病毒抗体诊断试剂盒(酶联免疫法)国产1.92家281甲胎蛋白测定试剂盒(化学发光微粒子免疫检测法)进口11.971家291结核分枝杆菌IGG/IGM抗体检测试剂盒国产14.882家301梅毒螺旋体抗体检测试剂(胶体金法)国产2.852家311梅毒甲苯胺红不热血清诊断试剂盒国产0.292家321结核分歧杆菌特异性细胞免疫反应检测试剂盒1501家331丙型肝炎病毒核心抗原检测试剂盒(酶联免疫法)国产132家341抗核抗体谱IGG检测试剂盒进口125.41家2抗心磷脂抗体IGA/G/M检测试剂盒(酶联免疫吸附法)进口16.913抗心磷脂抗体检测试剂盒(胶体金标记免疫斑点渗滤法)国产4.09351幽门螺杆菌尿素酶抗体检测试剂盒(胶体金法)国产9.52家361EB病毒壳抗原(VCA)IGM抗体检测试剂盒(酶联免疫法)国产4.652家2单纯疱疹病毒Ⅰ型抗体(IGG)检测试剂盒(酶联免疫法)国产4.183单纯疱疹病毒Ⅰ型抗体(IGG)检测试剂盒(酶联免疫法)国产4.184单纯疱疹病毒Ⅱ型IGM抗体检测试剂盒(酶联免疫法)国产4.285单纯疱疹病毒Ⅱ型抗体(IGG)检测试剂盒(酶联免疫法)国产4.186柯萨奇B组病毒IGM抗体检测试剂盒(酶联免疫法)国产4.657人呼吸道合胞病毒IGM抗体检测试剂盒(酶联免疫)国产4.188腺病毒IGM抗体检测试剂盒(酶联免疫)国产4.189人类免疫缺陷病毒P24抗原及抗体检测试剂盒(胶体硒法)进口21.85371伤寒、副伤寒及变形菌OX19、OX2、OXK诊断菌液国产95/盒2家2伤寒、副伤寒及变形菌OX19、OX2、OXK诊断菌液国产95/盒3血吸虫虫卵抗体检测试剂盒(胶体金法)国产10.364丙型肝炎病毒抗体(抗HCV)液体标准物质国产36.1/mL5乙肝肝炎病毒表面抗原(HBSAG)液体标准物质国产34.3/mL6乙型肝炎病毒C抗体(HBCAB)液体标准物质国产34.3/mL7乙型肝炎病毒E抗体(HBEAB)液体标准物质国产34.3/mL8乙型肝炎病毒E抗原(HBEAG)液体标准物质国产34.3/mL9乙肝肝炎病毒表面抗体(HBSAB)液体标准物质国产34.3/mL10乙型肝炎病毒表面抗体诊断试剂盒(酶联免疫法)国产0.4711乙型肝炎病毒E抗原诊断试剂盒(酶联免疫法)国产0.4712乙型肝炎病毒E抗体诊断试剂盒(酶联免疫法)国产0.4713乙型肝炎病毒核心抗体诊断试剂盒国产0.4714乙型肝炎病毒核心抗体检测试剂盒(酶联免疫法)国产0.66381胃蛋白酶原I检测试剂盒(酶联免疫法)进口17.582家2胃蛋白酶原II检测试剂盒(酶联免疫法)进口17.58391风疹病毒IGG测定试剂盒(化学发光微粒子免疫检测法)进口19.21家2风疹病毒IGG测定试剂盒(化学发光微粒子免疫检测法)进口14.063风疹病毒IGM测定试剂盒(化学发光微粒子免疫检测法)进口14.064弓形体IGG测定试剂盒(化学发光微粒子免疫检测法)进口19.955弓形体IGG测定试剂盒(化学发光微粒子免疫检测法)进口19.956弓形体IGM测定试剂盒(化学发光微粒子免疫检测法)进口19.957弓形体IGM测定试剂盒(化学发光微粒子免疫检测法)进口19.958巨细胞病毒IgM测定试剂盒进口7.139巨细胞病毒IgM测定试剂盒进口7.1310巨细胞病毒IgG测定试剂盒进口7.1311巨细胞病毒IgG测定试剂盒进口7.13401促红细胞生成素测定试剂盒进口或国产13.291家2生化分析系统专用试剂-电解质参比液进口或国产984.23生化分析系统专用试剂-电解质内标液进口或国产768.894生化分析系统专用试剂-清洗液&系统冲洗液进口或国产966.155电极清洗液进口或国产959.56电解质标准液(低值)进口或国产615.67电解质标准液(高值)进口或国产6848反应杯进口或国产5170.859电解质缓冲液进口或国产1094.410清洗液进口或国产638.411全自动免疫检验系统用底物液进口或国产281212生化多项校准品进口或国产1444.9513维生素B12测定试剂盒进口或国产10.9414铁蛋白测定试剂盒进口或国产8.9315叶酸测定试剂盒进口或国产10.03411载脂蛋白A1测定试剂盒进口或国产1.732家2载脂蛋白B测定试剂盒进口或国产1.733乳酸测定试剂盒进口或国产0.364乳酸脱氢酶测定试剂盒进口或国产0.475钙离子测定试剂盒进口或国产0.126甘油三酯测定试剂盒进口或国产0.777高密度脂蛋白胆固醇测定试剂盒进口或国产1.728二氧化碳测定试剂盒进口或国产1.269胆碱酯酶测定试剂盒进口或国产0.9310低密度脂蛋白胆固醇测定试剂盒进口或国产1.9211a-淀粉酶测定试剂盒进口或国产2.5412a-羟丁酸脱氢酶测定试剂盒进口或国产0.2713γ-谷氨酰氨基转移酶测定试剂盒进口或国产0.3514铁离子测定试剂盒进口或国产0.515氨(AMM)测定试剂盒进口或国产1.2416白蛋白测定试剂盒进口或国产0.117丙氨酸氨基转移酶测定试剂盒进口或国产0.2618肌酐测定试剂盒进口或国产0.1619肌酸激酶MB同工酶测定试剂盒进口或国产2.8820肌酸激酶测定试剂盒进口或国产0.8121碱性磷酸酶测定试剂盒进口或国产0.2622镁测定试剂盒进口或国产0.4623尿素测定试剂盒进口或国产0.3224尿酸测定试剂盒进口或国产0.4625总蛋白测定试剂盒进口或国产0.126天门冬氨酸氨基转移酶测定试剂盒进口或国产0.2727酸性磷酸酶测定试剂盒进口或国产0.8528葡萄糖测定试剂盒进口或国产0.2929总胆固醇测定试剂盒进口或国产0.2230无机磷测定试剂盒进口或国产0.1831腺苷脱氨酶测定试剂盒进口或国产2.13421游离脂肪酸(NEFA)测定试剂盒进口或国产2.652家2直接胆红素(DBIL)测定试剂盒进口或国产0.123中性粒细胞明胶酶相关脂质运载蛋白检测试剂盒进口或国产22.84总胆红素(TBIL)测定试剂盒进口或国产0.125果糖胺(FMN)测定试剂盒进口或国产0.661,5-脱水-D-山梨醇(1,5-AG)测定试剂盒进口或国产10.87心型脂肪酸结合蛋白检测试剂盒进口或国产19.958免疫球蛋白E(IgE)测定试剂盒进口或国产6.464315'-核苷酸酶(5'-NT)测定试剂盒进口或国产2.382家2a-L-岩藻糖苷酶测定试剂盒进口或国产2.743β2微球蛋白测定试剂盒进口或国产2.714超敏C反应蛋白测定试剂盒进口或国产4.015前白蛋白测定试剂盒进口或国产1.246脂蛋白(a)测定试剂盒进口或国产4.01441脂蛋白相关磷脂酶A2测定试剂盒进口或国产38.952家2同型半胱氨酸测定试剂盒进口或国产173胱抑素C测定试剂盒进口或国产6.65451脑脊液与尿蛋白(CSF)测定试剂盒进口或国产1.142家2视黄醇结合蛋白测定试剂盒进口或国产2.853天冬氨酸氨基转移酶线粒体同工酶测定试剂盒进口或国产3.424小而密低密度脂蛋白胆固醇测定试剂盒进口或国产10.64461血清蛋白测定试剂盒进口5.991家471总胆汁酸测定试剂盒进口或国产1.52家481肌钙蛋白I测定试剂盒进口38.381家491血细胞分析用溶血剂进口0.761家2血细胞分析用稀释液进口0.773血细胞分析用染色液进口2.194血细胞分析用溶血剂进口0.95501革兰氏阴性菌脂多糖检测试剂盒(显色法)国产422家2真菌(1-3)-Β-D葡聚糖定量检测试剂盒(显色法)国产393曲霉菌抗原检测试剂盒(酶联免疫法)进口或国产49.88511结核分枝杆菌RPOB基因和突变检测试剂盒进口254.61家521L型细菌培养基国产4.752家2哥伦比亚血琼脂培养基国产3.333即用MH琼脂培养基国产3.84淋球菌选择培养基国产5.75麦康凯琼脂培养基国产3.86巧克力色琼脂培养基国产3.87沙保罗氏琼脂培养基国产3.88嗜血杆菌巧克力琼脂培养基国产3.89厌氧血琼脂培养基国产6.1810细菌干粉培养基-SS琼脂)国产1.9211细菌干粉培养基-TCBS琼脂国产2.6112革兰氏染色液快速法国产1.42531酵母样真菌药敏试剂盒(微量稀释法)进口34.21家2肺炎链球菌药敏卡片(GP68)进口36.13革兰氏阳性细菌鉴定卡(GP)进口36.14革兰氏阴性细菌鉴定卡(GN)进口36.15酵母菌鉴定卡(YST)进口36.16奈瑟菌、嗜血杆菌鉴定卡(NH卡)进口36.17革兰氏阳性细菌药敏卡片(GP68)进口36.18革兰氏阴性细菌药敏卡片(GN13)进口37.059革兰染色液&品红溶液进口0.9510革兰染色液&结晶紫溶液进口0.9511革兰染色液&碘试剂进口0.95541分枝杆菌/真菌培养瓶进口40.281家2需氧微生物培养瓶(成人瓶)进口40.283需氧微生物培养瓶(儿童瓶)进口40.284厌氧微生物培养瓶进口40.28551阿米卡星药敏实验纸片扩散法进口0.622家2氨苄西林/舒巴坦药敏实验纸片扩散法进口0.623氨苄西林药敏实验纸片扩散法进口0.624氨曲南药敏实验纸片扩散法进口0.625苯唑西林药敏实验纸片扩散法进口0.626厄他培南药敏实验纸片扩散法进口0.627红霉素药敏实验纸片扩散法进口0.628环丙沙星药敏实验纸片扩散法进口0.629磺胺甲恶唑/甲氧苄啶药敏实验纸片扩散法进口0.6210克林霉素药敏实验纸片扩散法进口0.6211利奈唑胺药敏实验纸片扩散法进口0.6212磷霉素/氨丁三醇药敏实验纸片扩散法进口0.6213氯霉素药敏实验纸片扩散法进口0.6214美罗培能药敏实验纸片扩散法进口0.6215米诺环素药敏实验纸片扩散法进口0.6216哌拉西林/他唑巴坦药敏实验纸片扩散法进口0.6217哌拉西林药敏实验纸片扩散法进口0.6218青霉素药敏实验纸片扩散法进口0.6219庆大霉素药敏实验纸片扩散法进口0.6220四环素药敏实验纸片扩散法进口0.6221替加环素药敏实验纸片扩散法进口0.6222替考拉宁药敏实验纸片扩散法进口0.6223头孢吡肟药敏实验纸片扩散法进口0.6224头孢呋新钠药敏实验纸片扩散法进口0.6225头孢洛林药敏实验纸片扩散法进口0.6226头孢哌酮/舒巴坦药敏实验纸片扩散法进口0.6227头孢哌酮药敏实验纸片扩散法进口0.6228头孢曲松药敏实验纸片扩散法进口0.6229头孢噻肟药敏实验纸片扩散法进口0.6230头孢他啶药敏实验纸片(纸片扩散法)进口0.6231头孢西丁药敏实验纸片扩散法进口0.6232头孢唑林药敏实验纸片扩散法进口0.6233万古霉素药敏实验纸片扩散法进口0.6234亚胺培南药敏实验纸片扩散法进口0.6235左氧氟沙星药敏实验纸片扩散法进口0.6236利奈唑胺药敏检测试剂(E-Test法)国产8.5537美罗培南药敏检测试剂(E-Test法)国产8.5538青霉素药敏检测试剂(E-Test法)国产8.5539头孢曲松药敏检测试剂(E-Test法)国产8.5540万古霉素药敏检测试剂(E-Test法)国产8.5541替加环素药敏检测试剂(微量肉汤稀释法)国产8.5542多粘菌素B药敏检测试剂(微量肉汤稀释法)国产8.55561研磨器国产14.252家2单包装灭菌一次性使用吸管国产0.383一次性使用采样棒国产0.174一次性使用采样棒国产0.19合同履行期限:详见遴选文件本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月03日 至 2024年01月19日,每天上午8:30至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:51招标网(输入“www.51eliao.com”→供应商“注册/登录”→“可参与项目”→找到对应项目→“购标”)方式:51招标网(输入“www.51eliao.com”→供应商“注册/登录”→“可参与项目”→找到对应项目→“购标”)。上传①法定代表人委托授权书(附被授权委托人身份证),②营业执照(具有统一信用代码),以上资料为加盖供应商原始公章的彩色扫描件。代理机构核对通过后方可下载遴选文件。缴费通过平台微信支付,售后一概不退。供应商确认所有要参与投标的包号,并一次性进行申请。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中南大学湘雅医院     地址:湖南省长沙市湘雅路87号        联系方式:陈先生、0731-89752080      2.采购代理机构信息名 称:湖南五一招标有限公司            地 址:湖南省长沙市芙蓉中路一段88号天健壹平方英里H栋25楼            联系方式:吴先生、李先生、0731-84785151            3.项目联系方式项目联系人:吴先生、李先生电 话:  0731-84785151
  • 预算3865万,广州质检院140余台仪器采购公开招标
    近两日,广州质检院检验检测能力提升项目连续发布多条招标公告,采购仪器140余台/套,总预算金额达3865.25万元。具体招标内容如下:采购人信息名称:广州质量监督检测研究院地址:广州市番禺区石楼镇潮田工业区珠江路1-2号联系方式:020-82022319广州质检院检验检测能力提升项目(二)项目编号:440100-202009-100680-0044,440100-202009-100680-0045(1)招标编号:CLF0120GZ08ZC39(2)预算金额:12,704,000元(3)标的内容:包组一:气相色谱-质谱联用仪;数量10套;最高限价:人民币7200000元;包组二:气相色谱串联三重四极杆质谱仪等检测设备;数量1批;最高限价:人民币5504000元。(4)招标项目的潜在投标人应于2020年09月24日14点30分(北京时间)前递交投标文件。(5)附件:CLF0120GZ08ZC39委托代理协议.pdfCLF0120GZ08ZC39招标文件.pdf(6)采购代理机构信息名称:广东采联采购科技有限公司地址:广州市环市东路472号粤海大厦23楼联系方式:020-87651688-688(7)项目联系方式李女士/曾女士020-87651688-156/750李先生020-82022319电话:020-87651688-156广州质检院检验检测能力提升项目(八)项目编号:440100-202009-100680-0062,440100-202009-100680-0060,440100-202009-100680-0061,440100-202009-100680-0063(1)招标编号:GZZJ-ZG-2020379(2)预算金额:12,644,000元(3)标的内容概况:包组号项目内容数量最高限价是否允许采购进口产品包组一低真空热场发射扫描电镜等设备一批人民币510万元是包组二扭转疲劳试验机一批人民币160万元是包组三倒置金相显微镜等设备一批人民币184.4万元部分是包组四氙灯老化试验箱等设备一批人民币410万元部分是(4)招标项目的潜在投标人应在广州市越秀区寺右一马路18号泰恒大厦14楼1416室获取招标文件,并于2020年09月25日14点15分(北京时间)前递交投标文件。(5)附件:GZZJ-ZG-2020379委托代理协议.pdfGZZJ-ZG-2020379招标文件.pdf(6)采购代理机构信息名称:广州中经招标有限公司地址:广东省广州市越秀区寺右一马路18号1416房联系方式:020-87385151(7)项目联系方式项目联系人:陈小姐电话:020-87385151广州质检院检验检测能力提升项目(九)项目编号:440100-202009-100680-0064,440100-202009-100680-0065(1)招标编号:0724-1901D59N4727(2)预算金额:10,194,500元(3)标的内容:包1:序号设备名称数量台/套单价/万元合计/万元允许进口产品参与投标的设备1.◆氨基酸仪及配套设备19090是2.索氏抽取器(6联)226.553是3.电位滴定仪12525是4.定氮仪22346是5.柱后衍生11818是6.旋转蒸发仪21530是7.水分仪11515是8.紫外分光光度计21020是9.低速精密切割机11212是10.磨抛机11010是11.灭菌锅2816是12.离心机2714是13.色差计177是14.室气分析仪12020否包2:序号设备名称数量台/套单价/万元合计/万元允许进口产品参与投标的设备1◆染色体遗传分析工作站1129129是2高精度恒温恒湿箱216.733.4是3薄膜过滤系统(六头,带隔膜泵)17.37.3是4◆快速微生物鉴定系统(全自动基因分析仪)1240240是5专业型差压测量仪(带外置式测量探头)11.41.4是6热线式风速计10.60.6是7高精度声级计10.40.4是8数字温湿度计10.50.5是9照度计10.10.1是10行星式球磨仪114.514.5是11体视显微镜及其成像系统166是12荧光显微镜及其他成像系统138.538.5是13恒温恒湿箱11212是14恒温振荡培养箱11111是15电导率仪11.51.5是16高精度蠕动泵分液器144是17温湿度记录仪16060是18红外线接种环灭菌器30.651.95是19超纯水系统199是20电解质分析仪166是21生化培养箱16.56.5是22相差显微镜(带成像系统及分析软件)13131是23冷冻离心机11010是24菌落计数器212是25细菌比浊仪22.65.2是26移动式空气消毒机111.611.6是(4)招标项目的潜在投标人应在广州市东风东路726号1楼公共服务区获取招标文件,并于2020年09月27日14点30分(北京时间)前递交投标文件。(5)附件:0724-1901D59N4727委托代理协议.pdf0724-1901D59N4727招标文件.pdf(6)采购代理机构信息名称:国义招标股份有限公司地址:广东省广州市越秀区东风东路726号16-18楼联系方式:020-37860520(7)项目联系方式项目联系人:章艳娇,伍艳妮电话:020-37860569广州质检院检验检测能力提升项目(十)项目编号:440100-202009-100680-0046,440100-202009-100680-0047(1)招标编号:CLF0120GZ09ZC08(2)预算金额:3,110,000元(3)标的内容:包组一:苏玛罐大气预浓缩系统;数量1套;最高限价:人民币2000000元;包组二:碳硫分析仪等设备;数量1批;最高限价:人民币1110000元;(4)招标项目的潜在投标人应在广州市环市东路472号粤海大厦7楼获取招标文件,并于2020年09月25日09点30分(北京时间)前递交投标文件。(5)附件:CLF0120GZ09ZC08委托代理协议.pdfCLF0120GZ09ZC08招标文件.pdf(6)采购代理机构信息名称:广东采联采购科技有限公司地址:广州市环市东路472号粤海大厦23楼联系方式:020-87651688-688(7)项目联系方式项目联系人:李女士/曾女士020-87651688-156/750;李先生020-82022319电话:020-87651688-156
  • 复旦中山检验升级RAAS激素质谱检测方法,助力原醛症精准诊疗
    复旦大学附属中山医院检验科郭玮教授团队开发了三合一肾素-血管紧张素-醛固酮系统(Renin-angiotensin-aldosterone system,RAAS)激素质谱检测方法,有效简化了RAAS激素的检测流程,在保证检测准确性的前提下显著降低成本,具有重要的临床应用价值。该成果发表于国际期刊《Journal of Chromatography B》 [1] ,受到业内广泛关注。RAAS激素检测的临床意义RAAS由一系列激素及相应酶组成,在调节人体血压、水、电解质平衡,维持人体内环境稳定中发挥重要作用。其中肾素作为一种酶直接催化血管紧张素原向血管紧张素I转化,临床中常用的肾素活性即为血管紧张素I的生成速率。RAAS激素水平的变化对多种高血压综合征具有关键的指示作用,尤其是原发性醛固酮增多症(也被称为原醛)。原醛是由肾上腺皮质肿瘤或增生等病变引起的醛固酮自主分泌过多,导致潴钠排钾和体液容量扩张的一种综合征,也是临床上最常见的继发性高血压病因之一。原醛在新诊断高血压中的发生率超过4.0%,在难治性高血压人群中占比更高达17-23% [2] 。图1 肾素-血管紧张素-醛固酮系统原醛患者多以高血压起病,而普通降压药物往往效果不佳,手术或盐皮质激素受体拮抗剂药物才是原醛患者的有效治疗方式。此外,原醛诊断和治疗的延误会增加高血压靶器官并发症的发生风险,研究发现过量醛固酮会增加代谢综合征和心脏重塑风险。因此,对高血压特别是难治性高血压及新诊断高血压人群进行RAAS激素筛查,对高血压精准诊疗有着现实的指导意义,国内外原醛的诊疗指南均将RAAS激素的检测作为重要的筛查、诊断和定位手段 [2] 。精益求精——从逐一击破到一网打尽中山医院检验科利用质谱平台的高敏感性和高特异性,分别开发了血浆醛固酮、肾素活性(即检测血管紧张素I的生成速率)、血管紧张素II的质谱检测方法,在实际应用中得到临床广泛好评,但是上述三种激素的分开检测导致了较高的检测成本和繁琐的工作流程。为了优化RAAS激素检测,中山医院质谱团队利用多种酶抑制剂共同作用,升级开发了三合一RAAS激素检测方法。该方法只需经过一次样本前处理,便可同时准确定量检测醛固酮、肾素活性和血管紧张素II。三合一RAAS激素检测三合一RAAS激素检测方法采用离子源正负离子切换模式,同时兼顾了三种不同类型化合物的不同电离模式,从而获得较优响应。该检测方法具有以下优势:更经济:减少固相萃取板的用量,减少操作人员数量,直接降低耗材和人员成本。更方便:检测三种激素只需一次样品前处理,简化操作流程,也减少了样本用量。更快速:仪器检测一个样本只需5 mins,同时得到醛固酮、肾素活性和血管紧张素II的检测结果,提高了分析通量。更稳定:全新设计的孵育体系,确保实验结果的准确性。三种激素同时检测,简化流程,减少了人为影响因素,有利于方法的稳定性。图2 血管紧张素I、血管紧张素II和醛固酮色谱图复旦大学附属中山医院检验科遵循以患者为中心,以临床需求为导向的原则,依托LC-MS(液相色谱-质谱)技术平台,在类固醇激素、儿茶酚胺类激素、治疗药物监测等检测项目的研发与临床转化上,取得了大量的实践经验和成果。本实验室的RAAS激素质谱检测是实验室自建方法(Laboratory developed tests, LDT)的典型代表。LDT项目具有极高的灵活性,并且具有自我更新迭代的巨大优势。在临床不断增加的新需求面前,LDT作为常规商品化检测项目的有益补充,发挥着越来越重要的作用。中山质谱团队将一如既往地利用好质谱LDT的诸多优势,精益求精,不断创新,致力于让临床在准确结果前满意,患者从技术创新中受益。
  • 12类仪器仪表及检验检测将获战略性新兴产业支持
    日前,国家发改委公布《战略性新兴产业重点产品和服务指导目录》2016版征求意见稿,涉及生物产业、高端装备制造产业、高技术服务业等九大战略性新兴产业的重点产品和服务。  据悉,按照“十三五”发展纲要,该目录在2013版的基础上作了一定的修改补充,环境监测仪器与应急处理设备、医用检查检验仪器、智能仪器仪表、检验检测服务都涵盖在内,具体如下:  大气污染监测及检测仪器仪表  包括空气质量及污染源在线监测系统、在线PM2.5成分分析仪、机动车尾气云检测系统工程装备、有毒及重金属在线监测系统、持久有机污染物(PPOs)自动在线检测系统、挥发性有机污染物(VOCs)自动在线检测系统、有机碳/元素碳(OC/EC)全自动在线分析仪、激光过程气体分析系统。  水质污染物监测及检测仪器仪表  包括在线生物毒性水质预警监控技术及设备、便携式无线广谱智能分光光度水体污染物检测仪、水质挥发性有机物(VOC)在线自动分析仪、水体中基因毒性污染物快速筛查仪、污水处理系统精细化控制仪器仪表、地下水采样与检测一体化移动式设备、填埋场防渗层渗漏监测/检测预警系统。  生态环境监测及检测仪器仪表  包括环境遥感监测和量值溯源标准设备、多物种智能生物预警仪、农村生态环境快速检测设备、化工园区环境污染监测预警系统、危险品运输载体实时监测系统。  固体废弃物检测仪器仪表  包括土壤重金属监测仪器、移动固体废弃物重金属在线快速检测装置及环境风险分析平台。  环境应急检测仪器仪表  包括土壤重金属便携式应急监测仪器、环境应急监测车(船)等设备、便携式现场快速测定仪及预警、警报仪器。  环境应急技术装备  包括移动式有毒有害泥水(液)环境污染快速应急处理集成装置、危险废物污染事故应急处理设备、移动式渗滤液处理设备、阻截式油水分离及回收装备。  海洋水质与生态环境监测仪器设备  营养盐自动分析仪营各种有机物(多环芳烃等)测量仪、黄色有机物测量仪、重金属监测设备(汞、铅等)、藻类监测设备,海洋水质传感器(pH、溶解氧、浊度、叶绿素、甲烷、二氧化碳等)。突发性海上污损事故应急监测辅助管理系统、海上污染移动式野外应急监测设备、海上污染水体输移监测系统与设备等。  大气环境污染防治服务  支撑大气环境污染监测技术与装备的研发、集成与工程化。支撑大气细颗粒物污染控制技术与装备的研发和工程化。支撑先进工业烟气净化技术与装备的研发和工程化。支撑挥发性有机污染物污染控制技术与装备的研发、集成与工程化。支撑机动车污染排放控制技术的研发、集成与工程化。  医用检查检验仪器  包括心电、脑电、肌电、诱发电位、眼肌电等电生理信号检测分析仪,新型的血管功能、心功能、肺功能及心肺功能测试分析仪,连续动态心电、脑电、血压、血糖、血红蛋白等检测分析仪,低生理低心理负荷呼吸睡眠监测分析仪,多功能多参数生理参数监护仪 多普勒血流成像仪、超声骨密检测分析仪、眼科光相干层析成像(OCT)等专科诊断设备 无创/微创颅内压监测仪、无创/微创血糖测试仪、无创活体生化分析装置 基于物联网、可穿戴、传感网络、移动通信、全球定位等技术的健康信息终端、全科检查装置、生命信息监测装置及其相关的信息系统和云平台 肺癌、胃癌、肝癌、肠癌、乳腺癌、宫颈癌等重大慢病筛查诊断设备。  体外诊断检测仪器  包括高精度、高通量(快速)、全自动的生化、电解质、血气、尿液、体液、粪便、阴道分泌物、血红蛋白、糖化血红蛋白、特定蛋白、血细胞、微生物、代谢、营养、血凝等检测分析仪器(含干式)及其疾病诊断和筛查信息系统 全自动、高通量、高灵敏度的酶联光度、电化学、化学发光、电化学发光、荧光、时间分辨荧光、均相时间分辨荧光等方法的免疫分析系统 医用质谱分析仪、医用色谱分析仪、微量分光光度计、自动化血型测定仪、流式细胞分析仪、共聚焦扫描仪、现场快速多参数生化检测仪(POCT)、微生物培养仪 各类体外诊断用试剂、试纸及其配套设备与耗材。分子诊断检测仪器。包括实时荧光定量PCR仪、高通量基因测序仪、恒温芯片核酸实时检测系统、生物芯片阅读仪、生物芯片杂交仪、生物芯片洗干仪、快速全自动核酸提取仪 分子生物信息分析处理系统。  医用检查检测服务  包括第三方体外诊断中心、健康查体中心、健康档案和信息采集中心、分子诊断信息中心、健康小屋等服务相关的配套设备和技术。  智能仪器仪表  指用于离散制造和流程工业装备中,连续测量温度、压力、位置、转速等变量的仪器和仪表。包括传感器及其系统、智能测量仪器仪表、在线分析仪器、在线环境监测专用仪器仪表、智能电动执行机构和阀门定位器以及调节阀、特殊变量在线测量仪表和仪器、在线无损探伤仪器、在线材料性能试验仪器、智能电表、水表、煤气表、热量表及其监测装置等其他智能仪器仪表。  检验检测服务  面向设计开发、生产制造、售后服务全过程的分析、测试、检验、计量等服务,培育第三方的质量和安全检验、检测、检疫、计量、认证技术服务机构,战略性新兴产业产品质量检验检测体系建设。  通知原文:关于对《战略性新兴产业重点产品和服务指导目录》2016版征求意见的公告  战略性新兴产业是以重大技术突破和重大发展需求为基础,对经济社会全局和长远发展具有重大引领带动作用,知识技术密集、物质资源消耗少、成长潜力大、综合效益好的产业。按照国民经济和社会发展第十三个五年规划纲要的相关内容,在《战略性新兴产业重点产品和服务指导目录》2013版的基础上,组织相关领域专家研究提出了《战略性新兴产业重点产品和服务指导目录》2016版征求意见稿,现公开征集全社会意见。本次征集意见截止时间为8月3日。请将意见反馈我委高技术司新兴产业统筹协调处电子邮箱yangyang2013@ndrc.gov.cn。  感谢您的参与和支持!  附件: 《战略性新兴产业重点产品和服务指导目录》2016版征求意见稿战略性新兴产业发展部际联席会议办公室2016年7月5日
  • 中科院宁波材料所等在海水电解制氢技术领域获进展
    发展可再生能源电解水制氢技术是实现“碳达峰碳中和”目标的重要路径之一。海上可再生能源,如风能、光伏、潮汐能等由于波动性强、环境苛刻使得其利用效率低,而“就地取材”,通过海上可再生能源进行电解海水制氢,一方面是“绿氢”的廉价高效制取手段,另一方面也是海上可再生能源的高效利用手段。然而,海水中存在的大量氯离子会造成阳极材料的严重腐蚀,进而导致电极损坏、电压过高。如何延缓氯离子对阳极材料的腐蚀是海水电解制氢过程中需要解决的重点问题。  中国科学院宁波材料技术与工程研究所氢能材料与应用系统技术实验室针对海水电解中阳极易受电解液腐蚀的关键科学问题,通过对电解液的调控,将海水电解制氢稳定性提升了5倍。研究发现在电解液中加入硫酸盐可以有效延缓氯离子对阳极的腐蚀,提升海水电解制氢过程中阳极的稳定时长。研究人员以泡沫镍作为阳极,用不同盐浓度的电解液进行测试,观察到硫酸根的加入可以有效提高其耐腐蚀性,延长其在海水电解中的稳定时长。通过对腐蚀电位、电流、电阻的分析,该研究确认了硫酸根在防氯腐蚀方面的优势。在此基础上,理论模拟和原位红外、原位拉曼实验均证明,在反应电位下,硫酸根作为强酸阴离子可以优先吸附在阳极表面形成负电荷层,进而通过静电斥力排斥氯离子远离阳极表面,从而达到了延缓氯离子腐蚀阳极的效果。进一步,以常规催化剂电极-镍铁水滑石阵列(NiFe-LDH/NF)作为阳极进行海水电解制氢反应,发现硫酸根依然能大幅度提升其稳定性。在添加硫酸根的电解质中,NiFe-LDH/NF阳极在模拟海水和真实海水中400 mA cm-2电流下的稳定时长分别为1000小时和500小时,是其在未添加硫酸根的传统电解质中稳定时长的近6倍。  研究团队为解决海水电解制氢过程中氯离子对阳极的腐蚀问题提供了一种普适性的新策略,通过在电解液中添加硫酸根,扰乱电极表面的离子吸附量,使硫酸根优先吸附在阳极表面,形成排斥氯离子的负电荷层,达到排斥氯离子及延缓氯离子对阳极腐蚀的效果。该工作以The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Ni-based Electrode为题发表在Angewandte Chemie International Edition上。  该研究得到了宁波市“科技创新2025”重大专项、中科院“0~1”创新项目、博新计划、宁波市自然科学基金项目、中国博士后科学基金、国家自然科学基金、上海市青年科技英才扬帆计划、上海交通大学海洋跨学科项目等的支持。
  • 锂离子充电电池电解液以及正极材料的安全性评价
    锂电池的应用十分广泛,如手机、笔记本、电动汽车等已成为生活中不可或缺的产品。随着其在汽车以及电力储藏等领域大型化的应用、对其高性能和安全性要求也越来越高。锂离子电池具有极高的能量密度,这是因为电池中封装了更多活性材料,且电极和隔膜越来越薄、越来越轻。这些均需要电池组成材料之间的完美搭配、若设计不足或者滥用,就会出现热失控现象,导致冒烟、起火甚至爆炸等事故。 因此对锂电池的生产和使用过程中的安全性评价非常重要,下面就让我们用日立DSC7000系列对锂离子充电电池电解液以及正极材料进行安全性评价。 样品处理和容器■ 样品处理的气氛LIB的构成中包含很多反应性高的材料。实际产品被封装在惰性气氛中,因此DSC测定也必须将其密封在惰性气体中进行。(为了避免大气中的水分、氧气、二氧化碳等气氛对样品的影响、样品处理在手套箱中进行。)■ 容器样品分解产生的气体、会污染DSC传感器、可能造成仪器功能损坏,因此需选择密封形的容器。另外测试时容器内部压力增大,故需要选择高耐压值的SUS密封容器。电解液正极材料的热特性的研究■ 电解液电解液的DSC结果如上图所示:样品中溶剂为高介电常数溶剂碳酸乙烯酯(EC)和低粘度溶剂碳酸甲基乙基酯(EMC),电解质为六氟磷酸锂(LiPF6)。在升温过程中,该电解液先熔融再分解,在244℃开始熔融,分解放热峰温度278℃,同时还可以得到其分解放热量。■ 电解液+正极材料这里显示把电解液和正极材料混合密封在容器中的样品的DSC测定结果。正极材料是充电状态的锰酸锂(LixMn2O4、X=0(充电状态))。183℃附近有一个放热反应,随后有一个放热峰,放热峰峰值约为290℃,与上述的电解液相比、在低温测得(183℃)开始放热,这是正极材料的热分解,释放氧气、使得电解液氧化分解。从上述DSC测定中,可观察到热分解的起始温度、可以评价LIB的热稳定性、起始温度越高热稳定性越高。本资料显示的是完全充电状态的结果、也有充电越多,Li脱离量越多、热稳定性也会越降低的报告。综上所述,通过差示扫描量热仪DSC对电解液以及正极材料进行热特性的评价,我们可以了解电解液以及正极材料在程序升温过程中的吸放热现象,为锂电池安全生产、加工和使用过程作参考。关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 国家公布最新版环境监测及医用检验仪器重点产品目录
    2017年2月4日,国家发展改革委公布《战略性新兴产业重点产品和服务指导目录》2016版,以引导全社会资源投向,集中力量办大事。  据悉,此目录是国家发改委公布的2017年的第1号公告,共涉及5大领域8个产业,同时,又细分为40个重点方向下的174个子方向,近4000项细分产品和服务。  此前,在2013年,国家发改委也曾公布《战略性新兴产业重点产品和服务指导目录》2013版。而2013版的目录则只涉及7个行业、24个重点发展方向下的125个子方向,共3100余项细分的产品和服务。  与2013版相比,2016版目录增加了1个产业,即数字创意产业。看来,数字创意产业在这几年的发展势头是相当之猛烈。而具体到细分方向,则增加了16个重点发展方向、49个子方向,增加了近900项细分产品和服务。  仪器方面,环境监测仪器与应急处理设备、医用检查检验仪器、智能仪器仪表都涵盖在内,具体如下:  环境监测仪器与应急处理设备  大气污染监测及检测仪器仪表  包括空气质量及污染源在线监测系统、在线PM2.5成分分析仪、机动车尾气云检测系统工程装备、适用于超低排放的高精度燃煤烟气污染物监测系统、有毒及重金属在线监测系统、持久有机污染物(PPOs)自动在线检测系统、挥发性有机污染物(VOCs)自动在线检测系统、有机碳/元素碳(OC/EC)全自动在线分析仪、激光过程气体分析系统。  水质污染物监测及检测仪器仪表  包括在线生物毒性水质预警监控技术及设备、 便携式无线广谱智能分光光度水体污染物检测仪、水质挥发性有机物(VOC)在线自动分析仪、水体中基因毒性污染物快速筛查仪、污水处理系统精细化控制仪器仪表、地下水采样与检测一体化移动式设备、填埋场防渗层渗漏监测/检测预警系统。生态环境监测及检测仪器仪表。 包括环境遥感监测和量值溯源标准设备、多物种智能生物预警仪、农村生态环境快速检测设备、化工园区环境污染监测预警系统、危险品运输载体实时监测系统。  固体废弃物检测仪器仪表  包括土壤重金属监测仪器、移动固体废弃物重金属在线快速检测装置及环境风险分析平台。  环境应急检测仪器仪表  包括土壤重金属便携式应急监测仪器、土壤污染物监测及检测仪器仪表、环境应急监测车(船)等设备、便携式现场快速测定仪及预警、警报仪器。  环境应急技术装备  包括移动式有毒有害泥水(液)环境污染快速应急处理集成装置、危险废物污染事故应急处理设备、移动式渗滤液处理设备、阻截式油水分离及回收装备、水上溢油处置及回收装置。  海洋水质与生态环境监测仪器设备  营养盐自动分析仪、各种有机物(多环芳烃等)测量仪、黄色有机物测量仪、重金属监测设备(汞、铅等) 、藻类监测设备,海洋水质传感器(pH、溶解氧、浊度、叶绿素、甲烷、二氧化碳等) 。突发性海上污损事故应急监测辅助管理系统、海上污染移动式野外应急监测设备、海上污染水体输移监测系统与设备等。  医用检查检验仪器及服务  医用检查检验仪器  包括心电、脑电、肌电、诱发电位、眼肌电等电生理信号检测分析仪,新型的血管功能、心功能、肺功能及心肺功能测试分析仪,连续动态心电、脑电、血压、血糖、血红蛋白等检测分析仪,低生理低心理负荷呼吸睡眠监测分析仪,多功能多参数生理参数监护仪 多普勒血流成像仪、超声骨密检测分析仪、眼科光相干层析成像(OCT)等专科诊断设备 无创/微创颅内压监测仪、无创/微创血糖测试仪、无创活体生化分析装置 基于物联网、可穿戴、传感网络、移动通信、全球定位等技术的健康信息终端、全科检查装置、生命信息监测装置及其相关的信息系统和云平台 肺癌、胃癌、肝癌、肠癌、乳腺癌、宫颈癌等重大慢病筛查诊断设备。  体外诊断检测仪器  包括高精度、高通量(快速)、全自动 的生化、电解质、血气、尿液、体液、粪便、阴道分泌物、血红蛋白、糖化血红蛋白、特定蛋白、血细胞、微生物、代谢、营养、 血凝等检测分析仪器(含干式)及其疾病诊断和筛查信息系统 全自动、高通量、高灵敏度的酶联光度、电化学、化学发光、电化学发光、荧光、时间分辨荧光、均相时间分辨荧光等方法的免 疫分析系统,与组织/细胞检测分析相关的仪器、免疫组化自动化染色仪及其配套试剂 医用质谱分析仪、医用色谱分析仪、微量分光光度计、自动化血型测定仪、流式细胞分析仪、共聚焦扫描仪、现场快速多参数生化检测仪(POCT)、微生物培养仪 无汞体温计、各类体外诊断用试剂、试纸及其配套设备与耗材。  分子诊断检测仪器  包括实时荧光定量PCR仪、荧光原位杂交仪、高通量基因测序仪、恒温芯片核酸实时检测系统、生物芯片阅读仪、生物芯片杂交仪、生物芯片洗干仪、超分辨分子显微成像系统、快速全自动核酸提取仪 分子生物信息分析处理系统。  医用检查检测服务  包括第三方体外诊断中心、健康查体中心、健康档案和信息采集中心、分子诊断信息中心、健康小屋等服务相关的配套设备和技术。  智能仪器仪表  包括传感器及其系统、智能(温度、压力、流量、物位)测量仪器仪表、智能执行器、特殊变量在线测量仪器仪表、智能化实验分析仪器、在线分析仪器、 在线无损探伤仪器、 在线材料性能试验仪器、 智能电表、智能水表、智能煤气表、智能热量表及其监测装置等其他智能仪器仪表。  附件:《战略性新兴产业重点产品和服务指导目录》2016版.pdf
  • 质检总局印发《2018年质量监督检验检疫工作要点》
    p2018年,全国质量监督检验检疫工作的总体要求是:全面贯彻党的十九大精神,以习近平新时代中国特色社会主义思想为指导,加强党对质检工作的全面领导,坚持稳中求进工作总基调,坚持新发展理念,按照高质量发展的要求,坚持以供给侧结构性改革为主线,更加科学务实地抓质量、保安全、促发展、强质检,着力开展“质量提升行动年”活动,提升质量发展总体水平,提升质量安全保障水平,提升质量基础设施水平,提升质检改革创新水平,提升质检系统党的建设质量水平,开启质量强国建设新征程,进一步推进“三个转变”,为打赢三大攻坚战、推动形成全面开放新格局、促进经济社会持续健康发展作出新贡献。/ppspan style="color: rgb(192, 0, 0) "strong一、提升质量发展总体水平/strong/span/pp(一)狠抓标准引领。推进全面标准化建设,以全面标准水平提升引领全面质量发展。深入实施标准提档升级工程,聚焦重要产品、服务和产业、区域,增加个性化、高端化、高品质标准供给。服务乡村振兴战略,健全农业标准化工作机制,扎实推进“标准化+现代农业”,构建现代农业全生产链标准体系,强化农业标准化推广和服务。探索制定以产业扶贫为重点的精准扶贫标准,健全质量、安全、卫生、环保和节能等标准体系。扎实推进“百城千业万企对标达标提升专项行动”,对照国际、国外先进标准,开展对标达标,瞄准国际标准提高水平。推动实施企业标准领跑者制度,引导和支持研究机构、中介机构发布企业标准排行榜。有效实施新产业新动能标准领航工程,建立科技研发、标准研制和产业协同发展新模式,构建新兴产业标准制修订工作“直通车”机制,加快创新成果向标准转化。在行政许可、社会治安综合治理、社会保障、公共就业、城市管理、社区服务等领域,加大标准化工作力度,提升公共服务质量。/pp(二)狠抓质量管理。督促认证机构完成ISO9001质量管理体系换版,拓展质量认证覆盖面。完善质量奖励制度,开展先进质量管理方法模式宣讲和推广活动,打造和树立质量标杆。实施企业质量信用分级分类管理,对不同质量信用水平的企业采取差异化的管理措施。加强质量管理的宣传动员和教育培训,办好省部级干部建设质量强国专题研讨班和市(地)级领导干部建设质量强国专题研究班,提高各级党委、政府“管理质量”的水平。/pp(三)狠抓质量攻关。选取主打产业、主打产品,组织开展质量状况调查、质量比对和会商会诊,找准比较优势、行业通病和质量短板,研究制定质量问题解决方案,攻克一批长期困扰产品质量提升的关键共性技术。重点推出一批质量攻关示范工程,联合各地各部门,抓住事关国计民生的一些重要产品,一个一个行业抓。深入企业特别是中小企业开展大调研活动,制定重点产品质量提升计划,有针对性提出质量状况分析报告,引导各地各部门和广大企业加大质量投入,提高产品质量水平,更加注重提升出口商品质量和附加值。实施中小企业质量援助,加大质量培训和现场指导力度,落实中小企业质量主体责任,增强中小企业发展内生动力。/pp(四)狠抓质量创新。健全质量人才教育培养体系,着力推动质量与教育联盟建设,推动质量教育纳入义务教育课程。探索建立质量分级制度,开展质量分级试点,倡导优质优价。建立新型质量统计评价体系,鼓励开展产品质量比较试验、综合评价、体验式调查,推动质量评价由追求“合格率”向追求“满意度”跃升。强化企业的质量创新和质量提升主体作用,引导企业围绕新业态发展,注重运用互联网、物联网、大数据、人工智能等新技术,进行生产流程、管理模式和商业模式再造,加强质量管理、质量技术、质量工作法创新,推行个性化定制、柔性化生产,增强产品市场竞争力。/pp(五)狠抓品牌建设。研究制定品牌发展长期规划,引导企业提升产品和服务附加值,把生产经营能力和质量优势转化为自主品牌。探索实施中国精品培育工程,深入开展“品质电商”培育行动,扩大“三同”工程实施范围,培育和保护地理标志产品,培育绿色、低碳、环保、节能的生态原产地产品,满足消费升级需求。实施优质服务创建工程,推动企业作出优质服务承诺,推进新型优质服务业集群建设。着力打造具有国际影响力的中国检验检测认证品牌,打造一批中国标准海外应用示范工程,扩大中国标准的品牌效应。加强区域品牌培育,将各类质量安全示范区整合为质量提升示范区,放大质量品牌效应。深化国际交流合作,做好中国品牌价值评价及知名品牌发布工作,探索开展国际品牌展示展览,显著提升中国品牌的国际竞争力。/ppstrongspan style="color: rgb(192, 0, 0) "二、提升质量安全保障水平/span/strong/pp(六)深入开展消费品安全标准“筑篱”专项行动,突出儿童用品、家具等重点领域,对标国际先进标准,全面提升安全指标。对涉及安全、健康、环保等消费品,依法实施强制性认证,加强事中事后监管,加大对无证生产销售进口等违法行为打击力度。/pp(七)加大监督抽查力度,扩大抽查覆盖面。突出抽查儿童用品、纺织服装、家具家装产品、家用电器、食品相关产品等日用消费品,智能家居、健康环保等新兴消费品,以及电子商务等消费热点领域,突出检测有毒有害物质、电气安全、信息安全等涉及人身财产安全的指标。对抽查不合格产品,加大抽查频次,加大曝光力度。参照国家监督抽查经费增长情况,各地质监局努力争取地方财政大幅增加监督抽查经费。/pp(八)深入开展“质检利剑”行动,聚焦重点产品、行业和地区,着力加强消费品执法打假,加强电商领域执法。全面应用12365信息化系统,进一步发动社会力量,广泛搜集质量违法线索,研究破解违法“潜规则”,推进技术执法,健全执法督查制度,对质量问题较多的生产集聚区、案件多发区、媒体曝光区,组织开展区域整治,加强综合执法、协同监管和联合惩戒。加快将涉及人身、财产安全的消费品全面纳入召回范围,加大缺陷调查和对企业的行政约谈力度,严厉查处隐瞒缺陷、不履行召回义务等行为。/pp(九)服务健康中国战略,持续完善口岸传染病预防控制、突发公共卫生事件应急管理、病媒生物及重大传染病监测、国际旅行健康服务、核生化有害因子防控等体系,加快建立全球传染病疫情信息智能监测预警系统,积极推动卫生检疫标准化建设。巩固提升《国际卫生条例(2005)》口岸核心能力,积极推动国际卫生港创建工作。推进卫生检疫关口前移,加强境外传染病监测哨点的全球化布局和常态化建设,统筹应对传染病和核生化涉恐事件等口岸非传统安全威胁。/pp(十)服务美丽中国、生态文明建设,进一步健全国门生物安全查验机制,深化口岸动植检规范化及指定口岸建设,探索生态安全港建设,强化动植检岗位资质管理,加强国际动植物疫情实时跟踪和动态分析信息化管理,严格口岸查验和疫情防控,开展国门生物安全公众教育活动。深入开展“绿蕾”专项行动,强化旅客携带物和邮寄物检疫监管。健全动植物疫情检测监测体系,完善进口不合格农产品信息公布制度,有效防范物种资源丧失和外来生物入侵。/pp(十一)加强进口消费品、妇幼用品、机动车、医疗器械等敏感商品监管,加大缺陷进口消费品召回力度,扩大跨境电商监督抽查覆盖范围。持续开展“清风行动”,重点打击边贸互市、市场采购以及输“一带一路”沿线国家商品假冒伪劣行为。配合污染防治攻坚战,严格控制劣质煤炭进口,强化洋垃圾非法入境管控。加严进出口危险化学品监管,做到“全覆盖、零容忍”。持续开展“口岸天平”行动,维护国家利益。/pp(十二)积极推进国家食品安全战略。认真落实国家食品安全“十三五”规划。规范进口食品准入评估审查机制,完善进口食品安全治理体系,推进进口食品安全放心工程。全面推动境外企业实施注册管理,加强进口食品境外生产企业事中事后监管,重点加强进口食品源头监管和进口商责任落实。深化进口食品标签检验制度改革。完善和发展以“一个模式、十项制度”为主要内容的现代化出口食品安全治理体系,推进出口食品竞争力提升工程,规范出口食品原料种植、养殖场备案监管,推动出口食品质量安全水平提升。坚持“引进来”和“走出去”并重,出台支持食品企业“走出去”的检验检疫措施。/pp(十三)加快落实特种设备安全监管改革顶层设计方案,以落实企业主体责任为核心,进一步厘清各方责任边界,完善安全技术规范,推动行政许可改革和检验工作改革。充分发挥市场化机制和信息化手段的作用,开展电梯安全监管改革综合试点,推动构建锅炉安全、节能、环保三位一体的监管体系。继续推进电梯、气瓶等特种设备质量安全追溯体系建设,提升压力容器等典型设备质量水平,提升检验检测、电梯维保等服务水平。研究梳理影响特种设备安全的关键因素,以电梯为突破口,加强研发、技改,提出预防和减少事故的方法措施,有针对性地开展隐患排查,有效防范遏制重特大事故和重大影响事件。/pp(十四)加强全面质量安全监管,加强质量安全事前预防,加强事中事后监管。抓好风险管理,完善风险监测点,建设统一的风险信息平台、风险评估中心,畅通消费者投诉和企业报告渠道,引导检验检测认证机构主动报告风险信息,用足用好风险管理成果。加强航空、水运、公路、铁路和寄递物五类口岸检验检疫技术能力建设,深入开展岗位练兵活动,提高质量安全监管的智能化、精细化水平。/ppspan style="color: rgb(192, 0, 0) "strong三、提升质量基础设施水平/strong/span/pp(十五)积极构建国家现代先进测量体系。深入研究、广泛宣传国际计量单位制量子变革,启动“量子计量变革优先传递计划”,加强量子计量和传感等先进测量技术、测量方法研究和应用,研究编制量子化变革时代的中国计量发展战略,开展计量基标准提升工程。加快国家标准物质管理和计量强制检定制度改革,加强民用水电气表等计量器具和量值溯源的法制管理,完善“互联网+计量”监管模式,推动仪器仪表产业高质量发展。/pp(十六)加快建设国家新型标准体系。加快建立统一的强制性国家标准体系,推进推荐性标准的结构优化和体系配套,支持有实力和影响力的社会团体制定发布市场急需、技术领先的团体标准,多措并举调动企业进一步提高企业标准总体水平,推动我国标准体系向政府主导制定的标准与市场自主制定的标准协同发展、协调配套的新型标准体系稳妥过渡。/pp(十七)完善认证认可和检验检测体系。提升强制性、自愿性认证供给质量,推动认证认可检验检测一体化、协同化运作,建立政府、行业、社会等多层次采信机制。持续推动统一的绿色产品标准、认证、标识体系建设。引入市场化机制,进一步推动整合、改制,做优做强做大检验检测认证机构。/pp(十八)推动质量基础设施融合发展。扎实组织实施NQI重点专项,积极谋划新的专项,撬动地方加大投入。推动中央、省、市、县四级质量基础设施的互联互动、共建共享。会同中央军委有关部门,推动质检领域军民融合深度发展。发挥质检总局军民融合领导小组作用,指导各地建立相应工作机制。加强质检领域军民融合顶层设计,落实中央有关文件及规划中相关精神和任务,推动计量军民融合相关规划发布,推进质检军民融合相关重大示范工程的落实。/pp(十九)深入开展“服务零距离、质量零缺陷”活动,引导质量技术机构沉到生产一线,确保企业随时随地获得即用即有、可靠便捷的质量技术服务。加快培育计量测试、标准化服务、检验检测认证服务等新兴质量服务业态,积极推进国家产业计量测试中心、国家技术标准创新基地、国家计量科技创新基地、国家检验检测高技术服务业集聚区和示范区建设。/pp(二十)创建“一站式”公共技术服务示范平台,打造质量服务综合体,推进质量基础设施的技术资源、信息资源、人力资源和设备设施向全社会开放。创新“互联网+质量服务”模式,做到一个质量基础设施体系、一个对外服务窗口、一个质量信息平台、一个合格评定结果。/pp(二十一)继续做好纤维质量公证检验,完善棉花目标价格改革补贴与质量挂钩试点,推动纤维质量提升。主动发挥技术优势,服务我国食品农产品质量提升、疫情疫病防控、残留监控。积极联合环保等部门,提高环境监测数据质量,开展锅炉节能环保监督检查。/pp(二十二)搭建质量基础设施国际交流合作网络,加强与相关国家和地区质量基础设施体系对接,积极实施《标准联通共建“一带一路”行动计划(2018—2020年)》,落实《“一带一路”计量合作愿景与行动》,促进政策、规则、标准三位一体的软联通。/pp(二十三)积极实施国际法制计量组织(OIML)互认证书制度,推进国内外标准互认工程,在重点计量器具、食品农产品、消费品等领域拓展多双边互认范围,推动检验检测认证与海外投资、产能合作项目紧密对接。/pp(二十四)积极参加国家间高层对话,不断完善双边质检合作机制。做好第83届IEC大会筹备工作,办好第六届中国-东盟质检部长会议、第三届中国-中东欧质检对话会、上海合作组织跨境动物疫病联合防控国际会议、第六届中美欧三方消费品安全峰会、2018年APEC食品安全论坛系列活动、2018年国际物品编码协会(GSI)杭州全会,会同联合国工发组织等国际组织举办质量基础设施圆桌会议。在国家自贸协定中编制好TBT和SPS章节,合理设计质检合作制度,实质性参与相关国际组织工作。建立国际标准化孵化库、中国标准化海外应用数据库和主要产品性能指标国际标准对比数据库,推动我国更多关键技术成为国际标准。/pp(二十五)加强技术性贸易措施体系建设。大力推动政府部门、中介组织和企业建立信息沟通与工作协调机制,整合优质资源和技术力量。构建技术性贸易措施大数据中心,建立统一的国家技术性贸易措施公共信息和技术服务平台,加大技术性贸易措施研究评议基地建设力度,加强对国外技术性贸易措施的跟踪、通报评议、研究解析及应对措施研发。加强检验检疫谈判交涉,妥善化解贸易摩擦,帮助企业规避风险。发挥技术性贸易措施的倒逼作用,引导企业按照更高技术标准提升产品质量和产业层次。/ppspan style="color: rgb(192, 0, 0) "strong四、提升质检改革创新水平/strong/span/pp(二十六)继续减少生产许可证实施范围。对目前仍实施生产许可证管理的产品,再进行深入的质量安全风险评估,根据评估结果,提出进一步取消生产许可的产品种类。取消制造修理计量器具许可证,加强许可证取消后与计量器具型式批准制度的衔接,研究提出计量器具型式批准制度改革建议和方案,加强计量器具型式批准信息统计和查询。/pp(二十七)全面简化生产许可证办证程序。推进网上申报、网上审批、网上发证,逐步以电子生产许可证书替代纸质证书。全面推行“一企一证”,逐步实现“一证一号”。进一步扩大试行简化审批程序的地区和产品范围,全面推行申报材料“一单一书一照一报告”,取消发证机关发证前产品检验,后置现场审查。/pp(二十八)加快改革产品质量监督抽查制度。抓紧修订产品质量监督抽查管理办法。注重统筹管理,实行国抽和省抽统一抽查计划、统一产品代码、统一抽查规范、统一工作程序、统一信息归集、统一结果处理。注重过程管理,深入落实“双随机、一公开”要求,全面实行“抽检分离”,加大市场买样力度,以公开招标方式遴选检验机构,推动视频监控技术应用。注重监管实效,定期公布监督抽查不合格率,加大不合格产品曝光力度,严格不合格产品后处理。/pp(二十九)完善质量安全风险预警和快速反应体系。制定全国统一的监测计划,实施分级分类预警,健全预警信息发布机制,建立全国一体化快速反应机制。建设国家级风险评估中心和验证评价实验室,设立进出口商品质量安全风险评估专家委员会。/pp(三十)全面优化检验检疫监管方式。以产品风险、企业诚信、企业质量安全风险管理能力为基础,构建“风险分析+抽批检验+审单放行”检验检疫监管方式。加强各级审单布控中心建设,优化审单作业流程,完善审单放行机制,提高审单放行工作质量。/pp(三十一)充分发挥信息化在智慧监管和快速通关方面的作用。优化中国电子检验检疫(e-CIQ)主干系统,抓紧建设智慧卫生检疫、智慧农产品食品监管、智慧工业品监管和智慧实验室管理4个子系统。发挥国际贸易“单一窗口”的作用,全面推进从无纸化报检到无纸化通关全流程无纸化作业,建立符合业务管理实际的检验检疫通关效率评估体系。推进检验检疫通关一体化。/pp(三十二)对标国际先进水平,把全国11个自由贸易试验区作为重点,鼓励创造更多可复制、可推广的经验。配合有条件的省市探索自由贸易港建设,实施更高标准的“一线放开”“二线安全高效管住”检验检疫监管制度。服务和保障好首届中国国际进口博览会。/pp(三十三)推进质量认证制度改革。抓好强制性产品认证制度改革,按照必要性和最小化原则,根据产品风险等级和产业成熟度,推动“目录瘦身、简化程序、减轻负担”。积极推行国际先进质量管理标准和方法,采用满足市场和创新需要的国家标准、团体标准和企业标准,开展高端品质认证,推广联盟认证形式,完善合格评定“工具箱”。建立健全质量认证全过程追溯机制,推行从业机构公开承诺和信息公示制度,建立失信惩戒、永久退出和终身禁入机制。优化检验检测认证行业发展环境。健全市场化运行和政策保障机制,打破部门和行业垄断,推动认证结果互认通用。鼓励组建产学研用一体化的检验检测认证联盟,推动检验检测认证与产业经济深度融合,提升对重点产业的支撑服务能力。/pp(三十四)推进质检信息化改革发展。完善总局政务内网系统。向外延伸,接入国家电子政务内网,实现总局与中办国办、中央部委、地方党委政府网上办文办事功能;向内延伸,推动全系统综合行政信息互联互通,逐步形成全系统行政办公和综合管理一体化。加速推进中国电子质量监督(e-CQS)系统建设。建设质检大数据中心,搭建公共服务门户、业务协同门户、移动应用门户(掌上质检),建立涵盖核心业务的应用平台,实现质量技术监督业务一体化管理。/pp(三十五)深化标准化工作改革,推广浙江综合改革试点经验,推动行业标准、地方标准免费公开,大幅提升标准制修订效率。深入推进企业标准自我声明和监督。/pp(三十六)深化法治质检建设。推进计量法、产品质量法、国境卫生检疫法修订,加快质量促进法研究,做好“放管服”所涉规章修改。优化审批流程,精减许可材料,深化行政审批制度改革。梳理和防范执法风险,加强法治监督。加强业务督察,防范检验检疫工作风险,促进依法行政。创新普法方式,强化法治保障。加强行政复议规范化建设,健全行政应诉工作机制,积极推动各地质检两局负责人依法出庭应诉。/pp(三十七)深化科技质检建设。加强质检科技创新平台建设,积极申报国家重点实验室和技术创新中心,鼓励申报自然科学基金、社科基金项目,加快基础性、公益性、产业共性的质检关键技术研发,做好质检系统科研成果评定和推广转化工作。加强国家质检中心和国家检测重点实验室规划建设和动态管理。加强质检科普工作。/pp(三十八)深化和谐质检建设。加强和改进思想政治工作。加强质检文化建设。加强对外宣传和政务公开。加大政务信息工作力度。推动质检智库建设。做好质检事业发展“十三五”规划中期评估。加强基层质检业务指导和能力培训。狠抓体系管理、绩效考核和督查督办。加强预算管理和财务督查。进一步提高机关事务管理和服务保障水平。继续做好定点扶贫、协学会、工青妇和离退休干部工作。/ppspan style="color: rgb(192, 0, 0) "strong五、提升质检系统党的建设质量水平/strong/span/pp(三十九)坚持和加强党对质检工作的全面领导,强化政治保障。全系统各级党组织定期向上一级党组织报告工作,重大问题及时向上一级党组织报告。各地质检部门认真贯彻落实地方党委、政府关于质量工作的部署要求,主动汇报,积极作为,推动党委、政府切实把质量工作、质检工作摆上重要议事日程,纳入绩效考核体系,加大政策支持力度。有条件的地方,推动成立党委政府领导挂帅的质量发展委员会或质量工作领导小组,强化政府质量工作考核,建立质量督察工作机制,建立“党委领导、政府主导、部门联合、企业主责、社会参与”的质量工作格局,构建统一权威的质量工作体制机制。/pp(四十)抓好党的十九大精神学习培训,坚持用习近平新时代中国特色社会主义思想武装头脑,强化思想保障。各级党组(党委)理论学习中心组制定学习计划,带头组织研讨。把党章作为党员干部经常性的学习内容,把学习贯彻党章作为民主生活会、组织生活会重要内容。推进“两学一做”学习教育常态化制度化,以县处级以上领导干部为重点,认真开展“不忘初心、牢记使命”主题教育。进一步发挥总局党校的龙头带动作用,提高全系统干部教育培训质量。/pp(四十一)加强基层党组织建设,强化组织保障。以提升组织力为重点,突出政治功能,建设坚强的战斗堡垒。突出抓好带头人队伍建设,选好配强党组织书记。严格“三会一课”、组织生活会等制度,推进党务公开,畅通民主渠道。加强民主集中制教育,完善和落实民主集中制各项制度。推进组织设置和活动方式创新,推动党建标准化和党建品牌的实践运用。强化分类指导,统筹推进质检系统机关、事业单位、国有企业、协学会和离退休干部党建工作。/pp(四十二)加强领导班子建设和干部队伍建设。坚持正确选人用人导向,落实好干部标准,着眼于质检事业长远发展,培养各方面人才,把对党忠诚、具有专业能力专业精神、心思和精力都在干事创业上的干部培养选拔出来。/pp(四十三)严格落实“两个责任”。全系统各级党组织担负起全面从严治党的主体责任,党组织书记履行“第一责任人”的职责。各级纪检部门履行监督责任,聚焦主责主业,强化监督执纪问责。严格落实问责条例和总局实施办法,推动失责必问、问责必严成为常态。/pp(四十四)深入推进党风廉政建设。坚持纪在法前、纪严于法,强化作风和纪律保障。持续开展“纪律教育月”活动,认真执行领导干部任前党风廉政谈话实施办法。注重标本兼治,用好监督执纪“四种形态”,看住人盯住事,及时进行谈话提醒、约谈函询,把发现问题及时处置的工作见诸日常。对顶风违纪、不收敛不收手的,依纪依规严肃查处。充分发挥巡视利剑作用,深化政治巡视,扎实推进巡视全覆盖。强化审计监督,加强“一审双查”,推动遵守财经法纪,切实防范风险。/pp(四十五)扎实改进作风,强化作风保障。深入贯彻落实中央八项规定精神,持之以恒纠正“四风”。对标中央政治局贯彻落实中央八项规定的实施细则,严格执行总局实施办法,开展纠正“四风”问题专项检查。各级党组织召开民主生活会和组织生活会,把贯彻落实中央八项规定精神、转作风改作风情况,特别是习近平总书记重要批示及中办通知指出的形式主义、官僚主义十种情况,作为对照检查的重要内容。大兴调查研究之风,把质检系统存在的问题搞清搞透,把对策找准找实。进一步狠抓落实,更好地把各项工作落到实处。/pp(四十六)总局、省局组织党员干部沉到基层,督导质量提升行动,通过抓典型、抓试点,以点带面,切实抓好中央质量提升行动指导意见的落实。/p
  • 高分辨质谱技术丨赋能锂电池电解液成分表征
    概述锂电池与我们生活密切相关,比如手机、ipad、电脑、充电宝、玩具、电动汽车、电动轻型车和新型储能等都有锂电池的身影,锂电池综合优势与下游领域对电池大容量、高功率、使用寿命和环境保护日益提升的需求相契合,存在广阔的市场应用前景。锂离子电池四大关键材料包括正极材料、负极材料、隔膜、电解液。锂电池的正极材料中,行业已经认可镍钴锂、磷酸铁锂等材料,不过也有许多企业逐渐转入了新型复合材料的研发中,液相色谱串联高分辨质谱仪在该研发过程中,可以在探究新型材料氧化还原反应机理研究、及活性基团位置不同对电化学性能的影响等方面贡献力量。金属锂的高化学活性使其易于与大多数电解质发生不可逆反应,从而在阳极表面形成固体电解质层(SEI)。液相色谱串联高分辨质谱仪可以对SEI膜成分进行结构解析,帮助研究其形成机制,减少其形成。电解液被誉为电池的“血液”,是实现锂离子在正负极迁移的媒介,对锂电容量、工作温度、循环效率以及安全性都有重要影响。所以对电解液体系中的特有成分的鉴定,杂质鉴定,其在不同电极作用,不同循环次数,不同放置时间,不同添加剂等等条件变化下电解液组成的变化,反应机理的研究,这对电池性能研究都具有重要作用。X500R QTOF 系统在锂电池电解液成分分析的应用研究本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,仪器标配的ESI源和APCI源可兼顾不同性质的化合物,IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件对数据分析,为表征电解液提供解决方案。图 1 数据处理流程图流程一:SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程SCIEX OS软件可以设定的条件,快速筛选出一级偏差准确,同位素分布合理,二级质谱图匹配得分高的结果,帮助我们快速鉴定化合物。图2 TOF MS和TOF MS/MS谱图流程二:统计学分析得到差异化合物鉴定流程对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以采取组学的思路,使用SCIEX OS软件中MarkerView&trade 统计学分析模块进行PCA,T-test等统计学分析,MarkerView&trade 统计学分析模块和Explorer鉴定化合物模块互相链接,无需不同软件间转移,减少格式转化带来的数据丢失。可以将原始数据导入MarkerView&trade 统计分析后得到样本间具有统计学差异的离子后,可以直接查看一级和二级质谱图,进行鉴定分析。图3 MarkerView&trade 统计学界面展示流程三:非靶向流程软件可以设置空白样本,根据设定的峰面积比扣除空白样本中的离子,软件自动将不同加和离子形式和不同电荷数进行分组,增加鉴定准确度并减少重复鉴定的工作量。提取出来的离子会自动给出分子式,链接SCIEX本地数据库或者在线数据库进行检索,根据和二级质谱图匹配的情况,给出得分,同时也可以根据软件自动给出的二级偏差判断碎片归属,二级碎片可以和结构一一对应,有助于我们进行结构解析,分析合理性图4 非靶向流程中部分界面展示小结本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,分别使用ESI源和APCI源对样本进行采集,兼顾不同性质的化合物,可以更全面的表征化学成分。IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程简便且准确。对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以使用统计学软件找到统计学差异的离子,进行鉴定分析。也可以采用软件自动扣除空白,自动识别离子的不同加和离子形式,电荷形式,结合SCIEX本地数据库或者在线数据库的非靶向流程,是结构鉴定和解析的有力工具,为表征电解液提供了的解决方案。 参考文献 [1]冯东,郝思语,谢于辉,等.锂离子电池电解质研究进展[J].化工新型材料,2023,51(2):35-41.[2]付文婧,汪熙媛,柯伟,等.汽车电动化的重要发展方向——锂电池技术[Z].时代汽车,2023(7):123-125.[3]Ma, Ting, et al. "Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective." Polymers 14.17 (2022): 3452.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制