当前位置: 仪器信息网 > 行业主题 > >

力平衡传感器

仪器信息网力平衡传感器专题为您提供2024年最新力平衡传感器价格报价、厂家品牌的相关信息, 包括力平衡传感器参数、型号等,不管是国产,还是进口品牌的力平衡传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合力平衡传感器相关的耗材配件、试剂标物,还有力平衡传感器相关的最新资讯、资料,以及力平衡传感器相关的解决方案。

力平衡传感器相关的论坛

  • 防护热板法导热仪间隙温度不平衡传感器的指标设计

    防护热板法导热仪间隙温度不平衡传感器的指标设计

    [color=#cc0000]  摘要:本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,同时考虑单样品和双样品两种测量模式,设计计算了防护热板法装置对温度不平衡传感器的灵敏度要求,并最终给出设计指标和相应的技术改进。[/color][color=#cc0000]  关键词:防护热板法,温度不平衡,传感器,灵敏度[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000] 1. 概述[/color][/b]  针对不同被测材料类型,防护热板法导热仪一般分为单样品和双样品两种测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232126417209_8902_3384_3.png!w690x255.jpg[/img][/align][color=#cc0000][/color][align=center]图1-1 防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align][align=center][/align]  防护热板法的测量原理就是采用护热手段保证计量板发出的热量全部通过被测样品而达到一维稳定状态,因此护热手段是保证防护热板法导热系数测量准确的核心。防护热板法中的护热基本上采用的都是等温绝热原理,即各种护热板的温度要与计量板温度一致,从而减少计量板上的热量以各种传热方式进行散失。  温度不平衡传感器是检测计量板与各个护热板之间温度差的探测装置,传感器探测到的温差传递给控制器,控制器控制护热板温度变化使得温度不平衡传感器的输出值最小,从而构成闭环控制回路形成有效的护热控制。温度不平衡传感器的输出值越小,说明护热板与计量板之间的温差越小,护热效果就越好。  由此可见,温度不平衡传感器的灵敏度是防护热板法装置护热效果好坏的重要评判依据。由于诸如安装和可靠性等诸多因素的影响,植入在计量板和护热板之间的温度不平衡传感器不可能无限制提升灵敏度,灵敏度需要根据防护热板法导热系数测量范围和测量精度要求、所用控制器和数据采集器的分辨率以及测试温度范围等因素进行优化和设计,以选择合适的温度不平衡传感器灵敏度。  本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,来设计计算防护热板法测试中温度不平衡传感器的灵敏度要求,并同时考虑单样品和双样品测量模式下防护热板法装置对温度不平衡传感器的要求,最终给出设计指标和相应的技术改进。[b][color=#cc0000]2. 建模[/color][/b]  针对图1-1所示的防护热板法导热系数测试结构,首先进行了建模。无论是单样品还是双样品模式,防护热板法装置都是圆形或正方形的轴对称结构,所以建模只考虑了正方形结构。另外为了便于更直观的进行分析和说明问题,本文只描述了上海依阳实业有限公司的部分建模分析内容,即仅介绍了基于导热传热的建模分析,在实际建模分析中还需要针对对流和辐射传热进行建模,分析模型如图2-1所示。  在图2-1所示的护热分析模型中,同时兼顾了单样品和双样品测量模式。当隔热材料更换成样品,底部护热板温度控制在冷板温度时,则是双样品测量模式。  在图2-1所示的护热分析模型中,只考虑了侧向护热和底部护热所引起的漏热问题,而温差探测器的指标设计也只要依据这两方面的考虑,并未考虑狭缝处样品内的传热漏热影响。在双样品测量模式中,只考虑侧向护热时狭缝中温度不平衡传感器技术指标。而在单样品测量模式中,还需另外考虑底部护热板与计量板之间的温度不平衡传感器技术指标。[align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132159957_5150_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132165728_1784_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132168894_1769_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132173004_918_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132177185_3520_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132182949_3584_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132187076_4077_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132191686_5352_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132196851_8619_3384_3.png!w690x975.jpg[/img][/align]  (5)在无法提高仪表测量和控制分辨率时,可以设法增大热电堆中的热电偶数量,如将8对热电偶增多到16对热电偶构成8对的温差热电堆,温度不平衡精度可以提高到0.5℃,但这种改进效果十分有限,同时也带来其他严重问题。目前上海依阳实业有限公司已经开发出新型的温度不平衡传感器,可以将现有传感器的灵敏度提升到40~50的水平,比现有热电偶式热电堆的灵敏度搞出2个量级,由此可以用五位半控制器很轻易的实现0.01℃和更高水平的温度不平衡精确控制。  (6)另外一个提高和保证测量精度的途径,就是降低侧向护热的热交换面积,采用薄加热器形式。这种思路经美国橡树岭国家实验室针对多层辐射隔热材料和真空绝热板进行的测试验证了可行性,由此相继建立了A-S-T-M C1044和A-S-T-M C1114标准等。但由于薄加热器很难制作应用到高温,薄加热器形式的防护热板法设备主要应用于温度不高的导热系数测试。  (7)需要特别指出的是,目前国内绝大多数大热阻和超低导热系数的测试,很多都是采用稳态热流计法这种相对法,而热流计法导热仪中的热流计在超低导热系数测试中的低热流测量时误差巨大,而且还无法对热流计进行校准以及采用超低导热系数的标准材料进行校准,而真正的热流计校准则是采用防护热板法设备,由防护热板法提供精确的可控热量。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zarr R R, Flynn D R, Hettenhouser J W, et al. Fabrication of a guarded-hot-plate apparatus for use over an extended temperature range and in a controlled gas atmosphere. Thermal Conductivity, 2006, 28: 235.  (2) Zarr R R. Assessment of uncertainties for the NIST 1016 mm guarded-hot-plate apparatus: extended analysis for low-density fibrous-glass thermal insulation. Journal of research of the national institute of standards and technology, 2010, 115(1): 23.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 力传感器_力传感器种类_力传感器用法

    [align=center][/align]力传感器在大家的生活中是无处不在的,力传感器是一种相对比较耐用的机电类产品,在使用力传感器的时候需要注意保证它的测试精度,如果这个没办法把握的话那测量的结果就不准确了,也没有可参考的价值,那么在使用力传感器的时候这个精度要怎么去注意呢?力传感器周围应尽量设置一些“挡板”,甚至用薄金属板把力传感器罩起来。这样可防止杂物玷污力传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。系统有无运动不爽现象,可以用以下方法判别。即在秤台上加或减大约千分之一额定负荷看看显示仪是否有反映,有反映,说明可动部分未受“沾污”。力传感器所有通向显示电路或从电路引出的导线,均应采用屏蔽电缆。屏蔽线的联接及接地点应合理。若未通过机械框架接地,则在外接地,但屏蔽线互相联接后未接地,是浮空的。注意:有3只力传感器是全并联接法,力传感器本身是4线制,但在接线盒内换成6线制接法。力传感器输出信号读出电路不应和能产生强烈干扰的设可”控硅,接触器等)及有可观热量产生的设备放在同一箱体中,若不能保证这一点,则应考虑在它们之间设置障板隔离之,并在箱体内安置风扇。用以测量力传感器输出信号的电子线路,应尽可能配置独立的供电变压器,而不要和接触器等设备共用同一主电源。力传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。力传感器使用中,必须避免强烈的热辐射,尤其是单侧的强烈热辐射。力传感器电气连接方面备(如力传感器的信号电缆,不和强电电源线或控制线并行布置(例如不要把力传感器信号线和强电电源线及控制线置于同一管道内)。若它们必须并行放置,那么,它们之间的距离应保持在50CM以上,并把信号线用金属管套起来。尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在力传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在力传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。要轻拿轻放尤其是由合金铝制作弹性体的小容量力传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的测力传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于力传感器本身的强度和刚度。测力传感器虽然有一定的过载能力,但在测力系统安装过程中,仍应防止力传感器的超载。要注意的是,即使是短时间的超载,也可能会造成力传感器永久损坏。在安装过程中,若确有必要,可先用一个和力传感器等高度的垫块代替力传感器,到最后,再把力传感器换上。在正常工作时,力传感器一般均应设置过载保护的机械结构件。若用螺杆固定力传感器,要求有一定的紧固力矩,而且螺杆应有一定的旋入螺纹深度。一般而言,固定螺杆因采用高强度螺杆。力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨[url=http://mall.ofweek.com/category_54.html]力传感器[/url]丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【原创】传感器术语解释

    传感器有很多种,包括位移传感器,称重传感器,压力传感器,光电传感器,超声波传感器……每一种都有专用术语:  1.测量范围   在允许误差限内被测量值的范围。  2.量程   测量范围上限值和下限值的代数差。  3.精确度   被测量的测量结果与真值间的一致程度。 4.重复性   在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度:相同测量方法、相同观测者、相同测量仪器、相同地点、相同使用条件、在短时期内的重复。 5.分辨力   传感器在规定测量范围圆可能检测出的被测量的最小变化量。  6.阈值   能使传感器输出端产生可测变化量的被测量的最小变化量。 7.零位   使输出的绝对值为最小的状态,例如平衡状态。 8.激励   为使传感器正常工作而施加的外部能量(电压或电流)。 9.最大激励   能够施加到传感器上的激励电压或电流的最大值。 10.输入阻抗   在输出端短路时,传感器输入的端测得的阻抗。 11.输出   有传感器产生的与外加被测量成函数关系的电量。 12.输出阻抗   在输入端短路时,传感器输出端测得的阻抗。 13.零点输出   所加被测量为零时传感器的输出。 14.滞后   在规定的范围内,当被测量值增加和减少时,输出中出现的最大差值。 15.迟后   输出信号变化相对于输入信号变化的时间延迟。 16.漂移   在一定的时间间隔内,传感器输出中与被测量无关的不需要的变化量。 17.零点漂移   在规定的时间间隔及室内条件下零点输出时的变化。 18.灵敏度   传感器输出量的增量与相应的输入量增量之比。  19.灵敏度漂移   由于灵敏度的变化而引起的校准曲线斜率的变化。 20.热灵敏度漂移   由于灵敏度的变化而引起的灵敏度漂移。 21.热零点漂移   由于周围温度变化而引起的零点漂移。 22.线性度   校准曲线与某一规定只限一致的程度。 23.非线性度   校准曲线与某一规定直线偏离的程度。 24.长期稳定性   传感器在规定的时间内仍能保持不超过允许误差的能力。 25.固有频率   在无阻力时,传感器的自由(不加外力)振荡频率。 26.响应   输出时被测量变化的特性。  27.补偿温度范围   使传感器保持量程和规定极限内的零平衡所补偿的温度范围。  28.蠕变   当被测量机器多有环境条件保持恒定时,在规定时

  • 【分享】加速度传感器的特征及应用前景

    加速度传感器是一种能够测量加速力的电子设备,是利用了其内部的由于加速度造成的晶体变形这个特性来测量加速力的。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。 但是差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙、变面积、变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单、动态响应好、能实现无接触式测量、灵敏度好、分辨率强,能测量0.01um甚至更微小的位移,但是由于加速度传感器的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百MΩ,所以对绝缘电阻的要求较高,并且寄生电容不可忽视。 加速度传感器可应用在控制、手柄振动和摇晃、仪器仪表、汽车制动启动检测、地震检测、报警系统、玩具、环境监视、工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。

  • 【分享】常见气体传感器的介绍

    首先介绍的是红外式传感器和光离子气体传感器。红外式传感器是利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。PID光离子化气体传感器由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下离子化,生成正负离子,在电极间形成电流,经放大输出信号,PID具有灵敏度高,无中毒问题,安全可靠等优点。 其实介绍的是催化燃烧式传感器,催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 最后介绍的是定电位电解式气体传感器,定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,此类传感器大都依赖进口。定电位电解式气体传感器在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。

  • 选择汽车衡五大牢记之传感器精度

    选择汽车衡五大牢记之传感器精度

    http://ng1.17img.cn/bbsfiles/images/2015/06/201506121116_549945_271_3.jpg在汽车衡购买决策过程中,有“五大牢记”能帮助您从眼花缭乱的市场中成为火眼金睛。那么,汽车衡的核心部件——传感器精度与汽车衡最小检定分度值之间的关系是怎样的呢?用一个公式可以说清楚: http://ng1.17img.cn/bbsfiles/images/2015/06/201506121117_549947_271_3.png其中:Emin 指汽车衡的最小检定分度值;Emax 指汽车衡传感器的最大量程;Y指传感器的最小分度数;而n是使用的传感器数量。 从上面那个公式可以看出,同样规格的汽车衡,可能使用同样数量的传感器,甚至同样的传感器最大量程,这时候,最重要的指标就是传感器的最小分度数了。这个Y值,使不同汽车衡有了精度上的真正差异。Y值与Emin 成反比,也就是Y值越大,最后汽车衡可能达到的精度才越大!记住,只有最高精度,最佳设计的传感器,才能生产出最高精度的汽车衡!梅特勒-托利多汽车衡及解决方案:http://cn.mt.com/cn/zh/home/products/Transport_and_Logistics_Solutions/Truck_Scales.html继续阅读《选择汽车衡五大牢记》选择汽车衡五大牢记之轴载:http://bbs.instrument.com.cn/shtml/20150612/5835681/选择汽车衡五大牢记之传感器量程:http://bbs.instrument.com.cn/shtml/20150612/5835686/选择汽车衡五大牢记之传感器防雷能力:http://bbs.instrument.com.cn/shtml/20150612/5835703/选择汽车衡五大牢记之传感器使用温度范围:http://bbs.instrument.com.cn/shtml/20150612/5835710/http://ng1.17img.cn/bbsfiles/images/2015/06/201506121117_549949_271_3.png

  • 选择汽车衡五大牢记之传感器量程

    选择汽车衡五大牢记之传感器量程

    http://ng1.17img.cn/bbsfiles/images/2015/06/201506121114_549943_271_3.jpg在汽车衡购买决策过程中,有“五大牢记”能帮助您从眼花缭乱的市场中成为火眼金睛。今天,我们就来讲传感器的量程。正确的选择传感器的量程,不只能保证汽车衡的精度,而且能够有效的保证传感器的寿命。从我们上期说的轴载那样,传感器的量程也受车辆不同位置的重量所左右,当然,秤体的自重也需要计算在传感器的量程之中,大家可能会忽略的是,车辆在衡器上的制动等冲击力也需要考虑到传感器的量程中。我们的建议是:汽车衡量程在80吨内,我们应当选择30吨内的传感器,100-150吨,选择50吨量程的传感器,150吨以上的汽车衡,需要选择75吨量程的传感器!梅特勒-托利多汽车衡及解决方案:http://cn.mt.com/cn/zh/home/products/Transport_and_Logistics_Solutions/Truck_Scales.html继续阅读《选择汽车衡五大牢记》选择汽车衡五大牢记之轴载:http://bbs.instrument.com.cn/shtml/20150612/5835681/选择汽车衡五大牢记之传感器精度:http://bbs.instrument.com.cn/shtml/20150612/5835692/选择汽车衡五大牢记之传感器防雷能力:http://bbs.instrument.com.cn/shtml/20150612/5835703/选择汽车衡五大牢记之传感器使用温度范围:http://bbs.instrument.com.cn/shtml/20150612/5835710/http://ng1.17img.cn/bbsfiles/images/2015/06/201506121115_549944_271_3.png

  • 【资料】平衡机的结构与功能

    平衡机的结构与功能平衡机分为机械部分、电控部分和电测部分三部分,三个部分各司其职、协调工作、缺一不可。  机械部分又称机械桥架,以通用卧式动平衡为例,平衡机下部的床身是放置平衡机各部件和稳固设备的基础,由左右两个摆架通过滚轮或V型架支撑转子,提供转子旋转的条件。通过皮带或联轴器拖动转子旋转,按装在两摆架上的传感器将振动信号转化为电信号传递给电测部分,机械部分还包括轴向止动架和安全架(罩)等辅助部件。  电控部分是控制拖动电机的启动和停止及调速的部件,也叫电控箱(柜)。电控部分分为直流控制和交流控制两种,其中交流控制又分为双速交流控制和变频交流控制。有的平衡机的电控部分和机械部分合为一体。  电测部分是一个电子测量系统,也叫做电测箱或指示器,它将传感器传来的电信号进行滤波处理,并以转速信号为基准进行比较,显示出被测转子的平衡转速和不平衡量。电测部分的功能还包括平面分离和标定。

  • 空气流量传感器加热元件的使用

    [align=left]通过将流量传感器发热元件的温度T与空气温度TG之间的差值控制为恒定值,可以从流量传感器发热元件的加热电流I获得气流的质量流量QM。在热丝和热膜流量传感器中,使用恒温差控制电路来实现流量检测。[/align]恒温差控制电路,加热元件电阻RH和温度补偿电阻(进气温度传感器)RT分别连接到惠斯通电桥电路的两个臂。当加热元件的温度高于进气温度时,桥电压可以达到平衡,并且加热电流(50-120mA)由控制电路A通过电流放大来控制,以保持流量传感器加热元件温度TH和温度补偿电阻温度TT。差值保持不变(即ΔT= TH-TT = 120℃)。当空气流被加热元件冷却时,加热元件的温度降低,电阻降低,电桥电压失衡,控制电路增加供给加热元件的电流以保持温度更高温度补偿电阻温度为120.°C。电流增加的大小取决于加热元件被冷却的程度,即流过流量传感器的空气量。当桥电流增加时,采样电阻器RS两端的电压上升,从而将气流的变化转换成电压信号US的变化。输出电压和空气流量之间的关系约为4根。在信号电压输入到ECU之后,ECU可以基于信号的电平计算空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量流量QM的大小。当发动机怠速或空气为热空气时,空气流量低,风量低,因为节气门在怠速时关闭或接近关闭 由于空气温度较高,空气密度较小,因此相同体积的热量相同。空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量很小,因此加热元件冷却到很小的程度,电阻值减少了一小部分,维持电桥平衡所需的电流很小,所以采样时的信号电压电阻很低。控制单元ECU可以根据信号电压计算风量。捷达AT、 GTX轿车的气流标准值为2.0-5.0g / s。当发动机负荷增加或空气是冷空气时,由于节气门开度增加,流量传感器空气流量增加,并且空气流量增加。冷空气密度大,在相同体积的情况下冷空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量大,因此流量传感器加热元件被冷却。增加程度大大增加了电阻值,并且维持电桥平衡所需的电流增加,因此当发动机负载增加时,信号电压上升。温度补偿原理当进气温度改变时,加热元件的温度改变,并且测量进气量的精度受到影响。设置温度补偿电阻(温度传感器)后,从电桥电路可以看出,当进气温度降低并且流量传感器加热元件上的电流增加时,为了保持电桥平衡,温度上的电流补偿电阻相应增加。为了确保加热元件的温度与温度补偿电阻器的温度之间的差值保持恒定,流量传感器的测量精度不受进气温度变化的影响。流量传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨[/color][color=#333333]流量传感器https://mall.ofweek.com/category_12.html[/color][color=#333333]丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器[color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【分享】仪器预热---整机的热平衡

    对于分光光度计,一般预热,光源的预热很重要,也很好理解。记得以前在什么地方看到过说预热也是为了整机建立热平衡,一直没有理解热平衡是什么意思。最近在《传感器调理电路设计理论及应用》上看到一个讲印刷电路板的热测试的,提到了热平衡。这下明白了点。分享一下。理论:印刷电路板的热测试所谓热测试就是使电子设备在实验室模拟的工作条件下测量设备的温度。热测试评价电子设备热设计并确定其可接受与否的重要方法。它这里是对一个传感器信号调理电路印刷电路板进行了热测试。测量电路板上一些重点元器件(比如对温度稳定性要求较高和发热较大的元件件)的工作温度,了解他们在正常工作时的发热情况。测试方法:测量设备:笔记本电脑,热测试仪,一组热敏电阻传感器。具体测量时 ,将每一路温度传感器用502胶粘在需要进行测温的元件上,温度传感器通过耐热导线连入热测试仪中。再通过笔记本电脑来实时显示测量结果。热测试结果:说明:通过它这里的测试结果,可以理解一下什么是热平衡。“在热测试过程中,共分两个阶段进行测量。第一阶段为电路开始工作阶段,即电路在刚接通电源后的工作阶段。该阶段测试时间为20min.第二阶段为稳定工作阶段,即电路在稳定工作条件下,系统中的热交换也已经逐渐达到了平衡工作阶段。该阶段测量时间为240min。热测试过程,每隔30s进行一次采样。下图是三极管3DK9的温度实测曲线。http://ng1.17img.cn/bbsfiles/images/2011/05/201105242043_295917_1786353_3.gif从这个图可以看出,元器件在初始工作阶段温度比较低,之后随着时间的延长,温度也在不断升高。在接通电源80min左右达到最高温度,后来又略有下降,而且温度趋于稳定,表明系统达到热平衡。总之,整个仪器系统在预热一段时间后,电路板上的各个元器件的温度基本稳定下来了。因为像三极管、数模转换器,运放等等都有温漂特性。只有温度温度稳定了,各个器件的输出特性、工作状态才能趋于稳定,对光电检测器的输出,仪器才能显示出一个稳定的值--吸光度或者透过率。附:一些元器件的温度特性1. 晶体管的温度特性: 对二极管而言,正向电流一定时,正向压降随温度的升高而降低,室温时,温度升高1C,正向压降降低2-2.5mv 反向漏电流则随温度按指数规律变化,温度升高1C,锗管增加10%,硅管增加为7%。 对三极管而言,受温度影响最大的参数包括:VBE,ICBO,HFE. 其中,VBE以-(2-2.5)mv/C的速率线性变化,Iceo在温度不很高时,按指数规律变化,每升高9-10C ,增加一倍。HEF随温度增加1C增加2%左右,总之, 当温度升高时,都将使集电极电流增大。 2.数模转换器的温度特性--温度灵敏度http://ng1.17img.cn/bbsfiles/images/2011/05/201105242127_295949_1786353_3.gif一个模数转换器的温度指标:对于模数转换器,温度特性主要是它的输入失调电压和增益温飘上。http://ng1.17img.cn/bbsfiles/images/2011/05/201105242143_295952_1786353_3.gif常用的VFC芯片:VFC32的温度特性http://ng1.17img.cn/bbsfiles/images/2011/05/201105242145_295954_1786353_3.gif3.一些运放的温度特性CA3140的温度特性http://ng1.17img.cn/bbsfiles/images/2011/05/201105242146_295955_1786353_3.gifOP07的温度特性http://ng1.17img.cn/bbsfiles/images/2011/05/201105242146_295956_1786353_3.gif741的温度特性http://ng1.17img.cn/bbsfiles/images/2011/05/201105242146_295957_1786353_3.gif下面是一些运放的失调电压的温度特性,里面提到了,大多数运放的输入失调电压的温飘是1~10uV/℃。http://ng1.17img.cn/bbsfiles/images/2011/05/201105242220_295961_1786353_3.gif运放的偏置电流http://ng1.17img.cn/bbsfiles/images/2011/05/201105242220_295962_1786353_3.gif

  • 振动速度传感器安装注意事项

    1.测量点位置前后须一致 一般设备的轴承在不同的位置振动有较大的差别,因此凡是采用手扶、橡皮泥粘接和振动速度传感器,都应标出测量点的位置,避免因前后测量点位置不同而发生误差。这一点对于振动故障诊断和转子平衡中的振动测量尤为重要。 2.振动速度传感器的互换性 为了减轻测试的劳动强度,目前在机组振动测试中采用几个至十几个传感器测量点振动。对同一点振动来说,当采用不同的振动速度传感器测量时,各个传感器灵敏度和相位特性应统一,只有经过严格试验的在测试中才能互换,否则会引起较大的测量误差。为了避免因传感器互换性不好而引起的测量误差,传感器应对号入座(测点)。但其测量结果只能作纵向(前后)比较,为了横向比较,最好采用同一个传感器测量各点振动。 3.振动速度传感器安装方向与要求测量方向应一致 轴承振动往往在某一方向上特别明显,当传感器方向稍偏离测量方向时,仪表指示值就会发生较大的变化,特别是采用手扶传感器时,由于轴承温度升高时橡皮泥软化,也会使传感器产生倾斜而偏离测量方向。所以在测振时应随时注意传感器的安装方向。 4.工作温度 在一般的情况下安装振动速度传感器要求温度均在120度以下,温度过高会使振动速度传感器绝缘损坏和退磁,使其灵敏度降低。对于高中压转子的轴承,当轴封漏气严重时,传感器不能长时间装在轴承上。 5.振动速度传感器固定不稳和发生共振 不论是采用哪一种方式与轴承连接,传感器都必须紧密的固定在被测物体上,不能有松动,否则会引起传感器的撞击,使测量结果失准。传感器采用单个螺栓固定,有时会引起传感器的共振,是传感器产生较明显的横向振动。引起测量误差。为了避免传感器的共振,其连接螺栓不能小于M8,而且传感器与被测物体之间的接触面一定要平整,接触面的直径不能小于20mm。如果采用外加的冶具让传感器固定在轴承上,冶具高度应尽量降低,否则会将被测振动放大。

  • 电流传感器原理_如何选择电流传感器

    电流传感器原理_如何选择电流传感器

    [align=center][/align]电流传感器具体的工作原理是:当主电路有大电流Ip流动时,导体周围会产生强磁场。该磁场由多磁环收集并作用于电流传感器器件以使其具有信号输出。该信号由放大器A放大并输入到功率放大器。此时,功率管的相应电压降变化以获得补偿电流Is。由于Is电流流过太多,绕组产生磁场Hs。 Hs与由主电流Ip产生的磁场Hp相反,由此补偿原始磁场,逐渐减小从霍尔器件输出的信号,最后乘以Is和匝数以产生磁场和磁场由Ip生成的字段。当它相等时,Is不再增加。此时,电流传感器达到零磁通量检测。如何选择当前电流传感器:霍尔电流传感器基于磁平衡霍尔原理。根据霍尔效应原理,从霍尔元件的控制电流端施加电流Ic,并且在霍尔元件平面的法线方向上施加具有B的磁场强度的磁场。然后,在垂直于电流和磁场的方向上(即,在霍尔输出端子之间),将产生电势VH,其被称为霍尔电势,其与控制电流I成比例。产品。即,其中K是霍尔系数,其由霍尔元件的材料确定 一,控制电流 B是磁场强度 VH是霍尔的潜力。电流传感器应用:电流传感器在许多领域都有应用,如电池监测,汽车,工业,铁路,机车,车载电力测试,能源和自动化等。电流传感器的主要特性参数:1、线性线性决定了电流传感器输出信号(次级电流IS)和输入信号(初级电流IP)与测量范围成正比的程度。2、温度漂移偏移电流ISO在25°C时计算。当霍尔电极周围的环境温度变化时,ISO会改变。因此,考虑偏移电流ISO的最大变化很重要,其中IOT指的是当前电流传感器性能表中的温度漂移值。3,偏移电流ISO偏移电流也被称为剩余电流或剩余电流。这主要是由霍尔元件或电子电路中的运算放大器不稳定造成的。当电流传感器在25°C和IP = 0下制造时,偏移电流会最小化,但传感器在离开生产线时会产生一定量的偏移电流。4、标准额定值IPN和额定输出电流ISNIPN是指电流传感器可以测试的标准额定值。它由有效值(A.r.m.s)表示。 IPN的大小与传感器产品的型号有关。 ISN是指电流传感器的额定输出电流,一般为10〜 400mA。当然,这可能会因型号而异。5、准确性霍尔效应电流传感器的精度取决于标准额定电流IPN。在+ 25°C时,传感器的测量精度对初级电流有一定的影响。同时,在评估电流传感器精度时,还必须考虑偏移电流,线性度和温度漂移的影响。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 恒温恒湿试验箱湿度传感器水槽中滴水的原因及处理方法

    前几天,售后服务部小王反映说最近有用户报修恒温恒湿试验箱工作室右上角的湿球管有水滴下来,已经影响了他们的试验进展了。针对这一问题,今天,我们就来单独给大家讲解一下遇到这种情况,我们应该如何处理。 首先,我们从该现象的源头着手,打开恒温恒湿试验箱工作室的门会看到温度传感器、湿度传感器、湿球管,而湿度纱布则是悬挂在湿度传感器上的,底端是直接浸在湿球管内的,如果出现水往下滴的情况,是一打开箱门就可以观察到的。接下来我们需要做的事情如下: (1)第一步就是检查一下水路,观察进水阀是不是打得太大了,导致水量太足了,如是直接将水阀关小即可。 (2)第二步检查补水时间是否设置的太频率了,导致补水量过大,如是则将补水间隔时间增大,这样频率会缩小。 (3)第三步检查试验室地面是否平整,倾斜的角度同样会导致湿球管的水不平衡,从而往下滴水,这时只要将设备移动到平整的地面上使用就可以了。 (4)第四步检查恒温恒湿试验箱右边水路的水位盒是否过高,导致水进去的太多,这时需要调整水位盒,另外建议在调整水位盒时最好是与专业的技术工程师沟通再做处理。

  • 湿度传感器怎样准确检测湿度范围

    [align=left]湿度传感器测量技术已经存在很长时间了。随着电子技术的发展,现代测量技术也得到了迅速发展。湿度测量按原理分为两部分:。湿度表达为绝对湿度、相对湿度、露点、湿气比(重量或体积)等。但湿度测量一直是计量领域的着名问题之一。看似简单的价值衡量,涉及相当复杂的物理 - 化学理论分析和计算,可能涉及湿度测量中必须注意的许多因素,从而影响湿度传感器的合理使用。[/align]常用的湿度测量方法有:动态法(双压法、双温法分割方法、):双压法、双温法基于热力学P、 V、 T平衡原理,平衡时间较长,分流法是基于绝对精确混合水分和绝对干燥空气。由于采用了现代测量和控制方法,这些设备可以做得相当复杂,但由于设备的复杂性,、价格昂贵,操作既费时又费力,主要用作标准测量,测量精度可以超过±2%。静态法(饱和盐法、硫酸法):饱和盐法是湿度测量中最常用的方法,简单易行。然而,饱和盐法对液体、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的平衡有严格的要求,并且环境温度的稳定性非常高。需要等待很长时间才能平衡,并且要求低湿度点更长。特别是当室内湿度和瓶内湿度差异很大时,每次需要平衡6-8小时。湿度传感器测量方法:电子湿度传感器产品和湿度测量属于20世纪90年代出现的行业。近年来,国内外公司在湿度传感器研发领域取得了长足的进步。湿度传感器正在从简单的湿度传感器迅速发展到集成的、智能、多参数检测,为新一代湿度测量和控制系统的开发创造了有利条件,并将湿度测量技术提升到了一个新的水平。在工农业生产、气象、环境保护、防御、研究、航天等部门,往往需要测量和控制环境湿度。然而,在传统的环境参数中,湿度是准确测量的最困难的参数之一。用湿式和干式球形湿度计或毛发湿度计测量湿度的方法长期以来无法满足现代技术发展的需要。这是因为测量湿度比测量温度复杂得多,温度独立测量,湿度受其他因素影响(大气压力、温度)。另外,湿度标准也是一个问题。国外生产的湿度校准设备非常昂贵。近年来,国内外湿度传感器研发领域取得了长足的进步。湿度传感器正在迅速发展,从简单的湿度传感器到集成的、智能、多参数检测,为新一代湿度/温度测量和控制系统的开发创造了有利条件,并将湿度测量技术提升到了一个新的水平。湿度传感器的精度是分段的:低湿度部分(0-80%RH)的、是±2%RH,高湿部分(80-100%RH)是±4%RH。并且此精度在指定温度下。值(例如25°C)。在不同温度下使用湿度传感器。其指示还考虑了温度漂移的影响。众所周知,相对湿度是温度的函数,它严重影响给定空间内的相对湿度。温度变化0.1°C。将产生0.5%RH的湿度变化(误差)。在使用的情况下,如果难以实现恒定温度,则提出过高的湿度测量精度是不合适的。由于温度变化时湿度也不稳定,豪华测量精度将失去其实际意义。因此,控制湿度的第一件事是控制温度。这就是为什么大量应用通常是温度和湿度集成传感器而不是纯湿度传感器。湿度传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨流量传感器[/color][color=#333333]丨压电薄膜传感器丨微型压力传感器丨[/color]湿度传感器https://mall.ofweek.com/263.html[color=#333333]丨[/color][color=#333333]电流传感器丨[/color]微型传感器[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]超声波传感器丨光纤传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color][color=#333333][/color]

  • 【分享】气体检测传感器的检测原理

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器、等以下简单概述各种传感器的原理及特点。金属氧化物半导体式传感器金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。定电位电解式气体传感器定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。迦伐尼电池式氧气传感器隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。红外式传感器红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。PID光离子化气体传感器PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 传感器在气体检测中检测原理的应用

    传感器是气体检测变压器的核心部位,是检测气体浓度的关键所在,随着不同的检测原理,传感器也不尽相同。 PID光离子化气体传感器 PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。www.jiuxing17.com 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。

  • 【资料】解析传感器的基本知识应用

    一、传感器的定义  国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。  二、传感器的分类  目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:  1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器  2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。  3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。  关于传感器的分类:  1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;  2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;  3.按照传感器转换能量的方式分:  (1)能量转换型:如:压电式、热电偶、光电式传感器等;  (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;  4.按照传感器工作机理分:  (1)结构型:如:电感式、电容式传感器等;  (2)物性型:如:压电式、光电式、各种半导体式传感器等;  5.按照传感器输出信号的形式分:  (1)模拟式:传感器输出为模拟电压量;  (2)数字式:传感器输出为数字量,如:编码器式传感器。  三、传感器的静态特性  传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。  四、传感器的动态特性  所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。  五、传感器的线性度  通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。  拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。  六、传感器的灵敏度  灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。  它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。  灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。  当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。  提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。  七、传感器的分辨力  分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。  通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。  八、电阻式传感器  电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。  九、电阻应变式传感器  传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。  十、压阻式传感器  压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。  用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。  十一、热电阻传感器  热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。  十二、传感器的迟滞特性  迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。  迟滞可由传感器内部元件存在能量的吸收造成。   压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过 外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是 这样的,所以这决定了压电传感器只能够测量动态的应力。

  • 离心平衡机的工作原理和特点

    离心平衡机是在转子旋转的状态下,根据转子不平衡引起的支承振动,或作用于支承的振动力来测量不平衡。其按校正平面数量的不同,可分为单面平衡机和双面平衡机。单面平衡机只能测量一个平面上的不平衡(静不平衡),它虽然是在转子旋转时进行测量,但仍属于静平衡机。双面平衡机能测量动不平衡,也能分别测量静不平衡和偶不平衡,一般称为动平衡机。离心平衡机按支承特性不同,又可分为软支承平衡机和硬支承平衡机。平衡转速高于转子一支承系统固有频率的称为软支承平衡机。这种平衡机的支承刚度小,传感器检测出的信号与支承的振动位移成正比。平衡转速低於转子一支承系统固有频率的称为硬支承平衡机,这种平衡机的支承刚度大,传感器检测出的信号与支承的振动力成正比。离心平衡机拖动转子的传动方式有圈带拖动,联轴节拖动和自驱动。  1,圈带拖动----是利用橡胶环形带或丝织环形带,由电机皮带轮拖动转子,因此圈带拖动要求转子表面必须有光滑的圆柱表面,圈带拖动的优点是不影响转子的不平衡量,平衡精度高。   2.联轴节拖动----是利用万向节将平衡机主轴与转子相联接。联轴节拖动的特点是 适合外表不规则的转子,可以传递较大的扭矩,适合拖动风机等风阻较大的转子,联轴节拖动的缺点是联轴节本身的不平衡量会对转子产生影响(因此联轴节在使 用前要对其进行平衡),也会引进干扰影响平衡的精度,此外还要做大量的连接 盘以适应不同型号的转子。   3,自驱动----是利用转子自身的动力旋转。自驱动是对平衡精度影响最小的拖动方式,平衡精度可达最高,但只有结构允许的特殊转子才能使用这种拖动方式。离心平衡机的特点:1.具有Windows平台下人机对话操作模式2.转子参数任意设置并保存3.可按任意等分分解,自动确定各铣削分量4.测量、搬送、修正、复检均全自动进行5.转子不需画标志,直接人工置入6.多重位置监控,及光幕安全保护7.伺服电机控制、配工业吸尘器

  • 选择汽车衡五大牢记之传感器防雷能力

    选择汽车衡五大牢记之传感器防雷能力

    http://ng1.17img.cn/bbsfiles/images/2015/06/201506121119_549953_271_3.png雷击(浪涌电流)是最容易引起传感器故障的两个原因之一,(另一个是冲击载荷)。良好的防雷击或防浪涌能力能很好的延长传感器的使用寿命。那么,多少的防雷击能力是必要的呢?其实,我们初中的物理课本上已经给过我们答案了:“雷击的电流很大,可以达到几万甚至几十万安培”,更准确的说法是雷电电流平均约为20, 000 A(甚至更大),一次雷电的时候大约为千分之一秒,平均一次雷电发出的功率达200亿千瓦(一般电饭锅的功率低于1000瓦),所以,选择一个防雷击数值高的传感器是非常有必要的。http://ng1.17img.cn/bbsfiles/images/2015/06/201506121120_549956_271_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506121120_549957_271_3.png(观看防雷击测试视频请点击链接:http://cn.mt.com/cn/zh/home/supportive_content/specific_overviews/PDX_Contest1.html)我们的建议,选择防雷能力在5万安培以上的传感器产品,以使得整个称重系统保证较好的防雷能力。有专门的独立机构,可以对传感器的防雷能力进行测试,得出具体的防雷等级和指标。因此,在选择汽车衡时,要记得向厂家索要独立机构出具的传感器防雷测试证书哦!梅特勒-托利多汽车衡及解决方案:http://cn.mt.com/cn/zh/home/products/Transport_and_Logistics_Solutions/Truck_Scales.html继续阅读《选择汽车衡五大牢记》选择汽车衡五大牢记之轴载:http://bbs.instrument.com.cn/shtml/20150612/5835681/选择汽车衡五大牢记之传感器量程:http://bbs.instrument.com.cn/shtml/20150612/5835686/选择汽车衡五大牢记之传感器精度:http://bbs.instrument.com.cn/shtml/20150612/5835692/选择汽车衡五大牢记之传感器使用温度范围:http://bbs.instrument.com.cn/shtml/20150612/5835710/http://ng1.17img.cn/bbsfiles/images/2015/06/201506121120_549955_271_3.png

  • 气体检测传感器的检测原理

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器、等以下简单概述各种传感器的原理及特点。金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。催化燃烧式传感器。 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。PID光离子化气体传感器 PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 【分享】简述几种气体检测传感器的检测原理

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。     金属氧化物半导体式传感器   金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器   催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式气体传感器   定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器   隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。   红外式传感器   红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器   PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 霍尔传感器什么情况下会出现饱和情况?

    磁饱和主要是指霍尔电流传感器 vfe.cc/NewsDetail-482.aspx  被测电流高于传感器标称的输入范围一定程度时会饱和。  从原理上讲,开环霍尔电流传感器只要电流大到一定程度,一定会饱和。  闭环霍尔电流传感器只要副边电流能够跟随上,铁芯中实际磁感应强度等于零,看似不会饱和,但实际上副边电流由电子电路产生,对于固定的某个传感器而言,其电流大小也是有限度的,当一次电流过大,二次不能产生相应的电流时,磁平衡打破,一次电流继续增大,也会发生磁饱和。  一般的宣传资料中都会讲霍尔电流传感器无饱和问题,实际上是指相对电磁式互感器而言,不容易饱和,并不是说怎样都不饱和。

  • 【转帖】简述几种气体检测传感器的检测技术

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。   金属氧化物半导体式传感器   金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器   催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式气体传感器   定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器   隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。   红外式传感器   红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器      PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。 TOP

  • 微型传感器动态特性有哪

    [align=left]微型传感器是一个将被测量的装置,如位移、变形、强制、加速度、湿度、温度和其他物理量转换成电阻值。主要是电阻应变型、压阻型、热阻、热阻、气敏、湿敏电阻传感器器件。[/align]微型传感器中的应变仪具有金属的应变效应,即在外力作用下的机械变形,因此电阻值相应地改变。应变仪主要是金属和半导体。金属应变仪是线型、箔型、薄膜型。半导体应变片具有高灵敏度(通常是线型、箔型的几十倍)、的小横向效应。压阻式微型传感器是根据半导体材料的压阻效应通过半导体材料的衬底上的扩散电阻制造的器件。衬底可以直接用作测量传感元件,并且扩散电阻器在衬底中以桥的形式连接。当基板通过外力变形时,电阻值将改变,并且电桥将产生相应的不平衡输出。用作压阻式微型传感器的基板(或隔膜)主要由硅晶片和钽制成。由敏感材料制成的硅压阻传感器受到越来越多的关注,特别是在测量压力时。并且固态压阻式微型传感器应用的速度是通用的。微型传感器的滞后特性表征前进(输入增加)和反向(输入增加)冲程输入特性曲线之间的不一致程度。通常,使用两条曲线之间的较大差ΔMAX。满量程输出FS的百分比表示滞后可能是由微型传感器内部元件中的能量吸收引起的。微型传感器变化很大,甚至不同工作原理的微型传感器也可用于相同类型的测量。因此,必须使用合适的传感器。(1)微型传感器的测量条件如果错误选择微型传感器,系统的可靠性将会降低。为此,从系统的整体考虑,要清楚地了解使用目的和使用传感器的需要,永远不要使用不合适的微型传感器和不必要的传感器。测量条件如下:测量目的,测量量的选择,测量范围,输入信号的带宽,所需的精度,测量所需的时间以及过量输入的发生频率。(2)微型传感器性能选择微型传感器时,请考虑传感器的以下特性,即精度,稳定性,响应速度,模拟信号或数字号,输出及其电平,被测物体特性的影响,校准周期以及过度 - 反保护。(3)微型传感器的使用条件微型传感器的使用条件是设定位置,环境(湿度、温度、振动等),测量时间,显示器之间的信号传输距离,与外围设备的连接,电源容量。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【分享】专家教学 离车式平衡机工作原理

    平衡机是测量旋转物体(转子)不平衡量大小和位置的机器。何转子在围绕其轴线旋转时,由于相对于轴线的质量分布不均匀而产生离心力。这种不平衡离心力作用在转子轴承上会引起振动,产生噪声和加速轴承磨损,以致严重影响产品的性能和寿命。 电机转子、机床主轴、内燃机曲轴、汽轮机转子、陀螺转子和钟表摆轮等旋转零部件在制造过程中,都需要经过平衡才能平稳正常地运转。根据平衡机测出的数据对转子的不平衡量进行校正,可改善转子相对于轴线的质量分布,使转子旋转时产生的振动或作用于轴承上的振动力减少到允许的范围之内。因此,平衡机是减小振动、改善性能和提高质量的必不可少的设备。通常,转子的平衡包括不平衡量的测量和校正两个步骤,平衡机主要用于不平衡量的测量,而不平衡量的校正则往往借助于钻床、铣床和点焊机等其他辅助设备,或用手工方法完成。 有些平衡机已将校正装置做成为平衡机的一个部分。重力式平衡机和离心力式平衡机是两类典型的平衡机。重力式平衡机一般称为静平衡机。它是依赖转子自身的重力作用来测量静不平衡的。。置于两根水平导轨上的转子如有不平衡量,则它对轴线的重力矩使转子在导轨上滚动,直至这个不平衡量处于最低位置时才静止。被平衡的转子放在用静压轴承支承的支座上,在支座的下面嵌装一片反射镜。当转子不存在不平衡量时,由光源射出的光束经此反射镜反射后,投射在不平衡量指示器的极坐标原点。如果转子存在不平衡量,则转子支座在不平衡量的重力矩作用下发生倾斜,支座下的反射镜也随之倾斜并使反射出的光束偏转,这样光束投在极坐标指示器上的光点便离开原点。根据这个光点偏转的坐标位置,可以得到不平衡量的大小和位置。 重力式平衡机仅适用于某些平衡要求不高的盘状零件。对于平衡要求高的转子,一般采用离心式单面或双面平衡机。离心式平衡机是在转子旋转的状态下,根据转子不平衡引起的支承振动,或作用于支承的振动力来测量不平衡。其按校正平面数量的不同,可分为单面平衡机和双面平衡机。 单面平衡机只能测量一个平面上的不平衡(静不平衡),它虽然是在转子旋转时进行测量,但仍属于静平衡机。双面平衡机能测量动不平衡,也能分别测量静不平衡和偶不平衡,一般称为动平衡机。 离心力式平衡机按支承特性不同,又可分为软支承平衡机和硬支承平衡机。平衡转速高于转子一支承系统固有频率的称为软支承平衡机。这种平衡机的支承刚度小,传感器检测出的信号与支承的振动位移成正比。平衡转速低於转子一支承系统固有频率的称为硬支承平衡机,这种平衡机的支承刚度大,传感器检测出的信号与支承的振动力成正比。 平衡机的主要性能用最小可达剩余不平衡量,和不平衡量减少率两项综合指标表示。前者是平衡机能使转子达到的剩余不平衡量的最小值,它是衡量平衡机最高平衡能力的指标;后者是经过一次校正后所减少的不平衡量与初始不平衡量之比,它是衡量平衡效率的指标,一般用百分数表示。在现代机械中,由于挠性转子的广泛应用,人们研制出了挠性转子平衡机。这类平衡机必须在转子工作转速范围内进行无级调速;除能测量支承的振动或振动力外,还能测量转子的挠曲变形。挠性转子平衡机有时安装在真空防护室内,以适合汽轮机之类转子的平衡,它配备有抽真空系统、润滑系统、润滑油除气系统和数据处理用计算机系统等庞大的辅助设备。根据大批量生产的需要,对特定的转子能自动完成平衡测量和平衡校正的自动平衡机,以及平衡自动线,现代已大量的装备在汽车制造、电机制造等工业部门。

  • 数字传感器RS485和RS232通讯有什么区别

    RS485数字传感器通常是指输出RS485信号的传感器,如压力传感器,温度传感器等,RS232数字传感器输出RS232信号的传感器。两者间的通讯有什么区别呢?其设备原理是什么呢? RS-232是串行数据接口标准,最初都是由电子工业协会(EIA)制定并发布的。RS-232在1962年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。RS-422由RS-232发展而来,它是为弥补RS-232之不足而提出的。为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mb/s,传输距离延长到4000英尺,并允许在一条平衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS-422基础上制定了RS-485标准,增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作为前缀称谓。 RS232通讯又叫串口通信方式。是指计算机通过RS232国际标准协议用串口连接线和单台设备进行通调的方式。(一般台式计算机都有一到两个串口插座) RS485和RS232的基本的通讯机理是一致的。它的优点在于通信距离长,还可以进行多台设备同时进行联网管理。 计算机串口可以直接读取RS232信号,但不能直接读取RS485信号。所以计算机通过RS232—RS485转换器,依次连接多台RS485设备,采用轮询的方式,对总线的设备轮流进行通讯。 RS485通信距离:最远的设备到计算机的连线理论上能达到1200米,建议用户控制在800米以内,能控制在300米以内最好。如果距离超长,可以使用RS485中继器,使用中继器,理论上可以延长到3000米。 在计算机和自动化系统越来越普及的今天,利用通讯使用也越来越广泛。本公司生产的诸多传感器如FST800-801/802系列、FST800-215系列、FST800-216系列、FST700-204、FST600-901等都含RS485/RS232数字信号输出,以满足工控领域的各种需求。

  • 六要素气象传感器输电侧气象监测

    六要素气象传感器输电侧气象监测

    六要素气象传感器输电侧气象监测六要素气象传感器可适用于区域气象监测,省、市、县各行政级别气象监测网络;公园、校园、旅游景区适宜指数气象监测;公路、铁路、机场、港口、航运等场所的气象监测;森林防火气象监测;大型仓储区小气候监测;科研,农业种植试验小区小气候监测;环保科研,野外生态站常规气象监测;科研,水循环、热平衡、碳循环、风资源等课题研究常规监测等。要对环境条件进行监测和调节,首先必须要获取诸多环境因素的数据信息,这个采集数据的任务就由数据采集系统来完成,六要素气象传感器是数据采集系统的重要组成部分,由于各环境因素类型和性质均不同,数据采集系统就需要采用温度传感器、湿度传感器、光传感、生物气象传感器等不同功能的六要素气象传感器,其性能指标直接影响到整个数据采集系统的性能。[img=六要素气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205240910088000_1287_4136176_3.jpg!w690x690.jpg[/img]数据采集系统采集的数据经计算机统计分析和智能化处理后显示出来,计算机智能系统根据显示的数据和作物生长所需的条件发出指令,控制相关系统和设备运作,调整各环境因素至状态,确保作物生产科学、有序、规范地进行。由此可见,数据采集是整个监测控制过程的重要环节,数据采集系统所采用不同功能的六要素气象传感器,直接影响到整个控制系统的运行。气象监测可以判断良好的空间环境(控制温度、湿度、光照、喷灌量、通风等),通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证环境范围有一个良好的、适宜的测量环境。[img=六要素气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205240910330260_5567_4136176_3.jpg!w690x690.jpg[/img]

  • 【转帖】简述几种气体检测传感器的检测原理

    简述几种气体检测传感器的检测原理此文章由 东方嘉仪仪器网 转发检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 PID光离子化气体传感器 PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 选择汽车衡五大牢记之传感器使用温度范围

    选择汽车衡五大牢记之传感器使用温度范围

    http://ng1.17img.cn/bbsfiles/images/2015/06/201506121121_549959_271_3.jpg传感器的使用温度范围,是非常多的用户容易忽略掉的一个指标,其实,对于我们这样一个地域辽阔国家来说,很多地方即使在一天中,温度变化都很大。在气候变暖的背景下,极端气温几率也大大升高。夏季中午的室外温度有可能会很高,再加上汽车衡秤体完全有由钢材组成,传感器受到的温度影响不止来自于阳光直射,而且还会有秤体的热的传导。清华大学的材料系曾经做个过一个实验,在六月份午后二点时,被测钢铁的温度已经达到63摄氏度。而冬季,室外环境低,风大,因此,钢板下的温度可能达到零下30度以下。在很多地方,甚至在一天之中,温度就会发生很大的变化,所以,为了得到准确,安全,可靠的称量结果,选择一个宽范围的称重传感器是非常必要的,我们建议您选用零下40摄氏度到零上70摄氏度的传感器产品。梅特勒-托利多汽车衡及解决方案:http://cn.mt.com/cn/zh/home/products/Transport_and_Logistics_Solutions/Truck_Scales.html继续阅读《选择汽车衡五大牢记》选择汽车衡五大牢记之轴载:http://bbs.instrument.com.cn/shtml/20150612/5835681/选择汽车衡五大牢记之传感器量程:http://bbs.instrument.com.cn/shtml/20150612/5835686/选择汽车衡五大牢记之传感器精度:http://bbs.instrument.com.cn/shtml/20150612/5835692/选择汽车衡五大牢记之传感器防雷能力:http://bbs.instrument.com.cn/shtml/20150612/5835703/http://ng1.17img.cn/bbsfiles/images/2015/06/201506121122_549960_271_3.png

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制