当前位置: 仪器信息网 > 行业主题 > >

红外热像检测

仪器信息网红外热像检测专题为您提供2024年最新红外热像检测价格报价、厂家品牌的相关信息, 包括红外热像检测参数、型号等,不管是国产,还是进口品牌的红外热像检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外热像检测相关的耗材配件、试剂标物,还有红外热像检测相关的最新资讯、资料,以及红外热像检测相关的解决方案。

红外热像检测相关的论坛

  • 【讨论】《建筑红外热像检测要求》即将发布----喜乎?忧乎?

    [size=3] 由上海市建筑科学研究院(集团)有限公司负责起草,欧美大地仪器设备中国有限公司等单位参加起草的红外热像仪建筑检测规范《建筑红外热像检测要求》即将发布,该标准即将于2010年8月1日正式颁布实施。 这是我国第一个针对用红外热像仪对建筑物外墙饰面质量缺陷、渗漏、外围护结构热工缺陷等方面进行检测的标准,并于今年8月1号正式实施。 《建筑红外热像检测要求》标准有助提高建筑物红外检测规范。标准具体规定了建筑红外热像检测、检测结果的分级以及检测报告的基本内容。针对建筑红外检测,阐述了一些相关术语的定义,比如探测器、工作波段、测温范围、空间分辨率等。标准对检测方案内容做了详细规定,并详细列出了检测环境条件。标准规定了在渗漏检测中,找不到渗漏源时的试水检测方式。标准对检测结果及报告模式做了详细要求,对缺陷等级做了详细规定,并对报告内容做了限定。 此标准一共6个章节,其中介绍了红外热像仪检测涉及的术语和定义,检测内容和技术参数的规定,检测工作的流程,数据分析等。附录由A-F介绍了全国部分城市夏季红外检测建筑外墙饰面层粘结缺陷推荐时间,并提供了其它热能影响的参考热谱图,常用材料红外发射率表等。 [color=#f10b00]喜之:《建筑红外热像检测要求》标准的出台,使得建筑行业红外热像仪的检测有章可依,行业的检测有了规范性标准。忧之: 建筑行业是否都能认真地按照标准,对所有的房屋建筑进行一次不漏的进行检测呢?[/color][/size]

  • 如何能做好LCD面板的红外热像检测?

    任何有温度的物体都会发出红外线,热像仪就是接收物体发出的红外线,通过有颜色的图片来显示被测量物表面的温度分布,根据温度的微小差异来找出温度的异常点,从而起到与维护的作用。一般也称作红外热像仪。下面以flir热像仪为例说下如何能做好LCD面板的红外热像检测?  1、选择合适的距离,LCD面板检测要求在热图中显示整块LCD面板的温度分布情况,若受到LCD屏幕或检测位置的限制,则需要考虑使用10.5mm广角镜头。  2、先使用自动模式测量LCD的温度范围;然后手动设置水平及跨度,将温度范围设置在最小,并包含有先前测量的温、度范围(各款仪器最小温度范围不同)。  3、切换各调色板模式,使热像图显示效果达到最佳(建议使用高对比度或铁红模式)。  4、LCD面板要求开机时间不小于30分钟,否则LCD面板温度未达到热平衡状态,对于判断面板温度是否超过标准会带来误差。

  • 具体介绍红外热成像技术在建筑节能检测中的应用

    1.红外热成像基本原理 任何温度高于绝对零度的物体都会释放出红外线,其能量与该物体温度的四次方成正比。红外线不为人眼所见,但是红外热像仪利用红外探测器和光学成像物镜可接受被测目标的红外辐射能量,并把能量分布反映到红外探测器的光敏组件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。当热流在物体内部扩散和传递的路径中,将会由于材料或传导的热物理性质不同,或受阻堆积,或通畅无阻传递,最终会在物体表面形成相应的“热区”和“冷区”,这种由里及表出现的温差,通过红外热成像仪进行检测并成像,进而可以评估其质量或状态。2.红外热成像技术在建筑结构工程领域的应用自二十世纪70年代以来,欧美一些发达国家先后开始了红外热像仪在建筑结构工程领域诊断维护的探索,使得红外热像技术在该领域的应用日臻完善,给建筑结构工程质量检测和评估技术前进和发展带来了较大的帮助,并制定了相应的技术规程。国内的红外建筑检测在二十世纪九十年代开始起步,一开始主要集中在外墙饰面砖的粘结质量以及渗漏检测方面。由于这些应用领域没有其它适合的检测手段,而红外热成像技术具有大面积、非接触远距离检测,不影响被测物体,使用安全,检测快速,结果直观可视等优势,使得该技术在建筑领域得到了迅猛的发展。通过大量的科研和工程实践,总结出了具体的测试方法和注意事项,颁布了各种测试规程,例如《CECS204:2006红外热像法检测建筑外墙饰面层粘结缺陷技术规程》,对该测试技术的发展和应用起到了很大的推动作用。目前红外热成像技术已经在以下几个方面得到了成熟的应用(如图1所示):墙面缺陷的检测,粘贴饰面的检测,渗漏和受潮的检测,热桥等热工缺陷检测,室内管道和电气设施的检测等。如图:建筑物缺陷的红外成像仪检测图像http://www.jetronl.com/uploads/allimg/120829/1_120829114451_1.jpg3.红外热成像技术在建筑节能检测中的应用 能量的消耗主要分成三部分:工业,运输和住宅。据统计,有30-50%的能量消耗集中在住宅。因此提倡节能建筑,提高能效,是一项紧迫的任务。对于新建筑和工程,比较容易处理,即建立并执行严格的节能标准和法规。然而对于现有建筑,能效相对较低,而每年只有1-2%的旧楼能得到翻新,因此,改善现有建筑降低其能耗势在必行。由于环境保护和节能的迫切需要,国内外特别是加拿大、美国、日本等国家都非常重视红外热成像技术在建筑节能方面的应用研究,取得了丰富的经验和成果。建筑中隔热层和气密性缺陷会造成室内空气不良、空气泄漏和受潮等,导致居住不舒适以及能源浪费。而解决这些问题最主要的困难是难以找到合适的方法和设备来诊断出问题所在。常规的视觉检测和评估通常效率不高,只能检测出一些明显的缺陷、表面缺陷,或隐藏的大面积缺陷。然而通常大部分缺陷并不明显,而且往往只有在造成严重的破坏之后才能知道,到时唯一的补救办法只能是花费高昂的重建费用。红外热像仪作为一种预维护诊断技术,是一种极为经济而且对建筑物本身没有损坏的诊断办法。热工性缺陷如隔热材料缺失、热桥、漏气和受潮等都会造成墙面的温度变化,通过红外热图像测得的表面温度可以表征出次表面的异常。以下将通过一些图片资料来阐述红外热成像技术在热传导损失、热对流损失、受潮、渗漏、外墙饰面质量检测中的应用,供有关质量检测和标准制订等部门在进行相关检测和标准编撰时参考。3.1.热传导损失检测在建筑围护结构中设计有隔热层,主要目的是以最合理的方式达到所期望的室内环境。经验表明,缺少隔热材料、隔热材料安装不正确、气密层和气密性不良都会降低轮廓的整体隔热性能,从而大幅提升能耗。对于新楼或旧楼,满足新的节能标准非常重要,隔热和气密层以及结构中其它任何缺陷都必须诊断并得到修补。建筑和隔热标准在过去几十年中不断改进。许多国家根据新的“环境能源效率指导方针”拥有或正在制订相应的节能标准。http://www.jetronl.com/uploads/allimg/120829/1_120829114558_1.jpg(2)红外热图显示出此新建楼房的节能效果很好,在检测中找不出热缺陷典型的隔热缺陷有: 隔热材料没有填充整个设计的空间(缝隙、孔洞、隔热层薄、隔热材料沉降、安装后材料收缩、在错误的位置进行刚性绝缘等) 隔热材料安装不当 HVAC 通过隔热层进行安装 有渗透性的隔热材料不足以阻挡气流的运动 隔热材料受潮http://www.jetronl.com/uploads/allimg/120829/1_120829114807_1.jpg(3)图红外检测清楚的显示楼房能量损失程度图3中楼龄为8年,红外图像显示在墙体和房顶都有明显的热损失,基础部位也没有隔热处理。对楼顶进行检测发现天花板没有安装隔热材料。另外,墙体没有足够的隔热层也会造成明显的热损失。室内外温差越大或材料的K值越低,就需要越大的制冷或制热功率。图4中显示在窗户和天花板之间的隔热层存在孔穴。http://www.jetronl.com/uploads/allimg/120829/1_120829114851_1.jpg图4红外成像可以找出天花板和窗口之间隔热材料的缺损。图4中此楼的其它地方也可以找到类似的情况。这可能导致更为严重的问题,如在墙体空穴中形成受潮。合同承包商忽略了在墙体空穴中放置隔热材料,通过红外热像仪检测很容易发现。在墙体空穴中安装隔热材料要求很严,必须填充在空穴中并紧实贴在墙壁上。如果没有这样安装很有可能成为空气对流的一个通道,隔热效果将会大打折扣。建筑围护结构中的一些部位,在室内外温差的作用下,形成热流相对密集、内表面温度较低的区域。这些部位成为传热较多的桥梁,故称为热桥(thermalbridges),有时又可称为冷桥(coldbridges)。热桥附加能耗占整体建筑能耗的比例不断上升,根据调查和计算,在非节能型建筑中,各种热桥的附加能耗占建筑能耗的3%~5%,而在新型节能建筑中,一般占节能建筑的20%左右。砌在砖墙或加气混凝土墙内的金属,混凝土或钢筋混凝土的梁、柱、板和肋,预制保温中的肋条,夹心保温墙中为拉结内外两片墙体设置的金属联结件,外保温墙体中为固定保温板加设的金属锚固件,内保温层中设置的龙骨,挑出的阳台板与主体结构的连接部位,保温门窗中的门窗框特别是金属门窗框等等。整个楼房存在大量的热桥,若图6所示,找出了热桥存在的位置,可以通过设置断热条来解决。http://www.jetronl.com/uploads/allimg/120829/1_120829114944_1.jpg图5红外热成像技术在建筑节能检测中的应用-不当的隔热材料安装的影响图5中红外图像显示了不当的隔热材料安装的影响隔热材料没有紧贴在墙体上。这降低了隔热效率从而造成热损失。http://www.jetronl.com/uploads/allimg/120829/1_120829115028_1.jpg图6红外热成像技术在建筑节能检测中的应用-建筑围护结构中热桥红外图像3.2.对流热损失检测密封连接不良就会造成泄漏,气密内衬层安装不当或损坏往往会出现规律性缺陷。空气很容易通过刚性隔热体之间的部分。这些缺陷会引起不均匀的度分布,会引起房间里空气产生运动(气流),从而引起局部温度降低而增加能耗和尘土的沉降。这种泄漏路径比较复杂,不利用红外成像仪就很难发现。虽然气密性测试可以找出房间总体的漏气量,可以为气密性准确定量,但不能很好的找出气漏位置,除了窗边,门缝之外,很多时候气漏的位置在墙壁某处,一般不易被肉眼察觉。要找出气漏位置,传

  • 红外热成像仪检测中存在的问题及解决方案

    随着红外技术的不断发展,红外成像仪在日常检测中时常使用到。同时使用红外热成像仪检测中存在的问题及对策 随着”三集五大”体系建设和变电设备“状态检修”的大力推进,传统的传统的变电设备检修和运行模式发生了根本性改变, 能够实时、有效、动态地评价设备健康状况成为确保设备安全、稳定 运行的前提, 红外成像仪是目前变电运行人员检测运行设备健康状况 的有力保证,可以有效的避免因设备发热而造成的非计划停电,为提 高供电可靠率做出了贡献策 针对当前变电设备红外成像检测技术的应用中存在问题及改进方法进行了思考以及对红外测温未来发展的展望。 由于这种 技术无需对所测设备停电,即可准确发现安全隐患,所以更要充分利 用好、发挥好红外成像检测这一高科技手段,夯实变电设备“状态检 修”基础,确保运行的可控、在控、预控。 一 目前在使用中所存在的问题: 目前在使用中所存在的问题: 重设备,轻人员,培训工作不到位。 ( 1)重设备,轻人员,培训工作不到位 目前,红外成像设备已基本覆盖到重要的生产班组,极大提高了 生产一线的技术装备水平,然而,好的检测设备必须得到正确和规范 的应用,才可能发挥其最好的性能,不能只重视检测设备的配置,而 忽略了对人员进行必要的培训, 目前对红外成像仪方面培训的主要方式还是以产品说明书为主,没有专业的培训教材和权威的培训师资, 虽然厂家的技术人员会不定期到各基层单位组织测温培训, 但由于运 行人员倒班的原因,造成了一线人员缺乏热像仪的操作技能培训,同 时,昂贵的机器也需要专业的使用和维护技巧,没有经过专业培训, 在使用红外线成像器材时就不可避免要出现:保养不当、充电电池报 废、昂贵的红外线镜头被划损等等现象,既造成了经济损失,也影响 了测温工作的正常开展。 对策:(1)建立完善的红外成像检测制度,对红外检测工作的准备、 对策 风险预控、规范、安全注意事项等进行详细的规定。同时根据各站所 管辖的一、二次设备详细列表并建立测温表单,以表单的形式使测温 制度和规范落到实处;(2)加强红外热成像仪使用技术的培训,考 虑到运行人员工作的特殊性, 可以首先由相关厂家的技术人员对各个 部门的技术专责进行培训并考核, 然后由各个部门的专责负责对各个 集控站,变电站站长进行培训。 此文转自:深圳市杰创立仪器有限公司

  • 锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前锁相红外热成像无损检测中存在被检物温度偏离标准正弦波形式的检测模型,以及被检物温度无法准确控制和快速达到稳定的问题,本文提出了改进解决方案。解决方案的核心是将现有的激励光源开环控制模式改进为闭环控制,具体采用了具有远程设定点功能的PID温度控制器,将现有光源的正弦波功率调制改进为直接的被检物表面温度正弦波调制,由此更符合理论模型,且可使被检物平均温度快速达到稳定而大幅缩短检测时间。[/b][/color][/size][align=center][size=18px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 如图1所示,锁相红外热成像无损检测技术使用周期性调制热源,对待测物体进行周期加热。若待测物体内部有缺陷,该缺陷对其上方表面温度分布会产生周期性的影响,因此有缺陷和无缺陷地方会产生幅值差和相位差的热特征,这些特征通过红外热像仪成像捕获。采集到的热图序列中存在着各种干扰信号,通过锁相技术可以将微弱的有用信号从众多干扰信号中分离出来,可大幅提高检测的灵敏度。但这种红外锁相或其他光激励热成像法存在以下严重问题:[/size] [align=center][size=18px][color=#339999][b] [img=红外锁相热成像检测原理及其系统,500,611]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442140543_4031_3221506_3.jpg!w622x761.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 红外锁相热成像检测原理及其系统[/b][/color][/size][/align][size=16px] (1)因为现有技术只能对激励热源的加载功率进行正弦波调制,但并不能真正保证被测物体内部的温度变化也是真正的正弦波形式,这使得热像仪获得的热波波形与检测理论模型存在较大偏差,这是目前造成此方法误差的最大原因。[/size][size=16px] (2)目前锁相法调制光源加热被测物体时的温度时间变化曲线如图2所示,要经过较长时间温度才能达到稳定状态,对于较大或较厚物体用时将会更长,其中最大的问题是温度升高多少无法准确控制,只能靠经验或多次试验来确定调制光源的加热功率以实现所希望的温度变化。[/size][align=center][size=18px][color=#339999][b][img=红外锁相法加热过程中的时间-温度变化曲线图,500,379]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442434774_7846_3221506_3.jpg!w472x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 红外锁相法加热过程中的时间-温度变化曲线图[/b][/color][/size][/align][size=16px] 由此可见,目前的红外锁相法还较粗狂,整个控制还是一个开环控制过程,这使得在实际无损检测中边界条件无法准确匹配测试模型,温度变化波形和大小也无法做到准确控制。为了解决这些问题,本文提出了如下一种闭环控制解决方案。[/size][b][size=18px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 为使被检物体内部的温度变化符合测试模型中正弦波形式的要求,本文提出的解决方案是采用闭环控制加热模式,即在被检物体的表面或内部安装温度传感器,与PID控制器和激励光源组成闭环控制回路,通过正弦波形式的设定点输入,最终将被检物体表面或内部温度准确控制并与正弦波温度设定曲线吻合。整个闭环控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波温度加热光源控制系统结构示意图,650,387]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443195882_6318_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正弦波温度加热光源控制系统结构示意图[/b][/color][/size][/align][size=16px] 从图3可以看出,由增加的温度传感器、卤素灯加热光源和控制器组成的闭环控制回路,可以对被检物表面温度进行任意设定点下的精确控制。但为了使表面温度能够严格按照所希望幅值和周期的正弦波形式进行变化,解决方案中采用一种多功能的高级PID控制器VPC2021。此控制器具有外部设定点功能,即通过外接周期信号发生器,可以使VPC2021控制器的温控设定值严格按照信号发生器的输出进行改变,即温控设定值可以设计为一个随时间变化的周期性正弦波。由此可以实现以下两个功能:[/size][size=16px] (1)可任意设定加热正弦波的频率和幅值,以满足不同无损检测对象的需要。[/size][size=16px] (2)可任意设定加热正弦波的平均值大小,由此可实现任意温度下的正弦波热波控制,并能很快达到稳定状态而开始进行无损检测,有效缩短检测时间。[/size][size=16px] VPC2021系列超高精度PID调节器是具有远程设定点功能的控制器,具有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点也能接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何探测信号只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。在红外锁相法无损检测中使用远程设定值功能时的具体接线如图4所示。[/size][align=center][size=16px][color=#339999][b][img=远程设定点功能使用接线图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443467549_5148_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 远程设定点功能使用接线图[/b][/color][/size][/align][size=16px] 在使用远程设定值功能前,需要对控制器辅助输入通道参数进行设置,以满足以下要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式:[/size][size=16px] (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图4中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的具有远程设定点功能的PID控制器,结合外置周期信号发生器,可很好实现锁相红外热成像无损检测中的正弦波温度闭环控制,使得被检物体内部的稳态正弦温度波更符合无损检测模型,并使得被检物温度快速达到所希望的测试温度而缩小检测时间,最终可使得锁相红外成为更精密化的无损检测技术。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align][size=16px][/size]

  • 红外热像仪测温原理在线夹检测上的应用

    红外热像仪测温原理在线夹检测上的应用

    在输电系统中,线夹是重要设备,但线夹常常由于接触不良、腐蚀等原因,出现异常过热点,严重影响安全供电。使用利用Fluke红外热像仪测温原理可以准确地检测出过热点,及时排除隐患,确保供电安全。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_01_3169614_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_02_3169614_3.png线夹热缺陷形成原因线夹作为输电线路的重要金具,其可靠性是影响电网长期安全稳定运行的重要因素。根据缺陷所产生的原因不同,我们通常归纳为以下几类:1 长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良。2 由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。如接头连接不良,螺栓,垫圈未压紧或过紧。3 长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低。4 负荷电流不稳或超标等。热缺陷的划分 根据GB763-90以及实测数据统计分析,按照热缺陷温升的高低及对设备的危害程度可将其分为一般性热缺陷、严重性热缺陷和危险性热缺陷三种。1 一般性热缺陷:其温升范围在10~20℃之间,与相同运行条件下的设备相比,该接头有一定的温升,用红外成像仪测量仅有轻微的热像特征,此种情况应引注意,检查是否系负荷电流超标引起,并加强跟踪,防止缺陷度的加深。2 严重性热缺陷:发热点温升范围在20~40℃之间,或实际温度在60~80℃之间,或设备相间温差范围在1.5~2.0倍之间,热像特征明显,缺陷处已造成严重热损伤,对设备运行构成严重的威胁,此种缺陷应严加监视,条件允许时应尽快安排停运处理。3 危险性热缺陷:发热点温升超过40℃,或者最高温度已超过国标GB763-90所规定的该材料最高允许值。热像图非常清晰,该种缺陷随时可能造成突发性事故,应立即退出运行,进行彻底检修。Fluke红外热像仪的优势1 Fluke已申请专利的IR-Fusion技术除了拍摄红外图像外,还同时捕获一幅数字照片,将其融合在起,有助于识别和定位故障,从而能够在第一时间正确的修复故障。2 Fluke Ti系列热像仪配备了功能强大的软件,用于存储和分析热图像并生成专业报告。通过该软件,可以对存储在从热像仪下载的图像中发射率、反射温度补偿以及调色板等关键参数进行调节,更好地利用红外热像仪测温原理。而这些都可以在办公室进行,提高了检查的安全性和方便性。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_03_3169614_3.png http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_04_3169614_3.png没有进行修正的线夹 进行发射率及背景温度修正的线夹如何才能做好线夹的检测? 线夹因测量距离较远,利用红外热像仪测温原理测量时一般需加配一个长焦(望远镜)镜头,镜头的放大倍数以3倍(或称9°镜头)为宜。在正常状态下,线夹的温度比周围的环境温度高,如环境温度为10℃,线夹温度通常为20℃至30℃;但有时使用热像仪检测到的线夹温度却低于环境温度,这是由于下列原因所造成的:1 没有准确聚焦 红外热像仪需要进行准确的调焦才能得到准确的辐射能量;当没有准确调焦,热像仪得到的辐射能量会大大减少,根据红外热像仪测温原理,这样检测的温度值自然就会出现较大误差;Fluke红外热像仪的画中画(PIP)功能可以帮助进行准确聚焦,其操作非常简单直观:被检测线夹所在的输电线路穿过红外及可见光部分,转动调焦旋钮,当红外部分的输电线与可见光部分的输电线衔接完好时调焦完成,反之红外和可见光部分的输电线不能完好衔接。2 发射率修正 线夹的检测与其他变、配电设备的检测不同,一般需要检测其真实的绝对温度而非相对温差,故对线夹的发射率进行修正是必要的,以目前常用的高氧化铝材质的线夹为例,其发射率需修正为0.30,若使用红外热像仪上工厂设置值0.95进行检测,就可能出现较大误差。3 背景温度补偿修正 线夹的红外热像检测是向上往天空方向,故线夹的背景温度必需以天空的温度进行修正而非线夹所处的环境温度。若天空晴朗,背景温度会超过热像仪测量下限,这时背景温度补偿参数以所能够设置的最低温度进行修正;若天空有云,则背景温度补偿参数以实际检测的天空温度进行修正。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191649_01_3169614_3.png

  • 非接触式红外液位开关——检测水箱是否在位

    非接触式红外液位开关——检测水箱是否在位

    [font=&][color=#333333]非接触式红外液位开关是一种用于检测水箱液位的情况。它采用红外线技术,通过发射和接收红外光信号来判断水箱的位置,从而实现对水箱状态的监测。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]非接触式红外液位开关由发射器和接收器组成。发射器发射红外光束,而接收器接收被水箱反射的红外光信号。当水箱在位时,红外光束会被水箱反射回接收器,接收器会检测到红外光信号,从而判断水箱在位。而当水箱不在位时,红外光束无法被接收器接收到,接收器无法检测到红外光信号,从而判断水箱不在位。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]非接触式红外液位开关的工作原理是基于红外光的反射和接收。当水箱在位时,红外光束会被水箱表面反射回来,接收器会接收到反射的红外光信号。而当水箱不在位时,红外光束无法被水箱反射回来,接收器无法接收到红外光信号。[/color][/font][align=center][img=红外液位开关,639,275]https://ng1.17img.cn/bbsfiles/images/2023/07/202307101339516185_9267_4008598_3.jpg!w639x275.jpg[/img][/align][font=&][color=#333333]非接触式红外液位开关的优点是无需直接接触水箱,避免了污染和损坏的风险。同时,它具有快速响应、高精度和可靠性的特点,能够准确地检测水箱的位置。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]总之[url=https://www.eptsz.com],非接触式红外液位开关[/url]通过发射和接收红外光信号来检测水箱是否在位。它的工作原理简单而可靠,能够准确地监测水箱的位置,为用户提供便利和安全保障。[/color][/font][font=&][color=#333333][/color][/font]

  • 【资料】红外检测器

    【资料】红外检测器

    红外检测就是利用红外辐射原理对设备或材料及其它物体的表面进行检验和测量的专门技术,也是采集物体表面温度信息的一种手段。 红外检测的原理 红外线检测物体表面温度分布的变化如图1所示。 [img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807231651_99712_1604460_3.jpg[/img]图1 红外检测物体表面温度变化示意 从图中可见,热流注入是均匀的,对无缺陷的物体,正面和背面的温度场分布基本上是均匀的,如果物体内部存在缺陷,在缺陷处温度分布将发生变化,对于隔热性的缺陷,正面检测方式,缺陷处因热量堆积呈“热点”,背面检测时,缺陷处则是低温点;而对于导热性的缺陷,正面检测时,缺陷处的温度是低温点,背面检测到缺陷处的温度是“热点”。可见,采用红外检测技术,可以形象地检测出材料表层与浅层缺陷和范围。 当一个物体本身具有不同于周围环境的温度时,不论物体的温度高于环境温度,还是低于环境温度;也不论物体的高温来自外部热量的注入,还是由于在其内部产生的热量造成,都会在该物体内部产生热量的流动。热流在物体内部扩散和传递的路径中,将会由于材料或投射的热物理性质不同,或受阻堆积,或通畅无阻传递,最终会在物体表面形成相应的“热区”和“冷区”,这种由里及表出现的温差现象,就是红外检测的基本原理。 红外检测器的分类 红外的检测器是红外分光光度计的重要组成部分,红外的检测器也有多种。 红外检测器分为热电检测器和光检测器两类。热电检测器是将红外的辐射热能转化为电能,从而检测电信号来测量红外线的强弱。光检测器则是利用红外线的热能使得检测器的温度发生改变,从而导电性发生变化,此时通过测量电阻来衡量红外信号的强弱。 热电检测器有:DTGS(氘化硫三肽)、LiTaPO3(钽酸锂)等。 光检测器有:MCT(汞铬碲)、InTe(锑化铟)等。 红外检测的基本方法 红外检测的基本方法分为两大类型,即被动式和主动式。被动式的红外检测在设备的红外检测诊断技术中应用比较多;主动式的红外检测又可分为单面法和双面法 红外检测中对被测目标的加热方式也分为稳态加热和非稳态加热。 红外检测仪器的安装和运载方式有固定式、便携式、车载式和机载式(直升机装载)等多种。 (1)被动式红外检测 所谓被动式系指进行红外检测时不对被测目标加热,仅仅利用被测目标的温度不同于周围环境温度的条件,在被测目标与环境的热交换过程中进行红外检测的方式。被动式红外检测应用于运行中的设备、元器件和科学试验中。由于它不需要附加热源,在生产现场基本都采用这种方式。 (2)主动式红外检测 主动式红外检测是在进行红外检测之前对被测目标主动加热,加热源可来自被测目标的外部或在其内部,加热的方式有稳态和非稳态两种,红外检测根据不同情况可在加热过程当中进行,也可在停止加热有一定时间后进行。 1)单面法:对被测目标的加热和红外检测在被测目标的同一侧面进行。 2)双面法:相对于上述的单面法而言,双面法是把对被测目标的加热和红外检测分别 在目标的正、反两个侧面进行。 (3)加热方式 1)稳态加热:将被测目标加热到其内部温度达到均匀稳定的状态时,再把它置放于一个低于(或高于)该恒定温度的环境中进行红外检测。 这种方式多用于材料的质量检测,如被测物内部有裂纹、孔洞或脱粘等缺陷时,则被测物与环境的热交换中热流将受到缺陷的阻碍,其相应的外表面就会产生温度的变化,与没有缺陷的表面相比则会出现温差。 2)非稳态加热:对被测目标加热,不需要使其内部温度达到均匀稳定状态,而在它的内部温度尚不均匀、具有导热的过程中即进行红外检测。 3)如将热量均匀地注入被测目标,热流进入内部的速度要由它的内部状况决定,若内部有缺陷,则会成为阻档热流的热阻,经一定时间会产生热量堆积,在其相应的表面会产生热的异常。缺陷造成的热流变化取决于缺陷的位置、走向、几何尺寸和材料的热物理性能。 红外检测仪器的安装和运转方式 (1)固定式:用于对旋转型设备故障的监测、关键设备的监测和生产在线产品工艺、质量的监测。 (2)便携式:便携式的红外检测仪器应用十分广泛,在日常巡检、定期普测、配合设备检修和跟踪监测中都要使用(主要使用或配合使用)便携式仪器。 (3)车载式:在进行设备的定期普测时,由于被测设备数量多、检测路线长,必须采用车载式检测。车载式是把热像仪装载在汽车(或其它车辆)上,可以使用两组测距不同的镜头摄取远、近两处设备的红外图像;对于汽车不能到达的目标,则步行到位检测;车内有图像监视器显示,操作者发现异常(包括需要立即检修和进一步调查监测两种情况),则立即在车上纪录并打印,及时向主管人员递交红外检测报告;遇有紧急情况需要及时处理,可采用无线电电话取得联系。 (4)机载式:对于需要在上空检测的目标,特别是极长距离、人员和车辆都不便到达的高山峻岭处的设备检测,应该采用直升机机装载热像仪进行。 红外检测的优势 红外检测作为非破坏检测众多方法中的一个,它们的功能在相比之下是各有特色,但红外检测却有其独到之处,形成了它的检测优势,可完成X射线、超音波、声发射及激光全息检测等技术无法担任的检测。 (1)非接触性:红外检测的实施是不需要接触被检目标的,被检物体可静可动,可以是具有高达数千摄氏度的热体,也可以是温度很低的冷体。所以,红外检测的应用范围极为宽广,且便于在生产现场进行对设备、材料和产品的检验和测量。 (2)安全性极强:由于红外检测本身是探测自然界无处不在的红外辐射,所以它的检测过程对人员和设备材料都不会构成任何危害;而它的检测方式又是不接触被检目标,因而被检目标即使是有害于人类健康的物体,也将由于红外技术的遥控检测而避免了危险。 (3)检测准确:红外检测的温度分辨率和空间分辨率都可以达到相当高的水平,检测结果准确率很高。例如,它能检测出0.1℃,甚至0.01℃的温差;它也能在数毫米大小的目标上检测出其温度场的分布;红外显微检测甚至还可以检测小到0.025mm左右的物体表面,这在线路板的诊断上十分有用。在某种意义上说,只要设备或材料的故障缺陷能够影响热流在其内部传递,红外检测方法就不受该物体的结构限制而能够探测出来。 (4)操作便捷:由于红外检测设备与其它相比是比较简单的,但其检测速度却很高,如红外探测系统的响应时间都是以μs或ms计,扫描一个物体只需要数秒或数分钟即可完成,特别是在红外设备诊断技术的应用中,往往是在设备的运行当中就已进行完了红外检测,对其他方面很少带来麻烦,而检测结果的控制和处理保存也相当简便。

  • 工业红外热像仪用于转窑检测

    工业红外热像仪用于转窑检测

    转窑是烧结法氧化铝厂及大多数水泥厂最重要的生产设备之一。转窑是整个氧化铝及水泥工艺流程中生产能力最薄弱的环节,其转窑内衬非常容易脱落,严重时会造成窑壁烧穿,导致停产事故;Fluke工业红外热像仪可以及时发现内衬损坏状况,避免损失。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191701_01_3169614_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612191701_02_3169614_3.png 什么是转窑转窑又称回转窑。转窑按处理物料不同可分为水泥窑、冶金化工窑和石灰窑。1 水泥窑主要用于煅烧水泥熟料,分干法生产水泥窑和湿法生产水泥窑两大类。2 冶金化工窑则主要用于冶金行业钢铁厂贫铁矿磁化焙烧;铬、镍铁矿氧化焙烧;耐火材料厂焙烧高铝钒土矿和铝厂焙烧熟料、氢氧化铝;化工厂焙烧铬矿砂和铬矿粉等类矿物。3 石灰窑(即活性石灰窑)用于焙烧钢铁厂、铁合金厂用的活性石灰和轻烧白云石。 http://ng1.17img.cn/bbsfiles/images/2016/12/201612191701_03_3169614_3.png 工业红外热像仪为什么可以检测转窑?与其他固定式工业炉窑(如倒焰窑、隧道窑、石灰炉等)相比,转窑内衬的使用寿命较短。究其原因有2点:1 转动的窑体对内衬的机械作用给内衬造成一定损坏;2 在转窑运转过程中,砖之间粘结不牢,造成内衬砖间相互作用而导致回转窑内衬使用寿命较短。工业红外热像仪可以评估转窑衬里损坏状况:利用Fluke热像仪检测其外壁温度场,可了解装置运行情况下的衬里损伤程度,从而为制定检修方案提供参考。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191701_04_3169614_3.png 典型客户: 铝业:中州铝厂、平果铝业等 水泥行业:海螺水泥、海豹水泥、亚洲水泥等红外热像仪的优点1 转窑内衬的损坏肉眼无法发现,工业红外热像仪可以检测出外壳的温度变化,在此基础上迅速判断出故障。2 Fluke已申请专利的IR-Fusion技术除了拍摄红外图像外,还同时捕获一幅数字照片,将其融合在一起,有助于识别和定位故障,从而能够在第一时间正确的修复故障。3 Fluke Ti系列热像仪配备了功能强大的软件,用于存储和分析热图像并生成专业报告。通过该软件,可以对存储在从热像仪下载的图像中发射率、反射温度补偿以及调色板等关键参数进行调节,而这些都可以在办公室进行,提高了检查的安全性和方便性。 http://ng1.17img.cn/bbsfiles/images/2016/12/201612191701_05_3169614_3.png 如何才能拍摄清晰的热像图?使用红外热像进行检测时要得到一幅清晰的红外热图,我们建议:1 尽量选择最高温度超过300℃工业红外热像仪。2 拍摄时要注意尽量避免测量阳光直射,在阴影处拍摄液位线不容易受到阳光干扰,效果较好。3 拍摄时注意观察周围有无其他热源,特别对于表面较光亮的管线,其外壳较易反射周围热源,造成检测干扰,故在拍摄时若周围有热源,请改变拍摄角度。

  • 非接触式红外液位开关——检测水箱是否在位

    非接触式红外液位开关——检测水箱是否在位

    [size=24px][font=宋体]非接触式红外液位开关也叫(分离式液位传感器),采用的是光学原理检测,利用光在液体和空气两个不同介质面发生的反射或折射的原理进行检测。[/font][font=宋体]例如在加湿器上的应用,将非接触式红外开关安装于设备底部位置,水箱上设计一个透明棱镜结构,当液位低于传感器检测点时,传感器则会发出信号提醒加水,当水箱被拿走时传感器则会停止检测,此类传感器不仅可以检测缺水,也能检测满液状态,适用于水箱需要移动的设备。[/font][font=宋体]非接触式液位开关因其结构和原理,所以在检测时不受液体温度、腐蚀性、密度等影响,其具有体积小、检测精度高、反应灵敏等优点。[img=,639,275]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090947171597_394_4008598_3.jpg!w639x275.jpg[/img][/font][/size]

  • 红外热像仪在刹车片温度检测中的应用

    刹车片的质量直接关系到汽车停车过程或者应急刹车过程的有效性和可靠性,对驾驶和乘坐人员的生命有直接的影响。利用热像仪可以完全知道整个的刹车片的工作后温度变化过程,从而检验刹车片制动性和耐磨性。为什么要对刹车片进行温度监测?高性能的制动能力出自完美的刹车系统。汽车刹车系统一般包括刹车踏板、液压回路、卡钳、刹车片和刹车盘。当驾驶者踩下踏板时,液压回路将力量施加于装有刹车片的卡钳,卡钳合拢抱住车轮中的刹车盘,实现减速。对于刹车片而言,最重要的就是摩擦材料的选择,它基本决定了刹车片的制动性能。温度是影响刹车片性能的一个重要的环境变量。一方面,温度制约着刹车片的制动性、耐磨性等各方面的性能。另一方面,它又体现了刹车的制动性和耐磨性等性能。所以,温度采集在刹车片材料的研究中是至关重要的。红外热像仪在刹车片温度检测中的应用刹车片如果温度过高,它的效率就会降低。急刹车时,强烈的摩擦会使刹车盘和刹车片的温度高达1000℃!如果摩擦材质过硬会导致制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。使用热像仪,工程师可以完全知道整个的刹车片以及制动系统这个温度变化趋势。根据这个温度变化趋势,可以分析出刹车片制动状况,以及耐磨性。如果刹车片摩擦材质过软,在连续刹车后刹车片温度急剧升高,制动力会明显下降。相反,如果摩擦材质过硬,温度变化趋势较缓,则会导致刹车片制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。红外热像仪温度检测独特优势现有温度测量手段分三种:1、接触式热电偶接触式热电偶反应速度较慢,而且无法显示整个刹车片的整体温度分布情况,同时操作过于复杂,工程师的效率难以提高。2、红外点温仪红外点温仪反应速度快,又是非接触测温,但红外点温仪同样不具备整个刹车片温度分布的功能。3、红外热像仪红外热像仪弥补了接触式热电偶和红外点温仪的缺点,操作简捷,反应速度快,非接触测温,同时能够反映刹车片的温度分布,是目前最理想的检测工具总结红外热像仪拍摄时可能会遇到哪些问题?1、刹车片工作后,温度比较高(大于600℃),选用的热像仪时需要注意测温范围2、表面比较光亮时,非常容易将附近高温辐射源反射进红外热像仪,造成严重干扰,在拍摄时要注意避开附近高辐射物体。如何能做好红外热像检测?3、选择合适的测温范围,应该能够检测到1200℃的高温;4、先使用自动模式测量温度范围;然后用手动设置水平跨度,将温度范围设置在最小,并包含有先前测量的温度范围;5、切换各调色板模式,使热像图显示效果达到最佳(建议使用高对比度或铁红模式)。

  • AR加持红外热成像,彻底解放双手

    近日,AR头显公司Leapsy发布热成像AR头显,将AR与红外热像技术集成,以此来解决传统热像仪设备占用双手不方便操作的问题。据悉,Leaspy热成像AR头显采用自由曲面方案,视场角(FOV)为60°,内置单目红外镜头,通过软件算法实现对热源温度的检测,将具有不同温度区分的热像结果显示于AR头显上。在使用环境是30℃的情况下,热灵敏度可以精确到0.05℃。考虑用途的特殊性,Leaspy的这款热成像AR头显在外形设计上与安全帽相结合,以保护使用者在工业场景下的安全。从呈现效果来看,热成像AR头显可以三维效果近眼距离查看温度检测结果,了解温度等指标,并将数据收集,远程传送。另外,人体工学设计和材质选择适用于长期作业的使用场景。[url=http://www.861718.com/]了解更多请看仪商网[/url]Leapsy的一名负责人表示:“AR热成像头显的研发以及与电力场景的结合,是我们与传统行业的一次创新尝试。在此基础上,随着市场的逐渐成熟,未来Leapsy计划拓展防火预警及安防等领域。” 此外,其还表示该热成像AR头显或将于2018年第四季度上市。其实,红外热像技术主要用于工业检测、设备维护、防火、夜视以及安防等领域。Leapsy则希望为这一细分领域注入新的技术动力,通过热成像AR头显为使用者提供了更多元化的操控方式,切实解放了双手。最后,Leapsy也表示,未来将不断完善热成像技术,提高产品的性能。

  • 【求助】想购买一台红外定性检测PAHS ROHS 等

    我们公司想买一台红外可以快速定性的检测家电产品中的PAHS、ROHS、PHTHS,不知道红外能不能同时检测这几种物质?请教大家 一下。有仪器厂商的也可以把相关资料发我邮箱:qyh-1234@163.com。谢谢大家了,领导催的很紧!

  • 【分享】红外热像技术

    红外热像技术 开放分类: 物理学、光学、红外光学[定义] 为使热成像系统正常工作,将其探测器元件冷却至低温或深低温的技术,又称低温恒温器技术。该技术的主要任务有二点:一是通过制冷形成一个合适的低温恒温环境,以保证需要在低温下工作的电子器件或系统功能正常,或提高器件的灵敏度;二是屏蔽或减小来自热成像系统的滤光片、挡板及光学系统本身等带来的热噪声。 制冷器的工作原理包括物理和化学两种方法。根据使用场合和所需要制冷温度不同,可利用不同原理制成适当的制冷器。热成像系统使用的多为物理方法。主要有: 1、利用相变制冷 即利用制冷工作物质相变吸热效应,如使用灌注式杜瓦瓶的液氮、液氢等的制冷; 2、利用焦耳-汤姆逊效应制冷 即当高压气体的温度低于本身的转换温度并通过一个很小的节流孔时,气体的膨胀会使温度下降。如焦-汤制冷器,特点是结构简单、可靠性高、质量轻、体积小、无振动、无运动部件、噪声小、成本低、致冷速度快,致冷时间通常只需15~60s(秒)。 3、利用气体的等熵膨胀制冷 即气体在等熵膨胀时,借膨胀机的活塞向外输出机械功,膨胀后气体的内位能要增加,从而要消耗气体本身的内功能来补偿,致使膨胀后温度显著降低。如斯特林闭循环制冷器,其特点是功耗低、尺寸小、质量轻。 4、利用帕尔帖效应制冷 即用N型半导体和P型半导体作用偶对,当有直流电通过时电偶对一端发热,另一端变冷,如热电制冷器,又称为半导体或温差电制冷器。热电探测器的主要优点是:全固态化器件、结构紧凑、寿命长;无运动部件,不产生噪音;不受环境影响;可靠性高。缺点是制冷器的性能系数(COP)较低,致冷量小,效率低; 5、利用物体之间的热辐射交换制冷 如在外层空间利用外层宇宙的高真空,深低温来制冷。它的显著特点是无运动部件、长寿命、功耗小、无振动干扰。缺点是对轨道和卫星的构形有要求,对环境要求严格,入轨后需经过一段时间的加热放气后才能工作。[相关技术]焦平面技术;热力学技术;机械加工技术 [技术难点] 不同制冷器技术的关键技术各不相同。斯特林制冷器的技术发展重点在于增加致冷量、加大压缩机和冷指之间分置距离、寻找更灵活的气体通道、减轻压缩机重量、减小体积等。对于高频小型脉冲管制冷器技术,主要考察方向是回热器设计和性能;减少复式入口脉冲管中直流电流的影响;降低脉冲管中的流动性。对于热电致冷技术,关键技术在于提高热电材料的品质因素Z和减小冷端热负载。对于闭环节流制冷器,通常高压压缩机是可靠性的薄弱环节,需要加以克服。 [国外概况] 1、斯特林致冷技术 斯特林致冷技术已经有50年发展历史,在军事上应用最广泛。首先出现的是整体式结构,即压缩活塞和膨胀活塞用一连杆以机械方式连为一体。整体式结构容易产生热和振动影响制冷部分。针对系统存在的不足,国外也作了些改进。首先,自1972年以来,有了显著发展,由美国休斯飞机公司研制出分置式斯特林制冷器,将压缩机和膨胀器分开安置,中间用一根软管相连。这种结构不仅克服了早期整体式制冷器的缺点,还保持了原有系统结构紧凑、效率高、启动快等优点,因此颇受国外用户重视,发展较快。其次,为了克服原有电机/曲轴这种动态结构产生的磨损而影响寿命,荷兰飞利浦研究所于1968年开始研制用线性电机驱动线性谐振压缩机的斯特林机。迄今为止,线性谐振斯特林机的发展已经经历了三代:1975年由荷兰飞利浦公司的科学和工业分部研制的MC-80型微型制冷器称为第一代,属非军用型,致冷温度为80开氏度时,输出功率为1W(瓦);1976年,荷兰和美国同时设计出第二代。荷兰飞利浦公司在MC-80的基础上使其军用化,最初命名为MMC-80,后来正式命名为UA-7011型;1982年,在UA-7011的基础上,由飞利浦公司研制了一系列线性谐振制冷器,称为第三代。它们由标准化压缩机和两个冷指(膨胀器部分)组成,专用于美国60元和120元/180元探测器/杜瓦瓶装置。致冷功率分别能达到1/4W和1W,平均无故障时间为2500h(小时)。该公司目前正继续研制更新产品。 2、脉管致冷技术 1963年由美国低温专家发明,直到1984年前苏联米库林教授对基本型脉管做了重大改进后,使其向实用迈进关键性一步。脉管实际上是斯特林的变体,膨胀机内无需运动部件,结构更简单可靠,且易于装配和控制振动。目前其机理仍在探索中,未来将成为斯特林机强有力的竞争对手,特别是在长寿命机型中更是如此。 3、热电致冷技术 又称温差电致冷器或半导体制冷器。1950年代末期,随着半导体材料技术的大力发展,解决了早期系统致冷效率低的的问题。特别是美、英、日苏等国在这一领域做了大量研究,1960年代用热电致冷即已达到实用阶段。热电质量因素Z是用以评价热电材料的因素之一,1980年代末,美国和欧洲一些国家热电材料的Z值能达到3.5×10-3/°K(10的负三次方/开氏度),前苏联能达到4.7×10-3/°K。目前热电制冷器主要用于手持式热像仪,如美国马格纳沃克斯公司的AN/PAS-7型和HPHTV型、英国莱赛盖奇公司的LT1065型。此外还可用于其它一些观瞄系统,如美国德克萨斯仪器公司的AN/TAS-5“龙”式反坦克导弹热成像瞄准具、美国马格纳沃克斯公司的TWS型热成像瞄准具等。 4、焦-汤致冷技术 又称节流式致冷技术,是1950年代发明的,绝大多数情况下使用开环式致冷器,但仍有采用高压压缩机的闭式节流制冷器。早期系统由逆流式热交换机、节流孔和装有高压气体的贮气瓶组成。为了控制气体消耗量,国外对节流制冷器作了些改进,设计了自调式制冷器。现在国外生产的焦-汤系统几乎都配备了这种自调机构。国外多将该技术用于红外制导、手持式热像仪、车载热像仪、反坦克导弹热瞄具等。如美国德克萨斯仪器公司的AN/TAS-4陶式反坦克导弹夜瞄具、科尔斯曼公司的热成像远距离夜间观察仪、英国马可尼公司的HHT-8和MSDS型手持热像仪、索恩伊美公司的多用途热像仪和法国的TRT公司的MIRA型红外热像瞄准具等。 5、利用相变致冷 有液态致冷和固态致冷两种。液态循环致冷目前广泛用于试验室测量和民用红外系统。固态致冷系统主要用于航天工业,储存的固态冷却剂根据质量和体积,使用时间可为1至3年或更长。 [影响] 电器件的冷却离不开低温技术,尤其是红外技术在武器装备中特殊的地位使其迅速发展。 1、红外预警和监视 海湾战争以后,各国反导技术得到发展,均致力于研制弹道导弹的防御系统。红外探测技术在导弹发射预警中起到关键性作用。它包括星载红外预警探测系统、机载和舰载反导红外探测预警系统,它们都需要高可靠性的斯特林制冷器或其它类型的制冷器作为红外探测器的冷源。 2、精确光电制导 战术导弹、巡航导弹和反导拦截器几乎都使用红外引导头、红外寻的制导技术由点源发展为成像制导,已广泛应用于精确制导武器系统。它实现制导智能化,具有高灵敏度、高分辨率、作用距离大和对目标有自动识别和跟踪决策能力。 3、夜间及红外热成像系统 夜视和红外热成像是当今现代化战争最常用而不可缺少的军事手段。红外夜视在80年代已经发展到第二代,如4N扫描型和焦平面凝视型。由于探测元数目提高了一个数量级、灵敏度大幅度提高,热成像探测距离也相应提高。这些军事系统都使用制冷器将这些红外探测器冷却到80K左右的低温环境,目前在红外系统中低温制冷器的可靠性仍是薄弱环节,只有重点发展低温制冷器、减少体积和重量、提高可靠性,才能促使红外探测技术在武器装备中更广泛应用。 4、红外遥感技术 空间遥感技术常采用红外波段,可用来对战场态势、环境、气象进行监视。空间制冷器通常要求高可靠性、长寿命和低能耗的辐射制冷器和机械制冷器。

  • 用红外热成像仪提前预知设备的状况

    红外线热成像检测是一项越来越被肯定的工业检测技术,就一般工厂检测应用而言,主要以提高设备运转的可靠性、工业安全及节能等为目的。工厂设备以电气及机械两大类为主,并以电气设备的检测应用为最多,另外还包括转动、传动机械装置的检测,炉壁、管线的防火与隔热层(保温/保冷)的状态检测。 工厂,工程设备的正常运作是确保施工质量,提高效率所必备的条件,对于提前检测设备的情况确保机械正常运作,是十分重要的。因为预知维护检测是预先检测并诊断设备的潜在故障因素,有目的按计划地进行维护工作。这种维护检测作业不仅提高设备运转的可靠性,并降低设备的检修费用与工时,减少设备过度维护出现的问题。红外线热像检测技术同时具备非破坏性检测、非接触式测量、直觉观测、不受电磁干扰、测温快速、灵敏度高等特性,是最有效的预知保养维护工作中对设备状态监测和故障诊断的方法之一。设备出现异常时,通常显示出一定的征兆,如振动、声响、电量、光、温度、压力、异物等各种物理量的测量,可供发现并诊断问题。许多的设备异常,在初期阶段会显示可觉察的温度差异,而红外线热成像是以测量温度为检测方法,将检测所得的热图像与温度值,根据设备的构造及特性进行分析,发现并诊断问题,提出建议改进方案。

  • 红外碳硫检测收费情况

    不知道大家的实验室红外碳硫进行一个样品碳或硫的检测收费是多少,或者是你了解的某实验室碳硫检测收费情况,分享加分哦

  • 【求助】红外检测器DTGS

    [em09504]各位,有哪位了解红外检测器Dtgs的给详细介绍一下,另外这种检测器国内有生产的吗(无论用于哪台仪器都行)?如果有麻烦发个照片看看,谢谢!

  • 最新近红外的检测限能达到多少?

    请教各位有关近红外检测限的问题,有一中药原料,成分含量用液相测在0.001%-0.2%之间,请问可以用近红外建立定量模型吗?听说AOTF的近红外光谱仪的检测限能达到十万分之一甚至百万分之一,真的吗,有人用过吗?

  • 聊聊红外的检测器吧!

    红外的检测器是红外分光光度计的重要组成部分,红外的检测器也有多种。红外检测器分为热电检测器和光检测器两类。热电检测器是将红外的辐射热能转化为电能,从而检测电信号来测量红外线的强弱。光检测器则是利用红外线的热能使得检测器的温度发生改变,从而导电性发生变化,此时通过测量电阻来衡量红外信号的强弱。热电检测器有:DTGS(氘化硫三肽)、LiTaPO3(钽酸锂)等。光检测器有:MCT(汞铬碲)、InTe(锑化铟)等。我这边还有很多检测器,让我们一起来分分类:PbSe、InGaAs、Si、PbS、Ge

  • 红外热成像仪使用中环境影响因素介绍

    红外热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热成像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。红外热成像仪被广泛应用于工程技术,楼宇检查,军队实战等领域。  随着红外热成像仪的广泛应用,越来越多的使用者关注如何用好热像仪,红外热成像仪在使用中环境影响因素都有哪些?以备受全球工程师们亲睐的国际一流品牌Fluke红外热成像仪(福禄克)为例,小编总结了6大因素,分享出来供大家参考啦~  1红外热成像仪的仪器工作温度有什么需要注意?可以在0℃以下检测或充电吗?  一般热像仪可在-10~50℃范围内工作;但当环境温度在0℃以下,建议开机半小时后达到充分预热再进行检测,连续室外检测时间不超过20 分钟。避免在过冷或过热的地方充电,以免减弱电池的蓄电能力。  2红外热成像仪对工作时的环境湿度有什么限制?  湿度为10%~90%,无凝结。  3Fluke 红外热成像仪是否具有防爆认证?可以用来检测危险区域吗?  目前Fluke 红外热成像仪不具有防爆认证。但热像仪具有远距离检测的优势,在检测距离可以满足被测目标的大小尺寸前提下,您可以选择在危险区域以外准确调焦后进行测试。  4现场环境下雨,是否会影响准确测量?  下雨本身对测量精度影响不大,但被测物体表面附着的水滴可能造成热量的异常流失,使测量温度不能准确反映物体的正常表面温度。同时,下雨环境对仪器本身也可能造成损坏,故不建议在雨天进行直接测量。  5现场环境存在大风,是否会影响准确测量?  大风对准确检测影响很大,按电力行业红外热成像诊断标准,被测目标的风速不应高于5 米/ 秒。若现场风速高于此标准,会导致被测物体散热过快,使测量温度偏低。  6红外热成像仪使用中会产生辐射干扰其他设备运行吗?会受到检测现场的其他设备的电磁辐射影响吗?  Fluke 红外热成像仪是全被动接收设备,自身没有主动辐射信号,对于您的现场设备或产品没有任何干扰。外部电磁辐射影响:目前只发现电解铝的大电流整流柜会对热像仪造成干扰(一般此类现场电流会超过10 万安培以上)。

  • 【国产好仪器讨论】之钢研纳克检测技术有限公司的脉冲红外热导氧氮氢分析仪(ONH-3000)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C141210%2Ejpg&iwidth=200&iHeight=200 钢研纳克检测技术有限公司 的 脉冲红外热导氧氮氢分析仪(ONH-3000)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器原理: 原理简介:金属、合金及陶瓷等无机材料中的O、N、H等气体元素对材料的性能至关重要。定量分析材料中的O、N、H元素,目前广泛采用的是脉冲加热熔融-惰气保护还原热导红外检测原理,在载气气氛下,将试样在脉冲炉石墨坩埚中加热至特定温度,试样中O元素转换为CO或CO2后由载气载出,而后用红外吸收法测定;N和H以分子形式释放后由载气载出,进入热导池分别定量分析。ONH-3000氧氮氢分析仪是北京纳克分析仪器有限公司最新推出的具有领先水平的高技术氧氮氢分析仪。该仪器配置有两个独立的分别检测高氧和低氧的红外检测池,一个检测氮和氢双重范围的热导检测池。脉冲炉采用循环水冷却,样品在高功率脉冲炉的石墨坩埚中加热可达3000℃以上高温,该仪器具有灵敏度高、性能好、测量范围宽和分析结果准确可靠等优点。ONH-3000氧氮氢分析仪是为快速、准确测定固体无机材料中氧、氮、氢的含量而专门设计制造的,分析过程中可自动实现从低范围到高范围的切换。 仪器参数 1.测量范围:氧0.0~2%; 氮0.0~2%; 氢0.0~0.1% 2.灵 敏 度:氧0.1μg/g; 氮0.1μg/g; 氢0.01μg/g 3.精 密 度:氧2μg/g或2%; 氮2μg/g或2%; 氢0.2μg/g或2% 4.分析方法:氧:红外吸收法; 氮:热导法; 氢:热导法 5.样品称量:一般约1g,可根据样品含量改变称样量。 6.分析时间:一般为3分钟。 7.载 气:氧氮分析为高纯氦气;氢分析为高纯氮气; 动 力 气:普通氮气或压缩空气。 8.仪器结构:模块式结构,由主机、计算机、打印机*、电子天平*、冷却循环水*等模块组成。 注:*为选配件。 9.检测系统:氧分析采用固态红外检测器,氮、氢分析采用高精度热导检测器。 1)检测器:采用抗氧化NTC热敏电阻元件; 2)信号处理:采用小电流控制技术,防止热敏元件在不通载气条件下氧化; 3)恒温控制:采用高精度恒温控制系统; 4)参比气路:采用稳定性良好的微流量控制; 10.流量控制:采用高精度电子流量控制技术,带Anti-Overshoot System; 11.熔融加热炉:电流0-1500A,功率:8KVA,最高温度高于3000℃。 12.校正:两种方法 1)快速校正 2)多次分析结果校正。 13.电源:220VAC&plus....【了解更多此仪器设备的信息】

  • 【求助】关于红外添加剂定量检测的问题,谢谢

    大家好,最近公司想用紫外和红外做定量检测添加剂,紫外做定量上的问题我就不在本版提问了。新手初步接触红外,想请各位提供些红外做添加剂定量检测的资料,我好学习学习,之前我了解的红外做定量,原理同紫外相同,也是比尔定律,透射率吸收度测量,请问还有其他方法资料?还有救是紫外到红外区域够宽了,我们家的添加剂是常规化学品,应该都吸收的吧?谢谢各位。问题提的比较多,原谅新手的求知欲。补充:我查资料做定量的红外是色散型,傅里叶变换红外光谱不能做比尔定律的透射定量检测么?

  • Fluke 便携式红外热像仪应用——液晶屏坏点检测

    Fluke 便携式红外热像仪应用——液晶屏坏点检测

    随着红外技术的不断发展,红外热像仪逐渐被应用于越来越多的民生行业,吃、穿、住、行无所不在。美国福禄克热像仪作为行业佼佼者,通过多年的推广和开发,已获得各领域工程师的广泛认可,此文将通过真实案例和热图的解说来阐述美国福禄克便携式红外热像仪是如何应用于液晶屏坏点检测的。 液晶屏可能会由于质量问题造成坏点,但坏点通常很小,要检查出和分析其损坏原因非常困难,红外检测是目前行之有效的检测方式,但微米级级别的坏点和非常小的温差是红外检测的难点,本文以案例叙述使用福禄克大师之选系列红外热像仪对液晶屏进行坏点检测的过程和系统解决方案,。 http://ng1.17img.cn/bbsfiles/images/2016/04/201604261628_591523_3051882_3.png检测案例: 某知名液晶屏制造商,需要对液晶面板上的像素点进行检测,如果有坏点,或其它的缺陷,因其内阻较高,在热像图中呈现的是热点,该现场存在两个检测难点:1、目标小:液晶屏每个像素点尺寸为微米级别,最小的像素点尺寸仅为40微米,各型号略有差异。2、温差小:受到液晶屏整体发热的能量传递因素影响,坏点的温度与正常部位的温差一般在1℃之内。解决方案:1、配套微距镜头,可根据现场实际情况配置微距镜头2或微距镜头3。2、安装三脚架和二维可调精密位移云台。3、建议将调色板设置为灰度模式,方便小温差情况下的观测。4、因液晶屏表面是玻璃材质,检测时注意人员或其他设备不要在液晶屏表面造成反射干扰,建议用不透红外能量的材料(如布、纸张等进行遮挡,不要用塑料纸)。 http://ng1.17img.cn/bbsfiles/images/2016/04/201604261629_591524_3051882_3.png拍摄机型:Fluke TiX660配微距镜头行业应用:液晶屏的制造商和相关器件的配套制造商等。

  • 看得见的“热”:红外热像仪技能get!

    [color=#363636]美国菲力尔公司(FLIR)创立于1978年,是全球热成像技术领域的领导者。面向工业、商业科研、民用等领域,目前已生产出几千款热像仪用于世界各地的预防性维护、建筑检查、研发、医疗、气体泄漏检测、消防、自动化以及其他夜视应用领域。[/color][b][color=#ab1942]红外热像仪如何解决电气[/color][color=#ab1942]和机械的热故障[/color][color=#ab1942]2017-05-24 14:00[/color][color=#363636]此次讲堂主要介绍了红外热像仪如何在日常工作中帮助用户寻找机械及电气类故障,本PPT采用了大量详实的资料图片来帮助用户理解热像仪的作用。[/color][color=#363636]主讲人希望能通过此次交流,能帮助大家解决实际工作的温度问题。 [color=#3f3f3f]曾伟,2006年加入FLIR公司,经历工作区域包含华南/华东地区,现在主要负责中部地区的热像仪工作。近10年的从业经历,丰富的热像仪提案能力和现场使用经验。[/color][/color][color=#363636][/color][color=#363636]参会报名[color=#363636]开课时间:2017-05-24 14:00 (教室于 2017/5/24 13:30:00开放) [/color][color=#363636]会议时长: 2小时 报名条件:只要您是仪器信息网注册用户均可参加!环境配置:只要您有电脑、外加一个耳麦就能参加。[/color][color=#363636](需要进行音频交流的用户需准备麦克)人数限制:170 提问时间:您可在论坛的宣传贴中先行提问,截至时间为 2017-05-24 相关领域:地矿/钢铁/有色金属-钢铁 相关仪器:测量/计量仪器-温度计量仪器-红外热像仪[/color][/color][color=#363636]报名地址:[url]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2548[/url][/color][color=#363636][/color][/b][color=#363636][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制