当前位置: 仪器信息网 > 行业主题 > >

生物子作用仪

仪器信息网生物子作用仪专题为您提供2024年最新生物子作用仪价格报价、厂家品牌的相关信息, 包括生物子作用仪参数、型号等,不管是国产,还是进口品牌的生物子作用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生物子作用仪相关的耗材配件、试剂标物,还有生物子作用仪相关的最新资讯、资料,以及生物子作用仪相关的解决方案。

生物子作用仪相关的论坛

  • 生物分子相互作用分析仪简介说明

    [b][url=http://www.f-lab.cn/biosensors/mx96.html]生物分子相互作用分析仪[/url][/b]是采用[b]阵列成像SPR[/b]技术的[b]生物分子相互作用传感仪[/b]器和[b]成像SPR仪[/b],是全球领先的多重[b]生物分子相互作用分析[/b]的[b]SPR成像系统[/b]。生物分子相互作用分析仪mx96可监测传感器表面上高达96个配点,使用生物分子相互作用分析仪mx96温度控制96位微孔板自动进样,样品在芯片系列注射,每次注产生96个相互作用。它是可以无人执行的从96孔板在一个完整的运行多达10000个传感由此产生以及包括控制的任务。生物分子相互作用分析仪具有样品注射的来回流动,只有100µ L的样品也能检测由生物分子相互作用分析仪与CFM标准生物传感器相结合,可以从较低的吞吐量机转换成更高的吞吐量阵列系统。对于多路复用非常重要的应用程序,阵列可能非常强大,因为随着实验规模的增大,在其他平台上的采样消耗和仪器运行时间可以迅速扩展。例如,数组可以两两竞争96单克隆抗体的-几乎10000个人相互作用-只使用200每个单抗µ L和一个24小时运行的几天到几个月持续运行的平台。[img=生物分子相互作用分析仪]http://www.f-lab.cn/Upload/MX96.jpg[/img]生物分子相互作用分析仪:[url]http://www.f-lab.cn/biosensors/mx96.html[/url]

  • 【原创】生物大分子相互作用测试方法一

    今天有个学生测试两个膜蛋白之间有无相互作用。目前测试分子相互作用方法技术有很多,但是很多都是很复杂和麻烦了,分子相互作用也是很热门的技术。但是有些时候可以比较简单的,采用动态光散射测试生物大分子粒径。这个很好理解,目前我们这台仪器是动态光散射,根据布朗运动,利用分子运动快慢判断其粒径大小。分子越小,布朗运动越快,分子越大,运动越慢。首先分别测试出A和B两个膜蛋白的粒径,然后将两者混合,再测试粒径。如果粒径是A+B的话说明这两个有相互作用。缺点:1:动态光散射只是能够简单定性判断一下,A和B有没有相互作用,不能够精确计算其相互作用的解离常数,可提供的数据参数少。2:不适合做小分子。其能够识别范围都是1nm以上的,小化合物分子无法测试3:对样品纯度和准确性要求较高,无法测试复杂混合样品优点:简单快速!!!与目前其他测试技术相比的明显优势,且基本没有额外的消耗成本。纯粹简单的光学原理,测试非常快,30min~60min就可以完全测试结束,而且技术简单易理解。

  • 讲解微生物细菌检测仪作用和用途

    微生物细菌检测仪是一种专门用于检测生物体、环境水样、食品、化妆品和医药产品表面ATP(三磷酸腺苷)含量的装置。ATP是所有活细胞和一些非细胞生物(如病毒、霉菌和酵母菌等)所含的核苷酸之一,因此微生物细菌检测仪可以通过检测表面ATP含量来检测这些生物的存在。  微生物细菌检测仪的工作原理是通过荧光素酶作用的ATP检测试剂将样品表面的ATP转化为荧光素,然后利用荧光素酶催化的发光特性来测定样品表面的ATP含量。这种测量方法快速、准确、简单,一般检测时间不超过30秒。  微生物细菌检测仪的作用和用途非常广泛,它可以用于以下领域:  食品生产和加工:检测食品生产和加工过程中的卫生情况,确保食品质量和安全。  医疗设备和药品检测:用于检测医疗设备、药品和患者样本中的微生物,确保患者的安全和健康。  环境监测:检测水源和空气中的微生物污染,评估环境质量。  化妆品和医药产品检测:确保这些产品的生产和储存过程中的卫生条件符合标准。  此外,微生物细菌检测仪的使用方法通常包括打开机器、放入试子、采集样品、挤压拭子头、将拭子插入仪器中检测等步骤。在操作过程中,需要遵循相关操作规范,以确保检测结果的准确性和可靠性。  总之,微生物细菌检测仪是一种重要的检测工具,它可以帮助我们快速、准确地检测生物体、环境水样、食品、化妆品和医药产品表面的微生物含量,为食品安全、医疗、环境监测等领域提供有力的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405091048555937_3652_4214615_3.jpg!w690x690.jpg[/img]

  • 【资料】推荐一台做 分子相互作用 的仪器

    BIA是英语“Biomolecular Interaction Analysis” 的缩写,BIA提供了实时观察生物分子间相互作用的技术。通过它能观察两种分子结合的特异性,能知道两种分子的结合有多强,还能了解生物分子的结合过程共有多少个协同者和参与者。BIA可以让得到用其他技术方法难以得到的结果,因为它可以实时反映分子结合过程中每一秒变化的情况。无需借助标记物进行分析使BIA广泛应用于各类生物体系的测定,从各类小分子化合物、多肽、蛋白质、寡核苷酸和寡聚糖直至类脂、噬菌体、病毒和细胞。一、 动力学常数的测定BIA可以用来分析不同抗体与抗原的结合与解离常数,相对与以前其它检测抗体效价的方法,BIA不仅快速,可以准确定量,和可以让你看到整个结合和解离的动态过程。二、浓度的测量三、分子相互作用模式的研究我们想知道两分子之间相互作用的比例,结合位点,抗原决定族的位点,都可以用BIA来完成。研究突变后活力大小的变化,研究复合物形成次序等等。四、蛋白质功能分析复合物的组装可以看成研究蛋白功能的一个例子。也可以设计其它的一些实验,只要前后芯片表面的质量有变化就可以利用BIA技术来检测。详情请见:[URL=http://biotech.ustc.edu.cn/html/yiqijieshao/2006/0727/2.html]http://biotech.ustc.edu.cn/html/yiqijieshao/2006/0727/2.html[/URL]

  • 【讨论】生物富集作用原理

    【讨论】生物富集作用原理

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012161719_267464_2202755_3.jpg许多污染物在生物体内的浓度远远大于其在环境中的浓度,并且只要环境中这种污染物继续存在,生物体内污染物的浓度就会随着生长发育时间的延长而增加。对于一个受污染的生态系统而言,处于不同营养级上的生物体内的污染物浓度,不仅高于环境中污染物的浓度,而且具有明显的随营养级升高而增加的现象。生物个体或处于同一营养级的许多生物种群,从周围环境中吸收并积累某种元素或难分解的化合物,导致生物体内该物质的平衡浓度超过环境中浓度的现象,叫生物富集,又叫生物浓缩(bio-concentration)。生物富集常用富集系数或浓缩系数(即生物体内污染物的平衡浓度与其生存环境中该污染物浓度的比值)来表示。此外还有人用生物累计、生物放大等术语来描述生物富集现象。前者是指同一生物个体在生长发育的不同阶段生物富集系数不断增加的现象;后者指在同一事物链上,生物富集系数从低位营养级到高位营养级逐级增大的现象。污染物是否沿着食物链积累,决定于以下三个条件:即污染物在环境中必须是比较稳定的,污染物必须是生物能够吸收的,污染物是不易被生物代谢过程中所分解的。目前最典型的还是DDT在生态系统中的转移和积累。在生态系统中,污染物在沿食物链流动过程中随营养级的升高而增加,其富集系数在各营养级中均可达到极其惊人的含量。生物富集作用生物富集作用又叫生物浓缩,是指生物体通过对环境中某些元素或难以分解的化合物的积累,使这些物质在生物体内的浓度超过环境中浓度的现象。生物体吸收环境中物质的情况有三种:一种是藻类植物、原生动物和多种微生物等,它们主要靠体表直接吸收;另一种是高等植物,它们主要靠根系吸收;再一种是大多数动物,它们主要靠吞食进行吸收。在上述三种情况中,前两种属于直接从环境中摄取,后一种则需要通过食物链进行摄取。环境中的各种物质进入生物体后,立即参加到新陈代谢的各项活动中。其中,一部分生命必需的物质参加到生物体的组成中,多余的以及非生命必需的物质则很快地分解掉并且排出体外,只有少数不容易分解的物质(如DDT)长期残留在生物体内。生物富集作用的研究,在阐明物质在生态系统内的迁移和转化规律、评价和预测污染物进入生物体后可能造成的危害,以及利用生物体对环境进行监测和净化等方面,具有重要的意义。概述  生物富集(bio-concentration),又称生物浓缩,是生物有机体或处于同一营养级上的许多生物种群,从周围环境中蓄积某种元素或难分解化合物,使生物有机体内该物质的浓度超过环境中的浓度的现象。生物富集与食物链相联系,各种生物通过一系列吃与被吃的关系,把生物与生物紧密地联系起来,如自然界中一种有害的化学物质被草吸收,虽然浓度很低,但以吃草为生的兔子吃了这种草,而这种有害物质很难排出体外,便逐渐在它体内积累。而老鹰以吃兔子为生,于是有害的化学物质便会在老鹰体内进一步积累。这样食物链对有害的化学物质有累积和放大的效应,这是生物富集直观表达。污染物是否沿着食物链积累,决定于以下三个条件:即污染物在环境中必须是比较稳定的,污染物必须是生物能够吸收的,污染物是不易被生物代谢过程中所分解的。富集系数 生物富集常用富集系数或浓缩系数(即生物体内污染物的平衡浓度与其生存环境中该污染物浓度的比值)来表示。此外还有人用生物累计、生物放大等术语来描述生物富集现象。前者是指同一生物个体在生长发育的不同阶段生物富集系数不断增加的现象;后者指在同一事物链上,生物富集系数从低位营养级到高位营养级逐级增大的现象。  污染物是否沿着食物链积累,决定于以下三个条件:即污染物在环境中必须是比较稳定的,污染物必须是生物能够吸收的,污染物是不易被生物代谢过程中所分解的。最典型的还是DDT在生态系统中的转移和积累。  在生态系统中,污染物在沿食物链流动过程中随营养级的升高而增加,其富集系数在各营养级中均可达到极其惊人的含量。作用  生物富集作用又叫生物浓缩,是指生物体通过对环境中某些元素或难以分解的化合物的积累,使这些物质在生物体内的浓度超过环境中浓度的现象。生物体吸收环境中物质的情况有三种:一种是藻类植物、原生动物和多种微生物等,它们主要靠体表直接吸收;另一种是高等植物,它们主要靠根系吸收;再一种是大多数动物,它们主要靠吞食进行吸收。在上述三种情况中,前两种属于直接从环境中摄取,后一种则需要通过食物链进行摄取。环境中的各种物质进入生物体后,立即参加到新陈代谢的各项活动中。其中,一部分生命必需的物质参加到生物体的组成中,多余的以及非生命必需的物质则很快地分解掉并且排出体外,只有少数不容易分解的物质(如DDT)长期残留在生物体内。生物富集作用的研究,在阐明物质在生态系统内的迁移和转化规律、评价和预测污染物进入生物体后可能造成的危害,以及利用生物体对环境进行监测和净化等方面,具有重要的意义。危害  1》铅容易污染蔬菜 ,主要能造成人体造血、神经系统和肾脏的损伤。  2》鱼是汞的天然浓缩器 ,汞(通常以甲基汞的形式存在)在体内代谢缓慢,可引起蓄积中毒,并通过血脑屏障进入大脑,影响脑细胞的功能。  3》水生生物、陆生植物可富集镉 。镉对机体的危害是破坏肾脏的近曲小管,造成钙等营养素的丢失,使病人骨质脱钙,导致“痛痛病”。  4》人是生物富集的最大受害者。有害物质循环 生物富集人类在改造自然的过程中,不可避免地会向生态系统排放有毒有害物质,这些物质会在生态系统中循环,并通过富集作用积累在食物链最顶端的生物上(最顶端的生物往往是人)。生物的富集作用指的是:生物个体或处于同一营养级的许多生物种群,从周围环境中吸收并积累某种元素或难分解的化合物,导致生物体内该物质的平衡浓度超过环境中浓度的现象。有毒有害物质的生物富集曾引起包括水俣病、痛痛病在内的多起生态公害事件。  生物富集对自然界的其他生物也有重要影响,例如美国的国鸟白头海雕就曾受到DDT生物富集的影响,1952年~1957年间,已经有鸟类爱好者观察到白头海雕的出生率在下降,随后的研究则表明,高浓度的DDT会导致白头海雕的卵壳变软以致无法承受自身的重量而碎裂。直到1972年11月31日美国环境保护署(Environmental Protection Agency .EPA)正式全面禁止使用DDT,白头海雕的数量才开始恢复。

  • 【云唐仪器】ATP生物荧光检测仪有哪些作用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403080946164455_1310_5604214_3.jpg!w690x690.jpg[/img]  ATP生物荧光检测仪是一种高科技的检测设备,它利用生物荧光技术来快速、准确地检测样品中的ATP含量。ATP,即三磷酸腺苷,是生物体内能量的直接来源,其含量与生物体的活跃程度密切相关。因此,ATP生物荧光检测仪在多个领域都有着广泛的应用,其作用不容忽视。  首先,ATP生物荧光检测仪在食品安全领域发挥着重要作用。在食品生产过程中,微生物的污染是一个不可忽视的问题。这些微生物会在食品中繁殖,产生大量的ATP。通过ATP生物荧光检测仪,可以快速检测出食品中的ATP含量,从而判断食品的卫生状况。这对于保障食品安全、预防食物中毒具有重要意义。  其次,ATP生物荧光检测仪在医疗卫生领域也有着广泛的应用。在医疗环境中,细菌、病毒等微生物的存在会对患者的健康造成威胁。ATP生物荧光检测仪可以快速检测出医疗器械、手术室、病房等环境中的ATP含量,从而评估环境的清洁程度。这对于预防医院感染、保障患者安全具有重要意义。  此外,ATP生物荧光检测仪还在环境监测领域发挥着重要作用。环境中的微生物污染会对人们的健康和生活质量造成影响。通过ATP生物荧光检测仪,可以实时监测环境中的ATP含量,从而评估环境的卫生状况。这对于改善环境质量、保障人们的健康具有重要意义。  总之,ATP生物荧光检测仪具有快速、准确、灵敏等特点,可以广泛应用于食品安全、医疗卫生、环境监测等多个领域。通过实时监测样品中的ATP含量,可以评估生物体的活跃程度、判断环境的卫生状况、预防微生物污染等。这对于保障人们的健康、改善环境质量、提高生产效率等方面都具有重要意义。随着科技的不断进步和应用领域的不断拓展,ATP生物荧光检测仪将会在更多领域发挥其重要作用,为人们的生产和生活带来更多便利和保障。

  • 食品微生物检测仪器的主要作用是什么

    食品微生物检测仪器的主要作用是什么

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310121022029053_2425_5604214_3.jpg!w690x690.jpg[/img]  食品微生物检测仪器的主要作用是确保食品的卫生和安全,以及保护公众免受与食品相关的微生物污染引起的食品中毒和疾病。这些仪器在食品工业和监管机构中起到关键作用,主要包括以下几个方面的作用:  检测食品中的病原体:食品微生物检测仪器用于检测食品中的致病微生物,如细菌(如沙门氏菌、大肠杆菌)、真菌(如霉菌)和病毒。这有助于及早发现潜在的食品污染问题,以防止疫情爆发。  质量控制:食品制造商可以使用微生物检测仪器来监测食品生产过程中的微生物污染情况,确保产品质量和一致性。  合规性检验:监管机构可以使用这些仪器来进行食品安全合规性检验,以确保食品生产者遵守相关法规和标准。  溯源:在爆发食品中毒事件时,微生物检测仪器有助于确定致病微生物的来源,帮助调查和控制疫情。  质量保证:食品微生物检测有助于食品制造商确保其产品的安全性和品质,维护品牌声誉。  疾病预防:通过检测食品中的病原体,可以预防与食品相关的感染性疾病,保护公众健康。  这些仪器使用多种技术,包括培养法、分子生物学技术(如[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])、质谱法和光谱法,以检测、鉴定和定量食品中的微生物。通过及时发现食品中的潜在威胁,食品微生物检测仪器有助于确保食品供应链的安全和可追溯性,降低了公众食品相关健康风险。

  • 【讨论】如何看待微生物吸附重金属的作用?

    曾经做过一段微生物对重金属离子的生物吸附,感觉如果能够很好的利用,其可以在很多方面都得到较好的应用效果,比如环境保护,金属冶炼,金属提纯等。先介绍一下其吸附的原理:生物吸附是指生物体从溶液中吸附金属离子、非金属化合物和固体颗粒的过程,是个吸附-解吸的可逆过程,被吸附的离子可被其他离子、螯合剂或酸解吸下来。这其中就分为两种情况:非活性生物的吸附作用和活性生物的吸附作用(也称为生物累积)生物吸附主要是生物体细胞壁表面的一些具有络合、配为能力的基团起作用,如巯基、羧基、羟基等基团,这些基团通过与所吸附的金属离子形成离子或共价键来达到吸附金属离子的目的;生物累积主要是利用生物新陈代谢作用产生的能量,通过单价或二价的离子的离子转移系统把金属离子输送到细胞内部。因此生物累积受温度、pH、能源等诸多因素的影响较大,实际应用中有很大的限制。

  • 生物技术在新药研发中的作用

    当前,随着生物技术的进展以及人们对疾病分子机制认识的不断深化,越来越多的疫苗、细胞因子、活性多肽、人源化单克隆抗体等生物技术药物被研制出来用于疾病的防治;微生物研究的成果,使一些次级代谢产物可以通过发酵的方法而得到;应用细胞工程技术还培养成功了多种菌类中草药,使一些名贵的中草药可以用发酵的方法来生产。此外,生物技术的进展也给制药业创造了许多新工艺和新辅料,例如在生物研究中产生的各种层析技术已被用于制药生产;一些重要的提取法或用基因工程生产的酶已被用于药物中间体的酶促转化;一些新的生物材料已被用作药物的辅料等。生物技术的迅猛发展带来了越来越多的药物新品种和药物生产的新方法,尤其在新药研发中发挥出不可忽视的作用。 丰富药物筛选途径 传统的新药筛选途径主要是寻找先导化合物—研究构效关系—设计新化合物。在这个过程中,生物学研究中蛋白质高级结构研究的成果可以为靶分子提供三维立体结构,为研究构效关系和设计新化合物提供基础。生物学研究中的动态结合、生物大分子与其他分子作用时的构象变化以及一整套的研究方法,可以为药物与靶分子的相互作用提供理论和方法。此外,自然界中生物的多样性也为新化合物提供了丰富的来源。 建立药物筛选新模型 建立药物筛选新模型是新药研究的关键。近20年来,许多药物作用的受体已被分离、纯化,一些基因的功能及相关调控物质被相继阐明,这就使得药物筛选模型从传统的整体动物、器官和组织水平发展到细胞和分子水平。当前,利用现代生物技术建立独特的筛选模型是发现创新药物先导化合物的关键和焦点。随着分子水平的药物筛选模型的出现,筛选方法和技术都发生了根本性的变化,出现了高通量筛选等新技术,在较短时间内即可完成数量庞大的化合物活性筛选,大大加速了新药发现的速率。此外,利用转基因等先进技术,可以建立基因缺乏或基因转入的动物或细胞系,将其作为药物研究的病理模型,也将进一步对新药研究起到促进作用。 创建药理、毒理研究新方法 许多药理研究与疾病的分子机制密切相关,而对于人体生理过程的深入了解也为人们进行药物的药理、毒理研究带来了新的理念。通过基因结构功能研究和蛋白质结构功能研究,科学地评价药物的疗效和毒性,研究药物的代谢和信号转导途径,可以为药理、毒理研究创建新的模型和新的方法。而且,利用生物技术开发的蛋白质类、核酸类药物不同于一般的化学合成药物,因此对药理、毒理、药代等研究也提出了新的要求,需要有新的药理、毒理研究方法与它相适应。 完善药物研制和药物治疗 以往几乎所有的药物都是以群体为基础来设计和研制的,给药剂量也基本上是以年龄和体重为依据来确定的。然而,每一个病人却是一个有着独特基因特征的个体。由于基因变异,许多药物经常会产生一些意想不到、甚至相反的作用。所以,了解某些人的基因组成被认为是研制更加安全、有效的个体化药物的关键。随着生物技术的进展,人类遗传密码将被解析,基因结构、功能研究将更深入,必然会找出一些与疾病有关的基因,这些基因可以成为药物研究的新靶点;或以这些基因为基础建立药物筛选的新模型。目前,国外多家生物技术公司正在直接或间接地从事这方面的研究和开发。不久的将来,将会有以基因和疾病相关的蛋白质、酶和RNA分子为基础,依据患者个体状况及基因密码,量身设计定做的针对某些特殊疾病产生更显著疗效的药物,既可加快疾病的痊愈速度,也能提高药物使用的安全性。 改进药物传输系统 随着药物扩展到肽、蛋白和DNA治疗领域,以往的药物传输方式已显得力不从心。肽、蛋白和DNA是大分子,容易在胃内发生变化,大部分没有进入正常的循环系统,所以,这些生物治疗方法在给药方式上需要创新。生物技术将使药物传输领域在采用聚合技术提高蛋白和肽等大分子的稳定性、增强药物对疾病的特殊治疗作用、提高药物摄取率、降低副作用等方面取得更大进展,并使药物更易服用。 我国药学工作者应清醒地认识和掌握科学技术发展的趋势和规律,有效地组织力量,抓住生物技术药物研发的重点,应用新技术、新方法、新理念指导新药设计,建立自己的药物筛选新模型,深化生物大分子药物的代谢与动力学研究,完善质量控制和评估体系,突出重点项目进行重点部署和重点资助,加快生物技术药物研发的国产化,力争在某些领域率先取得突破性的进展。

  • 莲子的功效与作用

    莲子的功效与作用:[color=#333333]莲子,为莲的干燥成熟种子,分布于我国南北各省。含有丰富的蛋白质、淀粉、磷脂、生物碱、类黄酮以及多种维生素等营养保健成分,具有补脾止泻,止带,益肾涩精,养心安神之功效。而且其铁的含量也非常丰富,具有治疗贫血、减轻疲劳的作用。[/color][b]1.清热降火[/b]莲子能够帮助清热降火。特别是对于心火旺盛的人来说,吃莲子能够有效降心火、清心安神,另外对于因为上火引起的口舌生疮也有很好的调理作用。[b]2.降血压[/b]莲子能够帮助降低血压。莲子中含有的大量的矿物元素,其中以钾元素最多,钾元素能够有效维持心脏功能,参与身体的新陈代谢,降低中老年人中风的危险,另外还能够帮助扩张外周血管,有效帮助降血压。[b]3.促进睡眠[/b][color=#333333][/color]莲子能够帮助促进睡眠。莲子中含有的维生素、微量元素丰富,具有很好的调节情感、放松情绪的作用,经常吃莲子能够有效镇静安神,促进入睡,提高睡眠质量。经常失眠、多梦的人可以在睡前吃莲子来帮助促进睡眠。[b]4.改善肌肉弹性[/b]莲子能够有利于保持肌肉的伸缩性。莲子中含有大量的蛋白质、脂肪以及微量元素、荷叶碱等物质能够有效促进凝血,维持肌肉的伸缩性。[b]5.补精[/b]莲子能够有利于精子的形成,提高男性的生育能力。莲子中含有的丰富的磷是细胞核蛋白的主要组成部分,能够帮助机体进行正常的代谢,有效维持酸碱平衡,促进精子[color=#333333]的形成。[/color]

  • 基于Biacore 8K的分子间相互作用测试原理及应用

    Biacore是基于表面等离子体共振(SPR)技术来实时跟踪生物分子间相互作用的技术,广泛应用于蛋白-蛋白、蛋白-小分子、蛋白-核酸、抗原-抗体等各种生物分子之间的相互作用测试,是被公认的检测分子互作的有效方法。本

  • 超声波对生物细胞的三种作用

    超声波是一种弹性机械波,同时,也是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化。超声波对生物细胞的作用效应主要有热效应、空化效应和机械效应三种。1、热效应:超声在介质中传播时,由于摩擦力对超声引起的分子震动的的阻碍,使得超声波的部分能量转化为了局部热能。正常组织的临界致死温度为45.7℃,而对温度较为敏感的肿瘤组织在此温度下常常发生细胞的代谢障碍,使肿瘤组织的DNA、RNA、蛋白质等重要生物大分子的合成受到严重影响。医学上利用超声波对生物细胞的热效应而发明的超声波治疗仪即是能对癌细胞产生杀伤作用却不影响正常组织生理代谢。2、空化效应:指在超声作用下,生物体内的水分子会形成微小空泡,伴随空泡生长和破裂产生的巨大机械剪切力和高温,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。3、机械效应:是超声引起的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。超声机械效应杀伤作用的强弱与超声的频率和强度密切相关。利用超声波对生物细胞的三大作用而发明的仪器设备广泛应用于基础研究领域的细胞破碎乳化、医疗系统的疾病诊断、超声治疗等各个行业领域。

  • 【转帖】液体分子在神经传递中的关键作用

    液体分子在神经传递中的关键作用生物通报道:神经递 质或介质,是存在于突触间传递神经冲动的一种化学物质,一般是由突触前囊的囊泡释放。一项新的研究表明一种液体分子在突触囊泡的行为控制中起到重要作用。这种分子就是PtdIns(4,5)P2,Pietro De Camilli的这篇文章发表在9月23日的Nature上。囊泡能够储存神经元释放的神经递质。最初,突触囊泡在神经元内部装载神经递质分子。然后,它们在突触上将货物卸载下来,即囊泡在突触上经历了胞外分泌的过程。完成这个过程后,它们被神经元吞入细胞内,即内吞作用。之前已经从无细胞系统、药理学和转染研究中获得了间接的证据证明PtdIns(4,5)P2在控制这个过程中起到一定的作用,但却苦于无足够份量的遗传学证据。这项新研究则提供了决定性的证据支持了这个假说,这种液体分子能够通过与胞外分泌机器的蛋白结合影响胞外分泌作用并且能够与包涵素转接器结合来影响内吞作用。 实验中,De Camilli和同事将小鼠的编码一种叫做PIP kinase type 1 gamma的酶的基因敲除,已经知道这种酶能够加工PtdIns(4,5)P2。研究发现缺乏这种酶的小鼠大脑中的PtdIns(4,5)P2水平极大地减少并且不能分泌神经递质。而缺失了这个基因的两个拷贝的小鼠则在出生后不久就会死亡。接着,他们检测了培养的新生小鼠的神经元(无PtdIns(4,5)P2)中的突触传递情况。结果发现这些小鼠的囊泡循环库较小并且能够进行融合的囊泡数量也较少。之后,他们又利用一种荧光追踪剂来跟踪研究这个过程以确定PtdIns(4,5)P2对融合后囊泡再利用的速率。 他们还用一种蛋白质转染培养的神经元,并以此研究内吞作用的详细过程。荧光追踪剂的使用使研究人员能够监视囊泡在胞外分泌和内吞过程中打开和关闭的情况。观测结果表明缺乏PtdIns(4,5)P2的神经元中内吞作用缓慢。电镜观察结果表明这种神经元的依赖内涵素的内吞作用被削弱。 这项研究能够让人们更好地了解与磷酸肌醇代谢有关的基因的分子机制,强调了膜脂质代谢在膜上的一些重要过程的调节作用。而脂质生物学领域的进展也将会为人类疾病的治疗提供新的靶标。

  • 微生物肥料的作用效果及广阔前景

    关键词:微生物肥料;增产效果;绿色食品 摘要:为了农业的可持续发展,提高人民的生活品质,满足人们的需要,新方式,新研究成果应用到了农业生产中,微生物肥料从中起到的重要作用受到了人们的广泛肯定。本文通过介绍微生物肥料的个别种类与生产作用效果的分析,讨论了微生物肥料的发展前景。微生物肥料是指含有活性微生物的特定制品。微生物肥料的主要优点是能改良土壤,不污染环境,无毒副作用,是生产“绿色食品”的理想肥料。将微生物肥料应用在种子和土壤上,可增进土壤肥力,协助植物吸收营养,增强植物抗病及抗旱能力,节约能源,降低生产成本,减少环境污染。 一、 微生物肥料的分类与应用 按微生物肥料制品中特定的微生物种类分为细菌肥料(根瘤菌肥料,固氮菌肥料),放线菌肥料(如抗生菌类),真菌类肥料(如菌根真菌)等;按其作用机理分为根瘤菌肥料,固氮菌肥料,磷细菌肥料,硅酸盐细菌肥料;按其制品内含有的微生物种类分为单纯微生物肥料,复混微生物肥料。 (一)根瘤菌肥料   根瘤菌肥料是用于豆科作物接种,使豆科作物结瘤、固氮的接种剂。复合根瘤菌肥料以根瘤菌为主,加入少量能促进结瘤、固氮作用的芽胞杆菌、假单胞细菌或其他有益的促生微生物的根瘤菌肥料,称为复合根瘤菌肥料。加入的促生微生物必须是对人畜及植物无害的菌种。   (二)固氮菌肥料   固氮菌肥料是以能够自由生活的固氮的微生物为菌种生产出来的固氮菌肥料。按菌种及特性分为自生固氮菌肥料,根际联合固氮菌肥料,复合固氮菌肥料。固氮菌肥料适用于各种作物,特别是禾本科作物和蔬菜中的叶菜类作物,可作基肥,追肥,和种肥。   (三)磷细菌肥料   磷细菌肥料是能把土壤中难溶性的磷转化为作物能利用的有效磷素营养,又能分泌激素刺激作物生长的活体微生物制品。   解磷菌的种类很多,按菌种及肥料的作用特性分为,有机磷细菌肥料,无机磷细菌肥料。有机磷细菌肥料是指在土壤中能分解有机态磷化物(卵磷脂,核酸,植素等)的有益微生物发酵制成的微生物肥料。无机磷细菌肥料是指能把土壤中惰性的不能被作物直接吸收利用的无机态磷化物,溶解转化为作物可以吸收利用的有效态磷化物。   (四)硅酸盐细菌肥料   硅酸盐细菌肥料是指在土壤中通过硅酸盐细菌的生命活动,增加植物营养元素的供应量,刺激作物的生长,抑制有害微生物的活动,对作物有一定的增产效果的微生物制品。 二、微生物肥料的肥效   微生物肥料和化肥,有机肥等混合施用,比传统施肥增产的报道占98%,其中增产幅度超过5%的报道占87.4%,超过10%的占56.6%。微生物肥料种类以固氮菌类,解磷细菌类,解钾细菌类和复合微生物肥料为主。菌根菌类,复合微生物肥料,PGPR类,固氮菌类,光合细菌类和解钾菌微生物肥料的平均增产率依次为22.3%,21.2%,16.5%,14.7%,13.6%和12.2%。1989年以来非根瘤菌类微生物肥料的文献以应用效果试验的报道为主,其中增产的占绝大多数,约98%,所以微生物肥料的增产作用是应给予肯定。   (一)不同微生物肥料增产效果   据文献综合分析,各类微生物肥料的平均增产效果不同,范围在12.0%-22.3%,菌根菌类微生物肥料主要应用于林业生产,增产约22.3%;解钾菌肥料的增产效果最低,但在甘薯上用作基肥效果较好,增产率23.2%;复合微生物肥料的增产效果约为21.2%。   (二)微生物肥料在不同地区的应用与增产效果   目前,我国约20多个省(市,区)都有微生物肥料的应用,其中华中地区最多,报道的试验次数为44次;华北和西北次之,分别为43和34次,华南和东北较少,前者为9次,后者为8次。微生物肥料在我国应用于30多种作物上,其中,禾谷类作物应用最多,其次是油料和纤维类,应用较少的是烟草,糖,茶,药,牧草等,但不同作物因不同的生理特点,环境,接种物的种类和农业措施,应用效果不同,糖料作物的增产效果最好,其次为茶叶,蔬果增产25.4%,牧草类增产26.1%纤维,薯类,油料的增产效果分别为17.1%,17.8%和15.0%,微生物肥料对禾本科作物的增幅最低。   (三)近年微生物肥料田间试验应用效果   2003-2006年,在小麦,玉米,番茄,马铃薯四种作物上进行微生物肥料应用的田间试验,结果表明:可使小麦,玉米化学肥料基肥用量降低25%-30%,并使小麦,玉米的产量比常规施肥量高4.7%和18.1%;使番茄,马铃薯化学肥料基肥用量降低30%-45%,并使番茄,马铃薯的产量比常规施肥量提高11.5%和36.2%。 三、微生物肥料的良好作用   (一)提高土壤肥力,减少化肥用量,改善作物品质   这是微生物肥料的主要功效,各种自生、联合或共生的固氮微生物肥料,可以增加土壤中的氮素来源。多种分解磷、钾矿物的微生物,如一些芽孢杆菌、假单胞菌的应用,可以将土壤中难溶的磷、钾溶解出来,转变为作物能吸收利用的磷、钾离子,使作物生活环境中的营养充足。由于微生物肥料可以提高土壤的养分含量,因此在相同地力水平的土壤上可以减少化肥的用量,并且获得等效的增产效果。使用微生物肥料可以提高农产品品质,如蛋白质、糖、维生素等含量的提高。(二)分泌生长激素   许多微生物种类在生长繁殖过程中产生对植物有益的代谢产物,如生长素,吲哚乙酸,赤霉素,多种维生素,氨基酸等等,能够刺激和调节作物生长,使植物生长健壮,营养良好,进而达到增产的效果。   (三)增强植物抗病虫和抗旱能力   多种微生物可以诱导植物的过氧化物酶,多酚氧化酶,苯甲氨酸解氨酶,脂氧合酶,几丁质酶等参与植物防御放应,利于防病抗病,有的微生物种类还能产生抗菌素类物质,有的则是形成了优势种群,降低了作物病虫害的发生。菌根真菌由于在植物根部的大量生长,其菌丝除可为植物提供营养元素外,还可增加水分吸收,有利于提高植物的抗旱能力。 四、微生物肥料的应用前景   (一)适用品种多,市场需量大   适宜施用微生物肥料的作物种类繁多,各种豆科作物、粮食作物、经济作物、蔬菜瓜果等都可以应用微生物肥料提高产量、改善品质。据不完全统计,我国目前微生物肥料年产量在10万吨到40万吨,与同期化肥(约12000万吨)相比,微不足道,微生物肥料市场容量是相当大的。   (二)生产成本低,应用效果好   1997年4月,在意大利召开的“生物固氮、全球挑战和未来需求”会议指出,生物固氮比工业氮肥更能满足植物对氮肥的需要。因为生物固氮可以持续不断供应氮素营养,并且能够减少环境污染和温室效应,投资少,成本低。化肥生产成本的提高,价格上涨幅度过快,已令广大农民难以接受。   (三)生产无公害绿色食品,减少环境污染的需要   无公害的绿色食品对当今的农业提出了更高的要求。随着绿色农业(生态农业)的发展,生产安全、无公害的绿色食品已成为一个发展趋势;并且由于大量使用化肥,土壤物理性质恶化,土壤质量下降,地下水污染等问题日益突出;消纳城市、农村废弃物的压力愈来愈大,因此,无污染的微生物肥料的综合利用和开发显示出它的应用优势和良好发展前景。   (四)微生物肥料本身的发展为其扩大应用奠定了基础   通过筛选优良菌种、改进生产工艺和生产设备,为生产优质的微生物肥料创造了条件,而且基因工程新菌株的出现使微生物肥料的广泛应用成为可能。近年来兴起的植物根际促生细菌(PGPR)的研究和开发,更为微生物肥料的应用开辟了广阔前景。 参考文献: 葛诚主编。微生物肥料生产应用基础。北京:中国农业科技出版社,2000 李明。微生物肥料研究。生物学通报2001,36(7):5-7 郭春景。微生物肥料及其微生态效应研究东北林业大学,2004 沈德龙,曹凤明,李力。我国生物有机肥的发展现状及展望中国土壤与肥料,2007,(06) 张敏,王兆玉。微生物肥料的发展前景。北方艺园,2004,(05)

  • 【分享】新一代生物制品副作用严重 安全性遭质疑

    新一代生物制品副作用严重 安全性遭质疑一项发表在《美国医疗协会杂志》上的研究表明,近四分之一被广泛使用的新一代生物制药产品在用于治疗几种常见疾病时发生了严重的副作用,从而使得它们在上市销售之后不久就被发出了安全警告信号。本以为比化学药物安全 研究报告中涉及的药物包括关节炎治疗药物Humira和Remicade,抗癌药物Rituxan和Erbitux,以及心力衰竭治疗药物Natrecor。所有这些药物都被打上了“安全”的标记。这种状况也许会让一些医生感到吃惊,因为他们本以为,这些新的治疗药物也许要比传统的化学药物更加安全。 由荷兰研究人员所作的这项新研究是第一次对这些新型药物开展的全面审查。研究人员发现,大多数警告发生在这些生物制药产品于1995~2007年之间获得美国和欧洲政府批准之后的5年时间里。许多传统药物在上市销售之后,也会被发出安全警告。但专家们表示,目前还没有针对这些传统的老药展开类似的研究,从而可以对这两类药物之间的安全问题进行比较。 新型生物制药产品推动了生物科技的革命,这些药物之所以被称为生物制品,是因为它们由活性物质制成,它们通常对人体的抗病免疫系统产生作用。许多生物制药产品通过抑制该系统,从而缓解严重的症状。西北大学药物安全专家Charles Bennett表示,正是这种作用机理会导致副作用的发生,而这种副作用在传统的化学药物上往往是看不到的。这些副作用包括脑部疾病、真菌感染以及癌症。 许多生物制药产品通过遗传工程开发出来,由于它们通常与自然存在的蛋白质相似,许多医生认为它们要比传统的化学药物更加安全。但是Bennett表示,研究表明事实并非如此。生物制药产品扮演着重要的角色,它们确实是下一代药物。但研究结果明白无误地显示,医生和病人应该意识到,生物制药产品有许多潜在的副作用,这些副作用也许并没有在药品标签上列明。 在研究人员审查的药物中,还有基因泰克公司生产的牛皮癣治疗药物Raptiva。美国FDA最近刚刚发出警告,该药可能会导致危及生命的脑部疾病和感染。此外,审查药物还包括吸入型胰岛素产品Exubera,该药可能与肺癌的引发因素联系在一起。Exubera于2006年获得FDA的批准,但是辉瑞公司去年停止了该药的销售。不要大意 研究人员总共审查了1995年1月~2007年6月美国和欧盟批准的136种和105种生物制药产品。截至今年6月,其中有41种药物(或占比近24%)被发出了安全警告。 研究报告的主要作者、乌特赫特大学的Thijs Giezen表示,研究结果令人担忧,它强调了对上市销售后的药物实施更加严格的审查的必要性。但他又表示,研究结果还是令人欣慰的,因为大多数问题是在药物上市销售之后相对较短的时间里出现的,从而最大限度地降低了药物产生严重危害的可能性。 有些人认为,药物存在的安全问题应该在它们上市销售之前就被发现,对此,Bennett表示,这种想法是不切实际的。原因在于,药物的审批是基于规模相对较小的研究所得出的结论,而参与这些试验的病人通常要比一般人群中的病人更加健康。药物的副作用往往需要通过真实世界的体验才能显现出来。 与传统药物相比,许多生物制药产品有着自己的优势,但是“药物安全处方中心”的Thomas Moore表示,这项研究表明,它们存在的风险也需要得到认真对待。比如,包括布洛芬在内的非类固醇关节炎药物可以通过减少炎症反应来降低疼痛,但是它们会引起胃出血。 用来治疗类风湿性关节炎的生物制药产品Remicade、Enbrel和Humira旨在通过使人体的免疫系统免受攻击来缓解关节的疼痛。但是,这些药物的价格更加昂贵,并且导致潜在的致命性感染的风险也较大。此外,FDA正在对这些药物可能引发致癌的危险性展开调查研究。 Moore表示:“我想对病人说的是,这些生物制药产品常常可以被用来治疗那些极难治疗的疾病,但是,它们也许存在着很大的风险。你需要额外小心,尽可能多地了解那些风险的本质。”

  • 在鲜切苹果中香兰素对致病性微生物和腐败微生物以及需氧微生物生长的抑制作用

    摘要:香兰素的抑菌效果对四种致病性或指示微生物的抑制作用,包括大肠杆菌、绿脓杆菌、肠杆菌以及沙门氏菌血清无性系种群;血清型和四种有害微生物(包括白色念珠菌、乳酸菌、干酪乳杆菌和酿酒酵母)等可能与新鲜苹果生产过程中的污染有关,这一点已经被检验。香兰素的最小抑菌浓度(MIC)取决于微生物的种类,这个范围往往介于6到18mM之间。当加入到一个抗氧化特性浸渍溶液中(钙抗坏血酸盐),12mM香兰素对各地新鲜的“帝国”和“Crispin”两种苹果中总需氧量微生物的抑制提高了37%和66%。苹果的贮藏过程为4 °C 条件下19天。12mM香兰素并没有影响到自然密封过程中对酶促褐变和软化的控制。这些研究结果为香兰素在冷藏采摘的水果和蔬菜方面作为一个潜在的抗微生物剂提供了新的见解。关键词:香兰素; 天然抗菌; 鲜切苹果; 保质期;病原微生物损坏情况。

  • 【转帖】《生物化学杂志》:三种蛋白在神经细胞修复中起重要作用

    俄亥俄州哥伦布市一项新的研究表明,成熟脑细胞表面的三种特定蛋白量的增加可促使细胞产生新的生长延伸。该研究探讨了小鼠脑神经细胞上的三个相关的受体蛋白:GPR3,GPR6和GPR12。当研究人员增加这三种蛋白的量后,细胞生长延伸比蛋白水平正常时的神经细胞的生长大三倍,延伸速度比对照细胞快4-8倍。俄亥俄州立大学医学中心的项目主持人Yoshinaga Saeki说,“我们的研究结果显示,这三种蛋白可能是用于治疗中风、脑和脊髓损伤及神经退行性疾病的重要靶点。”该研究刊登在4月6日的《生物化学杂志》(Journal of Biological Chemistry)上。 这些蛋白量的增加与神经细胞cAMP内的一种重要的信号分子的水平的增加有关。这个分子在调控神经细胞生长、分化和生存,以及传输神经冲动的轴突再生中起着关键作用。随着哺乳动物神经细胞的成熟,其细胞内的cAMP水平下降,这可以部分解释为什么成熟神经细胞受损的轴突不能再生。神经外科副教授、俄亥俄州州立dardinger神经肿瘤及神经科学实验室主管Saeki声称,“我们的发现为cAMP在轴突生长中起着重要作用这一观点提供了更多证据,并显示出这些受体蛋白可能在调节神经细胞cAMP的产生中起主要作用。” 该研究的第一作者Shigeru Tanaka是Saeki所在实验室的一名博士后研究员。在本项研究中,他与同事从小鼠与大鼠脑组织神经母细胞瘤中取得神经细胞,使之在培养基中生长以了解更多关于这三种蛋白及其调控cAMP生长中的作用。他们向这些细胞中注入三种基因以增加这三种蛋白的含量水平,然后用一种被称为核糖核酸干扰的实验室技术关闭这三种蛋白的产生。上述三个蛋白分子中GPR3在神经细胞中最为丰富,而GPR12刺激神经细胞延伸的作用最强。研究表明,阻断GPR3的产生会大大减慢神经细胞的生长速度,研究者们通过修复GPR3或GPR12的产生扭转了这种效应。三种蛋白质的含量水平高也与较高水平的cAMP有关,同时GPR6和GPR12能增加两倍到三倍的水平。 Saeki说,“总的来说,我们的研究结果显示,这三种蛋白能加快神经细胞的生长即使在抑制分子的存在下也是如此,我们迫切希望能找出可以在临床前中风或脊髓损伤动物模型身上重现此结果的方法。”来源:生物谷

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • 紫外线的生物效应

    290nm)。其生物学效应以B段较强,A段仅相当于B段的1‰以下。由于紫外线的照射,人的皮肤从儿童期就开始老化,20岁以后容颜开始出现老化征兆,称为“光老化”。在光老化中引起老年斑和肿瘤的是B段所致,皱纹的形成与A段和B段都有关系。紫外线生物学作用的分子机制1.诱导基因突变:夏季日晒30分钟后,可使皮肤产生红斑。B段使发红的皮肤上皮细胞中胸腺嘧啶转化为环丁烷型二聚体,这既是紫外线照射使皮肤光损伤的分子基础,也是皮肤癌的始动因子。这种变化既造成了DNA损伤,也往往使抑癌基因p53发生变异。在皮肤的基底细胞癌或有棘细胞癌中发现有50%--90%以上的肿瘤是p53突变引起的,这是因为癌症初期上皮细胞中二聚体的变异所致。2.产生活性氧:紫外线照射下表皮细胞可产生O2-,H2O2,OH-,-OH等活性氧,这些活性氧能使DNA的8-羟基鸟甙等受到损害,从而引起遗传因子变异。3.抑制免疫反应:给小白鼠连续20-30周每5次进行紫外线照射,即可发生皮肤恶性肿瘤,把这种肿瘤在同系小白鼠上移植是不成功的,然而在移植前一天经B段紫外线照射后不但移植成功且生长增殖。这说明紫外线照射可诱导免疫抑制。其机理是B 段紫外线使表皮郎格罕氏细胞受到损害,免疫递呈作用减弱,T细胞减少,抑制肿瘤排斥反应,促进皮肤癌发生。健康人无论老幼大约40%可以受到免疫抑制,在皮肤癌患者中可见到高达95%的出现免疫抑制。人体对紫外线的防御机能1.黑色素和角质层:黑色素能吸收多种光线,尤其是短波辐射,从而防止紫外线深入穿透组织,黑人的皮肤癌发病率极低便是例证。2.DNA的修复功能:正常人体对损伤的DNA有一定修复功能。当紫外线照射剂量不是很大,造成的DNA损伤不超过机体修复范围时,机体能对损伤的DNA进行修复,这对预防皮肤癌起很大的作用。该功能缺乏者如色素性干皮症患者发生皮肤癌的机会是正常人的2000倍。3.活性氧的消除机制:适量紫外线照射形成的活性氧可被体内的维生素C,维生素E,还原型谷胱甘肽(GSH)等非酶类物质或超氧化物歧化酶(SOD)等氧化酶类消除,但过量的紫外线照射形成过量活性氧超过了身体的清除率,则必然会造成DNA的损伤。4.免疫系统:NK细胞既是细胞免疫监视机构,又是非特异性的对癌细胞起攻击作用的细胞,能清除少量癌细胞。

  • 酸藤子酚有抑癌作用

    据新华社柏林电 (记者郭洋)德国研究人员最新研究发现,一种名为“酸藤子酚”的植物成分可用于抑制肿瘤血管新生,从而减缓肿瘤生长。 德国科隆大学研究人员近日报告说,通过阻断相关生长因子抑制血管新生,从而遏制肿瘤生长已成为当下的通用做法。 酸藤子酚是一种名为酸藤子的植物含有的化学成分之一。研究人员发现,可将酸藤子酚作为“毒药”,给癌细胞线粒体“下毒”,线粒体被称为细胞的“动力工厂”。癌细胞线粒体“中毒”后肿瘤血管新生也受到抑制,而正常血管和组织并未受到太大影响。同时,研究人员在伤口治疗实验中也发现,使用酸藤子酚后,血管形成受阻,伤口愈合放缓。研究人员认为这进一步证明了酸藤子酚的作用机理。 研究人员说,酸藤子酚可抑制肿瘤中血管的新生,且副作用小,利用这种新方法或可有效减缓肿瘤生长。来源:中国科技网-科技日报 2014年04月01日

  • 微生物室用椅子

    请问各位:有没有好的微生物室用的椅子推荐,最好有图片。我们为微生物室全部地面都是环氧树脂的,要求椅子在上面不要产生划痕。

  • 磺化壳聚糖对细菌及其生物被膜抑制作用的研究

    【序号】:3【作者】: 刘玉红【题名】:磺化壳聚糖对细菌及其生物被膜抑制作用的研究【期刊】:浙江工商大学【年、卷、期、起止页码】:2019【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkWfZcByc-RON98J6vxPv10cxm4k5PbzNvdytKFlEVDMMEanklHvQrvc06GgLEtOUR&uniplatform=NZKPT

  • 上海应物所发现金纳米粒子对果蝇代谢信号通路的调控作用

    金纳米粒子很可能是最早被用作药物的纳米材料,其历史甚至可追溯到几千年前的古埃及——炼金术士们将金熔化后制成金水供法老饮用,其中就含有金纳米粒子。直到中世纪的欧洲,贵族中也流行着类似的方法。现代的纳米研究表明,金纳米粒子细胞毒性很低,生物安全性良好,因而被广泛应用于纳米药物研究。科研人员猜想,进入动物体内的金纳米粒子是否可能产生其它独特的生物效应呢? 近期,中国科学院上海应用物理研究所物理生物学实验室樊春海、黄庆研究员和中国科学院系统生物学重点实验室宋海云研究员开展合作研究,课题组的科研人员王彬、陈楠和魏应亮以果蝇为动物模型的工作表明,经食物摄取的金纳米粒子能够显著增强胰岛素和生长因子下游的PI3K/Akt信号通路,促进细胞对食物中营养成分的吸收和利用。相关论文已于近日发表于自然出版集团的综合性杂志《科学报道》(Scientific Reports 2012, 2:563)。 PI3K/Akt信号通路是多细胞生物中高度保守的合成代谢通路。果蝇幼虫通过PI3K/Akt信号通路将摄入的营养成分以甘油三酯的形式储存,以满足成蛹期的能量需求。果蝇幼虫摄取掺入金纳米粒子的食物后,PI3K/Akt信号通路活性上升,并通过SREBP通路增加甘油三酯的合成。在能量限制(calorie restriction)导致PI3K活性下降的条件下,金纳米粒子的这一效应表现更加显著。如果在喂食金纳米粒子的同时抑制Akt信号通路,能够消除其对脂合成代谢的作用,说明金纳米粒子的代谢效应是通过促进PI3K/Akt信号通路实现的。进一步研究表明,金纳米粒子并没有改变果蝇的进食量,其促进PI3K/Akt信号通路的机制,一部分在于促进细胞对营养成分的摄取,一部分在于促进PI3K定位于细胞膜。 该研究揭示了金纳米粒子一种出人意料的生物学效应,预示了其在糖尿病等代谢紊乱研究中的应用前景。 该研究工作得到科技部、国家自然基金委和中国科学院的支持。http://www.cas.cn/ky/kyjz/201208/W020120823596824413298.jpg金纳米粒子对果蝇代谢信号通路的调控作用

  • 紫外分光光度计的作用是什么?紫外分光光度计的作用

    紫外分光光度计是一种常用的光度计产品类型,可用于药品的鉴别、纯度检查及含量测定,被广泛用于生物、化工、制药、科研等领域中。紫外分光光度计的作用是什么呢?下面小编就来具体介绍一下,希望可以帮助用户更好的应用产品。紫外分光光度计的作用1 检定物质根据吸收光谱图上的一些特征吸收,特别是最大吸收波长λmax和摩尔吸收系数ε是检定物质的常用物理参数。这在药物分析上就有着很广泛的应用。在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。2 与标准物及标准图谱对照将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。若两者是同一物质,则两者的光谱图应完全一致。如果没有标样,也可以和现成的标 准谱图对照进行比较。这种方法要求仪器准确,精密度高,且测定条件要相同。3 比较最大吸收波长吸收系数的一致性4 纯度检验5 推测化合物的分子结构6 氢键强度的测定实验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不 同溶剂中氢键强度,以确定选择哪一种溶剂 。7 络合物组成及稳定常数的测定8 反应动力学研究9 在有机分析中的应用有机分析是一门研究有机化合物的分离、鉴别及组成结构测定的科学,它是在有机化学和分析化学的基础上发展起来的综合性学科。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制