当前位置: 仪器信息网 > 行业主题 > >

纳米气监测仪

仪器信息网纳米气监测仪专题为您提供2024年最新纳米气监测仪价格报价、厂家品牌的相关信息, 包括纳米气监测仪参数、型号等,不管是国产,还是进口品牌的纳米气监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米气监测仪相关的耗材配件、试剂标物,还有纳米气监测仪相关的最新资讯、资料,以及纳米气监测仪相关的解决方案。

纳米气监测仪相关的论坛

  • 深入探索纳米流式检测技术的核心原理与应用领域

    [b][font=宋体]一、纳米流式检测技术的原理[/font][/b][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术的原理主要基于纳米流式检测仪([/font][font=Calibri]Flow NanoAnalyzer[/font][font=宋体],[/font][font=Calibri]FNA[/font][font=宋体])。这种技术能够覆盖传统流式细胞仪在[/font][font=Calibri]200[/font][font=宋体]纳米以下粒径检测的盲区,包括纳米颗粒以及亚细胞结构、细菌、病毒、外泌体等天然生物纳米颗粒的表征。其检测原理是利用流体聚焦和激光聚焦技术,减小探测区体积、延长被测颗粒穿越激光探测区的时间、降低散射背景、提高激光功率等措施,实现[/font][font=Calibri]200[/font][font=宋体]纳米以下颗粒的检测。[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术的工作原理是:当被测颗粒通过激光检测区时,颗粒被激光照射产生散射光和荧光信号。通过一系列光学元件收集并分离散射光和各波段的荧光信号,经过电学系统中的信号转换和数据处理,获得样品的各种理化信息。其中,散射光信号可以用来表征颗粒的大小和粒度,染色后的荧光可以用来表征细胞内特定蛋白的表达水平、细胞的生理状态和分裂周期等。通过对检测到的颗粒进行计数,可以实现颗粒浓度的无标样定量检测。[/font][font=宋体] [/font][font=宋体]总之,纳米流式检测技术结合了流式细胞术和纳米技术,具有高灵敏度、高分辨率和高通量等优点,为生物医学研究提供了新的工具,有助于深入研究和了解生物纳米颗粒的特性和功能。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]二、纳米流式检测技术的应用[/font][/b][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])肿瘤诊断[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术可以对肿瘤细胞进行快速、敏感的检测,并且可以在单细胞水平上进行分析,从而实现早期肿瘤诊断。同时,纳米流式检测还可以检测循环肿瘤细胞([/font][font=Calibri]CTC[/font][font=宋体]),这是一种正在被广泛研究的肿瘤诊断手段,可以极大地提升肿瘤治疗成功的概率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])细胞免疫学[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以通过检测细胞表面和内部的特定蛋白质、抗原或基因,实现对细胞的免疫学分析。这种方法可以在单个细胞水平上对细胞进行分类和排序,同时也可以在细胞群体中进行比较分析。这对于了解免疫系统的正常和异常状态,以及研究免疫治疗等方面都有着重要的意义。[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])病毒学研究[/font][/font][font=宋体] [/font][font=宋体][font=宋体]病毒是一种纳米尺度的微生物,纳米流式检测技术可以用于病毒的检测和计数,包括流感病毒、[/font][font=Calibri]HIV[/font][font=宋体]病毒、疱疹病毒等。这种技术还可以用于病毒分型和病毒载量测定等方面。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体])生物分子检测[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以用于生物分子的检测,包括蛋白质、核酸、糖类等。这种技术可以用于生物标志物的检测和诊断,以及生物分子相互作用的研究。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]三、总结[/b][/font][font=宋体] [/font][font=宋体]纳米流式检测技术是一种应用前景广阔的单细胞分析技术。它具有高灵敏度、高通量、高精度的特点,能够针对不同细胞类型和样品进行分析和检测。随着技术不断发展和完善,纳米流式检测技术将有望在医疗诊断、新药开发等领域得到更广泛的应用。[/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看义翘神州[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测服务[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 纳米压电检测

    最近纳米压电材料比较热,大家说说除了原子力以外,纳米压电检测的手段还有什么?怎么把压电和摩擦发电区别开来?

  • 癌症检测新技术知多少——神奇的纳米追踪技术

    http://i1.sinaimg.cn/IT/2012/0710/U5385P2DT20120710181155.jpg癌症早期检测  生物工程师正在开发微小的纳米颗粒,用来检测早期癌症。  一些微小的颗粒可能会解决医学上的一个重大问题。这些所谓的纳米颗粒,直径只有几纳米(一纳米为十亿分之一米),500个这样大小的颗粒排列在一起,才有一根头发丝那么宽。科学家正在对它们进行改造,希望能完成多种任务:将药物输送到人体的特定部位;获取更清晰的器官影像……现在,它们又多了一种用途,科学家想用这些微小颗粒来探测癌细胞,不论它们藏在哪里。  目前,只有当肿瘤大到在扫描图上看得见时,常用的成像工具才能检测到它们。而纳米颗粒,则可以在一个由1 000万个正常细胞组成的样本中发现单个癌细胞。例如,实验性的纳米医学乳腺癌检测,能够发现比乳房X射线所能发现的小100倍的肿瘤。在包裹上肿瘤细胞特有的蛋白质或遗传物质后,纳米颗粒还可以帮助医生区分肿瘤是在恶性生长,还是进行性炎症,或是良性病灶。  美国华盛顿大学圣路易斯分校的生物医学工程教授格里高利•兰萨(Gregory Lanza)和同事正在研制一种纳米颗粒,能够追踪并标记新形成的、专为肿瘤供血的血管,而这类血管的产生,是结肠癌、乳腺癌和其他癌症发生过程中的关键步骤。在非肿瘤的组织中,通常不会有这样的血管。理论上,通过这项技术,医生还可以知晓癌症生长的速度,应该采取怎样的治疗措施。  美国斯坦福大学的诊断放射学教授桑吉夫•萨姆•甘姆希尔(Sanjiv Sam Gambhir)和同事正在研究大肠癌,希望能发现常规结肠镜检查发现不了的轻微恶性病变。研究小组用金和硅制成纳米颗粒,然后添加上一些分子,用来引导纳米颗粒,让它们附着在特定癌细胞上。当附着到结肠或直肠中的肿瘤上时,用一种特殊的内窥镜照射,纳米颗粒就会散射其所发出的光,显示癌细胞的存在。

  • 【原创】激光粒度仪中亚微米及纳米的粒度检测

    在激光粒度仪的性能指标中测试下限标称为0.1甚至为0.02等,那么这部分粒度是怎么检测出来的呢?如果下限为0.1微米,那么探测器所能接收的前向角度至少要达到70度,或是有后向探测器.如果下限为0.02微米必须要应用后向散射技术,而且还要看后向激光器的波长,如果是普通的红光激光器,波长范围大概为600-800nm的激光器将无法区分纳米级颗粒后向的散射信号区别.所以必须采用波长更短的激光器,比如蓝光激光器,波长405nm等,这样纳米颗粒的后向信号区别会比较明显,但还要有特殊的采样与处理方式,否则测量下限0.02也是无法做到的.具体的方法不便说出,但用户可以采用纳米级颗粒去验证,最好中位径范围在0.05um以下的几种颗粒,比如中位径分别为0.02,0.03,0.04,0.05等几种接近单分散样品,确实在实际中这种验证比较困难,这里只是建议方法而已,希望用户能选择到一款性价比较高的仪器!尤其是检测中位径在0.2-0.02um的用户尤其要注意!

  • 浅谈拒水拒油纳米技术处理服装的功能检测

    浅谈拒水拒油纳米技术处理服装的功能检测Discussion on the Testing of Water-repellent and Oil-repellent Nano-functionalApparel 杨志敏,何玉兰,叶毓辉,董晶泊(深圳市计量质量检测研究院,广东 深圳 518139)摘要:简要介绍拒水拒油纳米处理服装,及通过接触角、沾水等级、拒油等级对其性能的检测。关键词:纳米;拒水;拒油;接触角Abstract:This paper briefly introduces the nano-functional apparel ,and the test method of the water-repellent and oil-repellent.Key words: nano;water-repellent;oil-repellent;contact angle拒油原理和拒水原理极为相似,都是改变纤维表面性能,使其临界表面张力降低,水和油与其产生较大的接触角,达到拒水拒油的目的,而又不影响织物的透气性。拒水拒油纳米服装就是利用纳米技术处理过的面料制成的功能性服装。目前常用有两种方法:一种是利用涂层或浸渍,对纤维或面料进行表面处理,最终在织物表面形成一种功能性的涂层;另一类是利用化纤改性技术,将纳米材料作为添加剂加入到纺丝液中,复合纺丝,制备功能面料。目前市场上纳米服装局面混乱,鱼目混珠的“纳米”产品一哄而上,有些只是不透气涂层织物,引来众多的非议。如何鉴定纳米结构,评估和检测服装的拒水拒油功能,从而判定是否为拒水拒油纳米处理服装是目前面临的问题。本实验通过扫描电镜(SEM)鉴定织物表面的纳米结构,并通过测量液体在织物表面的接触角,沾水等级,拒油等级来检测纳米处理服装的拒水拒油性能,简要介绍拒水拒油纳米处理服装的检测。1纳米结构的鉴定确定是否具有纳米结构单元是判断该服装是否为纳米技术处理服装的前提。目前纳米结构的表征方法有很多,如扫描电镜(SEM)、透射电镜(TEM)、扫描隧道电镜(STM)、原子力显微镜(AFM)、X射线小角散射法(SAXS)等等,但涉及到服装一类最终产品上,取样、制样方法一直是难题。结合试验条件,本试验采用扫描电子显微镜测定织物表面纳米结构单元。仪器:扫描电子显微镜(分辨率2 nm),哈氏切片器,镀膜仪(金属膜)。在服装上的有效部位随机剪取5块5 mm×5 mm的试样,用镊子夹取试样固定在贴有导电胶布样品台上,将载有样品的试样台移至镀膜仪,镀膜为金属导电膜,膜的厚度宜在5~20 nm的范围内。然后送入扫描电镜样品室,抽真空直至可以进行电镜测试。在使用扫描电镜测试时,每个试样随机选择四个区域进行观测,放大倍数以有利于观测纳米结构为宜。结构单元的短径≤100 nm则为纳米结构单元,结构的短径>100 nm则为非纳米结构单元。测试所有试样,并计算纳米结构单元总数和非纳米结构单元总数(如图1所示)。图1 纤维表面形貌从图1中可以看出,纤维表面附有较多纳米颗粒。部分纳米颗粒因发生团聚,颗粒直径明显大于100 nm。整个区域以直径≤100nm的纳米颗粒为主,完全符合纳米技术处理服装的要求。2表面接触角测定当一滴液体滴在织物表面上时,有可能完全润湿织物,在表面形成一层水膜,有可能形成水滴状,液滴边缘与固体表面形成一个夹角θ,这个角就称为接触角。当0°<θ<90°时,液体部分润湿织物,并在极短的时间内,液滴向四周扩散并渗入织物中,90°<θ<180°时,液体不能润湿织物表面而形成液珠,倾斜时液滴滚落。如图2所示。 图2 接触角θ要达到拒水的目的,就要使接触角θ越大越好。根据著名的Young方程:γS=γSL +γLcosθ,液体在固体表面形成的接触角和界面张力之间的关系可知,由于液体表面张力不变,要达到拒水的目的,就必须减小固体表面张力或使固液表面张力变大。由于在纳米尺寸低凹的表面可以吸附气体分子,并且使其稳定附着存在,所以在宏观织物表面上形成了一层稳定的气体薄膜,使得油或水无法与织物的表面直接接触,纤维表面张力减小,水滴或油滴与界面的接触角趋于最大值,实现纤维织物拒水拒油功能。 水的表面张力为72.6 mJ/m2,而一般油类的表面张力为20~40 mJ/m2,润湿能力远大于水,所以拒油的物质一定拒水,故这里只测量油滴的接触角。取5个样品,在同一个样品上不同位置测量5次,取平均值。然后使用标准洗涤剂按5A程序洗涤5个循环,再测试洗后织物表面接触角。仪器:JC2000C1静滴接触角/界面张力测量仪,微量注射器,玻璃载片,A形全自动洗衣机。试剂:食用油,标准洗涤剂WOB。 图3 油滴在织物表面形态 调整好仪器之后,通过垂直固定的微量注射器往织物表面上滴2~3 μL食用油,油滴未渗入织物中,在织物表面形成近似圆形液滴,见图3。冻结图像之后,计算每个油滴的接触角,结果见表1。表1 油滴表面接触角试样编号接触角/o洗前洗后1#144.8138.22#141.6145.13#149.7142.24#153.4137.45#145.2148.8平均值146.9142.3从表1可以看出,洗前油滴在织物表面的平均接触角为146.9 o,远大于90 o;洗后油滴在织物表面的平均接触角为142.3 o,不仅说明该服装洗后仍使油滴在其表面有较大的接触角,具有良好的拒油效果,亦说明该服装具有一定的耐洗性能。3拒水级别测试在日常检测中,对织物的拒水级别测试,一般用淋水性能测试方法。按照GB/T4745—1997《纺织织物表面抗湿性测定沾水压试验》中要求的取样、操作程序、评定进行,织物的经向与水流方向平行,分别测试洗前、洗后试样的拒水级别,结果见表2。表2 拒水等级试样编号沾水等级/级洗前洗后1#552#553#55[/tr

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][size=16px]基于此,仪器信息网[/size][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 成功解决纳米氢氧化铝检测含量超标问题

    成功解决纳米氢氧化铝检测含量超标问题 本月下旬化验员庞玉龙检测完宣城晶瑞公司20140625批次纳米氢氧化铝含量,报告说这次纳米氢氧化铝含量超过100%。针对此问题,检测中心进行了全面检查审核,首先重新配制了EDTA二钠标准溶液,其次配制了氯化锌标准溶液,第三配制了新的指示剂二甲酚橙溶液,百里香酚蓝溶液,还进行了移液管体积校准,又进行了样品A原样和样品B烘干样测定对比试验,测定结果进行换算后二个结果不一致,超过正常范围。如果原样按干基换算后与烘干后测定结果一致就能说明样品稳定,如不一样则说明样品出现异常问题。在排除人为因素和检测过程称量,溶样,定容,移取溶液,滴定,终点确定,标准溶液,指示剂出现异常外,基本确定是样品问题,到底是什么原因造成的,检测中心查找相关文献,根据化学专业知识可知,热分解反应,Al(OH)3加热后会分解成Al2O3和H2O 2Al(OH)3= Al2O3+3H2O -------①根据化学反应方程式计算可知:Al(OH)3分子量=26.982+(16+1)×3=77.982Al2O3分子量=26.982×2+16×3=101.964 假设:如果100gAl(OH)3中含有99.00% Al(OH)3含有Al2O31.00%,杂质含Na,Fe,K含量<0.0010%结果以Al(OH)3含量表示,根据分子量进行换算:将Al2O3换算为Al(OH)3=1.00%×155.964/101.964=1.00%×1.5296=1.5296%Al(OH)3含量=99.00%+1.5296%=100.5296%因此,据此推出,可以确定是纳米氢氧化铝样品中含Al2O3是纳米氢氧化铝检测含量超标的主要原因。又是什么原因导致出现烘干样品与不烘干样品结果不一致呢?检测中心查找相关文献,根据国家标准GB/T6610.1氢氧化铝化学分析方法重量法测定水份介绍,对比水份的检测,检测水份时没有采用相同的真空干燥器和特殊的活化氧化铝干燥剂,使用的是普通干燥器,一般常用的硅胶干燥剂,这是国家标准通用水份测定方法。干燥环境的不同就导致样品水份结果有较大偏差,水份结果的偏差的大小,除了样品外在水份外,就直接引纳米起氢氧化铝中氧化铝的含量,根据化学方程式①可知,氢氧化铝分解出水份越大,氧化铝的含量就越大,氧化铝的含量越大所测定的样品中氢氧化铝含量就越大,为此就导致出现烘干样品与不烘干样品结果不一致。原因在此。就此就圆满成功解决了氢氧化铝检测含量超标问题。任何问题的出现,只要想办法,动脑筋,要观察问题,分析问题,查找原因,是没有解决不了的问题,总之,俗话说的好,有矛就会盾,方法总比问题多。这次问题的解决,为高电压钴酸锂生产制定原料氢氧化铝检测标准提供了正确的数据,发现了一个不为人知的事实,纳米氢氧化铝原料中存在数量不定的氧化铝。2014.9.26

  • 【原创大赛】探访中国科学院纳米标准与检测重点实验室

    【原创大赛】探访中国科学院纳米标准与检测重点实验室

    中国科学院纳米标准与检测重点实验室依托于国家纳米科学中心,实验室拥有先进的大型检测仪器设备,主要包括扫描隧道显微镜、扫描电子显微镜、透射电子显微镜、金相显微镜等微观分析仪器,接触角测量仪、比表面积和孔隙度分析仪、热重/差热分析仪等物性分析仪器,此外还有光谱类仪器、X射线衍射仪等其他材料表征仪器。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301142_342754_2086240_3.jpg另外,据介绍实验室以开放共享为原则,向各界提供纳米检测技术服务,并根据用户的仪器操作能力及分析检测要求提供以下5种服务模式:自助服务模式、技术员指导模式、技术员操作模式、委托测试模式及合同研究模式。由于当时去拜访时很多实验室都没有人,所以未能拍到仪器图片,只拍到了楼道里的仪器简介,也一并发上来吧,希望对大家有用。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301138_342736_2086240_3.jpg日本日立S-4800冷场发射扫描电子显微镜(该仪器的主要附件是Horiba X射线能谱仪。可用于各种固态样品表面形貌的二次电子像及背散射电子像的超高分辨观察,以及样品表面微区成分的定性和定量分析。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301138_342739_2086240_3.jpg日本理学D/max-2600/PC全自动X射线衍射仪(该仪器可用于粉末样品的物相定性分析与定量分析,确定纳米材料的粒径分布、晶体的晶系、晶粒大小和畸变等。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301142_342753_2086240_3.jpg美国FEI公司Tecnai G2 F20 U-TWIN 场发射透射电子显微镜(该仪器主要配置的附件有美国Gatan公司的GIF Tridiem能量过滤成像系统及2K×2K CCD相机、美国EDAX公司的X射线能谱仪、数字化扫描附件及高角环形暗场探头。可用于观察各种材料的微观结构并对样品进行纳米尺度的微区分析,如高分辨电子显微学研究、电子能量损失谱分析及能量过滤成像等。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301140_342745_2086240_3.jpg德国Leica DM4000M智能数字式金相显微镜及热台(金相显微镜可用于钢铁、金属、化工材料分析,可用于研究金属内部结构组织,是金属学研究金相的重要仪器。热台的加热温度为室温至300℃,主要用于观察高分子、聚合物、液晶、纤维材料等样品的熔点、相变、形态和晶格变化。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301141_342746_2086240_3.jpg美国珀金埃尔默Diamond TG/DTA热重/差热综合分析仪(该仪器适用于分析无机材料、有机高分子材料、食品、药物等各种固液态试样,可以获得热稳定性、分解温度、氧化诱导期、熔点、反应热等信息。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301141_342747_2086240_3.jpg美国麦克 ASAP2020(M+C)比表面积和孔隙度分析仪(该仪器可以进行单点、多点BET比表面积、Langmuir比表面积、BJH中孔孔分布、孔大小及总体积和面积、平均孔大小等多种数据分析,通过化学吸附的分析可以了解材料上活性金属分散度及其面积、活性颗粒尺寸和数目、材料酸密度、微晶尺寸等信息。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301142_342749_2086240_3.jpg[/a

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][font=&][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][/font][font=&][size=16px]基于此,仪器信息网[/size][/font][font=&][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][/font][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 基于黑磷纳米片的自供电光探测器构筑与性能

    基于黑磷纳米片的自供电光探测器构筑与性能

    光探测器是一种能够将光信号转换为电信号的装置,其在诸多领域都有着广泛的应用。与此同时,低维材料在线提供的二维层状材料因其优异的内秉光电特性而常常被用于光电探测的研究。全国纳米技术标准化技术委员会低维材料工作组的专家介绍,黑磷作为一种新的二维层状半导体材料,具有较高的载流子迁移率、各向异性的光电性质、可调控的直接带隙以及高的开关比,因而被人们认为是制造高性能光电探测器的理想材料之一。与此同时,研究表明减小层状材料的厚度能够有效提高材料的电输运性能,改善能带结构并有利于提升材料的光探测能力,所以少层黑磷纳米片在光电领域具有极大的应用价值。然而,二维黑磷纳米片在外界条件下暴露时会遭受严重的氧化,这极大地阻碍了其开发应用的开展。近日,湘潭大学钟建新教授团队的祁祥副教授课题组和深圳市黑磷光电技术工程实验室主任深圳大学张晗教授课题组采用KOH作为电解液,在溶液的环境下测试了少层黑磷纳米片的自供电光探测性能并研究了其稳定性情况。从图中可看出,基于二维黑磷纳米片的自供电光探测器展现出优异的光响应性能以及良好的环境稳定性,不同入射光强度下二维黑磷纳米片光响应率在1.9到2.2μAW[sup]-1[/sup]的范围内波动,表现出较为稳定的敏感度。同时,光探测器的电流密度随着入射光的强度增强而线性增加,也符合光电化学型光探测器的特性。除此之外,研究结果还表明碱性电解液的存在有助于维持黑磷纳米片的稳定性。黑磷纳米片在0.1MKOH电解液中的光电流能达到265nA/cm[sup]2[/sup],24个小时后光电流密度从265 nA/cm[sup]2[/sup]略微衰减到243nA/cm[sup]2[/sup],这也就意味着黑磷纳米片在KOH电解液中具有优异的光探测能力以及良好的稳定性。不仅如此,通过对KOH电解液的浓度和外界偏压进行调控,他们还进一步的优化了黑磷纳米片的光探测性能。该工作不仅研究了黑磷纳米片光探测性能和电解液浓度的关系,还表明黑磷纳米片作为低功耗光探测器件的良好性能与潜力。综上所述,黑磷在碱性溶液中所表现出来的高稳定性和光响应性能,使得光电化学型光探测器结构具有极大的研究意义以及潜在的应用价值。在这个工作中,他们研究了黑磷纳米片光探测器的基本性能,为进一步研发基于黑磷纳米片的光探测器提供研究基础以及技术路线。目前巨纳集团低维材料在线商城91cailiao.cn,提供的各类二维材料,一维材料,零维材料,如黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硫化钨WS2,hBN氮化硼晶体,二碲化钨WTe2,二硫化铼ReS2,二硒化铼ReSe2等,受到了科研工作者的一致好评。[img=,690,642]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141029_01_2047_3.png[/img]

  • 纳米软件案例之锂热电池检测设备

    [size=16px][b][font=微软雅黑]项目需求[/font][/b][/size][font=微软雅黑][size=16px]用户希望纳米Namisoft帮他们设计开发一款系统,要求系统软件安装在PC控制装置上,系统通过使用USB、RS232、LAN通讯接口实现对锂电池测试过程中所用到的仪器(内阻测试仪、扫码枪、触摸显示器和电源模块等)进行软件控制,实现对锂电池的测试。可把测试结果与原厂电阻值对比,设置误差范围,超出范围提示被测产品不符合要求,测试结束后可以自动生成测试报告,并同步实时保存测试报告于客户指定保存路径。[/size][/font][font=微软雅黑][size=16px] [/size][/font][size=16px][b][font=微软雅黑]系统特点[/font][/b][/size][font=微软雅黑][size=16px]1、稳定性:软件可持续可靠运行,且能够确保数据的准确性和数据的稳定性。[/size][/font][font=微软雅黑][size=16px]2、易维护性:为保证系统长期稳定的运行,在发生故障时,可以迅速的找到原因,并可以在最短的时间内恢复运行,减少用户损失。[/size][/font][font=微软雅黑][size=16px]3、易用性:系统界面友好,并严格按照易用性原则进行测试。为避免用户重复操作,系统嵌入智能记忆功能,如自动保存和载入默认配置。且相同的信息不会让用户在系统中多处或多次录入,保证入口的唯一性。[/size][/font][font=微软雅黑][size=16px] [/size][/font][size=16px][b][font=微软雅黑]基于硬件[/font][/b][/size][align=center][font=微软雅黑][size=16px] [img=锂电池检测仪系统拓扑图,650,275]http://www.namisoft.com/UserFiles/Article/image/6377172841622820008122069.png[/img][/size][/font][/align][align=center][font=微软雅黑][size=16px]锂电池检测仪系统拓扑图[/size][/font][/align][font=微软雅黑][size=16px][color=#4f81bd]1、工控机[/color][/size][/font][font=微软雅黑][size=16px]用于安装测试系统控制软件。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]2、扫码枪[/color][/size][/font][font=微软雅黑][size=16px]用于读取条码所包含信息的设备,可分为一维、二维条码扫描器。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]3、电池内阻测试仪[/color][/size][/font][font=微软雅黑][size=16px]电池内阻测试仪用于测量电池内部阻抗和电池酸化薄膜破损程度的仪器,用于检测锂电池内阻值。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]4、测试机箱[/color][/size][/font][font=微软雅黑][size=16px]集成了各个测试仪器,一体化机箱便于测试人员对设备的测试和操作,能够更加节省测试时间。[/size][/font][size=16px][b][font=微软雅黑][/font][/b][/size][size=16px][b][font=微软雅黑]软件功能[/font][/b][/size][align=center][font=微软雅黑][size=16px] [img=纳米软件案例之锂热电池检测设备软件流程图,650,1147]http://www.namisoft.com/UserFiles/Article/image/6377171928798160335239755.png[/img][/size][/font][/align][align=center][font=微软雅黑][size=16px]软件流程图[/size][/font][/align][size=16px][b][font=微软雅黑]软件主界面[/font][/b][/size][font=微软雅黑][size=16px]打开软件后,进入软件的主界面,该界面上方显示参数配置的数值、中间部分为当前试验测试部分、下方为测试数据显示表格。下方显示当前锂电池测试的送工数、合格数与不合格数。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=软件主界面,650,358]http://www.namisoft.com/UserFiles/Article/image/6377171972865629862410416.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]参数设置界面[/font][/b][/size][font=微软雅黑][size=16px]参数设置页面根据需求分为两个部分:标准测试项目所需的参数以及进行连续性测试电池项目时所需参数。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=参数设置界面,650,439]http://www.namisoft.com/UserFiles/Article/image/6377171975896899264917357.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]测试界面[/font][/b][/size][font=微软雅黑][size=16px]点击“进行测试”按钮,重新返回到测试界面,同时软件对设置的参数进行保存,软件把设置好的参数读取到测试界面的对应位置,测试人员操作扫码器扫描电池二维码,软件自动识别二维码信息,触发内阻测试仪对扫描电池进行测试。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=测试界面,650,354]http://www.namisoft.com/UserFiles/Article/image/6377171979567235251104117.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]历史查询界面[/font][font=微软雅黑]及数据导出[/font][/b][/size][font=微软雅黑][size=16px]点击“历史查询”按钮,进入历史查询界面,可以通过电池批次、电池编号进行模糊查询,或者通过测试日期进行查询。点击导出按钮可以将查询到的测试数据以 CSV 格式导出到指定路径下。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=历史查询界面及数据导出,650,359]http://www.namisoft.com/UserFiles/Article/image/6377171982393815848969495.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]项目成果展示[/font][/b][/size][align=center][img=锂热电池检测设备成果展示,433,701]http://www.namisoft.com/UserFiles/Article/image/6377171985400085081317652.png[/img][/align][align=center][size=16px] [/size][img=锂热电池检测设备成果展示,435,748]http://www.namisoft.com/UserFiles/Article/image/6377171990125115326682511.png[/img][/align][font=微软雅黑][size=16px]以上内容由Namisoft分享的锂热电池检测设备的介绍。如您要了解更多,关注公众账号或官网咨询:www.namisoft.com[/size][/font][font=微软雅黑][size=16px] [/size][/font]

  • 粒径和zeta电位检测标准粒子,mRNA纳米脂质颗粒zeta电位检测稀释剂

    刚接触这个检测项目,用的马尔文的仪器,请问大家符合药典规定的粒径和zeta电位检测标准粒子用什么,大家购买的什么品牌的,标准粒径和电位是多少?做mRNA纳米脂质颗粒zeta电位检测大家用什么稀释剂,因为没有测物理常数的仪器,所以用不了较优的产品背景溶液,有什么别的稀释剂可以代替,使检测结果与真实值偏差较小。

  • 纳米气敏传感器研究进展

    转载一篇文章[url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url][color=blue][b]纳米气敏传感器研究进展[/b][/color]1引言纳米技术是研究尺寸在01~100nm的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术[1]。纳米技术的发展,不仅为传感器提供了优良的敏感材料,例如纳米粒子、纳米管、纳米线、纳米薄膜等,而且为传感器制作提供了许多新型的方法,例如纳米技术中的关键技术STM,研究对象向纳米尺度过渡的MEMS技术等。与传统的传感器相比,纳米传感器尺寸减小、精度提高等性能大大改善,更重要的是利用纳米技术制作传感器,是站在原子尺度上,从而极大地丰富了传感器的理论,推动了传感器的制作水平,拓宽了传感器的应用领域。纳米传感器现已在生物、化学、机械、航空、军事等方面获得广泛的发展。湖南长沙索普测控技术有限公司研制成功电阻应变式纳米压力传感器,这种电阻应变式纳米膜压力传感器,测量精度和灵敏度高、体积小、重量轻、安装维护方便,是一种稳定和可靠的测量压力参数的科技创新产品。利用一些纳米材料的巨磁阻效应,科学家们已经研制出了各种纳米磁敏传感器[2]。在生物传感器中,用纳米颗粒、多孔纳米结构和纳米器件都获得了令人满意的应用[3]。在光纤传感器基础上发展起来的纳米光纤生物传感器,不但具有光纤传感器的优点,而且由于这种传感器的尺寸只取决于探针的大小,大大减小了测微传感器的体积,响应时间大大缩短,满足了单细胞内测量要求实现的微创实时动态测量[4]。 2纳米气敏传感器的研究现状随着工业生产和环境检测的迫切需要,纳米气敏传感器已获得长足的进展。用零维的金属氧化物半导体纳米颗粒、碳纳米管及二维纳米薄膜等都可以作为敏感材料构成气敏传感器。这是因为纳米气敏传感器具有常规传感器不可替代的优点:一是纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大提高了灵敏度;二是工作温度大大降低;三是大大缩小了传感器的尺寸[5]。2.1基于金属氧化物半导体纳米颗粒的纳米气敏传感器 在气敏传感器的研究中,主要方向之一是在气体环境中依靠敏感材料(例如金属氧化物半导体气敏材料以SnO2,ZnO,TiO2,Fe2O3为代表)的电导发生变化来制作气敏传感器。目前已实用化的气敏传感器由纳米SnO2膜制成,用作可燃性气体泄漏报警器和湿度传感器。在这些纳米敏感材料中加入贵重金属纳米颗粒(例如Pt和Pd),大大增强了选择性,提高了灵敏度,降低了工作温度。其性能的具体改善程度与加入贵重金属纳米颗粒的晶粒尺寸、化学状态及分布有关。北京大学王远等人[6]制成一种TiO2/PtOPt双层纳米膜作为敏感材料探测氢气的气敏传感器。其敏感材料的制备方法是先在玻璃衬底上覆盖上一层由Pt纳米颗粒构成的表面氧化的多孔连续膜,其中Pt的纳米颗粒直径大约13 nm,膜厚大约100 nm,然后在PtOPt膜上覆盖TiO2膜,其中TiO2纳米颗粒的直径尺寸从34 nm到54 nm,平均直径41 nm。传感器的工作温度在180~200 ℃,PtOPt多孔膜作为催化剂使TiO2纳米膜对氢气产生部分还原作用,从而使传感器在空气中,甚至在CO、NH3、CH4等还原性气体存在的情况下,对氢气都表现出很高的灵敏度和选择性,比较以前的钛基探测氢气的传感器有显著的提高。Raül Dìaz等人[7]用非电镀金属沉积法沉积Pt在SnO2纳米颗粒的表面,结果证明这种方法对改善气敏传感器催化剂的性能有很大帮助。Pt和Pd作为两种主要的贵重金属添加物,它们与衬底有不同的相互作用,Pd倾向于嵌入纳米SnO2晶粒中,而Pt倾向于形成大的金属颗粒团簇。与传统方法相比,用非电镀沉积法形成的催化剂的不同化学状态,为研究催化剂对气体探测机制的影响提供了一种新的方法。2.2用单壁碳纳米管制作气敏传感器碳纳米管具有一定的吸附特性,由于吸附的气体分子与碳纳米管发生相互作用,改变其费米能级引起其宏观电阻发生较大改变,通过检测其电阻变化来检测气体成分,因此单壁碳纳米管可用作气敏传感器。J.kong等人[8]用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法在分散有催化剂的SiO2/Si基片上可制得单个的单壁碳纳米管,如图1(a)所示,两种金属被用来连接一SSWNT时,形成金属/SSWNT/金属结构,呈现出p型晶体管的性质。气体探测试验是把SSWNT样品放在一个带着电引线的密封的500 mL的玻璃瓶中,通入在空气或者氩气中稀释的NO2((2~200)×10-6)或者NH3(01%~1%),流速700 mL/min。检测SSWNT的电阻变化,得到的I/V关系曲线如图1(b)和(c)所示,在NH3气氛中其电导可减小两个数量级,而在NO2气氛中电导可增加3个数量级。其工作机理是半导体单壁碳纳米管在置于NH3气氛中时,使价带偏离费米能级,结果使空穴损耗导致其电导变小;而在NO2气氛中时,使价带向费米能级靠近,结果使空穴载流子增加从而使其电导增加。由于金属/SSWNT/金属结构类似于空穴作为主要载流子的场效应管,所以在源极和漏极之间的电压一定时,电流随着栅极电压增大而减小(如图2所示)。图2中,b曲线是未通入任何气体的栅电压电流关系曲线,曲线a和c的栅电压电流关系曲线分别是NH3和NO2气氛中测得的。未通入任何气体时,在栅电压为0 V时,电流是15 μA,若通入有NH3的气氛中时,电流则几乎变为0 A。那么,如果测NH3气,我们就将初始栅电压设置在0 V,则由上图可知样品的电导将减小两个数量级。若测NO2气体,先将栅电压设置在+4 V,未通入NO2气体前则电流几乎为零,NO2通入后,电流大大增加,则其电导增加了3个数量级。这样可以使传感器在复杂的气体环境中具有选择性。

  • 【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    [align=center][font='arial'][size=21px][color=#548dd4]#[/color][/size][/font][font='arial'][size=21px][color=#548dd4]每日一篇分享一篇解决方案:[/color][/size][/font][/align][align=center][font='arial'][size=21px][color=#548dd4]今日行业领域:[/color][/size][/font][font='arial'][size=21px][color=#548dd4]制药[/color][/size][/font][/align][align=center][font='等线 light'][size=13px][color=#548dd4]BeNano[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4] 180 [/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]检测脂质纳米粒[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]LNP[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]的粒径[/color][/size][/font][/align][align=center]关键词:粒径、LNP、药物输送体系[/align]脂质纳米粒(Lipid Nanoparticles,LNP)是使用脂质形成纳米微粒的一种,作为一种高效、安全的药物递送体系,被广泛研究和应用,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。 在基因治疗领域,已经开始使用脂质纳米粒包裹核酸,如mRNA、siRNA、pDNA等,称为核酸脂质纳米粒。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333444187_1210_5996718_3.jpeg[/img][/align]在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 180纳米粒度电位仪检测了分散在水性环境中的LNP的粒径。原理 [size=13px] [/size][size=13px] [/size][size=13px]我们[/size]采用丹东百特公司的BeNano 180纳米粒度仪进行测试。仪器使用波长671 nm,功率50 mW激光器作为光源,设置在173[font='arial']°[/font]角的背向检测器进行散射光信号采集,测试过程中,BeNano 180根据样品的散射特点自动确认检测点位置。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333446515_3271_5996718_3.jpeg[/img][/align]样品制备和测试条件该应用中检测了两个LNP采用微流控混合技术来制备核酸脂质纳米粒,该方法相对简便快速,条件温和,同时容易实现生产放大。1#和2#均为悬浮液,通过[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]注入样品池后直接进行检测。通过BeNano 180内置的温度控制系统开机默认测试温度控制为25℃[font='宋体']±[/font]0.1℃,测试样品的光强、检测点位置、测试时间均通过预测试程序自动进行调节。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论表1. 动态光散射检测脂质体样品结果[table][tr][td]样品[/td][td]Z-均粒径[/td][td]PDI[/td][/tr][tr][td]1#[/td][td]215.9 [font='宋体']± [/font]3.54 nm[/td][td]0.303[/td][/tr][tr][td]2#[/td][td]144.6 [font='宋体']± [/font]0.43 nm[/td][td]0.129[/td][/tr][/table][align=center][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333450955_6423_5996718_3.png[/img][/align]图1. 1#样品和2#样品多次测试的粒径分布曲线通过使用动态光散射技术,得到了样品的粒径和粒径分布信息。通过表1中结果可以看到所有样品的粒径都在100-250 nm范围内,粒径结果重复性良好。PDI均在0.1-0.7范围内,说明两个样品均为适中分布。1#样品明显粒径更高,PDI更大,检测的标准偏差也相对较高,说明1#样品的均匀度不如2#样品。[font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333451551_79_5996718_3.jpeg[/img][/align][align=center][url=https://www.instrument.com.cn/show/C476061.html]百特纳米 粒度仪BeNano 180[/url]([url=https://www.instrument.com.cn/netshow/SH100350/]丹东百特仪器有限公司[/url])[/align][align=center][/align][url=https://www.instrument.com.cn/application/Solution-949709.html][font='宋体'][size=16px]点击这里[/size][/font][/url][font='宋体'][size=16px][color=#000000]浏览[/color][/size][/font][font='宋体'][size=16px][color=#000000]或[/color][/size][/font][font='宋体'][size=16px][color=#000000]下载原[/color][/size][/font][font='宋体'][size=16px][color=#000000]文档,更多解决方案内容请浏览[/color][/size][/font][url=http://www.instrument.com.cn/application/][font='宋体'][size=16px][color=#0081d7]行业应用[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]栏目:[/color][/size][/font][align=left][url=http://www.instrument.com.cn/application/][font='宋体'][size=13px][color=#0081d7]http://www.instrument.com.cn/application/[/color][/size][/font][/url][font='宋体'][size=13px][color=#000000]行业应用栏目简介:[/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000]【行业应用】[/color][/size][/font][size=13px][color=#333333]是仪器信息网[/color][/size][size=13px]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/size][/align]

  • 纳米软件案例之锂热电池检测设备

    [size=16px][b][font=微软雅黑]项目需求[/font][/b][/size][font=微软雅黑][size=16px] 用户希望纳米Namisoft帮他们设计开发一款系统,要求系统软件安装在PC控制装置上,系统通过使用USB、RS232、LAN通讯接口实现对锂电池[/size][/font][font=微软雅黑][size=16px]测试过程中所用到的仪器(内阻测试仪、扫码枪、触摸显示器和电源模块等)进行软件控制,实现对锂电池的测试。可把测试结果与原厂电阻值对比,[/size][/font][font=微软雅黑][size=16px]设置误差范围,超出范围提示被测产品不符合要求,测试结束后可以自动生成测试报告,并同步实时保存测试报告于客户指定保存路径。[/size][/font][size=16px][b][font=微软雅黑]系统特点[/font][/b][/size][font=微软雅黑][size=16px]1、稳定性:软件可持续可靠运行,且能够确保数据的准确性和数据的稳定性。[/size][/font][font=微软雅黑][size=16px]2、易维护性:为保证系统长期稳定的运行,在发生故障时,可以迅速的找到原因,并可以在最短的时间内恢复运行,减少用户损失。[/size][/font][font=微软雅黑][size=16px]3、易用性:系统界面友好,并严格按照易用性原则进行测试。为避免用户重复操作,系统嵌入智能记忆功能,如自动保存和载入默认配置。且相同的信息不会让用户在系统中多处或多次录入,保证入口的唯一性。[/size][/font][font=微软雅黑][size=16px] [/size][/font][size=16px][b][font=微软雅黑]基于硬件[/font][/b][/size][align=center][font=微软雅黑][size=16px] [img=锂电池检测仪系统拓扑图,650,275]http://www.namisoft.com/UserFiles/Article/image/6377172841622820008122069.png[/img][/size][/font][/align][align=center][font=微软雅黑][size=16px]锂电池检测仪系统拓扑图[/size][/font][/align][font=微软雅黑][size=16px][color=#4f81bd]1、工控机[/color][/size][/font][font=微软雅黑][size=16px]用于安装测试系统控制软件。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]2、扫码枪[/color][/size][/font][font=微软雅黑][size=16px]用于读取条码所包含信息的设备,可分为一维、二维条码扫描器。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]3、电池内阻测试仪[/color][/size][/font][font=微软雅黑][size=16px]电池内阻测试仪用于测量电池内部阻抗和电池酸化薄膜破损程度的仪器,用于检测锂电池内阻值。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]4、测试机箱[/color][/size][/font][font=微软雅黑][size=16px]集成了各个测试仪器,一体化机箱便于测试人员对设备的测试和操作,能够更加节省测试时间。[/size][/font][size=16px][b][font=微软雅黑]软件功能[/font][/b][/size][align=center][font=微软雅黑][size=16px] [img=纳米软件案例之锂热电池检测设备软件流程图,650,1147]http://www.namisoft.com/UserFiles/Article/image/6377171928798160335239755.png[/img][/size][/font][/align][align=center][font=微软雅黑][size=16px]软件流程图[/size][/font][/align][size=16px][b][font=微软雅黑]软件主界面[/font][/b][/size][font=微软雅黑][size=16px] 打开软件后,进入软件的主界面,该界面上方显示参数配置的数值、中间部分为当前试验测试部分、下方为测试数据显示表格。下方显示当前锂电池测试的送工数、合格数与不合格数。[/size][/font][align=center][font=微软雅黑][size=16px] [img=软件主界面,650,358]http://www.namisoft.com/UserFiles/Article/image/6377171972865629862410416.png[/img][/size][/font][/align][size=16px][b][font=微软雅黑]参数设置界面[/font][/b][/size][font=微软雅黑][size=16px]参数设置页面根据需求分为两个部分:标准测试项目所需的参数以及进行连续性测试电池项目时所需参数。[/size][/font][align=center][font=微软雅黑][size=16px] [img=参数设置界面,650,439]http://www.namisoft.com/UserFiles/Article/image/6377171975896899264917357.png[/img][/size][/font][/align][size=16px][b][font=微软雅黑]测试界面[/font][/b][/size][font=微软雅黑][size=16px]点击“进行测试”按钮,重新返回到测试界面,同时软件对设置的参数进行保存,软件把设置好的参数读取到测试界面的对应位置,测试人员操作扫码器扫描电池二维码,软件自动识别二维码信息,触发内阻测试仪对扫描电池进行测试。[/size][/font][align=center][font=微软雅黑][size=16px] [img=测试界面,650,354]http://www.namisoft.com/UserFiles/Article/image/6377171979567235251104117.png[/img][/size][/font][/align][size=16px][b][font=微软雅黑]历史查询界面[/font][font=微软雅黑]及数据导出[/font][/b][/size][font=微软雅黑][size=16px]点击“历史查询”按钮,进入历史查询界面,可以通过电池批次、电池编号进行模糊查询,或者通过测试日期进行查询。点击导出按钮可以将查询到的[/size][/font][font=微软雅黑][size=16px]测试数据以 CSV 格式导出到指定路径下。[/size][/font][align=center][font=微软雅黑][size=16px] [img=历史查询界面及数据导出,650,359]http://www.namisoft.com/UserFiles/Article/image/6377171982393815848969495.png[/img][/size][/font][/align][size=16px][b][font=微软雅黑]项目成果展示[/font][/b][/size][align=center][img=锂热电池检测设备成果展示,433,701]http://www.namisoft.com/UserFiles/Article/image/6377171985400085081317652.png[/img][/align][align=center][size=16px] [/size][img=锂热电池检测设备成果展示,435,748]http://www.namisoft.com/UserFiles/Article/image/6377171990125115326682511.png[/img][/align]

  • 美开发皮下植入式碳纳米管传感器 测血糖无需采血

    原标题:美开发出皮下植入式碳纳米管传感器 可365天实时监测体内分子活动 科技日报讯 据物理学家组织网近日报道,美国麻省理工学院的研究人员开发出一种碳纳米管传感器,被植入皮肤下后,可全年实时监测活体动物体内的分子活动,如炎症反应即产生一氧化氮(NO)的过程,或监测血糖或胰岛素水平,而无需再像传统方式那样采取血样。该研究结果发表在《自然·纳米技术》上。 一氧化氮是活细胞中最重要的信号分子,具有在大脑内运送信息及调整免疫系统的功能。在许多癌细胞中,其水平是波动的,但很少有人知道一氧化氮在健康细胞和癌细胞内的表现方式。麻省理工学院化学工程教授迈克尔·斯特拉诺说:“一氧化氮在癌症演进过程中扮演着矛盾的角色,为了更好地了解它,我们需要新的工具。该传感器提供了一个用于体内实时测量一氧化氮及其他潜在分子活动的新手段。” 在这项新研究中,研究人员修改了碳纳米管,创建了两个不同类型的传感器:一个可以被注射到血液中用于短期监测;另一个可嵌入到凝胶中,以便植入肌肤用于长期监测。 就短期监测而言,为了使纳米粒子可注射,艾弗森附加了聚乙二醇(PEG),一种可以抑制血液中粒子聚集的生物相容性聚合物。她发现,当注射到小鼠体内,可流动的颗粒通过肺和心脏时没有造成任何损害。大部分的颗粒积聚在肝脏中,在那里它们可以监视与炎症有关的一氧化氮。 较长期的传感器则被嵌入在由藻酸盐制成的凝胶中,一旦这种凝胶被植入老鼠皮下,可在一个地方停留并保持功能400天,甚至持续更长的时间。这种传感器可用于监测癌症或其他炎症性疾病、人造髋关节患者的免疫反应或其他植入装置。 研究带头人博士后妮可·艾弗森在斯特拉诺实验室制造出了可用作长期监测的碳纳米管传感器,并将其植入糖尿病患者的皮肤下,以监测他们的血糖或胰岛素水平。研究人员用近红外激光器照射这些传感器,即可读出其产生的近红外荧光信号,以判断碳纳米管和其他背景荧光之间的差异。 大多数糖尿病患者必须每天数次刺破其手指以采取血样。虽然有可以附着在皮肤上的电化学葡萄糖传感器,但这些传感器至多只能持续一个星期,因为电极会刺穿皮肤,有感染的危险。这种新型传感器可实时监测血糖与胰岛素,而不必刺穿患者的手指。 (华凌)来源:中国科技网-科技日报 作者:华凌 2013年12月04日

  • 包覆纳米金属颗粒的中空碳纳米管

    包覆纳米金属颗粒的中空碳纳米管

    两个问题,大家讨论:仪器:Zeiss场发射扫描电镜Merlin(1)如图所示为包覆纳米Fe的中空碳纳米管,5kV加速电压下SE检测器下能看到包覆的纳米Fe,In-lens检测器为什么含有Fe的部位呈现暗黑色?http://ng1.17img.cn/bbsfiles/images/2014/08/201408032120_508940_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032120_508941_1872735_3.jpg(2)提高加速电压后,In-lens检测器下能很好的分辨出Fe在纳米管中的包覆情况。 http://ng1.17img.cn/bbsfiles/images/2014/08/201408032122_508943_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032122_508942_1872735_3.jpg(3)SE检测器和ESB检测器的效果比较http://ng1.17img.cn/bbsfiles/images/2014/08/201408032129_508944_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032129_508945_1872735_3.jpg

  • 【原创大赛】小创新全面解决新材料纳米氢氧化铝检测问题

    小创新全面解决新材料纳米氢氧化铝检测问题 梅正富6月17日物控部报检了新材料纳米氢氧化铝样品,检测员按原材料检测方法进行溶样工作,按要求称新样品后,加了1+1的硝酸和盐酸各20mL,加热溶解1个多小时观察溶液呈浑浊状态,这种现象表明显示溶解不完全,按操作方法又加了1+1的硝酸和盐酸各20mL,又加热溶解1个多小时再观察溶液还呈浑浊状态,仔细观察没有继续溶解的迹象,这意味着不可能完全溶解,原用这种方法将无法把新材料纳米氢氧化铝溶解好。这意味着不能按原检测方法进行新材料纳米氢氧化铝正常检测工作。检测员报告后,根据现场观察分析,针对这种情况,运用专业理论知识分析表明,做出判定:是存在两方面的问题,一方面硝酸盐酸混合后酸度降低一倍,最大才7.5N,溶解能力明显不够,另一方面因纳米材料本身的颗粒就很小,纳米氢氧化铝颗粒D50只有30纳米左右1米=1000毫米。1毫米=1000微米,1微米=1000纳米,很容易团聚,形成溶胶保护,会引起自动阻止反应继续发生,针对此种状况,运用化学分析专业理论知识,要加快反应速度,必须从三个方面入手,1.加大反应压力,对于液体和固体来说作用是很微小的,2.加高反应温度,3.加大参加反应物的浓度。查阅有关文献资料显示硝酸沸点是122 ℃,盐酸沸点是110 ℃,用硝酸和盐酸的混合物酸度和反应温度是不可能增大的,酸度最大的首先是磷酸可达到45N,沸点是213℃,另有很强的络合能力,其次是硫酸可达到36N,沸点是338℃,另有很强的脱水性。为了达到高效快速溶解新样品,称样量不变,于低浓度低沸点的酸改变用高浓度高沸点的酸,选用了5 mL 分析纯磷酸和1 mL分析纯硫酸混合后进行加热溶解,进行双管齐下,一方面增加反应温度,另一方面增加反应物质浓度(酸度),煮沸后不到10分钟就全部溶解,冷却后进行定容,再按容量法进行滴定,测定出新材料纳米氢氧化铝含量和其他检测结果。小创新解决检测工作中的大问题。省时间,省药品,省人工。经新溶样方法溶样后,检测样品结果稳定,不存其他干扰问题,效果很好,为广州融达电源材料有限公司解决了新材料纳米氢氧化铝检测问题,提供了行之有效的检测手段。拓展了检测中心又一项新项目纳米氢氧化铝检测渠道,提升检测中心检测人员的检测能力。从而解决了新检测项目的又一个新检测问题。又一新方法填补了广州融达电源材料有限公司检测空白。检测新材料纳米氢氧化铝达到公司检测要求。总之,只要积极想办法,动脑筋,方法总比问题多。任何事情只有想不到,没有做不到的。

  • 兽药胶体金检测仪是什么仪器

    兽药胶体金检测仪是什么仪器

    [size=16px]  兽药胶体金检测仪是什么仪器  兽药胶体金检测仪是一种用于检测兽药残留的仪器,通常采用胶体金纳米颗粒技术结合免疫测定原理。这种仪器用于检测食品、农产品、水产品等中是否存在兽药残留物,以确保兽药残留在食品和农产品中的浓度在安全范围内。  兽药胶体金检测仪的工作原理通常涉及以下步骤:  样品处理:首先,从待检测的样品中提取兽药残留物。  免疫测定:样品中的兽药残留物与特定的抗体或免疫试剂结合。这是通过免疫反应实现的,其中抗体或免疫试剂与兽药残留物特定的抗原发生特异性结合。  胶体金标记:通常,检测中使用的免疫试剂或抗体会与胶体金纳米颗粒结合,使这些颗粒成为可视化的标记物。  检测:标记的胶体金颗粒会产生特定的光学信号,这些信号可以通过检测仪器测量。信号的强度与样品中兽药残留物的浓度成正比。  结果分析:检测仪器将测量的光学信号转化为数值结果,指示样品中的兽药残留物浓度。  这种检测仪器通常具有高度灵敏性和特异性,能够检测到非常低浓度的兽药残留物。它在食品安全监测、农产品质量控制、水产品安全检测和农业兽药合规性监测等领域非常有用。通过使用这种仪器,可以确保食品和农产品中的兽药残留物不会对消费者的健康产生潜在的风险。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201100138216_9725_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 纳米材料综述

    1,概述一纳米等于十亿分之一米,相当于人的头发丝直径的八万分之一。纳米材料被誉为“21一世纪最具有前途的材料”,与信息技术和生物技术并成为21世纪社会经济发展的三大支柱之一和战略制高点。材料的结构决定材料的性质,纳米材料的特殊结构决定它具有一些特异性质,从而纳米材料具有常规材料没有的性质,从而使纳米材料得到更广泛的应用。纳米材料在化工,工程材料,信息,生物医学,军事等领域都得到了充分的应用。现在纳米技术尚在初期阶段,但于社会效益与经济效益都产生的巨大的影响,在未来纳米材料必定大显身手。纳米科技是研究结构尺度在1(0.1)~100nm范围内材料体系的运动规律,相互作用及实际应用的科学技术。其基本内涵是在纳米尺寸范围内认识和改造自然,通过直接操作原子,分子创造新的物质。纳米技术在材料学,生物学,电子学,化学,物理学,测量学,力学的若干领域得到应用。纳米技术是许多基础理论,专业工程理论与当代高新技术的结晶。以物理学,化学的微观理论为基础,以现代高精密检测仪器和先进的分析技术为手段。美国IBM首席科学家曾经说到:“正像微电子技术产生了信息革命一样,纳米技术将成为下一代信息的核心。”我国著名科学家钱学森也指出:“纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而引发21世纪的一次新的产业革命。”纳米技术具有极大的战略意义,世界上许多国家都将其纳入重点发展项目。本文将从纳米材料的现状,发展趋势及应用三方面加以主要叙述。2,定义 纳米材料是指特征尺寸在纳米数量级(1~100nm)的极细颗粒组成的固体材料。广义上讲,纳米材料指三维空间尺寸中至少有一维处于纳米量级的材料。发展历史纳米材料的概念可以追溯到1959年,诺贝尔奖获得者理查德·费曼(Richard Phillips Feynman)_在一次名为“There is plenty of room at the bottom”演讲中提到的。他构想人类可以使用宏观上的机器制造比其体积小的机器,进而制造更小的机器,这样一步步缩小生产装置,逐步达到分子尺度,到最后人类可以按照自己的意愿来排列原子,制造产品。尽管当时的科学界抱以普遍的怀疑态度,但不久之后,他的理念得以证实, 1980年H·Gleiter教授在一次穿越澳大利亚的沙漠旅行时引发的构想,他不同于当时的常规想法,即具有完整空间点阵结构的实体即晶体视为主体,而将空间点阵中的空位,置换原子,间隙原子,相界,位错和晶界视为晶体材料中的缺陷。他将“缺陷”视为主体,制造出一种晶界占有极大体积比的材料。1984年,他领导的研究组用惰性气体凝聚法制备了具有具有清洁表面的黑色纳米金属粉末粒子,并以它为结构单元制成了纳米块体材料。 1987年美国国家实验室的西格尔(Siegel)等人使用气相冷凝法制备纳米陶瓷材料TiO2,并观察到纳米材料在室温和低温下具有良好的韧性。1990年7月,在美国巴尔的摩召开国际第一届纳米科技学术会议,正式把纳米材料科学作为材料科学的一个新的分支公布于世,表明了纳米材料科学已经成为一个比较独立的学科。1994年在美国波士顿召开的MRS秋季会议上正式提出了纳米材料工程。是纳米材料的新领域,是纳米材料研究的基础上通过纳米合成,纳米添加发展新型的纳米材料,并通过纳米添加对传统材料进行改性,扩大纳米材料的应用范围,开始形成了基础研究与应用研究并行的局面。纳米材料发展有三个阶段:第一阶段(1990年之前)主要是在实验室探索,用各种手段制造各种材料纳米颗粒粉体,合成块体,研究表征方法,探索纳米材料的性能。第二阶段(1990~1994年)。人们

  • 【直播】第四届“纳米材料表征与检测技术”主题网络研讨会

    [font=&][color=#333333] 为促进纳米领域的科技创新和产业发展,仪器信息网将于[/color][/font][font=&][size=18px][color=#ff0000][b]2021年8月25-26日[/b][/color][/size][/font][font=&][color=#333333]举办[/color][/font][b]第四届“纳米材料表征与检测技术”主题网络研讨会[/b][font=&][color=#333333],开设[/color][/font][b]“纳米材料与能源”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料与半导体”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料与医药”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料表征与测试”[/b][font=&][color=#333333]4个分会场,依托成熟的网络会议平台,为纳米材料领域从事研发、生产、教学的科技人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。[/color][/font][font=&][color=#333333]报告列表:[/color][url=https://insevent.instrument.com.cn/t/nr][size=18px][color=#ff0000]戳此报名[/color][/size][/url][/font][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/nr][img=,598,888]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241151087042_6452_5206225_3.jpg!w598x888.jpg[/img][/url][/color][/font]

  • 【直播】第四届“纳米材料表征与检测技术”主题网络研讨会

    [font=&][color=#333333] 为促进纳米领域的科技创新和产业发展,仪器信息网将于[/color][/font][size=18px][color=#ff0000][b]2021年8月25-26日[/b][/color][/size][font=&][color=#333333]举办[/color][/font][b]第四届“纳米材料表征与检测技术”主题网络研讨会[/b][font=&][color=#333333],开设[/color][/font][b]“纳米材料与能源”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料与半导体”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料与医药”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料表征与测试”[/b][font=&][color=#333333]4个分会场,依托成熟的网络会议平台,为纳米材料领域从事研发、生产、教学的科技人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。[/color][/font][font=&][color=#333333]报告列表:[/color][url=https://insevent.instrument.com.cn/t/nr][size=18px][color=#ff0000]戳此报名[/color][/size][/url][/font][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/nr][img=,598,888]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241151087042_6452_5206225_3.jpg!w598x888.jpg[/img][/url][/color][/font][font=&][color=#333333][/color][/font]

  • 【直播】第四届“纳米材料表征与检测技术”主题网络研讨会

    [font=&][color=#333333] 为促进纳米领域的科技创新和产业发展,仪器信息网将于[/color][/font][font=&][size=18px][color=#ff0000][b]2021年8月25-26日[/b][/color][/size][/font][font=&][color=#333333]举办[/color][/font][b]第四届“纳米材料表征与检测技术”主题网络研讨会[/b][font=&][color=#333333],开设[/color][/font][b]“纳米材料与能源”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料与半导体”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料与医药”[/b][font=&][color=#333333]、[/color][/font][b]“纳米材料表征与测试”[/b][font=&][color=#333333]4个分会场,依托成熟的网络会议平台,为纳米材料领域从事研发、生产、教学的科技人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。[/color][/font][font=&][color=#333333]报告列表:[/color][url=https://insevent.instrument.com.cn/t/nr][size=18px][color=#ff0000]戳此报名[/color][/size][/url][/font][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/nr][img=,598,888]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241151087042_6452_5206225_3.jpg!w598x888.jpg[/img][/url][/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制