当前位置: 仪器信息网 > 行业主题 > >

电化学测定仪

仪器信息网电化学测定仪专题为您提供2024年最新电化学测定仪价格报价、厂家品牌的相关信息, 包括电化学测定仪参数、型号等,不管是国产,还是进口品牌的电化学测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学测定仪相关的耗材配件、试剂标物,还有电化学测定仪相关的最新资讯、资料,以及电化学测定仪相关的解决方案。

电化学测定仪相关的资讯

  • 精科公司电化学产品部对最新产品氨氮测定仪快速刷新上市记录
    公司电化学产品部对今年春季开发的最新环保产品━━DWS- 296型氨氮测定仪,做到了研发成功后即进行批试生产,这是产品部根据市场调研结果和部分用户需求作出的快速反应,以开发时间最短而投放市场最快刷新了新产品上市记录。此款2009新出炉的氨氮测定仪可广泛应用于环保行业对氨氮测定。 DWS-296型氨氮测定仪主要用于对植物和微生物主要营养元素之一氨氮的测定,是生化监测的一个重要手段,对科学发展农业和保护农业环境及生态环境具有的重要的意义。该仪器采用氨敏电极可对水样中的氨(氮)进行快速测定,测量数据准确、抗干扰能力强。还采用了点阵式液晶显示、中文操作界面和新颖轻触键,使用户操作简便且提高了产品可靠性。图为员工在调试即将出厂的DWS- 296型氨氮测定仪
  • 2012年上半年发布仪器新品:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。  电化学分析是利用物质的电化学性质测定物质成分的分析方法。它是仪器分析法的一个重要组成部分,以电导、电位、电流和电量等化学参数与被测物质含量之间的关系作为计量的基础。根据所测量电化学参数的不同,常见的电化学分析仪器有:pH计、电位滴定仪、电化学工作站、卡尔费修水分仪、电导率仪、库仑仪、极谱仪等。  电化学仪器是实现电化学分析与电化学测量的基本工具,量大面广。电化学信号可直接使用,无须精密的机械和光学系统,方便经济,是企事业单位及科研机构实验室常用的一类分析仪器。目前电化学仪器不仅作为实验室基础研究的科学仪器,也拓展到现场分析技术和仪器仪表等领域,在线分析、便携化、多功能化等亦是其未来的发展方向。  2012年的上半年,电化学领域新产品新技术不断推出。仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。  pH 计日本堀场 HORIBA F-70 LAQUA PH计上市时间:2012年3月(汕头市科技设备供应公司代理)  HORIBA F-70 LAQUA系列PH计是一款操作简单而有趣的新形仪表,采用宽屏静电容量式触摸屏,触感操作;智能导航可以及时指引进而解决校准及测量故障等问题;此外,该款仪器的玻璃管电极易清洗。  卡氏水分测定仪上海禾工科学仪器有限公司 全自动卡尔费休水分测定仪AKF-1上市时间:2012年3月  AKF系列全自动卡尔费休水份测定仪在传统产品上进行了大量的创新,增加了仪器稳定性,降低了仪器故障,消除了运行噪声,同时改良了操作界面,加入自动打空白,自动清洗装置,自动保持检测状态等技术,仪器操作的简便、自动、安全、高效。上海禾工科学仪器有限公司高 精度智能卡尔费休水分测定仪AKF-2010(升级型)上市时间:2012年4月  AKF-2010卡尔费休水分测定仪采用Windos操作系统,5.6寸高精度触摸屏;操作简单直观,可以外接键盘鼠标,并且可以连接到网络,直接用网络传输数据,可以实现对仪器的远程控制和远程数据传输处理及监管;该款仪器还具有极大的扩展性,可方便升级为电化学自动滴定系统;其全封闭滴定池,使用户无需直接接触有毒试剂即可完成整个分析过程以及仪器的日常维护等工作。  自动电位滴定仪日本京都电子公司 AT-700自动电位滴定仪上市时间:2012年4月(上海今昊科学仪器有限公司代理)  AT-700自动电位滴定仪采用了新的液路设计,更换试剂、日常维护更加简单;并且可以扩展为双管滴定,最多可连接10组滴定单元;可配套专用多样品转换器使用,经济实用;该电位滴定仪使用通用的USB接口连接各种外部设备,U盘存储,键盘输入,条码扫描;精确的液滴控制保证了实验的精度;多种规格的测试电极和多种外设极大扩展了电位滴定仪的应用范围;仪器设计紧凑,体积为原来型号仪器的一半。  电化学工作站、恒电位仪美国青藤 DY2116B微型恒电位仪/恒电流仪上市时间:2012年4月(雷迪美特中国有限公司代理)  DY2116B是美国Digi-Ivy, Inc.公司生产的一款袖珍式恒电位仪/恒电流仪。该仪器采用最新的半导体芯片科技,通过独特的电路设计大大缩小了仪器的体积,应用更为便捷;噪声低,稳定性高,精心设计的硬、软件的有机结合,在不用Faraday屏蔽罩的情况下也很容易获得pA的电流测量分辨;信号发生和采集通过16-bit DAC和16-bit ADC来完成,最小电流分辨可达0.76pA;操作简单,功能多样化,易于使用,控制界面一目了然。美国Gamry电化学公司 Interface1000电化学工作站  Interface 1000具有9个电流范围,3个增益范围,很灵活地适用于从腐蚀到电池,从传感器到超级电容的应用领域;高性能:电池充放电、极化实验,Interface 1000可以达到1A电流,槽压可以达到20V;和Gamry其他系统一样,Interface 1000采用浮地技术设计,使用与接地的工作电极系统;Interface 1000 可以达到 20 uV 噪声效果;不需要添加任何模块,Interface 1000 可以测量到1 MHz的交流阻抗;多台Interface 1000可以方便的组合为多通道的电化学工作站,并且比传统的多通道使用起来灵活。  电化学仪器部件、外设美国pine光谱电化学装置上市时间:2012年2月(理化(香港)有限公司代理)  Pine公司的光谱电化学装置可以实现电化学方面的检测,并同时能实现光谱的检测。整套装置中,关键在于蜂窝状的电极和薄层石英电解池的配合使用,实现了电化学与光谱的同时检测;蜂窝状电极由三电极系统集成,以铂、金等贵金属作为工作电极,蜂窝状的制作工艺使光线穿透电解池,让研究者能够了解实时光谱及电化学数据。美国pine光电化学石英电解池上市时间:2012年2月(理化(香港)有限公司代理)  PINE公司的光电化学石英电解池顶端有一较大的端口,可插入光电阳极(通常是硅晶片)。电解池周围的端口可插入对电极(通常为铂环)和参比电极;并且专门设计有气体喷射和净化的配件。可见光及紫外光可以通过电解池的任一两侧玻璃。在需要光学窗口的情况下,一侧或两侧的玻璃可以更换为可移动的光学窗口;除了在光电化学研究中应用,石英电解池也广泛应用在溶剂体系研究中(如强碱)。  了解更多电化学仪器,请访问仪器信息网电化学仪器专场  了解更多新品,请访问仪器信息网新品栏目
  • 2012年下半年仪器新品盘点:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。  电化学分析是仪器分析的重要组成部分,与光谱分析、色谱分析一起构成了现代分析仪器的三大重要支柱。电化学分析法灵敏度和准确度高,选择性好,某些方法最低检测量可以达到10-12mol.L-1。电化学仪器装置较为简单,操作方便,应用广泛。  电化学分析所包含的内容丰富,已近建立起比较完善的理论体系,在现代化学工业、生物与药物分析、环境分析等领域有着广泛的应用,特别是在生命科学领域更是发挥着其他分析方法难以取代的作用。近年来,随着环境监测、生物医药等领域的快速发展,对电化学仪器的需求也越来越多。  2012年,电化学领域新产品新技术不断推出。上半年中,仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。下半年,又发布了5款电化学仪器新品及相关设备。分别为海能的T860全自动滴定仪、瑞士万通899型库伦水分测定仪、上海仪迈科学仪器有限公司IS139专业型pH计、梅特勒-托利多的SevenExcellenceTM系列模块组合式多参数测试仪、Bio-Logic的VMP-300 多通道电化学工作站。  自动电位滴定仪  电位滴定法是在滴定过程中通过测量电位变化以确定滴定终点的方法。电位滴定法是靠电极电位的突跃来指示滴定终点,如果使用自动电位滴定仪,在滴定过程中可以自动绘出滴定曲线,自动找出滴定终点,自动给出体积,滴定快捷方便。目前电位滴定仪分通用型和专用型仪器,不过专用型仪器的市场需求量相对通用型仪器要小很多。T860全自动滴定仪(海能)上市时间:2012年10月  海能T860自动电位滴定仪采用模块化设计,可进行酸碱滴定、氧化还原、沉淀和络合等多种滴定。该仪器采用无死体积电磁阀,PTFE滴定管路更换便捷;采用超薄搅拌台,用线圈实现磁力搅拌;原装进口过滤器,避免溶液中杂质堵塞管路及阀体;滴定管采用推拉式拆卸,更换非常方便,且精度能达到0.005mm;整机体积非常小巧灵便,且7寸超大彩色液晶触摸界面,显示信息丰富,方便操作。  卡式水分测定仪  按照原理来说卡式水分测定仪可以分为容量法和库仑法两类。就自动化程度方面来说还可分为手动的和自动的。目前,由于一些标准的问题,手动的仪器还有用武之地,特别是学校教学用,一时还不能淘汰。但是,随着标准及教科书的更新,自动的卡式水分仪的市场也越来越大。瑞士万通899型库仑水分测定仪  该款仪器是瑞士万通第一款可便携型库仑水分测定仪,可重复充电式电源盒提供独立电源,一次充电可保证仪器持续稳定运行几个小时,测试地点不再局限;可以自动感应样品,样品进入滴定池后自动开始水分测定;并且可与卡式炉联用,进行困难样品水分的测定。  pH计/电导率仪  作为实验室必备的仪器,pH计/电导率仪广泛应用于工业、农业、科研、环保等领域。按照外形来分,实验室中的pH计/电导率仪可以分为台式、便携式、笔式三大类;按照参数来分,可以分为单参数和多参数(多功能的)。其中,市面上现在笔试的pH计/电导率仪越来越多的进入人们的日常生活。另一方面,也有越来越多的产品往往综合了pH、电导率、溶解氧等参数,以多功能的高端产品面世。当然,在追求多功能和高的精确度之外,操作简单方便始终是一个发展方向。IS139专业型pH计(上海仪迈科学仪器有限公司)上市时间:2012年7月  该仪器采用创新的软件设计,全屏触摸均有响应,最大限度方便用户操作和参数的快捷设定;创新的半透明、灰色格调的外观设计,带给用户独特的测量体验;独创的“M-log”测量日志功能,可自由记录编写和显示所需内容;国际最高水准的测量精度,最宽的测量范围,自动识别9组标准缓冲液;超大的数据库,存储数据多达2000组;独具连续测量模式,动态曲线显示mV和pH测量读数,帮助用户更好地追踪样品pH读数的变化。SevenExcellenceTM系列模块组合式多参数测试仪(梅特勒-托利多)上市时间:2012年10月  SevenExcellenceTM系列产品包含pH/mV测量仪、电导率仪、pH/离子浓度测量仪和双通道pH/电导率测量仪。该系列产品秉承Seven系列台式仪表的优良品质,并引入创新的ISM(智能电极管理)技术和OneClickTM方法概念。采用三通道仪表与测量模块灵活组合,测量功能随时拓展;拥有包括中文在内的10种菜单语言,7英寸彩色触摸屏,uPlaceTM电极支架,可单手操作,垂直上下移动电极;四级用户管理,ISM技术,方法和样品系列快捷操作,专业校准,密码保护,限值监测,无线电时钟,符合最严格的GLP管理规范,数据更安全。  电化学工作站  电化学工作站的本质是用于控制和监测电化学池电流和电位以及其它电化学参数变化的仪器装置,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,主要应用于电化学机理研究、生物技术研究、物质的定性定量分析、常规电化学测试、纳米科学研究等。近几年,全球市场对电化学工作站的需求增长很快,国际上生产电化学工作站的厂商主要有瑞士万通、Bio-Logic、阿美特克(普林斯顿及输力强)等。国内这几年发展也不错,上海辰华、天津兰力科、武汉科思特等也推出了电化学工作站,但是国内在电化学阻抗技术方面与国外还是有一定的差距。VMP-300 多通道电化学工作站(Bio-Logic,华洋科仪代理)上市时间:2012年10月  VMP-300是一款多通道电化学工作站,它可以为恒电位仪/恒电流仪/FRA或扩展电路板提供16个插槽,可以外接恒电位仪,恒电流仪,FRA电路板或扩展电路板。通道板和booster电路板可以在一个模块上进行整合,既可以获取很多通道,又可以达到很高的电流。作为多通道电化学工作站,每个通道可以完全独立于其他通道,从而允许多个用户同时使用该仪器。仪器内置校准技术,模块化设计。  2012年上半年发布仪器新品:电化学仪器  了解更多质谱产品请访问仪器信息网电化学专场  了解更多新品请访问仪器信息网新品栏目  关于申报新品  凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示;越早申报的新品,将获得更多的展示机会。
  • 2010年上半年上市仪器新产品:电化学仪器类
    电化学分析是现代仪器分析中的一个重要组成部分,由于电化学分析法具有快速、灵敏、准确、所用仪器结构简单及使用方便等一系列特点,因而在科学研究、现代化学工业、生物与药物分析、环境监测等领域发挥着重要作用。  电化学分析仪器可以直接或间接地测量由化学传感器(电极)将化学量转换成的电信号,如电流、电压、电位、电导、电量等各种物理量,从而来研究、确定参与化学反应的物质的量。电化学的研究和技术发展,在一定程度上和电化学仪器的发展密切相关,它们是相互促进,不可分割的有机整体。以下将就2010年上半年上市的电化学新品做一简单介绍。  法国 Bio-logic公司最新推出的 SP-200便携式电化学工作站改变了以前对电化学工作站放置位置的限制,可以在条件比较恶劣的环境中进行电化学测试。  美国阿美特克新推出的电化学综合测试系统应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。  赛默飞世尔科技新推出的Orion Star LogR pH测量仪,无需另外的温度电极,即可进行pH温度补偿。  上海精科推出的PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度。  上海纳锘仪器推出的全新系列绿色pH电极采用了绿色环保材料完全符合RoHS指令规定。  英国Uniscan公司3100型多通道恒电位仪功率放大器使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。  美国哈希公司推出的MP测定仪是一款不需要使用探头的电化学测定仪,能够快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。  法国 Bio-logic SP-200便携式电化学工作站  SP-200便携式电化学工作站  SP-200是一台便携式的电化学工作站,其可以在条件比较恶劣的环境中进行电化学测试,允许此设备用于接地池、高压设备和手套室设备、现场腐蚀实验也可以应用,弥补了以前对电化学工作站放置位置的限制。  美国阿美特克电化学综合测试系统  Solartron Modulab(电化学综合测试系统)  Solartron Modulab最灵活方便的模块化电化学综合测试系统,仪器虽然小型化但是仍然能广泛的应用于电化学测试的各个领域。  Solartron Modulab的恒电位仪和恒电流仪中应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。采用目前最高效的频率响应分析仪,其频率响应范围从10μHz -1 MHz,保证测量过程的精度和准确度。  Solartron Modulab采用Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。这个特别适用于低频分析和测量随时间变化的不稳定的电池。  赛默飞世尔科技Orion Star LogR pH测量仪Orion Star LogR pH测量仪  新型Orion Star LogR 测量系列仪表采用独特的LogR 技术,配合专门的pH电极,通过电极膜电阻测量样品温度,提供了一种新的电极测量方法。测量仪将显示膜电阻值,用于电极故障判断,节省故障排除时间。使用Orion Star LogR 测量仪,无需另外的温度电极,即可进行pH温度补偿。  Orion Star LogR 测量仪目前有两种型号:一种用于pH 测量,另一种用于pH 和离子浓度测量。两种型号均可测量毫伏,温度和电阻(LogR 功能开启时)。  Orion Star LogR 测量仪将替代目前的Thermo Scientific Orion PerpHecT LogR™ 测量仪320, 350和370系列。Orion Star LogR系列测量仪改进了LogR校正程序,具有更多的优势和pH校正点,并能够显示膜电阻。  上海精科PHSJ-5型实验室pH计  PHSJ-5型实验室pH计  PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度,能满足用户精密测量水溶液的pH值和电位mV值。该仪器主要有五个特点:  一是触摸式大屏幕液晶显示屏,全中文操作界面,使用方便   二是可选择多种pH标准缓冲溶液标定仪器,利于用户建立自己的标液组   三是具有自动识别五种标准溶液功能   四是自动和手动温度补偿、自动校准、自动计算电极百分理论斜率   五是能储存、删除、打印、查阅,最多可储存200套测量数据,并有RS-232通讯功能。  上海纳锘仪器全新系列绿色pH电极  GS9106BNWP绿色pH电极  Orion推出全新电极—— 完全符合RoHS指令的全新系列pH电极。并采用了更环保的包装材料,堪称是真正的“绿色电极”。  英国Uniscan公司3100型恒电位仪功率放大器  3100型恒电位仪功率放大器  3100型多通道恒电位仪功率放大器是一款新一代的多通道高电流仪器,使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。  3100 型多通道恒电位仪功率放大器具有完全的直流性能。理想应用于宽广范围的电化学应用,其多通道性能允许多种测试速率和比传统设计更高的工作通量。  3100的创新的外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。  美国哈希公司MP测定仪  MP测定仪  不需要使用探头的电化学测定仪,快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。操作极其简便,只需两步即可完成测量:1. 灌满采样量杯、2. 按键读数。无需频繁校准,两周一次到每个月一次,并且校准简单,只需按一个按键,然后将仪器调节为标准值即可。高防护等级,IP67,防水防尘,可漂浮,浸没在水下1米处也完全可以操作。 了解更多电化学仪器请访问仪器信息网电化学仪器专场  了解更多新品请访问仪器信息网新品栏目
  • "2013最受关注仪器”X射线、电化学、环境入围名单
    仪器信息网讯 &ldquo 2013最受关注仪器&rdquo -X射线、电化学、环境类入围名单揭晓。 年度最受关注仪器奖,用于表彰本年度受用户关注最高,最畅销的仪器。为用户选购该类别仪器是提供有用的参考。 评选依托仪器信息网庞大的访问数据和用户基础,以仪器在用户中受关注程度的高低作为主要评选标准。将仪器信息网展示的10万余台仪器,按照色谱、光谱、质谱、X射线、电化学、环境监测、实验室常用设备、颗粒分析、热分析、试验机、生命科学、光学12个类别进行分类,通过各台仪器在仪器信息网当年独立访问人数及用户留言数进行综合计算,评选出&ldquo 最受关注仪器&rdquo 入围名单,国、内外各3台仪器,共计72台仪器。 最终获得各类别下&ldquo 最受关注仪器&rdquo 称号的国、内外各1台产品。将在&ldquo 中国科学仪器发展年会&rdquo 上进行揭晓,并举行隆重的颁奖仪式。 2013年仪器领域事件频频,PM2.5,塑化剂,镉大米,食品重金属事件频频曝光,百姓也对食品安全,环境保护方面越来越重视,大家从身边的事情也对分析仪器有了逐渐的了解,甚至一些便携的检测仪器已逐渐开始走向你我的家中。科学分析仪器也慢慢的揭开其神秘的面纱。 通过今年入围的仪器,可以看出国内产品越来越受到用户的亲睐,最受用户关注仪器从评奖以来,国外产品的关注度一直是远远超过同类的国内产品。但近几年的关注数据表明,随着国内生产工艺水平不断改进,厂商对产品的宣传力度不断加大加上国家对科学分析仪器的重视程度越来越高。国内产品的受关注程度已经越来越逼近国外仪器。虽还存在差距,但相信在不久的将来,国产仪器将会走出自己的一篇蓝天,扩展更广阔的市场领域。 敬请期待2014年4月18日举办的&ldquo 2014中国科学仪器发展年会&rdquo ,届时将揭晓国、内外共12个大类的最受用户关注仪器。 &ldquo 2013最受关注仪器&rdquo -X射线、电化学、环境类入围名单(按公司名称拼音首字母排序) X射线类:国内仪器XF-8100波长色散X射线荧光光谱仪北京东西分析仪器有限公司EDX P730手持式X荧光光谱仪江苏天瑞仪器股份有限公司DM1240型X荧光硫钙铁分析仪上海爱斯特电子有限公司进口仪器布鲁克 D8 达芬奇 X射线衍射仪布鲁克(北京)科技有限公司SPECTRO XEPOS偏振X射线荧光光谱仪德国斯派克分析仪器公司XPert Powder多功能粉末X射线衍射仪荷兰帕纳科公司 电化学类:国内仪器CHI660E电化学工作站上海辰华仪器有限公司AKF-1全自动卡尔费休水分测定仪上海禾工科学仪器有限公司MP511实验室PH计上海三信仪表厂进口仪器PAR2273电化学工作站阿美特克科学仪器部(普林斯顿及输力强)FE20- FiveEasy&trade pH计梅特勒-托利多中国PGSTAT302N电化学工作站瑞士万通中国有限公司 环境类:国内仪器GDYK-206S甲醛测定仪长春吉大· 小天鹅仪器有限公司5B-3C型(V8) COD快速测定仪兰州连华环保科技有限公司3012H型自动烟尘烟气分析仪(09代)青岛崂山应用技术研究所进口仪器Element arvario TOC 总有机碳分析仪大昌华嘉商业(中国)有限公司multi N/C 3100 总有机碳/总氮分析仪德国耶拿分析仪器股份公司LDO便携式溶氧仪哈希公司
  • “哈希电化学 新品给力推”活动正式启动
    拥有实验室台式、便携式和在线测量等种类齐全的哈希电化学家族,2011年春季再推新品。首创的荧光法测定溶解氧技术(LDO)的HQd系列台式测定仪,携手便携式和台式sensION+系列pH套装,打造哈希电化学新品推荐月。 3月18日至4月30日,登录“哈希电化学 新品给力推”活动网站http://echem.hach.com.cn,点击“给力推呀“,将哈希电化学新品推荐给您的业内朋友,注册、推荐累计积分,赢取最给力推荐奖、占得先机奖和最给力传播奖。iPad, iPod nano等你来拿!
  • 2011年电化学仪器产业发展战略研讨会召开
    仪器信息网讯 在第十一届全国电分析化学会议召开期间,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会电分析化学专业委员会主办,南京大学生命分析化学国家重点实验室(筹)承办的2011年电化学仪器产业发展战略研讨会暨“中国仪器仪表学会电分析化学专业委员会第二次全体委员会议”于2011年5月14日在山东聊城顺利召开,近30位电分析化学专业委员出席了此次会议,仪器信息网作为特邀媒体亦参会。会议现场  中国仪器仪表学会电分析化学专业委员会成立于上世纪80年代,并于2008年3月进行了重组。重组后,中国仪器仪表学会电分析化学专业委员会由鞠熀先教授担任主任委员,挂靠在南京大学和上海精密科学仪器有限公司开展日常工作。中国仪器仪表学会分析仪器分会闫成德理事长致辞  闫成德理事长表示,近年来我国对进口仪器依赖度逐年增高,国内分析仪器与国外产品的差距不是逐步缩小,反而在渐渐拉大,我国分析仪器还是扮演着一个“跟踪模仿”的角色,电分析仪器也不例外。随后,闫成德理事长分析总结了我国分析仪器产业的发展现状、存在不足以及相应的对策建议,并指出,“十二五”期间,科技部、工信部等政府部门以及中国仪器仪表学会对于科学仪器的自主研发非常重视,这就给国内的专家学者、仪器企业提供了一个很好的发展机遇,希望大家能够积极地为我国分析仪器行业的发展献计献策。会议由南京大学鞠熀先教授主持  此外,会议主办方还邀请了朱果逸研究员、蔡青云教授、毛兰群研究员、殷传新高工、范清杰高工就目前的新方法、新技术以及各自的研究成果、科研经验、特色产品作了精彩报告。中科院化学所活体分析化学院重点实验室毛兰群研究员报告题目:活动物在线电化学分析系统的研制  毛兰群研究员介绍到,活体分析的优势在于时空分辨,结果可靠,动物量少,仪器简单。而活体在线电化学分析设备主要由活体微透析系统、在线样品处理系统、在线样品检测系统及样品检测信号处理4部分组成,可用于检测抗坏血酸、葡萄糖/乳酸、钙镁离子、尿酸等活体样品。  此外,毛兰群研究员实例展示了活体电化学分析系统在生物疾病诊疗方面的应用途径和效果,并指出,活体在线电化学系统在人类疾病诊断和治疗方面有着很重要的应用前景。天津市兰力科化学电子高技术有限公司范清杰高工报告题目:电化学仪器产业规模化发展趋势与问题研讨  范清杰高工介绍到,天津兰力科、上海雷磁、江苏江分是目前国内从事电化学仪器的主要生产企业,年销售收入均超过千万元,并具有快速上升的发展趋势。随后,范清杰高工介绍了兰力科公司的4个重点发展领域及当前电化学仪器产业规模化的发展现状与方向。  最后,范清杰高工还指出,电化学仪器产业规模化存在5大问题:(1)电化学仪器大部生产企业规模小,产值低,低水平同类产品泛滥;(2)企业自主创新能力不强,科技投入少,创新人才匮乏;(3)缺乏针对用户而开发的专用解决方案;(4)缺乏官、产、学、研、金、用的有效结合;(5)缺乏高端旗帜性产品和民族品牌意识。中科院长春应化所电分析化学国家重点实验室朱果逸研究员报告题目:系列电化学分析及联用测量系统  朱果逸研究员说到,由于电化学仪器具备易于开发及小型化等优势,可实现对分析对象的高通量、低下限和实时检测,因此该类仪器具有显见的应用研发前景。近年来,随着分析技术和方法的发展,电化学联用技术方法已成为电化学仪器的一个发展热点。另外发展高灵敏度、响应快、寿命长、可动态在线检测的新型电化学检测器和功能联用仪器也是当前迫切需要的。  同时,朱果逸研究员还介绍了电化学仪器的中长期发展规划以及其研究团队开发的多款电化学仪器系统的性能指标、技术特点、应用实例等。湖南大学生物传感与计量学国家重点实验室蔡青云教授报告题目:生物分析仪器研发  蔡青云教授在报告中详细介绍了艾丽特微生物快培仪、无线磁传感测定仪这两款生物分析仪器的研发背景、技术优势及应用成果。  微生物快速检测是减少抗生素滥用的重要技术前提,艾丽特微生物快培仪是一款从检测原理到部件设计完全创新的仪器,其临床评价为检出速度快﹑结果准确﹑假阳性率低、操作简便﹑价格便宜;无线磁传感测定仪则克服了现有仪器昂贵、缺乏实用性、存在背景信号干扰等缺陷,利用无线无源传感器与磁场进行信号激发与传送,在持续激励条件下测定传感信号,具有稳定、灵敏等特点。上海精密科学仪器有限公司殷传新高工报告题目:坚持自主创新 铸就民族分析仪器品牌  殷传新高工在报告中说到,在4大自主创新措施的指导下,上海精密科学仪器有限公司雷磁电化学事业部(原上海雷磁仪器厂)研发出pH计、离子计、电导率仪等多个系列的自主创新产品。这些创新产品与国内外同类产品相比,具有极高性价比,产品市场占有率名列第一。  此外,殷传新高工还指出了电化学分析仪器产业目前面临的问题及解决办法:(1)前瞻性前沿性新技术研发缺乏,希望加强和高校、院所进行交流合作;(2)科技创新能力不够,希望加强产学研合作力度;(3)科技创新投入不够,希望得到各级政府的关心和支持。  此外,30多位与会委员就专业委员会的发展、今后要开展的工作进行了积极地交流与沟通,并就专业委员会进一步加强产学研合作、推动电分析仪器的研制与产业发展等议题展开了热烈的讨论。与会委员合影留念
  • 2012科学仪器优秀新品入围名单:电化学、行业专用、测量计量仪器
    第七届“科学仪器优秀新产品”评选活动于2012年3月份开始筹备,截止到2013年2月10日,共有281家国内外仪器厂商申报了594台2012年度上市的仪器新品。经仪器信息网编辑初审、2013中国科学仪器发展年会新品组委会初评,在所有申报的仪器中约有三分之一进入了入围名单。  本届新品评审专业委员会将邀请超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在“2013中国科学仪器发展年会”上颁发证书,并在多家专业媒体上公布结果。  共有8台2012年度上市的电化学仪器、6台2012年度上市的专用仪器、6台2012年度上市的测量计量仪器进入了入围名单(排名不分先后):仪器名称型号创新点上市时间公司名称T920全自动滴定仪T920查看2012年8月海能仪器海能T-METAL 重金属分析仪T-METAL查看2012年9月海能仪器“乔治”库仑法卡尔费休水分测定仪71000查看2012年5月通用实验科技超越系列卤素水分测定仪HX204查看2012年8月梅特勒-托利多中国875 KF 气体水分测定仪875 KF查看2012年7月瑞士万通中国有限公司--实验室分析仪器高精度智能卡尔费休水分测定仪AKF-2010(升级型)查看2012年4月上海禾工科学仪器有限公司立式铁水成分分析仪,炉前铁水管理仪,铸造炉前铁水碳硅仪LC-TS6型查看2012年2月南京联创分析仪器有限公司全自动凯氏定氮仪K-375K-375查看2012年3月瑞士步琦有限公司 BUCHI Labortechnik AG万深SC-X型小麦品质分析和面粉白度麸星检测仪万深SC-X型查看2012年4月杭州万深检测科技有限公司菊酯农药残留检测仪GDYN-402SD查看2012年5月长春吉大小天鹅仪器有限公司PAL-S牛奶浓度计PAL-S查看2012年2月日本ATAGO(爱拓)中国分公司Gallery Plus Beermaster全自动啤酒分析仪Gallery Beermaster查看2012年7月赛默飞世尔专业诊断与水质分析及工业全自动化解决方案电化学检测器ED723ED723查看2012年12月岛津技迩(上海)商贸有限公司声音传输气味识别系统OPV277查看2012年12月岛津技迩(上海)商贸有限公司Quantos自动定量加样系统QB5查看2012年8月梅特勒-托利多中国FA电子分析天平FA查看2012年8月上海舜宇恒平科学仪器有限公司Velodyne 32E 激光雷达HDL 32E查看2012年2月誉荣电子科技有限公司高清级红外热像仪VarioCAM High Definition查看2012年5月北京雅世恒源科技发展有限公司SonTek - IQIQ查看2012年2月维赛仪器多功能冷光影像定量分析系統CN查看2012年12月深圳菲特立科技有限公司  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量较去年大幅增加。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器没有被纳入进来。  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料都可以在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况并不相符,或并非2012年上市的仪器新品,请您于2013年3月25日前向“年会新品评审组”举报和反映情况,一经核实,新品评审组将取消其入围资格。  传真:010-82051730  Email:xinpin@instrument.com.cn  点击查看所有仪器新品
  • 2010科学仪器优秀新品入围名单:环境监测仪器、电化学仪器
    第五届“科学仪器优秀新产品”评选活动于2010年3月份开始筹备,截止到2011年2月28日,共有234家国内外仪器厂申报了497台2010年度上市的仪器新品。经仪器信息网编辑初审、2011中国科学仪器发展年会新品组委会初评,在所有申报的仪器中约有四分之一进入了入围名单。  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议,并且首次邀请20位资深用户参与评审。最终获奖的仪器将在“2011年中国科学仪器发展年会”上颁发证书,并在多家专业媒体上公布结果。  现公布“环境监测仪器、电化学仪器”“入围名单,2010年度共申报了34台环境监测,其中10台入围;共申报了27台电化学仪器,其中13台入围;以下排名不分先后。环境监测仪器仪器名称型号创新点上市时间公司名称亚氯酸盐测定仪CS 300创新点2010年12月英国百灵达有限公司北京代表处SERVOFLEX MiniMP (5200 Multipurpose)便携式气体分析仪5200 Multipurpose创新点2010年1月仕富梅亚太业务中心SX716-E型便携式大量程溶解氧测定仪SX716-E创新点2010年12月上海三信仪表厂AMS全自动间断化学分析仪Smartchem200创新点2010年1月AMS FRANCE水质综合毒性在线监测仪TOX-2000创新点2010年6月聚光科技(杭州)股份有限公司便携式臭氧快速测定仪ⅠS—30-1创新点2010年5月深圳市清时捷科技有限公司LumiFox 2000手持式发光细菌毒性检测仪LumiFox 2000创新点2010年2月深圳市朗石生物仪器有限公司新一代专家型总有机碳/总氮分析仪multi N/C ?2100创新点2010年10月德国耶拿分析仪器股份公司Cyclops-7探头式水中油检测仪C-7创新点2010年1月(北京沃特兰德科技有限公司代理)NanoTek 2000便携式重金属测定仪NanoTek 2000创新点2010年7月深圳市朗石生物仪器有限公司电化学仪器仪器名称型号创新点上市时间公司名称Orion Star LogR pH测量仪LogR创新点2010年4月赛默飞世尔科技光谱电化学分析仪DZ-709创新点2010年12月上海精密科学仪器有限公司MP测定仪MP测定仪创新点2010年1月美国哈希(HACH)公司864全自动样品称量滴定系统864创新点2010年8月瑞士万通中国有限公司  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量较去年大幅增加。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器没有被纳入进来。  所有入围新品的详细资料都可以在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况并不相符,或并非2010年上市的仪器新品,请您于2011年4月5日前向“年会新品评审组”举报和反映情况,一经核实,新品评审组将取消其入围资格。  传真:010-82051730  Email:xinpin@instrument.com.cn  点击查看所有仪器新品
  • 2013科学仪器优秀新品入围名单:电化学、行业专用、测量计量仪器
    仪器信息网讯 第八届&ldquo 科学仪器优秀新产品&rdquo 评选活动于2013年3月份开始筹备,截止到2014年2月28日,共有247家国内外仪器厂商申报了561台2013年度上市的仪器新品。经仪器信息网编辑初审、2013中国科学仪器发展年会新品组委会初评,在所有申报的仪器中约有三分之一进入了入围名单。  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在&ldquo 2014年中国科学仪器发展年会&rdquo 上揭晓并颁发证书,评审结果将在多家专业媒体上公布。  本届申报的新品中共有21台2013年度上市的电化学仪器、行业专用仪器、测量计量等仪器进入了入围名单(排名不分先后):仪器名称型号创新点上市时间公司名称电化学石英晶体微天平 Q-Sense Omega AutoOmega Auto查看2013年12月瑞典百欧林科技有限公司上海代表处UV-VIS-NIR分光电化学测试系统Spectro-115查看2013年2月香港环球分析测试仪器有限公司MKH-700容量法库仑法混合型卡尔费休水分仪MKH 700查看2013年3月可睦电子(上海)商贸有限公司-日本京都电子(KEM)ET08卡尔费休水分仪ET08查看2013年3月梅特勒-托利多中国水分测定仪快速水份测定仪0.1mg(顶级型)MA 60.3Y.WH查看2013年1月深圳市怡华新电子有限公司元素分析仪全自动凯氏定氮仪SKD-2000查看2013年3月上海沛欧分析仪器有限公司硫氮分析仪trace SN cube查看2013年1月大昌华嘉商业(中国)有限公司K1100F全自动凯氏定氮仪K1100F查看2013年5月海能仪器钢铁分析仪JQ-9查看2013年4月南京第四分析仪器有限公司农业和食品专用仪器多功能食品安全快速检测仪STD-XG查看2013年1月厦门斯坦道科学仪器股份有限公司Novasina水分活度仪LabStart-awLabStart-aw查看2013年12月大昌华嘉商业(中国)有限公司便携式食品重金属快速分析仪HM-7000P查看2013年1月江苏天瑞仪器股份有限公司药物检测专用仪器HiCC-Y增强型全自动菌落计数HiCC-Y增强型查看2013年2月杭州万深检测科技有限公司橡塑行业专用测试仪TY-5005 熔体流动速率仪TY-5005查看2013年5月江苏天源试验设备有限公司其它行业专用仪器/仪表微陀螺轴承扭矩测量仪BRG-3000查看2013年1月誉荣电子科技有限公司台式原子层沉积系统GEMStar查看2013年7月QUANTUM量子科学仪器贸易(北京)有限公司计量仪器Explorer自动风罩门分析天平EX124AD查看2013年5月奥豪斯仪器(上海)有限公司ME天平ME 54查看2013年1月梅特勒-托利多中国Practum电子天平Practum查看2013年4月德国赛多利斯集团温度计量仪器高精度温度计MKT 50查看2013年10月奥地利安东帕(中国)有限公司表面测量仪器Surtronic S-100 S116查看2013年9月泰勒-霍普森有限公司  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量与2012年度上市新品基本持平。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2013年上市的仪器新品,请您于2014年3月30日前向&ldquo 年会新品评审组&rdquo 举报和反映情况,一经核实,新品评审组将取消其入围资格。  传真:010-82051730  Email:xinpin@instrument.com.cn  查看更多科学仪器优秀新品
  • 古老而又年轻的技术——电化学发展趋势展望
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "供稿:上海仪电科学仪器股份有限公司/span/pp style="margin-top: 10px margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong一、我国电化学发展历程/strong/span/pp  电化学分析技术是一项古老而又年轻的技术,起源于1791年意大利医学教授发现金属可使蛙腿肌肉抽缩的“动物电”现象,1800年伏特制成第一个实用电池,开启了电化学研究的新时代。经过2个多世纪的发展,电化学技术取得的成就举世瞩目,极大地推动了科学的进步和社会的发展。中国改革开放40多年来,电化学技术快速发展,逐渐成为化学、生命、材料、物理、能源、交通、环境和信息等领域的广泛分析工具,对国民经济、国防建设、科学研究等有着至关重要的意义。/pp  在20世纪80年代中期以前,我国的电化学分析基础方法已经建立起来,电化学仪表主要采用静电计管作为输入级,以指针式显示测量值的电化学仪表,如酸度计、自动电位仪、方波极谱仪、伏安和循环伏安仪等,制造厂商有上海雷磁、延边无线电厂等。从20世纪80年代中期到90年代初期,随着电子技术的发展和计算机的普及,我国开始研究电化学仪器的计算机控制技术和数据处理技术,如“雷磁”研制的电化学仪器开始采用计算机技术,电站水质分析仪系列荣获“国家推荐产品”称号,并圆满完成了国家“95”攻关项目电站水质分析仪系列产品计算机系统项目。90年代中期,我国的研究者在电化学分析化学理论和实验方法及测试技术方面进行了深入研究,我国的电化学仪器技术进一步发展,在专用和常用仪器方面,出现了一批我国自主研发生产的仪器,标志着我国电化学分析仪器工业已经具有一定规模的研究、开发和生产能力。到90年代末期,电化学工作站的研制,标志着我国已经完全掌握了电化学仪器技术。从90年代末期到21世纪,随着嵌入式微型计算机和网络技术的发展,电化学分析仪器逐渐向智能化、信息化、微型化、集成式发展,电化学和电分析的技术和方法也更成熟,国内很多企业和研究机构进行了相关电化学仪器的研制和试制,特别是芯片技术、超微电极、多通道技术、联用技术等均得到了深入的发展,标志着我国电化学技术达到国际水准。/pp style="margin-top: 10px margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong二、我国电化学分析技术和产品发展历程和特点/strong/span/pp  与典型化学分析方法相比,电化学分析法具有高灵敏度、高准确度、宽测量范围、易操作、高自动化程度、低误差等特点。我国的电化学基本仪器(PH计、离子计、电导率和溶氧仪),大致经历了以下4个发展阶段:/pp  第1代电化学仪表:采用静电计管作为输入级,用指针式电表显示测量值的电化学仪表。/pp  第2代电化学仪表:采用运算放大器和A/D转换集成电路,用电位器调节进行校准的电化学仪表。/pp  第3代电化学仪表:在第2代基础上,将一些标准数据储存在芯片中,采用软件技术进行自动校准,具备一些智能化功能的电化学仪表。/pp  第4代电化学仪表:以多参数仪表为设计对象,硬件材料和操作模式更人性化和简单化,配套操作软件和配件,组成单参数、双参数或多参数的系列多功能多模块的电化学仪表,典型代表为雷磁DZS-708L多参数分析仪。仪器多以集成式、功能化、微型化和便携式为主要特点,如雷磁DZB-718L便携式多参数分析仪。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/fb176247-9ca8-434a-b820-e18763c3472a.jpg" title="1_副本.jpg" alt="1_副本.jpg"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图1 我国电化学发展阶段(以雷磁产品为例)/span/strong/pp  目前,虽然我国的电化学仪器很多技术和仪器可以达到国际水平,但是也有一些问题亟待解决。例如部分电化学仪器的一些基础部件和设备,在国内根本很难找到合格的加工企业,只能引进国外的设备和材料,导致生产成本较高 我国的电化学中低端产品生产线比较全面和丰富,但是高端产品线还需完善和改进。除此之外,若要成为电化学技术专家,做这个行业的国际标杆,国内企业的管理水平和创新水平,均有待于提高。/pp style="margin-bottom: 10px margin-top: 10px "span style="color: rgb(255, 0, 0) "strong  三、未来电化学技术与产品的发展趋势/strong/span/pp  21世纪是高新技术和网络信息化的时代,我国电化学技术的发展重点将围绕科研、生产、人类环境三大领域需求,向综合、联用、信息网络化发展,同时更趋微型化、集成化、自动化和智能化。重点开发的产品以技术含量高的中高端产品为主,用于水质检测、食品和药品检测、质量控制、人类健康和环境检测等多领域。快速、准确、稳定、安全、环保、便携、简单等将成为电化学产品的设计宗旨。/pp style="margin-top: 10px margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong四、“雷磁”发展历程和代表性电化学产品/strong/span/pp  “雷磁”作为上海仪电科学仪器股份有限公司的自主品牌,创立于1940年,作为中国第一台pH计和第一支玻璃电极的诞生地,在科学仪器发展的道路上,已逐渐成长为电化学分析仪器领域的领军企业。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/d7170f16-1aed-4cd2-a094-f54e48e75024.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图2 中国科学仪器行业泰斗朱良漪先生为“雷磁”题词/span/strong/pp  1940年,荣仁本先生在永嘉路229弄8号设立雷磁电化研究室,从事于小型电化研究工作,制造涂料电阻,并开始电化学仪器的研制。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/7242930f-a420-4ddd-bfcf-135248c8db77.jpg" title="3.png" alt="3.png"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图3 电化学研究--电阻算尺和第一台pH计/span/strong/pp  1953年,改名为雷磁电化仪器工业社,迁至威海路12弄14号,生产玻璃电极、酸度计。/pp  1956年,雷磁电化仪器工业社在大合营高潮中被批准为公私合营,公私合营成立雷磁仪器厂。/pp  1966年,改名为上海第二分析仪器厂。/pp  1981年,在工商正式注册“雷磁”商标。/pp  1983年,恢复“上海雷磁仪器厂“厂名。/pp  2001年,按上海精密科学仪器公司实体化工作要求,变更为上海精密科学仪器有限公司雷磁仪器厂。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/2ae3b077-5560-4560-bb4c-c4cc82d1a0ee.jpg" title="4_副本.jpg" alt="4_副本.jpg"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图4 2011年新公司成立,仪电控股领导和嘉定区领导为新公司揭牌/span/strong/pp  2011年,经上海国资委批准,上海仪电控股公司决定,雷磁仪器等资产,经市场评估后注入上海仪电控股(集团)公司旗下上海仪电电子(集团)有限公司,转制成立“上海仪电科学仪器股份有限公司”。/pp  2015年,按照仪电集团转型发展战略,作为优质资产被纳入上海仪电(集团)有限公司旗下的上市公司云赛智联股份有限公司(股票代码600602),成为智慧城市建设中检测感知业务的主体之一。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/bf0830f6-203d-4f74-a478-e99a434037a2.jpg" title="5_副本.png" alt="5_副本.png"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图5 雷磁代表性电化学产品:台式引领版系列/span/strong/pp  产品是核心竞争力,雷磁通过不断技术突破和产品的更新换代,在电化学分析仪器产品线上不断进步,引领国内电化学技术不断发展,逐渐形成围绕水质分析的一个完整的产线结构。其中,电化学最具代表性产品为引领版系列,包括实验室单数数和多参数引领版产品、便携式单数数和多参数引领版产品。引领版系列产品由于功能齐全、技术领先、操作方便,成为电化学高端主流产品之一。美观流行的彩色触摸屏设计、合理的操作界面布局、强大的智能操作系统和高精度级别的技术参数成为引领版系列产品的突出优势。除此之外,引领版系列中的多参数仪表,可同时支持四个模块(pH计、电导率仪、溶解氧仪、离子计),实现四通道测量,该技术国际领先,促进了我国电化学产品一体化、智能化和功能化的发展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/dd3dfc68-c95c-4a2f-aa99-e003b4f11424.jpg" title="6_副本.png" alt="6_副本.png"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图6 雷磁代表性电化学产品:便携式引领版系列/span/strong/pp  雷磁另一代表性电化学产品为ZDJ-5B系列自动电位滴定仪,该产品具有以下技术优势:1)通过柔性自适应技术进行模块化组合实现不同种类的滴定分析 2)可同时控制并支持多种滴定应用模块,进行电位滴定、光度滴定、电导滴定、永停滴定和温度滴定等,通过电位变化、电导电极、温度电极、氧化还原电极和光度电极实时检测溶液检测参数的变化,自动控制滴定过程和判断滴定终点 3)自动样品切换,可进行多样品的自动滴定分析 4)滴定过程可编程,用户可研究针对各种滴定分析的分析模式 5)支持多种辅助设备如打印机、自动进样器等,形成全自动滴定分子的计算机软件工作站 6)电极精度高、重复性好、性能稳定等优势。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/dbe53eed-f351-4417-b177-41396f437c1f.jpg" title="7_副本.png" alt="7_副本.png"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "图7 雷磁代表性电化学产品:ZDJ-5B自动电位滴定仪系列/span/strong/pp style="margin-top: 10px margin-bottom: 10px "  span style="color: rgb(255, 0, 0) "strong五、雷磁电化学产品应用领域及其优势/strong/span/pp  雷磁电化学产品,包括PH计、电导率仪、离子计、溶解氧测定仪、多参数水质测定仪和滴定仪等,最具优势的应用领域为实验室常规分析和环境检测。/pp  在实验室常规分析中,雷磁的电化学分析仪器,在食品安全、生物医药、能源化工、环境保护等各大分析实验室的定性分析和定量分析中有着广泛的应用。一方面,相比于其他分析方法如ICP-MS、HPLC、AAS、LC、GC等,电化学分析方法无需样品前处理,对样品无特殊要求,只需将仪器和配套电极连接后即可测试,测试过程操作简单、响应速度快、测试周期短、实时性好、灵敏度高、应用范围广、实验成本低等一系列优势。例如雷磁的DWS-296型氨氮分析仪(荣获“CISILE自主创新金奖”),在测试过程中,单次测量最短只需几分钟,而且测量范围广、抗干扰能力强、试剂成本低、测试电极寿命长等显著优势。该产品的检出限可达到离子色谱水平,但没有离子色谱操作那么繁琐费时,而且技术人员容易上手,人力成本和测量成本更合理。另一方面,在实验室分析过程中,一般需要控制实验的环境如酸碱度、溶液的离子浓度和导电性等参数,因此,PH计、离子计和电导率仪常被各实验室列为通用性和辅助性设备进行样品检测和实验过程分析。雷磁的PHS-3C型酸度计,作为一款基础耐用型仪器,具有性价比高、实用性强、操作简便等优势,已经写入众多教材和标准当中,成为各大高校、研究所和第三方检测机构等实验室电化学仪器的首要选择,被评为“科学仪器行业最受关注仪器”和“国产好仪器”。除PHS-3C型酸度计外,还有DDSJ-308F电导率仪荣获“国产好仪器”称号、PXSJ-226型离子计荣获“CISILE自主创新银奖”、DZS-708L型多参数分析仪和ZDJ-5B型滴定仪等产品荣获“CISILE自主创新金奖”,获得国家高度认可,并且市场反响热烈,客户好评如潮。/pp  环境检测,特别是水处理领域,雷磁具有很好的市场竞争力和影响力。雷磁聚焦水质分析将近70多年,作为水质处理的应用专家,主持和参与制定30份国家标准和行业标准,其中17份为第一起草人。相继承担了包括国家科技部“振兴国产仪器重大专项”在内的各类政府科研项目共50余项,申报了发明专利数十项,专利总数累计200余项。雷磁的环境检测设备主要为现场便携箱设备和在线监测设备。这些设备均运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及雷磁的专用分析软件和通讯网络,即时检测水质。雷磁的在线产品不仅测量时间短,还可以实时连续监测,准确快速地获得测量数据,及时反映污染变化状况等,满足政府和企业进行有效水环境管理的需求。除此之外,雷磁电化学产品在水处理应用上还获得了一系列荣誉称号:电站水质分析仪系列荣获“国家推荐产品”称号,DZB-715原位水质监测仪、COD-580型在线COD监测仪、COD-582在线COD监测仪、DWG-8002A型在线氨氮自动监测仪等产品荣获“CISILE自主创新金奖”。/pp style="margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong  六、雷磁电化学产品布局规划/strong/span/pp  雷磁将围绕“领先的科学仪器制造商、检测溯源系统解决方案与运行服务提供商”的战略目标,重点发展现代分析仪器,研究智能化和信息化先进分析仪器技术和电化学传感器技术,突破环境保护监测、食品药品等重大应用领域的检测应用方案和系统集成技术,打造智能检测仪器互联的管理系统和溯源协同平台。/ppbr//p
  • 哈希新品Pocket Pro / Pro+ 电化学测试笔上市
    可以放进口袋的水质测量仪器,随拿随走随测。机身小巧,使用方便,数据可靠。产品分Pro/Pro+两个系列,Pro+系列可提供替换探头、背光显示及多参数测定等功能。适用于各类需要快速了解水质的应用场景。 满足日常饮用水测试、养鱼水、泳池水、温泉spa、咖啡\泡茶水等快速检测。水质数据即插即得,是您装在口袋里的水质实验室。 - 可测量参数:Pocket Pro和Pocket Pro+的多种水质检测笔可快速检测水质pH / ORP / TDS / 电导率 / 盐度 / 温度- 仪器特点:● 直接测量,无需换算Pocket Pro 和 Pocket Pro+水质检测笔可广泛应用于水质电化学参数快速检测。Pro/Pro+系列的 12 种水质检测笔可提供包括 pH、ORP、电导率、TDS、盐度和温度在内的简单易用且便携的解决方案,直接读数,无需换算。● 可靠的结果校准步骤简单,水质检测笔内置 pH 测定仪性能诊断功能,随时校准,保持仪器的准确测试。● 节省时间和成本水质检测笔可更换AAA电池,易使用样品杯,使得维护和测量更为简单。● 精巧便携,易于使用水质检测笔采用口袋式设计,配备LCD大屏,便携易用;Pro+型号更有背光设置和可替换传感器。
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 2014 科学仪器优秀新品入围名单:电化学、行业专用、测量计量仪器
    仪器信息网讯 第九届&ldquo 科学仪器优秀新产品&rdquo 评选活动于2014年3月份开始筹备,截止到2015年2月28日,共有253家国内外仪器厂商申报了587台2014年度上市的仪器新品。经仪器信息网编辑初审、2014中国科学仪器发展年会新品组委会初评,现已确定本届&ldquo 科学仪器优秀新产品&rdquo 的入围名单。所有申报的仪器中约有三分之一入围。  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在&ldquo 2015年中国科学仪器发展年会&rdquo 上揭晓并颁发证书,评审结果将在多家专业媒体上公布。  本届申报的新品中共有55台电化学、行业专用和测量计量等仪器通过新品组初审,其中19台入围了2014年&ldquo 科学仪器优秀新产品&rdquo ,入围名单如下(排名不分先后): 电化学、行业专用、测量计量仪器序号仪器名称型号创新点上市时间公司名称1赛多利斯MA160水分测定仪MA160查看2014年6月德国赛多利斯集团2上海仪电科仪ZDJ-4B自动电位滴定仪ZDJ-4B查看2014年2月上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司)3瑞士万通 914 pH 计/ 电导率仪914查看2014年9月瑞士万通中国有限公司--实验室分析仪器4Tekran 2600系列 痕量汞分析仪Tekren 2600查看2014年3月美国安普科技中心5双载气杜马斯燃烧法定氮仪NDA702查看2014年9月嘉盛(香港)科技有限公司6福斯杜马斯定氮仪Dumatec 8000Dumatec 8000查看2014年10月福斯分析仪器公司7海能仪器 K9860 全自动凯氏定氮仪K9860查看2014年5月济南海能仪器股份有限公司8斯派超Q6000燃油嗅探仪Q6000查看2014年4月斯派超科技(北京)科技有限公司9斯派超科技Q230多功能磨粒分析仪Q230查看2014年4月斯派超科技(北京)科技有限公司10Eraflash S10 全自动十杯闪点仪Eraflash S10查看2014年8月培安有限公司11OnlineMR20-015V|| 在线式核磁共振含油种子分拣系统OnlineMR20-015V查看2014年2月上海纽迈电子科技有限公司12大米重金属快速检测仪HSTD-XG(大米)查看2014年6月厦门斯坦道科学仪器股份有限公司13福斯 Fibertec 8000 纤维分析仪Fibertec 8000查看2014年3月福斯分析仪器公司14海能仪器 OS270 食用油品质检测仪OS270查看2014年7月海能仪器15福斯AlphatecTM FNO谷物、面粉降落数值分析仪AlphatecTM FNO查看2014年10月福斯分析仪器公司16布鲁克 JuiceScreener 果汁筛选分析仪JuiceScreener查看2014年3月布鲁克(北京)科技有限公司17安东帕 Snap50 酒精分析仪Snap 50查看2014年10月奥地利安东帕(中国)有限公司18SDIPS1000 智能制样系统SDIPS1000查看2014年7月湖南三德科技股份有限公司19德国IKA/艾卡 C 1 氧弹量热仪C 1查看2014年7月艾卡(广州)仪器设备有限公司(IKA 中国)  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量与2013年度上市新品基本一致。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2014年上市的仪器新品,请您于2015年3月26日前向&ldquo 年会新品评审组&rdquo 举报和反映情况,一经核实,新品评审组将取消其入围资格。  2014科学仪器优秀新品组联系方式:  咨询电话:010-51654077-8032 刘先生  传真:010-82051730  电子信箱:xinpin@instrument.com.cn
  • 千人盛会!电化学分析主题网络会成功召开(附视频)
    p  strong仪器信息网讯 /strong2020年11月5日,由仪器信息网与广州大学联合举办的“2020电化学分析主题网络研讨会”成功举办,本次会议共邀请到13位来自高校、科研院所、电化学仪器企业的专家老师分享精彩内容,并吸引近2000名高校、政府检测单位和制药企业的相关用户报名参会,并获得到参会用户的积极反馈。/pp  为方便更多用户学习,经报告专家允许,现将部分会议视频整理发布。(点击报告题目即可进入视频页面观看)/pp style="text-align: center "strong回放视频列表/strong/ptable border="1" cellspacing="0" cellpadding="0" width="614" style="border-collapse: collapse border: none " align="center"tbodytr class="firstRow"td width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"时间/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"报告题目/span/strong/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"报告人/span/strong/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"9:00-9:30/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"纳米孔道电化学测量仪器研制和应用研究/span/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"龙亿涛(南京大学 教授)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"9:30-10:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113884.html" target="_blank" title="pH电极的选择与应用" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) font-family: 微软雅黑, sans-serif "pH电极的选择与应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"纪宗媛(赛莱默 应用工程师)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"10:00-10:30/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"基于界面电荷转移表征的研究/span/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"卢小泉(西北师范大学 教授)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"10:30-11:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113876.html" target="_blank" title="梅特勒-托利多电位滴定仪的原理和应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "梅特勒-托利多电位滴定仪的原理和应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"李玉琪(梅特勒span-/span托利多 产品专员)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"11:00-11:30/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"光谱分辨型电致化学发光定量分析/span/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"邹桂征(山东大学 教授)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"11:30-12:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113875.html" target="_blank" title="高精度与高兼容性电化学工作站的研究与应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "高精度与高兼容性电化学工作站的研究与应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"张学元(美国spanGAMRY/span电化学 总经理span//span高级仪器专家)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"12:00-13:30/span/strong/p/tdtd width="501" colspan="2" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-family:' 微软雅黑' ,sans-serif"午休/span/strong/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"13:30-14:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113880.html" target="_blank" title="电化学微纳加工设备平台的研制及应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "电化学微纳加工设备平台的研制及应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"詹东平(厦门大学 教授)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"14:00-14:30/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113883.html" target="_blank" title="卡尔费休水分测定仪使用指南" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "卡尔费休水分测定仪使用指南/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"龚雁span(/span瑞士万通 产品经理span)/span/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"14:30-15:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113879.html" target="_blank" title="表面增强红外光谱电化学方法和生物分析应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "表面增强红外光谱电化学方法和生物分析应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"姜秀娥(中科院长春应化所 研究员)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"15:00-15:30/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113877.html" target="_blank" title="原位空间微纳尺度微区扫描电化学原理及应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "原位空间微纳尺度微区扫描电化学原理及应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"黄建书(阿美特克【普林斯顿输力强电化学】 应用经理)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"15:30-16:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113881.html" target="_blank" title="大振幅傅里叶变换伏安法原理、仪器及应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "大振幅傅里叶变换伏安法原理、仪器及应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"王立世(华南理工大学 教授)/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"16:00-16:30/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113882.html" target="_blank" title="溶出伏安法重金属分析仪产品技术及其应用" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "溶出伏安法重金属分析仪产品技术及其应用/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"金建余span(/span上海仪电科仪 副总经理span)/span/span/p/td/trtrtd width="113" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"strongspan style="font-family:' 微软雅黑' ,sans-serif"16:30-17:00/span/strong/p/tdtd width="293" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"a href="https://www.instrument.com.cn/webinar/video_113878.html" target="_blank" title="电化学技术进展" style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline "span style="font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) "电化学技术进展/span/a/p/tdtd width="208" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:left"span style="font-family: ' 微软雅黑' ,sans-serif"牛利(广州大学 教授)/span/p/td/tr/tbody/tablep style="text-align: center "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/ab79f94f-8b88-4a5e-a7bd-276f36d1d975.jpg" title="龙亿涛_副本.jpg" alt="龙亿涛_副本.jpg"//pp style="text-align: center "strong/strongbr//pp style="text-align: center "strong南京大学 龙亿涛教授/strong/pp style="text-align: center "strong《纳米孔道电化学测量仪器研制和应用研究》/strong/pp  纳米孔道电化学分析技术是一种高通量、非标记的单分子测量技术,已用于DNA、多肽和蛋白质单个体的研究。课题组在多年研制的纳米孔道电化学小型仪器装置不仅能够进行单分子、单颗粒的电化学分析研究,并用于本科学生的仪器分析实验课程教学。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/60286085-b4f5-4682-aa16-96ae7e50280d.jpg" title="纪宗媛.jpg" alt="纪宗媛.jpg"//pp style="text-align: center "strong赛莱默分析仪器(北京)有限公司 应用工程师 纪宗媛/strong/pp style="text-align: center "strong《pH电极的选择与应用》/strong/pp  电化学测量方法在一般科学、研究、食品和饮料生产、化学、制药和生物技术等行业变得越来越重要。pH 是电化学测量中应用广泛的测量参数。Xylem Analytics SI在玻璃技术和分析设备开发方面拥有超过75年的经验。结合我们实际应用发现,阐述不同电极结构、电解液成分、玻璃材质等对pH测试的影响,帮助进行各种应用条件下pH 电极的选择,并提供高效应用的方法及注意事项。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/d6f2df5f-a22c-4ee0-aa07-abdc7269b244.jpg" title="卢小泉_副本.jpg" alt="卢小泉_副本.jpg"//pp style="text-align: center "strong西北师范大学 卢小泉教授/strong/pp style="text-align: center "strong《基于界面电荷转移表征的研究》/strong/pp  电荷转移是生命科学的基本问题,它对于材料、能源、环境领域的发展具有重要的意义。然而传统的电化学方法(如循环伏安法、电化学阻抗法、光谱学方法等),只能从宏观角度研究光电化学总体的“平均”过程和性能,不能真实反映电荷转移的局部和微观信息。因此,需要发展微区原位动态地表征技术,从微纳尺度对光电体系的界面电荷转移行为进行整体、原位表征,进而深入理解复杂电荷转移过程与性能的关系。在这里,我们构筑地界面表征方法,如扫描光谱电化学显微镜和强度调节光电流谱,研究了光合作用过程中的光诱导电子转移行为,实现了光电化学体系中光生电荷的直接追踪,为生命、能源、环境的发展提供了思路。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/929f56f4-6393-43d3-ae11-cad72d34f42c.jpg" title="李玉琪.jpg" alt="李玉琪.jpg"//pp style="text-align: center "strong梅特勒-托利多 产品专员 李玉琪/strong/pp style="text-align: center "strong《梅特勒-托利多电位滴定仪的原理和应用》/strong/pp  电位分析法是电分析化学方法的重要分支,它是通过测定原电池电动势进行分析测定的一种方法,包括直接电位法和电位滴定法两种方法。梅特勒-托利多电位滴定仪采用One Click一键滴定理念,仅需一键便可自动执行酸碱滴定、氧化还原滴定、沉淀滴定以及络合滴定的自动化分析,为您提供在制药、化工、检测实验室、食品、电子半导体等行业专业、高效、智能化的解决方案。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/6784c02b-38b7-479f-b677-295cdb88f0ff.jpg" title="邹桂征_副本.jpg" alt="邹桂征_副本.jpg"//pp style="text-align: center "strong山东大学 邹桂征教授/strong/pp style="text-align: center "strong《光谱分辨型电致化学发光定量分析》/strong/pp  电致化学发光光谱采集技术及其相关器件装置研发的情况概览、光谱分辨型电致化学发光定量分析及其具体应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/1f49ad5f-8be4-4f10-97f2-c1eda3ab28a8.jpg" title="张学元_副本.jpg" alt="张学元_副本.jpg"//pp style="text-align: center "strong美国GAMRY电化学 总经理/高级仪器专家 张学元/strong/pp style="text-align: center "strong《高精度与高兼容性电化学工作站的研究与应用》/strong/pp  本报告针对国际品牌美国Gamry电化学工作站的低电流、低噪声、低阻抗、高精度与高兼容性电化学工作站的原理与研究现状进行汇报,阐述其在生物传感器、能源、腐蚀、电分析化学等等领域的应用,加深理解电化学工作站的技术参数和工作站原理的理解。同时会针对其高兼容性进行解析,从仪器角度阐述其和投射电镜、红外、质谱、拉曼、晶体微天平、扫描显微镜、旋转圆盘电极系统等等仪器的联用与注意事项。最后希望达到大家共同提高电分析化学的测试技术,更好地原位研究电化学这一现象而解决科学与工程技术问题。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/167e0fcd-87a2-4174-83bf-9c0f3619aadd.jpg" title="詹东平_副本.jpg" alt="詹东平_副本.jpg"//pp style="text-align: center "strong厦门大学 詹东平教授/strong/pp style="text-align: center "strong《电化学微纳加工设备平台的研制及应用》/strong/pp  电化学微纳加工是化学和机械工程大学科交叉领域。由于无工具磨顺、无残余应力、无表层物理和化学损伤等优点,电化学微纳加工在特种加工和微纳制造领域具有不可替代的一席之地。报告将介绍厦门大学所开展的电化学微纳加工原理、设备研制和技术应用方面取得的最新进展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/2cfd1008-58f8-4800-a5da-2be7bfb8186a.jpg" title="龚雁.jpg" alt="龚雁.jpg"//pp style="text-align: center "strong瑞士万通中国有限公司 产品经理 龚雁/strong/pp style="text-align: center "strong《卡尔费休水分测定仪使用指南》/strong/pp  1) 卡尔费休水分测定仪基本原理/pp  2) 卡尔费休水分仪的选择/pp  3) 卡尔费休水分仪的常见应用/pp  4) 如何使用好卡尔费休水分测定仪/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/3e891ea1-08ac-47a5-90b9-fdd11ecccbe4.jpg" title="姜秀娥.jpg" alt="姜秀娥.jpg"//pp style="text-align: center "strong中科院长春应化所 姜秀娥研究员/strong/pp style="text-align: center "strong《表面增强红外光谱电化学方法和生物分析应用》/strong/pp  因贵金属薄膜可以充当工作电极,基于贵金属电磁场增强效应发展的表面增强红外光谱电化学联用技术是研究电化学调制下,表界面反应机制的有力手段。基于此,我们研究了电位调控下膜蛋白功能变化 揭示了纳米材料与仿生膜的弱相互作用力及磷脂磷酸基团上局域结构水对界面静电势修饰机制和对蛋白与仿生线膜弱相互作的调控原理。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/bd49fe68-ca25-4b0f-aeb5-8c7d5b0d5555.jpg" title="黄建书_副本.jpg" alt="黄建书_副本.jpg"//pp style="text-align: center "strong阿美特克(普林斯顿输力强电化学) 应用经理 黄建书/strong/pp style="text-align: center "strong《原位空间微纳尺度微区扫描电化学原理及应用》/strong/pp  传统的电化学方法基于样品的宏观平均响应表征,在局部腐蚀、能源材料、光/电催化活性、电致变色、微流控组装,生物医学、多维梯度材料等研究方面,面临诸多挑战。国内外相关研究表明,微区扫描电化学技术以其原位微纳尺度空间分辨率等特点,在上述热门研究方面显示出巨大优势及广阔应用前景。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/bc334c07-8615-4fb5-94a7-b02fb6d27e15.jpg" title="王立世.jpg" alt="王立世.jpg"//pp style="text-align: center "strong华南理工大学 王立世教授/strong/pp style="text-align: center "strong《大振幅傅里叶变换伏安法原理、仪器及应用》/strong/pp  近年来,在电分析研究领域,研究者主要集中于电极体系的功能化和新应用领域的拓展上,而在新型电分析实验方法上的进展却不大。通过原理创新、仪器开发和应用实践,本课题组在傅里叶变换伏安法方面进行了系列工作,取得了很好的进展,有力地推进了传统伏安法研究手段的进步。在此,将对完成的大振幅傅里叶变换伏安法原理、仪器及应用等进行介绍。其中,将对大振幅傅里叶变换方波伏安法、阶梯正弦伏安法、正弦伏安法、单阶跃伏安法及任意函数伏安法仪器的原理和特点进行对比,并重点介绍大振幅傅里叶变换伏安法分析仪器所基于的工作原理、应用举例和实验验证结果等。通过比对和介绍可以归纳出,所给出的大振幅傅里叶变换伏安法分析仪器具有多方面的技术优势,包括解析能力、选择性、同步分辨能力和数据处理能力等,从而使该仪器将具有广泛的应用范围。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/9b1f60d8-1d21-4ed7-9dab-4f676bc3433b.jpg" title="金建余.jpg" alt="金建余.jpg"//pp style="text-align: center "strong上海仪电科学仪器股份有限公司 副总经理 金建余/strong/pp style="text-align: center "strong《溶出伏安法重金属分析仪产品技术及其应用》/strong/pp  阳极溶出伏安法是一种非常灵敏的重金属检测方法,具有ppb级的检出限。相比原子吸收等传统分析仪器,溶出伏安法重金属分析仪具有操作简单、小巧便携、经济安全等优点。上海雷磁对溶出伏安法重金属分析仪进行了十余年的技术研究,实现了十种重金属离子的检测,并将其应用于饮用水安全、环境保护、食品安全等众多领域的重金属检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/f4a783d4-5469-4df5-8550-388b47563cd2.jpg" title="牛利.jpg" alt="牛利.jpg"//pp style="text-align: center "strong广州大学 牛利教授/strong/pp style="text-align: center "strong《电化学技术进展》/strong/pp  综述了电化学技术方法及仪器系统的发展历程,并就国内电化学仪器相关领域做了简要介绍 针对电化学技术方法的特点,简述了电化学技术方法及仪器的应用领域,同时也介绍了传统电化学技术方法的一些最新功能拓展。最后就科学仪器产业现状及电化学仪器发展趋势给出了一些自己的个人观点。/p
  • 2015科学仪器优秀新品入围名单:电化学、元素分析、行业专用及其他仪器
    p  strong仪器信息网讯/strong 第十届“科学仪器优秀新产品”评选活动于2015年3月份开始筹备,共有258家国内外仪器厂商申报了590台2015年度上市的仪器新品。经仪器信息网编辑初审、2015中国科学仪器发展年会新品组委会初评,现已确定本届“科学仪器优秀新产品”的入围名单。所有申报的仪器中约有三分之一入围。/pp  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在“a href="http://www.instrument.com.cn/accsi/2016/" target="_blank" title="" style="color: rgb(255, 0, 0) text-decoration: underline "strongspan style="color: rgb(255, 0, 0) "2016年中国科学仪器发展年会/span/strong/a”上揭晓并颁发证书,评审结果将在多家专业媒体上公布。/pp  本届申报的新品中共有70台电化学、元素分析、行业专用及其他仪器通过新品组初审,其中14台入围了2015年“科学仪器优秀新产品”,入围名单如下(排名不分先后):/ptable border="1" cellpadding="0" cellspacing="0"colgroupcol width="35"/col width="295"/col width="109"/col width="71"/col width="229"//colgrouptbodytrtd width="35" align="left" valign="middle"strong序号/strong/tdtd width="295" align="left" valign="middle"strong仪器名称/strong/tdtd width="109" align="left" valign="middle"strong型号/strong/tdtd width="71" align="left" valign="middle"strong创新点/strong/tdtd width="229" align="left" valign="middle"strong公司名称/strong/td/trtrtd align="left" valign="middle"1/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C223269.htm" target="_blank"AT-710M旗舰型自动电位滴定仪/a/tdtd width="109" align="left" valign="middle"AT-710M/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=5914" target="_blank" title="AT-710M旗舰型自动电位滴定仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH101637/" target="_blank"可睦电子(上海)商贸有限公司-日本京都电子(KEM)/a/td/trtrtd align="left" valign="middle"2/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C233025.htm" target="_blank"输力强多功能光电化学测试系统/a/tdtd width="109" align="left" valign="middle"ModuLab XM PhotoEchem IPCE/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6085" target="_blank" title="输力强多功能光电化学测试系统"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100858/" target="_blank"阿美特克科学仪器部(普林斯顿及输力强)/a/td/trtrtd align="left" valign="middle"3/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C234195.htm" target="_blank"雷磁ZDJ-5B型自动滴定仪/a/tdtd width="109" align="left" valign="middle"ZDJ-5B/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6389" target="_blank" title="雷磁ZDJ-5B型自动滴定仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/sh100463/" target="_blank"上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司)/a/td/trtrtd align="left" valign="middle"4/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C238202.htm" target="_blank"AUT-Rotating Ring-Disk Electrode 旋转环盘电极/a/tdtd width="109" align="left" valign="middle"AUT-RDE/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6290" target="_blank" title="AUT-Rotating Ring-Disk Electrode 旋转环盘电极"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100311/" target="_blank"瑞士万通中国有限公司--实验室分析仪器/a/td/trtrtd align="left" valign="middle"5/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C239260.htm" target="_blank"海能仪器T960全自动滴定仪/a/tdtd width="109" align="left" valign="middle"T960/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6413" target="_blank" title="海能仪器T960全自动滴定仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH101343/" target="_blank"济南海能仪器股份有限公司/a/td/trtrtd align="left" valign="middle"6/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C240949.htm" target="_blank"瑞士万通884专业型伏安极谱仪/a/tdtd width="109" align="left" valign="middle"884/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6289" target="_blank" title=" 瑞士万通884专业型伏安极谱仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100311/" target="_blank"瑞士万通中国有限公司--实验室分析仪器/a/td/trtrtd align="left" valign="middle"7/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C231028.htm" target="_blank"REFP-1型电化学发光成像分析仪/a/tdtd width="109" align="left" valign="middle"REFP-1/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6060" target="_blank" title="REFP-1型电化学发光成像分析仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100665/" target="_blank"西安瑞迈分析仪器有限责任公司/a/td/trtrtd align="left" valign="middle"8/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C229177.htm" target="_blank"杜马斯定氮仪/a/tdtd width="109" align="left" valign="middle"Primacs SN100/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6035" target="_blank" title="杜马斯定氮仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/sh100564/" target="_blank"昌信科学仪器公司/a/td/trtrtd align="left" valign="middle"9/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C243003.htm" target="_blank"海能仪器D100杜马斯定氮仪/a/tdtd width="109" align="left" valign="middle"D100/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6410" target="_blank" title="海能仪器D100杜马斯定氮仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH101343/" target="_blank"济南海能仪器股份有限公司/a/td/trtrtd align="left" valign="middle"10/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C198968.htm" target="_blank"钢研纳克NX-100F食品重金属检测仪/a/tdtd width="109" align="left" valign="middle"NX-100F/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=5771" target="_blank" title="钢研纳克NX-100F食品重金属检测仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100354/" target="_blank"钢研纳克检测技术有限公司/a/td/trtrtd align="left" valign="middle"11/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C220885.htm" target="_blank"FoodScreener 葡萄酒筛选分析仪/a/tdtd width="109" align="left" valign="middle"Wine Profiling module/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6523" target="_blank" title="FoodScreener 葡萄酒筛选分析仪"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100343/" target="_blank"布鲁克(北京)科技有限公司/a/td/trtrtd align="left" valign="middle"12/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C234853.htm" target="_blank"EOPC全自动食用油极性组分分离系统/a/tdtd width="109" align="left" valign="middle"EOPC全自动食用油极性组分分离系统/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6448" target="_blank" title="EOPC全自动食用油极性组分分离系统"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100800/" target="_blank"博纳艾杰尔科技/a/td/trtrtd align="left" valign="middle"13/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C243553.htm" target="_blank"吉大小天鹅300M集成式食品安全快检系统/a/tdtd width="109" align="left" valign="middle"GDYQ-300M/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6503" target="_blank" title="吉大小天鹅300M集成式食品安全快检系统"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/SH100300/" target="_blank"长春吉大· 小天鹅仪器有限公司/a/td/trtrtd align="left" valign="middle"14/tdtd width="295" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/C233060.htm" target="_blank"日本QS-SOLUTION新鲜度测定仪IRS1200/a/tdtd width="109" align="left" valign="middle"IRS1200/tdtd width="71" align="left" valign="middle"a href="http://www.instrument.com.cn/newproduct/innovation.asp?id=6107" target="_blank" title="日本QS-SOLUTION新鲜度测定仪IRS1200"查看/a/tdtd width="229" align="left" valign="middle"a href="http://www.instrument.com.cn/netshow/sh101068/" target="_blank"北京盈盛恒泰科技有限责任公司/a/td/tr/tbody/tablepbr//pp  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量与2014年度上市新品基本一致。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。/pp  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在a href="http://www.instrument.com.cn/newproduct/" target="_blank" title="" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong新品栏目/strong/span/a进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2015年上市的仪器新品,请您于2016年3月26日前向“中国科学仪器发展年会新品评审组”举报和反映情况,一经核实,新品评审组将取消其入围资格。/pp  2015科学仪器优秀新品评审组 联系方式:/pp  传真:010-82051730/pp  电子信箱:xinpin@instrument.com.cn/ppbr//p
  • 得利特深度研究工业溶氧仪电化学法测量方法
    得利特近日关于工业在线溶解氧测量方法做了具体的研究讨论,技术员工进行了内部会议。他们提到以下内容:水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。  工业溶氧仪测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量,荧光法。水中溶氧量一般采用电化学法测量。  氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利定律和道尔顿定律确定,亨利定律认为气体的溶解度与其分压成正比。  氧量测量传感器由阴极和带电流的反电极、无电流的参比电极组成,传感器有隔膜覆盖,覆膜将电极和电解质与被测量的液体分开,只有溶解气体能渗透覆膜,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵人而导致污染和毒化。  电流的大小与被测污水的氧的分压成正比,该信号连同传感器上热电阻测出的温度信号被送人变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 华北理工大学250.00万元采购电化学工作站,手套箱,过程质谱,热重分析仪
    详细信息 华北理工大学煤焦化新技术研发平台建设项目(贴息贷款)竞争性磋商公告 河北省-唐山市-路北区 状态:公告 更新时间: 2022-12-13 华北理工大学煤焦化新技术研发平台建设项目(贴息贷款)竞争性磋商公告 发布时间: 2022-12-13 一、项目基本情况 项目编号: SSTSHW2022032 项目名称: 华北理工大学煤焦化新技术研发平台建设项目(贴息贷款) 采购方式: 竞争性磋商 预算金额: 2500000.00 最高限价: 包1:360000元;包2:2140000元 采购需求: 包1:CASTEP 第一性原理分析系统;包2:多级型煤炭定向中高温干馏多相反应综合分析系统1套,煤热解气体在线质谱分析系统1套,密封颚式破碎机2台,立式粒焦反应性测定仪3台,热重分析仪2台,手套箱1套,电化学工作站2台; #detail# 合同履行期限: 自合同签订后30日内 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 包1:该项目非专门面向中小企业或小微企业采购;包2该项目专门面向中小企业采购;供应商为小微企业或监狱企业或残疾人福利性单位的,按政府采购政策要求,给予相应的价格扣除。 3.本项目的特定资格要求: 未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人、重大税收违法案件当事人名单,未被列入中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单。 三、获取招标文件 时间: 2022年12月15日至 2022年12月21日, 00:00-12:00-12:00-23:59(北京时间,法定节假日除外) 地点: 在河北省公共资源交易服务平台(http://www.hebpr.cn)网上报名,下载磋商文件及相关资料,并及时查看有无澄清和补充通知。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月27日14点30分(北京时间) 地点: 河北省公共资源交易服务平台 四、响应文件提交 截止时间: 2022年12月27日14点30分 五、开启 时间: 2022年12月27日14点30分 地点: 河北省公共资源交易服务平台 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、供应商需先在河北省公共资源交易服务平台(http://www.hebpr.cn/)进行注册,如已完成注册的无需再次注册。因供应商自身的原因未能在有效时间内完成注册,将会导致报名不成功,其后果由供应商自负;注册完成后登录河北省公共资源交易服务平台(http://www.hebpr.cn/)下载磋商文件,并及时查看有无澄清和修改。供应商如未在“河北省公共资源交易服务平台”下载磋商文件及相关资料,或未获取到完整资料,导致投标被否决,自行承担责任。 2、本项目采用网上全流程电子化采购。已在河北省公共资源交易服务平台市场主体库通过资格确认(注册登记)并办理其中任意一家 CA 证书(包括河北 CA、北京 CA、山西吉大 CA、联通 CA、CQCCA、CFCA)的供应商可直接登录河北省公共资源交易服务平台下载文件,CA技术支持电话:400-998-0000;CA认证服务热线:河北CA:400-707-3355;北京CA:400-994-3319;山西吉大CA:400-653-0200;联通CA:0311-85691619;CFCA:400-800-9888;CQCCA:400-819-9995。 3、本公告发布媒体:中国政府采购网、中国河北政府采购网、河北省公共资源交易服务平台、华北理工大学官网。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 华北理工大学 地址: 唐山市曹妃甸新城渤海大道21号 联系方式: 李老师 0315-8805199 2.采购代理机构信息 名 称: 河北首善工程项目管理有限公司 地 址: 唐山市路北区雅园商务中心719室 联系方式: 张巧玲 0315-2218441 3.项目联系方式 项目联系人: 张巧玲 电 话: 0315-2218441 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:电化学工作站,手套箱,过程质谱,热重分析仪 开标时间:2022-12-27 14:30 预算金额:250.00万元 采购单位:华北理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河北首善工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华北理工大学煤焦化新技术研发平台建设项目(贴息贷款)竞争性磋商公告 河北省-唐山市-路北区 状态:公告 更新时间: 2022-12-13 华北理工大学煤焦化新技术研发平台建设项目(贴息贷款)竞争性磋商公告 发布时间: 2022-12-13 一、项目基本情况 项目编号: SSTSHW2022032 项目名称: 华北理工大学煤焦化新技术研发平台建设项目(贴息贷款) 采购方式: 竞争性磋商 预算金额: 2500000.00 最高限价: 包1:360000元;包2:2140000元 采购需求: 包1:CASTEP 第一性原理分析系统;包2:多级型煤炭定向中高温干馏多相反应综合分析系统1套,煤热解气体在线质谱分析系统1套,密封颚式破碎机2台,立式粒焦反应性测定仪3台,热重分析仪2台,手套箱1套,电化学工作站2台; #detail# 合同履行期限: 自合同签订后30日内 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 包1:该项目非专门面向中小企业或小微企业采购;包2该项目专门面向中小企业采购;供应商为小微企业或监狱企业或残疾人福利性单位的,按政府采购政策要求,给予相应的价格扣除。 3.本项目的特定资格要求: 未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人、重大税收违法案件当事人名单,未被列入中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单。 三、获取招标文件 时间: 2022年12月15日至 2022年12月21日, 00:00-12:00-12:00-23:59(北京时间,法定节假日除外) 地点: 在河北省公共资源交易服务平台(http://www.hebpr.cn)网上报名,下载磋商文件及相关资料,并及时查看有无澄清和补充通知。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月27日14点30分(北京时间) 地点: 河北省公共资源交易服务平台 四、响应文件提交 截止时间: 2022年12月27日14点30分 五、开启 时间: 2022年12月27日14点30分 地点: 河北省公共资源交易服务平台 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、供应商需先在河北省公共资源交易服务平台(http://www.hebpr.cn/)进行注册,如已完成注册的无需再次注册。因供应商自身的原因未能在有效时间内完成注册,将会导致报名不成功,其后果由供应商自负;注册完成后登录河北省公共资源交易服务平台(http://www.hebpr.cn/)下载磋商文件,并及时查看有无澄清和修改。供应商如未在“河北省公共资源交易服务平台”下载磋商文件及相关资料,或未获取到完整资料,导致投标被否决,自行承担责任。 2、本项目采用网上全流程电子化采购。已在河北省公共资源交易服务平台市场主体库通过资格确认(注册登记)并办理其中任意一家 CA 证书(包括河北 CA、北京 CA、山西吉大 CA、联通 CA、CQCCA、CFCA)的供应商可直接登录河北省公共资源交易服务平台下载文件,CA技术支持电话:400-998-0000;CA认证服务热线:河北CA:400-707-3355;北京CA:400-994-3319;山西吉大CA:400-653-0200;联通CA:0311-85691619;CFCA:400-800-9888;CQCCA:400-819-9995。 3、本公告发布媒体:中国政府采购网、中国河北政府采购网、河北省公共资源交易服务平台、华北理工大学官网。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 华北理工大学 地址: 唐山市曹妃甸新城渤海大道21号 联系方式: 李老师 0315-8805199 2.采购代理机构信息 名 称: 河北首善工程项目管理有限公司 地 址: 唐山市路北区雅园商务中心719室 联系方式: 张巧玲 0315-2218441 3.项目联系方式 项目联系人: 张巧玲 电 话: 0315-2218441
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 氨氮测定仪的优化与维护
    氨氮测定仪的优化——提高检测精度和效率的新思路氨氮测定仪是一种用于检测水体中氨氮含量的重要仪器。然而,在实际使用中,由于各种原因,其检测精度和效率有时会受到影响。为了提高氨氮测定仪的检测精度和效率,以下是一些优化建议:更新检测技术:氨氮测定仪的检测技术是关键。更新检测技术,采用更先进的光学、电化学等检测方法,可以提高仪器的检测精度和稳定性。优化软件算法:软件算法对氨氮测定仪的检测速度和精度有着重要的影响。优化软件算法,提高算法的准确性和效率,可以加快检测速度,提高检测精度。提高仪器稳定性:仪器的稳定性对检测结果的准确性有着重要影响。提高仪器的稳定性,可以减少由于仪器本身原因引起的误差,提高检测精度。强化培训和管理:培训和管理是提高氨氮测定仪检测精度和效率的重要环节。加强对操作人员的培训,提高操作人员的技能和经验水平,同时加强设备管理,定期维护和校准仪器,可以保证检测精度和效率的稳定提高。通过以上优化建议,可以有效地提高氨氮测定仪的检测精度和效率。同时,在使用过程中,还需要注意仪器的保养和维护,确保仪器处于良好的工作状态,从而提高检测结果的准确性和可靠性。
  • 华洋科仪携Bio-Logic电化学产品参加第十九次全国电化学大会
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会于2017年12月1-4日在上海国际会议中心举行。全国电化学大会是国内规模最大、范围最广的电化学学术盛会和高水平的学术交流平台。本届大会主题是“电化学与可持续发展”,围绕电化学科学和技术发展中的基础、应用和前沿问题,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料等重要领域的应用,实现社会的可持续发展。 大会由南开大学、电化学会主席陈军院士致开幕词,大会主席上海电力学院校长李和兴致欢迎词。开幕式现场 华洋科仪作为电化学专业委员会委员,一直倾情支持和赞助全国电化学大会。已连续六届作为主要的赞助商之一参会。本届由华洋科仪赞助的大会最佳组织奖由厦门大学、南开大学和上海电力学院获得。 华洋科仪在三层展厅向电化学科学家们展示了可广泛用于电池,超级电容器,燃料电池,基础电化学,电分析,腐蚀科学等领域的法国Bio-Logic的高性能电化学工作站、电池测试系统、微区扫描电化学工作站、阻抗分析仪等电化学测量仪器,不但获得了新老客户的赞赏,也获得了众多科研工作者的关注。 为活跃会场气氛我司的幸运大转盘抽奖活动,吸引了众多与会人员参加。华洋科仪的暖心举动,让参会人员倍感温暖!颁奖仪式一瞥 展位一角李永舫院士莅临华洋科仪Bio-Logic展台 大会开幕式主持人徐群杰教授参观我司展位 幸运一等奖留念 给力的华洋科仪参会代表团 华洋科仪市场部 2017年12月6日
  • 锂离子电池电化学测量方法分类介绍
    p  strong1 稳态测量/strong/pp  1.1 稳态过程与稳态系统的特征/pp  一个电化学系统,如果在某一时间段内,描述电化学系统的参量,如电极电势、电流密度、界面层中的粒子浓度及界面状态等不发生变化或者变化非常微小,则称这种状态为电化学稳态。/pp  稳态不等同于平衡态,平衡态是稳态的一个特例。同时,绝对的稳态是不存在的,稳态和暂态也是相对的。稳态和暂态的分界线在于某一时间段内电化学系统中各参量的变化是否显著。/pp  1.2 稳态极化曲线的测量方法/pp  稳态极化曲线的测量按照控制的自变量可分为控制电流法和控制电势法。/pp  控制电流法亦称之为恒电流法,恒定施加电流测量相应电势。控制电势法亦称之为恒电位法,控制研究电极的电势测量响应电流。/pp  本质上恒电流法和恒电势法在极化曲线的测量方面具有相同的功能,如果电化学体系中存在电流极大值时选择恒电势法,存在电势极大值时选择恒电流法。/pp  1.3 稳态测量方法的应用/pp  稳态极化曲线是研究电极过程动力学最基本的方法,在电化学基础研究方面有着广泛的应用。可根据极化曲线判断反应的机理和控制步骤 可以测量体系可能发生的电极反应的最大反应速率 可以测量电化学过程中的动力学参数,如交换电流密度、传递系数、标准速率常数和扩散系数等 可以测定Tafel 斜率,推算反应级数,进而获取反应进程信息 此外,还可以利用极化曲线研究多步骤的复杂反应,研究吸附和表面覆盖等过程。/pp  strong2 暂态测量/strong/pp  2.1 暂态过程与暂态系统的特征/pp  暂态是相对稳态而言的,随着电极极化条件的改变,电极会从一个稳态向另一个稳态转变,在此期间所经历的不稳定的、电化学参量显著变化的过程称之为暂态过程。/pp  暂态过程具有如下基本特征:①存在暂态电流——该电流由双电层充电电流和电化学反应电流组成,前者又称之为非法拉第电流或电容电流,后者常常称之为法拉第电流 ②界面处存在反应物与产物粒子的浓度梯度——即电极/溶液界面处反应物与产物的粒子浓度,如前所述,不仅是空间位置的函数,同时也是时间的函数。/pp  2.2 暂态过程中的等效电路分析及其简化/pp  由于暂态过程中的各参量是随时间变化的,与稳态过程比较,更为复杂。为便于分析和讨论,将各电极过程以电路元件组成的等效电路的形式来描述电极过程,等效电路施加电流后的电压响应,应与电极过程的电流电压响应一致。典型的两电极测量体系等效电路如图 5 所示。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/a705964b-ec79-49be-86a2-0967442f14c9.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图 5 两电极体系电解池的等效电路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  Fig.5 Equivalent circuit of two electrode system/span/pp  图 5 中,A 和 B 分别代表研究电极和辅助电极(两电极体系),R A 和 R B 分别表示研究电极和辅助电极的欧姆电阻,C AB 表示两电极之间的电容,R u表示两电极之间的溶液电阻,C d 和 C d ' 分别表示研究电极和辅助电极的界面双电层电容,Z r 和 Z r ' 分别表示研究电极和辅助电极的法拉第阻抗。/pp  若 A、B 均为金属电极,则 R A 和 R B 很小,可忽略 由于两电极之间的距离远大于界面双电层的厚度,故 C AB 比双电层电容 C d 和 C d ' 小得多,当溶液电阻 R u 不是很大时,由 C AB 带来的容抗远大于 R u ,故C AB 支路相当于断路,可忽略 此外,若辅助电极面积远大于研究电极面积,则 C d ' 远大于 C d ,此时,C d ' 容抗很小,相当于短路,故等效电路(图 5)最终可简化为如图 6 所示。这相当于在电池中一个电极的电阻很小时的情况,如采用金属锂负极的两电极电池。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/29358b29-15c6-41d9-a13a-a6df8af6f153.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图 6 两电极体系电解池的简化电路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  Fig.6 Simplified circuit of two electrode system/span/pp  由于电极过程的多步骤和复杂性,不同速率控制步骤下,电极体系的等效电路不尽相同,有时可以进一步简化,常见的有如下三种情形。/pp  (1)传荷过程控制下的等效电路/pp  暂态过程中由于暂态电流的作用使得电极溶液界面处存在双电层充电电流,该双电层类似于平行板电容器,可用 C d 表示,相应的充电电流的大小用i c 来表示。此外,界面处还存在着电荷的传递过程,电荷的传递过程可用法拉第电流来描述,由于电荷传递过程的迟缓性,导致法拉第电流引起了电化学极化过电势,该电流-电势的关系类似于纯电阻上的电流-电势关系,因而电荷传递过程可以等效为一个纯电阻响应,用 R ct 表示。由于传荷电阻两端的电压是通过双电层荷电状态的改变而建立起来的,因而,一般认为 R ct 与 C d 在电路中应属于并联关系,传荷过程控制下的简化等效电路如图 7 所示。需要指出的是,这一简化模型基于传统电化学体系,锂离子电池中,电极在多数状态下。大量电荷存储在电极内,造成电容效应,可以称之为化学电容 C chem ,与C dl 应该是串联关系。在实验上与 R ct 并联显示在阻抗谱半圆上的到底应该是电双层电容还是化学电容还是两种电容之和取决于哪一个电容值更低。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/4da71da6-e74d-48c7-baa1-c8b81d1d0072.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图 7 传荷过程控制下的界面等效电路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  Fig.7 Equivalent circuit of interface under the conditionof charge transfer/span/pp  (2)浓差极化不可忽略时的等效电路/pp  暂态过程中,对于惰性电极,由于电极/溶液界面处存在暂态电流,因此开始有电化学反应的发生,界面处不断发生反应物消耗和产物积累,开始出现反应物产物浓度差。随着反应的进行,浓度差不断增大,扩散传质过程进入对流区,电极进入稳态扩散过程,建立起稳定的浓差极化过电势,由于浓差极化过电势滞后于电流,因此电流-电势之间的关系类似于一个电容响应。可以用一个纯电阻 R w 串联电容 C w 表示。该串联电路可用半无限扩散模型来模拟,如图 8 所示。这种情况在电池中也会经常出现。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/963f9efd-7c04-4fb1-853d-a76ccf60a7c3.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图 8 半无限扩散阻抗等效电路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  Fig.8 Impedance equivalent circuit of semi-infinitidiffusion/span/pp  上述 R w 和 C w 的串联结构可用一个复数阻抗 Z w来表示,Z w 可理解为半无限扩散阻抗。由于扩散传质过程和电荷传递过程同时进行,因而两者具有相同的电化学速率,在电路中应属于串联关系。一般在阻抗谱上表现为 45 o 的斜线。在锂离子电池中,取决于电极材料颗粒尺寸的大小和孔隙率的大小,锂离子在电极材料内部的扩散或者在电极层颗粒之间的孔隙或者含孔颗粒内电解质相的扩散成为控制步骤。由于存在边界条件约束,往往显示出有限边界条件下的扩散。在浓差极化不可忽略的情形下,可以如图 9 所示。有限边界条件下扩散的等效电路元件只是将 Z w 换为相应的等效电路扩散元件。/pp  (3)溶液电阻不可忽略时的界面等效电路/pp  当溶液电阻不可忽略时,由于极化电流同时流经界面和溶液,因而溶液电阻与界面电阻应属于串联关系,典型的浓差极化不可忽略、溶液电阻不可忽略时的等效电路如图 10 所示。在锂离子电池中,由于是多孔粉末电极,有时电极的欧姆电阻也不可忽略,与电解质电阻是串联关系,一般合并在一项中。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0ae51846-5fa6-44f0-a26d-d5dd6b3603ba.jpg" title="9.jpg" alt="9.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图 9 浓差极化不可忽略时的界面等效电路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  Fig.9 Equivalent circuit of interface under the conditionof concentration polarization/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/ac8e06da-7dd5-42e8-a1de-5cbca2510e05.jpg" title="10.jpg" alt="10.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "/spanbr//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图 10 包含 4 个电极基本过程的等效电路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  Fig.10 Equivalent circuit including four basic electrodeprocess/span/pp  2.3 暂态测量方法的分类及其特点/pp  暂态过程测量方法按照自变量的控制方式可分为控制电流法和控制电势法 按照自变量的给定方式可分为阶跃法、方波法、线性扫描法和交流阻抗法。用暂态测量能比稳态测量给出更多的电化学参量信息。一般来说,暂态测量法具有如下特点:①暂态法可以同时测量双电层电容 C d 和溶液电阻 R u ②暂态法能够测量电荷传递电阻 R ct 。因此,能够间接测量电化学过程中标准速率常数和交换电流的大小 ③暂态法可研究快速电化学反应,通过缩短极化时间,如以旋转圆盘电极代替普通电极,并加快旋转速度,可以降低浓差极化的影响,当测量时间小于 10 ?5 s 时,暂态电流密度可高达 10 A/cm 2 ④暂态法可用于研究表面快速变化的体系,而在稳态过程中,由于反应产物会不断积累,电极表面在反应时不断受到破坏,因而类似于电沉积和阳极溶解过程,很难用稳态法进行测量 ⑤暂态法有利于研究电极表面的吸脱附结构和电极的界面结构,由于暂态测量的时间非常短,液相中的杂质粒子来不及扩散到电极表面,因而暂态法可用于研究电极反应的中间产物和复杂的电极过程。/pp  以上两小节介绍的内容主要适用于传统的电化学体系,氧化还原反应发生在电极表面,电极为惰性电极,电解质为稀浓度电解质,更详细准确的描述参见电化学的教科书。锂电池与传统电化学测量体系显著不同之处是氧化还原反应发生在电极内部而非电极表面,离子的扩散、电荷转移,相变可以发生在电极内部。锂电池的电极一般是非均相多孔粉末电极,孔隙之中存在着电解液,电解液中离子的浓度达到 1 mol/L 甚至更高, 这些不同导致获得可靠的锂离子电池电极过程动力学参数非常困难。而锂空气电池的研究涉及到多种中间产物的分析,圆盘电极和环盘电极等暂态测量被广泛应用。/ppspan style="color: rgb(127, 127, 127) "i  文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所)/i/span/p
  • 全国食品直接接触材料及制品标准化技术委员会发布《食品金属容器 双酚A迁移量的电化学测定法》行业标准(征求意见稿)
    附件:1-食品金属容器 双酚A迁移量的电化学测定法( 征求意见稿)2-《食品金属容器 双酚A迁移量的电化学测定法》行业标准编制说明(征求意见稿)3-行业标准(征求意见稿)意见反馈表
  • 创新产品:电化学式酶抑制法快速农残检测仪
    仪器信息网讯 7月18日,2015北京国际食品及农产品安全检测技术展览会在北京国家会议中心召开。在同期举办的“食品和农产品安全检测技术研讨会”中,来自台湾的恩莱生医科技股份有限公司王文博士给与会听众介绍了一款全新的农药残留快速检测产品。该产品仍然采用酶抑制发的原理,但与传统相比不同的是酶抑制率是通过电化学方式进行表达。恩莱生医科技股份有限公司 王文博士  该产品原理是采用双酵素反应机制,乙酰胆碱通过乙酰胆碱酶水解生成胆碱和乙酸,胆碱在胆碱氧化酶的作用下生成双氧水和甜菜碱,双氧水通过外加电位生成氧气、两个氢离子和两个负电子,通过电极产生电信号。有机磷及氨基甲酸酯类农药对乙酰胆碱酶的抑制,影响后续的反应机制,进而产生有别电信号,通过分析有别电信号与原信号的差异来进行检测结果的判定。反应原理图  传统的酶抑制率是通过目测颜色变化或通过分光光度计测定吸光度值来计算,目测颜色变化很难精确表达检测结果 而采用分光光度计测定吸光度值尽管数据相对精确,但是在仪器小型化、便携化发展趋势下有其局限性。市场上的小型化的光学式酶抑制法快速检测仪器,通常采用LED光源,但测量准确度不高。  而电化学技术相对成熟,仪器设计简单,价格低廉,灵敏度及准确性高。在仪器满足小型化的需求的同时,还能保持高准确度,检测结果可直接读数。其优势明显,可携带,准确性和再现性佳,操作简单,检测时间短,10分钟即可完成检测。安心测农药残留快速检测系统恩莱生医科技股份有限公司展位编辑:孙立桐
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 2019年电化学仪器市场将达22亿美元
    根据国外研究机构MarketsandMarkets最新市场研究显示,全球电化学仪器市场将从2014年的17亿美元增长到2019年的22亿美元,保持5.2%的复合增长率。此报告涉及的产品包括电化学仪表、电位滴定仪和离子色谱,涉及的技术包括电位法、库伦分析法和伏安法,涉及的用户包括环境监测、食品和农业。  从产品角度来看,电化学仪器市场可分为电化学仪表、电位滴定仪、离子色谱、电化学工作站和其他类。2014年,电化学仪表所占市场比例最大。电化学仪表可进一步分为台式和便携式两种,其中台式电化学仪表所占市场份额最大。  从技术角度来看,电化学仪器市场可分为电位法、伏安法、库伦分析法和其他方法。2014年,采用电位法的电化学仪器销售最多。从用户角度来看,电化学仪器市场可分为环境监测产业、生物和制药行业、食品和农业、学术和研究机构和其它产业。2014年,环境监测产业采购了最多的电化学仪器。  按照区域划分,将此市场分为北美、欧洲、亚太和其他地区。其他地区指拉丁美洲、中东和非洲。2014年,电化学仪器市场排名前三的为欧洲、北美和亚太地区。  此市场的增长动力主要源于对多参数仪器需求的增长和人民对水安全更多关注。除此之外,新兴的亚洲市场,全球制药和生物公司研发投入的增加、顶尖研究机构间的联合药物研发等为此市场的未来发展创造了具体的机会。但是,电化学仪器的商品化和平均销售价格的下滑也在一定程度上阻碍了此市场的增长。  目前,全球主要的电化学仪器厂商包括Hanna仪器(美国)、瑞士万通(瑞士)、赛莱默(美国)、梅特勒-托莱多(美国)、DKK(日本)、丹纳赫(美国)、E+H(瑞士)、赛默飞(美国)、横河电子(日本)和堀场(日本)等。
  • 美国Gamry电化学参加 2016全国腐蚀电化学及测试方法学术交流会
    主题为“面向石油、天然气和海洋工程的腐蚀电化学”的2016全国腐蚀电化学及测试方法学术交流会于7月13日~7月15日在中国青岛顺利举行。本次会议由腐蚀与防护学会腐蚀电化学及测试方法专业委员会主办、中国石油大学(华东)协办,来自全国的腐蚀研究者共聚青岛,交流和展示最新成果,讨论腐蚀电化学学科的前沿和发展方向,探索如何进一步推动和拓展腐蚀电化学科学和技术在我国石油工程、天然气工程、海洋工程和水处理中的应用与发展。 美国Gamry电化学仪器公司是电化学专业仪器生产厂商。目前在中国的上海与北京有专门的技术人员与支持中心, 维修中心。 本次大会, 产品经理司国春与技术支持工程师谈天与到会的新、老客户进行了交流和互动。 针对腐蚀领域,Gamry将具有优异测试性能的Ref 600升级至Ref 600 Plus。升级后的Ref 600 Plus频率范围扩展至10μHz~5MHz,电流范围13个量程(600fA~600mA),仪器本身噪声低至μV,具有超高的阻抗测试范围和精度μΩ~TΩ(参考阻抗精度图),集恒电位计、恒电流计、ZRA为一身,可运行完整的直流技术、交流阻抗和电化学噪声测试。优异的浮地性能,轻松应用于石油、天然气管道在线监测,高温高压反应釜等领域。 Interface 1000是另一种最佳选择,包含应用腐蚀领域的各种直流、交流、噪声等测试方法,并可组成多通道,提高测试效率。Gamry多通道系统比较灵活,同型号或不同型号均可组成多通道,各个通道之间相互独立, 也可同时进行测试。 为了更好的让新、老客户了解和熟悉使用Gamry电化学工作站,Gamry计划提供系列培训方式,包括定期上海、北京培训,安装现场培训,网络在线培训以及阻抗/腐蚀专场培训(美国),各种培训详情请参考以下链接:http://cn.gamry.com/training-info.pdf 。诚挚欢迎新、老客户前来参加。
  • 东芝最新电化学DNA芯片可在低浓度下检测DNA
    日本东芝公司(Toshiba)日前宣布研制成功高灵敏度的电化学DNA芯片,这种芯片能够在非常低的浓度下检测DNA。 这款新型芯片集成了目前广泛使用的半导体电路技术之一的CMOS电路及传感器,是对东芝先进DNA芯片系列产品及相关技术的最新补,可迅速投入的应用包括抗癌药物的易感性分析及用于疾病起因的预防性诊断的健康监测。 东芝在2001年10月推出其第一款电化学DNA芯片,采用原始的电流检测方案,用于支持感染肝炎病人单个治疗方案的研制。该芯片能调查单个病人的治疗疗效和副作用。这项研究涵盖六个领域的疾病:肺结核、消化紊乱、抑郁症(ademonia)、高血脂症、心脏停搏(Cardiac Arrest)及癌症等。同年,东芝还针对风湿病患者推出了DNA芯片。根据基因数据,东芝此次推出的新的DNA芯片能测定药物疗效和副作用的可能性,以及与病人可能出现的并发症。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制