当前位置: 仪器信息网 > 行业主题 > >

电动四轮控仪

仪器信息网电动四轮控仪专题为您提供2024年最新电动四轮控仪价格报价、厂家品牌的相关信息, 包括电动四轮控仪参数、型号等,不管是国产,还是进口品牌的电动四轮控仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电动四轮控仪相关的耗材配件、试剂标物,还有电动四轮控仪相关的最新资讯、资料,以及电动四轮控仪相关的解决方案。

电动四轮控仪相关的论坛

  • 梅雨季节:电动车仪表盘、控制器等的灾难日

    汽车是娇贵的,在保养中要面对诸多问题,不仅要应对车祸这类人祸,还要抵抗地段气候的侵袭。比如说最近的梅雨。梅雨季节来了,雨中出行的确有很多不便,尤其对行驶车辆的车主来说。下雨路上总是会有积水,而这也经常会导致很多车辆熄火。电动车能够在积水中行驶么?暴雨对电动车有什么影响? 很多人印象里都会有电动车在积水中穿行的画面,电动车为何能够在积水中行驶而不会像汽车那样容易熄火呢?其实电动车生产厂家会根据行业标准,会对电动车进行防水、防潮、绝缘处理,这就是为什么我们看到很多电动车能够在水中短时间潜行。 一般来说,电动车仪表盘、控制器、蓄电池、电动机最怕水。仪器仪表供应商也会告知这类情况。当电动车后轮的电动机完全没入水中后,短时间内不会造成故障。而当仪表盘如果没入水中后,电动车就很难行驶了。因为电动车的转把是通过仪表系统中的一些线路和控制器建立连接的,因此仪表盘受潮会导致电动车自动断电保护控制器。 尽管电动车在积水中短时间行驶不会趴窝,但是这并不代表对电动车没有影响。电动车上时间泡在水中,会使电动机受到腐蚀,传感器损坏、蓄电池电容量严重下降等。同时电动车内部电子器件也很容易因受潮而损坏。因此,还是爱护你的电动车吧。

  • 用于小流量和真空压力精密调节的灵巧型数控电动针阀

    用于小流量和真空压力精密调节的灵巧型数控电动针阀

    [size=14px][color=#cc0000]摘要:相对于手动针阀和比例阀,数控电动针阀具有数字控制、高灵敏度、快速响应和磁滞小等特点。本文介绍了对标国外产品开发的灵巧型数控电动针阀国产化替代产品,产品具有相同的技术指标性能,但性价比更高。与国内类似数控电动针阀相比,具有体积小巧的特点,更具有二次开发应用的灵活性。同时结合24位高精度控制器,可以充分发挥数控电动针阀的精细调节能力。[/color][/size][size=14px][color=#cc0000][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000]1. 概述[/color][/size][size=14px]  针阀是一种微调阀,其阀塞为针形,主要用作调节气流量。针阀中的针型阀塞能使得阀口开启逐渐变大,从关闭到最大开启能连续细微地调节。针阀做为一种可以精确调节的阀门,用途较广,主要用于气体流量、真空度和压力的精细调节和控制。[/size][size=14px]  常用针阀的调节形式一般是手轮、手柄,但在实验室和工业自动化生产过程中往往需要可连接计算机和其他控制仪器的数字控制式针阀,针阀的开度可进行数字编程控制,如各种高精度分析仪器、半导体工艺设备、真空工艺设备和高精度流量控制等众多领域都会使用到数控电动针阀。[/size][size=14px]  另外,相对于比例阀,数控电动针阀具有灵敏度高和磁滞小的特点。因此针对数控电动针阀的市场需求,上海依阳实业有限公司开发了步进电机驱动的数控电动针阀系列产品,对标国外相应的数控电动针阀产品,具有相同的技术指标性能,但具有更高的性价比。与国内类似数控电动针阀相比,具有体积小巧的特点,更具有二次开发应用的灵活性。同时结合24位高精度控制器,可以充分发挥数控电动针阀的精细调节能力。[/size][color=#cc0000][size=18px]2. 国内外现有数控电动针阀[/size][size=16px]2.1. 国内产品[/size][/color][size=14px]  目前国产数控电动针阀普遍采用在标准针阀上增加常规电动执行器的结构形式,这种结构的典型产品如图2-1所示。采用电动执行器结构的数控电动针阀具有以下特点:[/size][size=14px](1) 电源电压普遍为交流220V(或直流24V),控制信号为直流0~10V(或4~20mA).[/size][size=14px](2) 普遍借鉴了用于球阀和蝶阀的电动执行器,造成体积庞大。[/size][size=14px](3) 固有可调比一般为50:1,调节和控制精度较差。[/size][size=14px](4) 调节响应时间较慢,存在严重的滞后现象,开关时间至少5秒以上。[/size][size=14px](5) 阀门口径普遍较大,最小也只能达到1/4”,比较适合较大流量的调节和控制。[/size][size=14px](6) 整体耐压较高,比较适合高压大流量的调节和控制。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115042592_8525_3384_3.png!w690x416.jpg[/img][/size][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 典型国产电动执行器结构数控电动针阀[/color][/align][size=16px][color=#cc0000]2.2. 国外产品[/color][/size][size=14px]  国外典型的数控电动针阀是英福康公司和MKS公司产品,如图2-2所示,其中英福康公司产品的型号为VDE016,MKS公司产品是“上游流量控制阀”系列(包括148J、154B和248D)。[/size][align=center][color=#cc0000][size=14px][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115181789_3450_3384_3.png!w690x223.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-2 典型国外电动针阀[/color][/align][size=14px]  国外电动针阀的显著特点是体积小,驱动控制采用独立的模块,这非常便于二次开发使用,图2-3是国外电动针阀的主要技术指标。[/size][align=center][size=14px][color=#cc0000][img=,690,390]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115283911_9315_3384_3.png!w690x390.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2-3 国外典型电动针阀技术指标[/color][/align][size=14px]  从上述技术指标可以看出,仅英福康电动针阀采用了步进电机控制方式,而MKS公司的产品基本都是典型的针型电磁阀,而电磁阀一般都具有较大的磁滞现象。[/size][size=14px]  以目前价格进行比较,英福康电动针阀自身已配备驱动电路模块,整体价格在2万人民币左右,而MKS公司目前主推的产品是248D,价格在8千人民币左右,还需配备驱动电路模块(约5千人民币左右),合计价格在1.3万人民币左右。[/size][size=18px][color=#cc0000]3. 上海依阳数控电动针阀[/color][/size][size=14px]  上海依阳实业有限公司开发的数控电动针阀是一种灵巧型的电子式双向计量针阀,更改了传统手动针阀的直通式结构,并采用了高精度直线步进电机驱动阀轴。数控电动针阀及其内部结构如图3-1所示。[/size][size=14px]  步进电机驱动针的分辨率为0.0127mm/步进和0.0254/步进两种标准。低压差阀门可以连续运行(100%占空比)。断电是针阀处于常闭位置。[/size][size=14px]  与电磁阀相比,步进电机驱动模式的最大优势是冷却操作,即没有因线圈加热而导致的控制操作问题、极高的分辨率、极低的压差和高操作压力。阀门可由直流12 VDC兼容逻辑电平和模拟0至2.5 VDC信号控制,也可采用RS485接口直接进行通讯控制。由此带来的好处是磁滞滞后小于2%,小于满量程的2.5%的出色线性度、2毫秒反应时间和数百万次的使用寿命。[/size][align=center][img=,690,409]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115396538_3429_3384_3.png!w690x409.jpg[/img][/align][size=14px][/size][align=center][color=#cc0000]图3-1 数控电动针阀内部结构示意图[/color][/align][size=14px]  上海依阳实业有限公司的NCNV系列数控电动针阀的技术指标如图3-2所示。[/size][align=center][color=#cc0000][size=14px][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115509360_6271_3384_3.png!w690x411.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 数控电动针阀技术指标[/color][/align][size=14px]  NCNV系列数控电动针阀配备了一个步进电机驱动电路模块,以提供了所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供RS485串口通讯的直接控制。驱动电路模块、接线方式及其尺寸如图3-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,219]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101116026977_6875_3384_3.png!w690x219.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图3-3 数控电动针阀驱动电路模块[/color][/align][size=14px]  NCNV系列中各个型号的尺寸如图3-4所示。[/size][align=center][size=14px][img=,690,422]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101116117396_5838_3384_3.png!w690x422.jpg[/img][/size][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-4 数控电动针阀系列尺寸图[/color][/align][size=18px][color=#cc0000]4. 总结[/color][/size][size=14px]  综上所述,上海依阳实业有限公司开发的数控电动针阀,采用了最先进的步进电机驱动技术,技术指标达到和超过国外产品,并具有较高的性价比。[/size][size=14px][/size][hr/][size=14px][/size]

  • 【分享】控温电动搅拌器的正确使用方法

    [size=2] [/size][size=2][b]一: 简介[/b]  JJ-3型控温电动搅拌器广泛用于各大中院校,环保,卫生,防疫,石油,化工,医疗等单位.本仪器性能好,无噪音,无振动,采用数字式控温读数直观明显,是实验人员理想必备的工具。[/size][size=2][/size][b][size=2]二: 性能[/size][/b][size=2]  1. 工作电源: 220V 10V 50HZ  2. 整机功率: 任选  3. 无级调速: 起动-2000转/分  4. 控温范围: 0-200℃ 10℃[/size]

  • 超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    [align=center][img=饱和蒸汽温度精密控制,690,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160915568591_8820_3221506_3.jpg!w690x315.jpg[/img][/align][size=14px][color=#000099]摘要:在目前的饱和蒸汽轮胎硫化工艺中,普遍还在采用电动定位器和电动执行器形式的减压阀进行温度控制。这种控温方式存在响应时间长、控温波动大和磨损引起寿命短等问题。本文介绍了采用电气比例阀和气动减压阀组合的替代方案,其中还采用了超高精度的串级PID控制器,此串级控制法替代方案可大幅提高蒸汽温度的控制精度和速度,并延长阀门的使用寿命和可在线维护。作为一种新技术,此解决方案还可推广应用到其它蒸汽加热领域。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b][size=14px][/size][size=14px] 硫化是目前轮胎生产过程中的最后一道工序,一般通过热硫化将成型的胎胚变成了轮胎成品。目前的硫化方式基本都是根据硫化内温的介质不同来区分,而外温实现方式(或称热板温度、模温)一般都是注入一定压力的蒸汽进行温度控制。[/size][size=14px][/size][size=14px] 本文将主要讨论轮胎硫化过程中的外温变温控制技术,有关内温调控技术则将在后续报告中再进行详细阐述。[/size][size=14px][/size][size=14px] 外温和外压是轮胎硫化的主要工艺参数,其控制的好坏直接影响硫化轮胎的质量。外温的实现通常使用蒸汽作为加热介质,而蒸汽一般都是饱和蒸汽。饱和蒸汽的一个重要特性是其温度与压力之间一一对应,即饱和蒸汽的温度始终由其压力决定,而轮胎硫化外温蒸汽加热工艺就是利用此特征来调整蒸汽压力以实现对蒸汽温度的精密控制。[/size][size=14px][/size][size=14px] 在目前的大多数蒸汽温度控制过程中,如图1所示,基本都采用的是典型的单闭环PID控制方法,使用了复杂笨重的电动减压阀来控制饱和蒸汽温度,即采用一个温度传感器将信号发送给PID控制器,控制器向电动阀门定位器发送命令信号,阀门定位器控制阀门所需开度以使得温度接近设定温度。这种控制的结果是阀门必须一直工作以保持温度,循环打开和关闭等同于磨损阀门部件,最大的问题是这种带有阀门定位器形式的电动减压阀的运行速度很慢,对PID控制器的控制信号有很大的响应滞后,如果观察热电偶的信号输出,则会在目标温度周围出现正弦波形,而不会出现平滑、平坦的温度信号,因此这种控制方式往往呈现出蒸汽温度波动较大的现场。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=传统单回路蒸汽温度控制结构示意图,690,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160917432405_1591_3221506_3.jpg!w690x170.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图1 采用阀门定位器形式的电动减压阀蒸汽温度控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 针对上述目前电动定位器和电动执行器结构形式的减压阀在轮胎硫化蒸汽温度控制中存在响应时间长、控温波动大和磨损引起寿命短等问题,本文将介绍采用电气比例阀和气动减压阀组合的替代方案,通过超高精度的串级控制PID控制器,此替代方案可大幅度提高蒸汽温度的控制速度和精度,并延长减压阀的使用寿命。此解决方案还可以推广应用到其它蒸汽加热设备。[/size][size=14px][/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px][/size][size=14px] 在上述传统的饱和蒸汽温度控制过程中,采用的是一个典型的闭环控制回路,即作为执行机构的带阀门定位器的电动减压阀与PID控制器和温度传感器构成一个闭环控制。[/size][size=14px][/size][size=14px] 新的解决方案则是采用了双闭环PID控制回路组成的串级控制法,其结构如图2所示。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=新型双回路串行控制法蒸汽温度控制结构示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160918269307_9385_3221506_3.jpg!w690x223.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图2 采用超高精度PID控制器、电气比例阀和气动减压阀的串行控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 在图2所示解决方案中,采用了经典的串级控制结构,即温度传感器、气动减压阀、电气比例阀和串级PID调节器组成一个双回路闭环控制系统。其中自带压力传感器和PID控制板的电气比例阀与气动减压阀构成次回路,用于调节气动减压阀的开度;温度传感器、串级PID控制器和次级回路再构成主回路,主回路采集硫化箱温度,经PID计算后输出控制信号给次回路中的电气比例阀,这里的次回路此时相当于主回路的执行器。[/size][size=14px][/size][size=14px] 与传统单回路控制相比,这种结合了电气比例阀和高精度PID调节器,并采用了串级控制法的蒸汽温度控制系统,充分发挥了串级控制的特点,有以下几方面的优势:[/size][size=14px][/size][size=14px] (1)可明显改善蒸汽温度控制精度和速度,控制温度的变化曲线平摊且与设定曲线非常接近,蒸汽温度达到稳定可节省几十分钟。[/size][size=14px][/size][size=14px] (2)对于高压饱和蒸汽的压力扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px] (3)可消除次回路(气动减压阀和电气比例阀)的非线性特性的影响。[/size][size=14px][/size][size=14px] (4)气动减压阀可采用不同规格的气动圆顶加载压力调节器,可与各种精度和流量的电气比例阀组合实现不同规格轮胎硫化中任意设定温度的自动控制。[/size][size=14px][/size][size=14px] (5)先进的电气比例阀替代了传统的电气转换器(I/P和E/P),不再需要定期重新校准的繁复操作,不再需要仪表空气而只需加装气体过滤器即可,也不会不断排放空气减少压缩控制的浪费,重要的是控制精度可以达到任何设定点的±0.1%。[/size][size=14px][/size][size=14px] 总之,上述解决方案是目前大多数蒸汽温度控制技术的升级换代,可大幅提高轮胎硫化过程中蒸汽温度的控制精度和速度,此解决方案完全可以推广应用到其它蒸汽加热领域。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 【米思米机械设备知识分享】- 电动缸工作原理及应用行业

    [align=left]电动缸是用各种电动机(如伺服电动机、步进电动机、电动机)带动各种螺杆(如滑动螺杆、滚珠螺杆)旋转,通过螺母转化为直线运动,并推动滑台沿导轨(如滑动导轨、滚珠导轨、高刚性直线导轨)像气缸那样作往复直线运动。为适应不同的要求,电动缸已有多种品种规格,也有不同的名称,如:电动滑台、直线滑台、工业机械手臂等。[/align][align=left] [/align][align=left]电动缸的特点:[/align][align=left]1、闭环伺服控制:控制精度达到0.01mm;精密控制推力,增加压力传感器,控制精度可达1%;很容易与PLC等控制系统连接,实现高精密运动控制。噪音低,节能,干净,高刚性,抗冲击力,超长寿命,操作维护简单。此外,电动缸可以在恶劣环境下无故障,防护等级可以达到IP66。[/align][align=left] [/align][align=left]2、低成本维护,电动缸在复杂的环境下工作只需要定期的注脂润滑,并无易损件需要维护更换,将比液压系统和气压系统减少了大量的售后服务成本。是液压缸和气缸的最佳替代品,并且实现环境更环保,更节能,更干净的优点。[/align][align=left]选购米思米[b][url=https://www.misumi.com.cn/vona2/maker/misumi/mech/M0500000000/]电动缸[/url][/b] https://www.misumi.com.cn/vona2/maker/misumi/mech/M0500000000/[/align][align=left]3、配置灵活性,可以提供非常灵活的安装配置,全系列的安装组件,安装前法兰,后法兰,侧面法兰,尾部铰接,耳轴安装,导向模块等;可以与伺服电机直线安装,或者平行安装;可以增加各式附件:限位开关,行星减速机,预紧螺母等;驱动可以选择交流制动电机,直流电机,步进电机,伺服电机。[/align][align=left] [/align][align=left]电动缸的广泛应用:[/align][align=left]1、娱乐行业:机械人手臂及关节,动感座椅等;[/align][align=left]2、军工行业:模拟飞行器,模拟仿真等;[/align][align=left]3、汽车行业:压装机,测试仪器等;[/align][align=left]4、工业行业:食品机械,陶瓷机械,焊接机械,升降平台等;[/align][align=left]5、医疗器械。浏览更多机械设备知识,访问[url=https://www.misumi.com.cn/]米思米[/url]官网https://www.misumi.com.cn/[/align]

  • 耐腐蚀电动调节阀应用:亚硫酸法澄清工艺中磷酸流量的自动控制

    耐腐蚀电动调节阀应用:亚硫酸法澄清工艺中磷酸流量的自动控制

    [color=#990000]摘要:目前亚硫酸法澄清工艺中普遍采用调节阀来控制磷酸液体的流量,但调节阀普遍存在耐腐蚀性差、响应速度慢和自动化水平低的问题。本文介绍了一种基于针型阀的新型耐腐蚀电动调节阀,采用了步进电机推进和FFKM全氟醚橡胶密封技术,具有可用于真空下的良好密封性能和微秒量级的响应速度,可采用直流电压信号或RS 485直接驱动,并已在蔗糖生产线得到了应用。[/color][size=18px][color=#990000]一、问题的提出[/color][/size]目前的蔗糖生产过程中普遍采用亚硫酸法澄清工艺,其中的磷酸自动控制系统要求能够进行磷酸的自动配比,并根据蔗汁流量实时连续自动调节磷酸添加量以保证磷酸添加的准确性。磷酸添加量控制是通过对浓度85%磷酸液体的流量进行调节,但存在以下迫切需要解决的难题:(1)耐腐蚀性差:85%浓度的磷酸液是一种无机中强酸,具有一定的腐蚀性,而目前绝大多数电动流量调节阀的耐腐蚀性普遍较差,无法用于硫酸流量调节。(2)自动化水平低:目前磷酸流量调节中大多还采用耐腐蚀的手动调节阀,磷酸添加准确性和及时性差影响产品质量,无法准确掌握磷酸使用情况。(3)精度差和响应速度慢:尽管也有用于流量调节电/气动球阀和蝶阀,但普遍口径太大,调节精度差,响应速度慢,无法满足磷酸流量ppm级调节精度要求。[size=18px][color=#990000]二、耐腐蚀精密电动调节阀[/color][/size]上海依阳实业有限公司开发的NCNV系列耐腐蚀数控电动针阀是一种灵巧型的电子式双向计量针阀,采用高精度直线步进电机驱动阀轴。[align=center][img=耐腐蚀电动调节阀,400,297]https://ng1.17img.cn/bbsfiles/images/2021/12/202112281632323226_702_3384_3.png!w603x449.jpg[/img][/align]主要技术指标如下:(1)接触材料:不锈钢;(2)密封材料:全氟醚橡胶(FFKM);(3)响应时间:0.8s(全关到全开);(4)流体:气体和液体;(5)压力范围:-1~7bar;(6)阀芯节流内径:0.9~4.1mm;(7)流量范围:0.1~2000L/m;(8)线性度:±0.1~±11%(9)重复精度:±0.1%(全量程);(10)使用温度范围:0~84℃;(11)控制信号:0~10VDC或RS485;(12)工作电源:24V(≤12W)。[align=center][/align][align=center]=======================================================================[/align]

  • 步进电机驱动的数字针阀和电动球阀在MOCVD工艺真空压力精密控制中的应用

    步进电机驱动的数字针阀和电动球阀在MOCVD工艺真空压力精密控制中的应用

    [color=#990000]摘要:针对目前MOCVD设备和工艺中真空压力控制方面存在的问题,如多数设备仅能使用下游控制模式、节流阀响应速度不够、节流阀耐腐蚀问题和压力控制器采集精度不高,本文提出了相应的解决方案,以进行MOCVD设备的改进和提高工艺和产品质量。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、问题提出[/color][/size]在半导体行业内,MOCVD具有许多显著特点,可用于大面积生长,可精确控制成分和厚度,具有高重复性和生长速率,可覆盖复杂基板形状,可快速切换气路制备陡峭的多层界面,适用于原位退火等。但在MOCVD设备的开发和工艺调试中,需要研究和选择与生产相关的生长参数,这些参数包括反应室形状、工作压力、生长温度、基座转速、气体流速和入口温度等。MOCVD的工作压力一般为10 mtorr-500 torr范围内,工作压力的精密控制决定了反应室的流动稳定性,但在目前的真空压力控制中还存在以下问题:(1)如图1所示,目前的MOCVD设备基本都采用下游模式对工作压力进行控制,即在排气端安装节流阀进行排气流量调节实现反应室内的压力控制,但这仅适用于压力较高的工艺,如工作压力100~500torr范围。但对于有些工艺的低压要求,采用下游控制模式会造成工作压力波动较大,无法准确控制,从而影响产品质量。对于低工作压力的精密控制最好采用上游控制模式,即控制进气端的流量实现反应室的压力稳定。[align=center][img=MOCVD压力控制,600,265]https://ng1.17img.cn/bbsfiles/images/2022/02/202202050858525574_7248_3384_3.png!w690x305.jpg[/img][/align][align=center][color=#990000]图1 MOCVD典型压力控制系统示意图[/color][/align](2)MOCVD工艺过程始终伴随着温度变化,而温度变化会严重影响工作压力的稳定性和可控性,因此要求在温度变化过程中同时实现工作压力的准确控制,这就要求进气和排气控制阀的响应速度越快越好,控制阀从全开到全闭至少要控制在5秒内,1秒以内更佳。(3)有些MOCVD工作气体带有腐蚀性,相应的阀门也需具有较强的抗腐蚀性以提高设备的连续正常工作寿命。(4)目前绝大多数控制都采用PLC模组,但极少PIC控制器能达到24位的模数转换精度,对于工作压力的精密控制,建议采用24位精度的PID控制器以充分发挥电容式压力传感器的高精度测量优势。本文将针对目前MOCVD设备和工艺中存在的上述问题,提出相应的解决方案。[size=18px][color=#990000]二、压力精密控制方案[/color][/size]在MOCVD工作压力范围内,一般要求在一定范围内,反应室内的工作压力可以在任意设定点上准确恒定。为了满足低压和高压的不同压力范围精密控制,所提出的压力控制方案是在原有的下游控制模式上增加上游控制模式,真空压力控制系统结构如图2所示,具体内容如下:[align=center][color=#990000][img=MOCVD压力控制,600,330]https://ng1.17img.cn/bbsfiles/images/2022/02/202202050900060793_95_3384_3.png!w690x380.jpg[/img][/color][/align][align=center][color=#990000]图2 MOCVD真空压力控制系统结构示意图[/color][/align](1)在反应室的进气口和排气口分别安装步进电机驱动的电子针阀和电动球阀,电子针阀直接安装在进气口处,电动球阀安装在排气口和真空泵之间。对于MOCVD设备,可增加一个气囊以对进入的工作气体进行按比例混合后再经电子针阀进入反应室。当在高压下进行控制时,可固定电子针阀的开度,仅调节下游的电动球阀;在低压下进行控制时,可固定电动球阀的开度,仅调节上游的电子针阀。由此可满足不同压力控制的需要。(2)电子针阀和电动球阀都有高速型节流阀,电子针阀的响应速度为0.8秒,电动球阀有两种响应速度型号,分别是5秒和1秒。针阀和球阀的阀体采用不锈钢,密封件采用FFKM全氟醚橡胶,超强耐腐蚀性,可用于各种腐蚀性气体和液体。(3)在MOCVD中一般采用1000torr或10torr量程的电容压力计进行压力测量,其精度可达±0.2%。也可采用更高精度±0.05%的真空压力传感器进行测量。由此,方案中采用专用的24位A/D采集的高精度PID真空压力控制器,以匹配高精度电容式压力传感器的测量精度,并保证控制精度。综上所述,通过以上方案的实施,可以在整个真空压力范围内,将压力波动控制在±1%以内,并会快速响应反应室的温度变化实现压力的快速恒定,同时耐腐蚀性密封件将大幅度提高阀门的使用寿命。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • 电动执行器的优缺点

    电动执行器电动执行器,又称为电动执行机构。它是一种能提供直线或旋转运动的驱动装置,它利用某种驱动能源并在某种控制信号作用下工作。  电动执行器的优点是能源取用方便,信号传输速度快,传输距离远,便于集中控制,灵敏度和精度较高,与电动调节仪表配合方便,安装接线简单。缺点是结构复杂,推力小,平均故障率高于气动执行机构,适用于防爆要求不高,气源缺乏的场所。 电动执行机构的缺点主要有:   结构较复杂,更容易发生故障,且由于它的复杂性,对现场维护人员的技术要求就相对要高一些;电机运行要产生热,如果调节太频繁,容易造成电机过热,产生热保护,同时也会加大对减速齿轮的磨损;另外就是运行较慢,从调节器输出一个信号,到调节阀响应而运动到那个相应的位置,需要较长的时间,这是它不如气动、液动执行器的地方。

  • 高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    [color=#ff0000]摘要:氢气供应系统作为燃料电池系统的重要组成部分,其空气侧与氢气侧之间压力差的动态控制对于整个燃料电池系统可靠性尤为重要。本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用,690,518]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101053487958_1868_3384_3.png!w690x518.jpg[/img][/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size]  氢气供应系统作为燃料电池系统的重要组成部分,与电堆、空气供应系统、水热管理系统和电子电力系统协同工作,保证氢气流量、压力的稳定供应,并实现氢气循环利用。燃料电池氢气供应系统简化结构如图1-1所示。高压储氢罐是系统的氢气来源,氢气经过减压阀,压力降至适宜系统使用的范围,通常情况为几巴左右。氢气进气阀用于控制进入电堆的氢气量,进而控制电堆氢气回路的压力,目前常用的氢气进气阀为比例调节阀、开关阀或多个开关阀组。[align=center][color=#ff0000][img=燃料电池氢气供应系统简化图,690,66]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055206617_6144_3384_3.png!w690x66.jpg[/img][/color][/align][align=center][color=#ff0000]图1-1 燃料电池氢气供应系统简化图[/color][/align]  由于燃料电池自身膜电极的厚度逐渐降低,其机械强度相应下降,因此空气侧及氢气侧压力的动态控制对于整个燃料电池系统可靠性尤为重要,一般要求是氢气侧压力要等于或者稍高于空气侧压力,并且在调节两侧压力时要确保同升同降,以减少对质子膜的损害。然而,在目前氢燃料电池电源系统中,对于这两侧压差的控制存在以下几方面的问题:  (1)采用开关阀进行氢气进气的控制,使得整个氢气回路中的波动太大而不易控制;  (2)采用电磁比例阀尽管可以按照一定比例进行类似PID模式进行压力控制,但电磁比例阀由于存在较大磁滞现象,会带来控制不稳定的严重问题。  本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[size=18px][color=#ff0000]2. 电动针阀[/color][/size]  电动针阀如图2-1所示。[align=center][img=各种规格电动针阀,599,513]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055582033_8168_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#ff0000]图2-1 各种规格电动针阀[/color][/align][size=18px][color=#ff0000]2.1. 技术指标[/color][/size][align=center][color=#ff0000][img=电动针阀技术指标,690,453]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057223127_3501_3384_3.jpg!w690x453.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-2 电动针阀技术指标[/color][/align][align=center] [img=电动针阀尺寸,690,421]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057371906_4688_3384_3.jpg!w690x421.jpg[/img][/align][align=center][size=16px][color=#ff0000]图2-3 电动针阀尺寸[/color][/size][/align][size=18px][color=#ff0000]2.2. 驱动模块[/color][/size]  数控电动针阀配备有步进电机驱动电路模块,以提供所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供RS485串口通讯的直接控制。[align=center][color=#ff0000][img=驱动模块及其尺寸,690,220]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101058555517_9466_3384_3.jpg!w690x220.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-4 驱动模块及尺寸[/color][/align][size=18px][color=#ff0000]2.3. 特点[/color][/size]  新一代用于比例流量调节的数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级换代产品。与各种PID控制算法和压力控制器相结合,可构成快速准确的氢气压力控制装置。  电动针阀具有以下几方面的特点: (1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。  (2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。  (3) 高重复性:通过每次达到0.1%的相同流量,可提供长期稳定的一致性。  (4) 宽压力范围:通过5或7bar的压力,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。  (5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。  (6) 高分辨率:0.2%的分辨率允许电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。  (7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=,690,355]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101059518215_4501_3384_3.jpg!w690x355.jpg[/img][/align][align=center][/align][align=center][/align]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 采用电动针阀和电气比例阀实现液氮气体低温温度的程序控制

    采用电动针阀和电气比例阀实现液氮气体低温温度的程序控制

    [size=16px][color=#339999]摘要:为了解决室温至液氮温区温控系统中需要昂贵的低温电动阀门进行液氮介质流量调节的问题,本文提供了三种不同精度的液氮温区内的低温温度控制解决方案。解决方案的技术核心是通过采用电动针阀和电气比例阀在室温环境下来快速调节外部气源流量或压力大小以实现低温温度的精准控制,不再需要具备耐低温性能的低温阀门。同时,在上述两种技术方案的基础上增加了电加热形式的第三种解决方案,可实现更高精度的低温温度快速控制。[/color][/size][size=16px][/size][align=center][size=16px][img=电动针阀和电气比例阀在流动液氮气体低温温度控制中的应用,600,336]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270648384200_9124_3221506_3.jpg!w690x387.jpg[/img][/size][/align][b][size=24px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 对于液氮温度范围内的低温温度控制, 目前常用的方法为以下两种:[/size][size=16px] (1)直接浸泡式:即试验件完全浸泡在液氮内进行降温冷却和相应的温度控制,但采用这种方式时试验件的冷却温度无法在较宽泛的低温温区内进行控制和调节,只能在接近-196℃的温度附近通过控制液氮气压来进行小范围的调节和控制。另外,直接浸泡法往往未等试验件达到冷却保温时间,液氮已基本完全挥发。同时,这种操作方式较为简陋,对实际操作人员要求较高,稍有不慎将会有安全事故发生。[/size][size=16px] (2)液氮吹扫法:即直接采用流量可控的液氮或液氮气体进行吹扫来进行试验件低温温度调节和控制。在采用吹扫法进行低温温度控制时,液氮或液氮气体的流量大小直接关系到试验件温度的稳定性和可靠性。同时,低温介质的流量控制一直是行业的难点和痛点,这要求低温管路上的流量控制阀内的各个元器件均需要很好的耐低温特性,且价格十分昂贵。有些简陋的低温控制采用了低温开关阀进行通断式控制,尽管降低了阀门成本,但这种开关控制模式的控制精度极差。另外,低温介质的出口与试验件或热交换器内的空气直接接触,空气中的水蒸气遇冷急剧结冰,随着降温时间增长,低温介质的出口很容易被结冰堵塞。现亟需研发一种核心控制器件在常温状态下便可实现超低温控制的试验装置。[/size][size=16px] 为了解决上述液氮吹扫法中存在的问题,本文提供了三种不同精度的液氮温区宽量程温度控制解决方案。解决方案的技术核心是通过调节室温环境下的气源流量或压力大小来实现低温温度的精准控制,不再需要控制阀门具有耐低温性能。同时,在上述两种技术方案的基础上将增加电加热形式的第三种解决方案,由此可实现更高精度的低温温度控制。[/size][size=24px][color=#339999][b]2. 原理和分析[/b][/color][/size][size=16px] 在传统液氮低温温度控制的吹扫法中,普遍是直接调节液氮低温介质的吹扫流量,同时结合温度传感器和PID控制器形成闭环控制回路,通过对流量的控制最终实现低温温度控制。[/size][size=16px] 通过分析上述的传统液氮吹扫法可以发现,实现低温介质吹扫的基本原理是在液氮罐(杜瓦瓶)内形成较高的气压迫使液氮或液氮气体溢出到设定管路内形成低温介质流动,最终再通过调节流动速度来进行低温温控。因此,液氮罐中的高压气体是所有这些的关键,只要能调节气体压力,同样能在固定管路内形成不同流速的低温介质而达到控温目的。同时,这种调节液氮罐内气体压力的方式可在室温环境中实现,这样就可以避免在直接低温介质流量控制中需要使用特殊且昂贵的电动低温调节阀。[/size][size=16px] 基于上述分析,本文设计了以下三种低温温度控制方案,并可实现不同的控制精度。[/size][size=24px][color=#339999][b]3. 进气流量控制方案[/b][/color][/size][size=16px] 对于任何具有一定空间大小的容器而言,其内部压力都可以归结为进气和出气流量所达到的一种动态平衡状态。因此,如果要对液氮罐内的气体压力进行控制,有效的方法之一就是对液氮罐的进出气体流量分别进行调节使其达到动态平衡。[/size][size=16px] 需要注意的是,在实际低温温度控制系统中,液氮罐的出液口或出气口往往直接与试验件的冷却管路连接,若在液氮罐出口处对低温介质流量进行直接控制又会需要使用低温阀门,因此这时可以基出口孔径不变而不对流量进行调节,只调节液氮罐的进气流量。具体方案如图1所示。[/size][align=center][size=16px][color=#339999][b][img=采用电动针阀调节流量的低温冷却试验装置温控系统结构示意图,690,354]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270650154160_155_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 采用电动针阀调节流量的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 从图1可以看出,高压气体(一般为氮气)经过减压阀形成固定压力的气体,此室温高压气体流经电动针阀和进气管进入杜瓦瓶中的液氮中。室温高压气体进入液氮后使液氮形成蒸发而挥发为气体,挥发气体在使密闭杜瓦瓶中压力逐渐升高的同时,通过出气管流经试验装置中的热交换器后排出。由此可见,通过调节安装在进气管路上的电动针阀,针阀开度越大,进气口流速越快,液氮挥发越激烈,杜瓦瓶中的压力越高,最终使得流经热交换器的低温介质流速越快,相应的降温速度也越快。此方案的另一个主要特点是电动针阀可以在室温下工作。[/size][size=16px] 由此可见,这种在室温下通过调节进气流量的解决方案是通过电动针阀、温度传感器和PID程序控制器构成了一个低温闭环控制回路,从而可实现低温温度的定点控制或程序控制。但这种方案存在的问题是控温精度较差,一般会有2~5℃的温度波动,主要原因如下:[/size][size=16px] (1)由于一定流量的高压气体使得杜瓦瓶内的压力产生变化,压力的改变又使得冷却介质的流量发生改变,这个升华过程和压力变化过程比较复杂,这使得进气流量与压力以及压力与温度并不是一个简单的线性关系,这都是造成温度控制不准的主要因素。除非整个调节过程的速度非常快,但实际往往是个慢速过程。[/size][size=16px] (2)这种仅仅采用低温介质进行温度控制的技术手段存在降温快而升温慢的弊端,一旦实际温度超过设定点温度,往往需要试验件缓慢散冷才能实现回温,这也是造成低温温度控制很难实现较高精度的另一个主要原因。[/size][size=24px][color=#339999][b]4. 进气压力控制方案[/b][/color][/size][size=16px] 为了解决上述流量控制过程中存在的压力不稳定问题,本文提出的另一个解决方案就是直接对杜瓦瓶中的压力进行控制,即采用对高压气体进气口压力的调节和控制来实现杜瓦瓶内部压力的精确控制。具体方案如图2所示。[/size][align=center][size=16px][color=#339999][b][img=采用电气比例阀调节压力的低温冷却试验装置温控系统结构示意图,690,358]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270651039090_5722_3221506_3.jpg!w690x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 采用电气比例阀调节压力的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 从图2可以看出,高压气体经电气比例阀在进气口处按照设定值进行压力控制,由此保证杜瓦瓶中的压力始终处于准确受控状态。通过电气比例阀、温度传感器和PID程序控制器构成的双闭环串级控制回路(其中电气比例阀为辅助控制回路,PID控制器与温度传感器和电气比例阀构成主控回路),通过调节比例阀的输出压力进而控制杜瓦瓶内的气体压力,杜瓦瓶中的压力越大,使得流经热交换器的低温介质流速越快,相应的降温速度也越快。由此,通过PID控制器自动根据设定点或设定程序来调节杜瓦瓶中的气体压力,从而可实现低温温度的更准确控制,规避了复杂得升华过程带来的控制不确定性。[/size][size=16px] 与前述流量控制方案相比,压力控制方案的结构同样十分简单,提高了温控系统的控温精度,同时还保留了可在室温下进行调节的优势。[/size][size=16px] 压力控制方案的另一个突出优势是可以进行大尺寸试验件的低温控制,这主要是由于大尺寸液氮杜瓦瓶内的压力控制要远比流量控制更为简便和准确,而流量控制方案会受到电动针阀口径大小对流量调节范围的限制,大口径针阀较慢的响应速度也会给温度控制带来误差。[/size][size=16px] 尽管压力控制方案是流量控制方案的升级,也提高了控温精度,但还是没有解决单一冷却方式存在的冷却快但回温慢的弊端,还存在控温精度比较有限和控温速度较慢的问题。[/size][size=24px][color=#339999][b]5. 电加热辅助进气压力控制方案[/b][/color][/size][size=16px] 为了彻底解决单一冷却方式存在的冷却块但回温慢造成控温精度不高和速度较慢的问题,本文提出了另一个优化方案,即在进气压力控制方案的基础上,在试验件上增加电热器以提供加热功能,由此提供一个主动加热装置配合冷却系统形成冷热双作用系统,在试验件温度低于设定值时自动主动加热形成微调,这样既可以实现温度快速回温达到设定值提高控制速度,同时还可以大幅度提高控温精度。具体方案如图3所示。[/size][align=center][size=16px][color=#339999][b][img=采用电气比例阀调节压力以及辅助电热器的低温冷却试验装置温控系统结构示意图,690,387]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270651428613_3754_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 辅助电加热式电气比例阀调节压力的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,优化方案是在图2所示方案的基础上增加了电热器,即增加了一路纯加热功能的温度控制。同时,为了配套此加热功能的实现,除增加了一只温度传感器之外,另外还采用了VPC2021-2系列的双通道PID调节器。由此形成了两个独立控制回路,一个回路控制进气压力实现低温温度的粗调,另一回路控制加热实现低温温度的细调,由此同时保证控温速度和精度。[/size][size=24px][color=#339999][b]6. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,彻底解决了以往液氮温区低温控制中需要配备昂贵电动低温调节阀的问题,也解决了低温开关阀控温精度很差的问题。[/size][size=16px] 本文所述的三个解决方案,可适用和满足液氮温区内宽量程范围内不同要求的温度控制,在实际应用中可根据具体情况选择使用。其中控制流量和控制压力的方案可适用的温度控制范围为0℃~-150℃,而辅助加热器功能后控制压力方案的可控温度范围为150℃~-150℃,这里的上限温度主要受加热器耐低温特性决定。[/size][size=16px] 上述所有低温控温方案仅适用于液氮气体的吹扫形式,因此温度不是很低,但为更低温度的液氮介质直接流动冷却以及温度控制提供了技术上的借鉴。[/size][size=16px][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 耐腐蚀高速电动针阀在圆晶湿法刻蚀清洗化学药液流量控制中的应用

    耐腐蚀高速电动针阀在圆晶湿法刻蚀清洗化学药液流量控制中的应用

    [size=16px][color=#339999][b]摘要:化学药液流量的精密控制是半导体湿法清洗工艺中的一项关键技术,流量控制要求所用调节针阀一是开度电动可调、二是具有不同的口径型号、三是高的响应速度,四是具有很好的耐腐蚀性,这些都是目前提升半导体清洗设备性能需要解决的问题。为此,本文提出了相应的解决方案,解决方案的核心是采用具有系列口径的高速和耐腐蚀的电动针阀。[/b][/color][/size][align=center][size=16px][img=高速耐腐蚀电动针阀流量控制在前道化学清洗机中的应用,550,271]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261136485023_8685_3221506_3.jpg!w690x341.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 湿法蚀刻清洗工艺(如RCA清洗)是半导体制造工艺步骤中数量最多的工艺,湿法清洗的目的是去除晶圆上前一道工序的残留或者副产物,使之不进入后续工序。一般通过化学药液与晶圆表面去除物的反应,或改变不同特性化学清洗液处理以后的晶圆表面亲水性,达到去除残留物的目的。其中,化学反应强烈程度与温度、浓度、化学药液的反应量密切相关,而蚀刻量是检测此化学反应强烈程度的重要手段。因此,刻蚀量是湿法刻蚀工艺中最重要的工艺控制参数之一,而影响蚀刻量的三大因素分别是化学药液温度、化学药液浓度和化学药液流量,其中药液浓度和流量都与流量控制密切相关。典型的化学药液循环系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.化学药液循环系统结构示意图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261138411498_3193_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 化学药液循环系统结构示意图[/b][/color][/size][/align][size=16px] 针对当前和未来的湿法刻蚀清洗工艺,用于药液流量控制的针阀需要满足以下几方面要求:[/size][size=16px] (1)首先针阀要求是可电控针阀,如图1所示,由电动针阀、流量计和PID控制器可组成闭环控制回路,通过电动针阀的开度精细变化,可极大保证药液流量控制的精度。[/size][size=16px] (2)制程工艺中对药液流量有不同的要求,所以电子针阀需具有不同口径和流量范围。[/size][size=16px] (3)电动针阀要求具有极快的响应速度,能实现快速的打开和闭合,以减少初段流量稳定时间和末端流量控制时的“水锤效应”影响。[/size][size=16px] (4)在清洗过程中所采用的化学药液,往往具有很强的腐蚀性。尽管管路和阀门所采用的不锈钢材料具有很好的抗腐蚀性,但各种阀门密封件往往抗腐蚀性很差,所以要求电动针阀的接液密封件也需要具有很强的耐腐蚀性。[/size][size=16px] 药液流量控制中上述对调节阀的要求,都是目前半导体清洗设备中需要解决的问题。为此,本文提出了相应的解决方案,解决方案的核心是采用具有系列口径的高速和耐腐蚀的电动针阀。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了满足上述湿法清洗工艺化学药液流量控制对调节阀的需要,本文提出的解决方案是采用具有一系列不同口径、高速和耐腐蚀的电动针阀。系列电动针阀如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.强耐腐蚀性的高速电动针阀,450,385]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261139215269_3851_3221506_3.png!w599x513.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 NCNV系列耐腐蚀高速电动针阀[/b][/color][/size][/align][size=16px] 用于流量调节的NCNV系列数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有1s以内的开闭合时间,小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。电动针阀直接用模拟电压信号控制,与PID控制器和流量计相结合,可构成快速准确的闭环控制系统。[/size][size=16px] NCNV系列数控电动针阀的其他技术特点如下:[/size][size=16px] (1)多规格节流面积:具有从低流量的直径0.9mm到高流量的直径4.10mm的多种规格针阀节流面积,可满足不同的流量控制需要。[/size][size=16px] (2)宽压力范围:入口环境可覆盖宽泛的压力范围(5或7bar)。步进电机的刚度和功率确保针阀在相同的输入指令下打开,与压力无关。[/size][size=16px] (3)快速响应:整个行程时间小于1秒,可提供及时快速的流量调节和控制。[/size][size=16px] (4)耐腐蚀性:阀体采用不锈钢,密封件采用FFKM全氟醚橡胶,超强的耐腐蚀性,可用于各种腐蚀性气体和液体。[/size][size=16px] (5)电源电压为24V,控制信号为0~10V模拟电压,也可采用RS485直接控制。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 综上所述,通过采用上述系列的电动针阀,可以很好的实现湿法清洗中化学药液流量的精密调节。特别是与相应的流量计、压力传感器和具有串级和比值控制功能的高精度PID控制器相结合组成闭环控制系统,可实现各种药液配比流量的高精度控制。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][/align][align=center][b][color=#339999][/color][/b][/align]

  • 电动针阀在上游模式以及电动球阀在下游模式真空度(压强)控制中的考核试验

    电动针阀在上游模式以及电动球阀在下游模式真空度(压强)控制中的考核试验

    [align=center][img=,690,371]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311949282951_4033_3384_3.png!w690x371.jpg[/img][/align][color=#ff0000]摘要:针对密封腔体内真空度(压强)的准确控制,本文基于薄膜电容真空计、电动针阀、电动球阀、真空泵和高精度PID控制器组成的真空控制系统,设计了上下游两种模式的控制试验方案。依据对两种试验方案分别进行了试验,考核了10Pa~600Torr真空度范围内十几个设定点的恒定控制精度,并用波动率描述了考核试验结果。试验结果显示在整个真空度量程范围内,恒定控制的波动率小于±1%。[/color][color=#ff0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]1. 考核试验方案[/color][/size]  在真空腔体的真空度(压强)控制过程中,会针对具体要求对真空度进行准确的定点控制或程序曲线控制,并配套使用真空计、电动针阀、电动球阀(电动蝶阀)、真空泵和高精度PID控制器。  在真空度具体控制过程中,一般会根据具体工艺要求在上游控制和下游控制这两种模式中选择一种。一般而言,在低真空(高压)下会选择下游控制模式,在高真空(低压)下会选择上游控制模式。  为了考察真空度(压强)控制模式和控制系统的控制精度,分别设计了两个考核试验方案。[color=#ff0000]1.1. 配备电动针阀的上游控制模式[/color]  上游控制模式考核试验方案如图1-1所示。  在上游模式中主要考核1Torr以下的高真空度恒定控制,所以采用了1Torr量程的薄膜电容真空计。真空腔体的进气由24位高精度的PID控制器控制电动针阀来进行调节,真空腔体的出气则由真空泵进行抽取。在真空泵抽气速率恒定的情况下,通过自动调节电动针阀的开度来实现腔体内真空度的控制。[align=center][img=1-01.上游控制模式试验方案示意图,400,411]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311953076843_6825_3384_3.png!w690x710.jpg[/img][/align][align=center][color=#ff0000]图1-1 上游控制模式试验方案示意图[/color][/align]  实施上述设计方案的考核试验装置如图1-2所示。[align=center][color=#ff0000][img=1-02.上游控制模式考核试验装置,690,466]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311953439851_1379_3384_3.png!w690x466.jpg[/img][/color][/align][align=center][color=#ff0000]图1-2 上游控制模式考核试验装置[/color][/align][color=#ff0000]1.2. 配备电动球阀的下游控制模式[/color]  下游控制模式考核试验方案如图1-3所示。  在下游模式中主要考核小于一个大气压(760Torr以下)的低真空度恒定控制,所以采用了1000Torr量程的薄膜电容真空计。真空腔体的进气由手动阀门保持一恒定开度,真空腔体的出气则由真空泵进行抽取,但通过24位高精度的PID控制器控制电动球阀来调节出气速度。在进气和真空泵抽气速率都恒定的情况下,通过自动调节电动球阀的开度来实现腔体内真空度的控制。[align=center][color=#ff0000][img=1-03.下游控制模式试验方案示意图,400,428]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311954050798_6215_3384_3.png!w666x713.jpg[/img][/color][/align][align=center][color=#ff0000]图1-3 下游控制模式试验方案示意图[/color][/align]  实施上述设计方案的考核试验装置如图1-4所示。[align=center][color=#ff0000][img=1-04.下游控制模式考核试验装置,690,425]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311954267687_6095_3384_3.png!w690x425.jpg[/img][/color][/align][align=center][color=#ff0000]图1-4 下游控制模式考核试验装置[/color][/align][size=18px][color=#ff0000]2. 试验和结果[/color][/size][color=#ff0000]2.1. 上游控制模式试验和结果[/color]  在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和107Pa共8个设定点进行了控制,整个控制过程中真空度的变化如图2-1所示。[align=center][color=#ff0000][img=2-1. 上游考核试验曲线,690,418]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311955268759_6495_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#ff0000]图2-1 上游控制模式真空度定点控制考核试验曲线[/color][/align]  将上述不同真空度恒定控制点处的控制效果以波动率来表达,则得到如图2-2所示的不同真空度下的控制波动率。从波动率图可以看出,采用1Torr真空计控制1Torr以下真空度时,波动率会随着真空度的升高(压强降低)而增大,主要因为以下几方面的原因:[align=center][color=#ff0000][img=2-2. 上游模式真空度恒定控制波动度,690,388]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311955531485_5277_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#ff0000]图2-2 上游模式真空度恒定控制波动率[/color][/align]  (1)在整个控制过程中,始终采 用的是在68Pa真空度恒定点处自整定后的PID参数,显然将此PID参数应用于12Pa恒定点控制并不太合适,还需进行单独的PID参数。  (2)在PID参数自整定后,并未对PID进行更进一步的精细调节,直接采用了自整定获得的PID参数,这也是影响波动率的一个原因。  (3)1Torr真空计的量程为0.0001~1Torr,即0.013~133.32Pa,对应的模拟信号输出为0~10V。在上述实际测量中,最低真空度恒定点107Pa时的模拟信号为8.026V,最高真空度恒定点12Pa时的模拟信号为0.900V,那么对于一定采集精度的控制器而言,测量和控制0.900V时的测控误差显然会较大。[color=#ff0000]2.2. 下游控制模式试验和结果[/color]  在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300Torr左右对PID控制器进行PID参数自整定。自整定完成后,分别对70、200、300、450和600Torr共5个设定点进行了控制,整个控制过程中真空度的变化如图2-3所示。[align=center][color=#ff0000][img=2-3. 下游考核试验曲线,690,411]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311956082491_876_3384_3.png!w690x411.jpg[/img][/color][/align][align=center][color=#ff0000]图2-3 下游控制模式真空度定点控制考核试验曲线[/color][/align]  将上述不同真空度恒定控制点处的控制效果以波动率来表达,则得到如图2-4所示的不同真空度下的控制波动率。从波动率图可以看出,采用1000Torr真空计控制1000Torr以下真空度时,波动率会随着真空度的升高(压强降低)而略有增大,与上游控制模式中的现象一致。[align=center][color=#ff0000][img=2-4. 下游模式真空度恒定控制波动度,690,427]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311956206407_9051_3384_3.png!w690x427.jpg[/img][/color][/align][align=center][color=#ff0000]图2-4 下游模式真空度恒定控制波动率[/color][/align][size=18px][color=#ff0000]3. 结论[/color][/size]  通过上下游两种控制模式的考核试验,可得出以下结论:  (1) 配备有目前型号电动针阀、电动球阀和PID控制器的真空度(压强)控制系统,在采用了薄膜电容真空计条件下,恒定真空度(压强)控制的波动率可轻松的保持在±1%以内;  (2) 由于真空控制系统中进气或出气流量与真空度并不是一个线性关系,因此在整个测控范围内采用一组PID参数并不一定合适,为了使整个测控范围内的波动率稳定,还需采用2组以上PID参数。  (3) 今后还需开展进一步的研究和试验工作,希望控制波动度能降低到±0.5%以下,而且提高控制响应速度,以满足更苛刻的真空工艺要求。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=,690,305]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311952439870_640_3384_3.jpg!w690x305.jpg[/img][/align]

  • 【原创】康普斯制造 KPS-C575 增安型电动机保护器

    康普斯制造 KPS-C575 增安型电动机保护器 株洲市康普斯电子有限公司作为生产电力仪表的领军企业,主要以生产智能化仪表、各类数显电测仪表、谐波监测仪、多功能(网络)电力仪表、电量变送器、低压保护装置、过电压保护器、智能温湿度控制器、开关柜智能操控装置(状态指示仪)、红外触头测温装系统、工控仪表、电流、电压互感器等多类监测控制成套电气产品。 自创立之日起,公司秉承“科技领先、品质至上”之理念,不断创新,做专做精,满足客户共赢共荣。公司位于中国南方铁路交通枢纽、中国电力机车之都、长株潭城市群—株洲市国家高新技术产业园,以下简称:“康普斯电子”“kPS电子”,公司为“省高新技术企业”,“市重点保护企业”,工程技术人员占员工总人数的60%以上,是行业标准的制订者之一。公司经过多年的技术储备,已经具备了强大的软件设计、电子线路设计、方案开发的能力。雄厚的技术研发力量,先进的生产和检测设备,快捷的ERP信息系统,现代化的管理体系,使“康普斯电子”,一跃成为国内智能仪表的“标志性”企业。▲ 一、概述微机监控电机保护器适用于AC380V、AC660V低压系统.作为低压异步电动机和增安型电动机的保护监测和控制的新一代智能化综合装置,除了先进的电动机保护、监控功能 还提供7设备运行和跳闸的记录以及额定参数等重要信息.并且采用现场总线方式结构,为现代化的设备管理带来很大的便利。产品符合标准:GB38363-2000、GBl40484—2003 1EC255 ▲ 二、产品特点◆"tE"时间保护符合有关增安型防爆电动机过载保护的国家标准(GB3836 3--2000)◆交流采样,测量A,B,C,三相电流及控制回路电压◆现场显示电动机运行状态,保存三次电动机故障跳闸记录◆一路保护输出,一路可编程继电器输出,一路4—20mA电流输出◆高清晰度宽温液晶显示,井具有背景光,跟随电动机运行状态和用户要求实时显示◆三相电流不平衡,断相、欠流、过压、欠压、自启动等功能用户可职可台◆当电动机过流时过流灯(设置灯)闪烁告警,过流倍数越大.闪烁越快◆故障定位明确,显示故障时的电压值或电流值,断相显示哪一相.电流不平衡显示大小两相◆采用RS485通讯总线,可广泛用干各种监控系统作为带有电机保护及控制的智能化监控单元

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 为什么要选择阀门电动执行器?看完你就明白了

    [b][font=微软雅黑][color=#333333][font=微软雅黑]阀门电动执行器[/font][/color][/font][/b][font=微软雅黑][color=#333333][font=微软雅黑]是实现阀门程控、自控和遥控不可缺少的驱动设备,其运动过程可由行程、转矩或轴向推力的大小来控制。工作特性和利用率取决于阀门的种类、装置工作规范及阀门在管线或设备上的位置。[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  阀门电动执行器工作原理:[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  该执行器由电动机驱动,通过蜗轮蜗杆减速,带动空心输出轴转动。在该减速箱中,具有手动[/font]/自动机构(手动机构可独立进行操作)。当切换手柄处于手动位置时,操作手轮,带动空心输出轴转动。当电动操作执行机构时,手动机构处于断开状态,由电动机驱动空心输出轴。阀门电动执行器基本上是一个减速电机。电机可以具有各种电压,并且是主要的转矩产生部件。为防止因过度劳动或过度耗电而造成的热损伤,电机通常配有嵌入电机绕组的热过载传感器。该传感器与电源串联,并在电机过热时打开电路,然后在电机达到安全工作温度时关闭电路。电动机由电枢,电气绕组和齿轮组组成。当向绕组供电时,产生磁场,引起电枢旋转。只要有绕组通电,电枢就会转动 当电源切断时,电机停止。行程限位开关的标准末端,这是电动执行器所必需的,可以处理这个任务。[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  阀门电动执行器依靠直接连接到电动机的齿轮系来增强电动机转矩并决定致动器的输出速度。改变输出速度的一个方法是安装周期长度控制模块。该模块只允许增加周期时间。如果需要减少循环时间,则必须使用具有所需循环时间和适当输出扭矩的备用执行机构。[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  阀门电动执行器的优势:[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]1.功能强劲:智能调节型、开关型、各类信号输出型应有尽有;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]2.体小量轻:[/color][/font][b][font=微软雅黑][color=#333333][font=微软雅黑]阀门电动执行器[/font][/color][/font][/b][font=微软雅黑][color=#333333][font=微软雅黑]体积和重量仅相关于传统产品的[/font]35%左右;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]3.美观大方:铝合金压铸外壳、精美流畅、且可减少电磁干扰;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]4.性能可靠:轴承和电气元件竺关键零部件采用进口品牌平品;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]5.高标防护:IP68高标准防护等级;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]6.精密耐磨:蜗轮部件采用特殊合金材料锻造;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]7.回差极小:结构无间隙联结、传动精度高;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]8.安全保证:通过1500V耐压检测、F级绝缘电机,安全有保障;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]9.配套简单:采用单相电源、外接线路简单、也可做380V和直流电源;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]10.使用方便:免加油、免点检、防水防锈、任意角度安装;[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]11.多种速度:全程时间9秒、13秒、15秒、30秒、50秒、100秒、150秒(出厂前已设定);[/color][/font][font=微软雅黑][color=#333333][/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]  [/font]12.智能数控:智能数控模块集成于[/color][/font][b][font=微软雅黑][color=#333333][font=微软雅黑]阀门电动执行器[/font][/color][/font][/b][font=微软雅黑][color=#333333][font=微软雅黑]本体内,无需外接定位器,数字设定,数字整定,高定,自我诊断,一机多能。[/font][/color][/font][font=微软雅黑][color=#333333][/color][/font]

  • 电动微操作仪优势特色及详细参数

    [url=http://www.f-lab.cn/micromanipulators/micromanipulator-3.html][b][b]电动微操作仪[/b][/b][/url]是德国制造的高精度[b]电动显微操作仪[/b],具有德国精密制造的先天优势,采用步进电机驱动使用,电动控制的精度较高,采用优质电极,操作平滑而无电子噪音,可达亚微米精度。[url=http://www.f-lab.cn/micromanipulators/micromanipulator-3.html][b]电动微操作仪[/b][/url]特点采用步进电机驱动使用,电动控制的精度较高,采用优质电极,操作平滑而无电子噪音,可达亚微米精度。配备有良好的控制器,最小步长高达0.01微米,这种极小的步进长度确保步进电机的每一次运动绝对没有振动产生.结构超级紧凑,可以直接放到显微镜载物台上使用[img=电动微操作仪]http://www.f-lab.cn/Upload/micromanipulator-3.jpg[/img][b]电动微操作仪参数[/b]XYZ三轴行程:25mm分辨率:0.025微米材料:铝驱动器:2相步进电机滚珠丝杠螺距: 1mm表面:阳极镀膜,黑色漆重量:1.7kg标准配置:电动显微操作仪, 安装夹具,工具夹[b]电动微操作仪特色[/b]超级凑凑,可以直接安装到显微镜上使用X轴可倾斜90度

  • 泰安迎金电动伸缩门的电流参数

    一般泰安迎金电动伸缩门的参数如下,泰安迎金电动伸缩门产品参数:电源电压:220V;空制电压:12V;电.流:2.5;功率:300W;频率50H;环境温度:-40-80℃;空气相对湿度:93;移动速度:15M/分;牵引:15M;涡轮电机;磁敏开关;无触点系统;热敏装置;无档级离合装置;防碰装置;缓冲装置;一个台式遥控+2个手柄遥控泰安迎金电动伸缩门有那些特点及优势:1、无挡极离合装置,当停电或其它故障使门体不能正常运行时,只须用离合钥匙将离合开关旋转到分离状态即可转为手动。LED显示的字幕广告,客户可自行更改广告内容。采用计算机系统,在无任何轨道的情况下均能按预定路线行驶。2、在行驶过程中如受外力影响而使机头偏离预定路线时,它会自动检索预定路线、自动纠错,门体按预定路线行驶。3、取消磨擦噪音。4、能抵御强风。5、自锁装置,伸缩门关闭时,被牢牢锁住。6、使用之前,只需用简单的方法,在路面上为其设行驶路线即可;安装简单、快捷、方便。7、安装好之后,保持原有路面平整,不存在积水现象,方便清除杂物,车辆进出畅通。8、取消传统伸缩门八心电缆及地下电缆,只需用二芯电缆。9、在门体关闭状态下能感知爬门物体,并发出信号,提醒用户.10、在关闭过程中能探测到约40厘米范围内物体,而自动退。(另外加配件费用)11、交叉连接结构,运行平滑、结构牢。12、选用型材组装门体框架。13、驱动电机采用门控电机,使用时间长。14、设有微电脑起步装置,消除了电机启动时的瞬间冲击力,使机头起步稳、不摇晃。泰安市迎金门业有限公司是一家生产、销售的企业。拥有电动门、电动伸缩门、悬浮门、自动旋转门、岗亭 、旗杆、智能停车场管理、电子感应门、无框玻璃门、遥控车库门、不锈钢等系列产品,是国内同行业中品种较全,功能较完善的生产厂家之—。订购为您提供测量、报价、安装等服务。 免责声明:文章来源为网络,版权归原作者。如涉及作品版权问题,我们将删除内容或协商版权问题。

  • 步进电机驱动的电动针阀:电磁比例阀的更新换代产品

    步进电机驱动的电动针阀:电磁比例阀的更新换代产品

    [align=center][img=电动针阀(电动针型阀),599,513]https://ng1.17img.cn/bbsfiles/images/2021/06/202106212250264749_7239_3384_3.gif!w599x513.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 用于比例流量调节的NCNV系列数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,使这些电动阀门成为医疗、生命科学和高级自动化应用中一致、高性能气体传输和控制的理想选择,是目前常用电磁比例阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的闭环控制系统。[size=18px][color=#990000]二、特点和优势[/color][/size] (1)多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。 (2)高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。 (3)高重复性:通过每次达到0.1%的相同流量,NCNV系列电动针阀可提供长期稳定的一致性。 (4)宽压力范围:通过5或7bar巴的真空,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。 (5)低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。 (6)高分辨率:0.2%的分辨率允许NCNV系列电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。 (7)快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。[size=18px][color=#990000]三、技术指标和尺寸[/color][/size][align=center][size=18px][color=#990000][img=电动针阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/06/202106212253271035_4363_3384_3.png!w690x452.jpg[/img][/color][/size][/align][align=center][size=18px][color=#990000][img=电动针阀外形尺寸,690,422]https://ng1.17img.cn/bbsfiles/images/2021/06/202106212253521961_2022_3384_3.png!w690x422.jpg[/img][/color][/size][/align][size=18px][color=#990000]四、驱动模块附件[/color][/size] NCNV 系列数控电动针阀配备了一个步进电机驱动电路模块,以提供了所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供 RS485 串口通讯的直接控制。[align=center][img=电动针阀步进电机驱动模块和尺寸,690,219]https://ng1.17img.cn/bbsfiles/images/2021/06/202106212254366571_5829_3384_3.png!w690x219.jpg[/img][/align][size=18px][color=#990000]五、典型应用[/color][/size](1)[url=https://bbs.instrument.com.cn/topic/7801687]用于小流量和真空压力高精度调节的灵巧型数控电动针阀[/url]

  • 汽车电动尾门常见问题及解决方法

    电动尾门工作出现问题,大多数是由于安装操作不当而引起的,这里品信检测罗列出电动尾门一些常见的问题及解决方法,希望能够帮助到大家。 一、电动尾门:控制盒不工作 1、取电器取电位置不对或没插好 2、保险丝烧坏(取电器上的保险丝和控制盒上的保险丝) 3、地线位置没接好造成回路不良 4、门锁检测线(白色)没接好或没接对 5、汽车电瓶电量不足 6、控制盒损坏 二、电动尾门:尾门关不到位和尾门关不平 1、支架左右装反或支架固定螺丝没换成平KM(PM)头螺丝 2、尾箱的防水胶条、内饰板没装好、撑杆连接线没装好 3、拉锁部件没装好(有些车的原车底座螺母是可以活动的,要把我司的拉锁底座向车前推到底固定) 4、没降低尾门上的到位胶块(如翼虎) 5、每一辆车的原车尾门缝隙和高低平整底都不一样,要看清楚了再安装,否则安装电动尾门后也可能是不平的 6、锁不上二级锁,先把原车锁锁上,再把锁钩上的缓冲胶块割平(让锁钩上的半圆位置变成圆即可) 三、电动尾门:电吸不工作1、我司的“门锁检测线”(白色)没接好(具体参考安装说明)2、电吸盒连接线没连接好3、原车保险丝坏(原车门锁检测线没提供状态给我司控制盒,导致电吸盒不工作)4、拉线被卡死或折弯角度太小(拆弯角度不能小于60度)导致拉线不能运动5、拉线断、电吸盒坏、控制盒坏6、尾门开关检测线没接好(接地了)7、前按键或后按键被卡死四、电动尾门:撑杆不工作或走走停停1、撑杆连接线没插好,霍尔线接触不良2、我司的“门锁检测线”(白色)没接好(具体参考安装说明)3、控制盒地线没接好或电源线没接好4、撑杆坏或控制盒坏五、电动尾门:尾门打不开1、车子没解锁(大部分车子要先用遥控器解锁后尾门方能打开,原车也是如此)2、我司的“锁头检测线”(灰色)或“锁头驱动线”(黄色)没接好(具体参考安装说明)3、原车保险丝坏(原车锁头检测线没提供状态给我司控制盒,导致尾门打不开)4、控制盒坏六、电动尾门:遥控器不能开关尾门1、CAN线、门锁检测线没接好(具体参考安装说明)2、我司的“尾门开关检测线”(紫色)没接好(具体参考安装说明)3、控制盒坏、遥控器坏或遥控器电量不足4、加装了一键升窗或一键启动,遥控器芯片有改动5、CAN信息有改动七、电动尾门:前按键不能开关尾门1、我司的“尾门开关检测线”(紫色)没接好(具体参考安装说明)2、前按键连接线没接好3、前按键坏八、电动尾门:后按键不工作1、后按键连接线没接好2、我司的“尾门开关检测线”(紫色)没接好(具体参考安装说明)3、后按键坏九、电动尾门:高度记忆功能无作用1、尾门的高度记忆位置不在我司控制盒的记忆范围,尾门最高位的二份之以下一位置无记忆功能2、高度记忆后需关门一次初始化十、电动尾门:安装电动尾门后车会漏电1、验证尾门是否扣第二道锁,只扣上第一道锁时控制盒还在工作,控制盒耗电较大2、检查车内其它设备是否存在漏电现象3、检查原车电瓶的储电量4、控制盒坏十一、电动尾门:掉杆子1、卡簧没卡到位2、卡簧变形本文由品信仪器检测(http://www.szpxjc.com/)整理,转载请标明出处。品信检测中心是一家专业、权威、公正的第三方计量检测机构,专业提供的计量检测校准、环境试验、机床检测、三坐标检测、元器件检测筛选等,报价公正,出具国家认可的检测证书和校准报告,一直以来广受客户的认可。

  • 对高、低压电动机过热保护

    1.高压电动机过热保护 JW1型双金属温度继电器由测温元件(温控管)及执行元件(出口继电器)两部分组成。温控管用双金属片作为感温元件,用三只温控管串联对称埋人电动机定子绕组端部,并用环氧树脂胶粘牢。将连接导线(用屏蔽导线,屏蔽层与电动机外壳相接)引至电动机高压控制柜。由于JW1型专用继电器容量较亦选用Jwl型双金属温度表继电器。其组成结构及工作原理与高压电动机过热保护装置基本相同。不同之处为选择执行继电器时应选用交流操作的中间继电器。其电压线圈额定值与电动机控制回路电压相一致。可选用DZJ-204X(线圈电压-220V,线圈流0. 5A)间继电器。其二利用执行继电器常闭触点与电动机运行接触器线圈相串联。电动机正常运行时温控管触点开启,中间继电器不动作,而当电动机温度达到温控管动作整定值(该电动机为F级绝缘,为安全起见,实际选用动作值为105度的温控元件)时,温控管触点闭合。此时,执行继电器线圈得电吸合,常闭触点打开,切断电动机主回路接触器电源,使电动机退出运行,达到保护电动机的目的。2.温控管动作整定参考值及执行继电器选择原则 (1)温控管动作整定参考值温控管动作值应与电动机绝缘等级所能承受的最高温度相适应。对于电动机各种不同绝缘等级,在选用温控管时建议采用以下范围内的元件,即A级选用85-95~C,E级选用95100℃,B级选用100-105℃,F级选用120-125℃(2的温控元件。但为安全可靠起见,对温控管动作值选择时最好降低一级使用,以确保电动机安全。同时;也应考虑电动机正常工作温度,因此选择温控管动作值应与所配电动机的绝缘等级及使用环境等因素综合全面考虑,选择最佳动作值来决定温控管的动作整定范围。 (2)执行继电器选择原则 ①由于温控管双金属片触点容量很小,其额定电流在60mA以下,所以执行继电器动作额定电流应选择≤60mA。当控制回路电流很小,满足原配JW1型执行继电器的要求时,也可用原配继电器。因此,选择执行继电器应视实际情况来决定。 ②继电器额定电压应与电动机控制回路电压等级相一致,在交、直流操作情况下其额定电压一般应选择220V似下的电压等级。 ③继电器常开、常闭触点容量应满足控制回路电流的要求。3.温控管安装注意事项 (1)温控管一般采用埋人式安装,安装前应对温控管进行模拟试验,以确定其动作的可靠性。 (2)温控管一般选用3只串联对称埋人电动机定子绕组端部,并固定牢固。 (3)连接导线应选择铜一占线。高压电动机内导线用屏蔽线,屏蔽层与电动机外壳可靠连接,以防感应电压。为了加强导线与高压电动机端部绕组间的绝缘强度,在屏蔽线外部紧密缠绕三层薄云母带,云母带外缠绕一层白纱带,外刷环氧树脂漆一道,烘干即可。低压电动机用BV-105℃耐温线。导线应与温控管管脚紧密连接。电动机内部的连接导线应套上耐温的黄蜡软管,导线绝缘合格,固定平整可靠.

  • 【原创】转手吉尔森电动单道移液器(全新)

    【原创】转手吉尔森电动单道移液器(全新)

    本人最近采购了2支吉尔森电动单道移液器(一支¥7800元),由于用不上,所以原翻不动,不知道有没有人需要,降价(一支¥5000元或来电洽谈)转手,产品信息如下:产品名称:吉尔森电动单道移液器(Pipetman Concept)产品型号:C型http://ng1.17img.cn/bbsfiles/images/2010/12/201012241525_269650_1690368_3.jpg型号及量程范围: C10ML(1-10ML)主要特点:* 简易化“一步到位”键,一按高搞定; * 独特的多功能指轮,浏览和选择; * 采用PVDF材料制作,最强的化学防腐蚀保障; * 吸嘴弹射器长短可调,增加不同吸嘴兼容性; * 专利G-F.I.T.设计,吸嘴与套筒一按即合,密封可靠,排卸时毫不费力; * 移液器与电脑相联; * 电子内存支援所有GLP要求; * 标准的三点校准,另加特别的第四点,为客户提供纤毫不差的高精度。联系:020-61267101(陆先生)目前已售出一支,仍剩一支,欢迎来电。

  • 【资料】我们如何做好水泥电动抗折机的调试操作呢?

    水泥电动抗折机广泛运用在水泥厂、建筑施工单位及有关专业院校科研单位,用于做水泥软练胶砂抗折强度检验用,并可作其他非金属脆性材料的抗折强度检验。为了延长水泥电动抗折机的使用寿命和安全,我们该怎么样去调试与操作呢?  水泥电动抗折机调试与操作如下:  (1)首先先接通水泥电动抗折机的电源,按下游动砝码上的按钮,用手推动游动砝码,左移,使游动砝码上游标的零线对准标尺的零线,放开按钮后对准的零线可能会有所移动,此时可用手在丝杆右端的滚花部分转动丝杆,移动游动砝码,使两根零线重合。  (2)调整处于扬角指示板后边位置的置零触头螺丝,使刚与游动砝码接触,然后再用螺母锁紧置零触头螺丝,校对游标与标尺的零线是否重合,如不重合,应重新调节置零触头螺丝直至重合为止。  (3)松开锁紧螺钉,移动大、小平衡砣,使大杠杆尽量趋于平衡,然后拧紧锁紧螺钉,将大平衡砣锁紧于大杠杆上,移动小平衡砣上的螺母,使小平衡砣移动直至大杠杆完全平衡为止,然后用锁紧螺钉将小平衡砣锁紧于大杠杆上,注意大、小平衡砣的锁紧必须可靠,以免在使用过程中由于试件断裂,大杠杆下落时受震动而破坏平衡。  (4)将试体放入抗折夹具内,以夹具上的对准板对准,转动夹具下面的手轮,使下拉架上的加荷辊与试体接触,并继续转动一定角度,使大杠杆有一定扬角,数值一般由经验估计,原则是试体在断裂时应使大杠杆尽可能处于水平位置,扬角的数值可在扬角指示板上读出。  (5)需要保持水泥电动抗折机的清洁、干燥。刀刃与刀刃承间不得有任何润滑油,以免粘住灰尘。限位开关撞板必须调整到大杠杆下落到底时限位开关刚刚动作,切忌调整在过早使限位开关动作的位置,以免撞坏限位开关。  (6)按了启动按钮,水泥电动抗折机开始加荷,试体断裂时,大杠杆下落触动限位开关,断开电动机电源,读数。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制