当前位置: 仪器信息网 > 行业主题 > >

时间原理分析

仪器信息网时间原理分析专题为您提供2024年最新时间原理分析价格报价、厂家品牌的相关信息, 包括时间原理分析参数、型号等,不管是国产,还是进口品牌的时间原理分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合时间原理分析相关的耗材配件、试剂标物,还有时间原理分析相关的最新资讯、资料,以及时间原理分析相关的解决方案。

时间原理分析相关的资讯

  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV  分析原理:吸收紫外光能量,引起分子中电子能级的跃迁  谱图的表示方法:相对吸收光能量随吸收光波长的变化  提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息  荧光光谱法FS  分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光  谱图的表示方法:发射的荧光能量随光波长的变化  提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息  红外吸收光谱法IR  分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁  谱图的表示方法:相对透射光能量随透射光频率变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  拉曼光谱法Ram  分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射  谱图的表示方法:散射光能量随拉曼位移的变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  核磁共振波谱法NMR  分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁  谱图的表示方法:吸收光能量随化学位移的变化  提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息  电子顺磁共振波谱法ESR  分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁  谱图的表示方法:吸收光能量或微分能量随磁场强度变化  提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息  质谱分析法MS  分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离  谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化  提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息  气相色谱法GC  分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关  反气相色谱法IGC  分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力  谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线  提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数  裂解气相色谱法PGC  分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型  凝胶色谱法GPC  分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:高聚物的平均分子量及其分布  热重法TG  分析原理:在控温环境中,样品重量随温度或时间变化  谱图的表示方法:样品的重量分数随温度或时间的变化曲线  提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区  热差分析DTA  分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化  谱图的表示方法:温差随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  TG-DTA图  示差扫描量热分析DSC  分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化  谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  静态热―力分析TMA  分析原理:样品在恒力作用下产生的形变随温度或时间变化  谱图的表示方法:样品形变值随温度或时间变化曲线  提供的信息:热转变温度和力学状态  动态热―力分析DMA  分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化  谱图的表示方法:模量或tg&delta 随温度变化曲线  提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM  分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象  谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象  提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等  扫描电子显微术SEM  分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象  谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等  提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等  原子吸收AAS  原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。  (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP  原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。  X-raydiffraction,x射线衍射即XRD  X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。  满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。  高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)  CZE的基本原理  HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。  扫描隧道显微镜(STM)  扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。  原子力显微镜(AtomicForceMicroscopy,简称AFM)  原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。  俄歇电子能谱学(Augerelectronspectroscopy),简称AES  俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 热重分析仪原理简介
    p  热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热重分析仪基本结构/strong/span/pp  热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。/ppstrong热天平/strong/pp  热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title="电压式微量热天平.png"//pp style="text-align: center "strong电压式微量热天平/strong/pp  热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。/pp  TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。/pp  天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。/pp  天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。/pp  物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。/ppstrong加热炉/strong/pp  炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title="炉体结构图.png"//pp style="text-align: center "strong炉体结构图/strong/pp  1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝/ppstrong程序控温系统/strong/pp  加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。/pp  当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。/ppstrong气氛控制系统/strong/pp  气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热重分析仪测量曲线/strong/span/pp  热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。/pp  当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。/pp  引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。/pp  同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。/p
  • 纳米粒度分析仪的原理及应用
    梓梦科技纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 动态热机械分析仪原理简介
    p  动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。br//pp  DMA仪器的结构及重要部件如图所示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title="DMA结构.jpg" width="400" height="238" border="0" hspace="0" vspace="0" style="width: 400px height: 238px "//pp style="text-align: center "strongDMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构)/strong/pp style="text-align: center "1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器/pp  DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。/ppstrong驱动马达/strong—以设定的频率、力或位移驱动驱动轴/ppstrong试样夹具/strong—DMA依据所选用夹具的不同,可采用如图所示的不同测量模式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title="DMA测量模式.jpg" width="400" height="152" border="0" hspace="0" vspace="0" style="width: 400px height: 152px "//pp style="text-align: center "strongDMA测量模式/strong/pp style="text-align: center "1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩/ppstrong炉体/strong—控制试样服从设定的温度程序/ppstrong位移传感器/strong—测量正弦变化的位移的振幅和相位/ppstrong力传感器/strong—测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位/ppstrong刚度、应力、应变、模量、几何因子的概念:/strong/pp  力与位移之比称为刚度。刚度与试样的几何形状有关。/pp  归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度Lsub0/sub的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。/pp  在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。/pp  在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title="DMA-1.jpg"//pp可得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title="DMA-2.jpg"//ppFsubA/sub/LsubA/sub为刚度。所以测定弹性模量的最终方程为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title="DMA-3.jpg"//pp模量由刚度乘以几何因子得到。/pp  各种动态热机械测量模式及几何因子的计算公式见下表:/pp style="text-align: center "表1 DMA测量模式及其试样几何因子的计算公式/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title="DMA测量模式及其试样几何因子的计算公式.jpg" width="400" height="276" border="0" hspace="0" vspace="0" style="width: 400px height: 276px "//pp  注:表中b为厚度,w为宽度,l为长度。/ppstrongDMA测试的基本原理:/strong/pp  试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。/pp  测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。/pp  DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。/ppstrong复合模量、储能模量、损耗模量和损耗角的关系:/strong/pp  DMA分析的结果为试样的复合模量Msup*/sup。复合模量由同相分量M' (或以G' 表示,称为储能模量)和异相(相位差π/2)分量M' ' (或以G' ' 表示,称为损耗模量)组成。损耗模量与储能模量之比M' ' /M' =tanδ,称为损耗因子(或阻尼因子)。/pp  高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。/pp  复合模量Msup*/sup、储能模量M' 、损耗模量M' ' 和损耗角δ之间的关系可用下图三角形表示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title="复合模量三角形关系.jpg" width="400" height="191" border="0" hspace="0" vspace="0" style="width: 400px height: 191px "//pp  储能模量M' 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。/pp  模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。/pp 通常可区分3种不同类型的试样行为:/pp纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。/pp纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。/pp粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。/pp DMA分析的各个物理量列于下表:/pp style="text-align: center "表2 DMA物理量汇总/ptable border="1" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应力/span/p/tdtd width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "σ(t)=σsubA/subsinωt=FsubA/sub/Asinωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应变/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "ε(t)=εsubA/subsin(ωt+δ)=LsubA/sub/Lsub0/subsin(ωt+δ)/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量值/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "|M*|=σsubA/sub/εsubA/sub/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"储能模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’(ω)=σsubA/sub/εsubA/subcosδ/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’’(ω)=σsubA/sub/εsubA/subsinδ/span/p/td/trtrtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗因子/span/p/tdtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "tanδ=M’’(ω)/M’(ω)/span/p/td/tr/tbody/tablepstrong温度-频率等效原理/strong/pp  如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。/pp  运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。/ppstrong典型的DMA测量曲线:/strong/pp  DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。/pp  动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。/pp  等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。/p
  • 简介差热分析基本原理
    p style="text-align: center "strong原创: 王昉【南师大】 江苏热分析/strong/pp style="text-align: center "img title="简介差热分析基本原理.jpg" alt="简介差热分析基本原理.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg"//pp style="text-align: center "strong简介差热分析基本原理/strong/ppspan style="color: rgb(255, 0, 0) "strong· 热分析/strong/span/pp  热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系:/pp style="text-align: center "ΔG=ΔH-TΔS/pp  其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变/pp  由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。/pp  当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。/ppspan style="color: rgb(255, 0, 0) "strong· 差热分析/strong/span/pp  早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。/pp  实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Alsub2/subOsub3/sub,或者空坩埚。/pp style="text-align: center "img title="图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt="图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src="https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg"//pp style="text-align: center "strong图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶)/strong/pp style="text-align: center "img title="图2: 差热曲线.jpg" alt="图2: 差热曲线.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg"//pp style="text-align: center "strong图2: 差热曲线/strong/pp  在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。/pp /ppa href="https://www.instrument.com.cn/zt/TAT" target="_blank"更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》/a/p
  • FIB常见应用明细及原理分析
    系统及原理双束聚焦离子束系统可以简单理解为单束聚焦离子束系统与普通SEM的耦合。单束聚焦离子束系统由离子源、离子光学柱、束描画系统、信号采集系统和样品台5部分构成。离子束镜筒的顶端是离子源,在离子源上加较强的电场来抽取出带正电荷的离子,这些离子通过静电透镜及偏转装置的聚焦和偏转来实现对样品的可控扫描。样品加工是通过将加速的离子轰击样品使其表面原子发生溅射来实现,同时产生的二次电子和二次离子被相应的探测器收集并用于成像。常见的双束设备是电子束垂直安装,离子束与电子束成一定夹角安装,如图所示。通常称电子束和离子束焦平面的交点为共心高度位置。在使用过程中样品处于共心高度的位置即可同时实现电子束成像和离子束加工,并可以通过样品台的倾转使样品表面与电子束或离子束垂直。典型的离子束显微镜包括液态金属离子源及离子引出极、预聚焦极、聚焦极所用的高压电源、电对中、消像散电子透镜、扫描线圈、二次粒子检测器、可移动的样品基座、真空系统、抗振动和磁场的装置、电路控制板和电脑等硬件设备,如图所示:外加电场于液态金属离子源,可使液态镓形成细小尖端,再加上负电场牵引尖端的镓,而导出镓离子束。在一般工作电压下,尖端电流密度约为10-4A/cm2,以电透镜聚焦,经过可变孔径光阑,决定离子束的大小,再经过二次聚焦以很小的束斑轰击样品表面,利用物理碰撞来达到切割的目的,离子束到达样品表面的束斑直径可达到7纳米。设备部分应用1 TEM制样2 截面分析3 芯片修补与线路修改4 微纳结构制备5 三维重构分析6 原子探针样品制备7 离子注入8 光刻掩膜版修复常用的TEM制样1、半导体薄膜材料此类样品多为在平整的衬底上生长的薄膜材料,多数为多层膜(每层为不同材料),极少数为单层材料。多数的厚度范围是几纳米-几百纳米。制备样品是选用的位置较多,无固定局限。2、半导体器件材料此类样品多为在平整的衬底上生长的有各种形状材料,表面有图形,制样范围有局限。3、金属材料金属材料,多为表面平整样品,也有断口等不规则样品,减薄的区域多为大面积。4、电池材料电池材料多为粉末,每个大颗粒会有许多小颗粒组成,形状多为球形,由于电池材料元素的原子序数较小,pt原子进入在TEM下会较为明显,建议保护层采用C保护。5、二维材料此类样品为单层或多层结构,如石墨烯等,电子束产生的热效应会对其造成损伤,在制备样品前需要在表面进行蒸镀碳的处理,或者提前在表面镀上保护膜。6、地质、陶瓷材料此类样品导电性能差、有些会出现空洞,制备样品前需要进行喷金处理,材料较硬,制备时间长。7、原位芯片用原位芯片代替铜网,将提取出来的样品固定在芯片上,进行减薄。截面分析利用FIB的溅射刻蚀功能可以对样品进行定点切割,观察其横截面(cross-section)表征截面形貌尺寸,同时可以配备结合元素分析(EDS)系统等,对截面成分进行分析。一般用于芯片、LED等失效分析领域,一般IC芯片加工过程中出现问题,通过FIB可以快速定点的进行分析缺陷原因,改善工艺流程,FIB系统已经成为现代集成电路工艺线上不可缺少的设备。芯片修补与线路编辑 在IC设计中,需要对成型的集成电路的设计更改进行验证、优化和调试。当发现问题后,需要将这些缺陷部位进行修复。目前的集成电路制程不断缩小。线路层数也在不断增加。运用FIB的溅射功能,可将某一处的连线断开,或利用其沉积功能,可将某处原来不相连的部分连接起来,从而改变电路连线走向,可查找、诊断电路的错误,且可直接在芯片上修正这些错误,降低研发成本,加速研发进程,因为其省去了原形制备和掩模变更的时间和费用。微纳结构制备 FIB系统无需掩膜版,可以直接刻出或者在GIS系统下沉积出所需图形,利用FIB系统已经可以制备微纳米尺度的复杂的功能性结构,包括纳米量子电子器件,亚波长光学结构,表面等离激元器件,光子晶体结构等。通过合理的方法不仅可以实现二维平面图形结构,甚至可以实现复杂三维结构图形的制备。三维重构分析 使用FIB对材料进行三维重构的3D成像分析也是近年来增长速度飞快的领域。此方法多用于材料科学、地质学、生命科学等学科。三维重构分析目的主要是依靠软件控制FIB逐层切割和SEM成像交替进行,最后通过软件进行三维重构。FIB三维重构技术与EDS有效结合使得研究人员能够在三维空间对材料的结构形貌以及成分等信息进行表征;和EBSD结合可对多晶体材料进行空间状态下的结构、取向、晶粒形貌、大小、分布等信息进行表征原子探针样品制备原子探针( AP) 可以用来做三维成像( Atom Probe Tomography,APT) ,也可以定量分析样品在纳米尺度下的化学成分。要实现这一应用的一个重要条件就是要制备一个大高宽比、锐利的探针,针尖的尺寸要控制在100 nm 左右。对原子探针样品的制备要求与TEM 薄片样品很接近方法也类似。首先选取感兴趣的取样位置,在两边挖V 型槽,将底部切开后,再用纳米机械手将样品取出。转移到固定样品支座上,用Pt 焊接并从大块样品切断。连续从外到内切除外围部分形成尖锐的针尖。最后将样品用离子束低电压进行最终抛光,消除非晶层,和离子注入较多的区域。离子注入离子束注入改性研究也是FIB加工的一个基础性研究课题。例如采用高能离子束轰击单晶硅表面,当注入量充分的时候,离子轰击将在样品表层引入空位、非晶化等离子轰击损伤。在此过程中注入离子与材料内部有序排列的Si 原子发生碰撞并产生能量传递,使得原本呈有序排列的Si 原子无序化,在表面下形成一层非晶层。注入的离子在碰撞过程中失去能量,最终停留在距离表面一定深度的区域。光刻掩膜版修复在普通光学光刻中,掩膜版是图形的起源,但是经过长时间使用,掩膜版上的图形会出现损伤,造成光刻后的图形缺陷,掩膜版造价高,如果因为掩膜版上一个小的图形缺陷造成整个掩膜版的失效,重新制备掩膜版,成本高。利用FIB系统可以定点修复掩膜版的缺陷,方法简单,操作简单迅速。在透光区域的缺陷修复可以使用离子沉积,选择沉积C作为掩膜版的修复材料;在遮光区域的缺陷修复使用离子溅射,刻蚀掉遮光缺陷。不过使用FIB修复掩膜版最大的问题是会造成Ga离子污染,改变玻璃透光率造成残余缺陷,这点可以用RIE结合清洗的方法将有Ga离子注入的表层玻璃刻蚀去除,恢复玻璃透光率。
  • PCR的原理、分类、品牌市场分析
    p style="text-align: center "strongimg title="p.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/5577f8c8-ef1f-4941-92ee-b2474ab836e3.jpg"//strong/ppstrong  PCR概念/strong/pp  聚合酶链反应(基因扩增):基本原理 类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术。/ppstrong  PCR的应用领域/strong/pp  1、遗传病和某些疑难病的诊断/pp  2、病原体的检测。某些恶性疾病一般用微生物学、生化和免疫 学技术无法查出病原体时,可用PCR来检查。/pp  3、法医和刑侦鉴定。/pp  4、癌基因的检查。/pp  5、基因探针的制备。/pp  6、基因组测序、染色体巡视。/pp  7、cDNA库的构建。/pp  8、基因突变的分析和定位诱变。/pp  9、DNA重组。/pp  10、基因的分享和克隆。/ppstrong  标准的PCR过程分为三步/strong/pp  DNA变性/pp  (90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA/pp  退火/pp  (60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。/pp  延伸/pp  (70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′??′端的方向延伸,合成与模板互补的DNA链。/pp style="text-align: center "img title="PCR.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/36e74db3-e7e6-4a0a-a433-e0fb226f297f.jpg"//pp strong PCR仪的分类/strong/pp  根据DNA扩增的目的和检测的标准可以将PCR仪分为普通PCR仪,梯度PCR仪,原位PCR,实时荧光定量PCR仪等几类。/ppstrong  普通PCR仪/strong/pp  一般把一次PCR扩增只能运行一个特定退火温度的PCR仪,称之为普通PCR仪。如果要用它做不同的退火温度则需要多次运行。主要是用作简单的,对目的基因退火温度的扩增。/pp strong 梯度PCR仪/strong/pp  一次性PCR扩增可以设置一系列不同的退火温度条件(通常12种温度梯度)的称之为梯度PCR仪。因为被扩增的不同的DNA片段其最适合的退火温度不同,通过设置一系列的梯度退火温度进行扩增,从而一次性PCR扩增就可以筛选出表达量高的最适合退火温度进行有效的扩增。主要用于研究未知DNA退火温度的扩增,这样既节约时间,也节约经费。在不设置梯度的情况下亦可当做普通的PCR用。/ppstrong  原位PCR仪/strong/pp  是用于从细胞内靶DNA的定位分析的细胞内基因扩增仪。如病原基因在细胞的位置或目的基因在细胞内的作用位置等。可保持细胞或组织的完整性,使PCR反应体系渗透到组织和细胞中,在细胞的靶DNA所在的位置进行基因扩增。不但可以检测到靶DNA,还能标出靶序列在细胞内的位置。于分子和细胞水平上研究疾病的发病机理和临床过程及病理的转变有着重大的实用价值。/ppstrong  实时荧光定量PCR仪/strong/pp  在普通PCR仪基础上增加一个荧光信号采集系统和计算机分析处理系统,就成了荧光定量PCR。其PCR扩增原理和普通PCR扩增原理相同,只是在PCR扩增时加入的引物是利用同位素、荧光素等进行标记,使用引物和荧光探针同时与模板特异性结合扩增。扩增的结果通过荧光信号采集系统实时采集信号连接输送到计算机分析处理系统,得出量化的实时结果输出。/pp  荧光定量PCR仪有单通道,双通道和多通道之分。当只用一种荧光探针标记的时候,选用单通道 有多种荧光标记的时候使用多通道。单通道也可以检测多荧光的标记和目的基因表达产物,因为一次只能检测一种目的基因的扩增量,需多次扩增才能检测完不同的目的基因片段的量。/ppstrong  PCR的各个品牌/strong/ppstrong  国产品牌/strong/pp  上海领成、西安天隆、杭州郎基、珠海黑马、杭州博日、上海宏石、厦门安普利、杭州晶格、北京亚力恩、北京东胜、上海枫岭。/pp  目前国内市场主要被:上海领成,西安天隆,杭州郞基,珠海黑马,杭州博日五大品牌所占有。/pp  普通PCR仪价格在18000-20000元左右,梯度PCR仪价格在26000-28000元左右,实时荧光定量PCR仪价格在130000-150000元左右。/ppstrong  进口品牌/strong/pp  美国ABI、美国Labnet莱伯特、美国Bio-rad伯乐、英国Genetech、英国Techne、德国Eppendorf艾本德、新加坡Esco艺思高、日本TaKaRa、日本ASTEC、澳大利亚Corbett柯柏特、德国Jena耶拿、德国biometra、德国BOECO、英国CLEAVER科丽沃、瑞士ROCHE罗氏、英国Quanta、德国PEQLAB、荷兰Creacon、美国Cepheid、美国Thermo热电。/pp  目前进口品牌中美国ABI,美国labnet,美国Bio-rad,日本TaKaRa,英国Techne,德国Eppendorf六大品牌占有率比较高。/pp  根据近年来销量分析,其中美国ABI除了9700型普通PCR基因扩增仪和2720型基因扩增仪外,新推出的高精确性的Veriti梯度PCR仪,也是所有进口品牌梯度PCR仪中最受客户认可的一款,是近两年来销量较高一款PCR仪 /pp  其次是美国Bio-rad /pp  日本TaKaRa和美国Labnet梯度PCR仪,价格相对进口品牌中比较便宜,质量和性能也比较稳定,从而深广大客户的认可,他们的销售成交价在45000-50000左右,而其它同性能价格的仪器价格在,60000-80000元,所以近年来市场的占有率呈上升的趋势 /pp  德国Eppendorf和美国Bio-rad是以直销的模式销售,因其垄断直销方式,外面的经销商或者当地的经销商无法进去竞争,所以相同性能的产品价格相对其他品牌要高很多,成交价格一般在7-9万元左右,市场占有率相对有所下降 /pp  英国Techne在国内生产,价格相对进口品牌中要低很多,销量有所上升,市场占有率也上升,价格在35000-40000元左右。/pp /p
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • 中药农残分析之“QuEChERS”(中):原理应用
    QuEChERS的原理  3.1 QuEChERS方法原理  QuEChERS原理与高效液相色谱和固相萃取相似,都是利用吸附剂填料与样品基质中的杂质相互作用,吸附杂质从而达到除杂净化的目的。均质后的样品经乙腈(或酸化乙腈提取后,采用萃取盐盐析分层后,利用基质分散萃取机理,采用PSA或其它吸附剂与基质中绝大部分干扰物(有机酸、脂肪酸、碳水化合物等)结合,通过离心方式去除,从而达到净化的目的。  QuEChERS方法的步骤可以简单归纳为:  (1)样品粉碎   (2)单一溶剂乙腈提取分离   (3)加入MgSO4 等盐类除水   (4)加入乙二胺-N-丙基硅烷(PSA)等吸附剂除杂   (5)上清液进行GC-MS、LC-MS 检测(图6)。  注:对高色素含量的样品,可采用PSA/C18/石墨化炭黑净化管进行净化。  图6 QuEChERS方法的主要步骤  3.2 提取液的选择  食品中农药残留检测前处理常用的提取剂有丙酮、乙酸乙酯、乙腈等,QuEChERS 法最初的研究对象是针对水果、蔬菜等含水量较高的农产品,丙酮虽然可以从样品中很好地提取出残留农药,但是其水溶性过强,很难与基质中的水分分开,从而提高了分离难度且影响试验结果 乙酸乙酯只能部分和水互溶,较易分离,但其对于强极性农药无法从含水基质中萃取完全,因而也不是合适的选择。乙腈相对于乙酸乙酯和丙酮可以对水果、蔬菜样品中的农药有更强的选择性,不易提取出多余的杂质,且可以通过盐析较易与基质中的水分分离,所以该方法最终选择乙腈作为最合适的提取剂。实验数据表明,在回收率方面,对于非极性农药来说,乙腈与乙酸乙酯没有明显的区别,但是乙腈可以提供更稳定的结果,相对标准偏差(RSD)值更小 对于极性农药(拒嗪酮、甲胺磷、乙酰甲胺磷等)来说,乙腈的提取效率要高很多。  3.3 QuEChERS方法中常用的吸附净化剂  表1 QuEChERS方法中常用的吸附净化剂及其作用  目前报道的QuEChERS方法中使用的填料通常包括PSA(乙二胺基-N-丙基)、C18、无水MgSO4和GCB(石墨化炭黑)等,MgSO4常被用作含水分样品的基础除水剂,PSA通过胺基的弱离子交换作用和极性基质成分形成氢键,从而吸附和消除样品基质中的糖类、色素以及脂肪酸。GCB对杂质有强烈的吸附作用,但同时对非极性农药和具有平面结构的物质也有一定的吸附作用,二者结合能够对样品中不同类型的杂质起到好的吸附作用,所以吸附剂的选择和用量是净化步骤的重点(表1)。  C18是目前使用最多的一种吸附剂,对非极性化合物有较强吸附作用,常被用来去除极性溶液中的非极性化合物,对于中药基质来说,C18主要用于去除共萃物中的非极性组分,如油脂等。弗罗里硅土主要成分是硅酸镁,属于极性吸附剂,适用于从非极性的溶液中萃取极性化合物(如胺类、羟基类及含杂原子或杂环化合物),主要用于有机氯和拟除虫菊酯类农药的前处理净化。硅胶为非键合的活性硅土,是最强的极性吸附剂,将目标化合物溶在非极性溶剂中,通过增强四氢呋喃或乙酸乙酯来逐渐增加溶剂的极性,将目标物与干扰物分开。石墨化炭是将炭黑在惰性条件下加热到2700-3000度而制成,表面是六个碳原子构成的平面六角形,这种结构对于平面芳香环结构以及具有六元环结构的分子具有很强的选择性,石墨化炭属于疏水性填料,其结构特点是石墨化炭吸附剂既适用于萃取非极性至中等极性的化合物,也可用于对极性化合物的萃取。在中药材样品中的应用主要是除去叶类或全草类中药中的色素。对于复杂样品,仅采用一种填料的净化方式并不能达到理想净化效果,常需要含有不同吸附剂的组合净化。  3.4 针对不同极性农药QuEChERS方法吸附剂的选择[4]  酸性农药(如2,4-D、灭草松等)会和氨基型吸附剂(如NH2、PSA等)发生结合而导致回收率降低,因此,对于分析含有这类目标化合物时,最好的分析方法是跳过分散基质萃取步骤直接进LC-MS/MS分析,可采用尼卡巴嗪作为内标。  由于石墨化碳对于片状化合物的特殊选择性,使用石墨化碳黑时可能也导致片状农药(百菌清、克菌丹等)的回收率降低,可以考虑通过在萃取液中加入甲苯来提高该类农药的回收率(乙腈/甲苯比率一般为3:1)。另外部分样品如鳄梨、花生、橄榄油等含有较多的脂肪,由于脂肪在乙腈中的溶解度有限,所以会导致部分脂溶性好的农药(如六氯苯、DDT等)的回收降低,因此可选择两种方式进行处理:(1)将萃取液或净化后样品放入冰箱冷冻1h以上(或冷冻过夜) (2)反相吸附剂吸附去除:在萃取液中加入C18或C8吸附剂,吸附去除脂肪。  经典QuEChERS方法对酸或碱敏感的农药的萃取效率较低,当样品的基质环境在pH值在5-5.5,这类农药可以获得一个更稳定的结果。因此,可采用了乙酸钠和柠檬酸缓冲盐体系来保证样品基质环境的pH值5-5.5,这样既可以保证碱不稳定的农药(如克菌丹、灭菌丹和对甲抑菌灵等的回收,也可以保证酸不稳定的农药等的回收。而对于一些基本身基质质非常酸的样品(pH3),采用缓冲体系萃取盐时,可加入的NaOH溶液调节pH后进行处理。此外QuEChERS方法过程中无水硫酸镁与水放热可能导致离心管的温度升高,为避免农残降解损失,可提取完后加入盐析包剧烈振荡,或在样品粉碎过程冷冻降温后再处理,减少实验过程损失。  4.QuEChERS在国内食品/农产品/中药检测中的应用  GB 2763-2019于2020年2月正式实施,GB 23200.113-2018《食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》正式被录入,QuEChERS方法在国内首次实现了有国家标准可依。GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》将于2021年9月正式实施,也采用了QuEChERS前处理方法,与国标GB 23200.113-2018 GC-MS/MS检测标准互为补充,双剑合璧。GB 23200.113-2018检测基质包括蔬菜、食用菌、粮食、香辛料、植物油等9个大类的23种植物源性基质(图7),GB 23200.121-2021检测基质涉及食用菌、水果、蔬菜、糖料、粮食、油料作物、茶叶、坚果和香辛料、植物油类10大类农产品,品类广,品种全,基本全面覆盖植物源性食品(图8)。  GB 23200.113-2018和GB23200.121-2021方法特点:  (1)GC-MS/MS方法采用溶剂置换避免了乙腈对气相色谱柱和检测器的损伤,无需LVI上样   (2)结合了EN和AOAC的优势,蔬菜水果用EN方法结果更准确 谷物、茶叶等用AOAC方法净化效果更好   (3)使用空白基质做标准曲线,结果更准确   (4)使用陶瓷均质子,混匀效果更好   (5)对于颜色较深的蔬菜水果,建议增大GCB的含量。 图7 GB 23200.113-2018方法    图8 GB 23200.121-2021方法  这两个标准将QuEChERS方法的全面引入,一个样品使用同一个前处理方法即可同时用于GC-MS/MS和LC-MS/MS检测,大大简化了前处理过程,缩短前处理时间,提高了国标方法的适用性和检测效率。GC-MS/MS标准中包含有机磷、有机氯、菊酯、三唑类、酰胺类、三嗪类、苯氧羧酸类、氨基甲酸酯类等208种农药,LC-MS/MS标准中包含剧毒禁用有机磷及氨基甲酸酯类农药,又涉及到常用销量大农药品种如三唑类杀菌剂及苯甲酰脲类杀虫剂等375种农药,其中重合的农药有118种,两个标准共包含465种农药。因此,仅需两针进样即可完成GB 2763-2019《食品安全国家标准 食品中农药最大残留限量》中规定的大多数农药残留品种测定(图9)。    图9 GB 23200.113-2018和GB 23200.121-2021对比  由于中药材基质的复杂性,样品经提取后不仅将残留的农药提取出来,样品基质的相关成分如油脂、色素、糖分、蛋白质、有机酸等也会一同提取出来,这些共萃物会严重污染仪器的色谱系统,影响待测物的离子化效果,进而干扰检测结果。  与食品/农产品相比,中药材与天然药物的农药残留分析具有以下特征[2]:  (1)中药资源广泛,种类繁多,大部分样品还需经过复杂多样的炮制过程,给农药残留测定带来更多的不确定因素   (2)中药材与天然药物所含次生代谢产物较多,种类又复杂多样,有的次生代谢物的含量还会远高于农药残留的水平,这个中药材与天然药物的农药残留测定带来较大挑战   (3)中药材与天然药物的服用人群为身体患有疾病或体质较为虚弱的人,相较食品而言,中药材与天然药物对农药最大残留限量的要求会更严格   (4)长期以来,中药材多为小农户生产,缺乏统一科学的植物保护指导,造成中药材与天然药物施用农药较为混乱,施用种类无法有效统计,这就对中药材与天然药物中农药残留测定的种类提出了更高的要求。综上所述,中药农残分析对前处理技术提出了更高的要求。  表2 2020年版《中国药典》中药材农残前处理方式的对比  2020年6月,《中国药典》2020年版正式出版,33种禁用农药正式列入2020年版《中国药典》四部通则《0212药材和饮片检定通则》。2020版药典在四部通则《2341农药残留量测定法》中新增了“第五法 药材及饮片(植物类)中禁用农药多残留测定法”。考虑到中药材基质的复杂性, QuEChERS作为可供选择的三种前处理方法之一被正式列入,除此之外还有直接提取法和固相萃取净化法(表2)。  药典中QuEChERS方法其主要步骤如图10所示,特点主要为:  (1)因为兼顾GC-MS/MS和LC-MS/MS分析,没有对上机液中乙腈进行溶剂置换,会对GC-MS/MS色谱柱造成损害,影响使用寿命,最好能配合PVT-LVI进样系统使用   (2)使用了酸性乙腈提取,部分农药对酸敏感,pH=5的提取液条件下,几天内会发生分解,处理完后需尽快上机测定   (3)使用空白基质做标准曲线,结果更准确   (4)方法提取步骤中没有提及使用陶瓷均质子,因此前面样品均质时需均质充分   (5)使用了C18和硅胶填料,对样品中脂肪和糖类有较好去除效果。  图10 2020年版《中国药典》2341通则QuEChERS法
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 热分析仪核心部件原理简介
    p  常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。/pp  热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong电子天平/strong/span/pp  电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。/pp  电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title="电压式微量热天平.png"//pp style="text-align: center "strong电压式微量热天平/strong/pp  天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示:/pp style="text-align: center "F=KBLI/pp  其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。/pp  无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热电偶传感器/strong/span/pp  热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。/pp  热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。/pp  热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。/pp  热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong位移传感器/strong/span/pp  位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。/pp  LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/p
  • 今日抽奖:《集成电路材料基因组技术》+《扫描电镜和能谱仪的原理与实用分析技术》
    仪器信息网2023年10月18-20举办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件和材料分析、可靠性测试、失效分析、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。为答谢广大用户,本次大会每个专场都设有一轮抽奖送专业图书活动。今日抽取的专业图书是《集成电路材料基因组技术》和《扫描电镜和能谱仪的原理与实用分析技术》。一、主办单位:仪器信息网&电子工业出版社二、会议时间:2023年10月18-20日三、会议日程第四届“半导体材料器件分析检测技术与应用”主题网络研讨会时间专场名称10月18日全天半导体材料分析技术新进展10月19日可靠性测试和失效分析技术可靠性测试和失效分析技术(赛宝实验室专场)10月20日上午缺陷检测与量测技术四、“半导体材料分析技术新进展”日程时间报告题目演讲嘉宾专场:半导体材料分析技术新进展(10月18日)专场主持人:汪正(中国科学院上海硅酸盐研究所 研究员)9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求桂娟(上海集成电路材料研究院 工程师)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)16:00专业图书介绍及抽奖送书王天跃(电子工业出版社电子信息分社 编辑)五、参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名
  • XPS数据处理必备 | 原理、特征、分析
    01 XPS简介XPS(X-ray Photoelectron Spectroscopy),译为X射线光电子能谱,以X射线为激发光源的光电子能谱,是一种对固体表面进行定性、定量分析和结构鉴定的实用性很强的表面分析方法。XPS是一种高灵敏超微量表面分析技术,样品分析的深度约为20埃,可分析除H和He以外的所有元素,可做定性及半定量分析。定性:从峰位和峰形可以获知样品表面元素成分、化学态和分子结构等信息 半定量:从峰强可以获知表面元素的相对含量或浓度▲ XPS测试过程示意图 ▲02 功能和特点(1)定性分析--根据测得的光电子动能可以确定表面存在哪些元素,a. 能够分析除了氢,氦以外的所有元素,灵敏度约0.1at%,空间分辨率为 100um, X-RAY 的分析深度在 2 nm 左右,信号来自表面几个原子层,样品量可少至10的-8次方g,绝对灵敏度高达10的-18次方g。b. 相隔较远,相互干扰较少,元素定性的相邻元素的同种能级的谱线标识性强。 c.能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。(2)定量分析--根据具有某种能量的光电子的强度可知某种元素在表面的含量,误差约20%。既可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。(3)根据某元素光电子动能的位移可了解该元素所处的化学状态,有很强的化学状态分析功能。(4)结合离子溅射可以进行深度分析。(5)对材料无破坏性。03 基本原理当单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用: 1)光致电离产生光电子;2)电子从产生之处迁移到表面;3)电子克服逸出功而发射。用能量分析器分析光电子的动能,得到的就是X射线光电子能谱。▲ 基本原理 ▲这方面很多书上都介绍了,归根结底就是一个公式:E(b)= hv-E(k)-WE(b): 结合能(binding energy)hv: 光子能量 (photo energy)E(k): 电子的动能 (kinetic energy of the electron)W: 仪器的功函数(spectrometer work function)通过测量接收到的电子动能,就可以计算出元素的结合能。铝靶:hv=1486.6 eV镁靶:hv=1253.6 eV04 具体定性分析步骤A:对化学成分未知的样品——全谱扫描(0-1200eV)图谱分析步骤:1、在XPS谱图中首先鉴别出C1s、O1s、C(KLL)和O(KLL)的谱峰(一定存在且通常比较明显)。 2、鉴别各种伴线所引起的伴峰 3、确定主要元素的最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。 4、辨认p、d、f自旋双重线,核对所得结论。鉴别通常采用与XPS数据库和标准谱图手册的结合能进行对比的方法:XPS数据库一般采用NIST XPS database:https://srdata.nist.gov/xps/selEnergyType.aspx通过这个网站你可以查到几乎xps所需的所有数据包括:对双峰还应考虑两个峰的合理间距、强度比等。▲ 网站截图 ▲XPS表征手册一般采用:Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1995.还可以对比XPS电子结合能对照表进行查找(文末资源包内含),有了这些表,你就可以指导每个元素分峰的位置。▲ 结合能对照表部分内容 ▲B:分析某元素的化学态和分子结构——高分辨谱测化学位移扫描宽度通常为10-30eV,以确保得到精确的峰位和良好的峰形。05 具体定量分析步骤经X射线辐照后,从样品表面出射的光电子的强度(I,指特征峰的峰面积)与样品中该原子的浓度(n)有线性关系,因此可以利用它进行元素的半定量分析。简单的可以表示为:I = n*SS称为灵敏度因子(有经验标准常数可查,但有时需校正)对于对某一固体试样中两个元素i和j, 如已知它们的灵敏度因子Si和Sj,并测出各自特定谱线强度Ii和Ij,则它们的原子浓度之比为:ni:nj=(Ii/Si):(Ij/Sj)06 数据处理这里小编向大家推荐三款软件Xpspeak、Avantage以及我们最常用的origin篇幅有限,作图过程在这里就不详细说了07 常见问题解答1、XPS样品制备:粉末制样• 压片• 粘到双面胶带上• 分散到挥发性有机溶剂中,形成悬浊液滴到硅片等固体基片、金属箔或滤膜、海绵等基底上纤维细丝(网)样品• 缠绕或压在架子或回形针上,或样品台的孔中 央,分析区域内纤维丝悬空,避免基底元素干 扰分析结果;• 包裹在有孔的铝箔中,用小束斑XPS分析孔内样品;液体、膏状样品• 滴到Si片、聚乙烯/聚丙烯、金属片、滤膜、树 脂、海绵等固体基片上晾干或冷冻干燥2、H和He为什么不能测XPS主要原因有三点:1) H和He的光电离界面小,信号太弱;2) H1s电子很容易转移,在大多数情况下会转移到其他原子附近,检测起来非常困难 3) H和He没有内层电子,其外层电子用于成键,H以原子核形式存在。所以用X射线去激发时,没有光电子可以被激发出来。3、什么是荷电校正,如何进行荷电校正XPS分析中,样品表面导电差 样品表面导电差,或虽导电但未有效接地。此时,当X射线不断照射样品时,样品表面发射光电子,表面亏电子, 出现正电荷积累(XPS中荷正电),从而影响XPS谱峰,影响XPS分析。在用XPS测量绝缘体或者半导体时,需要对荷电效应所引起的偏差进行校正,称之为“荷电校正”。最常用的,人们一般采用外来污染碳的C1s作为基准峰来进行校准。以测量值和参考值(284.8 eV)之差作为荷电校正值(Δ)来矫正谱中其他元素的结合能。具体操作:1) 求取荷电校正值:C单质的标准峰位(一般采用284.8 eV)-实际测得的C单质峰位=荷电校正值Δ;2)采用荷电校正值对其他谱图进行校正:将要分析元素的XPS图谱的结合能加上Δ,即得到校正后的峰位(整个过程中XPS谱图强度不变)。将校正后的峰位和强度作图得到的就是校正后的XPS谱图。4、磁性元素对XPS有没有影响有,磁性样品最好进行退磁、消磁处理也可在测试中采用磁透镜模式或静电透镜模式
  • 热机械分析仪原理简介
    p  热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。/pp  热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title="热机械分析仪结构示意图.jpg" width="400" height="339" border="0" hspace="0" vspace="0" style="width: 400px height: 339px "//pp style="text-align: center "strong热机械分析仪结构示意图/strong/pp style="text-align: center "1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样/pp  TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title="TMA常用测量模式示意图.jpg" width="400" height="134" border="0" hspace="0" vspace="0" style="width: 400px height: 134px "//pp style="text-align: center "strongTMA常用测量模式示意图/strong/ppstrong压缩或膨胀/strong/pp  两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。/ppstrong针入模式/strong/pp  这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。/ppstrong三点弯曲/strong/pp  这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。/ppstrong拉伸模式/strong/pp  适合薄膜或纤维。/pp style="text-align: center "strongspan style="color: rgb(255, 0, 0) "典型的TMA测量曲线/span/strong/ppstrong热膨胀系数测量曲线/strong/pp  热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。/pp  大多数材料在加热时膨胀。线膨胀系数α定义如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title="TMA-1.jpg"//pp式中,dL为由温度变化dT引起的长度变化 Lsub0/sub为温度Tsub0/sub(通常为室温25℃)时的原始长度 α单位为10sup-6/supKsup-1/sup。/ppstrong玻璃化转变的TMA测量曲线/strong/pp  测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。/ppstrong测量杨氏模量的DLTMA曲线/strong/pp  如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。/pp  从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。/p
  • 从原理到应用,6大类元素分析仪大比拼
    p  元素定义:是strongspan style="color: rgb(0, 0, 0) "具有相同质子数(核电荷数)的同一类原子的总称/span/strong,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种./pp  元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。/pp  明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。/pp style="text-align: center "strongspan style="text-align: center color: rgb(0, 112, 192) "主要元素分析仪器/span/strong/pp  strongspan style="color: rgb(0, 0, 0) "1.紫外\可见光分光光度计(UV) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  2.原子吸收分光光度计(AAS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  3.原子荧光分光光度计(AFS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  4.原子发射分光光度计(AES) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  5.质谱(MS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  6.X射线分光光度计(XRF ) /span/strong/pp  常见分析仪器的归属类型:/pp  ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /pp  ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /pp  FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "各种元素分析仪器分析过程、特点及应用/span/strong/pp  strongspan style="color: rgb(192, 0, 0) "紫外\可见光分光光度计(UV)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title="1.jpg" alt="1.jpg"//pp  strong2.原理:/strong/pp  利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。/pp  strong3.主要特点/strongstrong:/strong/pp  (1)灵敏度高/pp  (2)选择性好/pp  (3)准确度高/pp  (4)适用浓度范围广/pp  (5)分析成本低、操作简便、快速、应用广泛/pp  strongspan style="color: rgb(192, 0, 0) "原子吸收和荧光分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title="2.jpg" alt="2.jpg"//pp  strong2.原子吸收光谱法原理:/strong/pp  原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。/pp  公式:A=KC/pp  式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。/pp  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。/pp  strong3.原子吸收主要特点:/strong/pp  (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /pp  (2)原子吸收谱线简单,选择性好,干扰少。/pp  (3)操作简单、快速,自动进样每小时可测定数百个样品 /pp  (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10%/pp  (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。/pp  strong4.原子荧光主要特点:/strong/pp  (1)有较低的检出限,灵敏度高。/pp  (2)干扰较少,谱线比较简单。/pp  (3)仪器结构简单,价格便宜。/pp  (4)分析校准曲线线性范围宽,可达3~5个数量级。/pp  (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。/pp  strongspan style="color: rgb(192, 0, 0) "原子发射分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em "strong2.原理/strong/pp  原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。/pp  发射的光波长为:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title="0.png" alt="0.png"//pp  每个元素有自己独特的特征光谱,从而进行元素定性分析。/pp  strong3.主要特点/strong/pp  (1)高温,104K /pp  (2)环状通道,具有较高的稳定性 /pp  (3)惰性气氛,电极放电较稳定 /pp  (4)具有好的检出限,一些元素可达到10-3~10-5ppm /pp  (5)ICP稳定性好,精密度高,相对标准偏差约1% /pp  (6)基体效应小 /pp  (7)光谱背景小 /pp  (8)自吸效应小 /pp  (9)线性范围宽。/pp  span style="color: rgb(192, 0, 0) "strong质谱分析法/strong/span/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title="4.jpg" alt="4.jpg"//pp  strong2.原理/strong/pp  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。/pp  strong3.主要特点:/strong/pp  (1)质量测定范围广泛 /pp  (2)分辨高 /pp  (3)绝对灵敏度,可检测的最小样品量。/pp  strongspan style="color: rgb(192, 0, 0) "X荧光光度计(XRF)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title="5.jpg" alt="5.jpg"//pp  strong2.原理:/strong/pp  受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。/pp  strong3.主要特点:/strong/pp  (1)快速,测试一个样品只需2min-3min /pp  (2)无损,测试过程中无需损坏样品,直接测试 /pp  (3)含量范围广 /pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "几种元素分析仪器对比/span/strong/pp  strong1.工作范围/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title="6.jpg" alt="6.jpg"//pp  strong2.无机分析产品的检出限/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title="7.jpg" alt="7.jpg"//pp  strong3.干扰/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title="8.jpg" alt="8.jpg"//pp  strong4.费用/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title="9.jpg" alt="9.jpg"/  /pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/818.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "医用原子吸收光谱仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/646.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "金属多元素分析仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/476.html" target="_self" style="text-decoration: underline color: rgb(192, 0, 0) "span style="color: rgb(192, 0, 0) "有机元素分析仪会场/span/a/p
  • 总磷分析原理和用途
    总磷是水体中磷元素的总含量,是评价水质的重要指标。其主要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。水体中的磷是藻类生长需要的一种关键元素,过量磷是造成水体污秽异臭,使湖泊发生富营养化和海湾出现赤潮的主要原因。原理:水中的含磷化合物在高温高压的条件下被强氧化剂氧化为正磷酸盐,正磷酸盐在钼酸盐酸性溶液中,生成磷钼酸杂多酸还原为蓝色的磷钼酸盐,通过测量该磷钼酸盐的吸光度,从而得到水样中总磷的含量。主要应用场景有企业雨水、污水的监测,市政管网、提升泵站、地下水、河水、湖泊水、海水等水质中总磷含量的监测。
  • 总氮分析原理和用途
    水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。大量生活污水、农田排水或含氮工业废水排入水体,使水中有机氮和各种无机氮化物含量增加,生物和微生物类大量繁殖,消耗水中溶解氧,使水体质量恶化。胡泊、水库中含有超标的的氮、磷类物质时,造成浮游植物繁殖旺盛,出现富营养化状态。原理:采用高温高压、碱性条件下氧化剂将水样中氨氮、亚硝酸盐氮及有机氮氧化成硝酸盐,在浓硫酸介质中,硝酸盐与显色剂反应生成浅黄色的硝基化合物。该化合物的吸光度与水样中总氮含量成正比,通过测量该化合物的吸光度,从而得到水样中总氮的含量。主要应用场景有企业雨水、污水的监测,市政管网、提升泵站、地下水、河水、湖泊水、海水等水质中总磷含量的监测。
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。图2-9 DMA不同形变模式图2-10为典型热塑性塑料的DMA曲线。在不同状态下储能模量和损耗因子会发生不同的变化。在玻璃态下,储能模量为几个GPa的数量级。损耗因子很小。在玻璃化转变区域,材料的机械性能发生了显著的变化:储能模量通常降低几个数量级并且损失因子显示出明显。 然后是材料在橡胶区域变得柔软。在更高的温度下,热塑性塑料变得更软并开始流动。这时储能模量进一步降低,而tanδ显着增加。因此DMA可以测定材料的玻璃化转变温度、机械模量、阻尼;粘弹性行为和力学性能,包括蠕变或应力松弛,研究样品的机械行为,以及交联固化反应等。图2-10 典型热塑性塑料的DMA曲线了解更多信息,请点击链接:动态热机械分析仪(DMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DMA.html2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • ​深圳三思纵横试验机|持久蠕变试验机:分析工作原理及应用领域
    在材料科学研究领域,持久蠕变试验机作为一种重要的测试设备,对于评估材料在长时间受力作用下的变形行为具有不可替代的作用。今天,跟着深圳三思纵横试验机小编一起来看下持久蠕变试验机的工作原理、应用领域以及未来发展趋势。一、持久蠕变试验机的工作原理持久蠕变试验机主要用于模拟材料在长时间恒定或变化应力作用下的蠕变行为。蠕变是指固体材料在应力作用下,随时间发生的缓慢而连续的变形现象。持久蠕变试验机通过施加恒定的或变化的载荷,以及控制温度、湿度等环境因素,来模拟实际工作环境中的材料受力情况。试验机通过高精度传感器和数据采集系统,实时记录材料的变形数据,为材料性能评估提供可靠的依据。二、持久蠕变试验机的应用领域1、金属材料研究:持久蠕变试验机在金属材料研究领域具有广泛应用,如钢铁、铝合金、钛合金等。通过对金属材料进行持久蠕变测试,可以评估其在高温、高压等恶劣环境下的性能表现,为航空航天、能源、交通等领域提供关键材料性能数据;2、高分子材料测试:高分子材料如塑料、橡胶、纤维等,在长时间受力作用下容易发生蠕变现象。持久蠕变试验机能够模拟这些材料在实际应用中的受力情况,评估其蠕变性能,为产品设计、生产和使用提供重要参考;3、复合材料性能评估:复合材料由于具有优异的力学性能和多功能性,在航空航天、汽车、建筑等领域得到广泛应用。持久蠕变试验机可用于评估复合材料在不同应力状态下的蠕变性能,为复合材料的优化设计和应用提供有力支持。三、持久蠕变试验机的未来发展趋势1、智能化与自动化:随着人工智能和自动化技术的不断发展,持久蠕变试验机将实现更高级别的智能化和自动化。通过引入智能控制系统和机器人技术,试验机能够实现更精确的试验操作、更高效的数据处理以及更便捷的远程监控,提高试验的准确性和效率;2、多功能化与集成化:未来的持久蠕变试验机将更加注重多功能化和集成化设计。通过集成多种测试功能,如拉伸、压缩、弯曲等,以及实现多种环境因素的模拟和控制,试验机将能够满足更多种类的材料测试需求,提高设备的利用率和灵活性;3、高精度与高可靠性:随着材料科学研究对测试精度的要求不断提高,持久蠕变试验机将致力于实现更高的测试精度和可靠性。通过优化机械结构、提高传感器精度、加强设备校准和维护等措施,试验机将能够提供更加准确、可靠的测试数据,为材料科学研究提供有力支持。四、结论综上所述,持久蠕变试验机在材料科学研究领域具有广泛的应用前景和重要的价值。随着技术的不断进步和市场的不断发展,相信未来持久蠕变试验机将在材料性能测试领域发挥更加重要的作用。
  • 高锰酸盐指数分析原理和用途
    高锰酸盐指数是指在一定条件下,用高锰酸钾氧化水样中的某些有机物及无机还原性物质,由消耗的高锰酸钾计算得出相当的氧的质量。它是反映水体中有机及无机氧化物质污染程度的综合性水质评价指标。原理:水样与过量的高锰酸盐混合,用浓硫酸酸化后,在高温高压的环境下高锰酸盐被还原,从而使混合溶液发生颜色改变,溶液颜色变化程度与水样中高锰酸盐指数成对应关系,通过测量该混合液,计算得出水样中高锰酸盐指数的值。主要应用场景有地下水、河水、湖泊水等水质比较好的水质中高锰酸盐指数的监测。
  • 第三届微流控细胞分析学术报告会圆满落幕——新原理、新技术未来可期
    2021年9月29日,为期两天的第三届微流控细胞分析学术报告会在北京中国国际展览中心(天竺新馆)圆满落幕。本届论坛由中国分析测试协会和清华大学化学系联合举办,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台。本届会议,共计20余位资深专家学者就微流控细胞分析领域的最新科研成果分别作精彩报告!会议首日,10余位专家就器官模拟与细胞代谢分析等领域进行分享探讨(点击查看首日精彩报告:微流控技术大有可为)。会议次日,7位专家学者分别就微流控新原理、新技术等方向带来精彩主题报告,详情如下:报告人:南京大学 李仲秋副研究员报告题目:《生物传感和能源转化的纳流控器件》李仲秋副研究员报道了各类纳流控器件应用于不同的材料与生物的成果,对比说明了纳流控器件之于传统器件在性能上的优势,并提出了纳米通道中分子检测方法的一般模型。报告人:南方科技大学 蒋兴宇教授报告题目:《微流控-液态金属的细胞调控与分析》蒋兴宇教授介绍了用微流控芯片来提升细胞分析检测性能的系列方法与各类应用,此外还着重介绍了结合微流控芯片的金属高分子导体(MPC),拓展了微流控芯片研究的新思路。报告人:北京工业大学 汪夏燕教授报告题目:《基于超薄可控温微坑阵列芯片的单细胞胞内递送》汪夏燕教授介绍了一整套单细胞操作的基本流程,包括对细胞的捕获、固定到探针递送等步骤,结合三光路显微镜成像技术,能有效实现对单个细胞的精准检测研究。报告人:中国农业大学 林建涵教授报告题目:《用于病原微生物快速检测的微流控生物传感器研究》林建涵教授提出了食源性致病微生物检测的重要性,并针对此问题提出了免疫磁珠分选的方法,实现了对目标微生物的高通量检测;此外还针对提升检测灵敏度介绍了电化学生物传感器等有效新型分析方法。报告人:清华大学 梁琼麟教授报告题目:《药物分析“芯”方法》梁琼麟教授介绍了建立“芯片药物实验室”的基本思路,并基于此设计了一系列的芯片器官与仿生材料,以物理结构重现、细胞结构重现和器官功能重现为目标,完成了肾小球模拟的重要工作。报告人: Chinese Chemical Letters编辑部 郭焕芳副主编报告题目:《中国化学快报进展》郭焕芳副主编介绍了CCL杂志的创办理念与该期刊目前取得的优异成绩,并呼吁各位学者在撰写高水平论文的同时,保持学术端正。报告人:华中农业大学 何子怡副研究员报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》何子怡副研究员通过总结传统芯片液滴产生的模式,提出了基于声控产生液滴的新型方法,兼备了仪器的便携性与实验的可控性,为芯片液滴技术发展提供了新的思路。报告环节过后,清华大学林金明教授就闭幕式致辞。清华大学林金明教授闭幕式致辞林金明教授总结了为期两天的专家报告内容,为各位从事微流控生命分析的学者们提出了期许,希望大家铭记该会议的追求创新的精神,共同推动中国微流控分析领域更上一层楼。后记放眼未来,林金明教授认为微流控芯片在单细胞分析等领域应用意义重大,将会对生命科学的研究起到巨大的促进作用。与此同时,我们期待各位专家学者在微流控细胞分析技术领域取得更多的突破与创新,也期待在下一届微流控细胞分析技术学术会议能继续为听众带来如此前沿技术的饕餮盛宴。
  • 揭秘公安司法行业毒品分析检测技术!几类质谱关键原理方法及技术要求!
    当下,在毒品问题全球化的大背景下,毒情形势日益严峻,芬太尼类、合成大麻素类、卡西酮类等新型毒品更新换代速度极快,毒品毒物的检测判定作为执法依据变得尤为关键,加之毒品成瘾机理领域还有很多亟待科学解答的内容,也对分析方法提出了更高要求。仅2021-2022年我国发布并实施的毒品检测国家标准、行业标准已超二十项,可见我国毒品检测国家标准、行业标准发布进入快车道,国家对禁毒工作的关注度不断提升。就行业标准而言有分为公安类检测标准和司法类检测标准。司法类检测标准对于毒品类型鉴定有更加清晰的分类,如:苯丙胺类、色胺类、合成大麻素类、芬太尼类等。公安类检测标准更加注重检测样品的类型:毛发中毒品检测、污水中毒品检测、血液、尿液等生物样品中毒品检测以及疑似物中毒品检测等。与发达国家相比,我国毒品检验技术研究起步较晚,但近年来发展迅速。20 世纪 80 年代前,我国毒品检验多采用薄层色谱检验(TCL)结晶法、 红外光谱 法(IR)、 紫外线(UV) 检验及化学显色法;80年代后,气相色谱(GC)法开始应用,90年代开始普及;1990-2009年气相色谱串联质谱(GCMS)技术成为毒品检测的主力军;2010-2022年液相色谱串联质谱(LCMS/MS)类分析技术开始布局公安司法行业毒品检测领域。此外,近年国内外禁毒形势愈发严峻,现场快速便携的稽查技术和检测设备亟待发展,幸运的是,不少仪器企业和科研团队也已推出了相应的便携式现场快速筛查质谱仪。公安及司法行业在实际应用场景中,如何选择适合的毒品分析技术手段?不同质谱技术的原理差异性如何?如果超出各类毒物数据库的检索范围,未知物的识别该选择何种技术手段?便携式质谱技术如何持续助力毒品快筛?毒情监测体系是否建立?……2022年12月13-16日,仪器信息网策划举办年度一次的“质谱网络会议(iCMS)”,每年的会议内容设置都会将当年度最新、最重磅的技术应用进展带给听众,十二年来,质谱网络会议受到广大用户的热烈好评。去年年底的直播间,我们共同约定在2022年末,再次为大家呈现关于质谱领域的最新技术成果和进展。带着这份承诺,3i讲堂将于12月14日举办“第十三届质谱网络会议”的“质谱在禁毒/司法领域毒品分析的新进展”专场,与4位重量嘉宾,在直播间共同寻找答案:(福利:点击此处,快速免费报名,优先审核)嘉宾一:王学虎 江苏省公安厅物证鉴定中心 正高级警务报告:未知药毒物的高分辨液质筛查与识别检验在法庭科学实验室对投(中)毒、缴获毒品,多采用GC-MS、LC-MS技术,配合各类毒药物数据库,如果超出这几个常见的数据库检索范围,就会变成难题——未知物,就需要更多手段进行甄别。本次报告且听王老师通过案例形式介绍使用高分辨液质联用进行未知毒药物的识别技巧。嘉宾二:刘冰洁 SCIEX FEF领域全国应用支持经理报告:QTRAP液质系统在公安司法领域的应用报告将介绍应用QTRAP质谱的EPI模式进行复杂基质样本中的假阳性判定,以及应用QTRAP质谱进行代谢产物的鉴定和新型结构衍生物的分析。嘉宾三:花磊 中国科学院大连化学物理研究所 研究员 报告:基于原位质谱的毒品快速检测技术及应用花磊研究员深耕开发在线质谱关键技术和质谱联用技术的研究多年,目前基于原位质谱的毒品快速检测技术和最新应用有哪些?且听花老师娓娓道来。嘉宾四:金洁 公安部第三研究所 副研究员报告:便携式质谱在现场毒品检测中的应用报告将介绍当前便携式质谱用于毒品检测存在的困难,以及当前EI电离源便携式质谱合成大麻素数据库标准化和操作规程。(点击图片,免费报名,优先审核)
  • 一看就懂|动图解析16种仪器原理
    pspan style="color: rgb(31, 73, 125) "strong紫外分光光谱UV/strong/span/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title="紫外分光光谱UV.jpeg" width="400" height="290" border="0" hspace="0" vspace="0" style="width: 400px height: 290px "//strong/span/ppstrongi分析原理/i/strong:吸收紫外光能量,引起分子中电子能级的跃迁/ppistrong谱图的表示方法/strong/i:相对吸收光能量随吸收光波长的变化/ppistrong提供的信息/strong/i:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息/pp style="text-indent: 2em "物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title="光线传输.gif"/br//pp style="text-align: center "strong光线传输/strong/pp style="text-align:center"strongimg src="https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title="光衍射.gif"//strong/pp style="text-align:center"strong光衍射/strongbr//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title="探测.gif"/br//pp style="text-align: center "strong探测/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title="数据输出.gif"/br//pp style="text-align: center "strong数据输出/strong/ppspan style="color: rgb(31, 73, 125) "strong红外吸收光谱法IR/strong/span/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title="红外吸收光谱法IR.jpeg" width="400" height="351" border="0" hspace="0" vspace="0" style="width: 400px height: 351px "//strong/span/ppistrong分析原理/strong/i:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁/ppistrong谱图的表示方法/strong/i:相对透射光能量随透射光频率变化/ppstrongi提供的信息/i/strong:峰的位置、强度和形状,提供功能团或化学键的特征振动频率/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title="红外光谱测试.gif"/br//pp style="text-align: center "strong红外光谱测试/strong/pp style="text-indent: 2em "红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。/pp style="text-indent: 2em "以下是甲醇红外光谱分析过程:/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title="甲醇红外光谱结构分析过程1.gif"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title="甲醇红外光谱结构分析过程2.gif"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title="甲醇红外光谱结构分析过程3.gif"//pp style="text-align:center"strong甲醇红外光谱结构分析过程/strongbr//ppspan style="color: rgb(31, 73, 125) "strong核磁共振波谱法NMR/strong/spanbr//pp style="text-align: center "span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title="核磁共振波谱法NMR.jpeg" width="400" height="240" border="0" hspace="0" vspace="0" style="width: 400px height: 240px "//strong/span/ppistrong分析原理/strong/i:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁/ppistrong谱图的表示方法/strong/i:吸收光能量随化学位移的变化/ppistrong提供的信息/strong/i:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title="NMR结构.gif"/br//pp style="text-align: center "strongNMR结构/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title="进样.gif"/br//pp style="text-align: center "strong进样/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title="样品在磁场中.gif"/br//pp style="text-align: center "strong样品在磁场中/strong/pp style="text-indent: 2em "当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style="float:none " title="核磁共振及数据输出1.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style="float:none " title="核磁共振及数据输出2.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style="float: none width: 400px height: 225px " title="核磁共振及数据输出3.gif" width="400" height="225" border="0" hspace="0" vspace="0"//pp style="text-align:center"strong核磁共振及数据输出/strong/ppspan style="color: rgb(31, 73, 125) "strong质谱分析法MS/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title="质谱分析法MS.jpeg" width="400" height="282" border="0" hspace="0" vspace="0" style="width: 400px height: 282px "//strong/span/ppstrongi分析原理/i/strong:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化/ppistrong提供的信息/strong/i:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息/ppistrongFT-ICR质谱仪工作过程:/strong/i/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title="离子产生.gif"/br//pp style="text-align: center "strong离子产生/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title="离子收集.gif"/br//pp style="text-align: center "strong离子收集/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title="离子传输.gif"/br//pp style="text-align: center "strong离子传输/strong/pp style="text-indent: 2em "FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style="float:none " title="离子回旋运动1.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style="float:none " title="离子回旋运动2.gif"//pp style="text-align:center"strong离子回旋运动/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title="傅立叶变换.gif"/br//pp style="text-align: center "strong傅立叶变换/strong/ppspan style="color: rgb(31, 73, 125) "strong气相色谱法GC/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title="气相色谱法GC.jpeg" width="400" height="364" border="0" hspace="0" vspace="0" style="width: 400px height: 364px "//strong/span/ppistrong分析原理/strong/i:样品中各组分在流动相和固定相之间,由于分配系数不同而分离/ppistrong谱图的表示方法/strong/i:柱后流出物浓度随保留值的变化/ppistrong提供的信息/strong/i:峰的保留值与组分热力学参数有关,是定性依据/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title="气相色谱仪检测流程.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong气相色谱仪检测流程/strong/pp style="text-indent: 2em "气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title="注射器.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong注射器/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title="色谱柱.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong色谱柱/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title="检测器.gif" width="400" height="212" border="0" hspace="0" vspace="0" style="width: 400px height: 212px "/br//pp style="text-align: center "strong检测器/strong/ppspan style="color: rgb(31, 73, 125) "strong凝胶色谱法GPC/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title="凝胶色谱法GPC.jpeg" width="400" height="298" border="0" hspace="0" vspace="0" style="width: 400px height: 298px "//strong/span/ppistrong分析原理/strong/i:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出/ppistrong谱图的表示方法/strong/i:柱后流出物浓度随保留值的变化/ppistrong提供的信息/strong/i:高聚物的平均分子量及其分布/pp style="text-indent: 2em "根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title="只依据尺寸大小分离,大组分最先被洗提出.gif" width="400" height="294" border="0" hspace="0" vspace="0" style="width: 400px height: 294px "/br//pp style="text-align: center "strong只依据尺寸大小分离,大组分最先被洗提出/strong/pp style="text-indent: 2em "色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title="直径小于孔径的组分进入凝胶孔道.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong直径小于孔径的组分进入凝胶孔道/strong/pp style="text-indent: 2em "小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title="依据尺寸差异,样品组分分离.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong依据尺寸差异,样品组分分离/strong/pp style="text-indent: 2em "体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。/ppspan style="color: rgb(31, 73, 125) "strong热重法TG/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title="热重法TG.jpeg" width="400" height="268" border="0" hspace="0" vspace="0" style="width: 400px height: 268px "//strong/span/ppistrong分析原理/strong/i:在控温环境中,样品重量随温度或时间变化/ppistrong谱图的表示方法/strong/i:样品的重量分数随温度或时间的变化曲线/ppstrongi提供的信息/i/strong:曲线陡降处为样品失重区,平台区为样品的热稳定区/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title="自动进样过程.gif" width="400" height="222" border="0" hspace="0" vspace="0" style="width: 400px height: 222px "/br//pp style="text-align: center "strong自动进样过程/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style="float: none width: 400px height: 222px " title="热重分析过程.gif" width="400" height="222" border="0" hspace="0" vspace="0"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style="float: none width: 400px height: 222px " title="热重分析过程2.gif" width="400" height="222" border="0" hspace="0" vspace="0"//pp style="text-align:center"strong热重分析过程/strong/ppspan style="color: rgb(31, 73, 125) "strong静态热-力分析TMA/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title="静态热-力分析TMA.png" width="400" height="400" border="0" hspace="0" vspace="0" style="width: 400px height: 400px "//ppistrong分析原理/strong/i:样品在恒力作用下产生的形变随温度或时间变化/ppistrong谱图的表示方法/strong/i:样品形变值随温度或时间变化曲线/ppistrong提供的信息/strong/i:热转变温度和力学状态/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title="TMA进样及分析1.gif" style="float: none width: 400px height: 223px " width="400" height="223" border="0" hspace="0" vspace="0"/br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title="TMA进样及分析2.gif" width="400" height="223" border="0" hspace="0" vspace="0" style="width: 400px height: 223px "//pp style="text-align: center "strongTMA进样及分析/strong/ppstrongspan style="color: rgb(31, 73, 125) "透射电子显微技术TEM/span/strong/pp style="text-align:center"strongspan style="color: rgb(31, 73, 125) "img src="https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title="透射电子显微技术TEM.jpeg" width="400" height="494" border="0" hspace="0" vspace="0" style="width: 400px height: 494px "//span/strong/ppistrong分析原理/strong/i:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象/ppistrong谱图的表示方法/strong/i:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象/ppistrong提供的信息/strong/i:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title="TEM工作图.gif"/br//pp style="text-align: center "strongTEM工作图/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title="TEM成像过程.gif"/br//pp style="text-align: center "strongTEM成像过程/strong/pp style="text-indent: 2em "STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title="STEM分析图.gif"/br//pp style="text-align: center "strongSTEM分析图/strong/pp style="text-indent: 2em "入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title="EELS原理图.gif"/br//pp style="text-align: center "strongEELS原理图/strong/ppspan style="color: rgb(31, 73, 125) "strong扫描电子显微技术SEM/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title="扫描电子显微技术SEM.jpeg" width="400" height="351" border="0" hspace="0" vspace="0" style="width: 400px height: 351px "//ppistrong分析原理/strong/i:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象/ppistrong谱图的表示方法/strong/i:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等/ppistrong提供的信息/strong/i:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title="SEM工作图.gif"/br//pp style="text-align: center "strongSEM工作图/strong/pp style="text-indent: 2em "入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title="电子发射图.gif"/br//pp style="text-align: center "strong电子发射图/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title="二次电子探测图.gif"/br//pp style="text-align: center "strong二次电子探测图/strong/pp style="text-indent: 2em "二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title="二次电子扫描成像.jpeg"/br//pp style="text-align: center "strong二次电子扫描成像/strong/pp style="text-indent: 2em "入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title="背散射电子探测图.gif"/br//pp style="text-align: center "strong背散射电子探测图/strong/pp style="text-indent: 2em "用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title="EBSD成像过程.gif"/br//pp style="text-align: center "strongEBSD成像过程/strong/ppspan style="color: rgb(31, 73, 125) "原子力显微镜AFM/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title="原子力显微镜AFM.jpeg" width="400" height="176" border="0" hspace="0" vspace="0" style="width: 400px height: 176px "//ppistrong分析原理/strong/i:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息/ppistrong谱图的表示方法/strong/i:微悬臂对应于扫描各点的位置变化/ppistrong提供的信息/strong/i:样品表面形貌的信息/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title="AFM原理:针尖与表面原子相互作用.gif"/br//pp style="text-align: center "strongAFM原理:针尖与表面原子相互作用/strong/pp style="text-indent: 2em "AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title="接触模式.gif"/br//pp style="text-align: center "strong接触模式/strong/ppspan style="color: rgb(31, 73, 125) "strong扫描隧道显微镜STM/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title="扫描隧道显微镜STM.jpeg" width="400" height="288" border="0" hspace="0" vspace="0" style="width: 400px height: 288px "//ppistrong分析原理/strong/i:隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。/ppistrong谱图的表示方法/strong/i:探针随样品表面形貌变化而引起隧道电流的波动/ppistrong提供的信息/strong/i:软件处理后可输出三维的样品表面形貌图/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title="探针.gif"/br//pp style="text-align: center "strong探针/strong/pp style="text-indent: 2em "隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title="隧道电流.gif"/br//pp style="text-align: center "strong隧道电流/strong/pp style="text-indent: 2em "针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title="三维图像1.gif" style="float: none "/br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style="float:none " title="三维图像2.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style="float:none " title="三维图像3.gif"//ppspan style="color: rgb(31, 73, 125) "strong原子吸收光谱AAS/strong/spanbr//pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title="原子吸收光谱AAS.jpeg" width="400" height="288" border="0" hspace="0" vspace="0" style="width: 400px height: 288px "//strong/span/ppistrong分析原理/strong/i:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title="待测试样原子化.gif" width="400" height="220" border="0" hspace="0" vspace="0" style="width: 400px height: 220px "/br//pp style="text-align: center "strong待测试样原子化/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title="原子吸收及鉴定1.gif" style="float: none width: 400px height: 222px " width="400" height="222" border="0" hspace="0" vspace="0"/br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title="原子吸收及鉴定2.gif" width="400" height="220" border="0" hspace="0" vspace="0" style="width: 400px height: 220px "//pp style="text-align: center "strong原子吸收及鉴定/strong/ppspan style="color: rgb(31, 73, 125) "strong电感耦合高频等离子体ICP/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title="电感耦合高频等离子体ICP.jpeg" width="400" height="255" border="0" hspace="0" vspace="0" style="width: 400px height: 255px "//strong/span/ppistrong分析原理/strong/i:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title="Icp设备构造.gif" width="400" height="219" border="0" hspace="0" vspace="0" style="width: 400px height: 219px "/br//pp style="text-align: center "strongIcp设备构造/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title="形成激发态的原子和离子.gif" width="400" height="219" border="0" hspace="0" vspace="0" style="width: 400px height: 219px "/br//pp style="text-align: center "strong形成激发态的原子和离子/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title="检测器检测.gif" width="400" height="219" border="0" hspace="0" vspace="0" style="width: 400px height: 219px "/br//pp style="text-align: center "strong检测器检测/strong/ppspan style="color: rgb(31, 73, 125) "strongX射线衍射XRD/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title="X射线衍射XRD.jpeg" width="400" height="351" border="0" hspace="0" vspace="0" style="width: 400px height: 351px "//strong/span/ppistrong分析原理/strong/i:X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。/pp style="text-indent: 2em "满足衍射条件,可应用布拉格公式:2dsinθ=λ/pp style="text-indent: 2em "应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title="XRD结构.jpeg" width="400" height="421" border="0" hspace="0" vspace="0" style="width: 400px height: 421px "//pp style="text-indent: 2em "以下是使用XRD确定未知晶体结构分析过程:/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title="XRD确定未知晶体结构分析过程1.gif" style="float: none "/br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title="XRD确定未知晶体结构分析过程2.gif"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title="XRD确定未知晶体结构分析过程3.gif"//pp style="text-align: center "strongXRD确定未知晶体结构分析过程/strong/ppspan style="color: rgb(31, 73, 125) "strong纳米颗粒追踪表征/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title="纳米颗粒追踪表征.jpeg" width="400" height="261" border="0" hspace="0" vspace="0" style="text-align: center width: 400px height: 261px "//ppistrong分析原理/strong/i:纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title="不同粒径颗粒的散射光成像在CCD.gif" width="400" height="168" border="0" hspace="0" vspace="0" style="width: 400px height: 168px "/br//pp style="text-align: center "strong不同粒径颗粒的散射光成像在CCD/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title="实际样品测试效果.gif" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "/br//pp style="text-align: center "strong实际样品测试效果/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title="不同技术的数据对比.jpeg" width="400" height="377" border="0" hspace="0" vspace="0" style="width: 400px height: 377px "/br//pp style="text-align: center "strong不同技术的数据对比/strong/p
  • Nature|北大毛有东团队利用AI提升时间分辨冷冻电镜分析精度
    蛋白质降解调控是极其重要的基本生物化学过程,在细胞周期、信号转导、免疫响应、基因调控、新陈代谢、神经退行、癌症肿瘤、病毒感染以及蛋白毒性响应等主要细胞分子过程中发挥关键调控作用。在真核细胞中,绝大部分胞内蛋白都是通过泛素蛋白酶体途径(Ubiquitin-proteasome pathway),经过泛素化标记被蛋白酶体全酶降解的。2004年,Aaron Ciechanover, Irwin Rose和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该泛素化通路介导蛋白质降解的历史性发现。蛋白酶体全酶,又称为26S proteasome,是由中间一个圆柱形20S核心颗粒和两端覆盖的一个或两个19S调节颗粒组成。19S包含一个环形异源六聚体马达——AAA-ATPase,通过多个协同ATP水解模式调控蛋白酶体降解泛素化底物。蛋白酶体功能紊乱与人体多种疾病相关,如癌症、神经退行性疾病和免疫疾病等。蛋白酶体是美国FDA批准的多种治疗癌症的上市小分子药物的直接靶标。在正常细胞中,蛋白酶体的功能受到多个水平的严格调控。去泛素化酶USP14是最主要的蛋白酶体调控分子,被认为是一个潜力巨大的治疗癌症和神经退行性疾病的重要靶标,其小分子抑制剂曾进入过美国一期临床研究,但围绕USP14功能机制的一系列悬而未决的关键问题极大限制了其靶向药物分子的开发和临床应用。USP14通过结合26S而被激活,然后以毫秒的时间尺度剪切底物上的泛素链。它是如何被蛋白酶体激活并调控蛋白酶体功能的,一直是全球研究机构和生物制药领域期待解决的关键科学问题。生命分子机器通过高度复杂的非平衡动力学过程和结构变化来实现其特殊功能,这一过程进而受到各种复杂分子间相互作用的精准调控。如何在原子水平直接观察天然态超大分子机器的功能态动力学过程,给现有的原子结构动态分析技术提出了空前挑战。毛有东教授实验室长期致力于发展基于冷冻电镜的动力学重建方法,围绕蛋白酶体、炎症小体等具有重大临床应用前景的靶点系统的结构功能、动力学机制和靶向调控分子设计深入开展前沿交叉研究——2016年报道了人源蛋白酶体基态的3.6 Å冷冻电镜结构及其他三个亚纳米分辨构象,并首次发现一个亚稳态构象的核心颗粒物转运通道处于开放状态(PNAS 2016 113: 12991-12996)。2017年,利用冷冻电镜解析高分辨率蛋白酶体19S调控复合体在结合组装伴侣p28的自由态的三维结构,阐释了组装伴侣蛋白Gankyrin/p28在蛋白酶体组装过程中构象选择的组装机理(Molecular Cell 2017 67: 322-333)。2018年4月,报道了6个ATPγS结合状态下的26S蛋白酶体动态结构,包括三个核心颗粒复合物开放态对应的亚稳简并态近原子分辨(4~5 Å)结构(Nature Communications 2018, 9: 1360)。2018年11月,在Nature首次报道了人源蛋白酶体26S在降解底物过程中的七种中间态构象的高分辨(2.8~3.6埃)结构,在原子水平呈现了蛋白酶体和底物相互作用的动态过程,首次实现了对AAA-ATPase六聚马达分子内ATP水解全周循环的完整过程的原子水平观测(Nature 2019 565:49-55)。这一系列工作揭示了蛋白酶体的原子架构、组装原理和降解泛素化底物的动力学基本规律。图1. (A) USP14调控下蛋白酶体复合体降解多泛素化底物的原子结构模型之一。(B) 时间分辨率冷冻电镜解析13种中间态的统计分布随蛋白质降解进程的时间演化。(Youdong Mao, CC BY 4.0)本研究课题进行之初,首先要克服的问题就是“时间分辨”。蛋白酶体降解底物的过程是很快的,时间尺度在毫秒至秒之间。正常条件下,想要通过冷冻电镜技术捕获此过程的中间态结构,是非常困难的。所以,课题组首先要让这个过程慢下来。通过大量的条件摸索,重建反应动力学体系和优化反应条件,包括优化缓冲体系、反应温度等条件,课题组优化出较为可行的实验方案,从而使得时间分辨冷冻电镜技术应用成为可能,最终获得了含时的45,193张USP14-26S复合体降解泛素底物过程中的冷冻电镜透射图样,挑取了3,556,806个USP14-26S-泛素底物复合体的颗粒图像。接下来面临的极端挑战就是“三维分类”,冷冻电镜捕获的复合体图像需要经过一系列的分类,将它们归为不同的构象类别,才能呈现出蛋白反应的动态过程。USP14结合到26S蛋白酶体后,使得降解底物的动力学过程更加复杂,想要在如此多的异构复合体颗粒图像中,鉴别出降解过程的各个时态的高分辨率非平衡构象,传统的三维分类方法是无法实现的。低精度的三维分类将导致低分辩的三维重建,从而无法获取原子水平的动力学信息,无法对含时的数据赋予自洽的动态变化的物理意义。课题组结合经过数年自主开发的新型深度学习高精度三维分类和四维重建方法,捕获了USP14-26S复合体降解多泛素化底物过程的13种不同功能中间状态的高分辨率(3.0~3.6埃)非平衡构象,通过时间分辨冷冻电镜分析,重建了受控蛋白酶体的完整动力学工作周期,并结合分子生物学功能和基因突变研究,阐明了USP14和26S相互调控活性的原子结构基础和非平衡动力学机制。研究发现USP14的活化同时依赖于泛素识别和蛋白酶体RPT1亚基的结合。出人意料的是,USP14通过别构效应,诱导蛋白酶体同时沿着两条并行状态转变路径发生构象变化;课题组成功捕获到了底物降解中间状态向底物抑制中间状态的瞬时转化。在底物降解途径中,USP14活化变构地重编程AAA-ATP酶马达的构象景观(Conformational landscape)和统计分布,并刺激20S底物通道的打开,从而观察到底物持续转运过程的ATPase六聚马达非对称ATP水解和近乎完整的全周循环周期。USP14-ATPase的动态相互作用,使得ATPase马达底物识别与26S自身的去泛素化酶RPN11催化发生去耦合效应,并在26S的泛素识别、底物的起始易位和泛素链回收过程中引入三个调控检查点(动力学分岔点)。这些发现为USP14调节26S的完整功能周期提供了全新的高分辨见解,并为USP14靶向药物治疗发现奠定了极为重要的机制基础。图2. 通过时间分辨冷冻电镜分析获取的USP14调控蛋白酶体底物降解的并行路径模型。(Youdong Mao, CC BY 4.0)Nature同期在线发表了题为“Control of human protein-degradation machinery revealed”的Research Briefing专栏推介文章,发表了审稿人和Nature编辑团队的官方点评,其中审稿人评价“该工作是一项重大研究,终于在原子水平解决了USP14活化和其调控蛋白酶体功能的机制问题”,Nature编辑团队指出“这一工作通过时间分辨冷冻电镜,结合功能分析,… … ,呈现了蛋白质降解过程中USP14和蛋白酶体的构象连续体”。这是首次将人工智能四维重建技术用于提升时间分辨冷冻电镜分析精度,针对重大疾病靶蛋白复合体,实现原子水平功能动力学观测的国际领先原创成果,展示了一类新型的蛋白质复合动力学研究范式。课题组博士后张书文与2019级博士生邹士涛为论文共同第一作者,毛有东教授为通讯作者。该论文的全部冷冻电镜数据在北大电子显微镜实验室和冷冻电镜平台上完成采集,大部分数据分析工作在北大高性能计算平台上完成。这项工作得到了北京市自然科学基金委员会重点专项、国家自然科学基金面上项目、国家杰出青年科学基金、国家重点实验室和北大-清华生命科学联合中心的支持。相关论文信息:https://doi.org/10.1038/s41586-022-04671-8Nature Research Briefing官方点评:https://doi.org/10.1038/d41586-022-01144-w
  • 法国Cordouan发布Vasco Kin原位时间分辨纳米粒度分析仪新品
    Vasco Kin原位时间分辨纳米粒度分析是新一代动态光散射纳米粒度分析仪,通过远程光学探头,进行原位非接触测量和反应动力学,用于监测纳米颗粒的合成、团聚或悬浮液稳定性的研究或监测。常用于实时纳米颗粒合成过程监控, 核反应堆内现场测量,与其它粒度特性测量仪器联用(如光谱仪、SAXS等)。粒度测量范围 : 0.5nm 到 10μm背向动态光散射原理,实时远程非接触测量监测纳米颗粒合成过程;监测整个过程的粒度变化情况,有助于稳定性研究全自动非接触测量:能穿透玻璃和塑料针管,测定包装物及反应釜中的粒度分布和随时间的变化适用样品浓度:0.1ppm-40%(w/v)时间分辨: DLS的分辨率为0.2s,用于动力学监测随时间变化的粒度分布彩色地形图“时间切片”功能:用户对测试后数据可进行任意时间段内的粒度分析样品前处理:无需样品前处理,直接测试硬件规格(核心单元):1. 激光源: 高稳定性激光二极管(可选蓝光和绿光)2. 探测器: 无伪影雪崩光电二极管(APD)3. 计算设备: 内嵌专用电脑4. 数据处理: NanoKin 相关和分析软件5. 典型测量时间:最快200ms。测量时间由样品和测量设置决定6. 操作条件/存储条件:15℃ ~ 40℃ / -10℃ ~ 50℃ – 非冷凝相对湿度 70% 7. 尺寸/重量: 220 x 220 x 64 mm (上半部分) / 2.5 kg 220 x 220 x 48 mm (下半部分) / 2.8 kgNano Kin™ 软件的主要特点: - 三个层级登录配置文件:管理员、专家、操作员 - 运行模式:包括测量、模拟、后分析(导入) - 直观导航(顺序) - 时间切片和动力学模式:独特的技术,允许监测快速动力学和/或准确的再现性测量(时间分辨率高达200毫秒)。 - 可读数据和绘图: - 动态导出数据/绘图(右键单击到剪贴板) - 报告文件格式:.pdf或.rtf(兼容writer软件) - 反转算法:- CUMULANTS 累积量算法:用于具有单分散趋势的单峰样品 - PADE-LAPLACE算法(专有):多峰样品的离散数学方法。 - 稀疏贝叶斯学习算法(SBL;专有):多峰样品的连续分布数学方法。对于所期望的分布斜率不需要先验知识,正则化参数自学习概率计算模块。创新点:VASCO 原位在线纳米粒度分析仪是基于光纤动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特表征仪器。监测纳米颗粒合成,团聚或悬浮体系稳定性研究,帮助您实时分析样品动力学。独特的“时间切片” 功能允许VASCO KinTM 用户对测试后的数据进行任意时间段内的粒径分析。用户可以获得所选时间尺度的相应的相关图和粒度分布。稳频激光光源,雪崩光电二极管(APD)探测器;可直接测量亚纳米样品(如蛋白质),无需稀释,测量精度高 。Vasco Kin原位时间分辨纳米粒度分析仪
  • 美国麦克仪器公司技术交流与合作系列活动之天津大学研究生《仪器分析测试原理与应用》课程
    日前,美国麦克仪器公司与天津大学化工学院联合授课活动于天津大学举行。通过此次课程,同学们学习了很多有关粉体材料表征的知识,感到受益匪浅,课程得到了老师同学们的广泛认可。钟华博士已连续多年应邀为天津大学化工学院研究生讲授《仪器分析测试原理与应用》等实用课程,受到广大同学的热烈欢迎,并于今年再次为新入学研究生授课。此外,钟华博士也曾于清华大学、北京大学、中国科学院等全国知名高校和科研院所举办技术讲座和学术课程,并在众多学术会议上做大会报告,受到了听众的广泛认可。值得一提的是,我公司长期致力于以各种形式开展和客户的技术交流与合作,例如为众多高校和科研院所的学生授课,与客户联合举办技术研讨会和行业用户会,共同申请研究基金、合作研究等活动。我们将通过各种渠道,增加与客户面对面交流的机会,并旨在解决您遇到的技术问题。如果您对我公司的技术交流与合作系列活动感兴趣,欢迎拨打电话联系我们:021-51085884,我们将尽快与您取得联系,并期待更广泛和深入的合作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制